
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 2, No. 1, 25 pages.

https://doi.org/10.62056/abksdk5vt
Check for updates

A divide-and-conquer sumcheck protocol1

Christophe Levrat1 , Tanguy Medevielle2 and Jade Nardi22

1 INRIA Saclay, Palaiseau, France3
2 Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000, Rennes, France4

Abstract. We present a new sumcheck protocol called Fold-DCS (Fold-Divide-and-5

Conquer-Sumcheck) for multivariate polynomials based on a divide-and-conquer6

strategy. Its round complexity and soundness error are logarithmic in the number of7

variables, whereas they are linear in the classical sumcheck protocol. This drastic8

improvement in number of rounds and soundness comes at the expense of exchanging9

multivariate polynomials, which can be alleviated using polynomial commitment10

schemes. We first present Fold-DCS in the PIOP model, where the prover provides11

oracle access to a multivariate polynomial at each round. We then replace this oracle12

access in practice with a multivariate polynomial commitment scheme; we illustrate13

this with an adapted version of the recent commitment scheme Zeromorph [KT24],14

which allows us to replace most of the queries made by the verifier with a single15

batched evaluation check.16

1 Introduction17

The classical sumcheck protocol [LFKN92] is an interactive proof protocol used to verify18

the sum of the values of a given multivariate polynomial over a large domain, typically a19

hypercube. The protocol works by iteratively reducing a multivariate polynomial sum to a20

univariate case, allowing efficient verification without requiring the verifier to recompute21

the entire sum. At each round, the arity of the polynomial is reduced by one, meaning that22

there is one round per variable. It is highly efficient in terms of communication, as the23

prover only sends univariate polynomials to the verifier. Keeping the amount of data sent24

to the verifier this low alleviates the cost (in time and space) of computing cryptographic25

commitments to large vector in zero-knowledge proof systems and thus makes the sumcheck26

protocol a core component in several zk-SNARKs. For instance, Hyrax [WTS+18] calls27

for as many sumcheck invocations as the depth of the circuit, and Spartan [Set20] needs28

two sumcheck invocations for products of two multilinear polynomials.29

The sumcheck protocol also plays a central role in Interactive Proofs (IPs). It is the30

main ingredient of the GKR interactive proof for circuit evaluation [GKR15]. Bootle et al.31

[BCS21] recently introduced a class of interactive protocols, called sumcheck arguments,32

which turn the knowledge proofs of openings for certain commitment schemes CM into33

sumcheck protocols for a function fCM over a domain H. Such compatible commitment34

schemes are said sumcheck-friendly. Sumcheck arguments establish an elegant connection35

between the sumcheck protocol and several seemingly disparate works, such as folding36

techniques. This renews and reinforces the need for efficient sumcheck protocols.37

In this work, we present a new polynomial interactive oracle proof (PIOP) to check the38

sum of a multivariate polynomial f of arity µ over a hypercube Hµ in O(log µ) rounds.39

All the authors are supported by the French National Research Agency through ANR Barracuda (ANR-
21-CE39-0009). The second and the third authors are supported by the French government Investissements
d’Avenir program ANR-11-LABX-0020-01.

E-mail: christophe.levrat@math.cnrs.fr (Christophe Levrat), tanguy.medevielle@univ-rennes.fr
(Tanguy Medevielle), jade.nardi@univ-rennes.fr (Jade Nardi)

This work is licensed under a “CC BY 4.0” license.
Received: 2025-01-07 Accepted: 2025-03-11

https://doi.org/10.62056/abksdk5vt
https://crossmark.crossref.org/dialog/?doi=10.62056/abksdk5vt&domain=pdf&date_stamp=2025-04-04
https://orcid.org/0009-0004-9768-5786
https://chrislevrat.perso.math.cnrs.fr/
https://orcid.org/0009-0004-0872-5265
https://orcid.org/0000-0003-0901-7266
https://jnardi.perso.math.cnrs.fr/
mailto:christophe.levrat@math.cnrs.fr
mailto:tanguy.medevielle@univ-rennes.fr
mailto:jade.nardi@univ-rennes.fr
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 A divide-and-conquer sumcheck protocol

The strategy in the standard sumcheck protocol [LFKN92] is to reduce the problem at each40

round to another instance of the sumcheck protocol with a polynomial of lower arity. Here,41

instead of decreasing the arity by one at each round, we rely on the Divide-and-Conquer42

routine to turn one instance of the sumcheck into two instances of half the “size”, here half43

the arity. The first instance still aims at verifying that the claimed sum is correct, while44

the second one allows to check the integrity of the function used in the first one. A classical45

trick (see [BSBHR18, BSBHR19]) to avoid doubling the instances at each turn is to fold46

them: instead of checking the sums of two polynomials f0 and f1, we check that a random47

linear combination of f0 and f1 has the expected sum, repeating the Divide-and-Conquer48

process described above.49

Ultimately, the final check is a univariate sumcheck which can be performed either by50

the verifier herself (querying |H| values of the last commit) or using an efficient interactive51

protocol, like the one in Aurora [BSCR+19] if H is structured. As a result, the round52

complexity is O(log µ) for a µ-variate polynomial, compared to µ in the standard protocol.53

Decreasing the number r of rounds is critical in the context of the Fiat-Shamir transform.54

For a (2r + 1)-move interactive protocol in which the prover has a cheating probability of55

at most ϵ, the associated Fiat-Shamir-transformed protocol admits a cheating probability56

of at most (Q + 1)r · ϵ, where Q is the number of random-oracle queries. Attema et al.57

[AFK23] showed that this exponential security loss does not only occur for contrived58

examples, but also for some natural protocols such as the t-fold parallel repetition of59

protocols. It is worth noting that this critical loss of security does not happen when the60

interactive protocol satisfies a strengthened version of soundness, called round-by-round61

soundness [CCH+18].62

Comparison with the standard sumcheck protocol In both the standard and our63

protocol, the soundness is linear in the number of rounds. However, the soundness of64

Fold-DCS depends on the total degree of the polynomial, not its individual degrees. Thanks65

to the exponential gain in round complexity, we thus also achieve a better soundness as66

long as the total degree of the polynomial is fixed and at most µ/ log(µ) times its highest67

individual degree.68

This significantly lower number of rounds comes at the expense of the exchange of69

multivariate polynomials between the prover and the verifier, which would make the proof70

size and the verifier complexity explode. Our PIOP for sumcheck thus requires a polynomial71

commitment scheme (PCS) for practical use. In our protocol, if the polynomials computed72

by the prover P were fully sent (without using commitment schemes), most of the verifier73

V’s computational complexity would reside in evaluating multivariate polynomials sent74

by the prover P. We have chosen to first present the protocol in the PIOP model (see75

Section 3), in which V is not sent actual polynomials by P, but instead given oracle access76

to each one of them, allowing V to query evaluations of said polynomials at any point.77

Then, in Section 4, we present the protocol using a multivariate polynomial commitment78

scheme (PCS), in which P first sends commitments to the polynomials; later, P and V run79

an evaluation protocol in which the prover sends the values of a batch of polynomials at a80

given common point and a proof of convinces the verifier of the correctness of these values.81

Complexities of the standard sumcheck protocol, the Fold-DCS in the PIOP model82

and its instantiated version with the commitment scheme Zeromorph [KT24] are gathered83

up in Table 1. Note that in the usual description of the standard sumcheck [LFKN92],84

the prover is given oracle access to the original polynomial. So the prover computations85

consist in querying |H|µ values and summing them, hence a prover complexity of O(|H|µ)86

Fq-operations (see [Tha22, §4.1] for details). Handling the whole polynomial as in the87

PIOP-model, the prover can perform less operations (recall that d < |H|). For fair88

comparison, we give the prover complexity of the standard sumcheck protocol in the latter89

case. A similar computation to the one of §3.3 shows that the prover needs to perform at90

Christophe Levrat, Tanguy Medevielle, Jade Nardi 3

most µ2dµ−1 + 2d |H| operations in Fq, which is less than |H|µ for µ large enough. As a91

result, our protocol with log(µ) rounds also decreases the prover complexity in the PIOP92

model.93

Choosing a multivariate polynomial commitment scheme We chose to instantiate94

Fold-DCS with the commitment scheme Zeromorph [KT24] based on KZG commitments95

[KZG10]. While Zeromorph is not transparent, it offers the following advantages:96

• Since it does not use a sumcheck protocol as a subroutine, its evaluation protocol97

has constant round complexity;98

• The verifier complexity of its evaluation protocol is linear in the number of variables;99

• Its evaluation protocol allows for batching and shifting [KT24, §8].100

Table 1: Comparison of protocol Fold-DCS (with the PCS Zeromorph [KT24]) with the
standard sumcheck protocol for a µ-variate polynomial of partial degrees at most d and
total degree at most D over a coset H ⊂ F. The verifier and prover complexities are
counted in terms of operations in the field F. The communication complexity measures
the number of elements of F exchanged during the protocols.

