
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 2, No. 1, 20 pages.

https://doi.org/10.62056/avr-11fgx
Check for updates

Goldreich-Krawczyk Revisited:
A Note on the Zero Knowledge

of Proofs of Knowledge
Lior Rotem

Stanford University, Stanford, USA

Abstract. The seminal work of Goldreich and Krawczyk (SIAM Journal on Comput-
ing) shows that any constant-round public-coin interactive proof for languages not in
BPP cannot be black-box zero knowledge. Their result says nothing, however, about
proofs (or arguments) of knowledge for languages in BPP. As a special case, their
work leaves open the question of whether Schnorr’s protocol for proving knowledge of
discrete logarithms in cyclic groups is black-box zero knowledge.
In this work we focus on the zero knowledge of proofs of knowledge, centering on
Schnorr’s protocol as a prominent example. We prove two lower bounds, ruling out
two different classes of simulators through which Schnorr’s protocol can be proven
zero knowledge:

1. We prove that if a relation R has a public-coin interactive proof of knowledge
that is black-box zero knowledge and this protocol is compatible with the
Fiat-Shamir transform in the random oracle model, then R must be efficiently
searchable. As an immediate corollary, we deduce that Schnorr’s protocol cannot
be black-box zero knowledge in groups in which discrete log is hard.

2. We define a new class of simulators for Schnorr’s protocol, which we call generic
simulators. A generic simulator is one that works in any cyclic group, and does
not use the representation of the specific group in which Schnorr’s protocol is
instantiated. We prove that Schnorr’s protocol cannot have generic simulators.

As an additional contribution, we generalize the original lower bound of Goldreich and
Krawczyk, to prove that a language not in BPP cannot have an interactive proof (not
necessarily of knowledge) that is both black-box zero knowledge and compatible with
the Fiat-Shamir transform in the random oracle model. In conjunction with recent
works, this extends the Goldreich-Krawczyk lower bound to public-coin protocols that
are not constant-round but have round-by-round soundness, including the parallel
repetition of any public-coin interactive proof.

1 Introduction
Zero-knowledge proofs, invented by Goldwasser, Micali, and Rackoff [GMR85], allow to
prove a statement without revealing anything about it other than its validity.1 Loosely
speaking, this is typically formalized by requiring the existence of a special algorithm,
called the simulator, that simulates the view of any potentially malicious verifier while only
getting the statement as input. Zero-knowledge proofs serve as a cornerstone of modern
cryptography and have found numerous applications since their inception.

E-mail: lrotem@cs.stanford.edu (Lior Rotem)
1For conciseness, in this introduction we use “proofs” to refer to both the statistically- and

computationally-sound protocols.

This work is licensed under a “CC BY 4.0” license.
Received: 2025-01-13 Accepted: 2025-03-11

https://doi.org/10.62056/avr-11fgx
https://crossmark.crossref.org/dialog/?doi=10.62056/avr-11fgx&domain=pdf&date_stamp=2025-04-03
mailto:lrotem@cs.stanford.edu
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Goldreich-Krawczyk Revisited

Of particular interest in this work are zero-knowledge proofs of knowledge [GMR85,
BG93]. These are zero-knowledge proofs that enjoy the additional knowledge soundness
property: in the context of NP statements, if a prover manages to convince the verifier that
an instance x is in some NP language L, then it must “know” an NP witness w for x. The
definition is made precise in Section 2. Proofs of knowledge can be non-trivial to construct
even for NP languages for which trivial zero-knowledge proofs exist. A prime example
of such a situation is Schnorr’s proof of knowledge of discrete logarithms [Sch90, Sch91].
Given a cyclic group G of order p, a generator g ∈ G, and a group element h ∈ G, Schnorr’s
protocol can be used to prove knowledge of logg(h). Informally, the protocol proceeds in
three rounds:

1. The prover samples a uniformly random exponent r ←$ Zp, commits to it by
computing R← gr, and sends R to the verifier.

2. The verifier samples a random challenge c from some distribution over Zp.

3. The prover computes z ← c · logg(h) + r ∈ Zp and sends it to the verifier.
The verifier accepts if and only if gz = hc ·R.

In the terminology of NP, Schnorr’s protocol is a proof of knowledge for the relation
Rdlog = {(h, z) : gz = h}. However, the NP language Ldlog induced by the relation
is trivial: since g is a generator, every group element h ∈ G has a witness z such that
h = gz. This means that Ldlog has a very degenerate zero-knowledge proof: the prover
sends nothing and the verifier simply accepts any well-formed group element! Still, as
a proof of knowledge, Schnorr’s protocol has been highly influential in practice, as it
served as the basis for Schnorr signatures [Sch90, Sch91, PS96, BN06] and also as a
template for many other similar interative proofs in cryptographic groups (for example,
[GQ90, CP93, Oka93, CS97, Mau15]; see also [Dam02, BS23] and the references therein).

Public-coin zero-knowledge proofs and their limitations. A very useful subclass
of zero-knowledge proofs is that of public-coin protocols. In such protocols, all of the
verifier’s messages are drawn uniformly at random from some message space parametrizing
the protocol. Schnorr’s protocol mentioned above is an example of a public-coin protocol.
Public-coin protocols are advantageous due to the fact that they are publically verifiable:
the verifier holds no secrets, and any outside observant can similarly be convinced of the
validity of the claim, so long as they trust the verifier to sample their messages properly.
Moreover, if a public-coin zero knowledge proof is also constant round, then one can
apply the Fiat-Shamir transform [FS87] to make it non-interactive with provable security
guarantees in the random oracle model [BR93].

In their seminal work, Goldreich and Krawczyk [GK96] proved that public-coin proofs
exhibit an inherent tradeoff: if a language L has a proof system that is simultaneously
constant round and black-box zero knowledge, then it must be that L can be efficiently
decided by a probablisitic algorithm (that is, L is in the class BPP). By black-box zero
knowledge we mean that the simulator accesses the malicious verifier only in a black-box
way. An important corollary of their result is that parallel repetition of the well-known
GMW protocol [GMW87] is not black-box zero knowledge (at least unless NP = BPP).
The Goldreich–Krawczyk lower bound, however, says nothing about protocols for languages
inside of BPP. In particular, it says nothing about Schnorr’s protocol, since Ldlog is trivially
in BPP (an algorithm that outputs 1 on any well-formed group element trivially decides
the language). This leaves open the following question:

Is Schnorr’s protocol zero knowledge?

Note that similarly to the parallel repetition of the GMW protocol, Schnorr’s protocol
is honest verifier zero knowledge, and so the question pertains to zero knowledge against
potentially malicious verifiers.

Lior Rotem 3

1.1 Our Contributions

In this note, we give strong evidence suggesting Schnorr’s protocol might not be zero
knowledge. Concretely, we prove two lower bounds on the zero-knowledge of Schnorr’s
protocol, excluding two different classes of simulators.

A lower bound on black-box zero knowledge. Our first lower bound extends the
lower bound of Goldreich and Krawczyk to Schnorr’s protocol, and rules out the possibility
that it is black-box zero knowledge in discrete-log-hard groups. More concretely, we prove
the following theorem.

Theorem 1 (informal). If schnorr’s protocol is black-box zero knowledge in a group G,
then there is a PPT algorithm A that solves the discrete log problem in G.

In fact, we prove a more general lower bound, of which Theorem 1 is an immediate
corollary. Our general lower bound applies to any interactive proof of knowledge that is
compatible with the Fiat-Shamir transform [FS87]. We say that an interactive proof of
knowledge (P, V) is Fiat-Shamir compatible, if the non-interactive proof that is obtained
from applying the Fiat-Shamir transform to (P, V) is a non-interctive proof of knowledge
in the random oracle model. Schnorr’s protocol is Fiat-Shamir compatible [Sch90, Sch91,
PS96, BN06, RS21]. In more detail, we prove that if (P, V) is a Fiat-Shamir compatible
interactive proof for some relation R ⊂ X × W, then either it is not black-box zero
knowledge, or R is efficiently searchable. By that, we mean that there is a PPT algorithm
that given x ∈ X finds a w ∈ W such that (x, w) ∈ R.

