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Abstract. We study quantum algorithms for multivariate quadratic Boolean equation
systems by focusing on their precise gate count. While better asymptotic algorithms
are known, currently gate counts were only computed for exhaustive search (Schwabe
and Westerbaan, SPACE 2016) and a variant of Grover’s search using preprocessing
(Pring, WAIFI 2018). This limits the applicability of Boolean equation solving to
cryptanalysis, which considers relatively small numbers of variables (from 40 to 200)
and is concerned with the exact complexity of the solver.
In this paper, we introduce two new quantum algorithms. The first algorithm is
an optimized quantum exhaustive search which amortizes the cost of polynomial
evaluation at each quantum search iterate. The second algorithm adapts a method of
Bouillaguet et al. (SOSA 2022) which proceeds by linearization of the system. In
both cases, we implement the quantum circuits, study their complexity, and obtain
significant improvements over previous results.
Next, we apply these new algorithms to the cryptanalysis of the block ciphers LowMC
and RAIN in the single-data setting. By adapting attacks from Liu et al. (ToSC
2022) and Liu et al. (ToSC 2023) we obtain the first quantum cryptanalysis results
on these ciphers.
Keywords: Quantum cryptanalysis · Boolean equation systems · Multivariate
quadratic systems · Quantum search · LowMC · RAIN

1 Introduction
Solving multivariate equation systems in finite fields is a well-studied hard problem. Being
intractable for quantum computers, it now underlies the design of many post-quantum
public-key cryptosystems, including 10 signature designs which were submitted to the
ongoing NIST post-quantum signature standardization process [NIS22].

In this paper, we will focus on the simpler case of Boolean quadratic equation systems,
denoted the MQ2 problem. Besides being of importance for post-quantum cryptography,
it is also useful in symmetric cryptography, as many algebraic attacks require to solve
Boolean quadratic equations. This happens notably in designs which aim at minimizing the
amount of non-linear operations, like LowMC [ARS+15]. As an example, some preimage
attacks on reduced-round Keccak [WWF+21] and key-recovery attacks on some instances
of LowMC [Din21a] used Boolean equation solving as a building block. Even on more
recent primitives such as AIM [KHS+23] and RAIN [DKR+22], which are defined on larger
finite fields F2n , attacks based on Boolean equation solving have been given in [LMØM23],
which rely on alternative representations of the ciphers with low algebraic degree, combined
with the isomorphism between the large finite field F2n and Fn
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Among the many algorithms available to solve Boolean quadratic systems, one can dis-
tinguish the algebraic approaches from the polynomial method. Algebraic approaches include
computing Gröbner bases of polynomial ideals [Fau02]. The polynomial method [LPT+17]
offers nowadays the best asymptotic complexity for the MQ2 problem at O

(
20.6943n

)
bit

operations [Din21b].
For small number of variables, simpler algorithms such as the fast exhaustive search

(FES) [BCC+10], the Crossbred algorithm [JV17] and the algorithm of [BDT22] (which
all belong to the family of algebraic approaches) appear to be quite efficient, and are often
used in cryptanalysis.

While the complexity of MQ2 is well studied in the classical setting, in the quantum
setting, the available set of algorithms is quite sparse. Schwabe and Westerbaan [SW16]
computed the cost of Grover’s exhaustive search on quadratic systems, which was improved
by Pring [Pri18] using a precomputation trade-off. Concurrently, improved asymptotic com-
plexities were given by Faugère et al. [FHK+17] and Bernstein and Yang [BY18] using com-
binations of classical techniques (respectively BooleanSolve [BFSS13] and XL [CKPS00])
with Grover’s search. However, due to large polynomial factors and the lack of concrete
estimates, these algorithms do not seem applicable in cryptanalysis for small numbers of
variables.

Despite this lack of tools, there is a clear motivation to study quantum attacks on the
aforementioned primitives such as LowMC [ARS+15], AIM [KHS+23] and RAIN [DKR+22].
These primitives are used in post-quantum signature schemes based on the MPC-in-the-
head paradigm. By reducing the security to a symmetric cryptography problem (e.g.,
finding the key of a LowMC cipher given a single plaintext-ciphertext pair), it is expected
that a quantum attacker can only obtain up to a quadratic speedup on classical attacks,
using Grover’s quantum search [Gro96] and other algorithms based on it. However, in
order to give a concrete quantum security level for these schemes, a more precise study of
quantum attacks is necessary.

Contributions. In this paper, we study the cost of quantum algorithms for the MQ2
problem in the (logical) quantum circuit model, where an algorithm is decomposed as a
sequence of gates. Our primary optimization target is the (exact) number of gates, and
the depth of the circuit.

We consider two algorithms based on quantum search. Our first algorithm is a quantum
variant of exhaustive search. Our second algorithm is a quantum variant of the algorithm of
Bouillaguet, Delaplace and Trimoska (BDT) [BDT22]. They will be denoted as “Quantum
Fast Exhaustive Search (FES)” and “Quantum BDT” respectively.

A comparison between these algorithms and the previous ones is given in Table 1, in
which we observe that the gate count decreases by a factor more than 210. We also obtain
a similar reduction in depth; meanwhile, the number of qubits increases with respect
to exhaustive search [SW16], but at most ten-fold (a more precise comparison is given
in Table 2). This means that for n in the hundreds, the number of (logical) qubits is in
the thousands, which is similar to Grover’s exhaustive search on AES [JNRV20], when the
circuit is optimized for gate count and depth.

Our Quantum FES and Quantum BDT algorithms are obtained by combining several
layers of quantum search, with classical reversible sub-circuits performing operations on
polynomials and / or linear algebra. We use a framework developed in [SS24] to handle
the analysis of their complexity and probability of success. Besides an asymptotic analysis,
we use numerical optimization to determine the number of iterates in these searches. We
implement the required classical sub-circuits using Qiskit [Qis23], obtaining precise counts
of gates, qubits and circuit depth. Our code is available at https://gitlab.inria.fr/
capsule/quantum-algorithms-for-mq2.

https://gitlab.inria.fr/capsule/quantum-algorithms-for-mq2
https://gitlab.inria.fr/capsule/quantum-algorithms-for-mq2
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Table 1: Comparison of Clifford+T gate counts to solve Boolean quadratic systems with
m = n equations (in log2, rounded). The parameters n and corresponding gate counts for
[SW16] and [Pri18] are taken from Table 1 in [Pri18]. (*) gate count estimates obtained
using the upper bounds of Equation 12 and Equation 17.

Exhaustive search Preprocessing Quantum FES Quantum BDT
n [SW16] [Pri18] Section 4 Section 5

117 80.99 78.38 73.2 69.9
209 129.4 126.26 119.7 114.6
457 256.71 252.93 244.3 (*) 236.3 (*)

Applications. Our algorithms do not challenge the parameter choices of post-quantum
signature designs based on multivariate quadratic equations (e.g., [BFR24]). Indeed, the
parameters of these designs will typically take asymptotic complexities and under-estimate
the additional factors. Most often, they also use a larger field size on which our algorithms
either do not apply, or become inefficient.

We give several applications in symmetric cryptanalysis, with indirect impact on
the security of post-quantum signature schemes. We focus on the ciphers LowMC and
RAIN, when used inside an MPC-in-the-head signature scheme (e.g., Picnic [CDG+20] or
Rainier [DKR+22]). In this scenario, one must recover the secret key from a single known
plaintext-ciphertext pair.

On LowMC, we adapt the linearization strategy of Liu et al. [LMSI22] and use the
Quantum BDT algorithm as a black-box. In particular, we show that 3-round variants of
LowMC with full S-Box layers can be attacked faster than exhaustive search of the key
with Grover’s algorithm, whether in total gate count or circuit depth. Previously, only
exhaustive key search had been studied by Jaques et al. [JNRV20].

On 2-round RAIN, we apply an attack from Liu et al. [LMØM23] which relies on a
simplified algebraic representation of the cipher, and also reduces the key-recovery problem
to a quadratic Boolean system.

For both applications, the complexities are much better than what one would obtain
with previous algorithms [SW16, Pri18], and this is crucial to obtain an actual speedup
with respect to Grover’s search of the key.

Outline. The paper is organized as follows. Section 2 gives some notation and background
on quantum computing and the MQ2 problem. In Section 3, we specialize the quantum
search framework of [SS24] to the case of a two-level search problem, which is the only one
needed in the paper. The generic analysis performed here is subsequently reused for our
two algorithms, presented in Section 4 (Quantum FES) and Section 5 (Quantum BDT)
respectively. The applications to LowMC and RAIN are given in Section 6 and Section 7
respectively.

2 Preliminaries
In this section, we introduce our notation, preliminaries on quantum computing and on
the number of solutions of polynomial systems.

