
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 2, No. 1, 59 pages.

https://doi.org/10.62056/aey7qjp10
Check for updates

Hash-Based Multi-Signatures for Post-Quantum
Ethereum

Justin Drake1, Dmitry Khovratovich1 , Mikhail Kudinova, 2 and
Benedikt Wagner1

1 Ethereum Foundation, Switzerland
2 Eindhoven University of Technology, Netherlands

Abstract. With the threat posed by quantum computers on the horizon, systems like
Ethereum must transition to cryptographic primitives resistant to quantum attacks.
One of the most critical of these primitives is the non-interactive multi-signature
scheme used in Ethereum’s proof-of-stake consensus, currently implemented with
BLS signatures. This primitive enables validators to independently sign blocks, with
their signatures then publicly aggregated into a compact aggregate signature.
In this work, we introduce a family of hash-based signature schemes as post-quantum
alternatives to BLS. We consider the folklore method of aggregating signatures
via (hash-based) succinct arguments, and our work is focused on instantiating the
underlying signature scheme. The proposed schemes are variants of the XMSS
signature scheme, analyzed within a novel and unified framework. While being
generic, this framework is designed to minimize security loss, facilitating efficient
parameter selection. A key feature of our work is the avoidance of random oracles in
the security proof. Instead, we define explicit standard model requirements for the
underlying hash functions. This eliminates the paradox of simultaneously treating
hash functions as random oracles and as explicit circuits for aggregation. Furthermore,
this provides cryptanalysts with clearly defined targets for evaluating the security
of hash functions. Finally, we provide recommendations for practical instantiations
of hash functions and concrete parameter settings, supported by known and novel
heuristic bounds on the standard model properties.
Keywords: Post-Quantum · Ethereum · Multi-Signatures · Hash-Based · Tweak-
able Hash · Poseidon · Succinct Arguments

1 Introduction
Given the looming threat posed by large-scale quantum computers, it is clear that major
systems need to transition to post-quantum cryptography. For instance, if Ethereum1 fails
to update its signatures used for proof-of-stake to a post-quantum secure scheme in time,
a quantum-capable adversary could exploit vulnerabilities, potentially causing damages
worth billions of dollars. Even the perception of such a threat could undermine trust in
the system, eroding user confidence and jeopardizing the integrity of their savings.
Post-Quantum Signatures. A wide range of cryptographic approaches have been
explored to develop post-quantum secure signature schemes. Among these are signatures
based on lattices [DLL+17, LDK+20, PFH+20], codes [Ste94, CFS01], isogenies [DKL+20,

E-mail: justin.drake@ethereum.org (Justin Drake), dmitry.khovratovich@ethereum.org (Dmitry
Khovratovich), mishel.kudinov@gmail.com (Mikhail Kudinov), benedikt.wagner@ethereum.org (Benedikt
Wagner)

aMikhail Kudinov was supported by an NWO VIDI grant (Project No. VI.Vidi.193.066).
1see https://ethereum.github.io/yellowpaper/paper.pdf.

This work is licensed under a “CC BY 4.0” license.
Received: 2025-01-14 Accepted: 2025-03-11

https://doi.org/10.62056/aey7qjp10
https://crossmark.crossref.org/dialog/?doi=10.62056/aey7qjp10&domain=pdf&date_stamp=2025-03-17
https://orcid.org/0009-0001-0347-3378
https://orcid.org/0000-0002-8555-4891
https://orcid.org/0000-0002-4620-7264
mailto:justin.drake@ethereum.org
mailto:dmitry.khovratovich@ethereum.org
mailto:mishel.kudinov@gmail.com
mailto:benedikt.wagner@ethereum.org
https://ethereum.github.io/yellowpaper/paper.pdf
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Hash-Based Multi-Signatures for Post-Quantum Ethereum

DLRW24, SEMR24], multivariate systems of equations [Beu22], or hash functions [BDH11,
BHH+15, BHK+19]. Hash-based signatures, in particular, are appealing for multiple
reasons: minimal assumptions, ease of implementation, conceptual simplicity2, and no
use of complex algebra. In this work, we focus on hash-based signatures as a promising
candidate for Ethereum’s proof-of-stake.
Advanced Signatures. Despite the advantages mentioned above, hash-based signatures
have a significant drawback stemming from their lack of algebraic structure. Namely, they
typically are not amenable for turning them into advanced signature variants, such as
multi-signatures, threshold signatures, or aggregate signatures. For instance, consider
again proof-of-stake in Ethereum, which relies on a non-interactive multi-signature scheme:
validators cast votes for blocks by signing them, and these individual signatures are
aggregated into a single compact signature stored in the accepted block3. Hash-based
signatures do not natively support such aggregation features, posing a challenge for their
direct application in this context.
Aggregating with Succinct Arguments. A potential method for aggregating multiple
signatures involves the use of a succinct argument of knowledge – an argument system
where the argument is significantly smaller than the underlying witness. To aggregate
signatures, one can compute a succinct argument demonstrating knowledge of all individual
valid signatures, with the list of signatures serving as the witness. If succinct argument
systems based on hash functions are employed, the resulting multi-signature scheme can
be plausibly post-quantum secure [CMS19]. Throughout this work, we will call such
argument systems pqSNARKs. Using pqSNARKs to aggregate hash-based signatures is an
elegant and modular approach that can directly take advantage of recent improvements on
hash-based succinct arguments, e.g., [HLP24, ZCF24, ACFY24a]. However, as we explain
next, this approach also introduces several unique challenges in the design of the signature
scheme.
Random Oracle Paradox. If the signature scheme’s verifier relies on random oracles,
a paradox arises when using pqSNARKs for aggregation: in the security proof, the hash
function is modeled as a random oracle, yet it is simultaneously treated as an explicit
circuit to be verified within the pqSNARK. Ignoring this discrepancy has unclear security
implications, relying on a non-standard heuristic.
A Cleaner Approach. To circumvent this paradoxical situation, it is critical to design
the scheme so that the verifier’s circuit avoids invoking any random oracle. Instead, we aim
to prove security of the underlying signature scheme assuming precisely stated standard
model properties of the hash functions employed, such as variants of preimage resistance
or collision resistance. The random oracle model may still be used to build heuristic
confidence in the plausibility of these properties in isolation. However, the security of the
scheme fundamentally rests on a well-defined set of standard model assumptions about the
hash functions. This provides cryptanalysts with concrete targets to analyze. In addition,
it should be the goal to provide security proofs that are as tight as possible. Tighter proofs
reduce the need to compensate for security losses with overly large parameters, resulting
in improved efficiency.
Efficiency Criteria. To efficiently utilize pqSNARKs for aggregation, the underlying
hash-based signature scheme should satisfy the following properties:

• Minimal Hashing. Since the verification process for hash-based signature schemes
is typically dominated by hash function evaluations, the efficiency of aggregation is
heavily influenced by the amount of data that needs to be hashed. Reducing the

2For example, a proof-of-stake setting can benefit from simplicity, as it may enable formal verification
of the verifier implementation.

3To be more precise, Ethereum consensus blocks today contain multiple aggregate signatures, each
representing a large number of individual signatures.

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 3

amount of hashing required for verification is thus critical for optimizing aggregation
performance.

• Small Signatures. The scheme should come with concretely small signatures to
minimize bandwidth consumption of aggregators. For instance, assuming signatures
of size 32 KiB and that Ethereum uses a four-second slot, where one second is
allocated for aggregators to receive signatures4, a committee of, say, 212 signers
would require 230 bits to be received within that second, demanding a bandwidth of
at least 1 GiB/s, which is infeasible as a requirement. Signatures of size, say, below
4 KiB would significantly soften this requirement or allow for larger committees.

1.1 Our Work
In this work, we present and analyze hash-based non-interactive multi-signature schemes
suitable for post-quantum proof-of-stake. To this end, we extensively study hash-based
signature schemes meeting the criteria above. Below, we briefly summarize our technical
contributions.
Overall Paradigm. We consider the classical approach of turning one-time signatures5,
such as Winternitz signatures, into many-time signatures, which originates in Merkle’s
PhD thesis [Mer79] and is used in XMSS [BDH11]. The idea is as follows: the signer uses
a Merkle tree to commit to a long sequence of one-time public keys, and the Merkle root
serves as the (many-time) public key. To sign the ith message, the signer signs the message
with the ith one-time secret key and also includes the one-time public key and a Merkle path
in the signature. Note that this yields a synchronized (sometimes called stateful) signature
scheme [GR06], where signing and verification are tied to specific epochs, with at most one
signature per epoch. Such schemes are well-suited for applications like proof-of-stake, as
noted6 in prior works [FSZ22, FHSZ23]. Building on this, we transform the synchronized
signature scheme into a non-interactive multi-signature scheme by aggregating signatures
using succinct arguments. We formally prove the security of this folklore transformation
under the assumption of adaptive knowledge soundness of the succinct argument system.
The main focus of the paper, however, is the underlying signature scheme.
Unified Analysis Framework. Although the security of the XMSS paradigm can be
generically reduced to the one-time security of the underlying one-time signature, such
an analysis tends to be overly loose, leading to inefficient concrete parameters. On the
other hand, performing detailed security analyses for each variant of XMSS individually
would be too labor-intensive. To address this, we introduce a generalized framework
for XMSS based on a novel primitive we term incomparable encodings. This abstraction
allows us to unify and streamline the analysis of XMSS-like schemes. Subsequently, we
instantiate incomparable encodings in multiple ways, yielding a set of schemes. Crucially,
we carefully designed this abstraction to enable achieving the most efficient parameters
possible. Our framework extends similar existing frameworks [BS20, ZCY23] to enable
more instantiations, e.g., by allowing randomized encodings and encoding errors.
Analysis in the Standard Model. In our framework, we show that (strong) unforge-
ability follows from a set of simple standard-model assumptions on the underlying hash
function. Notably, previous analyses do not directly apply to our setting. For instance, the
tightest security bounds for XMSS rely on modeling message hashing as a reprogrammable
random oracle [HK22, HKRY23].

4During each slot, a block must be proposed, distributed to validators, signed, signatures have to be
aggregated, and the aggregate signature propagated.

5A one-time signature remains secure if at most one honestly generated signature is exposed to the
adversary.

6Note that in proof-of-stake, validators sign one block per epoch, and signing twice per epoch is
considered malicious behavior and punished.

4 Hash-Based Multi-Signatures for Post-Quantum Ethereum

Instantiation, Parameter Requirements, and New Bounds. To complete the
picture and get a concrete proposal for Ethereum, we discuss how to instantiate the
hash functions using either SHA-3 (the conservative option) or Poseidon2 (the modern
alternative). We also show how to select appropriate output lengths and other parameters
to achieve a certain security level. To accomplish this, we leverage existing heuristic bounds
and derive new ones, using the (quantum and classical) random oracle model. We conclude
with a discussion about the efficiency of our proposed instantiations.

1.2 Outline
We structure this paper as follows. In section 2, we summarize the relevant related work
and explain how our work compares to it. We also discuss which other approaches may be
suitable candidates for post-quantum proof-of-stake. In section 3, we introduce the relevant
technical background, including definitions for tweakable hash functions, signatures, and
non-interactive multi-signatures. We present and analyze a generalized variant of XMSS
signatures and multi-signatures in section 4. For that, we introduce a new abstraction
that we call incomparable encodings. We then instantiate these encodings in section 5,
leading to several variants of XMSS. In sections 6 and 7, we explain how to set concrete
parameters, e.g., output lengths of hash functions for a desired security level, and how to
implement tweakable hash functions. We give benchmarks in section 8 and conclude in
section 9.

2 Related Work and Alternative Approaches
Before going into the technical details of our work, we discuss how our work compares to
previous works on hash-based signatures. We also discuss other post-quantum aggregate-
and multi-signatures, e.g., from lattices, and assess whether they are suited for a large
scale proof-of-stake setting.

2.1 Aggregation using Succinct Arguments
The idea of using generic succinct arguments to aggregate signatures is somewhat folk-
lore and not new to our work. For instance, [ACL+22] introduces lattice-based succinct
arguments and informally mentions the potential application of aggregating GPV signa-
tures [GPV08]. This idea has also received increased formal attention within the context
of batch arguments, as we explain next.
Batch Arguments for NP. In a (non-interactive) batch argument, we consider a prover
and a verifier holding n public statements stmt1, . . . , stmtn, and the prover additionally
holding the respective witnesses witn1, . . . , witnn, where (stmti, witni) ∈ Γ for some relation
Γ. The goal is for the prover to succinctly convince the verifier of knowledge of all valid
witnesses via a publicly verifiable argument string. Importantly, the argument size should be
significantly smaller than the combined size of all witnesses. This framework is particularly
well-suited for applications like signature aggregation, where the witnesses witni correspond
to signatures and the statements stmti to public keys. Batch arguments can also be
viewed as specialized succinct non-interactive arguments of knowledge (SNARKs) tailored
for highly structured relations derived from Γ. The key advantage of batch arguments
over generic SNARKs lies in avoiding the use of non-falsifiable assumptions, which are
typically required for general SNARK constructions [GW11]. Achieving this efficiency from
falsifiable assumptions requires a weaker form of the proof of knowledge property, called
somewhere extraction. Intuitively, it requires that one can set up the common reference
string with respect to an index i∗ (without revealing i∗), such that an extractor can later
extract the witness witni∗ .

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 5

Waters and Wu [WW22], followed by the work of Devadas et al. [DGKV22], have
constructed batch arguments for NP, and aggregate signatures in the standard model as
an application. Their results established that somewhere extraction suffices to construct
aggregate signatures. Notably, [WW22] relies on pairing-friendly groups and is therefore
not post-quantum secure. Conversely, [DGKV22] is based on lattices and allows multi-hop
aggregation (i.e., aggregating aggregates). Unfortunately, it makes use of heavy crypto-
graphic machinery and is therefore far from being a candidate for practical deployment.
Turning it into a concretely efficient and practical scheme is an interesting direction for
future work. Recent advancements include more expressive policies. For instance, in
monotone-policy batch arguments [BBK+23], the prover can show that enough of the
statements hold. A promising application of this are monotone-policy aggregate signa-
tures [BCJP24]. Here, one can publicly derive a succinct verification key that combines
all individual public keys and we can still verify that a large enough subset signed a
message, which is what we ultimately want in the proof-of-stake setting. In contrast, using
non-interactive multi-signatures we also need to publish a bit vector that indicates who
signed along with the aggregate signature. While this is a great improvement in terms of
(asymptotic) efficiency, it comes at the cost of losing accountability. It is also not clear
how these relatively novel constructions perform in practice.