Theorem 2 (informal). Let (P, V) be an interactive proof of knowledge for a relation
R ⊂ X ×W. If (P, V) is black-box zero knowledge and Fiat-Shamir compatible, then R is
efficiently searchable.

Apart from Schnorr’s protocol (and other so-called Σ-protocols [Dam02, BS23]), it was
recently proved that any protocol that satisfies a generalized notion of special soundness
(called (k1, . . . , kr)-special soundness) – a notion that applies to many multi-round public-
coin protocols – is Fiat-Shamir compatible [AFK22, AFK23]. Hence, by Theorem 2, any
such protocol is not black-box zero knowledge.

Corollary: Sequential composition of black-box zero-knowledge protocols. Goldreich
and Oren [GO94] proved that black-box zero knowledge is closed under sequential compo-
sition. Taken together with Theorem 2, this shows that if a relation R has an argument
system that is both: (1) black-box zero knowledge, and (2) its sequential repetition is
Fiat-Shamir compatible, then R must be efficiently searchable. As a concrete example,
the reader may think of Schnorr’s protocol with polynomial-sized challenge space. It is
not hard to see that in this case, Schnorr’s protocol is black-box zero knowledge. The
corollary says that, assuming discrete log is hard in the underlying group, the sequential
composition of Schnorr’s protocol with polynomial-sized challenge space is not Fiat-Shamir
compatible. This can be seen directly,2 but the corollary shows that this is true for any
black-box zero-knowledge protocol for a hard relation.

2Let us first think of Schnorr’s three-round protocol without sequential repetition, with a polynomial-
sized challenge space. A malicious prover, that does not “know” dlogg(h), may convince the verifier
otherwise by repeatedly invoking the honest-verifier zero knowledge simulator for Schnorr, hoping that
the resulted transcript will be consistent with the Fiat-Shamir compiler. Since the challenge space is of
polynomial size, this will happen after a polynomial number of invocations of the simulator in expectation.
This “attack” can be composed with itself sequentially to show that the sequential composition of Schnorr’s
protocol with a small challenge space is not Fiat-Shamir compatible.

4 Goldreich-Krawczyk Revisited

Generalizing Goldreich-Krawzyck beyond constant-round protocols. As an addi-
tional contribution, that follows rather immediately from of Goldreich and Krawzyck [GK96],
we observe that their lower bound can be generalized to apply not to just constant-round
public coin interactive proofs, but to any interactive proof that is compatible with the
Fiat-Shamir transform. By that, we mean that its non-interactive Fiat-Shamir compilation
results in a sound non-interactive proof in the random oracle model.3

Theorem 3 (informal). Let (P, V) be an interactive proof for a language L. Then, if
(P, V) is black-box zero knowledge and Fiat-Shamir compatible, then L is in BPP.

Since any constant-round public-coin interactive proof is Fiat-Shamir compatible, the
bound of Goldreich and Krawzyck follows from Theorem 3. However, there are examples
of public-coin protocols that are Fiat-Shamir compatible while not being constant round.
In particular, it was shown that any public-coin interactive proof that satisfies a special
notion of soundness called round-by-round soundness is Fiat-Shamir compatible [CCH+19,
CCH+18, CLW18, Hol19]. Moreover, any public-coin interactive proof can be made round-
by-round sound simply by parallel repetition [CCH+19]. Theorem 3 thus shows that the
parallel repetition of any public coin interactive proof is not black-box zero knowledge.
This can be seen as generalizing Goldreich-Krawzyck, whose lower bound rules out that
parallel repetition of GMW [GMW87] is black-box zero knowledge.

Finally, note that similarly to Theorem 2, when taken together with Goldreich and
Oren [GO94], Theorem 3 shows that the sequential repetition of any protocol for a hard
language that is black-box zero-knowledge cannot be Fiat-Shamir compatible.

A lower bound on generic zero knowledge. Our second main lower bound is specific
to Schnorr’s protocol. We define a new class of simulators for Schnorr’s protocol (or any
other protocol that can be defined in the generic-group model [Sho97]), which we call
generic simulators. Technically speaking, a simulator for Schnorr’s protocol is generic if it
can be defined as a generic algorithm in Shoup’s generic group model [Sho97]. Intuitively, a
generic simulator is one that works in any cyclic group, and does not use the representation
of the specific group in which Schnorr’s protocol is instantiated. We say that a protocol
satisfies generic zero knowledge if any malicious generic verifier has a corresponding generic
simulator. Note that some protocols do have simulators that are (non-trivially) generic.
For example, if one instantiates the GMW protocol [GMW87] using a generic group-based
commitment scheme, then the resulting protocol has a generic simulator.

Equipped with our new definition, we rule out the existence of generic simulators for
Schnorr’s protocol.

Theorem 4 (informal). Schnorr’s protocol is not generic zero knowledge.

Theorem 4 is proven by presenting a specific “malicious” generic verifier that cannot
possibly have an efficient simulator. We show that if this verifier has an efficient simulator,
then this simulator can be transformed into an algorithm for computing discrete log in
the GGM, that is too good to be true. By too good to be true, we mean that it violates
Shoup’s lower bound on the hardness of discrete log in the GGM [Sho97].

Taken together, Theorems 1 and 4 show that if Schnorr’s protocol is zero-knowldge
(against malicious verifiers), then it must be due to a simulator that simultaneously makes
non-black-box use of both the malicious verifier and the representation of the group. Indeed,
such a simulator seems unlikely and would have to rely on fundamentally new ideas.

3That is in contrast to the compatibility of proofs of knowledge with the Fiat-Shamir transform, that
required that the resulting non-interactive proof be knowledge sound in the random oracle model.

Lior Rotem 5

1.2 Additional Related Work
Our work is closely related to the work Dwork, Naor, Reingold, and Stockmeyer [DNRS03].
Among the many contributions of their work, they made the following observation: if
a three-round public-coin interactive proof (P, V) for a language L can be made non-
interactive using the Fiat-Shamir transform in the standard model using some concrete
hash function H, then (P, V) is not zero knowledge. Theorem 3 can be seen as analogous
to the observation of Dwork et al., replacing the standard model with the random oracle
model, and zero knowledge with black-box zero knowledge.

Chen, Lombardi, Ma, and Quach [CLMQ21] considered the question of whether the
Fiat-Shamir transform must be instantiated with a cryptographic hash function. They
considered many facets of this questions. One of their conclusions was that in the GGM,
Fiat-Shamir can be applied to Shnorr’s protocol with a non-cryptographic hash function.
The malicious verifier that we construct in the proof of Theorem 4 can be interpreted as
a non-cryptographic hash function (albeit a different one than in [CLMQ21]) that can
implement the Fiat-Shamir transform.

Holmgren, Lombardi, and Rothblum [HLR21] proved that under suitable cryptographic
assumptions, the Fiat-Shamir transform can be applied to the parallel repetition of (an
instantiation of) the GMW protocol (and generalizations thereof). Together with Dwork
et al. [DNRS03], this implies that the parallel repetition of the GMW protocol is not zero
knowledge.

2 Preliminaries
In this section, we review the basic notation and definitions we rely on in this note. Most
of the section is dedicated to defining zero-knowledge proofs and zero-knowledge proofs
of knowledge, as well as standard notions in complexity and k-wise independent hash
functions. A reader that is familiar with these notions may prefer to skip to Section 3.

