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Abstract. Bulletproofs, introduced by Bünz, Bootle, Boneh, Poelstra, Wuille and
Maxwell (IEEE S&P, 2018), is a highly efficient non-interactive argument system
that does not require a trusted setup. Recently, Bünz (PhD Thesis, 2023) extended
Bulletproofs to support arguments for rank-1 constraint satisfaction (R1CS) systems,
a widely-used representation for arithmetic satisfiability problems. Although the argu-
ment system constructed by Bünz preserves the attractive properties of Bulletproofs,
it presents a gap between its completeness and soundness guarantees: The system is
complete for a restricted set of instances, but sound for only a significantly broader
set. Although argument systems for such gap relations nevertheless provide clear and
concrete guarantees, the gaps they introduce may lead to various inconsistencies or
undesirable gaps within proofs of security, especially when used as building blocks
within larger systems.
In this work we show that the argument system presented by Bünz can be extended to
bridge the gap between its completeness and soundness, and to additionally provide
honest-verifier zero-knowledge. For the extended argument system, we introduce
a refined R1CS relation that captures the precise set of instances for which both
completeness and soundness hold without resorting to a gap formulation. The
extended argument system preserves the performance guarantees of the argument
system presented by Bünz, and yields a non-interactive argument system using the
Fiat-Shamir transform.
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1 Introduction
Bulletproofs is a practical argument system constructed by Bünz, Bootle, Boneh, Poelstra,
Wuille and Maxwell [BBB+18], building on the techniques of Bootle, Cerulli, Chaidos, Groth
and Petit [BCC+16]. The Bulletproofs argument system does not require a trusted setup,
and provides logarithmic-length inner-product, range and arithmetic circuit satisfiability
arguments relative to a committed witness. The practical applicability of Bulletproofs was
further demonstrated by Bünz [Bün23], who constructed a Bulletproofs argument system
for rank-1 constraint satisfaction (R1CS) systems relative to a committed witness. Such
systems generalize arithmetic circuits, and have become the interface to a variety of state-of-
the-art argument systems (see, for example, [GGPR13, Gro16, BCR+19, CHM+20, OB22]
and the references therein). Specifically, an R1CS instance is parameterized by integers
m, n ≥ 1 and a prime q, and consists of three matrices A, B, C ∈ Zm×n

q . In turn, an R1CS
witness is vector z ∈ Zn

q that satisfies Az ◦ Bz = Cz, where ◦ denotes the Hadamard
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2 Bulletproofs for R1CS

(element-wise) product.1

Bulletproofs for R1CS. The argument system constructed by Bünz [Bün23] enables
to prove that a given R1CS system is satisfiable by a witness such that a commitment to a
part (or to all) of the witness is provided together with the R1CS instance. Specifically,
Bünz constructed logarithmic-length arguments for the following relation RR1CS which is
defined with respect to parameters m, r, n ∈ N, where m ≥ 1 and 1 ≤ r ≤ n, and a cyclic
group G of prime order q with generators G, H ∈ Gn+m. The relation RR1CS consists of
all pairs ((T, A, B, C), (x, y)), where

T ∈ G, A, B, C ∈ Zm×n
q , x ∈ Zr

q, y ∈ Zn−r
q ,

which satisfy the following two requirements2:

1. T = ⟨((x||0n−r) || 0m), G⟩.

2. Az ◦Bz = Cz for z = (x||y) ∈ Zn
q .

That is, the group element T is a commitment to x, and the matrices A, and B and C
define an R1CS system that is satisfied by z = (x||y). In his description of the relation
RR1CS, Bünz allows the group element T to be of the more general form

T = ⟨((x||u) || 0m), G⟩+ ⟨(v || 0m), H⟩

for some u ∈ Zn−r
q and v ∈ Zn

q which, as noted by Bünz, can be set to the all-zero
vectors. However, his argument system does not provide completeness for such instances
(i.e., when u and v may be arbitrary vectors instead of the all-zero vectors). In addition,
when analyzing the soundness of his argument system, Bünz presented an algorithm that
extracts a witness z = (x||y) for which Az ◦Bz = Cz as required, but for which T is of
the even more general form

T = ⟨((x||t2) || t3), G⟩+ ⟨((t′
1||t

′
2) || t′

3), H⟩

for some t′
1 ∈ Zr

q, t2, t′
2 ∈ Zn−r

q and t′
3 ∈ Zm

q . As the vectors t3 and t′
3 may not be the

all-zero vectors, this is not a valid witness even with respect to instances of the general
form T = ⟨((x||u) || 0m), G⟩ + ⟨(v || 0m), H⟩. In fact, as we demonstrate in Section 4,
there are instances in which t3 and t′

3 are not the all-zero vectors, and for which an efficient
prover can always convince the verifier to accept. Thus, this gap cannot be bridged by
only refining the analysis provided by Bünz.

The gap between the completeness and soundness in the argument system presented
by Bünz can be formalized by viewing his argument system as an argument system for
a “gap” relation: Given an “outer” relation Rout and an “inner” relation Rin ⊊ Rout,
the honest prover can convince the verifier to accept any instance x when provided with
an inner-witness w such that (x, w) ∈ Rin, whereas any efficient malicious prover that
convinces the verifier to accept an instance x with a non-negligible probability can be used
to extract an outer-witness w such that (x, w) ∈ Rout. That is, completeness is provided
for instances of the inner relation Rin, whereas soundness is guaranteed for instances of the
outer relation Rout. Although argument systems for such gap relations nevertheless provide
clear and concrete guarantees, the gaps they introduce may lead to various inconsistencies
or undesirable gaps within proofs of security, especially when used as building blocks
within larger systems.

1For any ℓ ≥ 1, x = (x1, . . . , xℓ) ∈ Zℓ
q and y = (y1, . . . , yℓ) ∈ Zℓ

q , the Hadamard product x ◦ y ∈ Zℓ
q is

defined as x ◦ y = (x1 · y1, . . . , xℓ · yℓ) ∈ Zℓ
q .

2For any ℓ ≥ 1, c = (c1, . . . , cℓ) ∈ Zℓ
q and G = (G1, . . . , Gℓ) ∈ Gℓ, we let ⟨c, G⟩ =

∑ℓ

i=1 ci · Gi ∈ G.
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Our contributions. In this work we show that the argument system presented by Bünz
can be extended to bridge the above-discussed gap between its completeness and soundness,
and to additionally provide honest-verifier zero-knowledge. Specifically, we introduce a
relation RR1CS∗ that lies in between the outer and inner relations resulting from the
analysis presented by Bünz, and extend his argument system to provide completeness,
soundness and honest-verifier zero-knowledge for RR1CS∗ without considering gap relations.
The extended argument system preserves the performance guarantees of the argument
system presented by Bünz, where for instances in which T = ⟨((x||0n−r) || 0m), G⟩ the two
argument systems coincide. Furthermore, the extended argument system is public coin and
yields a non-interactive argument system using the Fiat-Shamir transform [FS87, AFK23].

2 Preliminaries
Let G be a cyclic group of prime order q that is generated by G ∈ G. Throughout this
document we denote scalars via lower-case letters (e.g., x ∈ Zq), vectors of scalars via
boldface lower-case letters (e.g., x = (x1, . . . , xℓ) ∈ Zℓ

q), group elements via upper-case
letters (e.g., G ∈ G), and vectors of group elements via boldface upper-case letters (e.g.,
G = (G1, . . . , Gℓ) ∈ Gℓ). For x = (x1, . . . , xℓ) ∈ Zℓ

q, y = (y1, . . . , yℓ) ∈ Zℓ
q and G =

(G1, . . . , Gℓ) ∈ Gℓ, we let ⟨x, G⟩ =
∑ℓ

i=1 xi ·Gi ∈ G and x ◦ y = (x1 · y1, . . . , xℓ · yℓ) ∈ Zℓ
q.

For x ∈ Z∗
q and integer ℓ ≥ 1 we let xℓ = (x, . . . , xℓ) ∈ Zℓ

q.

2.1 Interactive Argument Systems
An interactive argument system for a relation R = {Rσ}σ∈{0,1}∗ is a triplet Π = (K,P,V)
of probabilistic polynomial-time algorithms. The common-reference string generation
algorithm K receives as input the unary representation 1κ of the security parameter
κ ∈ N, and outputs a common-reference string σ. For any κ ∈ N and for any σ produced
by K(1κ), the prover algorithm P and the verifier algorithm V define an interactive
protocol ⟨P(σ, ·, ·),V(σ, ·)⟩. The input of the prover consists of a common-reference
string σ, an instance x and a witness w, and the input of the verifier consists of the
common-reference string σ and the instance x. We assume without loss of generality
that any common-reference string σ produced by K(1κ) is of length of least κ bits (thus,
we do not need to provide P and V with 1κ as part of their input). We denote by
tr← ⟨P(σ, x, w),V(σ, x)⟩ the probabilistic process of producing a transcript of the protocol,
and denote by OutV⟨P(σ, x, w),V(σ, x)⟩ the random variable corresponding to the output
of the verifier, in both cases when the prover and verifier follow the instructions of the
protocol.