Standard Fold-DCS
sumcheck PIOP model with Zeromorph

Number of rounds µ O(log µ) O(log µ)
Randomness µ µ + log µ + 1 O(µ log d log µ)
Query complexity 2 log µ + 3
of commitments (PIOP) log µ + 1
Communication complexity d · µ O(µ log d log µ)
Prover complexity µ2dµ−1+ 2d |H| log(µ)µdµ/2+ 2d |H| O(d log(µ)2µ)
Verifier complexity µd log d O(log µ) O(µ log d)

Soundness µ · d

|F|
(log µ + 1) · D + 1

|F|

In particular, all the queries made by the verifier in our protocol may be summed up101

in a single batched evaluation when instantiating Fold-DCS with Zeromorph. Zeromorph102

is initially designed to commit to multilinear polynomials. We present an adapted version103

for multivariate polynomials with prescribed partial and total degrees. Since KZG and104

thus Zeromorph require bilinear pairings, this restricts their operation to large fields where105

pairing-friendly elliptic curves can be defined.106

Recent works focused on building PCS that are field-agnostic, contrarily to afore-107

mentioned PCS based on elliptic curves over designated finite fields. Some examples of108

field-agnostic PCS are Brakedown [GLS+23], Basefold [ZCF24], BrakingBase [NST24].109

Unfortunately, up to our knowledge, all field-agnostic PCS rely on the standard sumcheck110

protocol, so the number of rounds in the evaluation protocol equals the arity of the111

polynomial. Despite their efficiency with respect to time complexities, there is no point in112

using these PCS for Fold-DCS: this would annihilate our advantage in terms of rounds.113

It is worth noting that with all currently known PCS with constant round complexity,114

the batched evaluation protocol between the prover and the verifier is the main bottleneck115

of Fold-DCS in terms of time complexities. This raises the natural question of the possibility116

of recursively invoking our sumcheck protocol in the state-of-the-art field-agnostic PCS117

cited above, which we leave for future works.118

4 A divide-and-conquer sumcheck protocol

Mixing the standard and Fold-DCS approaches With this new efficient sumcheck119

protocol Fold-DCS in hand, one can reasonably suggest to mix both the standard protocol120

and Fold-DCS. A natural idea to lower the round complexity of the standard sumcheck121

protocol is to send at each round a polynomial with a fixed arity k = k(µ) (which may122

depend on the total number µ of variables). This reduces a µ-variate sumcheck to µ/k123

sumchecks of arity k, which can be merged into one sumcheck of arity k using the folding124

technique described in §3.2.1. However, both the communication and the verifier complexity125

are now higher due to the fact that k-variate polynomials are exchanged and used for126

sumchecks. This may, like in Fold-DCS, be alleviated by having P provide oracle access to127

the polynomials; for each of the sumchecks, V then needs to make |H|k queries.128

For the sake of the query complexity, this k-variate sumcheck should again be handled129

using the standard sumcheck protocol, or using Fold-DCS. In the former case, the total130

round number is µ/k + k, which is minimal when k = √µ. This means that the soundness131

error is O(√µd/q): this is much worse than Fold-DCS in terms of round complexity as well132

as soundness. In the latter case, the total number of rounds is µ/k + log(k). The round133

number is minimal when k = µ, as will be the soundness error; this corresponds to the134

case where Fold-DCS is directly performed on the initial polynomial. However, the query135

complexity is 1 + log(k), and is minimal when k = 1, which corresponds to the standard136

protocol.137

2 Preliminaries138

2.1 Interactive proofs and sumcheck protocols139

Interactive proofs (IPs) were introduced by Goldwasser, Micali, and Rackoff [GMR89]: in140

an rn-round interactive proof for a language L, a probabilistic polynomial-time verifier V141

exchanges rn messages with an unbounded prover P, and then accepts or rejects. The goal142

is that V accepts when the inputs belong to L, and rejects with high probability when143

they do not. Interactive oracle protocols (IOP) were introduced by Ben-Sasson, Chiesa144

and Spooner [BSCS16] and differ from IPs by the way the verifier accesses the prover’s145

messages. At each round, the verifier sends a message to the prover which he reads in146

full, whereas the prover replies with a message to the verifier, which she can query (via147

random access) in the given round and all later rounds. In both cases, we denote by148

⟨P↔ V⟩ ∈ {accept, reject} the output of V after interacting with P. Certain inputs of V149

can also only be given via oracle access. Traditionally, this difference is highlighted by150

writing V io(if) where io is the set of inputs which V accesses via oracles, and if the one151

she can fully read.152

Definition 1 (Perfect completeness). An interactive (oracle) proof for a language L is153

said to be perfectly complete if154

Pr
[
⟨P(io, if)↔ Vio(if)⟩ = accept

∣∣ (io, if) ∈ L
]

= 1.155

Definition 2 (Soundness). Let L = (Lρ)ρ∈P be a family of languages which depend on156

an element ρ of some parameter space P. An interactive (oracle) protocol for L is said157

to have soundness error s : P → R if for any parameter ρ ∈ P, any unbounded malicious158

prover P̃, and any inputs (i0, if),159

Pr
[
⟨P̃(io, if)↔ Vio(if)⟩ = accept

∣∣ (io, if) ̸∈ Lρ

]
⩽ s(ρ).160

Definition 3. Let µ, d, D be nonnegative integers. Let F be a finite field. We denote by161

F[x1:µ]d,D the F-vector space of µ-variate polynomials coefficients in F with individual162

Christophe Levrat, Tanguy Medevielle, Jade Nardi 5

degrees at most d and total degree at most D, i.e. generated by the set of monomials163 xi1
1 . . . xiµ

µ

∣∣∣ µ∑
j=1

ij ⩽ D and ∀j ∈ {1, . . . , µ} , ij ⩽ d

 .164

Definition 4. Let µ, d, D be nonnegative integers. Let F be a finite field, and H be a165

subset of F. A sumcheck protocol for µ-variate polynomials with coefficients in F, partial166

degrees ⩽ d and total degree ⩽ D for the summation set H is an interactive (oracle)167

protocol for the language168

Lµ,d,D,F,H =
{

(f, S) ∈ F[x1:µ]d,D × F
∣∣∣ ∑

a∈Hµ

f(a) = S

}
.169

Remark 1. Using the low-degree extension [BFLS91, Proposition 4.1], we can assume170

w.l.o.g. that d ⩽ |H| − 1. Moreover, the degrees and the arity satisfy D ⩽ µd.171

We are going to study sumcheck protocols in the Polynomial IOP model, as introduced172

in [BFS20, Definition 5]. We give here a slightly modified definition that is more suitable173

for the sumcheck in terms of degree bounds and arity.174

Definition 5 ((µ, d, D)-Polynomial IOP). Let L be a language, F some finite field, and175

µ, d, D ∈ N. A (µ, d, D)-Polynomial IOP for L with partial degree bound d and total176

degree bound D over F is a pair of interactive machines (P, V), satisfying the following177

description.178

• (P, V) is an interactive proof for L;179

• P sends polynomials fi(x) ∈ F[x1:µ]d,D to V;180

• V is an oracle machine with access to a list of oracles, which contains one oracle for181

each polynomial it has received from the prover.182

• When an oracle associated with a polynomial fi is queried on a point zj ∈ Fµ, the183

oracle responds with the value fi (zj).184

The computation of the soundness error of sumcheck protocols relies on the well-known185

Schwartz-Zippel lemma [DL78, Zip79, Sch80].186

Lemma 1 (Schwartz-Zippel). Let f ∈ F[x] be a nonzero µ-variate polynomial of total187

degree D. For uniformly picked a ∈ Hµ,188

Pra[f(a) = 0] ⩽ D

|H|
.189

2.2 The standard sumcheck protocol190

The standard sumcheck protocol [LFKN92] is described in Protocol 1. In this protocol,191

the verifier V checks at each round the sum of a univariate polynomial sent by the prover192

P. In the end, V queries one evaluation of the initial function to ensure consistency. The193

univariate sumchecks at each round are usually presented as being carried out by hand;194

however, V may also run a univariate sumcheck protocol to do this.195

Its soundness is usually computed by considering a union over all rounds of the protocol,196

resulting in an upper bound of µd/ |F|. This result can be refined as follows.197

6 A divide-and-conquer sumcheck protocol

Protocol 1: The standard sumcheck protocol [LFKN92]

Parameters: integer µ, field F, and H ⊆ F.
Inputs: f ∈ F[x1:µ]d,D and S ∈ F.

P (f, S) V f (S)

Compute
f1(x1) =

∑
a∈Hµ−1

f(x1, a2, . . . , aµ)

f1

∑
a∈H

f1(a) ?= S

α1
$← F

Compute
f2(x2) =

∑
a∈Hµ−2

f(α1, x2, a3, . . . , aµ)

f2 ∑
a∈H

f2(a) ?= f1(α1)

...

αi−1
$← F

Compute
fi(xi) =

∑
a∈Hµ−i

f(α1, . . . , αi−1, xi, ai+1, . . . , aµ)

fi ∑
a∈H

fi(a) ?= fi−1(αi−1)
...