Notation and basic conventions. For a binary string x ∈ {0, 1}∗, we denote its length
by |x|. For any integer c ∈ N, we denote by {0, 1}≤c the set of all binary strings of length
at most c. For a set X , we denote by x←$ X the process of sampling x from the uniform
distribution over X . For a distribution X over X , we write x←$ X to denote the process
of sampling an element from X according to X. For an integer n ∈ N, we use [n] to denote
the set {1, . . . , n}. A function ν : N→ R+ is said to be negligible if for any polynomial p(·)
there exists an integer N ∈ N such that ν(n) < 1/p(n) for all n > N . We write that an
algorithm is PPT as a shorthand for it being probabilistic and polynomial-time. We say
that two ensembles of distributions X = {Xλ}λ∈N and Y = {Yλ}λ∈N are (computationally)
indistinguishable if for any PPT algorithm A there is a negligible function ν(·) such that
for every λ ∈ N it holds that∣∣∣∣ Pr

x←$Xλ

[A(x) = 1]− Pr
y←$Yλ

[A(y) = 1]
∣∣∣∣ ≤ ν(λ).

2.1 Zero-Knowledge Interactive Proofs
We briefly recall the notions of interactive proofs, zero knowledge, and proofs of knowledge.
See Goldreich [Gol01] for further discussion.

We start by defining general two-party interactive protocols. A two-party interactive
protocol is a pair (A, B) of algorithms, each computing its corresponding next message
functions. That is, A(x, a, m1, . . . , mk; r) is a function mapping a shared input x, a private
input a, messages m1, . . . , mk exchanged so far, and randomness r, to the next outgoing
message mk+1 from A to B. The function B(x, b, m1, . . . , mk; r) is similarly defined. The

6 Goldreich-Krawczyk Revisited

transcript of the protocol is the concatenation of all messages exchanged by A and B on
shared input x and private inputs a and b. For fixed x, a and b it is a random variable
over the randomness of A and B. We say that (A, B) is polynomially bounded if there
exists a polynomial p such that for all x, a and b it holds that the trascipt is of length at
most p(|x|) with probability 1.

An interactive proof is a two-party interactive protocol (P, V), consisting of a prover
P and a verifier V . Both parties receive a joint input x, known as the statement, as
input. P additionally receives a witness w as a private auxiliary input. At the end of the
protocol, V outputs a special message, accept or reject, which terminates the execution.
We denote by ⟨P (w), V ⟩ (x) the output of V when P and V interact on shared input x
and P additionally runs on the private input w. Note that for fixed x and w, this is a
random variable over the random coins of P and V .

Definition 1. Let R be a relation, where R ⊆ X ×W for sets X and W. Let L = {x ∈
X : ∃w ∈ W s.t. (x, w) ∈ R}. We say that (P, V) is an interactive proof for L if it
satisfies the following conditions:

• Efficiency: (P, V) is polynomially bounded and V is a PPT algorithm. If P is also
a PPT algorithm, we say that (P, V) has an efficient prover.

• Completeness: There exists a negligible function νcmp(·) such that for every
(x, w) ∈ R, it holds that

Pr [⟨P (w), V ⟩ (x) = accept] ≥ 1− νcmp(|x|).

If ν1 = 0, we say that (P, V) satisfied perfect completeness.

• Soundness: For every algorithm P ∗ there exists a negligible function νsnd such that
for every x ̸∈ L, it holds that

Pr [⟨P ∗, V ⟩ (x) = accept] ≤ νsnd(|x|).

We may require that soundness only holds against computationally-bounded provers.
We call such protocols interactive arguments.

Definition 2. Let R and L be defined as in Definition 1. We say that (P, V) is an
interactive argument for L if it satisfies efficiency and correctness as in Definition 1 and
the soundness condition is replaced by:

• Soundness: For every PPT algorithm P ∗ there exists a negligible function νsnd(·)
such that for every x ̸∈ L, it holds that

Pr [⟨P ∗, V ⟩ (x) = accept] ≤ νsnd(|x|).

Looking ahead, in this paper we may refer to “proofs” for conciseness when making
statements that hold for both proofs and arguments.

Proofs of knowledge. Proofs of knowledge are interactive proofs in which the standard
soundness requirement is replaced by “knowledge soundness”. A protocol (P, V) for a
relation R is knowledge sound, if there is an efficient oracle-aided algorithm K (known as
the extractor) which can “extract” a witness from any prover P ∗ that convinces the verifier
to accept with high enough probability. This extraction is done via black-box access to
P ∗. Concretely, a protocol (P, V, K) is a proof of knowledge if for any prover P ∗ which
convinces V to accept with some probability ϵ, KP ∗(x) outputs a witness w such that
(x, w) ∈ R with a related probability ϵ′, where x is shared input.

Lior Rotem 7

It is important to clarify what we mean by the fact that K gets black-box access to
P ∗. K can initialize many copies of P ∗ on instances and random coins of its choice, and
gets oracle access to these copies. It can then interact with each of these copies, playing
the role the honest verifier V . Observe that this in particular allows K to rewind P ∗ by
initializing two copies of it with the same random coins, and “fork” messages of V it sends
these copies at a certain point of its choice.

Definition 3. Let R and L be as in Definition 1. We say that (P, V, K) is an interactive
proof of knowledge for R, if it satisfies efficiency and correctness as in Definition 1 and the
soundness condition is replaced by:

• Knowledge soundness: For every algorithm P ∗ and for every instance x (either
in L or not), let

ϵP ∗,x := Pr [⟨P ∗, V ⟩ (x) = accept] .

Then, there exists a polynomial p(·, ·) such that for every P ∗ and x it holds that

Pr
[
(x, w) ∈ R : w ←$ KP ∗

(x)
]
≥ p(ϵP ∗,x, |x|−1). (2.1)

More over, K is a probabilistic algorithm such that for every P ∗ and x, KP ∗(x) runs in
expected time polynomial in |x| and ϵ−1

P ∗,x.
If Eq. 2.1 is only guaranteed to hold for all PPT algorithms P ∗, then we say that

(P, V, K) satisfies computational knowledge soundness, or is an interactive argument of
knowledge.

Note that if P ∗ convinces the verifier to accept with non-negligible probability, then
the probability that K outputs a valid witness is also non-negligible. Moreover, since we
do not restrict x to be in L, knowledge soundness implies soundness per Definition 1 and
Definition 2.

Zero knowledge. We now define zero knowledge of interactive proofs and arguments.
We only consider computational zero knowledge in this paper. Since we show that
certain classes of protocols do not satisfy (certain types of) zero knowledge, considering
computational zero knowledge makes these lower bounds stronger.

We denote by (P (w), V ∗)(x) the random variable that corresponds to the view of V ∗

in an interaction with P on shared input x and where P runs on private input w. That is,
the view consists of x, the transcript of the interaction, and V ∗’s random coins.

Definition 4. Let R and L be defined as in Definition 1, and let (P, V) be an interactive
proof for a language L. We say that (P, V) is zero knowledge if for every non-uniform PPT
algorithm V ∗ there exists a probabilistic expected polynomial-time non-uniform algorithm
S, called the simulator, such that the following ensembles are indistinguishable:

{(P (w), V ∗)(x)}(x,w)∈R and {S(x)}(x,w)∈R

The notion is similarly defined for interactive arguments, and interactive proofs and
arguments of knowledge.

We now define black-box zero knowledge. The definition is obtained from Definition 4
by requiring that there is a single universal simulator S, that is restricted to access V ∗ only
via oracle access. That is, the simulator may initialize many copies of V ∗ on random coins
of its choice, query them on partial transcripts, and receive V ∗’s response computed as a
function of the random coins and the partial transcript. For a more exhustive discussion,
see [GK96].

8 Goldreich-Krawczyk Revisited

Definition 5. Let R and L be defined as in Definition 1, and let (P, V) be an interactive
proof for a language L. We say that (P, V) is black-box zero knowledge if there exists a
probabilistic expected polynomial-time algorithm S, such that for every non-uniform PPT
algorithm V ∗, the following ensembles are indistinguishable:

{(P (w), V ∗)(x)}(x,w)∈R and {SV ∗(·)(x)}(x,w)∈R

The above definition ignores various technicalities that have to do with the random
coins of V ∗. These technicalities will not be important for us since, jumping ahead, we
will only consider black-box zero knowledge against deterministic malicious verifiers. For
more detail, see for example [GK96].