Aggregating Hash-Based Signatures with SNARKs. The work most closely related
to ours is the recent study by Khaburzaniya et al. [KCLM22], which employs pqSNARKs to
construct hash-based aggregate and threshold signatures. At a high level, their goals align
closely with ours, as both approaches non-interactively aggregate hash-based signatures
using pqSNARKs. Despite these similarities, we view our contributions as complementary
rather than overlapping. Khaburzaniya et al. focus primarily on optimizing the arith-
metization (specifically, the Algebraic Intermediate Representation, AIR) of the verifier’s
circuit for use in a pqSNARK. In contrast, our focus are the underlying signature schemes
themselves. We assume a generic pqSNARK framework and delve into concrete security
and rigorous security proofs, explicitly stating standard model assumptions that the hash
functions need to satisfy, as well as the exact security properties that are required for the
pqSNARK. Additionally, our work explores trade-offs between hashing operations and sig-
nature size, offering a broader analysis of the design space. A significant difference between
our approaches is the type of signatures being aggregated. Khaburzaniya et al. aggregate
only one-time signatures, whereas our work covers aggregating synchronized many-time
signatures. Furthermore, their underlying one-time signature scheme is Winternitz with
one-bit chunks. This choice minimizes the number of hash invocations, but it results in
a substantial individual signature size of approximately 8 KiB. The authors argue that
individual signature size is less critical than the computational cost of hash operations. In
contrast, our analysis simultaneously considers a variety of trade-offs between hashing and
signature size. We emphasize that individual signature size plays a crucial role in settings
with a lot of signers, especially in reducing bandwidth requirements for the aggregating
party. Another key distinction lies in the level of rigor. Khaburzaniya et al. provide
convincing proof sketches and intuitive arguments but do not present formal security
definitions or analyses. In contrast, we prioritize concrete security and robust formal
definitions, ensuring our scheme meets strong security guarantees and parameters can be
set in a theoretically sound way. This level of rigor is essential for schemes intended for
deployment in major blockchains like Ethereum. Clearly stating assumptions about the
underlying hash functions is particularly important when relying on newer hash functions
such as Poseidon. Finally, combining their advancements in verifier circuit optimization
with our in-depth study of signature schemes may be a promising direction for future
research.

6 Hash-Based Multi-Signatures for Post-Quantum Ethereum

2.2 Hash-Based Signatures
In this section, we discuss related hash-based constructions, highlight the challenges of
reusing parts of their analysis, and explain how our results and analysis differ.
SPHINCS, XMSS, and One-Time Signatures. The schemes most relevant and closely
related to our work are SPHINCS+ [HBD+22], SPHINCS+C [HKRY23], XMSS [BDH11,
HBG+18], and rapidly verifiable XMSS [BHRvV21]. One of our key observations is that, in
the proof-of-stake setting where validators sign only once per slot7, a synchronized scheme
suffices. This eliminates the need for the additional complexity inherent in SPHINCS+

and SPHINCS+C. Instead, we can adopt a much simpler XMSS-like structure, which
enables significantly more efficient aggregation using succinct arguments.
Hash-Efficient Variants. As outlined in the introduction, one of our primary goals
is to design a scheme with a minimal number of hashes required for verification. Both
SPHINCS+C and rapidly verifiable XMSS address reduced verification time by focusing on
lowering the verifier’s hash complexity. Specifically, the SPHINCS+C paper introduces a
variant of Winternitz one-time signatures that eliminates the checksum, also discussed and
applied to XMSS in [ZCY23]. We adopt this idea in our target sum Winternitz instantiation
within our generalized XMSS framework. In contrast, rapidly verifiable XMSS retains the
checksum but probabilistically reduces the number of verification hashes for honest signers.
However, this reduction is not mandatory, as signatures remain verifiable even if the signer
uses plain Winternitz, unless additional complex checks are imposed. Given this, we favor
the simpler approach inspired by SPHINCS+C.

In [ZCY23], the authors have analyzed the constant-sum encoding approach and showed
that it achieves the optimal encoding rate when the chain elements sum to half of the
maximally allowable value. While this configuration offers the best encoding rate, we also
focus on reducing verification time, particularly by minimizing the number of required
hash computations, even at the cost of slightly increased signing time. To this end, we
allow for the flexibility to select a target value larger than half of the maximally allowable
value. As discussed earlier, our work provides a security proof for a generalized XMSS
framework that works with any incomparable encoding scheme.
Generic Yet Tight Analysis without Random Oracles. Integrating the SPHINCS+C
methodology with existing XMSS analyses presents a key challenge to us: achieving
the tightest possible security reduction without relying on random oracles. Addressing
this requires adapting existing security proofs and combining techniques from earlier
works. Although neither SPHINCS+ nor SPHINCS+C rely on random oracles to prove
security [HK22, HKRY23], we cannot directly reuse their proofs. In both schemes, the
integrated XMSS structure is proven secure only under the weaker notion of known message
attacks. While this suffices when XMSS is used within SPHINCS+, it falls short when XMSS
operates independently. In contrast, the security proofs for XMSS [BDH11, BHRvV21]
rely on modeling message hashing as a reprogrammable random oracle. This effectively
reduces security against chosen message attacks to security against known message attacks.
To address this, we combine elements of earlier proofs (e.g., [Hül13, KKF21]) with modern
techniques to achieve a tighter security reduction without relying on random oracles.
Furthermore, we ensure our analysis is sufficiently general to support multiple instantiations.
This is accomplished by introducing a generalized XMSS framework. We compare this
with similar existing concepts in remark 4.
Strong Unforgeability. An additional novelty of our work is that we analyze strong
unforgeability security of our generalized XMSS scheme. In contrast, all other proofs (to
our knowledge) only focus on existential unforgeability. Proving the strongest possible
security notion is important when a scheme is meant to be used in a complex system like
Ethereum. We have found a work [BDE+11] that analyzes Winternitz one-time signatures

7Throughout the paper, we will use the terms slot and epoch interchangeably.

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 7

with regards to strong unforgeability. However, the result is given for a less efficient variant
of Winternitz scheme and can not be transferred directly to modern versions of Winternitz.
So we could not use that in our proofs.
Other Hash-Based Constructions. A recent paper by Atapoor et al. [AdSGK24]
briefly mentions aggregating hash-based signatures using succinct arguments. The main
contribution of their work is to propose a hash-based signature scheme where the public
key is derived from the secret key via a one-way function, and the signature consists of
a succinct zero-knowledge proof of knowledge of the secret key, tagged with the message.
This approach employs succinct arguments for individual signatures, requiring argument
recursion and thus proofs about random oracle relations for aggregation. By contrast, our
approach is significantly simpler, avoiding such recursive arguments.

2.3 Other Post-Quantum Aggregate and Multi-Signatures
While hash-based signatures are appealing, as already explained in the introduction, we
still want to discuss multi-signatures based on other post-quantum assumptions such as
lattices or isogenies. We identify a few examples of lattice-based constructions that warrant
further investigation as alternatives to our hash-based proposal. However, parameter
selection for deploying lattice-based constructions is notably more error-prone compared
to purely hash-based approaches.
Fiat-Shamir and Friends. Using any signature scheme based on the Fiat-Shamir
heuristic [FS87] in combination with a succinct argument would cause the paradoxical
situation mentioned in the introduction. Namely, one would, at the same time, treat
hash functions as random oracles and as explicit circuits. In particular, this applies
to Dilithium [DLL+17, LDK+20] and to MPC-in-the-head and VOLE-in-the-head sig-
natures such as FAEST [BBd+23] or Biscuit [BKPV23]. It also holds for Falcon signa-
tures [PFH+20] if random seeds are used. A variant of Falcon without random seeds
in combination with a pqSNARK would be a reasonable route for further exploration,
because in this case the random oracle can be evaluated on the message outside of the
circuit that is proven.
Non-Interactive Constructions. Boneh and Kim [BK20] have proposed two lattice-
based constructions: one enables non-interactive aggregation of Lyubashevsky and Mic-
ciancio’s one-time signatures [LM08], while the other supports many-time signatures but
requires interaction. The MMSAT scheme [DHSS20] achieves asymptotically linear-size
aggregate signatures, with size O(log k) + 2nk for k signers and security parameter n.
For moderate values of k (e.g., k = 1000), these signatures can be significantly smaller
than pqSNARKs. The scheme is based on a somewhat exotic lattice assumption called
Vandermonde-SIS.

Another line of work constructs lattice-based non-interactive multi-signatures in a
synchronized setting [FSZ22, FHSZ23]. The authors explain that the synchronized setting
is well-suited for a proof-of-stake application and we follow this observation. Their approach,
akin to lattice-based XMSS, uses a homomorphic Merkle tree for aggregation. However,
individual signatures exceed 32 KiB, making them impractical for our setting, as noted in
the introduction.

A promising approach involves aggregating Falcon signatures [PFH+20] using the lattice-
based proof system LaBRADOR [BS23], as explored in recent works [TS23, AAB+24]. This
method achieves compact individual and aggregate signatures. However, its security proofs
rely on rewinding, which has unclear implications in the post-quantum setting [LMQW22].

We suspect that recent lattice-based folding schemes [BC24, FKNP24] are a good
starting point for further research on constructing lattice-based non-interactive signature
aggregation.

8 Hash-Based Multi-Signatures for Post-Quantum Ethereum

Interactive Constructions. In addition to the non-interactive constructions mentioned
above, a number of post-quantum multi-signature schemes employ interactive signing
protocols [DOTT21, Che23, LLL+24, ADP24, DFMS24]. These protocols require multiple
rounds of interaction, introducing additional latency as well as operational overhead related
to maintenance and scheduling, particularly in asynchronous networks. By contrast, non-
interactive protocols that support public aggregation of individual signatures mitigate
these challenges. They enable multiple redundant aggregators to independently collect and
merge signatures within predefined time frames, simplifying coordination and reducing
complexity.

A middle ground between non-interactive and interactive signing is achieved when
a single message-independent preprocessing round is required per signature. Once this
preprocessing is completed, the message can be signed in a non-interactive, publicly
aggregatable manner. In such schemes, the preprocessing phase can occur well in advance
of the time-critical path, allowing the scheme to function like a non-interactive protocol
once the message to be signed becomes available. We are aware of one example of such a
scheme in the lattice setting [BTT22]. However, it suffers from significant communication
complexity, especially in the preprocessing round, requiring a per-signer outgoing broadcast
size of 3500 KiB for 1024 signers, as reported in [Che23].

3 Preliminaries
As common, we use N,R to denote the natural and real numbers, respectively. We use
the notation [L] := {1, . . . , L} ⊆ N to denote the first L natural numbers. We use the
notation s $← S to state that s is sampled uniformly at random from S, where S is a
finite set. For a distribution D, x ← D means that x is sampled from D. Let D1,D2
be distributions on the same support X . Then, their statistical distance is defined as
1
2

∑
x∈X |Pr [D1 = x]− Pr [D2 = x]|. We often write PrG [E] or Pr [E | G] to denote the

probability that some event E occurs in the experiment G. We denote the event that
an experiment G outputs a bit b by G ⇒ b. For a probabilistic algorithm A, we write
y := A(x; ρ) to denote that A outputs y on input x with random coins ρ, and y ← A(x)
if ρ is sampled uniformly at random from the algorithms randomness space. We use the
notation y ∈ A(x) to denote that there are random coins ρ such that A outputs y on
input x with these coins ρ. We denote the running time of an algorithm A by T(A). We
often require algorithms to be efficient, which is not a formally well-specified term, as we
are not working in the realm of asymptotic security. However, we assume the reader to
have an intuitive understanding of what it means, and it means at least that the running
time is a polynomial in its input size. We assume that all algorithms and adversaries have
(implicit) access to a set of public system parameters par. Unless specified otherwise, all
oracles that algorithms obtain should be understood as classical oracles, i.e., algorithms
have classical access to these oracles. In all experiments and security games, we implicitly
initialize numerical variables with 0, and lists, maps, and sets as empty. We say that a
function F is efficiently computable if there is an efficient algorithm that computes F .

3.1 Tweakable Hash Functions
In [BHK+19], the notion of tweakable hash functions has been introduced. The idea is to
unify the description of the way hashing is done in different hash-based signatures. This
abstraction is similar to the definition of keyed hash functions, although tweakable hash
functions have three inputs instead of two. The first is called a public parameter P ∈ P
and is usually meant to be random, and the same for all the hash function calls related
to a user in a hash-based signature. The second input is a tweak T ∈ T . A tweak is a
deterministic value for domain separation that distinguishes different hash function calls

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 9

in the scheme. One way to think of it is as a unique identifier or an address of a hash
function call. The last input is the message that we want to hash.

Definition 1 (Tweakable Hash Function). Consider sets H (the hash space), P (the public
parameters space), T (the tweak space), and let M (the message space). A tweakable
hash function is an efficiently computable function

Th : P × T ×M→ H.

The first property we define for tweakable hash functions, called ϵ-uniformity, is
statistical in nature and serves to bound the efficiency of the signature construction.
Specifically, we require that the outputs of tweakable hash functions are distributed close
to uniformly, assuming parts of the input message are sampled at random. We state
this property as a worst-case condition over all parameters (and tweaks and messages).
However, for practical hash functions, this property might only hold for most parameters,
with exceptions being rare and hard to find. It is important to note that we utilize this
property solely to establish a theoretical bound on correctness in section 5.2. This, in
turn, impacts the number of retries a signer might need, making it a factor of efficiency.
The number of retries will in practice be chosen based on experiments, and can even
differ from signer to signer. We could have opted for a cleaner approach involving an
adversarial correctness notion throughout the paper, but this would result in a significantly
less readable presentation.

Definition 2 (Uniformity). Let Th : P × T ×M → H be a tweakable hash function,
where M =M0 ×R. We say that Th is ϵ-uniform for seed space R if for all P ∈ P, all
T ∈ T , and all m ∈M0, the following two distributions have statistical distance at most ϵ:

{x | x $← H} and {Th(P, T, (m, ρ)) | ρ $← R}.

To prove the security of hash-based signatures we will rely on certain security properties
of tweakable hash functions. Concretely, we will use established properties that have also
been used to prove the security of SPHINCS+ in [HK22]:

• single-function, multi-target collision resistance for distinct tweaks;

• single-function, multi-target preimage resistance for distinct tweaks;

• single-function, multi-target undetectability for distinct tweaks.

All three notions allow the adversary to specify the tweaks used in challenges, but the
adversary must not reuse a tweak. The first notion we define is single-function, multi-target
collision resistance (for distinct tweaks). Here, the adversary first gets access to an oracle
that evaluates the tweakable hash function for a random public parameter P not known to
the adversary. In the second stage, the adversary learns this parameter P and is supposed
to find a collision to one of the images that it obtained before.

Definition 3 (Multi-Target Collision Resistance). Let Th : P×T ×M→ H be a tweakable
hash function as defined in definition 1. Let A be a (stateful) algorithm, and p ∈ [|T |].
Consider the following experiment SM-TCRTh,p(A):

1. Generate a random public parameter P $← P.

2. Run A with (classical) access to an oracle that takes T ∈ T and M ∈M and works
as follows:

• If |Q| ≥ p or there is an M ′ ∈M with (T, M ′) ∈ Q, return ⊥.

10 Hash-Based Multi-Signatures for Post-Quantum Ethereum

• Otherwise, insert (T, M) into the list Q and output Th(P, T, M).