Compute
fµ(xµ) =f(α1, . . . , αµ−1, xµ)

fµ

∑
a∈H

fµ(a) ?= fµ(αµ−1)

fµ(αµ) ?= f(α1, . . . , αµ)
with αµ

$← F

Christophe Levrat, Tanguy Medevielle, Jade Nardi 7

Proposition 1 (Soundness). Let p be the soundness error of the univariate sumcheck198

protocol used at each round to check if the sum of fi over H equals fi−1(αi−1). The number199

sd,F,p(µ) := Prα1,...,αµ

[
⟨P̃µ,d,F,H(f, S)↔ Vf

µ,d,F,H(S)⟩ = accept
∣∣∣ ∑

a∈Hµ

f(a) ̸= S

]
200

satisfies201

sd,F,p(µ) ⩽ 1−
(

1− d

|F|

)µ−1(
1−max

(
p,

d

|F|

))
.202

When p ⩽ d/ |F| ⩽ 1, this is bounded from above by µd/ |F|.203

Proof. We are going to provide a recurrence relation bounding sd,F,p(µ) in terms of204

sd,F,p(µ− 1). We assume that the sum of f over Hµ is different from S. First, suppose205

µ ⩾ 2. During the first round of the protocol, P̃ sends a function f̃0 which may or may206

not be equal to the function f0 defined in the protocol.207

• If f̃1 = f1, then the sum of f̃1 over Hµ is not S, hence the univariate sumcheck of208

the first round passes with probability at most p.209

• If f̃1 ̸= f1, then210

– either f̃1(α1) = f1(α1), which happens with probability u ⩽ d/ |F| since211

deg(f1) ⩽ d,212

– or f̃1(α1) ̸= f1(α1), which happens with probability 1−u. In this case, V accepts213

with probability at most sd,F,p(µ−1), since the remainder of the protocol is just214

a sumcheck for the (µ− 1)-variate function f(α1, x2, . . . , xµ) with an incorrect215

claimed sum f̃1(α1).216

Hence when f̃1 ≠ f1, the probability that V accepts is smaller than or equal to217

u · 1 + (1− u) · sd,F,p(µ− 1). Since sd,F,p(µ− 1) ⩽ 1 and u ⩽ d/ |F|, this is bounded218

from above by219

d/ |F|+ (1− d/ |F|)sd,F,p(µ− 1).220

Taking both of these cases into account, we obtain221

sd,F,p(µ) ⩽ max
(

p,
d

|F|
+
(

1− d

|F|

)
sd,F,p(µ− 1)

)
.222

When µ = 1, we may consider the same two cases; the probability of the second case is223

just d/ |F| since V never accepts if f̃1(α1) ̸= f1(α1). Hence224

sd,F,p(1) ⩽ max
(

p,
d

|F|

)
.225

Consider the sequence (tµ)µ⩾1 defined by226

t1 = max(p, d/ |F|)227

and for all µ ⩾ 1, tµ+1 = max(p, d/ |F|+ (1− d/ |F|)tµ). Then sd,F,p(µ) ⩽ tµ for all µ ⩾ 1.228

Using the fact that for all x ∈ [0, 1], d/ |F|+ (1− d/ |F|)x ⩾ x, one can easily show that:229

• If p ⩽ d/ |F| then t1 = d/ |F|, and for all µ ⩾ 1,230

tµ = 1−
(

1− d

|F|

)µ

.231

8 A divide-and-conquer sumcheck protocol

• If p > d/ |F| then t1 = p and for all µ ⩾ 1,232

tµ = 1−
(

1− d

|F|

)µ−1
(1− p).233

The result follows immediately.234

3 A sumcheck protocol with logarithmic round com-235

plexity236

Consider a finite field F, and a subset H of F. In this section, we describe a sumcheck237

protocol for polynomials in µ = 2m variables. We still denote by F[x1:µ]d,D the space of238

µ-variate polynomials with coefficients in F, of partial degree in each variable bounded239

by d and total degree bounded by D ⩽ dµ. Let f ∈ F[x1:µ]d,D, and S ∈ F be the claimed240

value of the sum of all evaluations of f over Hµ. We first describe a somewhat crude but241

easily understandable version of the protocol. After that, we present the genuine protocol.242

3.1 A simplified version of the protocol243

The simple protocol DCSµ described below showcases the core idea of our construction. It244

takes as inputs a µ-variate polynomial f ∈ F[x1:µ]d,D and a value S ∈ F, and it recursively245

checks the assertion246 ∑
a∈Hµ

f(a) = S.247

We will denote by DCSµ[f, S] the execution of the protocol DCSµ on the inputs f, S, which248

will be refined later in order to achieve a better communication complexity.249

Base case For µ = 1 (i.e. m = 0), the polynomial f is univariate. In that case,250

DCS1[f, S] is just the verifier checking by hand that
∑
a∈H

f(a) = S. If H has a particular251

structure, this may be replaced with another univariate sumcheck protocol (see §3.3.2).252

General case For µ ⩾ 2, DCSµ[f, S] recursively calls DCSµ/2 as described below.253

A few observations At each round, the number of parallel executions of the protocol254

doubles, but the number of variables of the functions involved is halved. So after i rounds255

of DCSµ, there are 2i parallel instances of DCSµ/2i , which is a sumcheck protocol for256

2m−i-variate polynomials. Thus, protocol DCSµ has log2(µ) rounds, and ends with µ257

univariate sumchecks. In order to reduce the randomness and communication complexity,258

the verifier may use the same randomness α for every parallel execution of the protocol.259

The relations between the different functions appearing in a full execution of DCSµ260

can be represented by the tree in Figure 1. The solid edges lead to functions which are261

computed and sent by the prover, while the dashed edges lead to functions which are262

implicitly defined during the protocol but not actually computed, and on which the prover263

has no influence.264

Let us now provide an intuitive explanation of the soundness of DCSµ, as well as an265

example.266

Christophe Levrat, Tanguy Medevielle, Jade Nardi 9

Protocol 2: DCSµ

Parameters: field F, arity µ = 2m, degrees d and D and H ⊆ F.
Inputs: f ∈ F[x1:µ]d,D and S ∈ F.

PF,H(f, S) Vf
F,H(S)

Compute for x = x1:µ/2

f0(x) =
∑

a∈Hµ/2

f(x, a)
f0

α
$← Fµ/2

Both set

• f1(x) = f(α, x) (which can be accessed by V as a virtual oracle when
needed),

• S1 = f0(α) (which can be requested by V when needed),

and then perform in parallel DCSµ/2[f0, S] and DCSµ/2[f1, S1].

f

f0

f0,0

...
...

f0,1

...
...

f1

f1,0

...
...

f1,1

...
...

Figure 1: The tree of functions involved in DCSµ for µ ∈ {8, 4, 2}. The children with
dashed line from their parents are not computed by P and are dealt as virtual oracles in
the protocol.

Intuition behind the soundness of DCSµ In the standard sumcheck protocol, the267

verifier checks one univariate sum at each round, which ties the sums of the functions268

sent by the prover to the claimed sum of the function f . With only these checks however,269

the prover could send any functions which have the right sum. This is why the verifier270

performs one final evaluation check which ties the functions sent by the prover to the271

function f itself. In our protocol, these goals are achieved in a different way: the sum272

of the function f0 sent by the prover is that of f , while the sum of f1 (a function which273

is not sent by the prover, but computed directly from f) ties f0 to f . The soundness274

error of DCSµ is computed in a similar way to that of the classical sumcheck protocol: at275

every round, there is a probability D/ |F| that the function sent by the prover accidentally276

has the same evaluation as the function required by the protocol. The total soundness277

is O(log(µ)D/ |F|). A precise proof of this will be given later for the refined protocol278

Fold-DCS. The following example illustrates the soundness in a simple case.279

Example 1. Consider the function f(x, y) = x+y ∈ F3[x, y], and the set H = {0, 1} ⊂ F3.280

We have281 ∑
a,b∈H

f(a, b) = 1.282

10 A divide-and-conquer sumcheck protocol

Consider a claimed sum S = 0 ̸= 1. The protocol DCS1[f, S] asks the prover P to send one283

linear function f̃0(x) = rx + t with r, t ∈ F3. Let us find the couples (r, t) ∈ (F3)2 which284

maximize the probability that V accepts. The verifier picks α ∈ F3 and checks that285 {
f̃0(0) + f̃0(1) = S

f(α, 0) + f(α, 1) = f̃0(α)
286

These two verifications amount to the following linear system in the variables r, t over F3.287 {
r + 2t = S

α + α + 1 = rα + t
⇐⇒

{
r − t = S

rα + t = −α + 1
288

which since S = 0, is equivalent to the following289 {
r = t

(1 + α)t = 1− α
290

If α = −1, this system has no solution, the second equation being “0 = 2”. If α = 1, the291

only solution is (r, t) = (0, 0). If α = 0, the only solution is (r, t) = (1, 1). Hence the best292

possible strategy for the prover P is to pick t ∈ {0, 1} and send f̃
(1)
0 = tx + t. In this case,293

the verifier V accepts if and only if α = 1 − t. So the probability of V accepting is 1/3294

when α is uniformly random in F3.295

3.2 The protocol Fold-DCS296

Let us set the notations for this section: f ∈ F[x1:µ]d,D is the tested function, H ⊂ F is297

the evaluation set, and S ∈ F is the claimed sum. We describe Fold-DCS in Protocol 3.298

3.2.1 Folding for better complexity299

One of the drawbacks of both the standard and our sumcheck protocol DCS is the fact300

that the verifier needs to perform as many univariate sumchecks as there are variables.301

The protocol DCS may be improved in order to require the verifier to perform only a single302

univariate sumcheck USd,H of a degree-d polynomial over H at the end. This is done303

using a folding technique. Each step of protocol DCS consists in splitting one 2m-variate304

sumcheck into two 2m−1-variate sumchecks; replacing these two sumchecks with a linear305

combination of the two allows to keep just one function at each step of the protocol (see306

Figure 2).307

f = f
(0)
0

f
(1)
0 f

(1)
1

f (1) = z(1)f
(1)
0 + f

(1)
1

f
(2)
0 f

(1)
2

f (2) = z(2)f
(2)
0 + f

(2)
1

Figure 2: Tree of functions involved in the first two rounds of the protocol Fold-DCS.