In what follows we present the standard notions of completeness, honest-verifier zero-
knowledge and witness-extended emulation for interactive argument systems.

Definition 1 (Perfect Completeness). An interactive argument system Π = (K,P,V) for
a relation R = {Rσ}σ∈{0,1}∗ has perfect completeness if for any algorithm A and for any
κ ∈ N it holds that

Pr
[
(x, w) /∈ Rσ or OutV⟨P(σ, x, w),V(σ, x)⟩ = 1

∣∣∣∣ σ ← K(1κ)
(x, w)← A(σ)

]
= 1.

Definition 2 (Public Coin). An interactive argument system Π = (K,P,V) is public coin
if all messages sent by the honest verifier are uniformly distributed and independent of the
honest verifier’s input and of all messages previously sent by the prover.

Definition 3 (Perfect Special Honest-Verifier Zero-Knowledge). An interactive argument
system Π = (K,P,V) for a relation R = {Rσ}σ∈{0,1}∗ has perfect special honest-verifier
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zero-knowledge if there exists a probabilistic polynomial-time simulator S such that for
any algorithms A1 and A2 it holds that

Pr
[

(x, w) ∈ Rσ

and A2(tr) = 1

∣∣∣∣σ ← K(1κ), (x, w, ρ)← A1(σ)
tr← ⟨P(σ, x, w),V(σ, x; ρ)⟩

]
= Pr

[
(x, w) ∈ Rσ

and A2(tr) = 1

∣∣∣∣σ ← K(1κ), (x, w, ρ)← A1(σ)
tr← S(σ, x, ρ)

]
for all κ ∈ N, where ρ ∈ {0, 1}∗ denotes the randomness of the verifier V.
Definition 4 (Witness-Extended Emulation [Lin03]). An interactive argument system
Π = (K,P,V) for a relation R = {Rσ}σ∈{0,1}∗ has statistical witness-extended emulation
if for any algorithm P∗ there exists an expected polynomial-time emulator E such that for
any algorithms A1 and A2 there exists a negligible function ν(·) such that∣∣∣∣Pr

[
A2(tr) = 1

∣∣∣∣σ ← K(1κ), (x, u)← A1(σ)
tr← ⟨P∗(σ, x, u),V(σ, x)⟩

]
− Pr

[
A2(tr) = 1 and

tr is accepting =⇒ (x, w) ∈ Rσ

∣∣∣∣σ ← K(1κ), (x, u)← A1(σ)
(tr, w)← EO(σ, x)

]∣∣∣∣ ≤ ν(κ)

for all κ ∈ N, where the oracle O = ⟨P∗(σ, x, u),V(σ, x)⟩ permits rewinding to a specific
point and resuming with fresh randomness for the verifier. Such an argument system has
computational witness-extended emulation if the above holds when restricting A1, A2 and
P∗ to probabilistic polynomial time.

In order to prove that the argument systems we present provide witness-extended
emulation, we rely on the general forking lemma of Bootle, Cerulli, Chaidos, Groth and
Petit [BCC+16] that we now state by following their presentation. Let Π be a (2µ+1)-move
argument system with µ challenges c1, . . . , cµ. Let n1, . . . , nµ ≥ 1 and consider Πµ

i=1ni

accepting transcripts in the following tree structure: The tree is labeled with a statement x,
it has depth µ and Πµ

i=1ni leaves, where each node at depth i has ni children labeled with
distinct values for the ith challenge ci. We refer to such transcripts as an (n1, . . . , nµ)-tree
of accepting transcripts. For simplicity, in the following lemma Bootle et al. assumed that
the challenges are chosen uniformly from Zq, for a λ-bit prime q such that λ = Ω(κ), where
κ is the security parameter (we note that the lemma holds also when some or all of the
challenges are chosen uniformly from Z∗

q).
Lemma 1 ([BCC+16]). Let µ = µ(κ) be a function of the security parameter κ ∈ N, let
Π be a (2µ + 1)-move public-coin argument system for a relation R, and for each i ∈ [µ]
let ni = ni(κ) ≥ 1 such that Πµ

i=1ni is upper bounded by a polynomial in κ. If there exists
a probabilistic polynomial-time algorithm that always succeeds in extracting a valid witness
from any (n1, . . . , nµ)-tree of accepting transcripts, then Π has statistical witness-extended
emulation.

2.2 Inner-Product Arguments
As a building block for constructing an R1CS argument system, following Bünz [Bün23]
we rely on an argument system for the inner-product relation RIP defined as follows:

The Relation RIP

Let d ≥ 1 be an integer, and let G be a cyclic group of prime order q. The relation RIP
consists of all pairs ((G, H, G, H, P, ω), (u, v, α)), where

G, H ∈ Gd, G, H, P ∈ G, u, v ∈ Zd
q , ω, α ∈ Zq,

which satisfy the following requirements:
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1. P = ⟨u, G⟩+ ⟨v, H⟩+ α ·H.
2. ω = ⟨u, v⟩.

The relation RIP slightly differs from the inner-product relation considered by Bünz
[Bün23] and by Bünz, Bootle, Boneh, Poelstra, Wuille and Maxwell [BBB+18], which
did not allow the group element P to contain the additional term α ·H (in our setting
this additional term is used for additionally providing honest-verifier zero-knowledge).
Nevertheless, we show that the approach of Bünz et al. for constructing an argument system
for the inner-product relation they considered applies also to the more subtle relation
RIP. Specifically, we show that an argument system for the above-defined relation RIP
can be obtained from an argument system for the following “multiplicative” inner-product
relation RmIP that is defined as follows:

The Relation RmIP

Let d ≥ 1 be an integer, and let G be a cyclic group of prime order q. The relation RmIP
consists of all pairs ((G, H, G, H, P ), (u, v, α)), where

G, H ∈ Gd, G, H, P ∈ G, u, v ∈ Zd
q , α ∈ Zq,

which satisfy
P = ⟨u, G⟩+ ⟨v, H⟩+ ⟨u, v⟩ ·G + α ·H .

We construct an argument system for the relation RIP based on the argument system
constructed by Chung, Han, Ju, Kim and Seo [CHJ+22] for the relation RmIP.3 Specifically,
given a probabilistic polynomial-time group-generation algorithm that on input the security
parameter κ ∈ N produces a description of a cyclic group G of a κ-bit prime order q and
2d + 2 uniformly and independently sampled generators G, H ∈ Gd and G, H ∈ G, we
prove the following theorem in Appendix A:

Theorem 1. Let t : N → N be any function of the security parameter κ ∈ N such that
d = d(κ) = 2t(κ) is polynomial. Assuming the hardness of the DL problem for expected
polynomial-time algorithms, there exists an argument system ΠIP for the d-dimensional
inner-product relation RIP that has perfect completeness, perfect special honest-verifier
zero-knowledge, and computational witness-extended emulation. Furthermore, the argument
system is public coin, and the prover communicates 2 · log2 d + 2 group elements and 3 field
elements.

As noted in Section 2.1, in order to prove that the R1CS∗ argument system we present
provides witness-extended emulation, we rely on the general forking lemma of Bootle,
Cerulli, Chaidos, Groth and Petit [BCC+16] (see Lemma 1 above). For this purpose, we rely
on the following lemma that we prove in Appendix A for establishing the witness-extended
emulation property of the argument system ΠIP:

Lemma 2. There exists a probabilistic polynomial-time algorithm Ext that, on input any
RIP instance (G, H, G, H, P, ω) together with any corresponding (2, 4, . . . , 4, 5)-transcript
tree of depth log2 d + 2 for the argument system ΠIP, where d = 2t ≥ 1, produces either a
witness (u, v, α) such that ((G, H, G, H, P, ω), (u, v, α)) ∈ RIP or a non-trivial discrete-
logarithm relation for (G, H, G, H).

Finally, we note that in our above formulation we have included the public generators
(G, H, G, H) as part of the instance for the relationsRIP andRmIP, whereas for the relation
RR1CS∗ which will be defined in the Section 3 section we have included them as public
parameters. In our setting, this is a matter of convenience due to the recursive structure

3The argument system of Chung et al. [CHJ+22] in fact supports a more general, weighted, form of the
multiplicative inner-product relation which is not needed for our purposes
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of the considered argument systems for the relations RIP and RmIP, where essentially a
different sequence of generators is used for each recursive invocation. Therefore, we have
included these generators as part of the instance. Conversely, our argument system for the
relation RR1CS∗ utilizes a fixed sequence of generators. This fixed nature aligns with the
conventional understanding of a public parameters, where parameters are established once
and remain constant. This distinction does not affect the security of our overall argument
system. Our witness-extended emulation relies on the ability to extract witnesses from any
transcript tree, which includes the generators, whether fixed or non-fixed. In particular,
this ensures witness-extended emulation when the generators are honestly generated as
intended.