2.2 The Fiat-Shamir Compiler
The Fiat-Shamir hueristic [FS87] is a way to transform a public coin interactive proof into
a non-interactive (i.e., one message) proof. Recall that a proof is said to be public coin if
in each round, the verifier just sends its coin flips for this round, and the verifier’s final
output is a deterministic function of the instance x and the transcript of the protocol.
Note that any public-coin interactive proof can be transformed into one in which the
final acceptance/rejection decision made by the verifier is a deterministic function of the
instance x and the transcrript t of the protocol. If the verifier uses random coins to make
its final decision, then it can send them as a final public-coin message in the protocol.
Hence, looking forward, when talking about general public coin protocols, we will assume
that the final verifier’s decision is deterministic. We will overload notation and write V (·)
do denote this deterministic decision function. When the instance x is clear from context,
we may abbreviate and write V (t) instead of V (x, t).

We define Fiat-Shamir in the random oracle model, in which all algorithms (including
the adversary) have access to an oracle O, whose domain and range will become apparent
in a second. Before the protocol is executed, O is sampled uniformly at random from the
set of all functions with these domain and range.

For an interactive public coin protocol (P, V) we define a related non-interactive
protocol (PFS, VFS) in the following manner. Say that (P, V) consists of 2k + 1 messages,
where P sends all odd messages, and V sends all even messages. We denote P ’s messages
by x1, . . . , xk+1 and V ’s messages by y1, . . . , yk. We assume without loss of generality
that P sends the last message in the protocol to be compatible with Schnorr’s protocol as
sketched above. Note that any protocol in which V sends the last message (for example,
to enforce that its decision is a deterministic function of the instance and transcript, as
discussed above) can be transformed into a protocol in which P sends the last message by
letting it send an arbitrary “dummy” message xk+1 and having V ignore it when deciding
on its output. Then, (PFS, VFS) on shared input x and private PFS-input w is defined by:

1. PFS first samples randomness rP for P and computes x1 := P (x, w; r). It then
queries O on (x, x1) to obtain y1 and computes x2 := P (x, w, x1, y1). This pro-
cess is then repeated until PFS obtains a full transcript of (P, V). That is, for
i = 2, . . . , k: PFS queries O on (x, x1, y1, . . . , xi) to obtain yi, and then com-
putes xi+1 ←$ P (x, w, x1, y1, . . . , xi, yi). The final proof outputted by PFS is π =
(x1, y1, . . . , xr, yr, xk+1).

2. On input x and π = (x1, y1, . . . , xk, yk, xk+1), the Fiat-Shamir verifier VFS decides
on its output as follows: It first verifies that all yis are computed correctly; that is,
that for all i ∈ [k] it holds that yi = O(x, x1, y1, . . . , xi−1) (this is done using VFS’s
oracle access to O). If for any i this check fails, VFS outputs reject and terminates.
Otherwise, VFS invokes V (π) and outputs the same.

Lior Rotem 9

2.3 Relations, Languages, and Complexity Classes
Let X and W be sets and let R ⊆ X ×W be a relation over these sets. We will denote by
LR ⊂ X the set of all x ∈ X for which there is a corresponding w ∈ W in the relation:

LR := {x ∈ X : ∃w ∈ W s.t. (x, w) ∈ R} .

Let R be a relation. We say that R is efficiently searchable, if there exists a PPT
algorithm A such that on every input x ∈ LR in the language induced by R, A finds a
witness w such that (x, w) is in R with non-negligible probability.

Finally, we make use of the standard complexity classes NP and BPP. The reader is
referred to [AB09] for formal definitions.

2.4 k-Wise Independent Hash Functions
A function family H is said to be uniform over a set S of elements in its domain, if a
uniformly-sampled function h← H acts as a truly random function when evaluated on S.
A family that is uniform over all subsets of the domain of size at most k are called k-wise
independent. This is formally captured via the following definition:

Definition 6. Let X and Y be sets and let S = {x1, . . . , xk} ⊆ X be a subset of size k.
We say that a function family H mapping X to Y is uniform over S if for every tuple
(y1, . . . , yk) ∈ Yk it holds that

Pr
h←H

[∀i ∈ [k] : h(xi) = yi] = 1
|Y|k

.

We say that H is k-wise independent if it is uniform over all subsets of X of size at most k.

For constructions of k-wise independent hash functions, see for example [Jof74, WC81,
CG89, NN90].

3 A Lower Bound for Proofs of Knowledge
In this section, we prove a lower bound on the black-box zero knowledge of any knowledge-
sound public-coin proof or argument that is compatible with the Fiat-Shamir transform.
Namely, we prove that if a proof (or argument) of knowledge (P, V, K) for a relation R
is black-box zero knowledge and is compatible with Fiat-Shamir, then R must be easily
searchable. In particular, this shows that any Σ-protocol for a “hard” relation R is not
black-box zero knowledge.4 This includes Schnorr’s protocol [Sch90, Sch91, PS96, BN06]
for proving knowledge of discrete log in discrete log hard groups (and later generalizations
thereof; see the introduction for examples).

Before presenting the results of this section, we need to define what it means for a
proof of knowledge to be Fiat-Shamir-compatible. We first define the knowledge soundness
of non-interactive proofs in the random oracle model. A non-interactive proof (P, V, K)
is knowledge sound in the random oracle model if Definition 3 holds with the following
changes:

• P and V are now oracle-aided algorithms that get access to a random oracle O.
Any malicious prover P ∗ is also an oracle-aided algorithm that expects access to a
random oracle.

4A Σ-protocol is a 3-round public-coin protocol with special soundness [Cra97] (see also [BS23]).

10 Goldreich-Krawczyk Revisited

• The probability that a malicious prover convinces the verifier to accept is now defined
also over the choice of random oracle. That is:

ϵP ∗,x := Pr
[〈

P ∗O, V O
〉

(x) = accept
]

,

where the probability is taken over the random coins of P ∗ and the choice of O.

• As in the standard model, the knowledge extractor K runs the malicious prover P ∗

as a (black-box) subroutine. When P ∗ is an oracle-aided algorithm, it is up to K to
simulate this oracle to it.

We can now define the Fiat-Shamir-compatibility of proofs of knowledge. Informally,
an interactive proof of knowledge is Fiat-Shamir compatible if its Fiat-Shamir compilation
is a non-interactive proof of knowledge in the random oracle model.

Definition 7. Let R be a relation, where R ⊆ X ×W for sets X and W . Let (P, V, K) be
a public-coin interactive proof of knowledge for R, and let (PFS, VFS) be the non-interactive
proof for R obtained from (P, V) via the Fiat-Shamir transform. Then, we say that (P, V)
is Fiat-Shamir compatible if there exists an algorithm KFS such that (PFS, VFS, KFS) is an
argument of knowledge in the random oacle model.

Equipped with Definition 7, we state the main theorem of the section.

Theorem 5. Let R be a relation, where R ⊆ X ×W for sets X and W, and let (P, V, K)
be a public-coin interactive proof of knowledge for R. Suppose that (P, V, K) is black-box
zero knowledge and Fiat-Shamir compatible. Then, R is efficienlty searchable.

Before proving the theorem, we make two remarks:

1. We will only handle the case where the simulator S guaranteed by the black-box zero
knowledge is strictly polynomial time. If S runs in expected polynomial-time we
can make it run in strictly polynomial time using a standard execution truncation
argument. See [GK96] for more detail.

2. As in [GK96], we will only rely on the fact that S needs to be a simulator for
deterministic non-uniform verifiers. Note that this only makes the result stronger, as
we are ruling out even a simulator that only works for determinstic verifiers.

We now prove Theorem 5.

Proof. Let R and (P, V, K) be as in the statement of the theorem. We will construct an
algorithm A that efficiently searches the relation R.