Christophe Levrat, Tanguy Medevielle, Jade Nardi 11

Remark 2. This folding technique slightly affects the soundness of our protocol compared308

to the simplified version presented in the previous section. Indeed, even if the function309

f̃
(1)
0 sent by the prover either does not have the claimed sum or does not have the right310

evaluation at the random point chosen by the verifier, the random linear combination f (1)
311

might still have the correct sum. This happens with probability 1/ |F|. We will see in the312

proof of Proposition 3 that, at each round, this quantity is added to the probability that313

the resulting function has the claimed sum. This roughly implies adding log(µ)/ |F| to the314

overall soundness error of the protocol.315

Protocol 3: Fold-DCS between P = Pµ,F,H(f, S) and V = Vf
µ,F,H(S)

Parameters: field F, arity µ = 2m with m ⩾ 1, degrees d and D and H ⊆ F.
Inputs: f ∈ F[x1:µ]d,D and S ∈ F.
Commit phase:
Initialisation: f (0) = f and S(0) = S.

1. for i ∈ {1, . . . , m}:

(a) P computes f
(i)
0 =

∑
a∈H2m−i

f (i−1)(· , a).

(b) P gives oracle access to the 2m−i-variate polynomial f
(i)
0 .

(c) V picks α(i) $← F[m−i] and z(i) $← F and sends them to P.

(d) Set the polynomials f
(i)
1 = f (i−1)(α(i), ·) and f (i) = z(i)f

(i)
0 + f

(i)
1 ,

and the value S(i) = z(i)S(i−1) + f
(i)
0 (α(i)).

2. P gives oracle access to the univariate polynomial f (m).

Query phase:

1. V computes S(m) by

• querying f
(j)
0 (α(j)) for j ∈ {1, . . . , m},

• using the formula S(m) =
m∏

j=1
z(j)S +

m∑
j=1

 m∏
ℓ=j+1

z(ℓ)

 f
(j)
0 (α(j)).

2. V checks the consistency of f (m) by

• picking β
$← F,

• querying f (m)(β), f(α(1), . . . , α(m), β) and f
(j)
0 (α(j+1), . . . , α(m), β) for

j ∈ {1, . . . , m}, and

• verifying f (m)(β) = f(α(1), . . . , α(m), β) +
m∑

j=1
z(j)f

(j)
0 (α(j+1), . . . , α(m), β).

3. V checks
∑
a∈H

f (m)(a) ?= S(m) via the univariate sumcheck USd,H(f (m), S(m)).

12 A divide-and-conquer sumcheck protocol

3.2.2 Completeness and soundness316

In this section, we prove that our protocol Fold-DCS is perfectly complete, and that is317

soundness error is logarithmic in the number of variables. We recall the notations: f318

is a µ = 2m-variate polynomial with coefficients in a field F. For i ∈ {0, . . . , m}, we set319

µi = 2m−i. The subset of F over which the sums are computed is denoted by H.320

Proposition 2 (Completeness). We suppose that the univariate sumcheck protocol used at321

the last round of Fold-DCS is perfectly complete. If
∑

a∈Hµ

f(a) = S then, given an honest322

prover P,323

Prα(1),...,α(m)

[
⟨Pµ,d,F,H(f, S)↔ Vf

µ,d,F,H(S)⟩ = accept
]

= 1.324

Proof. We prove the result by induction on m = log2(µ). The base case m = 0 is true,325

since we suppose that the univariate sumcheck protocol is perfectly complete. For m > 0,326

it is enough to prove that for every i ∈ {0, . . . , m− 1}, if the sum of f (i) over Hµi is S(i),327

then the sum of f (i+1) over Hµi/2 is S(i+1). We have328 ∑
a∈Hµi/2

f (i+1)(a) = z(i+1)
∑

a∈Hµi/2

f
(i+1)
0 (a) +

∑
a∈Hµi/2

f
(i+1)
1 (a)329

= z(i+1)
∑

a∈Hµi/2

∑
b∈Hµi/2

f (i)(a, b) +
∑

a∈Hµi/2

f (i)(α, a)330

= z(i+1)
∑

a∈Hµi

f (i)(a) +
∑

a∈Hµi/2

f (i)(α, a)331

= z(i+1)S(i) + f
(i+1)
0 (α)332

= S(i+1).333

334

Next, we study the soundness error of our protocol. We recall that the soundness error335

of the classical protocol is µd/ |F|, where d is a bound on the partial degrees of the given336

polynomial. That of Fold-DCS, however, is bounded by log(µ)D/ |F|, where D is the total337

degree of the polynomial. Hence, Fold-DCS offers a better soundness as long as the total338

degree of the polynomial does not far exceed its partial degrees.339

Proposition 3 (Soundness). Denote by p the soundness error of the univariate sumcheck340

protocol executed at the end of protocol Fold-DCS. Let µ = 2m for a positive integer m.341

The soundness error of Fold-DCS for µ-variate polynomials with coefficients in F of total342

degree ⩽ D is bounded above by343

1−
(

1−
(

D + 1
|F|

− D

|F|2

))m(
1−max

(
p,

D

|F|

))
.344

When p ⩽ (D + 1)/ |F| ⩽ 1, this is bounded from above by (m + 1)(D + 1)/ |F|.345

Proof. We consider an instance where
∑

a∈Hµ

f(a) ̸= S.346

Notations. Set f (0) = f and S(0) = S. For i ⩾ 1, denote by f̃
(i)
0 the function P̃ actually347

sends during round i. Denote by f
(i)
0 and f

(i)
1 the functions as defined in the protocol com-348

puted from f (i−1), set S(i) = z(i)S(i−1) + f̃
(i)
0 (α(i)), and f (i) = z(i)f̃

(i)
0 + f

(1)
i the function349

used in the next rounds. Write µi = 2m−i for the arity of the functions superscripted by (i).350

351

This soundness proof is divided into two steps.352

Christophe Levrat, Tanguy Medevielle, Jade Nardi 13

1. We first deal with the commit phase. At each round, we give an upper bound on353

the probability that the sum of the function f (i) considered in this round has the354

claimed value S(i). This yields an upper bound on the probability that the sum of355

the last function f (m) considered in the protocol has the sum S(m).356

2. We then consider what happens in the query phase of the protocol.357

Commit phase. We begin by proving by induction that for all i ∈ {0 . . . m}, the number358

s(i) = Prα(1),...,α(i)

[∑
a∈Hµi

f (i)(a) ̸= S(i)

]
359

satisfies360

s(i) ⩾

(
1−

(
D + 1
|F|

− D

|F|2

))i

.361

We know that s(0) = Pr[
∑

a∈Hµ

f(a) ̸= S] = 1. Let i ⩾ 1. Let us compute the probability362

Pr
[∑

a∈Hµi

f (i)(a) = S(i)
∣∣∣ ∑

a∈Hµi−1

f (i−1)(a) ̸= S(i−1)

]
363

using the law of total probability with respect to the event “f̃
(i)
0 = f

(i)
0 ” and its complement.364

(A) In case f̃
(i)
0 = f

(i)
0 , its sum over Hµi is not S(i−1). Then the sum of f (i) = z(i)f̃

(i)
0 +f

(i)
1365

over Hµi is S(i) = z(i)S(i−1) + f̃
(i)
0 (α(i)) with probability 1/ |F|.366

(B) In case f̃
(i)
0 ̸= f

(i)
0 ,367

• f̃
(i)
0 (α(i)) coincides with f0(α(i)) with probability say v ⩽ D/ |F| by the368