2.1 Problem and Notation
We are interested in solving multivariate Boolean quadratic systems of equations, a problem
that is named “MQ2” and formulated as follows.
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Problem 1 (Multivariate Boolean quadratic (MQ2)). Given m quadratic Boolean functions
f0, . . . , fm−1 on n variables, find x = (x0, . . . , xn−1) such that ∀i, fi(x) = 0.

Most often we consider a “planted” version of the problem in which a system with a
solution x0 is generated at random. That is, we sample random polynomials fi such that
fi(x0) = 0. Then, as we show below in Subsection 2.3, if m ≥ n the system admits no
other solution with constant probability. In this paper we work only with such systems.

Notation. Since we work exclusively in F2 and F2n Boolean addition (XOR) will be
denoted +, and this should be clear from context. We use bold lowercase letters (x,y, z)
for Boolean vectors, |x| for the length of x, and x∥y for the concatenation of two vectors.

2.2 Quantum Gates and Cost Metrics
We refer to [NC02] for an introduction to quantum computing notions such as quantum
states and unitary evolution. The quantum algorithms studied in this paper are written
in the quantum circuit model, in which unitary operators are decomposed in elementary
quantum gates. Our basic gate set is the following: Hadamard gate (H), NOT (or X),
Controlled-NOT (CX), Toffoli (CCX).

Indeed, the X + CX + CCX gate set is universal for classical reversible computing,
and the addition of the Hadamard gate is sufficient to define quantum algorithms based
on Grover’s search [Gro96]. We name this set the “Clifford+CCX” gate set, because H, X
and CX belong to the Clifford set.

In this paper, our primary cost metric is the Clifford+CCX gate count, where CCX
gates are also considered more costly than Clifford. We also give counts of space (number
of qubits) and circuit depth (i.e., its runtime if gates can be applied concurrently). The
Clifford+T gate set has also been widely used to benchmark the cost of quantum circuits
for cryptanalysis [Pri18, JNRV20]. In order to convert the Clifford+CCX estimates to
the Clifford+T gate set, we simply decompose generically all CCX gates into 17 gates (2
Hadamard, 7 T and T †-gates, 8 Clifford gates) following [NC02].

2.3 Number of Solutions of Random Systems
The algorithms that we consider solve random systems of quadratic polynomial equations.
Inside the algorithms, we will consider many sub-systems, which are expected to behave
like randomly drawn systems (planted or not).

Following [Mas98], we expect that the number of solutions of a random Boolean equation
system with m equations in n variables (m ≤ n), which is consistent, is approximated by
a Poisson distribution of parameter λ = 2n−m. That is, the probability that there are k
solutions is approximately e−λλk/k!.

With numerical experiments, we observed that this statistic is very good even for
small m and n, and that it still holds when m = n and m > n, leading to very good
approximations of the probability that a random overdefined system admits a solution.

Consequently, let X be the number of solutions for a randomly drawn system of m
equations with n variables.

• If m = n (λ = 1) the system has no solution with probability e−1, and using the
Poisson cumulative density function we compute:

Pr(X > 2) ≤ 0.08 .

• If m > n (λ < 1), the system has no solution most of the time:{
Pr(X > 0) ≤ 0.221 for λ = 0.25 (i.e., m− n = 2)
Pr(X > 0) ≤ 0.061 for λ = 2−4 (i.e., m− n = 4) .

(1)
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2.4 Classical Algorithms for MQ2
The problem of solving multivariate polynomial systems on finite fields has been extensively
studied. The most efficient algorithms in practice rely on computing a Gröbner basis of the
ideal generated by the polynomials (e.g., the F4 or F5 algorithm [Fau02]). These Gröbner
basis methods overtook the previous XL approach [CKPS00], even for overdefined systems
of equations (see e.g. [AFI+04]).

In this paper we are interested in random Boolean systems (without any particular
structure) and not necessarily overdefined. In that case, exhaustive search remains quite
competitive for small parameters. Using Gray codes [BCC+10], one enumerates all values
for a Boolean polynomial in n variables of degree d in about O(d2n) bit operations.
Another efficient algorithm in practice is the Crossbred algorithm [JV17]; however, its
time complexity is challenging to estimate in general. The most simple case of application
of the Crossbred algorithm is the BDT algorithm [BDT22], a simplified algebraic approach
which offers an asymptotic gain of order 2

√
m over exhaustive search.

Asymptotic complexities of the form 2αn with α < 1, guaranteed for random systems,
are obtained by two families of algorithms: algebraic approaches (similar to those mentioned
above) and the polynomial method. The former includes for example the BooleanSolve
algorithm [BFSS13]. The latter [LPT+17] yields today the best known results with Dinur’s
algorithm [Din21b], which solves MQ2 in time O

(
20.6943n

)
and also achieves speedups for

larger d. Dinur also provided a version of this algorithm with an accurate complexity
estimate at n220.815n bit operations [Din21a], which has applications in cryptanalysis.
However, no quantum version of this algorithm exists.

2.5 Quantum Algorithms for MQ2
In the quantum setting, Schwabe and Westerbaan [SW16] studied the cost to run Grover’s
exhaustive search of the solution, which is of O

(
n2m2n/2)

quantum gates when the system
has m equations, since m quadratic polynomials need to be evaluated at each search
iterate. They noticed that Grover’s search can run with an especially small number of
qubits (around n+ log2 m in the most space-optimized version).

Later, Pring used a preprocessing method to improve this gate count [Pri18]. Follow-
ing [Pri18, Section 4.4], the method consists in performing a Grover’s search on n − b
variables, followed by a classical exhaustive search on the b remaining variables. The
classical search can be performed quite efficiently, in a way similar to the classical Fast
Exhaustive Search. This gives an asymptotic gate count of:

2(n−b)/2 (
m(n− b)2 + 2bm(n− b) + n

)
.

(See Eq. (22) and (23) in [Pri18]). Here, the term 2bm(n− b) is the classical exhaustive
search term, while m(n− b)2 checks if the obtained solution is correct for the entire system.
Optimizing this gives b = log2 n and a complexity of order O

(
mn3/22n/2)

.
The situation in our paper is quite similar, though we obtain improved complexities.

Indeed, both in Section 4 and Section 5, we guess the variables in two steps, and the
number of variables in the second step is typically logarithmic. An important difference
with [Pri18] is that we use quantum search in both layers.

Quantum variants of the BooleanSolve [FHK+17] and the XL algorithms [BY18] are
known to improve asymptotically over exhaustive search, though their gate count on small
instances has not been studied. The quantum Booleansolve [FHK+17] is quite relevant for
our context since it was also analyzed from the point of view of total gate count, and has
the same structure of a hybrid algebraic algorithm. It performs an exhaustive (quantum)
search on a subset of variables, and then a sparse linear system-solving (a situation similar
to Section 5).
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We can also mention the study of Chen et al. [CHR+18], who estimated the complexities
of quantum algorithms that combine classical algebraic approaches with Grover’s search,
such as BooleanSolve [BFSS13] and the Crossbred algorithm [JV17]. The purpose of their
approach was to estimate safe parameters for a signature scheme, and so, they used a
conservative estimate (e.g., simplifying the cost of linear algebra) which cannot be reused
as is for cryptanalysis.

In Table 2, we summarize the asymptotic complexities of known quantum algorithms,
compared with ours.

Table 2: Quantum algorithms solving MQ2, assuming m ≥ n and a single solution. O
notation is omitted. (*) GroverXL is a distributed algorithm: it computes in parallel on
Õ(20.01467n) qubits. (**) Due to non-negligible lower-order terms, these formulas are far
from the actual number of qubits for small values of n.

Reference Method Time (gates) Space (qubits)
[SW16] Exhaustive search n2m2n/2 n+ log2 m
[Pri18] Preprocessing mn3/22n/2 n+m

[FHK+17] BooleanSolve Õ
(
20.462n

)
Not studied

[BY18] XL algorithm Õ
(
20.45743n

)
(*) Õ

(
20.01467n

)
(*)

Section 4 FES (log3 n)2n/2 3n+ O
(
(logn)2)

(**)
Section 5 BDT m3/22(n−

√
2m)/2 3n+ 7m+ o(n+m) (**)

3 Quantum Search Framework
The quantum algorithms that we design in this paper are specific instances of the back-
tracking search framework described in [SS24], which is built by nesting quantum search
algorithms. In this section, we recall the results of [SS24], for the case of two levels of
nesting (i.e., ℓ = 2 in [SS24]). We restrict to two levels because we do not require more for
the algorithms presented in this paper.

3.1 Preliminaries: Quantum Amplitude Amplification
Quantum Amplitude Amplification (QAA) [BHMT02] is a generic process to increase
the success probability of any quantum algorithm. Let A be a quantum algorithm that,
on input |0n⟩, returns any superposition of n-bit strings. Let f : {0, 1}n → {0, 1} be a
Boolean function that recognizes certain of these n-bit strings as “good”, and let p be the
success probability of A, i.e., the probability that upon measurement of A |0n⟩, the result
x satisfies f(x) = 1. QAA relies only on A and a phase oracle Of : |x⟩ 7→ (−1)f(x) |x⟩.