3. When A signals to continue, then continue running A with input P , but without the
oracle access.

4. Obtain from A an output (j, M) with M ∈M, j ∈ [|Q|]. Denote the jth entry in Q
by (Tj , Mj).

5. Output 1 if Th(P, Tj , Mj) = Th(P, Tj , M) and M ̸= Mj . Otherwise, output 0.

For any such algorithm A, we define the following success probability:

AdvSM-TCR
Th,p (A) := Pr[SM-TCRTh,p(A)⇒ 1].

The second security notion that we need for is a form of preimage resistance, namely,
single-function, multi-target preimage resistance. We give a general definition here but we
will use it only for a single target. In this notion, the adversary again gets an oracle, but
this oracle now chooses the message randomly, and the goal of the adversary in the second
stage is to find any preimage.

Definition 4 (Multi-Target Preimage Resistance). Let Th : P×T ×M→ H be a tweakable
hash function as defined in definition 1. Let A be a (stateful) algorithm, M′ ⊆M, and
p ∈ [|T |]. Consider the following experiment SM-PRETh,M′,p,(A):

1. Generate a random public parameter P $← P.

2. Run A with (classical) access to an oracle that takes T ∈ T and works as follows:

• If |Q| ≥ p or there is an x′ ∈M′ with (T, x′) ∈ Q, return ⊥.
• Otherwise, sample x $←M′, insert (T, x) into the list Q and output Th(P, T, x).

3. When A signals to continue, then continue running A with input P , but without the
oracle access.

4. Obtain from A an output (j, M) with M ∈M′, j ∈ [|Q|]. Denote the jth entry in Q
by (Tj , xj).

5. Output 1 if Th(P, Tj , M) = Th(P, Tj , xj). Otherwise, output 0.

For any such algorithm A, we define the following advantage:

AdvSM-PRE
Th,M′,p(A) := Pr[SM-PRETh,M′,p(A)⇒ 1].

The third notion we consider is undetectability. Intuitively, undetectability states that
the hash function output is indistinguishable from random. As with preimage resistance
we will only utilize a single-target version of the following notion.

Definition 5 (Multi-Target Undetectability). Let Th : P × T ×M→ H be a tweakable
hash function as defined in definition 1. Let A be a (stateful) algorithm, M′ ⊆M, and
p ∈ [|T |]. Consider the following experiment SM-UDTh,M′,p(A):

1. Sample b $← {0, 1} and P $← P.

2. Run A with (classical) access to an oracle that takes T ∈ T and works as follows:

• If |Q| ≥ p or T ∈ Q, return ⊥. Otherwise, insert T into the list Q.
• If b = 0, sample x $←M′ and return y := Th(P, T, x).
• If b = 1, return y $← H.

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 11

3. When A signals to continue, then continue running A with input P , but without the
oracle access.

4. Obtain from A a bit b′ ∈ {0, 1} and output b′.

For any such algorithm A, we define the following advantage:

AdvSM-UD
Th,M′,p(A) = |Pr [SM-UDTh,M′,p(A)⇒ 1 | b = 0]

−Pr [SM-UDTh,M′,p(A)⇒ 1 | b = 1] |.

We also introduce a new notion, which we will use it in section 5. Looking ahead,
we will use a tweakable hash function in encodings that we use during signing, and
the new notion will be essential to bound the probability that an adversary finds two
messages with the same encoding. To capture multiple instantiations, some inspired
by [HKRY23, BHRvV21, GHHM21], we want to allow the encoding to be randomized
and fail with a certain probability. If the encoding fails, the signer will re-hash the
message in combination with a new randomness. To model this, our new definition is
parameterized by a predicate Prop that tells the hash oracle in the game when to return
a digest and randomness. In our application, this predicate will tell if the encoding has
succeeded. It is worth mentioning that if we set K = 1 and Prop to be constantly 1,
then our new notion matches multi-target extended target-collision resistance with nonce
(nM-eTCR) [GHHM21].

Definition 6 (Multi-Target Collision Resistance with Random Sampling). Let K ∈ N be
an integer. Let Th : P ×T × (M×R)→ H be a tweakable hash function, where the input
is split into a message part M ∈M and a randomness part ρ ∈ R. Let Prop : H → {0, 1}
be a function that represents some property on the output space. Let A be a (stateful)
algorithm, and p ∈ [|T |]. Consider the following experiment SM-rTCRK

Th,p,Prop(A):

1. Generate a random public parameter P $← P.

2. Run A with an input P and with (classical) access to an oracle that takes T ∈ T
and M ∈M and works as follows:

• If |Q| ≥ p or there is a tuple (T, M ′, ρ′) ∈ Q, for some M ′, ρ′, then return ⊥.
• Otherwise, set ctr := 0 and x := ⊥. While ctr < K and x = ⊥:

(a) Sample ρ $← R.
(b) Set x := Th(P, T, M, ρ).
(c) If Prop(x) = 1: Insert (T, M, ρ) into Q.
(d) Else: Set x := ⊥, ρ := ⊥.
(e) Set ctr := ctr + 1.

• If x = ⊥: Insert (T, M,⊥) into Q.
• Output (x, ρ).

3. Obtain from A an output (j, M∗, ρ∗) with M ∈M, j ∈ [|Q|]. Denote the jth entry
in Q by (Mj , Tj , ρj).

4. Output 1 if Th(P, Tj , Mj , ρj) = Th(P, Tj , M∗, ρ∗) and (M∗, ρ∗) ̸= (Mj , ρj). Other-
wise, output 0.

For any such algorithm A, we define the following advantage:

AdvSM-rTCR,K
Th,p,Prop (A) := Pr[SM-rTCRK

Th,p,Prop(A)⇒ 1].

12 Hash-Based Multi-Signatures for Post-Quantum Ethereum

Table 1: Upper bounds on the success probability of an adversary against properties of
tweakable hash functions Th : P × T ×M→ H, when the hash function is modeled as a
(classical or quantum) random oracle. For SM-rTCR, we assume M =M0 ×R. Here, q is
the number of (quantum or classical) queries to the hash function and p is the number of
classical queries to the challenge oracle, K denotes the number of queries the challenge
oracle in SM-rTCR makes to the hash function. We set q′ := q + pK. We will only apply
undetectability and preimage resistance for the case |M′| = |H|.

Classical Bound Reference Quantum Bound Reference

AdvSM-TCR
Th,p (A) 2q+1

|H| + 2q
|P| Section E 32(q+1)2

|H| + 32q2

|P| [HK22], Section E
AdvSM-PRE

Th,M′,p=1(A) q+1
|H| + q+1

|M′| [HRS16, BHK+19] 8(q+1)2

|H| + 12(q+1)√
|M′|

Section F

AdvSM-UD
Th,M′,p=1(A) q

|M′| [Hül13, DSS05] 12q√
|M′|

[HK22], Section C

AdvSM-rTCR,K
Th,p,Prop (A) (q′+1)

|H| + q′·pK
|R| Section D 8(q′+1)2

|H| + 3pK
2 ·

√
q′

|R| Section D

Heuristic Analysis. In our work, we will reduce the security of hash-based signature
schemes to the security of the presented properties of tweakable hash functions. However,
to give concrete security levels and deduce parameters one needs to estimate the complexity
of breaking these properties. To this end, we present bounds in table 1, assuming the
tweakable hash is heuristically modeled as a classical or quantum random oracle [BDF+11].
Some of these bounds are novel and proven in the Supplementary Material. For others we
had to revisit the proofs to ensure they work for general input and output spaces. One
example is for preimage resistance. The security analysis of this notion in the quantum
random oracle was previously based on a conjecture (see [BH19, BHK+19, HK22]). We
provide a security analysis without any conjecture. Another example is for target collision
resistance. Here, a security bound against a quantum adversary was given in [HK22]. We
give a bound against classical adversary in section E and update the quantum bound to
work for sets P of arbitrary size. We also revisit the security bound for undetectability
in section C, to show that the proof from [HK22] still applies for arbitrary tweakable hash
functions, without restrictions on input and output domains.

3.2 Signatures and Multi-Signatures
We now turn to defining signatures and the object we ultimately aim to construct, namely,
non-interactive multi-signatures. As already explained in previous works [FSZ22, FHSZ23],
in the proof-of-stake setting it is sufficient to consider signatures and multi-signatures in
the synchronized setting [GR06, AGH10, HW18, DGNW20]. In these schemes, signatures
are computed and verified with respect to an epoch ep ∈ [L], where L denotes the lifetime
of a key, and we assume that every signer only signs one message per epoch, and that we
only aggregate signatures on the same message (as usual in multi-signatures) and for the
same epoch.

Definition 7 (Synchronized Signature Scheme). Let L ∈ N be a natural number. A
synchronized signature scheme with lifetime L is a tuple of efficient algorithms SIG = (Gen,
Sig, Ver) with the following syntax:

• Gen(par)→ (pk, sk) takes as input system parameters par and outputs a public key
pk and a secret key sk.

• Sig(sk, ep, m)→ σ takes as input a secret key sk, an epoch ep ∈ [L], and a message
m ∈ {0, 1}lmsg and outputs a signature σ.

• Ver(pk, ep, m, σ) → b is deterministic, takes as input a public key pk, an epoch
ep ∈ [L], a message m ∈ {0, 1}lmsg , and a signature σ, and outputs a bit b ∈ {0, 1}.

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 13

Further, we say that SIG has correctness error at most δ, if for all (pk, sk) ∈ Gen(par), all
epochs ep ∈ [L], and all messages m ∈ {0, 1}lmsg we have

Pr [Ver(pk, ep, m, σ) = 0 | σ ← Sig(sk, ep, m)] ≤ δ.

Remark 1 (Message Length). Note that throughout the paper, we consider signatures
with respect to messages of a fixed length lmsg. This is without loss of generality, as
arbitrarily long messages can first be compressed using any collision resistant hash function.
Clearly, this compression can be done outside of any pqSNARK circuit, and the compressed
message is an input to the circuit.

Definition 8 (Synchronized Security). Let SIG = (Gen, Sig, Ver) be a synchronized signa-
ture scheme with lifetime L, let A be any algorithm. Consider the following experiment
SY-UF-CMASIG(A):

1. Generate keys (pk, sk)← Gen(par).

2. Run A on input par and pk, and with (classical) access to the following oracle:

• Sig(ep, m) for ep ∈ [L], m ∈ {0, 1}lmsg : If Signed[ep] ̸= ⊥, then return ⊥.
Otherwise, compute σ ← Sig(sk, ep, m), set Signed[ep] := (m, σ) and return σ.

3. Obtain from A a forgery (ep∗, m∗, σ∗) with ep∗ ∈ [L] and m∗ ∈ {0, 1}lmsg . Output
1 if it holds that Ver(pk, ep∗, m∗, σ∗) = 1 and (m∗, σ∗) ̸= Signed[ep∗]. Otherwise,
output 0.

For any algorithm A, we define the following advantage:

AdvSY-UF-CMA
SIG (A) := Pr [SY-UF-CMASIG(A)⇒ 1].

Remark 2 (Strong Unforgeability). Our definition models strong unforgeability, i.e., a
forgery is even considered valid if it is for a message that has been queried before, but
with a new signature.

In a non-interactive multi-signature, we require that individual signatures on the same
message can be publicly aggregated into an (ideally, short) aggregate signature. The
aggregate signature can then be verified with respect to the list of public keys. Again,
we consider the synchronized setting. We denote the aggregation algorithm by Aggregate
and postpone the formal definition of synchronized (non-interactive) multi-signatures to
section A.1.

3.3 Merkle Trees
We recall Merkle trees, implemented using tweakable hash functions. Abstractly, a Merkle
tree represents a vector commitment, namely, a succinct commitment to a sequence of
values, for which any value can later be opened using a short opening. In the case of a
Merkle tree, this opening is called a Merkle path.

Construction 1 (Merkle Tree). Let L be a set and Th : P × T ×M→ H be a tweakable
hash function with L ⊆M and H2 ⊆M. The Merkle tree using Th with 2h leafs in leaf
space L is defined by the following set of algorithms:

• BuildTree(P, x1, . . . , x2h) → ((Xl,i−1)i∈[2h−l])l∈[h], where P ∈ P and xj ∈ L for all
j ∈ [2h]:

1. s := 2h

14 Hash-Based Multi-Signatures for Post-Quantum Ethereum

2. For i ∈ [2h]: X0,i−1 := Th(P, tweakmt(0, i− 1), xi)
3. For l ∈ [h]:

(a) s := s/2
(b) For i ∈ {0, . . . , s− 1}: Xl,i := Th(P, tweakmt(l, i), (Xl−1,2i, Xl−1,2i+1))

• Root(P, x1, . . . , x2h)→ root, where P ∈ P and xj ∈ L for all j ∈ [2h]:

1. ((Xl,i−1)i∈[2h−l])l∈[h] := BuildTree(P, x1, . . . , x2h)
2. root := Xh,0

• Path(P, x1, . . . , x2h , i)→ path, where P ∈ P, xj ∈ L for all j ∈ [2h] and i ∈ [2h]:

1. ((Xl,i−1)i∈[2h−l])l∈[h] := BuildTree(P, x1, . . . , x2h)
2. î := i− 1
3. For l ∈ {0, . . . , h− 1}:

(a) sibl[l] := î⊕ 0x01
(b) î := ⌊̂i/2⌋

4. path := (Xl,sibl[l])0≤l<h

• VerPath(P, root, i, x, path)→ b, where P ∈ P, x ∈ L and i ∈ [2h]:

1. Write path := (X̂l)0≤l<h

2. X := Th(P, tweakmt(0, i− 1), x), î := i− 1
3. For l ∈ {0, . . . , h− 1}:

(a) If î mod 2 = 0: X := Th(P, tweakmt(l + 1, ⌊̂i/2⌋), (X, X̂l))
(b) If î mod 2 = 1: X := Th(P, tweakmt(l + 1, ⌊̂i/2⌋), (X̂l, X))
(c) î := ⌊̂i/2⌋

4. b := 0, if X = root: b := 1

Here, tweakmt : {0, . . . , h} × {0, . . . , 2h − 1} → T denotes a fixed publicly known injective
mapping.
Remark 3 (Time-Space Trade-Offs). A signer could decide to store some (or all) of the
inner nodes of the Merkle tree, to avoid recomputing the entire tree in algorithm Path.
Lemma 1 (Correctness of Merkle Trees). Consider a Merkle tree with 2h leafs in leaf
space L as defined in Construction 1. Then, for every x1, . . . , x2h ∈ L and every i ∈ [2h],
we have

VerPath(Root(x1, . . . , x2h), i, xi, Path(x1, . . . , x2h , i)) = 1.

Proof. This follows by inspection.