Schwartz-Zippel Lemma (see Lemma 1);369

• if it does not, the sum of f (i) = z(i)f̃
(i)
0 + f

(i)
1 over Hµi coincides with S(i) =370

z(i)S(i−1) + f̃
(i)
0 (α(i)) with probability 1/ |F|.371

Hence, setting372

w = Pr
[∑

a

f (i)(a) = S(i)
∣∣∣ (∑

a

f (i−1)(a) ̸= S(i−1)

)
∧
(

f̃
(i)
0 ̸= f

(i)
0

)]
, (1)373

we get that374

w = v + (1− v)/ |F| ⩽ D + 1
|F|

− D

|F|2
=: A.375

Since w ⩾ 1/ |F|, the sum of f (i) equals S(i) with probability less than w in each of these376

two cases so377

Pr
[∑

a∈Hµi

f (i)(a) = S(i)
∣∣∣ ∑

a∈Hµi−1

f (i−1)(a) ̸= S(i−1)

]
⩽ w.378

14 A divide-and-conquer sumcheck protocol

Hence379

1− s(i) = Prα(1),...,α(i)

[∑
a∈Hµi

f (i)(a) = S(i)

]
380

⩽ (1− s(i−1)) · 1 + s(i−1) · w (by the law of total probability)381

⩽ 1− (1−A)i−1 + (1−A)i−1w (since A ⩽ 1)382

= 1− (1−A)i (since w ⩽ A)383

from which we deduce that384

s(i) ⩾ (1−A)i.385

Query phase. Now, let us come to the last steps of the protocol. With probability s(m),386

we have
∑
a∈H

f (m)(a) ̸= S(m). Denote by f̃ (m) the function sent by P̃, which would be387

equal to f (m) if the prover were honest.388

(A) If f̃ (m) = f (m), then
∑
a∈H

f̃ (m) ̸= S(m), and V accepts if and only if the univariate389

sumcheck on f̃ (m) (Step 3) passes, which happens with probability p.390

(B) If f̃ (m) ̸= f (m), then for V to accept, the evaluations of f̃ (m) and f (m) at β need to391

coincide (Step 2), which happens with probability at most D/ |F|.392

In total,393

Prα(1),...,α(m)

[
⟨P̃µ,D,F,H(f, S)↔ Vf

µ,D,F,H(S)⟩ = accept
]
⩽
(

1− s(m)
)

+ s(m) max
(

p,
D

|F|

)
394

⩽ 1− (1−A)m

(
1−max

(
p,

D

|F|

))
.395

396

397

Remark 3. In most cases, this upper bound on the soundness is tight. The best strategy398

for a malicious prover can be deduced from the proof, and is similar to that used in the399

standard protocol: at each step, send a function which has the claimed sum. However,400

there are a few rare instances in which this strategy is not possible. Consider the following401

example. The field F has characteristic 2, the set H has even cardinality, and f is a linear402

polynomial in 4 variables. Then the sum of f over H4 is necessarily 0. During the first403

round of our protocol, the prover sends a linear function in 2 variables: such a function404

always sums to 0 over H2. Hence, if they want to convince a verifier that the sum is405

anything but 0, they cannot implement the optimal strategy at the first round, and they406

actually have at best a chance of 1/2 of convincing the verifier.407

3.2.3 A detailed example408

Let us write out the protocol for a polynomial f ∈ F[x1:4]. Here, m = 2 so the protocol409

has two rounds.410

• Round 1: The prover P computes411

f
(1)
0 (x1, x2) =

∑
a3,a4∈H

f(x1, x2, a3, a4)412

Christophe Levrat, Tanguy Medevielle, Jade Nardi 15

and sends it to V. The verifier V picks α
(1)
1 , α

(1)
2 , z(1) ∈ F at random and sends them413

to P. Both P and V implicitly define the function414

f
(1)
1 (x3, x4) = f

(
α

(1)
1 , α

(1)
2 , x3, x4

)
415

which V can access via f , knowing α
(1)
1 , α

(1)
2 , as well as416

f (1) = z(1)f
(1)
0 + f

(1)
1417

S(1) = z(1)S + f
(1)
0

(
α

(1)
1 , α

(1)
2

)
.418

• Round 2: The prover P computes419

f
(2)
0 (x) =

∑
a∈H

f (1)(x, a)420

and sends it to V, who then chooses α
(2)
1 , z(2) ∈ F at random and implicitly defines421

f
(2)
1 (x) = f (1)

(
α

(2)
1 , x

)
422

as well as423

f (2)(x) = z(2)f
(2)
0 (x) + f

(2)
1 (x)424

= z(2)f
(2)
0 (x) + z(1)f

(1)
0

(
α

(2)
1 , x

)
+ f

(
α

(1)
1 , α

(1)
2 , α

(2)
1 , x

)
425

and426

S(2) = z(2)S(1) + f
(2)
0

(
α

(2)
1

)
427

= z(2)
(

z(1)S + f
(1)
0

(
α

(1)
1 , α

(1)
2

))
+ f

(2)
0

(
α

(2)
1

)
.428

• Final sumcheck: The verifier V checks whether429 ∑
a∈H

f (2)(a) = S(2).430

This last sumcheck requires computing S(2) as described by the formula above, using431

oracle queries to f
(1)
0 , f

(2)
0 . The actual computation of the sum is facilitated by432

requiring P to give oracle access to f (2) to V, who checks its correctness by choosing433

β ∈ F and verifying the equality434

f (2)(β) = z(2)f
(2)
0 (β) + z(1)f

(1)
0

(
α

(2)
1 , β

)
+ f

(
α

(1)
1 , α

(1)
2 , α

(2)
1 , β

)
.435

This in turn requires oracle queries to f, f
(1)
0 , f

(2)
0 , f (2).436

3.3 Complexities of Fold-DCS in the ROM437

Here, we consider our protocol Fold-DCS for µ = 2m-variate polynomials of partial degree438

at most d and total degree at most D over a finite field F.439

3.3.1 Complexities without the last univariate sumcheck440

We first compute the complexities without taking the last univariate sumcheck into account.441

16 A divide-and-conquer sumcheck protocol

Round complexity Each loop of Fold-DCS runs in one round. There are thus log(µ) + 1442

rounds.443

Randomness At the ith loop of Fold-DCS, the verifier V picks a random 2m−i-tuple α(i)
444

of elements of F, as well as a random element z ∈ F. This amounts to µ + log µ random445

elements during the commitment phase. In addition, at Step 2, V picks an element of F.446

The total randomness is µ + log µ + 1.447

Communication complexity The messages sent to P by V are exactly the µ + log µ + 1448

random elements she picks along the loops. The prover’s messages will be commitments of449

the log µ + 1 polynomials he sends.450

Queries During the query phase, the verifier V queries log µ evaluations at Step 1 to451

compute S(m) and log µ + 2 evaluations at Step 2 check the value of f (m)(β). In total V452

makes q = 2(log(µ) + 1) queries.453

Remark 4. Note that the evaluations queried for computing S(m) and f (m)(β) at Steps 1454

and 2 can be batched using the sole evaluation point (α(1), . . . , α(m), β) ∈ Fµ. For S(m), we455

evaluate the polynomials f
(1)
0 (x1, . . . , xµ/2), f

(2)
0 (xµ/2+1, . . . , x3µ/4), . . . , and f

(m)
0 (xµ−1),456

whereas for f (m)(β), we evaluate f
(i)
0 as polynomials in the last µ/(2i) variables (i.e.457

f
(i)
0 (xµ−µ/2i+1, . . . , xµ)).458

Prover complexity The predominant computations on the prover’s side are the ones459

performed in the loops. At the ith loop, P compute sums over H2m−i

= Hµi .460

Write461

f (i)(x) =
∑

j1,...,jµi

λj1,...,jµi

µi∏
k=1

xjk

k .462

Then463 ∑
a∈H2m−i

f (i)(a) =
∑

j1,...,jµi

λj1,...,jµi

µi∏
k=1

σjk
(2)464

where465

σj =
∑
a∈H

aj .466

All the σj can be simultaneously computed in d |H| additions and d |H| multiplications in467

Fq. As the polynomial f (i) has partial degree d in each variable, the number of terms in468

(2) is bounded from above by dµi . Each term can be computed using µi multiplications in469

Fq. Knowing the sums σj , the total number of Fq-operations to compute the sum of f (i)
470

over Hµi is µid
µi . Summing over the m rounds and bounding each term by the largest471

one, we get472
m∑

i=1
µid

µi ⩽ m
µ

2 dµ/2
473

and the overall complexity is O(mµdµ/2 + d |H|) Fq-operations.474

Verifier complexity The verifier V computes, in the end, two linear combinations of475

these evaluations. The coefficients of this linear combination are products of field elements;476

in total, there are log µ products to compute the products of the z(i) as well as 2 log µ477

sums and 2 log µ + 1 products to compute the linear combinations. This amounts to 2 log µ478

sums and 3 log µ + 1 products in the field F.479

Christophe Levrat, Tanguy Medevielle, Jade Nardi 17

3.3.2 Total complexities480

Table 2: Total complexities of Fold-DCS including the ones of USd,H . For unstructured H,
USd,H is performed by V without the prover’s help. For H coset of (F×,×) or (F, +), V
and P perform Aurora’s sumcheck protocol [BSCR+19].