We define the QAA iterate as the unitary:

Q = −AO0A†Of , (2)

where O0 |x⟩ = (−1)δx0 |x⟩, where δx0 is the Kronecker delta (1 if and only if x = 0).
Let |ψG⟩ be the (normalized) part of the output of A on which f is one, and |ψB⟩

be the other part. They are orthogonal (as they are supported by disjoint sets of basis
vectors) and by definition:

A |0n⟩ = √
p |ψG⟩ +

√
1 − p |ψB⟩ . (3)

The following is shown by Brassard et al. [BHMT02]:

∀k ≥ 0, QkA |0n⟩ = sin [(2k + 1) arcsin √
p] |ψG⟩ + cos [(2k + 1) arcsin √

p] |ψB⟩ . (4)
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The analysis of the algorithms detailed in this section follows entirely from this equality.
Note that a priori, O0 needs to be applied on the entire state. However, qubits which are 0
when O0 is applied can be left out. The implementation of O0 relies on a multi-controlled
X gate, which we implement from CCX gates using only a single ancilla qubit, thanks to a
method of Gidney [Gid15] (detailed in our code). This gate is then converted to a phase
flip using Hadamard gates.

Lemma 1. There exists a circuit mapping:

|x0, . . . , xℓ−1, b, 0⟩ 7→
∣∣∣∣x0, . . . , xℓ−1, b⊕

∏
i

xi, 0
〉
,

using 1 CX gate if ℓ = 1, 1 CCX gate if ℓ = 2, 3 CCX gates if ℓ = 3, 6 CCX gates if ℓ = 4,
and 6(n− 3) − 2((n+ 1) mod 2) CCX gates otherwise.

3.2 Definition of the Problem
Let C1 = {0, 1}n1 , C2 = {0, 1}n2 be choice sets. Let W = {0, 1}w be the workspace and
F = F ′ = {0, 1} be flags. We will consider algorithms that act on C1 ×C2 ×W ×F ×F ′ =
{0, 1}n1+n2+w+2. By register, we mean a subset of the bits corresponding either to
C1, C2,W, F or F ′.

For ease of notation, we use the notation |S for projecting the current state on the
register S (resp. a subset of registers), for example s|F is a single-bit flag.

We consider a triple of reversible algorithms A1, A2, D which form the basis for a
two-level backtracking search which we will define later on. They have the following
properties:

• A1: acts on C1 ×W and modifies only W

• A2: acts on C1 × C2 ×W × F and modifies only W and F

• D: acts on C1 × C2 ×W × F ′ and modifies only W and F ′.

We are interested in finding a choice c1, c2 which passes two tests: A2 (the test output
is in the flag F ) and D (the test output is in the flag F ′). We assume that there is a single
solution cg

1, c
g
2 such that:

D ◦A2 ◦A1(cg
1, c

g
2, 0w, 0, 0)|F,F ′ = 1, 1 , (5)

and our goal is to return it. Furthermore, we assume that cg
2 is the only value of c2 such

that (cg
1, c2) passes the first test A2. This will simplify the structure of the algorithm with

respect to the more generic setting of [SS24].

3.3 Classical Backtracking Algorithm
One can find cg

1, c
g
2 by several nested search loops, as shown in Algorithm 1. The loops are

iterated for a fixed number of times (k1, k
′
2) and sample choices at random. As we might

miss the solution, the success probability is not 1, and it depends on k1, k
′
2.

3.4 Description of the Quantum Algorithm
Intuitively, the classical “Repeat” loops with k1, k

′
2 iterates in Algorithm 1 can be replaced

by iterations of QAA operators. The framework described in [SS24] applies such a
transformation, obtaining a quantum algorithm that solves the search problem.

In the quantum setting, we replace A1, A2 and D by quantum circuits A1,A2,D with
the same constraints (acting reversibly and only modifying some subset of the registers).
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Algorithm 1 Classical two-level backtracking search.
Registers: C1, C2,W, F, F

′ (initialized to zeroes)
Returns: the good choice cg

1, c
g
2

1: Repeat k1 times
2: Choose a random c1
3: Compute A1
4: Repeat k′

2 times
5: Choose a random c2
6: Compute A2. If f = 1, break
7: EndRepeat
8: Compute D. If f ′ = 1, break
9: EndRepeat

n1

w

C1

A1

W

c1 c1

0 s1

n1

n2

w

1

C1

A2
C2

W

F

c1 c1

c2 c2

s1 s2

0 f

n1

n2

w

1

C1

D
C2

W

F ′

c1 c1

c2 c2

s2 s

0 f ′

Figure 1: Quantum circuits for basic components in the two-level backtracking search.

They are represented in Figure 1. Here s1 denotes the state of the workspace after A1, s2
after A2, s after D.

Then, one constructs three algorithms using QAA, named A′
2, B2 and B1.

Algorithm A′
2 (Algorithm 2): A′

2 acts on the registers C1, C2,W, F and modifies
C2,W, F . It assumes that C2 and F contain 0 at the start, and C1,W contain a
choice c1 and a corresponding workspace state s1. Intuitively, A′

2 is responsible for
finding a c2 ∈ C2 such that A2(cg

1, c2, w, 0)|F = 1 (that is, cg
2).

Algorithm B2: B2 acts on the registers C1, C2,W, F, F
′ and modifies C2,W, F, F

′. It
computes A′

2 followed by D.

Algorithm B1 (Algorithm 3): B1 acts on all registers. It is a QAA in which the
amplified algorithm is B2 ◦ A1 and the test simply reads the flags.

3.5 Success Probability of the Quantum Algorithm
On input |0⟩, running B1, measuring and projecting on C1, C2 gives the good choice (cg

1, c
g
2)

with some probability of success. This probability can be expressed by a closed formula
of k1, k

′
2, n1, n2 (Lemma 3 in [SS24]). We detail here how this formula is obtained in the

specific case of the two-level search.
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Algorithm 2 Definition of A′
2. Steps 3 to 5 are the test in the QAA, where the amplified

algorithm is simply a Hadamard transform.
Registers: C1, C2,W, F, F

′

Modifies: C2,W, F
1: Apply a Hadamard transform H on C2
2: Repeat k′

2 times
3: Compute A2 ▷ Updates the workspace
4: Flip the phase if F contains 1
5: Uncompute A2 ▷ Restores the workspace
6: Apply H, −O0 and H on C2
7: EndRepeat
8: Compute A2

Algorithm 3 Definition of B1.
Registers: C1, C2,W, F, F

′

Modifies: C1, C2,W, F, F
′

1: Apply H on C1
2: Compute A1
3: Compute B2 = D ◦ A′

2
4: Repeat k1 times
5: Flip the phase if F and F ′ contain 1
6: Uncompute B2 and A1
7: Apply H on C1
8: Apply −O0 on (C1, C2)

▷ We only need to apply O0 to C1 and C2 instead of the entire
workspace C1, C2,W, F, F

′ because at this point of the algorithm, W,F, F ′ are always
0: they have been uncomputed by B2 and A1 respectively.

9: Apply H on C1
10: Compute A1 and B2
11: EndRepeat

Success in A′
2. Consider A′

2 starting from |cg
1, 0, s

g
1, 0, 0⟩, where sg

1 is the workspace
state after running A1 on cg

1.
Since the amplified algorithm merely samples c2 ∈ C2 at random and computes A2, its

probability of success is 2−n2 . By Equation 4, the probability of success of A′
2 is:

ν′2
2 := sin2((2k′

2 + 1) arcsin 2−n2/2) .

This is the probability to measure an output of the form |cg
1⟩ |cg

2⟩ |s2⟩ |1, 0⟩ if we run
A′

2 |cg
1⟩ |0⟩ |sg

1⟩ |0, 0⟩ (where s2 is the updated workspace corresponding to c2).

Success in B2. Consider B2 = D ◦ A′
2 starting from |cg

1, 0, s
g
1, 0, 0⟩. Its probability of

success is the probability to measure |cg
1⟩ |cg

2⟩ |sg⟩ |1, 1⟩ in the output, which is ν′2
2 as given

above. Starting from c1 ̸= cg
1, we cannot measure 1, 1 in the flags, so the probability of

success is 0.