3 The R1CS∗ Relation
In this section we introduce the RR1CS∗ relation which, as discussed above, lies in between
the outer and inner relations resulting from the analysis presented by Bünz. The RR1CS∗

relation is defined as follows:
The Relation RR1CS∗

Let m, r, n ∈ N be such that m ≥ 1 and 1 ≤ r ≤ n, let G be a cyclic group of prime order
q, and let G, H ∈ Gn+m and G, H ∈ G be 2(n + m) + 2 generators. The relation RR1CS∗

consists of all pairs ((T, A, B, C), (x, x′, y, y′, η)), where

T ∈ G, A, B, C ∈ Zm×n
q , x, x′ ∈ Zr

q, y, y′ ∈ Zn−r
q , η ∈ Zq

which satisfy the following requirements for z = (x||y) ∈ Zn
q and z′ = (x′||y′) ∈ Zn

q :
1. T = ⟨((x||y′) || Az′), G⟩+ ⟨(0n || Bz′), H⟩+ η ·H.
2. Az ◦Bz = Cz.
3. Az′ ◦Bz′ = 0m.
4. Az ◦Bz′ + Bz ◦Az′ = Cz′.
5. A[1:r]x

′ = B[1:r]x
′ = C[1:r]x

′ = 0m, where A[1:r], B[1:r], C[1:r] ∈ Zm×r denote the
leftmost r columns of the matrices A, B and C, respectively.

The relation RR1CS∗ differs from the relation considered by Bünz in two aspects. First,
the relation RR1CS∗ considers an additional generator H which is used both for providing
honest-verifier zero-knowledge and for supporting instances in which T already consists of
an additional randomizing element η ·H (where η is made part of the witness).

Second, when comparing the relation RR1CS∗ to the outer and inner relations resulting
from the analysis presented by Bünz (while ignoring the additional randomizing element η·H
for the purpose of this comparison), note that the requirement T = ⟨((x||y′) || Az′), G⟩+
⟨(0n || Bz′), H⟩ indeed lies between the requirement T = ⟨((x||0n−r) || 0m), G⟩ to which
the argument system presented by Bünz provides completeness, and the requirement T =
⟨((x||t2) || t3), G⟩+ ⟨((t′

1||t′
2) || t′

3), H⟩ to which it provides soundness. Furthermore, note
that the additional requirements (i.e., requirements 3–5) are always satisfied for z′ = 0n,
and thus the relation RR1CS∗ indeed contains all instances to which the argument system
presented by Bünz provides completeness. Thus, we expect that for most applications an
argument system for the RR1CS∗ relation may be used directly for proving R1CS instances
in which T = ⟨((x||0n−r) || 0m), G⟩.

If, for some applications, it is nevertheless required that soundness holds specifically
for T = ⟨((x||0n−r) || 0m), G⟩, this can be resolved by additionally providing an argument
of knowledge for the relation that consists of all instances ((G1, . . . Gr, T ), x) where
T = ⟨x, (G1, . . . , Gr)⟩ and x ∈ Zr

q.4 As shown by Attema and Cramer [AC20], such an
4Note that if T = ⟨((x||y′) || Az′), G⟩ + ⟨(0n || Bz′), H⟩ + η · H and T = ⟨((x̂||0n−r) || 0m), G⟩ for
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argument can be provided either via a Σ-protocol in which the prover sends a single group
element and r field elements, or by extending the Σ-protocol to a ⌈log2(r + 1)⌉-round
public-coin protocol in which the prover sends 2 · ⌈log2(r + 1)⌉ group elements and 3 field
elements (thus, the classic Σ-protocol is a good practical fit for applications in which r
is comparable to log2(m + n)). However, given that providing such an additional proof
increases the concrete overhead (potentially even doubling it), it may be preferable to first
examine whether the security analysis of application under consideration can be refined to
rely on the relation RR1CS∗ and thus avoid the additional proof.

4 An R1CS∗ ZK-Argument System
In this section we present and analyze an argument system ΠR1CS∗ for the RR1CS∗ relation.
Following the approach of Bünz, Bootle, Boneh, Poelstra, Wuille and Maxwell [BBB+18],
the key idea observed by Bünz [Bün23] is that an R1CS instance (T, A, B, C) with respect
to a given set of generators, where T ∈ G and A, B, C ∈ Zm×n

q , can be transformed in a
probabilistic manner into a single RIP instance with respect to a modified set of generators
(see Section 2.2 for the definition of the relation RIP). That is, the m constraints defined
by the instance (T, A, B, C) can combined into a single inner-product constraint.

Specifically, note that a solution z ∈ Zn
q to the system Az ◦Bz = Cz exists if and only

if there exist vectors wA, wB ∈ Zn
q such that: (1) Az−wA = 0m, (2) Bz−wB = 0m, and

(3) Cz −wA ◦wB = 0m. On the one hand, this increases the number of constraints from
m to 3m. On the other hand, however, this “uncouples” the Hadamard product Az ◦Bz
involving the solution z. Such an uncoupling is crucial since the given commitment T
commits to the individual entries of z and not to the products of each two individual entries
of z. Now, for proving that Az−wA = 0m, following an appropriate commitment from the
prover, the verifier can uniformly sample a scalar α← Z∗

q , and the inner-product argument
system can be used for proving that ⟨αm, Az −wA⟩ = 0, where αm = (α, . . . , αm) ∈ Zm

q .
If the prover successfully convinces the verifier with a non-negligible probability over
the choice of α, then this holds for m + 1 distinct values of α, and we are ensured that
Az −wA = 0m. The same approach can be taken for proving that Bz −wB = 0m and
Cz −wA ◦wB = 0m, resulting in three inner-product instances. For ensuring that the
same wA and wB are used, and for further compressing the three inner-product instances
into a single instance, the verifier samples α, β, γ ← Z∗

q , and the argument system includes
a wide variety of technical complications for enabling the parties to essentially construct
an inner-product instance roughly equivalent to the constraint

⟨αm, Az −wA⟩+ ⟨βm, Bz −wB⟩+ ⟨γm, Cz −wA ◦wB⟩ = 0 .

In what follows we present the argument system, and then state and prove its com-
pleteness, soundness and zero-knowledge guarantees. The argument system ΠR1CS∗ , which
uses as a building block the inner-product argument system ΠIP provided by Theorem 1
(which we prove in Appendix A), is defined as follows (our modifications to the argument
system presented by Bünz, which are discussed below, are colored red for convenience):

The Argument System ΠR1CS∗

• Public parameters:

1. Integers m, r, n ∈ N such that m ≥ 1, 1 ≤ r ≤ n, and n + m = 2t for some integer
t ≥ 1.

x ≠ x̂, then this provides a non-trivial discrete-logarithm relation for (G, H, H). Therefore, assuming the
hardness of the DL problem for expected polynomial-time algorithms, the additional argument guarantees
that x = x̂.



8 Bulletproofs for R1CS

2. Cyclic group G of prime order q and 2(n + m) + 2 generators G, H ∈ Gn+m and
G, H ∈ G.

• Inputs:

1. P: Instance (T, A, B, C) and witness (x, x′, y, y′, η) ∈ Zr
q × Zr

q × Zn−r
q × Zn−r

q × Zq.
2. V: Instance (T, A, B, C).

• Execution:

1. The prover P samples r ← Zq, lets z = (x||y) ∈ Zn
q , computes

S = ⟨((x′||y) || Az), G⟩+ ⟨(0n || Bz), H⟩+ r ·H ∈ G

and sends S to the verifier V.
2. The verifier V samples α, β, γ, δ ← Z∗

q independently and uniformly, and sends
(α, β, γ, δ) to the prover P.

3. Letting G = (G1, . . . , Gn+m), each party computes

µ = α · γ ∈ Zq

δ = (δ, . . . , δ, 1n−r) ∈ Zn
q

δ−1 = (δ−1, . . . , δ−1, 1n−r) ∈ Zn
q

G′ = (G1, . . . , Gn, γ−1 ·Gn+1, . . . , γ−m ·Gn+m) ∈ Gn+m

c = µmA + βmB − γmC ∈ Zn
q

ω = ⟨αm, βm⟩+ δ2 · ⟨αn, c ◦ δ⟩ ∈ Zq

P = δ−1 · T + S + ⟨(δ2 · αn || − βm), G′⟩+ ⟨(c ◦ δ || − αm), H⟩ ∈ G

and the prover P additionally lets z′ = (x′||y′) ∈ Zn
q and computes

u = ((x′||y) + δ−1 · (x||y′) + δ2 · αn || (Az + δ−1 ·Az′) ◦ γm − βm) ∈ Zn+m
q

v = (c ◦ δ || Bz − αm + δ−1 ·Bz′) ∈ Zn+m
q

η′ = r + δ−1 · η

4. The parties invoke the inner-product argument ΠIP with the instance (G′, H, G, H,
P, ω), where the prover P takes the role of the prover using the witness (u, v, η′),
and the verifier V takes the role of the verifier and then outputs its output.