By assumption, (P, V, K) is black-box zero knowledge. Let S be the black-box simulator
guaranteed by Definition 4. We further assumed that (P, V, K) is Fiat-Shamir compatible,
and therefore, there exists an extractor KFS for the Fiat-Shamir compiled variant of the
protocol. With these algorithms at hand, we can define the algorithm A. On input x ∈ X ,
A does:

1. Invoke the extractor KFS on input x.

2. KFS expects black-box access to a prover P ∗ for the non-interactive Fiat-Shamir-
compiled protocol (PFS, VFS). A simulates this access as follows:

(a) KFS can initiate many copies of P ∗. When it initiates the ith copy of P ∗ with
input xi random coins randi, KFS invokes S(xi; randi). We call this invocation
the ith copy of S.

Lior Rotem 11

(b) For each i, the ith copy of S expects oracle access to a malicious verifier Vi.
To simulate this access, whenever the ith copy of S issues a query (a partial
transcript) pt to Vi, A forwards pt to KFS as a query made by the ith copy of
P ∗ to the random oracle O. If and when KFS replies with a response c to this
query, A forwards c to S as the response by Vi.

(c) Whenever a copy of S outputs a transcript t, A forwards this transcript as a
proof outputted by the corresponding copy of P ∗.

3. Finally, KFS outputs a witness w ∈ W. A outputs the same w.

We now turn to bound the success probability of A in finding a witness w such that
(x, w) ∈ R. For ease of notation, we assume that the (honest) verifier’s messages in all
rounds of the protocol are uniformly random in {0, 1}ℓ for ℓ = ℓ(|x|) (the proof readily
extends to the general case where each round specifies a different message space). For
a function f : {0, 1}∗ → {0, 1}ℓ that maps partial transcripts of the protocol (P, V) to
verifier messages, we define the “malicious” deterministic verifier Vf that simply decides
on its next message by invoking f on the transcript of the execution thus far. Let ϵS,f,x

denote the probability that on input x, S outputs an accepting transcript when given
black-box access to Vf . That is,

ϵS,f,x := Pr
[
V (SVf (·)(x)) = accept

]
where the probability is taken over the random coins of S. Let ϵS,x denote the probability
that on input x, S outputs an accepting transcript when given black-box access to Vf for
a uniformly random f . That is,

ϵS,x := Pr
[
V (SVf (·)(x)) = accept

]
where the probability is taken over the random coins of S and the random choice of f .

Observe that the distribution of oracle answers induced by the random choice of f
is identical to that induced by a random oracle. Hence, by definition of Fiat-Shamir
compatibility, there exists a polynomial p such that for every x ∈ LR it holds that

Pr [(x, A(x)) ∈ R] ≥ p(ϵS,x, |x|−1).

The following lemma relates ϵS,x to the zero-knowledge of (P, V). The lemma is proven
at the end of the section.

Lemma 1. There exists a negligible function νzk(·) such that for every x ∈ LR, it holds
that ϵS,x ≥ 1− νzk(|x|).

Therefore, A is an expected polynomial time algorithm that finds a witness w for x
with non-negligible probability. By a standard execution trancation argument, A can
be made strictly polynomial time with a polynomial loss in its success probability. This
implies that R is efficiently searchable, concluding the proof of the theorem.

We conclude by proving Lemma 1.5

Proof of Lemma 1. Let x ∈ LR, let q = q(|x|) be a bound on the number of queries issued
by S to the verifier on input x. Moreover, let c = c(|x|) be a bound on the total length
of the messages exchanged in (P, V) on input x. We wish to argue that the transcript t
outputted by S, when executed by A as a sub-routine, is accepting for x with probability
at least 1− νzk(|x|) for some negligible νzk.

5The lemma extends part 2 of Lemma 6.3 from [GK96].

12 Goldreich-Krawczyk Revisited

To this end, we define a family of “malicious” verifiers {Vh}h∈Hn
, where n = |x| and

Hn is a family of q-wise independent hash functions, mapping inputs in {0, 1}≤|x|+c(|x|) to
outputs in {0, 1}ℓ(n). The verifier Vh is deterministic and decides on its next message by
applying h to the input x and the interaction thus far. That is, let x̃ be the instance on
which (P, Vh) is invoked, and let x̃1, ỹ1, . . . , x̃i be the partial transcript of the execution so
far. Then, Vh’s ith message is ỹi = h(x̃, x̃1, ỹ1, . . . , x̃i).

For (x, w) ∈ R and a hash function h ∈ Hn, let ϵh,x,w denote the probability, defined
over the random coins of P , that an interaction between P and Vh is accepting:

ϵh,x,w := Pr [⟨P (w), Vh⟩ (x) = accept] .

By zero knowledge, there exists a negligible function νzk(·) such that for every (x, w) ∈ R
and h ∈ Hn, it holds that

ϵS,h,x ≥ ϵh,x,w − νzk(|x|). (3.1)

For every x ∈ LR, let w∗(x) denote some canonical witness for x (e.g., the first witness in
some lexicographic order). Since Hn is q-wise independent, it holds that

ϵS,x = Eh←$Hn
[ϵS,h,x] (3.2)

≥ Eh←$Hn

[
ϵh,x,w∗(x) − νzk(|x|)

]
(3.3)

= Eh←$Hn

[
ϵh,x,w∗(x)

]
− νzk(|x|). (3.4)

Finally, by q-wise independence of Hn, the expectation Eh←$Hn

[
ϵh,x,w∗(x)

]
describes the

probability that V accepts in an honest execution of (P, V) when the shared instance is x
and P gets the additional input w∗(x). By completeness of (P, V), it holds that

Eh←$Hn

[
ϵh,x,w∗(x)

]
≥ 1− νcmp(|x|) (3.5)

for some negligible function νcmp(·). Denoting ν′ = νzk + νcmp, we obtained that

ϵS,x ≥ 1− ν(|x|).

Noting that ν is a negligible function concludes the proof of the lemma.

4 A Lower Bound for Interactive Proofs and Argu-
ments

In this section we generalize the lower bound of Goldreich and Krawczyk [GK96] for
interactive proofs and arguments. Namely, we show that if a language L has any interactive
argument that is simultaneously black-box zero knowledge and compatible with Fiat-
Shamir in the random oracle model, then L ∈ BPP. This includes, in particular, the case
of constant-round public coin arguments considered by Goldreich and Krawczyk. First,
we need to define what we mean when we say an interactive proof is compatible with
Fiat-Shamir.

Definition 8. Let (P, V) be an interactive proof for a language L, and let (PFS, VFS) be
the non-interactive proof for L obtained from (P, V) via the Fiat-Shamir transform. Then,
we say that (P, V) is Fiat-Shamir compatible if (PFS, VFS) is computationally sound, when
O is modeled as a random oracle.

We now state the main theorem of this section.

Theorem 6. Let L be a language and let (P, V) be an interactive proof for L. Suppose
that (P, V) is black-box zero knowledge and Fiat-Shamir compatible. Then, L ∈ BPP.

Lior Rotem 13

As in Section 3, we may assume that the simulator S guaranteed by the black-box zero
knowledge property runs in strict polynomial time.

Proof. Suppose that (P, V) is black-box zero knowledge, and let S be the universal
simulator guaranteed by this assumption. Consider the following algorithm A for deciding
the language L. On input x ∈ {0, 1}n, A does:

1. Invoke S(x), and for every query (x′, x1, y1, . . . , xi) issued by S to its oracle verifier,
reply with a uniformly random yi ←$ {0, 1}ℓ(n). Eventually S outputs a transcript
t = (x̃, x̃1, ỹ1, . . . , x̃k, ỹk, ˜xk+1).

2. Invoke the (honest) verifier V on input t and output the same. That is, output
V (x, t).

The following two lemmata establish the correctness of A in deciding L.

Lemma 2. There exists a negligible function ν(·) such that for every x ̸∈ L, A(x) outputs
1 with probability at most ν(|x|).

Proof. We wish to argue that the transcript t outputted by S is accepting for x with
probability at most ν(|x|) for a negligible ν(·), and the claim will follow by the definition
of A.