3.4 Non-Interactive Argument Systems
We will make black-box use of non-interactive argument systems for our multi-signature
construction, while the focus of our work is to explore the security and efficiency of
hash-based candidates for the underlying signature scheme. Nonetheless, finding a secure,
efficient, and conceptually simple instantiation of such argument systems will be a necessary
next step on the road to post-quantum proof-of-stake. The formal definition of non-
interactive argument systems and their security (specifically, adaptive knowledge-soundness)
is postponed to section A.2. Intuitively, such a system allows a prover holding a statement-
witness pair (stmt, witn) ∈ Γ in some relation Γ to produce an argument string π via an
algorithm ArgProve. The verifier, which only holds the statement stmt can then check this
argument string via an algorithm ArgVer. If it outputs 1, the verifier is convinced that the
prover indeed knew a correct witness.

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 15

4 Generalized XMSS Multi-Signature
In this section, we introduce and analyze a generalized variant of XMSS [BDH11] signatures,
and show how to transform it into a multi-signature scheme. Our generalization enables
the simultaneous analysis of multiple variants of XMSS. At the same time, it achieves
comparable security to directly analyzing individual variants, with no additional security
loss.

4.1 Incomparable Encoding Schemes
To capture multiple variants of XMSS in a single abstract construction, we introduce the
notion of incomparable encoding schemes. To understand the definition, it is instructive to
recall the basic structure of XMSS signatures. The public key of a XMSS signature is a
Merkle root committing to a list of one-time public keys. In the case of XMSS, these are
keys for the Winternitz one-time signature scheme. A signature for a message m and an
epoch ep then contains two components: (1) a one-time signature computed using skep
on the message m, from which a one-time public key pkep can be computed, (2) a Merkle
path linking pkep to the Merkle root. The Winternitz one-time signature and the variants
we consider here use an internal signing mechanism that abstractly has the following
properties:

• It signs digests x ∈ ({0, 1}w)v, i.e., strings of length vw split into w-bit chunks. To
sign a message m ∈ {0, 1}lmsg , m is first mapped to x.

• This mapping must be incomparable: roughly, there are no two digests x, x′ obtained
from distinct messages such that each chunk of x′ is larger than the respective chunk
of x.

For instance, the Winternitz scheme first hashes m into a digest of length κ < vw bits and
then augments the digest with a short checksum of length vw−κ to obtain x. The checksum
ensures incomparability. We now make this abstraction formal by giving the definition
of incomparable encoding schemes and a security notion for it. Such a scheme maps a
message m ∈ {0, 1}lmsg to a codeword x ∈ C. Crucially, the code C has the incomparability
property sketched above. Namely, two distinct codewords are incomparable. It may still be
possible that two messages map to the same codeword, but it should be computationally
hard to find such messages. To model this, we introduce a target collision resistance notion.

Definition 9 (Incomparable Encoding Scheme). An incomparable encoding (IE) with
public parameter space P, randomness space R, lifetime L, chunk size w, code length v,
and code C ⊆ {0, . . . , 2w − 1}v is an efficiently computable function

IncEnc : P × {0, 1}lmsg ×R× [L]→ C ∪ {⊥},

such that for every distinct codewords x = (x1, . . . , xv) ∈ C and x′ = (x′1, . . . , x′v) ∈ C, we
have

(∃i ∈ [v] : xi < x′i) ∧ (∃i′ ∈ [v] : x′i′ < xi′) .

Definition 10 (Error of IE). Let IncEnc : P × {0, 1}lmsg × R × [L] → C ∪ {⊥} be an
incomparable encoding scheme. We say that IncEnc has error at most δ, if for every P ∈ P ,
m ∈ {0, 1}lmsg , and every ep ∈ [L], we have

Pr
ρ

$←R
[IncEnc(P, m, ρ, ep) = ⊥] ≤ δ.

16 Hash-Based Multi-Signatures for Post-Quantum Ethereum

Definition 11 (Target Collision Resistance for IE). Let IncEnc : P × {0, 1}lmsg × R ×
[L] → C ∪ {⊥} be an incomparable encoding scheme with code C ⊆ {0, . . . , 2w − 1}v.
Let K ∈ N be an integer. For any algorithm A, consider the following experiment
T-COLL-RESK

IncEnc,p(A):

1. Sample parameters P $← P.

2. Run A with input P and (classical) access to an oracle that takes as input m ∈
{0, 1}lmsg , ep ∈ [L] and is defined as follows:

(a) If there exists an entry (m′, ρ, ep, x) ∈ L (with the same ep) or |L| ≥ p , then
return ⊥.

(b) Set ctr := 0 and x := ⊥. While ctr < K and x = ⊥:
i. Sample ρ $← R.
ii. Set x := IncEnc(P, m, ρ, ep).
iii. Set ctr := ctr + 1.

(c) If x = ⊥, insert (m,⊥, ep,⊥) into L and return ⊥.
(d) Else (note: x ∈ C), insert (m, ρ, ep, x) into L and return (x, ρ).

3. Get from A a triple (m∗, ρ∗, ep∗) ∈ {0, 1}lmsg ×R× [L]. Then compute the encoding
x∗ := IncEnc(P, m∗, ρ∗, ep∗).

4. Output 1 if and only if there is a pair (m, ρ) ̸= (m∗, ρ∗) with (m, ρ, ep∗, x∗) ∈ L.

For any such A, we define the following advantage:

AdvT-COLL-RES,K
IncEnc,p (A) := Pr

[
T-COLL-RESK

IncEnc,p(A)⇒ 1
]
.

Remark 4 (Related Notions). Our definition of incomparable encodings is somewhat
inspired by [ZCY23]. In contrast to them, we allow for randomized encoding functions
via an explicit randomness space, we make the epoch and public parameters an input of
the encoding, and we define a computational security notion resembling target collision
resistance for it. We will make use of this notion in the security analysis of our generalized
XMSS signature. Also, our encodings can fail (output ⊥), which allows us to capture more
instantiations. The incomparability notion is also similar to the notion of domination free
functions presented in [BS20]. In contrast to their abstraction, again ours is randomized
and takes more inputs. Also, we apply our abstraction directly to XMSS, whereas they
define a generalized variant of Winternitz one-time signatures. We found that considering
XMSS directly yields a tighter analysis.

4.2 Generalized XMSS Signature
With the definition of incomparable encoding schemes at hand, we can now define an
abstract version of the XMSS signature scheme. For that, we make use of hash chains, as
defined next.

Construction 2 (Hash Chains). Let Th : P × T ×M→ H be a tweakable hash function
such that H ⊆ M. Let L, v, w ∈ N and P ∈ P. For a start index k ∈ {0, . . . , 2w − 1}, a
number of steps s ∈ {0, . . . , 2w − 1 − k}, an element x ∈ H, a chain index i ∈ [v], and
epoch ep ∈ [L], we denote the evaluation of the ith hash chain in epoch ep for s steps
starting from x as ChainTh,i,ep(P, k, s, x) ∈ H. Formally:

• ChainTh,i,ep(P, k, s, x)→ y:

1. y := x

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 17

2. If s = 0, return y.
3. For j ∈ [s]: y := Th(P, tweak(ep, i, k + j), y)

Here, we assume tweak : [L]× [v]× [2w−1]→ T is a fixed publicly known injective mapping.
Importantly, we assume that the image of this mapping is disjoint from the image of
tweakmt in Construction 1.

The following lemma is essential for correctness of the generalized XMSS construction.
It states that first walking s steps, and then walking the remaining 2w − 1− s steps results
in the same as walking 2w − 1 steps in one go.

Lemma 2 (Associativity of Hash Chains). Let Th : P × T ×M→ H be a tweakable hash
function such that H ⊆M. Let L, v, w ∈ N and P ∈ P. Fix any i ∈ [v], ep ∈ [L], x ∈ H,
and s ∈ {0, . . . , 2w − 1− k}. Then, we have

ChainTh,i,ep(P, 0, 2w − 1, x) = ChainTh,i,ep(P, s, 2w − 1− s, ChainTh,i,ep(P, 0, s, x))

Proof. This follows from the simple observation that the tweaks that are used are the same
on both sides. The tweaks used on the left hand side are tweak(ep, i, 1), . . . , tweak(ep, i, 2w−
1). This is the same as on the right hand side: namely, the tweaks on the right hand side are
tweak(ep, i, 1), . . . , tweak(ep, i, s) and then tweak(ep, i, s + 1), . . . , tweak(ep, i, 2w − 1).

Construction 3 (Generalized XMSS). Let L = 2h be a power of two. Let IncEnc : P ×
{0, 1}lmsg ×R× [L]→ C ∪{⊥} be an incomparable encoding with public parameter space P,
randomness space R, lifetime L, chunk size w, code length v, and code C ⊆ {0, . . . , 2w−1}v.
Let Th : P × T ×M→ H be a tweakable hash function, such that H ⊆M, H2 ⊆M, and
Hv ⊆M. Let K ∈ N be an integer. Consider the Merkle tree using Th with 2h leafs in leaf
space L = Hv, as defined in Construction 1. We construct a synchronized signature scheme
SIG[IncEnc, Th, K] using hash chains (cf. Construction 2) with lifetime L as follows:

• SIG[IncEnc, Th, K].Gen(par)→ (pk, sk):

1. P $← P
2. For ep ∈ [L]:

(a) For i ∈ [v]: skep,i
$← H

(b) For i ∈ [v]: pkep,i := ChainTh,i,ep(P, 0, 2w − 1, skep,i)
(c) skep := (skep,1, . . . , skep,v)
(d) pkep := (pkep,1, . . . , pkep,v)

3. root := Root(P, pk1, . . . , pkL)
4. pk := (root, P)
5. sk := (P, (pk1, sk1), . . . , (pkL, skL))

• SIG[IncEnc, Th, K].Sig(sk, ep, m)→ σ:

1. Write sk = (P, (pk1, sk1), . . . , (pkL, skL))
2. pathep := Path(P, pk1, . . . , pkL, ep)
3. Set ctr := 0 and x := ⊥. While ctr < K and x = ⊥:

(a) Sample ρ $← R and set x := IncEnc(P, m, ρ, ep)
(b) Set ctr := ctr + 1

4. If x = ⊥, return ⊥

18 Hash-Based Multi-Signatures for Post-Quantum Ethereum

5. Compute σOTS using skep:
(a) Write x = (x1, . . . , xv) ∈ {0, . . . , 2w − 1}v

(b) Write skep = (skep,1, . . . , skep,v)
(c) For i ∈ [v]: σOTS,i := ChainTh,i,ep(P, 0, xi, skep,i)
(d) σOTS := (σOTS,1, . . . , σOTS,v)

6. σ := (ρ, σOTS, pathep)

• SIG[IncEnc, Th, K].Ver(pk, ep, m, σ)→ b:

1. Write σ = (ρ, σOTS, pathep) and pk = (root, P)
2. x := IncEnc(P, m, ρ, ep)
3. If x /∈ C: return 0
4. Write x = (x1, . . . , xv) ∈ {0, . . . , 2w − 1}v

5. Write σOTS = (y1, . . . , yv) ∈ Hv

6. For each i ∈ [v] compute: pkep,i = ChainTh,i,ep(P, xi, 2w − 1− xi, yi)
7. pkep := (pkep,1, . . . , pkep,v)
8. b := VerPath(P, root, ep, pkep, pathep)

Remark 5 (Generating Keys using PRFs). In practice, the secret key would be generated
using a pseudorandom function to save memory. We omit this optimization here and note
that this only changes the security bound by an additional additive term for the security
of the pseudorandom function.
Remark 6 (Verifier Hashing). As explained earlier, the amount of hashing in the verification
algorithm directly influences the computational cost of generating a succinct argument to
aggregate signatures. In the generalized XMSS construction, the verifier performs hashing
operations for two primary purposes: (1) to verify the Merkle path and (2) to traverse the
chains. Additionally, there may be further hashing required to evaluate IncEnc. For (2),
the worst case hashing is given by the expression

max
x∈C

∑
i∈[v]

2w − 1− xi = v(2w − 1)−min
x∈C

∑
i∈[v]

xi.

Therefore, we want to use encodings with codewords x for which
∑

i∈[v] xi is as big as
possible.
Remark 7 (Number of Repetitions). In practice, different signers are free to choose different
values for K, or even to loop for an unbounded number of times until they find a valid
codeword.

Lemma 3 (Correctness of Generalized XMSS). Assuming IncEnc has error at most δ.
Then, the scheme SIG[IncEnc, Th, K], as defined in Construction 3 has correctness error at
most δK . In other words, the correctness error is at most 2−λ if we set

K :=
{

1, if δ = 0
λ/ log(1/δ), if δ > 0

.

Proof. Correctness of the construction follows by the correctness of Merkle trees (lemma 1)
and from lemma 2, assuming a suitable ρ ∈ R is found. Thus, it remains to upper bound
the probability that during the signing procedure, for all of the K independently sampled
ρ ∈ R we have IncEnc(m, ρ, ep) = ⊥. This probability is given by δK .

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 19

We now show that the security of SIG[IncEnc, Th, K] follows from the security of the
incomparable encoding scheme IncEnc and the tweakable hash function Th. Our proof also
makes use of techniques from the latest proofs [Hül13, KKF21, HK22, HKRY23]. One
aspect in which it differs significantly from those is that we consider a form of strong
unforgeability.

Theorem 1 (Security of Generalized XMSS). Consider the scheme SIG[IncEnc, Th, K]
with parameters n, v, w, L, K ∈ N and Th, IncEnc as in Construction 3. Then, for every
algorithm A, that makes no more than qs signature queries, there are algorithms Bi with
T(A) ≈ T(Bi) for all i and

AdvSY-UF-CMA
SIG[IncEnc,Th](A) ≤ AdvSM-TCR

Th,2·L·v·2w (B1) + AdvT-COLL-RES,K
IncEnc,qs

(B2) + 2 · AdvSM-TCR
Th,L·v·2w (B3)

+ L · v · 2w
(

2w · AdvSM-UD
Th,H,1(B5) + AdvSM-PRE

Th,H,1 (B6)
)

.

Proof. Write SIG := SIG[IncEnc, Th, K]. We prove the statement by giving a sequence of
games. For the ith game, denoted by Game.i, we let AdvGame.i

SIG (A) be the probability
that the game outputs 1.
Game.0: Our starting point is the original synchronized security game for adversary A
and scheme SIG, see definition 8. To recall, the game first generates a pair (pk, sk) as in the
scheme and then gives the public key pk = (root, P) to A. The adversary then gets access
to an oracle Sig(ep, m) to obtain signatures for messages m and epochs ep. The oracle
can only be called once per epoch, and stores the resulting message signature pair (m, σ)
as Signed[ep] := (m, σ). Finally, the adversary outputs a forgery (ep∗, m∗, σ∗) and wins if
Ver(pk, ep∗, m∗, σ∗) = 1 and (m∗, σ∗) ̸= Signed[ep∗]. In the scheme we consider, signatures
have the form σ = (ρ, σOTS, pathep). That is, the second part of the winning condition states
that (m∗, (ρ∗, σ∗OTS, path∗ep∗)) ̸= Signed[ep∗], where σ∗ = (ρ∗, σ∗OTS, path∗ep∗). We also make
the following assumption, which is without loss of generality: we have Signed[ep∗] ̸= ⊥ at
the end of the game, i.e., A queried the signing oracle for the forgery epoch8. By definition,
we have

AdvSY-UF-CMA
SIG[IncEnc,Th](A) = AdvGame.0

SIG (A).