The argument system ΠR1CS∗ is obtained from the argument system presented by
Bünz by first introducing the additional vectors x′ and y′ for supporting the specific
structure of the group element T as specified by the relation RR1CS∗ , and by introducing
the element η ·H for randomizing the group element S in order to provide semi-honest
zero-knowledge. Then, by additionally modifying the group element S and the vectors
u and v, as described above in red font for supporting the additional vectors x′ and y′,
this enables to provide both completeness and soundness for the relation RR1CS∗ (setting
x′ = 0r, y′ = 0n−r and η = 0 yields the argument system presented by Bünz).

The following theorem captures the completeness, soundness, zero-knowledge and
prover communication complexity of the argument system ΠR1CS∗ . For formalizing the
soundness of the argument system we assume that the cyclic group G is produced by
a group-generation algorithm, and that the generators G, H, G and H are uniformly
and independently sampled. This enables us to prove that the argument system provides
computational witness-extended emulation assuming the hardness of the DL problem
for expected polynomial-time algorithms. Specifically, following Bootle et al. [BCC+16]
and Bünz et al. [BBB+18], when including the description of the group and generators
as part of the instance to the relation, we show that the argument system provides
statistical witness-extended emulation for extracting either a valid witness or a non-trivial
discrete-logarithm relation for (G, H, G, H).
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Theorem 2. Let t : N → N be any function of the security parameter κ ∈ N such that
2t(κ) is polynomial. Assuming the hardness of the DL problem for expected polynomial-
time algorithms, then for any polynomials m = m(κ), r = r(κ) and n = n(κ) such that
m ≥ 1, 1 ≤ r ≤ n and n + m = 2t, it holds that ΠR1CS∗ is an argument system for the
relation RR1CS∗ with perfect completeness, perfect special honest-verifier zero-knowledge
and computational witness-extended emulation. Furthermore, the argument system is public
coin, and the prover communicates 2 · log2(n + m) + 3 group elements and 3 field elements.

The proof of Theorem 2 is provided in Sections 4.1, 4.2 and 4.3 and which consider
the completeness, zero-knowledge and witness-extended emulation properties, respectively.
As for the communication complexity, note that the prover communicates a single group
element, and then additionally communicates 2 · log2(n + m) + 2 group elements and 3
field elements when taking the role of the prover in the inner-product argument ΠIP (see
Theorem 1 for the properties of the inner-product argument system ΠIP).

Padding R1CS∗ instances. Note that we presented the argument system ΠR1CS∗ for
parameters n and m such that n + m is a power of 2, since we presented the argument
system ΠIP for any dimension which is a power of 2. Dealing with the more general case
in which n + m may not be a power of 2 can be done by padding any R1CS∗ instance
(T, A, B, C) with “empty constraints”. That is, by adding m′ < n + m all-zero rows
to the matrices A, B, C ∈ Zm×n

q to obtain matrices A′, B′, C ′ ∈ Z(m+m′)×n
q for which

n + m + m′ is a power of 2. As a result, this requires including 2m′ additional generators
Gn+m+1, Hn+m+1, . . . , Gn+m+m′ , Hn+m+m′ ∈ G in the public parameters. In terms of
communication complexity, since the prover sends 2 · log2(n + m) + 3 group elements and 3
field elements, then this would increase the prover’s communication by at most two group
elements (and would increase the number of rounds by at most one).

We observe that for any w = (x, x′, y, y′, η) ∈ Zr
q × Zr

q × Zn−r
q × Zn−r

q × Zq, it holds
that w is a valid witness for an instance (T, A, B, C) if and only if it is a valid witness for
the padded instance (T, A′, B′, C ′). Specifically, for z = (x||y) and z′ = (x′||y′), it holds
that A′z′ =

(
Az′||0m′

)
and B′z′ =

(
Bz′||0m′

)
, and therefore

T = ⟨((x||y′) || Az′), G⟩+ ⟨(0n || Bz′), H⟩+ η ·H

if and only if

T = ⟨((x||y′) || A′z′), (G||Gn+m+1, . . . , Gn+m+m′)⟩
+⟨(0n || B′z′), (H||Hn+m+1, . . . , Hn+m+m′)⟩+ η ·H .

Similarly, it holds that:

• Az ◦Bz = Cz if and only if A′z ◦B′z = C ′z.

• Az′ ◦Bz′ = 0m if and only if A′z′ ◦B′z′ = 0m+m′ .

• Az ◦Bz′ + Bz ◦Az′ = Cz′ if and only if A′z ◦B′z′ + B′z ◦A′z′ = C ′z′.

• A[1:r]x
′ = B[1:r]x

′ = C[1:r]x
′ = 0m if and only if A′

[1:r]x
′ = B′

[1:r]x
′ = C ′

[1:r]x
′ =

0m+m′ .

4.1 Completeness
We prove the following lemma by showing that the completeness of the argument system
ΠR1CS∗ is directly inherited from that of the inner-product argument system ΠIP.

Lemma 3. The argument system ΠR1CS∗ has perfect completeness.
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Proof. Let G be a cyclic group of prime order q with 2(m+n)+2 generators G, H ∈ Gn+m

and G, H ∈ G, and let ((T, A, B, C), (x, x′, y, y′, η)) ∈ RR1CS∗ . We show that for the
inner-product instance (G′, H, G, H, P, ω) and witness (u, v, η′), as computed by the
prover and verifier, it holds that ((G′, H, G, H, P, ω), (u, v, η′)) ∈ RIP. That is, we have
to show that ω = ⟨u, v⟩ and that P = ⟨u, G′⟩+ ⟨v, H⟩+ η′ ·H. First, u and v are defined
by the prover as

u = ((x′||y) + δ−1 · (x||y′) + δ2 ·αn || (Az + δ−1 ·Az′) ◦ γm − βm) ∈ Zn+m
q

v = (c ◦ δ || Bz −αm + δ−1 ·Bz′) ∈ Zn+m
q ,

and therefore
⟨u, v⟩ = ⟨(x′||y) + δ−1 · (x||y′) + δ2 ·αn, c ◦ δ⟩

+⟨(Az + δ−1 ·Az′) ◦ γm − βm, Bz −αm + δ−1 ·Bz′⟩ . (1)
Focusing on each of the two inner products on the right-hand side of Eq. (1), for the first

one we obtain
⟨(x′||y) + δ−1 · (x||y′) + δ2 ·αn, c ◦ δ⟩

= ⟨(δ−1x || y), c ◦ δ⟩+ ⟨(x′ || δ−1y′), c ◦ δ⟩+ δ2 · ⟨αn, c ◦ δ⟩
= ⟨δ−1 ◦ z, c ◦ δ⟩+ δ · ⟨x′, c[1:r]⟩+ δ−1 · ⟨y′, c[r+1:n]⟩+ δ2 · ⟨αn, c ◦ δ⟩
= ⟨z, c⟩+ δ−1 · ⟨y′, c[r+1:n]⟩+ δ2 · ⟨αn, c ◦ δ⟩ , (2)

where Eq. (2) relies on the fact that A[1:r]x
′ = B[1:r]x

′ = C[1:r]x
′ = 0m that combined

with c = µmA + βmB − γmC implies
⟨x′, c[1:r]⟩ = ⟨x′, µmA[1:r] + βmB[1:r] − γmC[1:r]⟩ = 0 .

For the second inner-product on the right-hand side of Eq. (1), we obtain
⟨(Az + δ−1 ·Az′) ◦ γm − βm, Bz −αm + δ−1 ·Bz′⟩

= ⟨αm, βm⟩+ δ−1 · γm(Az ◦Bz′ + Bz ◦Az′)
−δ−1 · (αm ◦ γm)Az′ − δ−1βmBz′ + γm(Az ◦Bz)
−(αm ◦ γm)Az − βmBz + δ−2 · γm(Az′ ◦Bz′)

= ⟨αm, βm⟩+ δ−1 · (γmCz′ − µmAz′ − βmBz′)
+γmCz − µmAz − βmBz (3)

= ⟨αm, βm⟩ − δ−1 · ⟨z′, c⟩ − ⟨z, c⟩
= ⟨αm, βm⟩ − δ−1 · ⟨y′, c[r+1:n]⟩ − ⟨z, c⟩ (4)

where Eq. (3) follows from the facts that Az ◦Bz = Cz, Az′ ◦Bz′ = 0m and Az ◦Bz′ +
Bz ◦Az′ = Cz′, and Eq. (4) follows from the fact that A[1:r]x

′ = B[1:r]x
′ = C[1:r]x

′ = 0m

implies ⟨z′, c⟩ = ⟨y′, c[r+1:n]⟩. Combining Eq. (1), (2) and (4), we obtain

⟨u, v⟩ = ⟨αm, βm⟩+ δ2 · ⟨αn, c ◦ δ⟩ = ω .