Suppose towards contradiction that this is not the case. That is, there exists a
polynomial p(·) such that the probability of V (t) = accept is greater than 1/p(|x|). In
this case, we break the soundness of the non-interactive Fiat-Shamir variant of (P, V),
denoted (PFS, VFS). To this end, we construct a malicious prover P ∗FS convincing VFS to
accept with non-negligible probability. On input x ̸∈ L and given oracle access to a random
oracle O, P ∗FS invokes the simulator S(x) and simulates to it oracle access to the verifier
V ∗: Whenever S queries V ∗ on (x̃, x̃1, ỹ1, . . . , x̃i), P ∗ queries O on (x̃, x̃1, ỹ1, . . . , x̃i) and
replies to S with the response ỹi it receives from O. Finally, when S outputs a transcript
t, P ∗FS outputs the proof π = t.

We claim that π is accepted by VFS with probability at least 1/p(|x|). Observe that by
the definition of O, the replies of P ∗FS to S’s queries to the malicious verifier are uniformly
random and independent. Hence, they are distributed the same as the replies of A to S’s
queries. Note that the view of S is determined by x, its random coins, and the responses
to its queries. Hence, the view of S is distributed as its view in its invocation by A. It
follows that t is accepting with probability at least 1/p(|x|). This means that P ∗FS breaks
the soundness of (PFS, VFS), in contradiction to the Fiat-Shamir compatibility of (P, V).
This concludes the proof of the claim.

Lemma 3. There exists a negligible function ν′(·) such that for every x ∈ L, A(x) outputs
1 with probability at least 1− ν′(|x|).

The proof of Lemma 3 is identical to that of Lemma 1. Taken together, the two
lemmata show that A successfully decides L with overwhelming probability, implying that
L ∈ BPP.

5 A Lower Bound for Generic Zero Knowledge
In this section, we prove the nonexistence of a “generic” simulator for Schnorr’s protocol.
We start by defining generic simulators, and then prove that such simulators cannot exist
for Schnorr’s protocol in groups in which discrete log is hard.

14 Goldreich-Krawczyk Revisited

5.1 Generic Simulators
We first recall the generic group model (GGM), introduced by Shoup [Sho97], and focus
on prime-order groups for simplicity. The GGM is an idealized model in which group
elements are represented by “opaque” random bit-strings. Intuitively, the GGM captures
group algorithms that work in any group, and do not exploit the underlying representation
of group elements in a specific group.

Let p ∈ N be a prime and let λ = ⌈log p⌉. Then, a generic group of order p is induced
by a random injection σ, mapping integers in Zp to bit-strings in {0, 1}2λ. A group element
is an element in the image of σ. The group operation is induced by the inverse (partial)
function σ−1 and the group operation of the additive group Zp. That is, if we denote the
group operation by ◦, then for every ℓ1, ℓ2 ∈ Im(σ), we have

ℓ1 ◦ ℓ2 := σ(σ−1(ℓ1) + σ−1(ℓ2)),

where addition is in Zp. For ℓ ∈ Im(σ) and c ∈ Z, we may write ℓc to denote

ℓ ◦ ℓ ◦ · · · ◦ ℓ︸ ︷︷ ︸
c times

Algorithms in the GGM do not have an explicit description of σ. Rather, they access
the group operation via an oracle Oσ. On input two labels ℓ1 and ℓ2 in {0, 1}2λ, Oσ

replies with ℓ1 ◦ ℓ2 if ℓ1, ℓ2 ∈ Im(σ) and with ⊥ otherwise. We will always assume that all
algorithms receive the generator σ(1) as input, and may not mention this explicitly. In
particular, they can compute σ(a) for every a ∈ Zp in O(log p) queries to the group oracle.

Algebraic representation of labels. As many proofs in the GGM, we will rely on the
fact that by observing the oracle queries of a generic algorithm A, generic group elements
(labels) that A computes can be expressed as a “linear-in-the-exponent” combination of
its input elements. Concretely, let (ℓ1, . . . , ℓk) denote the input elements to a generic
algorithm A, where every ℓi ∈ {0, 1}2λ. Throughout the execution of A, we associate every
label ℓ in {0, 1}2λ with a set of vectors in Zk

p. We call this set the representation of ℓ and
denote it by rep(ℓ). Initially, for every i ∈ [k] we define rep(ℓi) = {e⃗i}, where e⃗i ∈ Zk

p is
the vector whose ith entry is 1 and all of its other entries are 0. For every ℓ ∈ {0, 1}2λ not
given as input to A, rep(ℓ) is initialized as empty rep(ℓ) = ∅.

Suppose A issues a query (ℓ1, ℓ2) to Oσ and the oracle replies with ℓ3. Then, we
update rep(ℓ3) as follows: if rep(ℓ1) or rep(ℓ2) are ∅, we do nothing. Otherwise, we add to
rep(ℓ3) all vectors in in rep(ℓ1) + rep(ℓ2), where the sum of two sets S1 + S2 is defined as
{s1 + s2 : s1 ∈ S1, s2 ∈ S2}.

Generic protocols and generic simulators. Equipped with the above definition, we
can define interactive proofs in the GGM. Such proofs are defined similarly to standard-
model interactive proofs (recall Section 2), but now the prover P and the verifier V are
oracle-aided algorithms with access to the group oracle Oσ. Completeness, soundness, and
knowledge soundness can be easily extended to the generic setting as well, but we will
not need these extensions to state and prove our result in this section. We will refer to
interactive proofs in the GGM as generic interactive proofs.

Note that in the GGM, it makes sense to define relations relative to the group or-
acle. The discrete log relation with respect to the group oracle, defined by Rp,σ ={

(h, x) ∈ {0, 1}2λ × Zp : σ(x) = h
}

, is perhaps the simplest example of such a relation.
We can consider generic interactive proofs with respect to such oracle-dependent relations,
and Schnorr’s protocol (which we will shortly define) is an example of that.

With the notion of generic interactive proofs at hand, we can define what we mean when
we say that such a protocol has a generic simulator. Loosely, a generic interactive proof

Lior Rotem 15

is generic zero-knowledge if for every malicious verifier (V ∗)Oσ , there is a corresponding
generic simulator (SV ∗)Oσ .

Definition 9. Let (POσ , V Oσ) be an interactive proof for a relation ROσ . We say that
(POσ , V Oσ) satisfies generic zero knowledge if for every PPT oracle-aided algorithm (V ∗)Oσ

there exists a probabilistic expected polynomial-time oracle-aided algorithm SOσ , called
the simulator, such that the following ensembles are indistinguishable for any PPT generic
algorithm:

{(POσ (w), (V ∗)Oσ)(x)}(x,w)∈ROσ and {SOσ (x)}(x,w)∈ROσ

Two remarks are in order:

1. The distribution ensembles in Definition 9 are implicitly defined over a sequence
of oracles in the following way. We write Oσ to refer to a sequence of oracles
{Oσp

}p∈S , where S is an infinite sequence of primes p1, p2, . . . and for each i it holds
that pi+1 > pi. This induces a sequence of relations ROσ = {ROσp }p∈S . Looking
ahead, we can restrict the discussion to relations in which both the instance size and
witness size (in bits) are polynomially-related to log p ≈ λ. Hence, when we will say
“polynomial time” there will be no ambiguity: this will be both in terms of instance
and witness (which will constitute the inputs to the algorithms we will consider) and
in terms of log p.

2. We rely on the convention that the running time of an oracle-aided algorithm serves
as an upper bound on the number of oracle queries it issues. Hence, a PPT generic
algorithm makes at most a polynomial number of queries to the group oracle.

5.2 Schnorr Has No Generic Simulators
Schnorr’s protocol. We briefly recall Schnorr’s proof of knowledge of discrete log. We
present the protocol as a generic protocol. In this setting, the prover P and the verifier
V share a group element X ∈ {0, 1}2λ. P additionally holds an integer x ∈ Zp such that
σ(x) = X. The protocol proceeds as follows:

1. Round 1: P samples a uniformly random a←$ Zp, computes A← σ(a) via the oracle
Oσ and sends A to V .

2. Round 2: V samples a uniformly random c←$ Zp and sends it to P .

3. Round 3: P computes γ ← c · x + a and sends it to V .

4. Final verification: V checks that σ(γ) = Xc ◦A, where σ and ◦ are computed via the
oracle Oσ. If this check passes, V outputs accept and otherwise, it outputs reject.