Game.1: We now change the winning condition. Informally, we rule out that the adversary
forges by breaking the security of the Merkle tree. More precisely, denote the list of one-time
public keys that the game generated during key generation by pk1, . . . , pkL, i.e., root =
Root(P, pk1, . . . , pkL). Further, let σ∗ = (ρ∗, σ∗OTS, path∗ep) be A’s forgery, and let pk∗ep∗

denote the one-time public key for this epoch that the verification algorithm recomputes
from σ∗OTS and x∗ = IncEnc(P, m∗, ρ∗, ep∗). Let pathep∗ := Path(P, pk1, . . . , pkL, ep∗) be
the Merkle path that the signing oracle Sig(ep∗, ·) would include in signatures. Now, the
game Game.1 would output 0 if

(pkep∗ , pathep∗) ̸= (pk∗ep∗ , path∗ep∗). (1)

Here, the left hand side is what honest signing would compute, and the right hand side
is derived from the forgery. Otherwise, the game checks the winning condition as before.
The games only differ if eq. (1) holds. We will now argue that this event can be bounded
by a reduction B1 breaking target collision resistance, i.e.,∣∣∣AdvGame.0

SIG (A)− AdvGame.1
SIG (A)

∣∣∣ ≤ AdvSM-TCR
Th,2·L·v·2w (B1).

8Otherwise, just build a wrapper adversary around A that queries the signing oracle on a different
message after receiving the forgery from A.

20 Hash-Based Multi-Signatures for Post-Quantum Ethereum

To understand how such a reduction B1 works, consider the part of the Merkle tree that is
revealed when opening the leaf at position ep∗. Assume (pkep∗ , pathep∗) ̸= (pk∗ep∗ , path∗ep∗).
Both pairs reveal nodes at the same positions in the Merkle tree, but because the pairs
are not the same, at least one of the nodes differ. That is, the part of the Merkle tree
that is recomputed from the forgery differs from the one that would be recomputed from
an honest signature for that epoch, i.e., from the Merkle tree that the game originally
created during key generation. The nodes in which the two differ can be the leaf in the
Merkle tree (in case pkep∗ ̸= pk∗ep∗), or some internal node on the authentication path. Still,
because the forgery is accepted, the root of the Merkle tree computed from the forgery
must match the root of the original Merkle tree. Due to a pigeon hole argument there
must be a collision somewhere in the Merkle tree. We now sketch how to use it to break
target collision resistance.

In a reduction, we would first get a Th(P, ·, ·) oracle. We would use it to simulate the
key generation process in Game.0. To do so we first generate secret elements ski,j , i ∈
[L], j ∈ [v] uniformly at random. Next, we query Th(P, ·, ·) with the corresponding secret
values and tweaks to build all chains and compute pkep, ep ∈ [L]. Now, we build the
Merkle tree. For that, we again use the oracle Th(P, ·, ·). In this way, we can set up all
chains and the Merkle tree without explicit access to P . Then, we would signal that the
first stage of the target collision resistance game is completed, and get P from the game.
In combination with the Merkle root, this serves as the public key, which we then give to
A. As we know all secret keys, we can perfectly simulate the rest of Game.0 for A. If
for the forgery it holds that (pkep∗ , pathep∗) ̸= (pk∗ep∗ , path∗ep∗), there must be a collision as
explained above. By recomputing the root of the Merkle tree from the forged signature we
find this collision efficiently and can break target collision resistance.
Game.2: This is the same as Game.1 but we let the game output 0 if we can extract a
collision for the incomparable encoding scheme. More precisely, recall that we consider
only the case in which Sig(ep∗, ·) has been queried, and let (m, σ) = Signed[ep], where
σ = (ρ, σOTS, pathep∗). We let the game output 0 if we have

(m, ρ) ̸= (m∗, ρ∗) ∧ IncEnc(P, m, ρ, ep∗) = IncEnc(P, m∗, ρ∗, ep∗). (2)

Otherwise, the game outputs what Game.1 would output. We can easily bound the
difference between these two games using a reduction B2 against target collision resistance
of IncEnc (definition 11). We sketch it:

1. Get P as input from the target collision resistance game, and access to an oracle,
denoted by O. Use P to generate (pk, sk) as in Game.1 honestly.

2. Run A as in Game.1 on input pk, and implement Sig(ep, m) as in Game.1, but to
compute x use oracle O on input m, ep.

3. Get from A a forgery, and output (m∗, ρ∗, ep∗) if eq. (2) holds.

First, the simulation of the game provided by the reduction is perfect, and its running
time is about that of A. Second, note that if eq. (2) holds, then B2 breaks the target
collision resistance of IncEnc. We get∣∣∣AdvGame.1

SIG (A)− AdvGame.2
SIG (A)

∣∣∣ ≤ AdvT-COLL-RES,K
IncEnc,qs

(B2).

Let us summarize what we have now, using the same notation as above: if Game.2
outputs 1, then (m∗, (ρ∗, σ∗OTS, path∗ep∗)) ̸= (m, (ρ, σOTS, pathep∗)). Due to the changes we
have introduced, this means one of the following must hold:

1. (m, ρ) ̸= (m∗, ρ∗) and x ̸= x∗ for x = IncEnc(P, m, ρ, ep∗) and x∗ = IncEnc(P, m∗, ρ∗, ep∗),
or

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 21

2. (m, ρ) = (m∗, ρ∗) (consequently: x = x∗), but σOTS ̸= σ∗OTS.

In both cases, we have (pkep∗ , pathep∗) = (pk∗ep∗ , path∗ep∗) with the notation of Game.1. In
the following, we will first eliminate the second case, and then focus on the first one.
Game.3: As already mentioned, we now deal with the second case. Namely, we define
Game.3 to be exactly as Game.2, but it outputs 0 if Game.2 would output 1 and we
are in the second case, i.e., (m, ρ) = (m∗, ρ∗), but σOTS ̸= σ∗OTS and (pkep∗ , pathep∗) =
(pk∗ep∗ , path∗ep∗). To bound the difference between Game.2 and Game.3, denote σOTS =
(y1, . . . , yv) and σ∗OTS = (y∗1 , . . . , y∗v) and assume we are in this second case. Then, there
must be at least one chain i ∈ [v] such that yi ≠ y∗i . At the same time, because
pkep∗ = pk∗ep∗ , we have

ChainTh,i,ep∗(P, xi, 2w − 1− xi, yi) = pkep∗,i = pk∗ep∗,i = ChainTh,i,ep∗(P, x∗i , 2w − 1− x∗i , y∗i)
= ChainTh,i,ep∗(P, xi, 2w − 1− xi, yi),

where we have used that x = x∗. This constitutes a collision somewhere in the chain, on
the way from yi (resp. y∗i) to pkep∗,i = pk∗ep∗,i. More formally, we can build a reduction
B3 that breaks target collision resistance of Th if we are in this case. It requires L · v · 2w

many targets (one per step in each chain in each epoch). We leave the reduction as a
simple exercise to the reader, and get∣∣∣AdvGame.2

SIG (A)− AdvGame.3
SIG (A)

∣∣∣ ≤ AdvSM-TCR
Th,L·v·2w (B3).

Now that we have ruled out the second case, we can focus on the first case, i.e., the case
in which x ̸= x∗. Note that the verification algorithm checks that x∗ ∈ C and x ∈ C by
construction. Therefore, the definition of the incomparable encoding scheme (definition 9)
ensures that there exists some i ∈ [v] such that x∗i < xi. From now on, i∗ denotes the
minimum i∗. The focus of the following games will be to consider what happens in this
chain i∗. There are two options: either, the value at position xi∗ in the chain that we
recompute from the adversary’s signature σ∗OTS is different from yi. In this case, we have
another collision (as the ends of the chain are the same) and we can again reduce to target
collision resistance. Or, it is the same, in which case our goal will be to reduce to preimage
resistance. Subsequent games implement this intuition.
Game.4: The game is exactly as Game.3, but it additionally outputs 0 if

ChainTh,i∗,ep∗(P, x∗i∗ , xi∗ − x∗i∗ , y∗i∗) ̸= yi∗ , (3)

where we use the notation from Game.3. Denote the left hand side by ŷ. Clearly, Game.3
and Game.4 only differ if eq. (3) holds. We claim that this again constitutes a collision.
To see this, note that

ChainTh,i∗,ep∗(P, xi∗ , 2w − 1− xi∗ , yi∗) = pkep∗,i∗ = pk∗ep∗,i∗

= ChainTh,i∗,ep∗(P, x∗i∗ , 2w − 1− x∗i∗ , y∗i∗)
= ChainTh,i∗,ep∗(P, xi∗ , 2w − 1− xi∗ , ŷ),

where we have again used that pkep∗ = pk∗ep∗ , that the forgery contains a valid signature,
and a straight-forward generalization of lemma 2. Assuming eq. (3) holds, there must be
some collision in that chain. Again, we can formally obtain an efficient reduction B4 that
breaks target collision resistance, and∣∣∣AdvGame.3

SIG (A)− AdvGame.4
SIG (A)

∣∣∣ ≤ AdvSM-TCR
Th,L·v·2w (B4).

From now on, we can hence assume that

ChainTh,i∗,ep∗(P, x∗i∗ , xi∗ − x∗i∗ , y∗i∗) = yi∗ , (4)

22 Hash-Based Multi-Signatures for Post-Quantum Ethereum

and the idea is to use preimage resistance to bound the probability of that. Intuitively,
yi∗ is a hash for which the adversary never learned a preimage, and we can compute a
preimage by following the chain from y∗i∗ . However, note that the preimage of yi∗ is not
necessarily uniform, as it is also a hash. To deal with that, we apply undetectability. To
apply undetectability, we will first make sure we know the epoch ep∗, the chain i∗, and
the position in the chain xi∗ in advance, using a guessing argument.
Game.5: We let the game sample (ep∗, i∗, xi∗) $← [L] × [v] × [2w − 1] in the beginning,
then run Game.4, but abort as soon as it is clear that these guesses are not correct. This
is a standard guessing argument. As the view of A does not depend on this guess and the
game does not change assuming the guess is correct, we get

AdvGame.4
SIG (A) ≤ L · v · (2w − 1) · AdvGame.5

SIG (A) ≤ L · v · 2w · AdvGame.5
SIG (A).

Game.6: We change how key generation works. Namely, after sampling (ep∗, i∗, xi∗) as
in Game.5, the game sets up (pk, sk) as in Game.5, with the following exception: the
position9 xi∗ − 1 in the i∗th chain for epoch ep∗ is sampled uniformly at random (call its
value z∗) instead of being a hash of the previous position. Everything else stays the same.
Note that assuming the guess of xi∗ was correct, the reduction can still simulate the game,
e.g., it defines yi∗ to be the hash of z∗. We can easily apply undetectability (with one
target) to get ∣∣∣AdvGame.5

SIG (A)− AdvGame.6
SIG (A)

∣∣∣ ≤ 2w · AdvSM-UD
Th,H,1(B5),

for a reduction B5. The 2w factor comes from a hybrid argument. To understand that,
note that the undetectability notion challenges the adversary to distinguish from a hash of
a random input and a random string. In our case, we are substituting an intermediate
block in one of the chains, which was generated as a result of several consecutive hashes.
To cover this difference, a standard hybrid argument can be applied which results in the
2w factor. That is, in the jth hybrid, we would replace the jth element in the chain with
a random value. For a more detailed presentation, we refer the reader to [HK22].
Final Reduction: In the final step, we bound the advantage in Game.6 using an efficient
reduction B6 that breaks preimage resistance of Th (for a single target). It works as follows:

1. In the first stage, the reduction has access to an oracle O that takes tweaks as input
and returns images of random messages.

2. The reduction samples (ep∗, i∗, xi∗) as explained in Game.5. It then calls O(T)
with T = tweak(ep∗, i∗, xi∗) to get yi∗ .

3. The reduction signals that it completed the first stage, which means it obtains P
from the game.

4. The reduction uses P to complete setting up the public key and all information
needed to simulate Game.6 to A. Then, the reduction simulates Game.6 to A.

5. Once A outputs its forgery, the reduction uses eq. (4) to compute a preimage of yi∗

(by walking the chain) and returns it to the game.

It is clear that the reduction perfectly simulates Game.6 and that its running time is
dominated by that of A. It is also clear that the reduction finds a preimage if Game.6
outputs 1, and so we can conclude with

AdvGame.6
SIG (A) ≤ AdvSM-PRE

Th,H,1 (B6).

9Note that xi∗ ≥ 1 and so the position xi∗ − 1 is well defined.

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 23

4.3 Multi-Signature Construction
We now show how to aggregate individual signatures of our generalized XMSS signature
scheme. Formally, we show how to turn any synchronized signature scheme into a
synchronized non-interactive multi-signature scheme. To this end, we follow a well-known
approach, e.g., [KCLM22, ACL+22, WW22, DGKV22]: we use any succinct argument
system, and the aggregate signature is the succinct argument string. We show that security
of the resulting multi-signature reduces tightly to knowledge soundness of the argument
system and the synchronized signature. It is important to note that our proof relies on
adaptive knowledge soundness, see section 3.4.

Construction 4 (Argument-Based Multi-Signature). Let SIG be a synchronized signature
scheme with lifetime L. Consider the relation

Γ :=


(k, ep, m, (pki)k

i=1)︸ ︷︷ ︸
stmt

, (σi)k
i=1︸ ︷︷ ︸

witn

 ∣∣∣∣∣∣ ∀i ∈ [k] : SIG.Ver(pki, ep, m, σi) = 1

 .

Let AS = (ArgProve, ArgVer) be a non-interactive argument system for Γ with respect to
a random oracle H. We construct a synchronized multi-signature scheme with lifetime L,
denoted by MS[SIG, AS], as follows:

• MS[SIG, AS].Gen = SIG.Gen and MS[SIG, AS].Sig = SIG.Sig

• MS[SIG, AS].Aggregate(ep, m, ((pki, σi))k
i=1)→ σ̄:

1. stmt := (k, ep, m, (pki)k
i=1), witn := (σi)k

i=1

2. σ̄ := ArgProveH(stmt, witn)

• MS[SIG, AS].Ver((pki)k
i=1, ep, m, σ̄)→ b:

1. stmt := (k, ep, m, (pki)k
i=1)

2. b := ArgVerH(stmt, σ̄)

Lemma 4 (Correctness of Argument-Based Multi-Signature). If AS has correctness error
at most δAS and SIG has correctness error at most δSIG, then the scheme MS[SIG, AS], as
defined in Construction 4, has correctness error at most δ : N→ R with δ(k) = δAS + kδSIG
for all k ∈ N.