Second, by the guarantee T = ⟨((x||y′) || Az′), G⟩+ ⟨(0n || Bz′), H⟩+ η ·H, and by
definitions of the group elements S and P as computed in the argument system, we obtain

P = δ−1 · T + S + ⟨(δ2 ·αn || − βm), G′⟩+ ⟨(c ◦ δ || −αm), H⟩
= δ−1 · ⟨((x||y′) || Az′), G⟩+ δ−1 · ⟨(0n || Bz′), H⟩+ δ−1 · η ·H

+⟨((x′||y) || Az), G⟩+ ⟨(0n || Bz), H⟩+ r ·H
+⟨(δ2 ·αn || − βm), G′⟩+ ⟨(c ◦ δ || −αm), H⟩

= ⟨((x′||y) + δ−1 · (x||y′) + δ2 ·αn || (Az + δ−1 ·Az′) ◦ γm − βm), G′⟩
+⟨(c ◦ δ || Bz −αm + δ−1 ·Bz′), H⟩+ (r + δ−1 · η) ·H

= ⟨u, G′⟩+ ⟨v, H⟩+ η′ ·H .
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Overall, we showed that ω = ⟨u, v⟩ and P = ⟨u, G′⟩ + ⟨v, H⟩ + η′ · H, and therefore
((G′, H, G, H, P, ω), (u, v, η′)) ∈ RIP. Thus, the perfect completeness of the argument
system ΠIP implies that the argument system ΠR1CS∗ has perfect completeness.

4.2 Honest-Verifier Zero-Knowledge
We prove the following lemma by showing that the honest-verifier zero-knowledge of the
argument system ΠR1CS∗ is directly inherited from that of the inner-product argument
system ΠIP.

Lemma 4. The argument system ΠR1CS∗ has perfect special honest-verifier zero-knowledge.

Proof. Let S be the simulator that is defined as follows on input ((G, H, G, H), (T, A, B,
C), ρ):

1. Uniformly sample S ← G.

2. Parse ρ = (α, β, γ, δ, ρIP), where α, β, γ, δ ∈ Z∗
q is the verifier’s randomness for Step 2

of the argument system ΠR1CS∗ , and ρIP is the verifier’s randomness for Step 4 of
the argument system ΠR1CS∗ (i.e., ρIP is the verifier’s randomness for the argument
system ΠIP).

3. Compute

µ = α · γ ∈ Zq

δ = (δ, . . . , δ, 1n−r) ∈ Zn
q

G′ = (G1, . . . , Gn, γ−1 ·Gn+1, . . . , γ−m ·Gn+m) ∈ Gn+m

c = µmA + βmB − γmC ∈ Zn
q

ω = ⟨αm, βm⟩+ δ2 · ⟨αn, c ◦ δ⟩ ∈ Zq

P = δ−1 · T + S + ⟨(δ2 ·αn || − βm), G′⟩+ ⟨(c ◦ δ || −αm), H⟩ ∈ G

4. Invoke the zero-knowledge simulator of the argument system ΠIP on input ((G′, H ′,
G, H, P, ω), ρIP) for obtaining a transcript trIP.

5. Output (S, α, β, γ, δ, trIP).

Let A1 and A2 be any two algorithms as in Definition 3, fix any common-reference string
σ = (G, H, G, H), and fix any triplet ((T, A, B, C), (x, x′, y, y′, η), ρ) produced by A1(σ)
such that ((T, A, B, C), (x, x′, y, y′, η)) ∈ RR1CS∗ . We need to show that, conditioned on
any such fixed values, the distribution of the transcript produced by the simulator S is
identical to the distribution of an honestly-generated transcript (thus, A2 will have no
advantage in distinguishing the two cases – as required by Definition 3).

First, in both cases, the group element S is uniformly distributed: For the transcript
produced by the simulator S this follows directly from the fact that S uniformly samples
S ← G, and for an honestly-generated transcript this follows from the fact that the honest
prover uniformly samples r ← Zq and computes

S = ⟨((x′||y) || Az), G⟩+ ⟨(0n || Bz), H⟩+ r ·H .

Second, in both cases, the values α, β, γ, and δ are uniquely determined by the veri-
fier’s randomness ρ = (α, β, γ, δ, ρIP). Finally, in both cases the inner-product instance
(G′, H, G, H, P, ω) is computed as the same deterministic function of the given generators
(G, H, G, H) and of (S, α, β, γ, δ). Given that ((T, A, B, C), (x, x′, y, y′, η)) ∈ RR1CS∗ , the
perfect completeness of the argument system ΠR1CS∗ guarantees that there exists a witness
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(u, v, η′) (which would be computed by the prover in an honest execution as instructed)
such that ((G′, H, G, H, P, ω), (u, v, η′)) ∈ RIP. Thus, the perfect special honest-verifier
zero-knowledge of the argument system ΠIP guarantees that the transcript trIP produced
by its corresponding simulator is distributed identically to an honestly-generated transcript
when conditioned on all previously-fixed values.

4.3 Witness-Extended Emulation
We prove that the argument system ΠR1CS∗ provides computational witness-extended
emulation based on the sufficient condition established by the general forking lemma
of Bootle et al. (as discussed in Section 2.1 above). That is, we present a probabilistic
polynomial-time algorithm that when provided with a transcript tree (of a suitable
polynomial size) extracts either a valid witness or a non-trivial discrete-logarithm relation
for (G, H, G, H).

Lemma 5. There exists a probabilistic polynomial-time algorithm Ext that, on input
any (G, H, G, H) ∈ G2(n+m)+2 and any RR1CS∗ instance (T, A, B, C) together with any
corresponding (n + 1, m + 1, m + 1, 5, 2, 4, . . . , 4, 5)-transcript tree of depth log2(n + m) + 6
for the argument system ΠR1CS∗ , produces either a witness (x, x′, y, y′, η) such that
((T, A, B, C), (x, x′, y, y′, η)) ∈ RR1CS∗ or a non-trivial discrete-logarithm relation for
(G, H, G, H).

Proof. Let m, r, n ∈ N be such that m ≥ 1, 1 ≤ r ≤ n and m + n = 2t, let G be a cyclic
group of prime order q, and let G, H ∈ Gn+m and G, H ∈ G be 2(n + m) + 2 generators.
Then, any (n + 1, m + 1, m + 1, 5, 2, 4, . . . , 4, 5)-transcript tree of depth log2(n + m) + 6 for
an RR1CS∗ instance (T, A, B, C) has the following form:

• The root of the tree is a group element S ∈ G, and the first level consists of n + 1
nodes corresponding to distinct values {αi}i∈[n+1].

• For each first-level node αi, the second level consists of m + 1 children corresponding
to distinct values {βi,j}j∈[m+1].

• For each second-level node βi,j , the third level consists of m+1 children corresponding
to distinct values {γi,j,k}k∈[m+1].

• For each third-level node γi,j,k, the forth level consists of 5 children corresponding
to distinct values {δi,j,k,ℓ}ℓ∈[5].

• Finally, each forth level node δi,j,k,ℓ serves as the root of a (2, 4, . . . , 4, 5)-transcript
sub-tree of depth log2(n+m)+2 for the inner product argument with a corresponding
instance (G′

i,j,k, H, G, H, Pi,j,k,ℓ, ωi,j,k,ℓ).

Our extractor Ext invokes the probabilistic polynomial-time extractor of the inner-product
argument system (recall Lemma 2) on each of the (2, 4, . . . , 4, 5)-transcript sub-trees
(note that the number of such sub-trees is polynomial). For each such sub-tree it ob-
tains either a witness (ui,j,k,ℓ, vi,j,k,ℓ, η′

i,j,k,ℓ) such that ((G′
i,j,k, H, G, H, Pi,j,k,ℓ, ωi,j,k,ℓ),

(ui,j,k,ℓ, vi,j,k,ℓ, η′
i,j,k,ℓ)) ∈ RIP, or a non-trivial discrete-logarithm relation for (G′

i,j,k,
H, G, H). Any such relation yields a corresponding relation for (G, H, G, H), and there-
fore for the remainder of the proof we assume that the extractor obtains a witness
(ui,j,k,ℓ, vi,j,k,ℓ, η′

i,j,k,ℓ) for each such sub-tree.
For every i ∈ [n + 1], j, k ∈ [m + 1] and ℓ ≠ ℓ′ ∈ [5], note that for the RIP instances

corresponding to the two paths (αi, βi,j , γi,j,k, δi,j,k,ℓ) and (αi, βi,j , γi,j,k, δi,j,k,ℓ′) it holds
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that