Success in B1. Consider B2 ◦ A1 ◦ H starting from |0, 0, 0, 0, 0⟩. The probability of
success of this algorithm is:

2−n1ν′2
2 := 2−n1 sin2((2k′

2 + 1) arcsin 2−n2/2) ,

which corresponds to finding the right c1, then succeeding in B2.
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By Equation 4, the probability of success of B1 is:

ν2 := sin2
[
(2k1 + 1) arcsin

[
2− n1

2 sin((2k′
2 + 1) arcsin 2− n2

2 )
]]

. (6)

3.6 Complexity of the Quantum Algorithm
The number of qubits of B1 is n1 + n2 + w + 3 qubits (work qubits used locally are also
included in the workspace). Let G be a cost metric such as the Clifford+CCX gate count
(but we can also adapt it to be the depth). We assume given an implementation of O0
that for n bits, has cost G0(n). Then the costs of the algorithms can be expressed as:

G(A′
2) = (2k′

2 + 1)(G(A2) + n2G(H)) + k′
2G0(n2) + k′

2G(CZ)
G(B2) = G(A′

2) +G(D)
G(B1) = (2k1 + 1) (G(A1) + n1G(H) +G(B2)) + k1G0(n1 + n2) + k1G(CCZ) .

And the complexity of G(B1) is:

G(B1) = G(A1)
[
2k1 + 1

]
+G(D)

[
(2k1 + 1)

]
+G(A2)

[
(2k1 + 1)(2k′

2 + 1)
]

+G(H)
[
(2k2 + 1) (n1 + n2(2k′

2 + 1))
]

+G0(n2)
[
k′

2(2k1 + 1)
]

+G0(n1 + n2)
[
k1

]
+G(CZ)

[
k′

2(2k1 + 1)
]

+G(CCZ)
[
(k1)

]
. (7)

A decomposition of the algorithm using the sub-circuits A1,A2 and D is given in Fig-
ure 2. Here we highlight some intermediate states which are always 0.

Choice of Iteration Numbers. In order to guarantee ν2 = O(1) in Equation 6, we
need k′

2 = O
(
2n2/2)

and k1 = O
(
2n1/2)

. Furthermore, the complexities of A1,D and A2
will always dominate in Equation 7, which we can simplify into:

G(B1) = O
(

2n1/2(G(A1) +G(D)) + 2(n1+n2)/2G(A2)
)
. (8)

In practice, we determine k1 and k′
2 by optimizing numerically the quantity G(B1)/ν8.

This gives typically a large probability of success (ν2 > 0.9) and minimizes the complexity
at the same time.

4 Fast Quantum Exhaustive Search
Our first algorithm is a quantum fast exhaustive search (FES). It differs significantly from
the classical one [BCC+10], which explores its search space using Gray codes to minimize
the time to evaluate a new point. Since this technique is inherently sequential, it does not
admit a simple equivalent in the quantum setting. Instead, we will guess the variables in
two steps.

4.1 Overview
Let f0, . . . , fm−1 be m polynomials in variables x := (x0, . . . , xn−1); we consider the system
∀i, fi(x) = 0. When assigning a value v to a variable x in f , we obtain a partially evaluated
polynomial with one variable less, denoted f(x = v). We extend this notation to vectors,
e.g., f(x = v). We assume that there is a single solution.

Let ℓ and n1 + n2 = n be integer parameters that we will choose later. Let x = x2∥x1
where |x1| = n1 and |x2| = n2. Our starting point is Algorithm 4.
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n1

w

n2

1

1

1

C1 { |0⟩ H
A1

A2 A†
2 A2

D

W { |0⟩

C2 { |0⟩ H −HO0H

F { |0⟩

F ′ { |0⟩

Ancilla { |0⟩ Z

B2

C1

B†
2

A†
1

H

−O0

H

A1

B2

W

C2

F

F ′

Ancilla Z

0 0

0

0

Figure 2: Decomposition of B1 when k1 = k′
2 = 1 (one iteration in A′

2, one iteration in
B1). The sub-algorithm B2 is decomposed only once in this drawing.

This is an instance of Algorithm 1 where the first choice set (for v1) is {0, 1}n1 and
the second choice set (for v2) is {0, 1}n2 . Furthermore:

• A1 evaluates partially ℓ polynomials in n1 variables. Thus, it has a complexity of
O

(
ℓ · (n2(n− n2) + (n− n2)2)

= O(ℓnn1) (we refer to Equation 10 for the expression
of the coefficients in the partial evaluation).

• W stores the coefficients of f ′
i , which are polynomials in n2 variables x2. As we will

notice below, for each f ′
i only n2 + 1 coefficients need to be stored (the coefficients

of x2), as the coefficients of the quadratic terms remain the same as in fi. So W is
of size O(ℓn2) bits.

• A2 evaluates ℓ polynomials in n2 variables and checks if they are 0. Thus, it has a
complexity O

(
n2

2ℓ
)
.

• D checks if the whole system is satisfied. There remains n − ℓ polynomials in n
variables to evaluate, so its complexity is O

(
(n− ℓ)n2)

.

Choice of Parameters. We take ℓ = n2 + 4. The idea is to minimize the number
of values for x2 which pass the test A2. In particular, when taking the good choice of
variables, the discussion of Subsection 2.3 implies that with probability 0.061, no other
value passes the test. The success probability and complexity of the algorithm are then
given by Equation 6 and Equation 7, respectively.
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Algorithm 4 A classical algorithm for exhaustive search.
Input: polynomials f0, . . . , fm−1 in x

1: Choose a value v1 ▷ First choice: the number of iterations of this step corresponds to
k1 in Algorithm 1

2: Evaluate f0, . . . , fℓ−1 partially on x1: obtain f ′
i(x2) = fi(x1 = v1) . ▷ A1

3: Choose a value v2 ▷ Second choice: the number of iterations of this step corresponds
to k′

2 in Algorithm 1
4: Evaluate f ′

i(v2)
5: If ∃i < ℓ, f ′

i(v2) ̸= 0: return to step 3 ▷ A2 and test
6: If all choices v2 have been checked: return to step 1
7: Evaluate fℓ, . . . , fm−1 on v. If all values are 0, Return v. ▷ D and test

Asymptotic Complexity. Using Equation 8 we immediately have the asymptotic gate
count of the algorithm:

G = 2n1/2(G(A1) +G(D)) + 2n/2G(A2) = 2n1/2((n− ℓ)n2 + ℓnn1) + 2n/2n3
2 . (9)

This is optimized by choosing ℓ = n2 + 4 = O(logn) giving G = O
(
(log3 n)2n/2)

. The
space complexity is O(n) since the additional storage of W is negligible.
Remark 1. In this algorithm, we could use more than two levels of search. Though this
would improve the asymptotic complexity, the gain would be likely imperceptible at small
scales – and we obtain a better algorithm for MQ2 in the next section anyway. Such an
algorithm would be rather suited for systems of higher degree, which are out of scope of
this paper.

4.2 Quantum Implementation of Components
The circuits A1,A2 and D perform partial or complete evaluation of polynomials. We
implemented them to obtain reliable bounds on their gate counts. We detail below some
key points of this implementation.

Evaluating Polynomials. First, following [SW16] we give an elementary way to evaluate
polynomials. Let us write:

f(x0, . . . , xn−1) = a0 +
n−1∑
i=0

i∑
j=0

aijxixj ,

where aij = 0 if j > i. The case i = j corresponds to the linear terms. Then:

f(x0, . . . , xn−1) = a0 +
n−1∑
i=0

xi

aii +
i−1∑
j=0

aijxj

 .

Lemma 2. There is a quantum circuit that computes:

|x0, . . . , xn−1, 0, 0⟩ 7→ |x0, . . . , xn−1, f(x0, . . . , xn−1), 0⟩

using n− 1 CCX, n X, n(n− 1) + 1 CX gates.

Proof. For each i from 1 to n− 1, we first compute aii +
∑i−1

j=0 aijxj into the ancilla bit
using a series of ≤ i CX gates and ≤ 1 X gate, depending on the aij . We use a single
CCX to XOR xi

(
aii +

∑i−1
j=0 aijxj

)
into the output bit. Then, we uncompute the sum.

For i = 0, the term in the sum is only a00 so we only have (at most) one CX to apply.
The total CCX count is n− 1. The total X count is at most n− 1 + 1 (if a0 = 1 we

also need an X gate). The total CX count is: ≤ 2
∑n−1

i=0 i = n(n− 1).
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Partial Evaluation (A1). Again we start from:

f(x0, . . . , xn−1) = a0 +
n−1∑
i=0

n−1∑
j=0

aijxixj

where aij = 0 if j > i. We choose a value v1 = (vn2 , . . . , vn−1), so the partially evaluated
polynomial will be on n2 variables:

f ′(x2) = f(x1 = v1) = a0 +
n2−1∑
i=0

n2−1∑
j=0

aijxixj +
n−1∑
i=n2

n−1∑
j=n2

aijvivj+

n2−1∑
i=0

n−1∑
j=n2

aijxivj +
n−1∑
i=n2

n2−1∑
j=0

aijvixj

So the coefficients of the new polynomial can be expressed as:
f ′(x0, . . . , xn2−1) =

∑
i,j bijxixj

b0 = a0 +
∑n−1

i=n2

∑n−1
j=n2

aijvivj

∀i < n2, bii = aii +
∑n−1

j=n2
(aij + aji)vj

∀i ̸= j, i < n2, j < n2, bij = aij .