Theorem 7. Schnorr’s protocol does not satisfy generic zero knowledge.

To establish Theorem 7, we prove a lemma that shows that if Schnorr’s protocol
does have a generic simulator SV ∗ for every malicious verifier V ∗, then there is a generic
algorithm that computes discrete logs in the GGM, with the same number of queries
as on of these simulators. Shoup’s lower bound on the hardness of discrete log in the
GGM [Sho97] then implies that every simulator must make at least Ω(√p) queries, and
hence cannot be polynomial in log p. We now turn to state and prove our main lemma.

Lemma 4. Suppose that Schnorr’s protocol is generic zero knowledge. Then, there exists
a PPT generic verifier V ∗ such that the following holds. For every generic simulator S
for V ∗, there exists a discrete log algorithm B such that

Pr [B(σ(1), σ(x)) = x] ≥ 1− 2Q + 3
p−Q

− ϵ,

16 Goldreich-Krawczyk Revisited

where ϵ = ϵ(log p) is a negligible function in log p, Q = Q(p) is a bound on the number of
GGM queries issued by S, and the probability is taken over the random coins of B and the
choice of σ. Moreover, B makes at most Q queries to the GGM oracle.

Proof. Consider the following “malicious” verifier V ∗:

1. On instance X ∈ {0, 1}2λ and first prover message A ∈ {0, 1}2λ, V ∗ decides on the
challenge c by parsing the first λ bits of A as an element of Zp. This element is the
challenge c sent by V ∗.

2. Upon receiving the second prover message γ, V ∗ uses the honest verifier decision
rule to determine whether to accept. That is, it accepts if and only if σ(γ) = Xc ◦A.

Now suppose that there exists a generic simulator S for V ∗. We claim that such a simulator
can be used to compute the discrete log of X with overwhelming probability, and so the
number of group operation queries it issues must be exponential in log p.

We construct a generic algorithm B, that on input (σ(1), X = σ(x)) computes x with
the same number of queries as S. On input X, B is defined by:

1. Invoke S on input (σ(1), X).

2. Whenever S issues a query (ℓ1, ℓ2), forward the query to Oσ. Let ℓ3 be the response
of the oracle. Forward ℓ3 as the response to S. If |rep(ℓ3)| > 1, denote by (β, α) and
(β′, α′) be the representations of ℓ3. Output x′ = (β− β′) · (α′−α)−1 and terminate.
Note that it cannot be the case that (α, β) ̸= (α′, β′) and α = α′.

3. If at any point, S issues a query (ℓ1, ℓ2) issued by S such that Oσ(ℓ1, ℓ2) ̸= ⊥ but
rep(ℓ1) = ∅ or rep(ℓ2) = ∅, then abort.
(A aborts if S “gussed” valid labels ℓ1 and ℓ2 in the image of σ without obtaining
them as inputs/oracle replies).

4. Finally, S outputs a transcript (A′, c′, γ′). Let (β, α) be the unique representation
in rep(A′). Observer that if this step is reached, it must be the case that rep(A′)
contains exactly one representation.

5. Abort if any of the following conditions do not hold:

(a) The transcript (A′, c′, γ′) is accepting.
(b) c′ is the Zp element obtained by parsing the first λ bits of A′ as an element of

Zp.
(c) α + c′ ̸= 0.

6. If reached, output x′ = (γ′ − β) · (α + c′)−1 ∈ Zp.

We now analyze the success probability of B. If B terminates in Step 2, then it neces-
sarily finds the correct x′ = x. This is because both (β, α) and (β′, α′) are representations
of the same group element, which implies that αx + β = α′x + β′ and hence x′ = x.
Therefore, we condition the rest of the analysis on the event in which B does not terminate
in Step 2.

Note that whenever B does not abort (in either Step 3 or Step 5), it successfully
finds σ−1(X). This is because (A′, c′, γ′) is an accepting transcript, which means that
A′ ◦Xc′ = σ(γ′). In turn, this implies that αx + β + c′x = γ′, and the fact that x′ = x
follows.

We are left with bounding the probability that B does not abort. Let Eguess denote the
event in which B aborts in Step 3. Since the image of σ is of size less than 2λ but the
label space is of size 22λ, the probability for Eguess is at most Q · 2−λ ≤ Q/p. The rest of
the analysis is conditioned on ¬Eguess.

Lior Rotem 17

For i ∈ {a, b, c}, let Ei denote the event in which B aborts in Step 5 due to condition
(i). First, note that when interacting with an honest prover, V ∗ always accepts. Moreover,
by definition of V ∗, it is always the case that the challenge c is the first λ bits of the first
prover message A (interpreted as a Zp element). Hence, by zero knowledge, the probability
that the event Ea ∨ Eb occurs is at most ϵ(λ) for some negligible function ϵ.

The event Ec can happen in one of four ways:

1. The first λ bits of X = σ(x) encode the integer 1 ∈ Zp. This happens with probability
1/p.

2. The first λ bits of σ(1) encode the integer 0 ∈ Zp. This happens with probability
1/p.

3. S issues a query ℓ1, ℓ2 such that rep(ℓ1) = (β1, α1), rep(ℓ2) = (β2, α2), α1 + α2 =
0 ∈ Zp, and the first λ bits of Oσ(ℓ1, ℓ2) encode 0 ∈ Zp. Since S issues at most Q
queries, and the label of each response encodes 0 ∈ Zp with probability 1/p, the total
probability that this event happens is at most Q/p.

4. S issues a query ℓ1, ℓ2 such that rep(ℓ1) = (β1, α1), rep(ℓ2) = (β2, α2) and the first λ
bits of Oσ(ℓ1, ℓ2) encode the Zp element α1 + α2. Note that α1 are well defined α2
for all queries issued by S, since we are conditioning the analysis on ¬Eguess (and
hence rep(ℓ1) ̸= ∅ and rep(ℓ2) ̸= ∅) and on B not terminating in Step 2 (and hence
|rep(ℓ1)| ≤ 1 and |rep(ℓ2)| ≤ 1).
The probability for this event is bounded by Q/(p−Q).

Overall, the probability that Ec occurs is less than (2Q + 2)/(p−Q).
Putting everything together, we obtain that the probability that

Pr [B(σ(1), σ(x)) ̸= x] ≤ 2Q + 3
p−Q

+ ϵ

concluding the proof of the lemma.

Acknowledgments
This work partially supported by the Simons Foundation and a research grant from Protocol
Labs.

6 Bibliography

References
[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.

Cambridge University Press, 2009.

[AFK22] Thomas Attema, Serge Fehr, and Michael Klooß. Fiat-shamir transformation
of multi-round interactive proofs. In Eike Kiltz and Vinod Vaikuntanathan,
editors, TCC 2022, Part I, volume 13747 of LNCS, pages 113–142. Springer,
Cham, November 2022. doi:10.1007/978-3-031-22318-1_5.

[AFK23] Thomas Attema, Serge Fehr, and Michael Klooß. Fiat-shamir transformation
of multi-round interactive proofs (extended version). Journal of Cryptology,
36(4):36, October 2023. doi:10.1007/s00145-023-09478-y.

https://doi.org/10.1007/978-3-031-22318-1_5
https://doi.org/10.1007/s00145-023-09478-y

18 Goldreich-Krawczyk Revisited

[BG93] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In
Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 390–420.
Springer, Berlin, Heidelberg, August 1993. doi:10.1007/3-540-48071-4_28.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key
model and a general forking lemma. In Ari Juels, Rebecca N. Wright, and
Sabrina De Capitani di Vimercati, editors, ACM CCS 2006, pages 390–399.
ACM Press, October / November 2006. doi:10.1145/1180405.1180453.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi
Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, ACM CCS 93, pages
62–73. ACM Press, November 1993. doi:10.1145/168588.168596.