S + δ−1
i,j,k,ℓ · T = Pi,j,k,ℓ − ⟨(δ2

i,j,k,ℓ ·αn
i || − βm

i,j), G′
i,j,k⟩

−⟨(ci,j,k ◦ δi,j,k,ℓ || −αm
i ), H⟩

= ⟨ui,j,k,ℓ, G′
i,j,k⟩+ ⟨vi,j,k,ℓ, H⟩+ η′

i,j,k,ℓ ·H

−⟨(δ2
i,j,k,ℓ ·αn

i || − βm
i,j), G′

i,j,k⟩ − ⟨(ci,j,k ◦ δi,j,k,ℓ || −αm
i ), H⟩

S + δ−1
i,j,k,ℓ′ · T = Pi,j,k,ℓ′ − ⟨(δ2

i,j,k,ℓ′ ·αn
i || − βm

i,j), G′
i,j,k⟩

−⟨(ci,j,k ◦ δi,j,k,ℓ′ || −αm
i ), H⟩

= ⟨ui,j,k,ℓ′ , G′
i,j,k⟩+ ⟨vi,j,k,ℓ′ , H⟩+ η′

i,j,k,ℓ′ ·H

−⟨(δ2
i,j,k,ℓ′ ·αn

i || − βm
i,j), G′

i,j,k⟩ − ⟨(ci,j,k ◦ δi,j,k,ℓ′ || −αm
i ), H⟩ ,

As δi,j,k,ℓ ̸= δi,j,k,ℓ′ , this provides two linearly-independent equations in the unknowns S
and T , and enables to efficiently compute vectors

si,j,k,ℓ,ℓ′,1, s′
i,j,k,ℓ,ℓ′,1, ti,j,k,ℓ,ℓ′,1, t′

i,j,k,ℓ,ℓ′,1 ∈ Zr
q

si,j,k,ℓ,ℓ′,2, s′
i,j,k,ℓ,ℓ′,2, ti,j,k,ℓ,ℓ′,2, t′

i,j,k,ℓ,ℓ′,2 ∈ Zn−r
q

si,j,k,ℓ,ℓ′,3, s′
i,j,j′,3, ti,j,k,ℓ,ℓ′,3, t′

i,j,k,ℓ,ℓ′,3 ∈ Zm
q

s′′
i,j,k,ℓ,ℓ′ , t′′

i,j,k,ℓ,ℓ′ ∈ Zq

such that

S = ⟨si,j,k,ℓ,ℓ′,1||si,j,k,ℓ,ℓ′,2||si,j,k,ℓ,ℓ′,3, G⟩
+⟨s′

i,j,k,ℓ,ℓ′,1||s
′
i,j,k,ℓ,ℓ′,2||s

′
i,j,k,ℓ,ℓ′,3, H⟩+ s′′

i,j,k,ℓ,ℓ′ ·H
T = ⟨ti,j,k,ℓ,ℓ′,1||ti,j,k,ℓ,ℓ′,2||ti,j,k,ℓ,ℓ′,3, G⟩

+⟨t′
i,j,k,ℓ,ℓ′,1||t

′
i,j,k,ℓ,ℓ′,2||t

′
i,j,k,ℓ,ℓ′,3, H⟩+ t′′

i,j,k,ℓ,ℓ′ ·H .

If these vectors are not identical for all (i, j, k, ℓ, ℓ′), then we obtain a non-trivial discrete-
logarithm relation for (G, H, H) (and thus a non-trivial discrete-logarithm relation for
(G, H, G, H)). Therefore, for the remainder of the proof we assume that these vectors are
identical for all (i, j, k, ℓ, ℓ′), and denote them by s1, s′

1, t1, t′
1 ∈ Zr

q, s2, s′
2, t2, t′

2 ∈ Zn−r
q ,

s3, s′
3, t3, t′

3 ∈ Zm
q and s′′, t′′ ∈ Zq. Equipped with this notation, we have

S = ⟨s1||s2||s3, G⟩+ ⟨s′
1||s

′
2||s

′
3, H⟩+ s′′ ·H

T = ⟨t1||t2||t3, G⟩+ ⟨t′
1||t

′
2||t

′
3, H⟩+ t′′ ·H .

Next, for every i ∈ [n+1], j, k ∈ [m+1] and ℓ ∈ [5], the extracted witness (ui,j,k,ℓ, vi,j,k,ℓ,
η′

i,j,k,ℓ) satisfies

⟨ui,j,k,ℓ, G′
i,j,k⟩+ ⟨vi,j,k,ℓ, H⟩+ η′

i,j,k,ℓ ·H
= Pi,j,k,ℓ

= S + δ−1
i,j,k,ℓ · T + ⟨(δ2

i,j,k,ℓ ·αn
i || − βm

i,j), G′
i,j,k⟩+ ⟨(ci,j,k ◦ δi,j,k,ℓ || −αm

i ), H⟩
= ⟨s1||s2||s3, G⟩+ ⟨s′

1||s
′
2||s

′
3||H⟩+ s′′ ·H

+δ−1
i,j,k,ℓ ·

(
⟨t1||t2||t3, G⟩+ ⟨t′

1||t
′
2||t

′
3, H⟩+ t′′ ·H

)
+⟨(δ2

i,j,k,ℓ ·αn
i || − βm

i,j), G′
i,j,k⟩+ ⟨(ci,j,k ◦ δi,j,k,ℓ || −αm

i ), H⟩

= ⟨(((s1||s2) + δ−1
i,j,k,ℓ · (t1||t2) + δ2

i,j,k,ℓ ·αn
i ) || (s3 + δ−1

i,j,k,ℓ · t3) ◦ γm
i,j,k − βm

i,j), G′
i,j,k⟩

+⟨(((s′
1||s

′
2) + δ−1

i,j,k,ℓ · (t
′
1||t

′
2) + ci,j,k ◦ δi,j,k,ℓ) || s′

3 + δ−1
i,j,k,ℓ · t

′
3 −αm

i ), H⟩

+(s′′ + δ−1
i,j,k,ℓ · t

′′) ·H .
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Therefore,

ui,j,k,ℓ = (((s1||s2) + δ−1
i,j,k,ℓ · (t1||t2) + δ2

i,j,k,ℓ ·αn
i ) || (s3 + δ−1

i,j,k,ℓ · t3) ◦ γm
i,j,k − βm

i,j)
vi,j,k,ℓ = (((s′

1||s
′
2) + δ−1

i,j,k,ℓ · (t
′
1||t

′
2) + ci,j,k ◦ δi,j,k,ℓ) || s′

3 + δ−1
i,j,k,ℓ · t

′
3 −αm

i )
η′

i,j,k,ℓ = s′′ + δ−1
i,j,k,ℓ · t

′′ ,

since otherwise we again obtain a non-trivial discrete-logarithm relation for (G′
i,j,k, H, H)

(and thus a non-trivial discrete-logarithm relation for (G, H, G, H)). Then, on the one
hand

ωi,j,k,ℓ = ⟨ui,j,k,ℓ, vi,j,k,ℓ⟩

=
(
⟨(t1||t2), (t′

1||t
′
2)⟩+ ⟨t3 ◦ γm

i,j,k, t′
3⟩

)
· δ−2

i,j,k,ℓ

+
(
⟨(s1||s2), (t′

1||t
′
2)⟩+ ⟨(s′

1||s
′
2), (t1||t2)⟩+ ⟨t2, ci,j,k,[r+1:n]⟩

+ ⟨s′
3 −αm

i , t3 ◦ γm
i,j,k⟩+ ⟨s3 ◦ γm

i,j,k − βm
i,j , t′

3⟩
)
· δ−1

i,j,k,ℓ

+
(
⟨s1, s′

1⟩+ ⟨s2, (s′
2 + ci,j,k,[r+1:n])⟩+ ⟨t1, ci,j,k,[1:r]⟩

+ ⟨s3 ◦ γm
i,j,k, s′

3 −αm
i ⟩ − ⟨β

m
i,j , s′

3⟩+ ⟨αm
i , βm

i,j⟩
)

+
(
⟨s1, ci,j,k,[1:r]⟩+ ⟨αn

i , (t′
1||t

′
2)⟩

)
· δi,j,k,ℓ

+
(
⟨αn

i , (s′
1||s

′
2)⟩+ ⟨αr

i ·αn−r
i , ci,j,k,[r+1:n]⟩

)
· δ2

i,j,k,ℓ

+⟨αr
i , ci,j,k,[1:r]⟩ · δ3

i,j,k,ℓ ,

whereas on the other hand

ωi,j,k,ℓ = ⟨αm
i , βm

i,j⟩+ δ2
i,j,k,ℓ · ⟨αn

i , ci,j,k ◦ δi,j,k,ℓ⟩
= ⟨αm

i , βm
i,j⟩+ ⟨αr

i ·αn−r
i , ci,j,k,[r+1:n]⟩ · δ2

i,j,k,ℓ + ⟨αr
i , ci,j,k,[1:r]⟩ · δ3

i,j,k,ℓ ,

which together imply

0 =
(
⟨(t1||t2), (t′

1||t
′
2)⟩+ ⟨t3 ◦ γm

i,j,k, t′
3⟩

)
· δ−2

i,j,k,ℓ

+
(
⟨(s1||s2), (t′

1||t
′
2)⟩+ ⟨(s′

1||s
′
2), (t1||t2)⟩+ ⟨t2, ci,j,k,[r+1:n]⟩

+ ⟨s′
3 −αm

i , t3 ◦ γm
i,j,k⟩+ ⟨s3 ◦ γm

i,j,k − βm
i,j , t′

3⟩
)
· δ−1

i,j,k,ℓ

+
(
⟨s1, s′

1⟩+ ⟨s2, (s′
2 + ci,j,k,[r+1:n])⟩+ ⟨t1, ci,j,k,[1:r]⟩

+ ⟨s3 ◦ γm
i,j,k, s′

3 −αm
i ⟩ − ⟨β

m
i,j , s′

3⟩
)

+
(
⟨s1, ci,j,k,[1:r]⟩+ ⟨αn

i , (t′
1||t

′
2)⟩

)
· δi,j,k,ℓ

+⟨αn
i , (s′

1||s
′
2)⟩ · δ2

i,j,k,ℓ .