Proof. We consider an epoch ep and a message m, and k signatures σi ← Sig(ski, ep, m)
generated honestly that are aggregated. By a union bound, the probability that we have
((k, ep, m, (pki)k

i=1), (σi)k
i=1) /∈ Γ is at most kδSIG. Under the assumption that we have

((k, ep, m, (pki)k
i=1), (σi)k

i=1) ∈ Γ, the probability that the argument does not verify is at
most δAS.

Theorem 2 (Security of Argument-Based Multi-Signature). Consider MS[SIG, AS], as
defined in Construction 4. Assume that AS is an argument of knowledge with extractor
Ext, loss LossAS,Ext, and extraction time θ. Then, for any algorithm A that makes at most
t quantum queries to H, there is an algorithm B with

T(B) ≤ θ(t) + T(A) and AdvMS-SY-UF-CMA
MS[SIG,AS] (A) ≤ LossAS,Ext

(
AdvSY-UF-CMA

SIG (B)
)

.

Proof. Write MS := MS[SIG, AS] for short. Our proof will use a sequence of two games,
Game.0 and Game.1, and a final reduction. We denote the probability that Game.i
outputs 1 by AdvGame.i

MS (A).

24 Hash-Based Multi-Signatures for Post-Quantum Ethereum

Game.0: This is the original synchronized multi-signature game as defined in definition 13.
That is, the game first samples a key pair (pk, sk)← Gen(par) and gives pk to A. Then,
it runs A with classical oracle access to a signing oracle. Notably, A also gets quantum
access to the random oracle H used in the argument system AS. Finally, the adversary
outputs a forgery (k∗, (pk∗i)k∗

i=1, ep∗, m∗, σ̄∗) with ep∗ ∈ [L] and m∗ ∈ {0, 1}lmsg . The game
outputs 1 if and only if Ver((pk∗i)k∗

i=1, ep∗, m∗, σ̄∗) = 1, i.e., ArgVerH(stmt, σ̄∗) = 1 for
stmt := (k, ep, m, (pki)k

i=1), and the signing oracle did not sign m∗ in epoch ep∗. In this
case, we say that m∗ is fresh. It is also required that there is an i0 such that pk∗i0

= pk.
By definition:

AdvMS-SY-UF-CMA
MS[SIG,AS] (A) = AdvGame.0

MS (A).

Game.1: This game is the same, with two changes: first, the random oracle H is
now provided to A by the extractor Ext. Second, once the game has checked that
ArgVerH(stmt, σ̄∗) = 1 and that m∗ is fresh, it gives (stmt, π) for π := σ̄∗ to Ext and get
witn back. It only outputs 1 if (stmt, witn) ∈ Γ. We claim that

AdvGame.0
MS (A) ≤ LossAS,Ext

(
AdvGame.1

MS (A)
)

. (5)

To see this, we construct an algorithm B̂ that we use in definition 15. It runs in
KN-REALAS(A) (resp. KN-IDEALAS,Ext(A)) and gets oracle access to H (resp. Ext).
It internally simulates Game.0 to A by forwarding A’s oracle queries to its own oracle.
Notably, if the winning condition of Game.0 were to output 0, B̂ outputs ⊥. Otherwise,
B̂ outputs stmt := (k, ep, m, (pki)k

i=1) and π := σ̄. By definition of B̂, we have

AdvGame.0
MS (A) = Pr

[
KN-REALAS(B̂)⇒ 1

]
.

By the knowledge soundness of AS, we get

Pr
[
KN-REALAS(B̂)⇒ 1

]
≤ LossAS,Ext

(
Pr

[
KN-IDEALAS,Ext(B̂)⇒ 1

])
.

Note that KN-IDEALAS,Ext(B̂) is the same as Game.1, and so

Pr
[
KN-IDEALAS,Ext(B̂)⇒ 1

]
= AdvGame.1

MS (A).

This shows eq. (5). Also, note that B̂ makes as many queries to H as A makes, and
therefore Game.1 runs in time at most θ(t) + T(A).
Final Reduction: We can easily bound the probability that Game.1 outputs 1 using
a reduction B that breaks synchronized security of SIG. The reduction gets as input a
public key and access to a signing oracle. It forwards the key to A and simulates Game.1
by relaying signing queries between the adversary and its own signing oracle. It uses Ext
to provide the random oracle to A, as specified in Game.1. If Game.1 outputs 1, then
the extracted witness satisfies witn = (σi)k

i=1, where SIG.Ver(pk, ep∗, m∗, σi0) = 1. Also,
m∗ has never been signed in epoch ep∗ by the signing oracle. Therefore, B can output
(ep∗, m∗, σ∗) with σ∗ := σi0 as its forgery. We get

AdvGame.1
MS (A) ≤ AdvSY-UF-CMA

SIG (B).

As LossAS,Ext is a non-decreasing function, we get the result.

5 Instantiations of Incomparable Encodings
We now give several instantiations of the abstract construction presented in section 4. To
this end, we specify incomparable encoding schemes and show their security. As corollaries,
we obtain concrete security bounds for our variants of XMSS.

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 25

5.1 Classical Winternitz
The first instantiation that we give is essentially the classical Winternitz construction,
using tweakable hashes10. That is, if we plug it into our generalized XMSS construction,
we essentially obtain XMSS (instantiated with tweakable hash functions).

Construction 5 (IE for Winternitz). Let w, L ∈ N be integers. Let Thmsg : P ×
T × ({0, 1}lmsg × R) → {0, . . . , 2w − 1}n0 be a tweakable hash function. Set n1 :=
⌊log2w (n0(2w − 1))⌋+ 1. Set v := n0 + n1. With this, we define the encoding function

IncEncW[Thmsg] : P × {0, 1}lmsg ×R× [L]→ C ∪ {⊥},

where C ⊆ {0, . . . , 2w − 1}v is defined as the image of this function. It is given by the
following instructions on input P ∈ P, m ∈ {0, 1}lmsg , ρ ∈ R, ep ∈ [L]:

1. (x1, . . . , xn0) := Thmsg(P, tweakm(ep), (m, ρ)) for xi ∈ {0, . . . , 2w − 1}

2. c := n0(2w − 1)−
∑n0

i=1 xi. Note: 0 ≤ c ≤ n0(2w − 1)

3. Write c =
∑n1

i=1 ci2w(i−1) for ci ∈ {0, . . . , 2w − 1}

4. Return (x1, . . . , xn0 , c1, . . . , cn1) ∈ {0, . . . , 2w − 1}v

Here, we assume tweakm : [L]→ T is a fixed publicly known injective mapping.

Lemma 5 (Correctness and Error of Winternitz). The function IncEncW[Thmsg] as defined
in Construction 5 is an incomparable encoding scheme and has error δ = 0.

Proof. All that we have to prove is that IncEncW[Thmsg] is an incomparable encoding, as
IncEncW[Thmsg] never outputs ⊥. This is (implicitly) in [BS20], but we recall a proof for
completeness. Consider two distinct codewords (x1, . . . , xn0 , c1, . . . , cn1) ∈ {0, . . . , 2w−1}v

and (x′1, . . . , x′n0
, c′1, . . . , c′n1

) ∈ {0, . . . , 2w−1}v, i.e., outputs of IncEncW. That is, we know
that c =

∑n1
i=1 ci2w(i−1) is a correct checksum for (x1, . . . , xn0) and c′ =

∑n1
i=1 c′i2w(i−1)

is a correct checksum for (x′1, . . . , x′n0
). Assume towards contradiction that xi ≤ x′i and

cj ≤ c′j for all i ∈ [n0] and all j ∈ [n1]. Define x̄ =
∑n0

i=1 xi and x̄′ =
∑n0

i=1 x′i. With that,
we have c = n0(2w− 1)− x̄ and c′ = n0(2w− 1)− x̄′. Due to the inequalities, we also know
that c ≤ c′ and x̄ ≤ x̄′. As the two codewords are distinct, at least one of the inequalities
xi ≤ x′i and cj ≤ c′j has to be strict. In the first case, at least one of the xi ≤ x′i is strict.
In particular, we have x̄ < x̄′ and therefore

c = n0(2w − 1)− x̄ > n0(2w − 1)− x̄′ = c′.

But this contradicts c ≤ c′. In the second case, at least one of the ci ≤ c′i is strict, i.e.,
c < c′. But again,

c = n0(2w − 1)− x̄ ≥ n0(2w − 1)− x̄′ = c′,

a contradiction.

Lemma 6 (Target Collision-Resistance of Winternitz). Consider the function IncEncW[Thmsg]
as defined in Construction 5, and any K, p ∈ N. Then, for every algorithm A, there is an
algorithm B with T(A) ≈ T(B) and

AdvT-COLL-RES,K
IncEncW[Thmsg],p(A) ≤ AdvSM-rTCR,K

Thmsg,p,Prop(B),

where Prop : {0, 1}∗ → {0, 1} always outputs 1.
10More precisely, Winternitz’ scheme is a one-time signature scheme, whereas we specify an incomparable

encoding. But plugging our incomparable encoding into the generalized XMSS construction, we obtain
(almost) the same as if we implement a Merkle tree on top of Winternitz. Of course, we use tweakable
hashes and the classical Winternitz scheme does not.

26 Hash-Based Multi-Signatures for Post-Quantum Ethereum

Proof. The reduction B runs in the game for target collision resistance with random
sampling for the tweakable hash function Thmsg, see definition 6. It is as follows: B gets as
input P ∈ P and it gets access to an oracle, which we denote by O. B runs A in the target
collision resistance game for IncEncW[Thmsg], by giving P as an input and providing the
following oracle to A: On input a message m and an epoch ep, the oracle (simulated by B)
first checks if there exists an entry of the form (m′, ρ, ep, x) ∈ L or |L| ≥ p. If so, it returns
⊥. Otherwise, it calls O on input tweakm(ep) and m. The oracle forwards the response
(x, ρ) of O to A and inserts (m, ρ, ep, x) into L (or (m,⊥, ep,⊥) if the response was ⊥).
Finally, when the adversary outputs a triple (m∗, ρ∗, ep∗), the reduction first checks if A
wins the game, i.e., if there is a pair (m, ρ) ̸= (m∗, ρ∗) with (m, ρ, ep∗, x∗) ∈ L. If so, say
this is the j∗th entry in L. Then, the reduction forwards (j∗, m∗, ρ∗) to its game.

Clearly, the running time of B is dominated by running A. As different epochs yield
different tweaks, it can be seen that the oracle is simulated perfectly to A. Also, if we
assume that A wins the target collision resistance game of IncEncW[Thmsg], then B wins
its game as well.

Corollary 1 (Winternitz Instantiation). Let Thmsg : P×T ×({0, 1}lmsg×R)→ {0, . . . , 2w−
1}n0 be a tweakable hash function. Let Th : P × T ×M→ H be a tweakable hash function,
such that H ⊆ M, H2 ⊆ M, and Hv ⊆ M. Set K := 1 and Prop : {0, 1}∗ → {0, 1}
always outputs 1. Consider the scheme SIG := SIG[IncEncW[Thmsg], Th, K] obtained from
combining Constructions 3 and 5.

Then, this scheme has correctness error 0. Furthermore, for every algorithm A, there
are algorithms Bi with T(A) ≈ T(Bi) for all i and

AdvSY-UF-CMA
SIG (A) ≤ AdvSM-TCR

Th,2·L·v·2w (B1) + AdvSM-rTCR,K
Thmsg,qs,Prop(B2) + 2 · AdvSM-TCR

Th,L·v·2w (B3)

+ L · v · 2w
(

2w · AdvSM-UD
Th,H,1(B5) + AdvSM-PRE

Th,H,1 (B6)
)

,

where qs is the number of signing queries that A makes.

5.2 Target Sum Winternitz
A subtle problem of the Winternitz construction before is that an attacker may compute a
signature with a specifically crafted randomness ρ such that the number of verification
hashes is high, which has a negative impact on aggregation efficiency. To do so, the attacker
just has to try to minimize the sum

∑
i xi. One approach to get a more explicit control on

the number of hashes that the verifier makes (see remark 6) is to enforce that the sum∑
i xi of chunks is always equal to a constant T . One would regenerate x using a counter

or fresh randomness if until it satisfies this constraint. In this case, it is known that the
checksum can be omitted [HKRY23, ZCY23], which intuitively shrinks the signature size
compared to classical Winternitz. We now give an incomparable encoding scheme that
uses this technique.

Construction 6 (IE for Target Sum Winternitz). Let v, w, T ∈ N be integers. Let
Thmsg : P × T × ({0, 1}lmsg ×R)→ {0, . . . , 2w − 1}v be a tweakable hash function. Define
the code

C :=
{

(x1, . . . , xv) ∈ {0, . . . , 2w − 1}v

∣∣∣∣∣
v∑

i=1
xi = T

}
⊆ {0, . . . , 2w − 1}v.

With this, we define the encoding function

IncEncTSW[Thmsg, T] : P × {0, 1}lmsg ×R× [L]→ C ∪ {⊥}.

It is given by the following instructions on input P ∈ P, m ∈ {0, 1}lmsg , ρ ∈ R, ep ∈ [L]:

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 27

1. x := Thmsg(P, tweakm(ep), (m, ρ))

2. If x /∈ C, return ⊥. Else, return x ∈ {0, . . . , 2w − 1}v

Here, we assume tweakm : [L]→ T is a fixed publicly known injective mapping.

Lemma 7 (Correctness and Error of Target Sum Winternitz). Consider the function
IncEncTSW[Thmsg, T] as defined in Construction 6, and assume that Thmsg is ϵ-uniform for
seed space R (see definition 2). Then, IncEncTSW[Thmsg, T] is an incomparable encoding
scheme and has error

δ = ϵ + (1− ηT /2vw), where (1 + x + · · ·x2w−1)v =
(2w−1)v∑

i=0
ηix

i ∈ R[x].

Proof. We first show that IncEncTSW[Thmsg, T] is an incomparable encoding scheme. To
this end, let x, x′ ∈ C be distinct with x = (x1, . . . , xv) and x′ = (x′1, . . . , x′v). Now, assume
towards contradiction that every coordinate of x is larger or equal than the respective
coordinate of x′. We know that at least one of these inequalities has to be strict as x ̸= x′.
Then, we have

T =
v∑

i=1
xi >

v∑
i=1

x′i = T,

a contradiction. We now focus on the error of the scheme. For that, we need to fix P ∈ P ,
a message m ∈ {0, 1}lmsg , and an epoch ep ∈ [L]. We consider the experiment of sampling
ρ $← R and want to get an upper bound on

Pr
ρ

[IncEncTSW[Thmsg, T](P, m, ρ, ep) = ⊥] = Pr
ρ

[x /∈ C] ≤ Pr̄
x

[x̄ /∈ C] + ϵ,

where we have used ϵ-uniformity of Thmsg and x̄ $← {0, 1}vw in the last step. Therefore,
we want to find the probability that the sum of v uniform independent values 0 ≤ x̄i < 2w

is not equal to T . The total number of ways to pick v such values is of course 2vw. The
number of ways that sum to T is exactly the coefficient of xT in the expression

(1 + x + · · ·x2w−1)v.