(10)

We notice that A1 only needs to return n2 + 1 bits of output for each polynomial,
which are the coefficients bii. The other coefficients remain the same. This reduces the
number of qubits used by the algorithm.

Complete Evaluation (A2). The circuit for A2 is a modified evaluation circuit which
takes as input the coefficients returned by A1. It has essentially the same structure. For
more details on the implementation one can refer to our code.

Depth Optimization. Since we always compute with multiple polynomials in parallel, it
is possible to reduce the depth of the circuits by parallelizing some CCX and CX layers. As
an example, let us consider a multi-evaluation circuit which evaluates in parallel multiple
polynomials:

|x, 0, . . . , 0⟩ 7→ |x, f0(x), . . . , fℓ−1(x)⟩ . (11)
Following the circuit structure of above, we initialize one ancilla qubit per polynomial,

and we use this ancilla qubit to compute linear expressions of the input variables via CX
gates (the exact number of which depends on the fi), followed by CCX gates to create the
quadratic terms.

Assume that ℓ ≤ n. During the computation of the linear functions, the CX gates can
be ordered in such a way that the (at most) ℓ gates applied in parallel will always use
different inputs xi. By choosing an appropriate ordering of the linear functions, we can
also apply the CCX gates in layers.

This reduces the total depth of the circuit by a factor ℓ, and makes it asymptotically
optimal.

Space Usage. Due to our implementations of the circuits, we use in total:
• (n2 + 2)ℓ qubits for the workspace: it contains the coefficients computed by A1, and

later the evaluation outputs computed by A2, which do not need to be uncomputed

• n qubits for the choice registers

• 2 qubits for the flags

• 2(m− ℓ) qubits for ancillas (used in D and partially used by the previous algorithms)
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Controlled Version. Some of our applications use the polynomial system solver as a
test in a Grover search. In that case, the polynomial system itself is a side input of the
circuits A1,A2 and D. We have adapted our implementation to this case as well. The total
number of gates is slightly increased (before, some gates were only applied depending on
the coefficients). Some X gates are changed into CX gates. Besides the increase in space
(since the polynomial system has n2m coefficients), the most visible change is that most
CX gates are changed into CCX gates, and so, the CCX gate count becomes dominating.

4.3 Optimization Results
For a given value of n, we optimize the cost of the algorithm as follows. First, we sample
a random polynomial system (with a solution). While this will introduce some variance in
the gate counts (since the coefficients of the polynomials are hard-coded in the circuits),
we can observe in practice that it is below 0.1 in the exponent for n ≥ 40.

Second, we fix the value of n2. We construct the quantum circuits for A1,A2,D using
Qiskit [Qis23]. Internally the circuits are represented as a sequence of gates, and this
allows to count trivially the number of gates, qubits, and the circuit depth.

Third, we use numerical optimization to determine optimal values of k1 and k′
2. In

theory, different cost metrics (depth, gates) could lead to different optimizations, but in
practice, we observed that the difference between the results was negligible. Our objective
function is G(B1)/ν8 where G(B1) and ν are given by Equation 7 and Equation 6 (the
exponent on ν ensures that the success probability is large; we accept only a success
probability greater than 0.9).

Results for different values of n are reported in Table 3. From these experiments, we
estimate an upper bound for the Clifford+T gate count when n ≥ 50:

(log2 n)326.32+n/2 . (12)

Table 3: Optimization results for Quantum FES. The optimization target was Clif-
ford+CCX gate count. Gate counts and depth are in log2 and rounded.

n m n2 Prob. of success Qubits Clifford+CCX CCX Depth
40 40 10 0.984 270 31.9 29.2 29.5
60 60 13 0.981 411 42.5 39.7 39.9
80 80 15 0.991 502 53.0 50.0 50.3
100 100 16 0.993 630 63.3 60.3 60.5

5 Quantum BDT Algorithm
In this section, we detail our second quantum algorithm for MQ2 which is a quantum
version of the algorithm of Bouillaguet et al. [BDT22]. The idea of this algorithm is to
select O(

√
m) variables and to guess the remaining ones. Since the system now contains

m equations in about
√
m variables, it can be solved by Gaussian elimination, which runs

in time O
(
m3/2)

. Consequently the complexity of this method is of order 2n−O(√
m).

As mentioned in [BDT22, Section 5.1], this algorithm can be seen as a special case of
the Crossbred algorithm, which first constructs a system of larger degree ≥ 2, then guesses
some of the variables, and solves a smaller system of smaller degree (here linear).

The overall structure of the quantum algorithm is also similar to the quantum Boolean-
solve [FHK+17], which performs an exhaustive (quantum) search on a subset of variables,
then solves a linear system to obtain the remaining ones (with a consistency check).
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5.1 Description as a Backtracking Search
Let F = Span(f0, . . . , fm−1) be the vector space spanned by the m quadratic polynomials
in n variables. We assume that they are linearly independent, so F is of dimension m.
We choose a parameter u =

⌊√
2m− 2

⌋
, and partition the variables into x = y∥z where

|y| = n− u, |z| = u. Here y will be enumerated, and z deduced by Gaussian elimination.
In a precomputation, we compute all combinations of the equations which eliminate all

quadratic terms in z. We let L ⊆ F be the vector space of these combinations. Following
the discussion in [BDT22], if the input polynomials are linearly independent, the vector
space L has dimension at least:

ℓ := m− u(u− 1)
2 = m− 1

2

(⌊√
2m

⌋
− 2

) (⌊√
2m

⌋
− 3

)
= −3 +

5
⌊√

2m
⌋

2 ≥ 5u
2 .

If the dimension of L is greater than ℓ, we discard the additional equations. This gives us
a subspace L′ ⊆ L spanned by exactly ℓ equations. Let (gi)0≤i≤ℓ−1 be a basis of L′. We
write each gi as:

gi(y∥z) = qi(y) + (yBi + Ci)zt , (13)

where for 0 ≤ i < ℓ, qi are precomputed quadratic polynomials, Bi are precomputed
Boolean matrices of dimension (n− u× u), and Ci are precomputed vectors of dimension
u.

Obviously, any solution of F is also a solution of L′, but the converse will not be true.
Our goal is to find solutions of L′ and test them afterwards against the full system.

A value v for the variables y defines a linear system in z, as gi(y = v) = 0 is a linear
equation in z:

∀i, gi(y = v) = qi(v) + (vBi + Ci)zt . (14)

This gives a system of ℓ equations in u variables, which we can assume to be random
(this assumption is heuristic, as systems constructed from different values v are not
independent). The system has a solution if the vector formed by evaluating the qi(v)
belongs to the image of the matrix formed by evaluating the (vBi + Ci), which is of
dimension u in Fℓ

2. Therefore, if we assume that these vectors behave as randomly drawn,
the system is consistent with probability at most 2u−ℓ = O

(
2−3u/2)

.
In order to simplify the algorithm, we assume that the system that actually leads to

the solution admits a single solution. This means that we will first check consistency of
the system, and if it is consistent, we will attempt at solving it and check only the first
solution that comes out.

The most costly step in the evaluation of gi(y = v) is the computation of qi(v). In
order to speed this up, we can separate the evaluation in two steps as we did before, by
guessing first a subset of the y variables. By doing so, we obtain an algorithm with a similar
structure as in Section 4. We select new parameters n2, n1 such that n1 + n2 = n− u, and
we separate y = y2∥y1.

This is an instance of Algorithm 1 where the first choice set is {0, 1}n1 and the second
choice set is {0, 1}n2 . The algorithm A1 performs the partial evaluation of the linear
system, and A2 performs the complete evaluation of the system, solves it via Gaussian
elimination and determines if it has a solution (first test). Then, D tests all the equations
(second test).

We use the following parameters. First, u should be as large as possible, so we take
u =

⌊√
2m

⌋
− 2, and we will have ℓ = 5⌊√

2m⌋
2 − 3 and n1 + n2 = n − u. We choose n2

small enough to ensure that, when we start from the right choice of variables, no other
value passes the test A2. This means that among the 2n2 choices at the second step, we do
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Algorithm 5 Classical BDT algorithm [BDT22].
Input: polynomials f0, . . . , fm−1

1: Precomputation: compute qi(y), Bi, Ci, 0 ≤ i ≤ ℓ− 1
2: Choose a value v1 for y1 ▷ First choice
3: Evaluate partially the polynomials qi(y1 = v1) and the linear functions yBi

▷ Algorithm A1
4: Choose a value v2 for y2 ▷ Second choice
5: Evaluate completely the polynomials qi(v2,v1) and the linear functions yBi + Ci.