For every i ∈ [n + 1] and j, k ∈ [m + 1], the right-hand side of above equation (when
multiplied by δ2

i,j,k,ℓ) is a polynomial of degree 4 in the variable δ. Since the above holds
for 5 distinct values {δi,j,k,ℓ}ℓ∈[5], it is the zero polynomial, and therefore its 5 coefficients
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are all zeros. That is,

0 = ⟨(t1||t2), (t′
1||t

′
2)⟩+ ⟨t3 ◦ γm

i,j,k, t′
3⟩ (5)

0 = ⟨(s1||s2), (t′
1||t

′
2)⟩+ ⟨(s′

1||s
′
2), (t1||t2)⟩+ ⟨t2, ci,j,k,[r+1:n]⟩

+⟨s′
3 −αm

i , t3 ◦ γm
i,j,k⟩+ ⟨s3 ◦ γm

i,j,k − βm
i,j , t′

3⟩ (6)
0 = ⟨s1, s′

1⟩+ ⟨s2, (s′
2 + ci,j,k,[r+1:n])⟩+ ⟨t1, ci,j,k,[1:r]⟩

+⟨s3 ◦ γm
i,j,k, s′

3 −αm
i ⟩ − ⟨β

m
i,j , s′

3⟩ (7)
0 = ⟨s1, ci,j,k,[1:r]⟩+ ⟨αn

i , (t′
1||t

′
2)⟩ (8)

0 = ⟨αn
i , (s′

1||s
′
2)⟩ . (9)

Similarly, since Eq. (9) holds for n + 1 distinct values of αi, then s′
1 = 0r and s′

2 = 0n−r.
Eq. (7) now becomes

0 = ⟨(t1||s2), ci,j,k⟩+ ⟨s3 ◦ γm
i,j,k, s′

3 −αm
i ⟩ − ⟨β

m
i,j , s′

3⟩

and recalling that ci,j,k = µm
i,j,kA + βm

i,jB − γm
i,j,kC and µi,j,k = αi · γi,j,k we obtain

0 = ⟨(t1||s2), µm
i,j,kA + βm

i,jB − γm
i,j,kC⟩+ ⟨s3 ◦ γm

i,j,k, s′
3 −αm

i ⟩ − ⟨β
m
i,j , s′

3⟩
= ⟨A · (t1||s2)− s3, αm

i ◦ γm
i,j,k⟩+ ⟨B · (t1||s2)− s′

3, βm
i,j⟩

−⟨C · (t1||s2)− s′
3 ◦ s3, γm

i,j,k⟩ .

Applying Lemma 9 to the above, we obtain

A · (t1||s2) = s3

B · (t1||s2) = s′
3

C · (t1||s2) = s′
3 ◦ s3

Letting x = t1 ∈ Zr
q, y = s2 ∈ Zn−r

q and z = (x||y) ∈ Zn
q , yields (Az) ◦ (Bz) = Cz as

required. Focusing now on the group elements S and T , so far we have established that
they are of the following form:

S = ⟨((s1||y) || Az), G⟩+ ⟨(0n || Bz), H⟩+ s′′ ·H
T = ⟨((x||t2) || t3), G⟩+ ⟨((t′

1||t
′
2) || t′

3), H⟩+ t′′ ·H .

Examining the term ⟨s1, ci,j,k,[1:r]⟩ that appears in Eq. (8), given that ci,j,k = µm
i,j,kA+

βm
i,jB − γm

i,j,kC, then

ci,j,k,[1:r] = µm
i,j,kA[1:r] + βm

i,jB[1:r] − γm
i,j,kC[1:r] ,

where A[1:r], B[1:r] and C[1:r] ∈ Zm×r
q denote the leftmost r columns of the matrices A, B

and C, respectively. Eq. (8) is thus equivalent to

0 = ⟨A[1:r]s1, αm
i ◦ γm

i,j,k⟩+ ⟨B[1:r]s1, βm
i,j⟩ − ⟨C[1:r]s1, γm

i,j,k⟩+ ⟨αn
i , (t′

1||t
′
2)⟩ .

Applying Lemma 9 once again, we obtain A[1:r]s1 = B[1:r]s1 = C[1:r]s1 = 0m, t′
1 = 0r

and t′
2 = 0n−r. Letting x′ = s1 ∈ Zr

q we thus have A[1:r]x
′ = B[1:r]x

′ = C[1:r]x
′ = 0m as

required.
Similarly, examining the term ⟨t2, ci,j,k,[r+1:n]⟩ that appears in Eq. (6) it holds that

ci,j,k,[r+1:n] = µm
i,j,kA[r+1:n] + βm

i,jB[r+1:n] − γm
i,j,kC[r+1:n] ,

where A[r+1:n], B[r+1:n] and C[r+1:n] ∈ Zm×(n−r)
q denote the rightmost n− r columns of

the matrices A, B and C, respectively. Given that s′
1 = t′

1 = 0r and s′
2 = t′

2 = 0n−r, it
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holds that ⟨(s1||s2), (t′
1||t′

2)⟩ = 0 and ⟨(s′
1||s′

2), (t1||t2)⟩ = 0, and therefore from Eq. (6)
we obtain

0 = ⟨t2, ci,j,k,[r+1:n]⟩+ ⟨s′
3 −αm

i , t3 ◦ γm
i,j,k⟩+ ⟨s3 ◦ γm

i,j,k − βm
i,j , t′

3⟩
= ⟨A[r+1:n]t2, αm

i ◦ γm
i,j,k⟩+ ⟨B[r+1:n]t2, βm

i,j⟩ − ⟨C[r+1:n]t2, γm
i,j,k⟩

+⟨s′
3 ◦ t3 + s3 ◦ t′

3, γm
i,j,k⟩ − ⟨t3, αm

i ◦ γm
i,j,k⟩ − ⟨t′

3, βm
i,j⟩

= ⟨A[r+1:n]t2 − t3, αm
i ◦ γm

i,j,k⟩+ ⟨B[r+1:n]t2 − t′
3, βm

i,j⟩
−⟨C[r+1:n]t2 − s′

3 ◦ t3 − s3 ◦ t′
3, γm

i,j,k⟩ .

Applying Lemma 9 once again, it holds that

A[r+1:n]t2 = t3

B[r+1:n]t2 = t′
3

C[r+1:n]t2 = s′
3 ◦ t3 + s3 ◦ t′

3 = Bz ◦A[r+1:n]t2 + Az ◦B[r+1:n]t2 .

Letting y′ = t2 ∈ Zn−r
q and z′ = (x′||y′) ∈ Zn

q , we then obtain C[r+1:n]y
′ = (Bz ◦

A[r+1:n]y
′) + (Az ◦B[r+1:n]y

′), and thus Cz′ = (Bz ◦Az′) + (Az ◦Bz′) as required.
Finally, examining Eq. (5), given that t′

1 = 0r and t′
2 = 0n−r, then for m + 1 distinct

values of γi,j,k it holds that 0 = ⟨t3 ◦ t′
3, γm

i,j,k⟩, and therefore t3 ◦ t′
3 = 0m. That is,

(A[r+1:n]y
′) ◦ (B[r+1:n]y

′) = 0m and therefore (Az′) ◦ (Bz′) = 0m. Letting η = t′′, we
obtain

T = ⟨((x||y′) || Az′), G⟩+ ⟨(0n || Bz′), H⟩+ η ·H

as required.
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The Argument System ΠIP

• Public parameters:

1. Integer d = 2t ≥ 1.
2. Cyclic group G of prime order q.

• Inputs:

1. P: Instance (G, H, G, H, P, ω) ∈ G2d+3 × Zq and witness (u, v, α) ∈ Z2d+1
q .

2. V: Instance (G, H, G, H, P, ω) ∈ G2d+3 × Zq.

• Execution:

1. The verifier V samples e← Z∗
q , and sends e to the prover P.

2. Each party computes

G′ = e ·G
P ′ = P + ω ·G′

3. The parties invoke ΠmIP with the instance (G, H, G′, H, P ′), where the prover P
takes the role of the prover using the witness (u, v, α), and the verifier V takes the
role of the verifier and then outputs its output.

In what follows we prove the completeness, zero-knowledge and witness-extended
emulation properties of the argument system ΠIP based on the corresponding properties
of the underlying argument system ΠmIP. Theorem 1 then follows by instantiating the
underlying argument system ΠmIP with the argument system constructed by Chung et al.
[CHJ+22].

Lemma 6. Assuming that ΠmIP has perfect completeness, then ΠIP has perfect complete-
ness.