A closed expression could be found using the theory of generating functions, using the
identity

(1 + x + · · ·x2w−1)(1− x) = 1− x2w−1.

Lemma 8 (Target Collision-Resistance of Target Sum Winternitz). Consider the function
IncEncTSW[Thmsg, T] as defined in Construction 5, and any K, p ∈ N. Let Prop : {0, 1}∗ →
{0, 1} be the predicate that outputs 1 if and only if its input is in C. Then, for every
algorithm A, there is an algorithm B with T(A) ≈ T(B) and

AdvT-COLL-RES,K
IncEncW[Thmsg],p(A) ≤ AdvSM-rTCR,K

Thmsg,p,Prop(B).

Proof. The reduction works exactly as in the proof of lemma 6, noting that Prop outputs
1 exactly if the target collision resistance game for IncEncTSW[Thmsg, T] (see definition 11)
finds a valid x ̸= ⊥.

28 Hash-Based Multi-Signatures for Post-Quantum Ethereum

Corollary 2 (Target Sum Winternitz Instantiation). Let Thmsg : P×T ×({0, 1}lmsg×R)→
{0, . . . , 2w − 1}v be a tweakable hash function. Let Th : P × T ×M→ H be a tweakable
hash function, such that H ⊆ M, H2 ⊆ M, and Hv ⊆ M. Fix integers T ∈ N and
K ∈ N. Let Prop : {0, 1}∗ → {0, 1} be the predicate as in lemma 8. Consider the scheme
SIG := SIG[IncEncTSW[Thmsg, T], Th, K] obtained from combining Constructions 3 and 6.

Then, this scheme has correctness error at most

(ϵ + (1− ηT /2vw))K
, where (1 + x + · · ·x2w−1)v =

(2w−1)v∑
i=0

ηix
i ∈ R[x].

Furthermore, for every algorithm A, there are algorithms Bi with T(A) ≈ T(Bi) for all i
and

AdvSY-UF-CMA
SIG (A) ≤ AdvSM-TCR

Th,2·L·v·2w (B1) + AdvSM-rTCR,K
Thmsg,qs,Prop(B2) + 2 · AdvSM-TCR

Th,L·v·2w (B3)

+ L · v · 2w
(

2w · AdvSM-UD
Th,H,1(B5) + AdvSM-PRE

Th,H,1 (B6)
)

,

where qs is the number of signing queries that A makes.

6 Parameter Requirements
In this section, we discuss how to set parameters of the schemes. For example, we describe
how large the set of parameters P or the output length of the tweakable hash function has
to be, assuming a desired security level is given. To this end, we proceed in two conceptual
steps. First, we use the security bounds that we get from theorem 1 and corollaries 1 and 2,
which gives us security levels we need for the security properties of hash functions. In a
second step, to get concrete parameters for (approximately) kC bits of classical security
and kQ bits of quantum security, we then use the heuristic bounds from table 1. Again, we
note that these are only heuristics and cryptanalysis should focus on the security properties
of hash functions with the desired security levels from the first step. We will split our
discussion into the parameters related to to the encoding IncEnc and Thmsg (i.e., w, v, |R|),
and to the parameters related to Th (i.e., |P| and |H|). In general, we assume that w, L,
lmsg, kC , and kQ are given.
Security Levels for Hash Function Properties. Our goal is that for any adversary A
running in time T(A), the fraction AdvSY-UF-CMA

SIG (A)/T(A) is at most 2−k, where k = kC

or k = kQ depending on whether A is quantum. Looking at theorem 1 and corollaries 1
and 2, we see that the advantage is the sum of five terms. Consequently, we want that
each of these terms, divided by the running time, is at most 2−k−log 5. This means we
need to ensure the following hardness bounds, for any algorithm A:

AdvSM-TCR
Th,2·L·v·2w (A)/T(A) ≤ 2−(k+log 5). (6)

AdvSM-TCR
Th,L·v·2w (A)/T(A) ≤ 2−(k+log 5+1). (7)

AdvSM-UD
Th,H,1(A)/T(A) ≤ 2−(k+log 5+2w+log L+log v). (8)

AdvSM-PRE
Th,H,1 (A)/T(A) ≤ 2−(k+log 5+w+log L+log v). (9)

AdvSM-rTCR,K
Thmsg,qs,Prop(A)/T(A) ≤ 2−(k+log 5). (10)

Note that the last requirement depends on the instantiation of the incomparable encoding,
in particular on Thmsg. In the following, we use the heuristics from table 1 to suggest how
to set parameters satisfying these requirements.
Message Hash and Randomness - Winternitz. We start with the parameters for the
instantiations, focusing first on the Winternitz instantiation (Construction 5). Specifically,

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 29

we assume that w and qs are given11 and we want to determine requirements on |R| and
n0, which also dictates how to set v. What we need to satisfy is eq. (10). We use table 1,
and note that p = qs, K = 1 and therefore q′ = q + qs. We also note that {0, . . . , 2w − 1}n0

takes the role of H, i.e., we want a lower bound on |{0, . . . , 2w − 1}n0 | = 2wn0 . We will
use that the running time of the adversary must be at least q′ + 1. Now, start with the
classical setting. The bound consists of two terms, and we want each of these terms is at
most 2−(kC +log 5+1). From the first term, we get the requirement that wn0 ≥ kC +log 5+1.
Looking at the second term, we get the requirement that log |R| ≥ kC + log 5 + log qs + 1.
Now, we turn to the quantum setting. Here, again the bound consists of two terms, and
we want each of these terms is at most 2−(kQ+log 5+1). The first term is 8(q′ + 1)2/2wn0 ,
which when divided by the running time (at least q′ + 1) becomes 8(q′ + 1)/2wn0 . Now,
the first case is that q′ + 1 ≥ 2kQ+log 5+1. In this case we are done trivially. In the other
case, our requirement becomes

8 · 2kQ+log 5+1

2wn0
≤ 2−(kQ+log 5+1).

Isolating wn0 this becomes wn0 ≥ 2(kQ + log 5 + 1) + 3. Looking at the second term, we
divide by the running time, lower bounded by q′, and get

3
2qsK ·

√
q′

|R|
· q′−1 = 3

2K ·

√
q2

sq′

|R|q′2
= 3

2K ·

√
q2

s

|R|q′
≤ 3

2K ·
√

qs

|R|
,

where we have used qs ≤ q′. If we want that this is at most 2−(kQ+log 5+1), then we get a
lower bound log |R| ≥ 2(kQ + log 5 + log 3 + log K) + log qs, and we can use K = 1. With
that, we get the following list of requirements.

Parameter Requirement 1 (Parameters for Winternitz). Let w, qs be given, and assume
we use Construction 5. Then, if we want (approximately) kC bits of classical security and
kQ bits of quantum security, we need to satisfy the following:

n0w ≥ max{kC + log 5 + 1, 2(kQ + log 5 + 1) + 3}, (11)
log |R| ≥ max{kC + log 5 + log qs + 1, 2(kQ + log 5 + log 3) + log qs}. (12)

Once n0 is set, v can be set as described in Construction 5.

Message Hash and Randomness - Target Sum Winternitz. Turning to the
instantiation based on target sum Winternitz (Construction 6), we see that the only
difference to Winternitz in terms of setting parameters is that we no longer assume K = 1,
and that n0w is replaced with vw.

Parameter Requirement 2 (Parameters for Target Sum Winternitz). Let w, qs, K be
given, and assume we use Construction 6. Then, if we want (approximately) kC bits of
classical security and kQ bits of quantum security, we need to satisfy the following:

vw ≥ max{kC + log 5 + 1, 2(kQ + log 5 + 1) + 3}, (13)
log |R| ≥ max{kC + log 5 + log qs + log K + 1, 2(kQ + log 5 + log 3 + log K) + log qs}.

(14)

Hash and Parameter Length. Now that we know how to set v, we turn to the
parameters related to Th, e.g., |H| or |P|, which are dictated by eqs. (6) to (9). These
only depend on the underlying incomparable encoding via the parameters w and v,
which we assume as given for this paragraph. We start with the classical setting. Focus

11One can always upper bound qs with qs ≤ L.

30 Hash-Based Multi-Signatures for Post-Quantum Ethereum

on eq. (8) first. Looking at table 1, we know that H takes the role of M′, and we
know that the running time of an adversary is at least the number of oracle queries q.
Therefore, we need to satisfy that (q/|H|)/q ≤ 2−(kC +log 5+2w+log L+log v), or equivalently
that log |H| ≥ kC + log 5 + 2w + log L + log v. Now, continue with eq. (9). The bound
consists of two terms, the first one being (q + 1)/|H|. and the second one being (almost)
equal to the term in the undetectability bound. We lower bound the running time with
q + 1, and we want each of the terms to be at most 2−(kC+log 5+w+log L+log v+1). As w ≥ 1,
this follows already from the lower bound on log |H| we have derived from eq. (8). Next,
focus on eqs. (6) and (7). From table 1, we get that it is sufficient to ensure that(

2q + 1
|H|

+ 2q

|P|

) /
q ≤ 2−(kC +log 5+1).

If we upper bound 2q + 1 with 2 ·T(A), then we see that the requirement on |H| we have
so far already ensures that the first term 2/|H| is at most 2−(kC +log 5+2) for L ≥ 2, v ≥ 1.
We also want to make the second term 2/|P| to be at most 2−(kC +log 5+2), so we require
log |P| ≥ kC + log 5 + 3. We proceed in a similar way for the quantum setting, using the
appropriate bounds from table 1. We summarize the requirements in the following.

Parameter Requirement 3 (Hash and Parameter Length). Let L, w, v be already given,
and assume that w ≥ 1, L, v ≥ 2. Then, if we want (approximately) kC bits of classical
security and kQ bits of quantum security, we need to satisfy the following:

log |H| ≥ max{kC + log 5 + 2w + log L + log v, 2(kQ + log 5 + 2w + log L + log v + log 12)},
(15)

log |P| ≥ max{kC + log 5 + 3, 2(kQ + log 5 + 2) + 5}. (16)

7 Instantiations of Tweakable Hash Functions
Our constructions require two tweakable hash functions Th and Thmsg. To recall, Th
takes three inputs P ∈ P, T ∈ T and M ∈ M, and outputs a hash in a space H, where
we need that H,H2,Hv ⊆ M. The function Thmsg takes four inputs P ∈ P, T ∈ T ,
M ∈ {0, 1}lmsg , and12 R ∈ R. It outputs a list of integers in {0, . . . , 2w − 1}, of length n0
for Construction 5 and length v for Construction 6. We describe two possible instantiations.
One uses the classical hash function SHA-3 which operates on bit strings. The other
instance is optimized for modern non-interactive argument systems and uses the recent hash
function Poseidon2 [KBM23], which operates on elements of a finite field Fp. Throughout
this section, || denotes concatenation.

7.1 Tweak Functions
We start by giving a possible instantiation of the tweak functions (see Constructions 1
and 2). The first function tweak : [L]× [v]× [2w − 1]→ T is defined as

tweak(ep, i, k) = (0︸︷︷︸
8 bits

|| ep︸︷︷︸
⌈log L⌉ bits

|| i︸︷︷︸
⌈log v⌉ bits

|| k︸︷︷︸
w bits

). (17)

The second function tweakmt : [log L]× [L]→ T is

tweakmt(l, i) = (1︸︷︷︸
8 bits

|| l︸︷︷︸
⌈log(⌈log L⌉)⌉ bits

|| i︸︷︷︸
⌈log L⌉ bits

). (18)

12For simplicity, we write Thmsg(P, T, M, R) instead of Thmsg(P, T, (M, R)) in this section.

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 31

The third function tweakm : [L]→ T for message hashing (Constructions 5 and 6) is

tweakm(ep) = (2︸︷︷︸
8 bits

|| ep︸︷︷︸
⌈log L⌉ bits

) (19)

It is clear that the ranges of all three functions are disjoint. One may use larger lengths if
this is more convenient, e.g., encoding ep as one 64-bit integer if L < 264, as long as this is
done consistently.

7.2 Tweakable Hash From SHA-3
SHA-3-256 [Nat15] is a hash function designed in 2007 and later standardized by NIST
within the SHA-3 family. It maps an arbitrarily long bit string to a 256-bit output. We
simply write SHA-3 for short. For this instantiation, we use P = {0, 1}lp , T = {0, 1}lt ,
R = {0, 1}lrnd and H = {0, 1}n. The message input M in both Th and Thmsg is a bit
string of some length lm, where lm can take one of the following values depending on where
the hash function is used:

• lm = vn to hash the leaf in Construction 1 with Th = ThSHA-3 (to be used in
Construction 3).

• lm = 2n to hash pairs of nodes in Construction 1 Th = ThSHA-3 (to be used in
Construction 3).

• lm = n in hash chains in Construction 2 Th = ThSHA-3 (to be used in Construction 3).

• lm = lmsg for message hashing with Thmsg = Thmsg
SHA-3 in Constructions 5 and 6.

Below, we explain how Thmsg
SHA-3 and ThSHA-3 are constructed.

7.2.1 Message Hashing

For message hashing, we define

Thmsg
SHA-3(P, T, M, R) = Truncateℓw bits (SHA-3(R||P ||T ||M)) ∈ {0, . . . , 2w − 1}ℓ,

where ℓ = n0 for Construction 5 and ℓ = v for Construction 6, assuming ℓw ≤ 256. Here,
Truncateν bits takes first ν bits of the resulting bit string. Note that we do not add any
domain separation for different spaces of keys or parameters. If this is needed one should
prefix the hash input with some encoding of input spaces.

7.2.2 Chain, Leaf, and Tree Hashing

We then set

ThSHA-3(P, T, M) = Truncaten bits (SHA-3(P ||T ||M)) .

Note that the tweak value differs for all invocations of our tweakable hash functions so all
SHA-3 calls actually get a different input. The input length is lp + lt + lm bits.

7.2.3 Resistance to Attacks

SHA-3-256 and its round-reduced versions have been targets of cryptanalytic attacks in the
last decade. At the time of writing, no collision or preimage attack faster than exhaustive
search is known for the full SHA-3-256. In particular, we are not aware of any attacks
against the security notions (definitions 3 to 6) that we require.

32 Hash-Based Multi-Signatures for Post-Quantum Ethereum

7.3 Tweakable Hash From Poseidon2
Poseidon2 [GKS23] is a family of hash functions which are defined on various prime field
domains. For each prime p and integer t ∈ {4, 8, 12, 16, 20, 24}, Poseidon2 defines a bijective
function (i.e., a permutation) PoseidonPermp,t on Ft

p. A hash function is obtained via one
of two modes:

• Compression Mode. We have

PoseidonCompressp,t,u(x) = Truncateu(PoseidonPermp,t(x) + x) ∈ Fu
p ,

where Truncateu takes first u elements of the output, x ∈ Ft and + is elementwise
addition in Ft

p. This mode limits the input length to t field elements but is the more
efficient one.