[BS23] Dan Boneh and Victor Shoup. A graduate course in applied cryptography.
Version 0.6, 2023. URL: https://toc.cryptobook.us/.

[CCH+18] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum,
and Ron D. Rothblum. Fiat-shamir from simpler assumptions. Cryptology
ePrint Archive, Paper 2018/1004, 2018. https://eprint.iacr.org/2018/1
004. URL: https://eprint.iacr.org/2018/1004.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum,
Ron D. Rothblum, and Daniel Wichs. Fiat-shamir: from practice to theory.
In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019, page 1082–1090, New York, NY, USA, 2019.
Association for Computing Machinery. doi:10.1145/3313276.3316380.

[CG89] Benny Chor and Oded Goldreich. On the power of two-point based sampling.
Journal of Complexity, 5(1):96–106, 1989. doi:10.1016/0885-064X(89)900
15-0.

[CLMQ21] Yilei Chen, Alex Lombardi, Fermi Ma, and Willy Quach. Does fiat-shamir
require a cryptographic hash function? In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 334–363, Virtual Event,
August 2021. Springer, Cham. doi:10.1007/978-3-030-84259-8_12.

[CLW18] Ran Canetti, Alex Lombardi, and Daniel Wichs. Fiat-shamir: From practice
to theory, part ii (nizk and correlation intractability from circular-secure fhe).
Cryptology ePrint Archive, Paper 2018/1248, 2018. https://eprint.iacr.
org/2018/1248. URL: https://eprint.iacr.org/2018/1248.

[CP93] David Chaum and Torben P. Pedersen. Wallet databases with observers. In
Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 89–105.
Springer, Berlin, Heidelberg, August 1993. doi:10.1007/3-540-48071-4_7.

[Cra97] Ronald Cramer. Modular Design of Secure yet Practical Cryptographic Protocols.
PhD thesis, Universiteit van Amsterdam, 1997.

[CS97] Jan Camenisch and Markus Stadler. Proof systems for general statements
about discrete logarithms. Technical Report/ETH Zurich, Department of
Computer Science, 260, 1997.

[Dam02] Ivan Damgård. On Σ-protocols. Lecture Notes, University of Aarhus, Depart-
ment for Computer Science, 84, 2002. URL: https://www.cs.au.dk/~ivan/
Sigma.pdf.

https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/168588.168596
https://toc.cryptobook.us/
https://eprint.iacr.org/2018/1004
https://eprint.iacr.org/2018/1004
https://eprint.iacr.org/2018/1004
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1016/0885-064X(89)90015-0
https://doi.org/10.1016/0885-064X(89)90015-0
https://doi.org/10.1007/978-3-030-84259-8_12
https://eprint.iacr.org/2018/1248
https://eprint.iacr.org/2018/1248
https://eprint.iacr.org/2018/1248
https://doi.org/10.1007/3-540-48071-4_7
https://www.cs.au.dk/~ivan/Sigma.pdf
https://www.cs.au.dk/~ivan/Sigma.pdf

Lior Rotem 19

[DNRS03] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry Stockmeyer. Magic
functions: In memoriam: Bernard m. dwork 1923–1998. Journal of the ACM
(JACM), 50(6):852–921, 2003. doi:10.1145/950620.95062.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86,
volume 263 of LNCS, pages 186–194. Springer, Berlin, Heidelberg, August 1987.
doi:10.1007/3-540-47721-7_12.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge
proof systems. SIAM Journal on Computing, 25(1):169–192, 1996. doi:
10.1137/S0097539791220688.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof-systems (extended abstract). In 17th ACM STOC, pages
291–304. ACM Press, May 1985. doi:10.1145/22145.22178.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all NP-
statements in zero-knowledge, and a methodology of cryptographic protocol
design. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS,
pages 171–185. Springer, Berlin, Heidelberg, August 1987. doi:10.1007/3-5
40-47721-7_11.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge
proof systems. Journal of Cryptology, 7(1):1–32, December 1994. doi:10.100
7/BF00195207.

[Gol01] Oded Goldreich. Foundations of cryptography: volume 1, basic tools, volume 1.
Cambridge university press, 2001.

[GQ90] Louis C. Guillou and Jean-Jacques Quisquater. A “paradoxical” indentity-
based signature scheme resulting from zero-knowledge. In Shafi Goldwasser,
editor, CRYPTO’88, volume 403 of LNCS, pages 216–231. Springer, New York,
August 1990. doi:10.1007/0-387-34799-2_16.

[HLR21] Justin Holmgren, Alex Lombardi, and Ron D. Rothblum. Fiat-Shamir via
list-recoverable codes (or: parallel repetition of GMW is not zero-knowledge).
In Samir Khuller and Virginia Vassilevska Williams, editors, 53rd ACM STOC,
pages 750–760. ACM Press, June 2021. doi:10.1145/3406325.3451116.

[Hol19] Justin Holmgren. On round-by-round soundness and state restoration attacks.
Cryptology ePrint Archive, Paper 2019/1261, 2019. https://eprint.iacr.
org/2019/1261. URL: https://eprint.iacr.org/2019/1261.

[Jof74] Anatole Joffe. On a set of almost deterministic k-independent random variables.
the Annals of Probability, 2(1):161–162, 1974.

[Mau15] Ueli Maurer. Zero-knowledge proofs of knowledge for group homomorphisms.
DCC, 77(2-3):663–676, 2015. doi:10.1007/s10623-015-0103-5.

[NN90] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient construc-
tions and applications. In 22nd ACM STOC, pages 213–223. ACM Press, May
1990. doi:10.1145/100216.100244.

[Oka93] Tatsuaki Okamoto. Provably secure and practical identification schemes and
corresponding signature schemes. In Ernest F. Brickell, editor, CRYPTO’92,
volume 740 of LNCS, pages 31–53. Springer, Berlin, Heidelberg, August 1993.
doi:10.1007/3-540-48071-4_3.

https://doi.org/10.1145/950620.95062
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1137/S0097539791220688
https://doi.org/10.1137/S0097539791220688
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/0-387-34799-2_16
https://doi.org/10.1145/3406325.3451116
https://eprint.iacr.org/2019/1261
https://eprint.iacr.org/2019/1261
https://eprint.iacr.org/2019/1261
https://doi.org/10.1007/s10623-015-0103-5
https://doi.org/10.1145/100216.100244
https://doi.org/10.1007/3-540-48071-4_3

20 Goldreich-Krawczyk Revisited

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In
Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages 387–398.
Springer, Berlin, Heidelberg, May 1996. doi:10.1007/3-540-68339-9_33.

[RS21] Lior Rotem and Gil Segev. Tighter security for schnorr identification and
signatures: A high-moment forking lemma for Σ-protocols. In Tal Malkin and
Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages
222–250, Virtual Event, August 2021. Springer, Cham. doi:10.1007/978-3
-030-84242-0_9.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–252.
Springer, New York, August 1990. doi:10.1007/0-387-34805-0_22.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4(3):161–174, January 1991. doi:10.1007/BF00196725.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266.
Springer, Berlin, Heidelberg, May 1997. doi:10.1007/3-540-69053-0_18.

[WC81] Mark N Wegman and J Lawrence Carter. New hash functions and their use
in authentication and set equality. Journal of computer and system sciences,
22(3):265–279, 1981. doi:10.1016/0022-0000(81)90033-7.

https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/978-3-030-84242-0_9
https://doi.org/10.1007/978-3-030-84242-0_9
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1016/0022-0000(81)90033-7

	Introduction
	Our Contributions
	Additional Related Work

	Preliminaries
	Zero-Knowledge Interactive Proofs
	The Fiat-Shamir Compiler
	Relations, Languages, and Complexity Classes
	k-Wise Independent Hash Functions

	A Lower Bound for Proofs of Knowledge
	A Lower Bound for Interactive Proofs and Arguments
	A Lower Bound for Generic Zero Knowledge
	Generic Simulators
	Schnorr Has No Generic Simulators

	Bibliography
	References