Proof. Let G be a cyclic group of prime order q, and let ((G, H, G, H, P, ω), (u, v, α)) ∈
RIP. We show that, for any e ∈ Z∗

q chosen by the verifier, it holds that ((G, H, G′, H, P ′),
(u, v, α)) ∈ RmIP where G′ = e ·G and P ′ = P + ω ·G′.

Given that ((G, H, G, H, P, ω), (u, v, α)) ∈ RIP, then P = ⟨u, G⟩+ ⟨v, H⟩+ α ·H and
ω = ⟨u, v⟩, and therefore

P ′ = P + ω ·G′

= ⟨u, G⟩+ ⟨v, H⟩+ α ·H + ⟨u, v⟩ ·G′

This implies that ((G, H, G′, H, P ′), (u, v, α)) ∈ RmIP as required.

Lemma 7. Assuming that ΠmIP has perfect special honest-verifier zero-knowledge, then
ΠIP has perfect special honest-verifier zero-knowledge.

Proof. Let S be the simulator that is defined as follows on input ((G, H, G, H, P, ω), ρ):

1. Parse ρ = (e, ρmIP), where e ∈ Z∗
q is the verifier’s randomness for Step 1 of the

argument system ΠIP, and ρmIP is the verifier’s randomness for Step 3 of the argument
system ΠIP (i.e., ρmIP is the verifier’s randomness for the argument system ΠmIP).

2. Compute G′ = e ·G and P ′ = P + ω ·G′.

3. Invoke the zero-knowledge simulator of the argument system ΠmIP on input ((G, H,
G′, H, P ′), ρmIP) for obtaining a transcript trmIP.

4. Output (e, trmIP).
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Let A1 and A2 be any two algorithms as in Definition 3, and fix any common-reference
string σ = (G, G, q) and any triplet ((G, H, G, H, P, ω), (u, v, α), ρ) produced by A1(σ)
such that ((G, H, G, H, P, ω), (u, v, α)) ∈ RIP. We need to show that, conditioned on
any such fixed values, the distribution of the transcript produced by the simulator S is
identical to the distribution of an honestly-generated transcript (thus, A2 will have no
advantage in distinguishing the two cases – as required by Definition 3).

First, in both cases, the value e is uniquely determined by the verifier’s randomness
ρ = (e, ρmIP). Second, in both cases, the RmIP instance (G, H, G′, H, P ′) is computed
as the same deterministic function of (G, H, G, H, P, ω) and e. Given that ((G, H, G,
H, P, ω), (u, v, α)) ∈ RIP, the perfect completeness of the argument system ΠIP guarantees
that ((G, H, G′, H, P ′), (u, v, α)) ∈ RmIP. Thus, the perfect special honest-verifier zero-
knowledge of the argument system ΠmIP guarantees that the transcript trmIP produced by
its corresponding simulator is distributed identically to an honestly-generated transcript
when conditioned on all previously-fixed values.

Lemma 8. Let G be a cyclic group of prime order q. Assume that ΠmIP is a (2µ + 1)-
move public-coin argument system, and for each i ∈ [µ] let ni = ni(κ) ≥ 1 such that
Πµ

i=1ni is polynomial in the security parameter κ ∈ N. Assume further that there exists a
probabilistic polynomial-time algorithm ExtmIP that when given any (n1, . . . , nµ)-tree of
accepting transcripts for an RmIP instance (G, H, G′, H, P ′) always succeeds in extracting
either a witness (u, v, α) such that ((G, H, G′, H, P ′), (u, v, α)) ∈ RmIP or a non-trivial
discrete-logarithm relation for (G, H, G′, H). Then, there exists a probabilistic polynomial-
time algorithm ExtIP that when given any (2, n1, . . . , nµ)-tree of accepting transcripts for
an RIP instance (G, H, G, H, P, ω) always succeeds in extracting either a witness (u, v, α)
such that ((G, H, G, H, P, ω), (u, v, α)) ∈ RIP or a non-trivial discrete-logarithm relation
for (G, H, G, H).

Proof. Any (2, n1, . . . , nµ)-transcript tree RIP for an RIP instance (G, H, G, H, P, ω) has
the following form:

• The first level consists of 2 nodes corresponding to distinct values e1 ̸= e2.

• Each second level node serves as the root of an (n1, . . . , nµ)-transcript sub-tree for
an RmIP instance (G, H, G′

i, H, P ′
i ), where G′

i = ei · G and P ′ = P + ω · G′
i for

i ∈ {1, 2}.

Consider the extractor ExtIP that invokes the given extractor ExtmIP on each of the two
(n1, . . . , nµ)-transcript sub-trees. By assumption, for each such sub-tree it obtains either
a witness (ui, vi, αi) such that ((G, H, G′

i, H, P ′
i ), (ui, vi, αi)) ∈ RmIP, or a non-trivial

discrete-logarithm relation for (G, H, G′
i, H). Any such relation yields a corresponding

relation for (G, H, G, H), and therefore for the remainder of the proof we assume that the
extractor obtains a witness (ui, vi, αi) for each i ∈ {1, 2}.

For each i ∈ {1, 2} it thus holds that

P + ω · ei ·G = P ′
i = ⟨ui, G⟩+ ⟨vi, H⟩+ ⟨ui, vi⟩ · ei ·G + αi ·H (10)

and therefore

ω · (e1 − e2) ·G = ⟨u1 − u2, G⟩+ ⟨v1 − v2, H⟩
+(⟨u1, v1⟩ · e1 − ⟨u2, v2⟩ · e2) ·G + (α1 − α2) ·H (11)

If u1 ̸= u2 or v1 ̸= v2 or α1 ̸= α2, then Eq. (11) yields a non-trivial discrete-logarithm
relation for (G, H, G, H). Therefore, for the remainder of the proof we assume that
u1 = u2, v1 = v2 and α1 = α2, and denote these values by u, v and α, respectively. Eq.
(11) now simplifies to

ω · (e1 − e2) ·G = ⟨u, v⟩ · (e1 − e2) ·G
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which implies that ω = ⟨u, v⟩ since e1 ̸= e2. Finally, from Eq. (10) we obtain

P = ⟨u, G⟩+ ⟨v, H⟩+ α ·H .

This implies that ((G, H, G, H, P, ω), (u, v, α)) ∈ RIP as required.

B An Auxiliary Lemma
Definition 5. Let nα, nβ , nγ ≥ 1. A set of triplets {(αi, βi,j , γi,j,k)}i∈[nα],j∈[nβ ],k∈[nγ ] is
path distinct if the following hold:

1. The values {αi}i∈[nα] are distinct.

2. For every i ∈ [nα] the values {βi,j}j∈[nβ ] are distinct.

3. For every i ∈ [nα] and j ∈ [nβ ] the values {γi,j,k}k∈[nγ ] are distinct.

Lemma 9. Let q ∈ N be a prime number, let m, n ≥ 1, a, b, c ∈ Zm
q , d ∈ Zn

q , e ∈ Zq and
let f : Z3

q → Zq be defined as

f(α, β, γ) = ⟨a, αm ◦ γm⟩+ ⟨b, βm⟩+ ⟨c, γm⟩+ ⟨d, αn⟩+ e.

If there exists a path-distinct set of (n+1)·(m+1)2 triplets {(αi, βi,j , γi,j,k)}i∈[n+1],j,k∈[m+1]
such that f(αi, βi,j , γi,j,k) = 0 for every i ∈ [n+1] and j, k ∈ [m+1], then a = b = c = 0m,
d = 0n and e = 0.

Proof. Fix any i ∈ [n + 1] and j ∈ [m + 1], and let

gi,j(γ) = ⟨a ◦αm
i + c, γm⟩+ ⟨b, βm

i,j⟩+ ⟨d, αn
i ⟩+ e .

Then gi,j is a polynomial of degree m, and it holds that g(γi,j,k) = 0 for every k ∈ [m + 1].
Therefore, gi,j is the zero polynomial, and thus its m + 1 coefficients are all zeros. That is,
⟨b, βm

i,j⟩+ ⟨d, αn
i ⟩+ e = 0 and a ◦αm

i + c = 0m. For each i ∈ [n + 1], let

hi(β) = ⟨b, βm⟩+ ⟨d, αn
i ⟩+ e .

Then, hi is a polynomial of degree m, and it holds that hi(βi,j) = 0 for every j ∈ [m + 1].
Therefore, hi is the zero polynomial, and thus its m + 1 coefficients are all zeros. That is,
b = 0m and ⟨d, αn

i ⟩+ e = 0. Next, let

t(α) = ⟨d, αn⟩+ e ,

then t is a polynomial of degree n, and it holds that g(αi) = 0 for every i ∈ [n + 1].
Therefore, t is the zero polynomial, and thus its n + 1 coefficients are all zeros. That
is, d = 0n and e = 0. Finally, since for n + 1 ≥ 2 distinct values of αi it holds that
a ◦αm

i + c = 0m, then a = c = 0m.
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