Fold-DCS Fold-DCS + USd,H

without USd Unstructured H H coset
Round log µ + 1 log µ + 2
Randomness in F µ + log µ + 1 µ + log µ + 2
Communication µ + log µ µ + log µ + |H| µ + log d
Number of commitments log µ + 1 log µ + 3
Queries 2(log µ + 1) 2(log µ + 1) + |H| 2(log(µ) + 2)
Prover’s time (op. in F) O(log(µ)µdµ/2 + d |H|)
Verifier’s time (op. in F) 5 log µ + 1 5 log µ + |H| O(log(µd) + log |H|)

Univariate sumcheck protocols Univariate sumcheck protocols are protocols for the481

language482

Ld,F,H =
{

(f, S) ∈ F[x]d × F
∣∣∣ ∑

a∈H

f(a) = S

}
483

in which the verifier V has oracle access to f . By default, the verifier may just query |H|484

values of f and compute the sum. However, in order to reduce the number of queries, there485

are better options in specific cases. In particular, when H is a coset modulo a subgroup486

of either (F, +) of (F×,×), such protocols may be found in Aurora [BSCR+19, §5]. The487

resulting PIOP for the sumcheck relation, described in detail in [ACY23, §6.1] runs in one488

round. The prover gives access to two polynomials, which the verifier queries at a random489

element of F. The verifier performs O(log |H|) field operations.490

4 Instantiating Fold-DCS with a polynomial commit-491

ment scheme492

In order to instantiate the oracle accesses in Fold-DCS, we may use Fold-DCS with a493

polynomial commitment scheme (PCS) for µ-variate polynomials.494

4.1 Polynomial commitment schemes495

Let us define a PCS as needed for Fold-DCS.496

Definition 6. A µ-variate (d, D)-degree polynomial commitment scheme (PCS) is a497

quadruple (Setup, Commit, Open, Eval) that satisfies the following properties.498

• Setup
(
1λ, µ, d, D

)
generates public parameters pp (a structured reference string)499

suitable to commit to polynomials in F[x1:µ]d,D.500

• Commit (pp, f) outputs a commitment C to the polynomial f ∈ F[x1:µ]d,D, using pp.501

• Open (pp, f, C) checks if the commitment C is correctly computed from the polynomial502

f ∈ F[x1:µ]d,D using pp.503

• Eval is a (public-coin) protocol between two parties, a prover PPC and a verifier VPC504

that either accepts or rejects. The prover is given a polynomial f ∈ F[x1:µ]d,D. Both505

parties receive the following:506

18 A divide-and-conquer sumcheck protocol

– the security parameter λ, the arity µ and the degrees d and D,507

– the public parameters pp , where pp = Setup
(
1λ, µ, d, D

)
,508

– an evaluation point x and the alleged opening y,509

– the alleged commitment C for the polynomial f .510

The protocol Fold-DCS for µ = 2m-variate polynomials in the polynomial IOP model511

requires V to query 2 log µ + 2 polynomial evaluations. As the partial and total degrees do512

not increase through the protocol, the same commitment scheme for µ-variate polynomials513

may be used throughout the protocol. In particular, if the PCS in question requires514

a trusted setup, this may be dealt with beforehand. Moreover, as noted in Remark515

4, it is possible for V to get all theses evaluations at one by interacting with P via a516

batched-evaluation protocol, which we will recall here.517

Definition 7. A µ-variate (d, D)-degree PCS as in Definition 6 allows batched evaluation518

if for every positive integer ℓ, there exists a two-party protocol ℓ-Eval which takes as input519

an ℓ-tuple (f1, . . . , fℓ) of polynomials and provides both parties with the following:520

• the security parameter λ, the arity µ and the degrees d and D,521

• the public parameters pp , where pp = Setup
(
1λ, µ, d, D

)
.522

• An evaluation point x and the alleged openings y1, . . . , yℓ,523

• the alleged commitments C1, . . . , Cℓ for the polynomials f1, . . . fℓ.524

Definition 8. A function f : N → N is said to be negligible if for any positive integer525

c, there is an integer λc such that for any λ ⩾ λc, f(λ) < λ−c. In that case, we write526

f(λ) = negl(λ).527

Definition 9. A µ-variate (d, D)-degree PCS as in Definition 6 is said to be528

• extractable if for any PPT adversary that computes a valid commitment C, there is529

a PPT extractor algorithm which, given C, produces a function f that opens C with530

overwhelming probability. Formally, for any PPT adversary P̃ , there exists a PPT531

algorithm E
P̃

such that532

Pr

 ∃g : C = Commit(pp, g) pp← Setup(1λ, µ, d, D)
∧ Open(pp, f, C) = reject C ← P̃ (pp)

f ← E
P̃

(C, pp)

 = negl(λ),533

• computationally binding if for any probabilistic polynomial-time (PPT) algorithm A,534

Pr

 f ̸= g

∧ Open(pp, f, C) = accept pp← Setup(1λ, µ, d, D)
∧ Open(pp, g, C) = accept f, g, C ← A(pp)

 = negl(λ),535

• computationally evaluation-binding if for any PPT algorithm A and PPT prover P̃,536

Pr

 y ̸= y′

∧ ⟨P̃(C, x, y) Eval←→ VPC(C, x, y)⟩ = accept pp← Setup(1λ, µ, d, D)
∧ ⟨P̃(C, x, y′) Eval←→ VPC(C, x, y′)⟩ = accept C, x, y, y′ ← A(pp)

 = negl(λ).537

The evaluation-binding property for PCS with batched evaluation of ℓ polynomials is538

similar: the top line y ̸= y′ in the probability is replaced by ∃i ∈ {1, . . . ℓ}, yi ̸= y′
i.539

Remark 5. The extractability condition defined above is strong, and may require working540

in a model with additional assumptions. For instance, the PCS used in Section 4.2.1 is541

extractable in the AGM model.542

Christophe Levrat, Tanguy Medevielle, Jade Nardi 19

4.2 Soundness and complexity of our protocol with a PCS allowing543

batching evaluation544

In the following, we will use a PCS that allows batched evaluation. We write t(Pℓ−PC)545

(resp. t(Vℓ−PC)) for the prover’s (resp. verifier’s) time complexity for ℓ-Eval. We denote by546

rn(ℓ-Eval) the number of rounds of the ℓ-batched evaluation protocol, and by rand(Commit)547

and rand(ℓ-Eval) the amount of random field elements required in Commit and ℓ-Eval. The548

notation cc(ℓ-Eval) stands for the communication complexity of the ℓ-batched evaluation549

protocol.550

When instantiating Fold-DCS, we set ℓ = 2(log µ + 1). We suppose that P begins551

by sending a commitment Commit(f) of the initial polynomial f to V. Each time P is552

supposed to send a polynomial f (i), he now sends Commit(f (i)). At the end of the protocol,553

V and P engage in the protocol ℓ-Eval for V to get the evaluations she needs to compute554

S(m) and f (m)(β), as explained in Remark 4.555

The complexities of the instantiated version of Fold-DCS are thus the sum of the556

complexities of the IOP protocol and the ones of ℓ-Eval, taking into account the last557

univariate sumcheck.558

In this setting, the soundness of our protocol is no longer statistical soundness, but559

computational soundness: polynomial commitment schemes usually have a computational560

evaluation-binding property, meaning that for P to convince V of a false evaluation value,561

P would have to solve a computationally hard problem.562

A simple adaption of the soundness of the polynomial IOP protocol (Proposition 3)563

gives the soundness of the instantiated version depending on the soundness of the PCS564

involved.565

Corollary 1 (Computational soundness). Let µ, d, D be positive integers. Let λ be a566

security parameter. Consider protocol Fold-DCS for µ-variate polynomials with coefficients567

in F of total degree ⩽ D and partial degree ⩽ d, instantiated with a PCS allowing batch-568

evaluation. This PCS is supposed to be569

• extractable,570

• computationally binding,571

• computationally ℓ-batch evaluation binding, where ℓ = 2 log(µ) + 1.572

Denote by p the soundness error of the univariate sumcheck protocol executed at the end573

of Fold-DCS. Then, for any probabilistic polynomial-time prover P̃, the probability574

Prα1,...,αµ

[
⟨P̃µ,d,F,H(f, S)↔ Vf

µ,d,F,H(S)⟩ = accept
∣∣∣ ∑

a∈Hµ

f(a) ̸= S

]
575

is bounded from above by576

(m + 1)ε(λ) + 1−
(

1−
(

D + 1
|F|

− D

|F|2

))m(
1−max

(
p,

D

|F|

)
+ σ(λ)

)
577

where ε and σ are negligible functions. When p ⩽ D/ |F|, this is bounded from above by578

(m + 1)
(

ε(λ) + (D + 1)
|F|

(1 + σ(λ))
)