Solve the system. ▷ Algorithm A2
6: If the system is not consistent, return to step 4. If all v2 have been tested, return to

step 2.
7: Let w be the solution of the system. Evaluate all fi(v∥w). ▷ Algorithm D
8: If all values are 0, Return this result.

not expect any system to be consistent (other than the one corresponding to the solution).
Since random systems of ℓ equations in u variables are consistent with probability 2u−ℓ,
we should have:

1 − (1 − 2u−ℓ)2n2 ≪ 1 ⇐⇒ 2n2+u−ℓ ≪ 1 .

We will choose n2 ≤ ℓ− u− 4.
Remark 2. An algorithm combining only BDT and Grover’s algorithms, and evaluating
gi(v) entirely, would have complexity of order (mn2)2(n−sqrt(2m))/2. Indeed, the term
(mn2) would correspond to evaluating gi(y = v) and would dominate over the linear
system solving. This is why we use another level of search to amortize.

5.2 Detailed Complexity Analysis and Results
Our implementation uses partial and complete evaluation circuits which are very similar
to Subsection 4.2. The novelty is that we need a quantum circuit that solves a Boolean
linear system of the form Mz = C where both M and C are given as input.

To do so, we reuse a circuit from [BJ22]. Initially, its goal is to determine if a Boolean
system is full rank, and to find an orthogonal vector. We can notice that: Mz = C is
equivalent to (M |C)

(z
1
)

= 0. Furthermore, by our analysis, we expect only a single solution
if there is one. Thus the circuit [BJ22] can be reused to determine if a solution z indeed
exists, and to compute it.

Asymptotically the circuit contains O
(
u2ℓ

)
gates when the matrix has ℓ lines and u

columns (ℓ ≥ u). It requires O(uℓ) space, and like the circuits in Subsection 4.2 it can be
made efficient in depth. For more precise estimates, we instantiated the circuit using our
implementation and computed its costs.

Asymptotic Gate Count. We estimate the asymptotic gate count of the whole algo-
rithm using Equation 8:

G = 2n1/2(G(A1) +G(D)) + 2(n1+n2)/2G(A2) . (15)

Asymptotically we have ℓ = u = O(
√
m). The circuit A1 contains O(n1nℓ) = O

(
n2ℓ

)
gates. The circuit A2 contains O

(
n2

2ℓ+ u2ℓ
)

gates. The circuit D contains O
(
n3)

gates,
as we only need to check n+ 4 equations instead of m. This gives:

G = 2n1/2(n3) + 2(n−
√

2m)/2(n2
2
√
m+m3/2) (16)

This leads to the choice n2 = O(logn), which amortizes the first term, and gives us
G = O

(
m3/22(n−

√
2m)/2

)
. Contrary to the exhaustive search in Section 4, this algorithm

benefits from having more equations than unknowns, as we can eliminate more variables.
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Controlled Version. When the polynomial system is given as input, the precomputation
detailed in Subsection 5.1 needs to be performed only once, before running the search.
Most of the time, we can neglect its gate count. If not, we make the following estimation.

The qi, Bi, Ci parameters of the algorithm are obtained by performing Gaussian elimi-
nation on the m× n2 Boolean matrix of the polynomial system coefficients, by eliminating
the quadratic terms in z. Since there are u(u − 1)/2 such terms, one must perform
u(u−1)/2×m row eliminations. Using Bonnetain and Jaques’ algorithm [BJ22], we expect
asymptotically to use u(u− 1)/2 ×m× n(n+ 1)/2 CCX gates. The space complexity is
dominated by the storage of this matrix of dimension m× n2.

5.3 Optimization Results

Using the same optimization strategy as in Section 4, we give some examples (with
m = n) in Table 4. Though the number of qubits is typically larger, we observe significant
improvements in all metrics compared to Table 3. For example, when n = 100, we gain a
factor 24.3 in Clifford+CCX gate count (respectively 25.3 in depth).

Table 4: Optimization results for quantum BDT. The optimization target was Clif-
ford+Toffoli gate count. Complexities are in log2 and rounded.

n m u n2 Prob. of success Qubits Clifford+CCX CCX Depth
40 40 6 6 0.965 407 30.6 28.3 27.3
60 60 8 9 0.983 669 40.2 38.2 36.6
80 80 10 12 0.992 985 49.5 47.9 45.8
100 100 12 15 0.992 1355 58.9 57.4 55.1

The following complexity estimate is an upper bound for the Clifford+T gate count
(with decomposed CCX gates) of this algorithm when n ≥ 50:

u :=
⌊√

2m− 2
⌋

ℓ :=
⌊
5

⌊√
2m

⌋
/2 − 3

⌋
Gate count = ℓu326+(n−u)/2

(17)

6 Application to LowMC

LowMC [ARS+15] is a block cipher aiming at minimizing the number of AND gates. Several
variants were included in the NIST post-quantum candidate signature Picnic [CDG+20],
which is based on the MPC-in-the-Head paradigm. This made LowMC a prominent target
for cryptanalysis, especially in the Picnic scenario where the attacker must recover the
secret key only from a single known plaintext-ciphertext pair.

Although Picnic did not reach standardization, the cryptanalysis of LowMC has
remained very active [BBVY21, Din21a, LMSI22, BCV24]. In the low-data scenario, these
attacks are algebraic and rely on Guess-and-determine, Meet-in-the-middle and polynomial
system solving. In this section, we will focus on examples of the latter.

Since it has applications in post-quantum cryptography, it seems natural and important
to confront LowMC instances with quantum attacks. However, to the best of our knowledge,
there has been no such attempt in the literature, apart from the analysis of Grover’s
exhaustive search by Jaques et al. [JNRV20] and Jang et al. [JBK+22].
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6.1 Specification
LowMC mainly relies on four adjustable parameters: r (number of rounds), n (block size,
a multiple of 3), k (key length), s (number of S-Boxes used at each round). A single round
of LowMC contains four operations:

1. Nonlinear layer: one applies s parallel instances of the LowMC S-Box to the first 3s
bits of the input. If the size of the input is bigger than 3s, the remaining bits are left
unchanged (thus LowMC allows for partial S-Box layers). The S-Box S transforms a
3-bit input a1, a2, a3 into S(a1, a2, a3) = (a4, a5, a6), with:

a4 = a1 ⊕ a2a3

a5 = a1 ⊕ a2 ⊕ a1a3

a6 = a1 ⊕ a2 ⊕ a3 ⊕ a1a2.

(18)

2. Linear layer: the block of length n is multiplied by a randomly generated n × n
invertible Boolean matrix. Each round uses a new matrix Li. For the generation of
these matrices, we can refer to the specification of LowMC [ARS+15]. The attacks
studied here do not make use of their specificities.

3. Constant addition: the constant RCi for round i is also randomly generated.

4. Round key addition: the round key Ki is obtained by multiplying the master key K
(of size k) by a matrix Mi of size n× k, which is also randomly generated for every
round i.

To summarize, a round of LowMC can be represented by the following function:
Ai+1 = Li ◦S(Ai)⊕RCi ⊕Ki, where the input Ai is the state of round i. The first input is
A1 = P ⊕K0, where P is the plaintext and K0 = M0K. The ciphertext C after r rounds
is Ar+1.

Parameters for LowMC in Picnic can be found in the specification document (Table 2
in [CDG+20]). With full S-Box layers, the designers used 4 rounds, and the block size n is
respectively 129, 192 and 255 bits for NIST security levels 1, 3 and 5. With partial S-Box
layers, the designers used s = 10 and n, r = (128, 20), (192, 30) and (256, 38) respectively
(in that case the block size does not need to be a multiple of 3).

6.1.1 Estimating the Cost of Grover’s Search

We reuse part of the analysis done in [JNRV20] and [JBK+22] in order to estimate the
cost of Grover’s exhaustive search of the key for the LowMC variants we are interested
in. The LowMC S-Box can be implemented in-place using 3 Toffoli gates and 2 CNOT
gates. The affine layers used during the state update as well as the key expansion can be
implemented out of place (increasing the number of qubits at each iteration) with about
213 Clifford gates and depth 28 for n = 129 (resp. 214, 28.5 for n = 192 and 215, 29 for
n = 256).

For a 3-round LowMC with full S-Box layers, there are 2 linear layers to apply and
3 linear operations in the key expansion. With the in-place S-Box circuit, we obtain
the estimates of Table 5. For a LowMC with partial S-Box layers, the cost of the linear
layers will largely dominate. In Grover’s search one needs two computations of the cipher
(forwards and backwards) per iteration.

6.2 Classical Attacks on LowMC in the Picnic Setting
In the Picnic setting, the length of the key is equal to the block size n, and the adversary
must recover the key from a single known plaintext-ciphertext pair. We give a summary of



Quentin Edme, Pierre-Alain Fouque, André Schrottenloher 19

Table 5: Cost of a quantum circuit for different variants of LowMC (approximated).

n s r CCX CCX + Clifford Depth Qubits
129 43 3 8.6 15.3 9.4 9.8
192 64 3 9.2 16.5 10.0 10.4
255 85 3 9.6 17.3 10.4 10.8
128 1 128 8.6 21.0 14.8 15.0
192 1 192 9.2 22.8 16.0 16.2
256 1 256 9.6 24.0 16.8 17.0
128 10 12 8.5 17.5 11.4 11.6
192 10 19 9.2 19.4 12.7 12.9
256 10 25 9.6 20.6 13.5 13.7

classical attacks in Table 6 for the variant with full S-Box layers and 3 to 7 rounds. To the
best of our knowledge, no quantum attack (better than Grover’s search) is known for any
of these variants.

In the following, we detail two attacks from [LMSI22]. The paper contains another
attack on 4-round LowMC which is outside the scope of our analysis, as it relies on a
degree-4 polynomial system solved with the polynomial method [Din21a].

6.3 Attack on 3-round LowMC with Full S-Box Layers
In this version (Section 3.2 in [LMSI22]) LowMC is reduced to three S-Box layers and two
affine layers, as in Figure 3, and n = 3s.

P A1 S1 L1 A2 S2 L2 A3 S3 C
+K1 SB L +K2 SB L +K3 SB +K4

Figure 3: Sequence of internal states in 3-round LowMC.

The reduction to a quadratic system of equations works as follows. First, P and C
are known constants and all round keys K1,K2,K3,K4 are linear in the master key K.
Next, one guesses two bits in input of each S-Box in the first S-Box layer, i.e., 2s bits of
K1, which we note k. There remains s unknown bits in K1, which are denoted v. All
round keys K2,K3,K4 can be expressed as linear functions of v (furthermore, these linear
functions do not change, and can be precomputed).

For a single S-Box, let a∗
1 and a∗

3 be the two bits guessed; Equation 18 becomes:
a4 = a∗

1 ⊕ a2a
∗
3

a5 = a∗
1 ⊕ a2 ⊕ a∗

1a
∗
3

a6 = a∗
1 ⊕ a2 ⊕ a∗

3 ⊕ a∗
1a2 .

(19)

So the output a4, a5, a6 is linear in a2. As a consequence, S1 in Figure 3 is a linear function
of v. After the next linear layer and round key addition, A2 is still linear in v, and next,
each bit of S2 is a quadratic polynomial in v. This remains the case for L2 and A3.

Next, one computes backwards from C (which is known). The state S3 is linear in
v, and consequently, each bit of A3 is a quadratic polynomial in v. By equating these
polynomials with those obtained in the forward computation, one obtains 3s quadratic
equations in the s variables v.
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Table 6: Summary of classical attacks on LowMC with full S-Box layers in the Picnic
setting, taken from [BCV24]. Time is given in bit-operations and memory is given in bits.
The success probability ranges from 0.5 to 1 for all attacks.

r n Reference Time Memory

3 129

FES [BCC+10] 135
[BBVY21] 140 53
[Din21a] 125 104
[LMSI22] 127.2 16.9
[BCV24] 130.5 82.7

3 192

FES [BCC+10] 198
[BBVY21] 204 75
[Din21a] 180 150
[LMSI22] 186.2 18.6
[BCV24] 188.9 119.3

3 255

FES [BCC+10] 261
[BBVY21] 267 97
[Din21a] 235 197
[LMSI22] 246.8 19.3
[BCV24] 246.9 156.1

4 129

FES [BCC+10] 135
[Din21a] 130 113
[LMSI22] 133.8 36.7
[BCV24] 133.9 86.2

4 192

FES [BCC+10] 198
[Din21a] 188 113
[LMSI22] 195.0 53.4
[BCV24] 192.9 123.8

4 255

FES [BCC+10] 261
[Din21a] 245 218
[LMSI22] 255.8 68.0
[BCV24] 252.9 162.2

5 129
FES [BCC+10] 136

[BCV24] 135.7 88

5 192
FES [BCC+10] 199

[Din21a] 192 173
[BCV24] 196.9 127.2

5 255
FES [BCC+10] 262

[Din21a] 254 228
[BCV24] 256.9 166.0

6 192 FES [BCC+10] 199
[BCV24] 198 128.5

6 255 FES [BCC+10] 262
[BCV24] 259.7 168.5

7 255 FES [BCC+10] 263
[BCV24] 262.0 170.5
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Results of the Quantum Attack. For this attack, we need to combine the Quantum
BDT algorithm with a quantum search over k (2s bits, hence π

4 2s/2 search iterates).
Therefore, the polynomial system depends on this guess, and the circuit for Quantum
BDT is “controlled”. The “controlled” circuit uses mostly CCX gates, while the circuit for
LowMC in Grover’s search is dominated by CX gates. Therefore, if we look at CCX gates
only, the advantage becomes smaller.

The number of qubits is dominated by the storage of the quadratic system, which is
constructed depending on k. The time to construct the system remains negligible with
respect to the Quantum BDT subroutine, since the number of variables ranges from 43 to
85. The full comparison is given in Table 7.

Regarding the depth, one can also parallelize Grover’s search, but a reduction of the
depth by a factor S multiplies the qubit count by S2. It can be seen that the quantum
BDT still outperforms Grover’s search in this metric.

Table 7: Comparison between Grover’s search and the attack using the Quantum BDT
algorithm, for 3-round LowMC with full S-Box layers. Complexities are given in log2 and
rounded. The probability of success is > 0.9.

Algorithm s CCX CCX + Clifford Depth Qubits

Grover’s search
43 73.7 80.5 74.5 9.8
64 105.8 113.1 106.6 10.4
85 137.7 145.5 138.6 10.8

Quantum BDT
43 73.3 73.4 69.6 17.2
64 104.1 104.2 100.1 18.9
85 134.7 134.8 130.6 20.1

6.4 Attack on Reduced-round LowMC with Partial S-Box Layers
The other attack that we consider is from [LMSI22, Section 4], which targets a version
of LowMC with s S-Boxes per round and r = ⌊n/s⌋ rounds. The idea is to guess a total
of λ < n bits in the cipher, placed in a clever way, in order to reduce the key-recovery
problem to an overdefined quadratic system.

Let us focus on the first r − 1 rounds. One linearizes the first λ S-Boxes, but unlike
the previous attack, one guesses one output bit rather than two input bits. Indeed, if one
replaces a4 by a guess a∗

4, the expressions of a4, a5, a6 become linear in a1, a2, a3:
a4 = a∗

4
a5 = a∗

4 ⊕ a2 ⊕ a3a
∗
4

a6 = a∗
4 ⊕ a2 ⊕ a3 ⊕ a2a

∗
4 .

(20)

It is important to note that λ is not necessarily a multiple of s, so this strategy can
stop in the middle of a round, with some outputs guessed but not all of them. The value
of λ will be a parameter of the attack, to optimize numerically.

The r− 1 first rounds contain s(r− 1) S-Boxes. After the guesses, there are s(r− 1) −λ
remaining S-Boxes. For all the three output bits of those, one introduces an intermediate
variable. These 3(s(r − 1) − λ) new variables are denoted µ = (µ1, µ2, ..., µ3s(r−1)−3λ).

The consequence is that each Ai is linear in (µ,K). Moreover, the states A1 (after first
key addition) and Ar+1 (before last key addition) are only linear in K.

If we focus on the last S-Box layer, both the input and output are linear in (µ,K), and
furthermore, there are only s S-Boxes in the layer, meaning that we obtain n− 3s linear
equations in (µ,K) (since K is of n bits, this means 3s(r − 1) − 3λ + n variables). By
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Gaussian elimination, one reduces (µ,K) to 3s(r − 1) − 3λ+ n− (n− 3) = 3(sr − λ) free
variables, which are denoted v.

Next, one constructs an overdefined system of quadratic equations in v. For each
linearized S-Box, in which the output bit a4 was guessed, one can obtain 3 equations in v.
Indeed, from Equation 18, replacing a4 by the guess and multiplying it by the inputs, one
gets the following three quadratic equations in (a1, a2, a3):

a∗
4 = a1 ⊕ a2a3

a∗
4a2 = a1a2 ⊕ a2a3

a∗
4a3 = a1a3 ⊕ a2a3 .

(21)

Thus, the linearized S-Boxes yield 3λ quadratic equations. Next, we focus on the
s(r−1)−λ+s = sr−λ S-Boxes which are not linearized (including those of the last round).
The authors of [LMSI22] show that for each S-Box, one can construct an overdefined system
of 14 quadratic equations between the input and output bits, that are linearly independent.
We refer to [LMSI22] for the complete system. These new equations give us 14(sr − λ)
quadratic equations in v. In total, there are 14sr − 11λ equations in 3(sr − λ) variables.