.579

Proof. We need to adapt the proof of Proposition 3.580

20 A divide-and-conquer sumcheck protocol

Commit phase. During the ith round, P̃ sends a commitment C̃i. As the PCS is581

extractable and computationally binding, with probability 1−negl(λ), exactly one function582

which opens C̃i can be extracted from C̃i. The hybrid argument [MF21, Theorem 3.8] now583

ensures that there exists a negligible function ε(λ) such that, with probability 1−m · ε(λ),584

for every i ∈ {1 . . . m}, exactly one function which opens C̃i can be extracted from C̃i. We585

will denote this function by f̃
(i)
0 .586

In this case, we may still define f (i), S(i) using f̃
(i)
0 as in the proof of Proposition 3.587

Then the lower bound for588

s(i) = Prα(1),...,α(i)

[∑
a∈Hµi

f (i)(a) ̸= S(i)

]
589

does not change, since the two cases corresponding to (A) and (B) are completely unchanged.590

Note that the definition of s(i) still depends on the actual values of f̃
(i)
0 , and not some591

claimed evaluations.592

Query phase. In the present case, P̃ sends a commitment C̃ at the beginning of the593

query phase, as well as m alleged evaluations yi at α(i) of the commitments Ci. With594

probability 1− ε′(λ), where ε′ is negligible,a unique function f̃ (m) which opens C̃ can be595

extracted from C̃. Replacing ε with max(ε, ε′) if needed, we may suppose that ε′ ⩽ ε. We596

set597

S̃(m) =
m∏

j=1
z(j)S +

m∑
j=1

 m∏
ℓ=j+1

z(ℓ)

 yj ,598

the value computed by V at Step 1 of the query phase using the alleged evaluations599

yi. Since the PCS is computationally ℓ-batch evaluating binding, there is a negligible600

function σ such that Pr(S̃(m) ̸= S(m)) ⩽ σ(λ). Recall that with probability s(m), we have601 ∑
a∈H

f (m)(a) ̸= S(m).602

(A’) If f̃ (m) = f (m), then603

• either S̃(m) = S(m), and then
∑
a∈H

f̃ (m) ≠ S(m) so V accepts if and only if the604

univariate sumcheck on f̃ (m) passes, which happens with probability p,605

• or S̃(m) ̸= S(m) and then
∑
a∈H

f̃ (m) = S̃(m) with probability 1/ |F|, in which case606

V accepts. And otherwise V accepts if and only if the univariate sumcheck on607

(f̃ (m), S̃(m)) passes.608

As a result, in this case, the probability that V accepts is at most609

ρ = (1− σ(λ))p + σ(λ)
(

1
|F|

+
(

1− 1
|F|

)
p

)
= p + σ(λ)

|F|
(1− p).610

(B’) If f̃ (m) ≠ f (m), then for V to accept, the openings of f̃ (m) and the evaluations of611

f (m) at β need to coincide, which happens with probability at most D/ |F|+ σ(λ).612

Using the inequality613

p + σ(λ)
|F|

(1− p) ⩽ p + σ(λ)614

Christophe Levrat, Tanguy Medevielle, Jade Nardi 21

we obtain that, when no two different functions can be extracted for the same commitment,615

V accepts with probability at most616

(1− s(m)) + s(m)
(

max
(

p,
D

|F|

)
+ σ(λ)

)
.617

The result now follows from the expression of s(m) computed in Proposition 3.618

4.2.1 Instantiation with Zeromorph (tweaked for F[x1:µ]d,D)619

In 2024, Kohrita and Towa [KT24] built a multilinear commitment scheme, i.e. for d = 1,620

from any additively homomorphic PCS for univariate polynomials, as well as any protocol621

to check degree bounds on committed polynomials. The construction relies on bilinear622

pairings. They also instantiate their scheme using the KZG univariate PCS [KZG10] – in623

a hiding version to ensure zero knowledge, which we do not require here. This instantiated624

version is computationally binding, ℓ-batch evaluation binding and extractable in the625

algebraic group model under the DLOG assumption in the bilinear group [KT24, §4, §6].626

We propose a tweaked version of Zeromorph, to get a (d, D)-degree PCS, which preserves627

these properties.628

First, (see [Lee21, §2.5] for instance), any µ-variate polynomial of partial degrees629

d1, . . . , dµ can be reformulated as a multilinear polynomial in
∑

1⩽i⩽µ

⌈log2(di +1)⌉ variables.630

Concretely, in our case, we set δ = ⌈log2(d + 1)⌉ and define the linear isomorphism631

MultiLin between the space F[x1:µ]⩽d of polynomials with partial degrees ⩽ d and the632

space F[yi,ℓ | 1 ⩽ i ⩽ µ, 0 ⩽ j < δ]⩽1 of multilinear polynomials by633

MultiLin(xαi
i) =

δ−1∏
j=0

y
αi,j

i,j (3)634

using the binary decomposition of the exponent αi =
δ−1∑
j=0

αi,j2j . This maps the space635

of polynomials F[x1:µ]d,D into the set of multilinear polynomials of arity n = µδ, which636

enables us to use the mutilinear PCS Zeromorph to commit to polynomials in F[x1:µ]d,D.637

However, for the soundness of Fold-DCS, we need to make sure that the prover can only638

commit to polynomials of total degree at most D. To achieve this, we shall modify the639

setup of Zeromorph.640

We follow the exposition of [KT24, §2.5]. For any integer n, there is a linear isomorphism641

Un between the vector space of multilinear polynomials F[y0, . . . , yn−1]⩽1 in n variables642

and the space F[t]<2n of univariate polynomials of degree less than 2n defined as643

Un :

F[y0, . . . , yn−1]⩽1 → F[t]<2n

n−1∏
j=0

(bj · yj + (1− bj) · (1− yj)) 7→
(

t20
)b0
· · ·
(

t2n−1
)bn−1644

for any bits bj ∈ {0, 1}. In other words, given an n-variate multilinear polynomial g, we645

have646

Un(g) =
∑

(b0,...,bn−1)∈{0,1}n

g(b0, . . . , bn−1)tb0+2b1+...bn−12n−1
647

Let Fd,D be the image of the monomial basis of F[x1:µ]d,D under the composition of648

the isomorphisms MultiLin and Un for n = µ⌈log2(d + 1)⌉ = µδ. Given a monomial649

22 A divide-and-conquer sumcheck protocol

xα =
µ∏

i=1
xαi

i ∈ F[x1:µ]d,D, we have650

Un(MultiLin(xα)) =
∑

b∈{0,1}µδ

µ∏
i=1

δ−1∏
j=0

b
αi,j

i,j t2(i−1)δ+j

.651

Then652

Fd,D =

 ∑
b∈{0,1}µδ

δ−1∏
j=0

b
αi,j

i,j t2(i−1)δ+j
∣∣∣ ∀i, αi ⩽ d and α1 + · · ·+ αµ ⩽ D

 . (4)653

Every polynomial encountered in the protocol has total degree ⩽ D. To ensure that the654

prover can only commit to polynomials of total degree at most D, he is given a constrained655

structured reference string.656

Protocol 4: Zeromorph adapted for F[x1:µ]d,D

Setup(1λ, µ, d, D):

• G := (p,G1,G2,GT , e)← GEN
(
1λ
)

• τ, ξ ← F∗

• srs←
(
([g(τ)]1)g∈Fd,D

, [ξ]1, ([g(τ)]2)g∈Fd,D
, [ξ]2

)
• Return pp← (G, srs).

In Commit, Open and Eval, every instance of KZG.Commit(Un(·)) is replaced by
KZG.Commit(Un(MultiLin(·))).

Let us study the complexities of this tweaked version.657

Each commitment requires rand(Commit) = µδ = µ(log(d) + O(1)) random field ele-658

ments and O(d2µ) field operations on the prover’s side. Note that the transformation of a659

multivariate polynomials into a univariate one via Un(MultiLin(·)), done on the prover’s660

side, has a negligible computational cost in comparison. The ℓ-batched evaluation protocol661

ℓ-Eval with ℓ = 2(log µ + 1) runs in rn(ℓ-Eval) = 3 rounds (6 moves, where Eval requires 5662

moves) and calls for 2 random elements on the prover’s side, and 4 on the verifier’s one, so663

rand(ℓ-Eval) = 6. The prover performs t(Pℓ−PC) = O(d2µ) field operations, whereas the664

verifier complexity is t(Vℓ−PC) = O(µ log(d)) in F since ℓ = o(µ log(d)).665

The evaluation protocol is computationally sound: a dishonest prover capable of forging666

a proof of a false evaluation would be able to solve the discrete logarithm problem in a667

group where it is hard. The complexities are summed up in Table 1 in the introduction.668