Results of the Quantum Attack. The results for this attack are given in Table 8.
Similarly to Subsection 6.3, the attack makes a guess of λ bits, then uses the quantum
BDT algorithm to solve a quadratic system. The circuit here is “controlled” since the
system varies depending on the guess. There are three important changes.

First, when choosing appropriate values of λ (similar to the ones in [LMSI22]), the
quadratic systems become heavily overdefined. The cost of linear system solving dominates
A2 and A1. As a consequence, guessing the n− u variables in two steps does not bring
any substantial gain, and we can take n2 = 0 for the cost estimates.

Second, the time to construct the polynomial system must be taken into account (in the
other attack, it was negligible w.r.t. the cost of solving it). As mentioned in [LMSI22], the
free variables are obtained by solving a linear system with about (n−3s)2(n+3s(r−1)−3λ)
bit operations. In the quantum setting, using Bonnetain and Jaques’ algorithm [BJ22], we
have asymptotically the same gate count (mostly CCX gates), and we use an additional
(n− 3s)(n+ 3s(r − 1) − 3λ) + (n− 3s)2 qubits.

Finally, since the system is large and very overdefined, the precomputation in the BDT
algorithm is also not negligible anymore. When the parameter u = O

(√
14sr − 11λ

)
is

chosen, we need to eliminate u(u− 1)/2 quadratic terms in the polynomial system. This
means u(u − 1)/2 × (14sr − 11λ) row operations on a matrix whose rows have length
(3(sr − λ))2/2, and finally, approximately u(u − 1)/2 × (14sr − 11λ) × (3(sr − λ))2/2
CCX gates. Storing the quadratic system (which is the dominating space cost) occupies
(14sr − 11λ)(3(sr − λ))2 qubits.

As can be seen in Table 8, the advantage is less clear in this attack, especially since
CCX gates dominate the time complexity. We only observe small gains in the total gate
count (the depth-qubits trade-off is not advantageous). This is due to the larger costs of
linear algebra, notably when creating and preprocessing the quadratic system.

7 Application to Reduced-round RAIN
RAIN is another block cipher suitable for MPC, which was designed as a building block of
the post-quantum signature Rainier [DKR+22]. We will focus here on an attack proposed
in [LMØM23], which leverages a particular algebraic representation of the cipher. The
setting of the attack is the same as in Section 6: the key must be recovered from a single
known plaintext-ciphertext pair. While the authors recommended 3 to 4 rounds, the attack
targets a 2-round reduced version.
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Table 8: Comparison between Grover’s search and the attack using the quantum BDT
algorithm, for LowMC variants with partial S-Box layers. Complexities are given in log2
and rounded. The probability of success is > 0.9.

Algorithm n s r λ CCX CCX + Clifford Depth Qubits

Grover’s search

128 1 128 73.2 85.6 79.5 15.0
192 1 192 105.8 119.4 112.6 16.2
256 1 256 138.2 152.6 145.5 17.0
128 10 12 73.1 82.2 76.0 11.6
192 10 19 105.8 116.0 109.3 12.9
256 10 25 138.2 149.3 142.1 13.7

Quantum BDT

128 1 128 114 85.4 85.4 81.5 19.0
192 1 192 174 117.5 117.5 113.2 20.2
256 1 256 236 149.5 149.5 145.1 20.9
128 10 12 105 81.3 81.3 77.3 19.2
192 10 19 172 116.5 116.5 112.2 20.2
256 10 25 230 146.5 146.5 142.1 20.8

7.1 Specification
The state of RAIN is a single element of the field F2n . The nonlinear operation is the
multiplicative inverse in F2n , extended to 0 by 0, or equivalently, the map: S : x 7→ x2n−2.

Randomly generated round constants ci are used for the key schedule, and the key
addition is performed over F2n . Finally, there is a linear layer which can be seen either as
a binary matrix Mi, or an F2−linearized polynomial. The two-round reduced RAIN is
represented in Figure 4.

P

k ⊕ c1

x−1 M1

k ⊕ c2

x−1 C

k

Figure 4: RAIN block cipher reduced to two rounds.

7.2 Classical Attack
We explain here the strategy of the attack of Section 4.3 in [LMØM23], which reduces the
key-recovery on n-bit two-round RAIN to solving a quadratic system of 3n equations in
n unknowns. A key property to consider in this attack is the isomorphism between F2n

and Fn
2 , which transforms an element v into an n-bit vector v. Under this isomorphism,

taking a power of v of the form v2i for i > 0 is equivalent to a linear transformation on
the coordinates of v in F2.

Let v = S(k + c1 + P ) be the output of the first non-linear layer, where P is the
plaintext and S is the inverse function. The case P + k + c1 = 0 is trivial, since it would
immediately give us k, so we can suppose that this is not the case, and rewrite:

v = (k + c1 + P )−1 . (22)

If one obtains v, one obtains k by k = v−1 + P + c1. Again, the case v = 0 would be
trivially solved.

In order to write quadratic equations in v, one starts from this equality:

C = (M1(v) + k + c2)−1 + k ⇐⇒ M1(v) = (C + k)−1 + k + c2 (23)
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Now, one replaces k by its expression in v:

M1(v) = (C + (v)−1 + P + c1)−1 + (v)−1 + P + c1 + c2 (24)

Both terms P + c1 + c2 and C + P + c1 are known constants, that we denote respectively
as t0 and t1. The equation becomes:

M1(v) = (v−1 + t1)−1 + v−1 + t0 = v−1 + t0 + v(1 + vt1)−1 (25)

By multiplying both sides by v(1 + vt1) and rearranging the terms, one obtains:

(v + t1v
2)M1(v) = 1 + t1v + t0v + t0t1v

2 + v2 . (26)

Recall that under the isomorphism between Fn
2 and F2n , taking the square v2 is

equivalent to a linear transformation on v. As a consequence, Equation 26 is equivalent to
n quadratic (Boolean) equations in the coordinates of v.

In order to obtain more equations, the authors of [LMØM23] multiply Equation 26 by
(v + t1v

2) and M1(v) respectively, obtaining a system:
(v + t1v

2)M1(v) = 1 + t1v + t0v + t0t1v
2 + v2

(v + t1v
2)M1(v)2 = (1 + t1v + t0v + t0t1v

2 + v2)M1(v)
(v + t1v

2)2M1(v) = (1 + t1v + t0v + t0t1v
2 + v2)(v + t1v

2) .

(27)

Under the isomorphism, since all four terms (v + t1v
2), M1(v), (v + t1v

2)2 and M1(v)2

are linear in v, this forms a system of 3n equations in n variables. One can check that
these equations are indeed linearly independent over F2.

7.3 Results of the Quantum Attack

The quantum attack is a single instance of the Quantum BDT algorithm, with a fixed
polynomial system. The optimization results are given in Table 9. For Grover’s search,
we assume that the number of qubits used is 2n and evaluating the cipher costs n3 CCX
gates. (We also assume that they can be perfectly parallelized, in order to estimate the
circuit depth). We obtain a significant improvement in total gate count, and also in depth
and qubits when taking into account the parallelization of Grover’s search.

As a comparison, the classical time of the attack with the polynomial method is
estimated in [LMØM23] to be of 2118, 2172 and 2225 respectively.

Table 9: Comparison between Grover’s search and the attack using the Quantum BDT
algorithm, for 2-round RAIN. Complexities are given in log2 and rounded. The probability
of success is > 0.9.

Algorithm n CCX CCX + Clifford Depth Qubits

Grover’s search
128 84.7 84.7 77.7 8.0
192 118.4 118.4 110.8 8.6
256 151.7 151.7 143.7 9.0

Quantum BDT
128 67.7 68.4 63.8 11.8
192 97.5 98.2 93.3 12.4
256 127.3 127.9 122.7 12.8
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8 Conclusion
In this paper, we gave new quantum algorithms for the MQ2 problem, showing improve-
ments in gate counts for small problem sizes. These algorithms followed from the adaptation
of well-studied classical techniques to the quantum search framework. We implemented
the basic components of these circuits in classical reversible logic, allowing for reliable cost
estimates.

While they are immediately applicable to quantum cryptanalysis, as our applications
show, there remains much more to be done in the adaptation of algebraic attacks to the
quantum setting.

In particular, while we have focused in this work on degree-2 equations, several
important applications require to solve equations of larger degree, and even further, to
adapt the solving algorithm to the specificities of the system studied. For example, with
an efficient quantum algorithm for degree-4 equations, one could immediately attack the
4-round version of LowMC with full S-Box layers, like it was done previously in the classical
setting [Din21a, LMSI22].

Finally, algorithms for larger fields would be relevant to public-key cryptography. So
far this case seems only to have been studied asymptotically [BY18].
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