Acknowledgement669

The authors warmly thank the anonymous referees, whose comments and questions drove670

them to improve the paper.671

References672

[ACY23] Gal Arnon, Alessandro Chiesa, and Eylon Yogev. Iops with inverse polynomial673

soundness error. In 2023 IEEE 64th Annual Symposium on Foundations of674

Christophe Levrat, Tanguy Medevielle, Jade Nardi 23

Computer Science (FOCS), pages 752–761. IEEE, 2023. doi:10.1109/FOCS675

57990.2023.00050.676

[AFK23] Thomas Attema, Serge Fehr, and Michael Klooß. Fiat–Shamir Transformation677

of Multi-Round Interactive Proofs (Extended Version). Journal of Cryptology,678

36(4):36, 2023. doi:10.1007/s00145-023-09478-y.679

[BCS21] Jonathan Bootle, Alessandro Chiesa, and Katerina Sotiraki. Sumcheck ar-680

guments and their applications. In Advances in Cryptology–CRYPTO 2021:681

41st Annual International Cryptology Conference, CRYPTO 2021, Virtual682

Event, August 16–20, 2021, Proceedings, Part I 41, pages 742–773. Springer,683

2021. doi:10.1007/978-3-030-84242-0_26.684

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking685

computations in polylogarithmic time. In Proceedings of the Twenty-Third686

Annual ACM Symposium on Theory of Computing, STOC ’91, page 21–32,687

New York, NY, USA, 1991. Association for Computing Machinery. doi:688

10.1145/103418.103428.689

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent snarks from690

dark compilers. In Advances in Cryptology–EUROCRYPT 2020: 39th Annual691

International Conference on the Theory and Applications of Cryptographic692

Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part I 39, pages693

677–706. Springer, 2020. doi:10.1007/978-3-030-45721-1_24.694

[BSBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast695

Reed-Solomon Interactive Oracle Proofs of Proximity. In Ioannis Chatzi-696

giannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors,697

45th International Colloquium on Automata, Languages, and Programming698

(ICALP 2018), volume 107 of Leibniz International Proceedings in Informat-699

ics (LIPIcs), pages 14:1–14:17, Dagstuhl, Germany, 2018. Schloss Dagstuhl –700

Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2018.14.701

[BSBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable702

zero knowledge with no trusted setup. In Alexandra Boldyreva and Daniele703

Micciancio, editors, Advances in Cryptology – CRYPTO 2019, pages 701–732,704

Cham, 2019. Springer International Publishing. doi:10.1007/978-3-030-2705

6954-8_23.706

[BSCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,707

Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct ar-708

guments for r1cs. In Yuval Ishai and Vincent Rijmen, editors, Advances709

in Cryptology – EUROCRYPT 2019, pages 103–128, Cham, 2019. Springer710

International Publishing. doi:10.1007/978-3-030-17653-2_4.711

[BSCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle712

proofs. In Theory of Cryptography: 14th International Conference, TCC713

2016-B, Beijing, China, October 31-November 3, 2016, Proceedings, Part II714

14, pages 31–60. Springer, 2016. doi:10.1007/978-3-662-53644-5_2.715

[CCH+18] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum,716

and Ron D. Rothblum. Fiat-shamir from simpler assumptions. Cryptology717

ePrint Archive, Paper 2018/1004, 2018. URL: https://eprint.iacr.org/718

2018/1004.719

https://doi.org/10.1109/FOCS57990.2023.00050
https://doi.org/10.1109/FOCS57990.2023.00050
https://doi.org/10.1109/FOCS57990.2023.00050
https://doi.org/10.1007/s00145-023-09478-y
https://doi.org/10.1007/978-3-030-84242-0_26
https://doi.org/10.1145/103418.103428
https://doi.org/10.1145/103418.103428
https://doi.org/10.1145/103418.103428
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://eprint.iacr.org/2018/1004
https://eprint.iacr.org/2018/1004
https://eprint.iacr.org/2018/1004

24 A divide-and-conquer sumcheck protocol

[DL78] Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic720

program testing. Information Processing Letters, 7(4):193–195, 1978. doi:721

10.1016/0020-0190(78)90067-4.722

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegating723

computation: interactive proofs for muggles. Journal of the ACM (JACM),724

62(4):1–64, 2015. URL: 10.1145/2699436.725

[GLS+23] Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and Riad S.726

Wahby. Brakedown: Linear-time and field-agnostic snarks for r1cs. In He-727

lena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology –728

CRYPTO 2023, pages 193–226, Cham, 2023. Springer Nature Switzerland.729

doi:10.1007/978-3-031-38545-2_7.730

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complex-731

ity of Interactive Proof Systems. SIAM Journal on Computing, 18(1):186–208,732

1989. doi:10.1137/0218012.733

[KT24] Tohru Kohrita and Patrick Towa. Zeromorph: Zero-knowledge multilinear-734

evaluation proofs from homomorphic univariate commitments. Journal of735

Cryptology, 37(4):38, 2024. doi:10.1007/s00145-024-09519-0.736

[KZG10] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Constant-size com-737

mitments to polynomials and their applications. In Advances in Cryptology-738

ASIACRYPT 2010: 16th International Conference on the Theory and Ap-739

plication of Cryptology and Information Security, Singapore, December 5-9,740

2010. Proceedings 16, pages 177–194. Springer, 2010. doi:10.1007/978-3-6741

42-17373-8_11.742

[Lee21] Jonathan Lee. Dory: Efficient, transparent arguments for generalised inner743

products and polynomial commitments. In Kobbi Nissim and Brent Waters, ed-744

itors, Theory of Cryptography, pages 1–34, Cham, 2021. Springer International745

Publishing. doi:10.1007/978-3-030-90453-1_1.746

[LFKN92] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic747

methods for interactive proof systems. Journal of the ACM (JACM), 39(4):859–748

868, 1992. doi:10.1145/146585.14660.749

[MF21] Arno Mittelbach and Marc Fischlin. The theory of hash functions and random750

oracles. An Approach to Modern Cryptography, Cham: Springer Nature, 2021.751

doi:10.1007/978-3-030-63287-8.752

[NST24] Vineet Nair, Ashish Sharma, and Bhargav Thankey. Brakingbase-a linear753

prover, poly-logarithmic verifier, field agnostic polynomial commitment scheme.754

Cryptology ePrint Archive, 2024. URL: https://eprint.iacr.org/2024/1755

825.756

[Sch80] J. T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial757

Identities. J. ACM, 27(4):701–717, October 1980. doi:10.1145/322217.322758

225.759

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without760

trusted setup. In Annual International Cryptology Conference, pages 704–737.761

Springer, 2020. doi:10.1007/978-3-030-56877-1_25.762

[Tha22] Justin Thaler. Proofs, arguments, and zero-knowledge. Foundations and763

Trends® in Privacy and Security, 4(2–4):117–660, 2022. doi:10.1561/3300764

000030.765

https://doi.org/10.1016/0020-0190(78)90067-4
https://doi.org/10.1016/0020-0190(78)90067-4
https://doi.org/10.1016/0020-0190(78)90067-4
10.1145/2699436
https://doi.org/10.1007/978-3-031-38545-2_7
https://doi.org/10.1137/0218012
https://doi.org/10.1007/s00145-024-09519-0
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.1145/146585.14660
https://doi.org/10.1007/978-3-030-63287-8
https://eprint.iacr.org/2024/1825
https://eprint.iacr.org/2024/1825
https://eprint.iacr.org/2024/1825
https://doi.org/10.1145/322217.322225
https://doi.org/10.1145/322217.322225
https://doi.org/10.1145/322217.322225
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1561/3300000030
https://doi.org/10.1561/3300000030
https://doi.org/10.1561/3300000030

Christophe Levrat, Tanguy Medevielle, Jade Nardi 25

[WTS+18] Riad S Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael766

Walfish. Doubly-efficient zksnarks without trusted setup. In 2018 IEEE767

Symposium on Security and Privacy (SP), pages 926–943. IEEE, 2018. doi:768

10.1109/SP.2018.00060.769

[ZCF24] Hadas Zeilberger, Binyi Chen, and Ben Fisch. Basefold: Efficient field-agnostic770

polynomial commitment schemes from foldable codes. In Leonid Reyzin and771

Douglas Stebila, editors, Advances in Cryptology – CRYPTO 2024, pages772

138–169, Cham, 2024. Springer Nature Switzerland. doi:10.1007/978-3-0773

31-68403-6_5.774

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Edward W.775

Ng, editor, Symbolic and Algebraic Computation, pages 216–226, Berlin,776

Heidelberg, 1979. Springer Berlin Heidelberg. doi:10.1007/3-540-09519-5777

_73.778

https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1007/978-3-031-68403-6_5
https://doi.org/10.1007/978-3-031-68403-6_5
https://doi.org/10.1007/978-3-031-68403-6_5
https://doi.org/10.1007/3-540-09519-5_73
https://doi.org/10.1007/3-540-09519-5_73
https://doi.org/10.1007/3-540-09519-5_73

	Introduction
	Preliminaries
	Interactive proofs and sumcheck protocols
	The standard sumcheck protocol

	A sumcheck protocol with logarithmic round complexity
	A simplified version of the protocol
	The protocol Fold-DCS
	Complexities of Fold-DCS in the ROM

	Instantiating Fold-DCS with a polynomial commitment scheme
	Polynomial commitment schemes
	Soundness and complexity of our protocol with a PCS allowing batching evaluation

	References