• Sponge Mode. Here, PoseidonPerm is iteratively applied to a state, which is an
element in Ft, while simultaneously absorbing parts of the input. This mode is the
most flexible at the expense of some computational overhead.

For the rest of this section, we assume that Fp is the prime field on which the circuits are
constructed for aggregation proofs.
Padding. As t ∈ {4, 8, 12, 16, 20, 24}, we will need to pad some of our inputs with a vector
0 of zero field elements to increase its length to the next multiple of 4. Note that this only
works if the input length is at most 24 field elements. In other cases, the sponge mode
has to be used. Our description assumes parameter settings for which only leaf hashing
requires the sponge mode.
Classical Security. To apply the heuristic bounds and use section 6 to set candi-
date parameters, we need to assume, as done in the design paper of Poseidon2, that
PoseidonCompressp,t,u behaves like a random oracle of the form Ft → Fu for all practical
purposes, and up to pu permutation queries. Similarly, the Sponge mode with capacity c
and rate r, which outputs u field elements needs to securely instantiate a random oracle
mapping into Fu up to min(pu, pc/2) permutation queries [KBM23]. We emphasize again
that this is only for getting heuristic candidate parameters, and security of the scheme
ultimately relies on standard model assumptions about Poseidon2 with these parameters.
We encourage any cryptanalytic effort to study Poseidon2 with regards to these standard
model assumptions.
Quantum Security. Similarly, using our heuristics means that we need to assume
that PoseidonCompressp,t,u behaves sufficiently like a quantum random oracle of the form
Ft → Fu, for up to pu/2 quantum queries. The security of the Sponge mode also degrades:
we are only able to claim security up to min(pu/3, pc/3) permutation queries [Unr21].
Additional Bounds. To summarize, in addition to the bounds from section 6, we have
to additionally satisfy the following bounds for the Poseidon2 parameters:

Compression Mode. u log p ≥ max(kC , 2kQ), (20)
Sponge Mode. u log p ≥ max(kC , 3kQ), c log p ≥ max(2kC , 3kQ). (21)

Here, kC and kQ denote classical and quantum security levels as in section 6.
Input Spaces. The public parameter space P is defined as P = Flp

p , where lp is taken
such that (16) is satisfied. The tweak space T is defined as T = {0, 1}lt where lt is selected
to accommodate the tweak values defined in eqs. (17) to (19). The seed space R is defined
as R = Flp

p , where lp is taken such that eq. (12) and eq. (14), respectively, are satisfied,
depending on whether Construction 5 or Construction 6 is used. The message space M
is {0, 1}lmsg for the message hash Thmsg = Thmsg

Poseidon2, and it is Flm
p for various lm for

Th = ThPoseidon2.

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 33

Tweak Encoding. So far, we have described tweaks as being bit strings. To use tweaks
in Poseidon2, we need to encode them as vectors of field elements. This is done as follows,
for a tweak T ∈ {0, 1}lt :

1. Let ξ be the minimum number such that pξ > 2lt .

2. Interpret T as base-p integer AT .

3. Then EncT(T) is the equivalent representation of AT as a vector of ξ elements of Fp.

7.3.1 Message Hashing

We now give more details on how to implement the message hash Thmsg = Thmsg
Poseidon2.

Outputs. For both instantiations (Constructions 5 and 6), we introduce an additional
parameter η′, which models the number of field elements that the hash function outputs,
before injectively mapping them to an output in {0, . . . , 2w−1}ℓ, with ℓ = n0 for Construc-
tion 5 and ℓ = v for Construction 6. More precisely, focus on the instantiation based on
Winternitz first (Construction 5). We set η′ to be the minimum such that η′ log p exceeds
the right hand side of (11). Note that this implies that it also exceeds the right hand
side of (20). Then, we find the minimum n0 such that n0w ≥ η′ log p. Finally, we use an
injective function Decodep,η′,w that interprets its input Fη′

p in as an integer in Zpη′ , and
represents it in base 2w to get a vector in {0, . . . , 2w − 1}n0 . We proceed in a similar way
for the target sum Winternitz instantiation (Construction 6), replacing n0 with v and (11)
with (13).
Message Encoding. For message hashing, the input is a bit string in {0, 1}lmsg . As for
tweaks, we need to encode this bit string as a vector of field elements first, which is done
as follows:

1. Let χ be the minimum number such that pχ > 2lmsg .

2. Interpret M as base-p integer AM .

3. Then EncM(M) is the equivalent representation of AM as a vector of χ elements of
Fp.

Hash Function. The total input length is lth-msg-in = lp + ξ + χ + lrnd. Let tth-msg be
minimal multiple of 4 that is not smaller than lth-msg-in. Then, we define the tweakable
hash function for message hashing as

Thmsg
Poseidon2(P, T, M, R)

= Decodep,η′,w(PoseidonCompressp,tth-msg,η′(R||P ||EncT(T)||EncM(M)||0)),

where 0 represents a padding of tth-msg − lth-msg-in zero field elements and can be empty,
if we have tth-msg = lth-msg-in.
On Uniformity. Note that the mapping that we define in this way does not have a
uniform output distribution. One may be concerned that this causes security issues.
However, note that message hashing needs to satisfy only one security property, namely,
multi-target collision resistance with random sampling (definition 6). If we set parameters
as above, then our heuristic bounds apply to the output of PoseidonCompress. As decoding
is injective, this property is preserved.

This non-uniformity also has an impact on correctness of the signature scheme. Namely,
formally applying ϵ-uniformity (see definition 2) via lemma 7 would not yield a sufficient
correctness bound. We do not claim any formal correctness guarantees when using the
Poseidon2-based instantiation, but we note that in our experiments, the correctness error
still seemed to be sufficiently small when setting the target sum as if the message hash
were uniform.

34 Hash-Based Multi-Signatures for Post-Quantum Ethereum

7.3.2 Chain, Tree, and Leaf Hashing

For the tweakable hash function Th = ThPoseidon2, we need to hash three types of inputs:
(1) values within chains, i.e., values in H, (2) pairs of nodes in the Merkle tree, i.e., values
in H2, and (3) leafs, i.e., values in Hv. We define H to be H := Fη

p, where η is chosen large
enough so that eq. (15) is satisfied. This also implies that η log p exceeds the right hand
side of eq. (20). As we also use the sponge mode for ThPoseidon2, we need to respect eq. (21)
as well, which means η log p must also exceed the right hand side of the first inequality in
(21).
Chain Hashing. For (1), we use the compression mode, since in this case all inputs
fit into 24 field elements if a 31-bit prime field is used, which is a convenient setting for
PoseidonPerm within hash-based succinct arguments. Let tth-ch be minimal multiple of 4
that is not smaller than lth-ch-in = lp + ξ + η. We set

ThPoseidon2(P, T, M) = PoseidonCompressp,tth-ch,η(P ||EncT(T)||M ||0) for M ∈ H = Fη
p,

where 0 contains of tth-ch − lth-ch-in zero field elements as before.
Tree Hashing. We now continue with (2), i.e., with hashing pairs of nodes within the
Merkle tree. Each such node is the output of a previous hashing invocation, i.e., we
now hash inputs in H2. Let tth-tr be minimal multiple of 4 that is not smaller than
lth-tr-in = lp + ξ + 2η. We set

ThPoseidon2(P, T, M) = PoseidonCompressp,lp+ξ+2η,η(P ||EncT(T)||M ||0) for M ∈ H2 = F2η
p ,

where 0 contains of tth-tr − lth-tr-in zero field elements and can be empty.
Leaf Hashing. We now turn to (3), where we need to hash long inputs in Hv as well,
namely, when we hash the leafs in the Merkle tree, which correspond to v ends of hash
chains. To do that, we employ the sponge mode with the SAFE API [KBM23]. For the
sponge mode, we first define the state size and the capacity c and rate r, measured in the
number of state elements and satisfying eq. (21). As we have already mentioned above,
the output length η is selected respecting eq. (21). We then take a reasonable value for r;
for a 31-bit field we set r = 24 − c. Then, we define ThPoseidon2(P, T, M) as follows, for
input M ∈ Hv = Fvη

p :

1. Produce the capacity value Vc := PoseidonCompressp,24,c(lp||lt||v||η) ∈ Fc
p, where

lp, lt, v, η are interpreted as 32-bit values. Their 128-bit concatenation lp||lt||v||η is
interpreted as an element of F24

p using the base-p representation.

2. Pad P ||EncT(T)||M with (possibly zero) field elements 0 ∈ Fp so that the resulting
vector V has r · s elements for some s, i.e., V = (v0, v1, . . . , vr·s−1).

3. Set S := (0, 0, . . . , 0︸ ︷︷ ︸
r elements

, Vc).

4. For i from 1 to s:

(a) S := S + (vr·i, vr·i+1, . . . , vr·i+r−1, 0, 0, . . . , 0︸ ︷︷ ︸
c elements

) where addition is componentwise.

(b) S := PoseidonPermp,24(S)

5. Output Truncateη(S).

Note that the parameter M is always much bigger than its analogue in chain and tree
hashing, which makes all three functions distinct.

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 35

7.3.3 Resistance to Attacks

Poseidon2 (from 2023) is a relatively recent design. Together with Poseidon [GKR+21]
(from 2019) it has been the subject of active cryptanalysis, but no attack has been published
on any full version of Poseidon or Poseidon2. We thus expect that the security notions
(definitions 3 to 6) that we require hold for Poseidon2. A recent initiative aims to further
asses the security of Poseidon213.

8 Efficiency
In this section, we compare the schemes we have analyzed in terms of efficiency. We consider
the schemes obtained from instantiating the generalized XMSS framework (Construction 3)
with Construction 5 and Construction 6, for different parameters satisfying the requirements
in section 6, and for the instantiations of hash functions as in section 7.
Remark 8. We only present a preliminary set of benchmarks. For example, for now we do
not benchmark aggregation times using state-of-the-art pqSNARK implementations. Such
benchmarks will be important before our proposed schemes can be used in Ethereum.

8.1 Setup
We first describe which schemes we compare, which metrics we consider, and how we obtain
our results. We set all parameters following section 6 using security levels kC = 128 (classi-
cal) and kQ = 64 (quantum). This corresponds to NIST’s Level 1 requirements [Nat16]. A
justification for this is that attacking the scheme with Grover’s algorithm [Gro96] requires
about 2kQ sequential time (as opposed to work), as Grover’s algorithm does not parallelize
well [Zal99, Flu17].
Constructions. The constructions we compare use chunk sizes w ∈ {1, 2, 4, 8}. For
Construction 6, we set the target sum to T = ⌈δE⌉, where E = v(2w − 1)/2 would be the
expected sum if the message hash was uniform14. We consider cases δ = 1 and δ = 1.1.
We consider key lifetimes L = 218 and L = 220. Note that longer lifetimes (e.g., L = 232)
are desirable, but benchmarking those requires more engineering effort, in particular as the
secret key and Merkle tree would no longer fit into main memory15. We leave benchmarking
such longer lifetimes for future work. For the target sum encoding, we have assumed
K ≤ 4096 to set parameters. For instantiations based on Poseidon2, we assume a 31-bit
field. For all constructions, we determine the remaining parameters following sections 6
and 7 using a Python script. The script can be found in the following repository:

https://github.com/b-wagn/hashsig-parameters

The Python script also determines the signature size as well as the worst-case and average-
case hash complexity of verification, which impacts aggregation time.
Implementation and Running Times. To evaluate the computational efficiency, we
have created a prototype Rust implementation of the signature schemes analyzed in this
work. In particular, our implementation follows the abstractions used in this work and
instantiations use the parameters determined using the Python script. It can be found in
the following repository:

https://github.com/b-wagn/hash-sig

13See https://www.poseidon-initiative.info/.
14Of course, the message hash is not uniform.
15One can deal with this in many ways, e.g., by first computing half of the Merkle tree, saving it to disk,

then computing the other half, and so on. Another approach, which requires further investigation, is to
use a multi-tree version of our variants of XMSS, similar to [HRB13].

https://github.com/b-wagn/hashsig-parameters
https://github.com/b-wagn/hash-sig
https://www.poseidon-initiative.info/

36 Hash-Based Multi-Signatures for Post-Quantum Ethereum

We benchmark this implementation with Criterion16 on a MacBook Pro with Apple M3
Pro chip, 18 GB memory. We have not implemented any parallelization.

Table 2: Comparison of instantiations of our generalized XMSS with different incomparable
encoding schemes, all using SHA-3-256. We compare instantiations based on classical
Winternitz (Construction 5, denoted by W) and Target Sum Winternitz (Construction 6,
denoted by TSW), with different parameters. We compare running times, signature size,
and verification hash complexity (worst-case: WC, average-case: AC). Average-case hashing
has been determined via simulation. Signature size is given in KiB (1 KiB = 1024 Bytes),
hashing is given in words (1 word = 32 Bytes). For TSW, we set the target sum to
T = ⌈δv(2w − 1)/2⌉.

Encoding Parameters Gen [s] Sign [µs] Ver [µs] Sig [KiB] Hash AC [w] Hash WC [w]

L
ife

ti
m

e
L

=
218 W w = 1 17.27 44.93 25.27 4.17 288.47 407.28

W w = 2 17.27 38.91 30.01 2.31 288.95 464.91
W w = 4 33.54 65.90 65.78 1.47 576.54 1021.66
W w = 8 273.44 493.35 542.74 1.06 4644.38 8393

TSW w = 1, δ = 1 16.44 48.51 24.04 3.98 274.38 274.38
TSW w = 1, δ = 1.1 16.50 59.35 22.19 3.98 261.38 261.38
TSW w = 2, δ = 1 16.35 44.84 28.72 2.22 276.62 276.62
TSW w = 2, δ = 1.1 16.39 54.79 26.37 2.22 258.75 258.75
TSW w = 4, δ = 1 31.16 83.08 59.64 1.39 522.44 522.44
TSW w = 4, δ = 1.1 31.17 100.85 54.25 1.39 477.72 477.72
TSW w = 8, δ = 1 244.68 675.19 464.75 1.01 4008.53 4008.53
TSW w = 8, δ = 1.1 244.82 784.85 419.14 1.01 3613.22 3613.22

L
ife

ti
m

e
L

=
220 W w = 1 69.37 44.91 25.68 4.22 293.04 411.91

W w = 2 68.64 39.17 30.41 2.46 301.39 480.09
W w = 4 134.28 65.94 66.48 1.52 583.14 1026.41
W w = 8 1091.25 491.08 540.62 1.11 4655.74 8398

TSW w = 1, δ = 1 65.70 48.91 24.31 4.03 279 279
TSW w = 1, δ = 1.1 65.79 59.41 22.63 4.03 266 266
TSW w = 2, δ = 1 65.18 44.89 29.15 2.36 288.12 288.12
TSW w = 2, δ = 1.1 65.06 54.77 26.82 2.36 269.91 269.91
TSW w = 4, δ = 1 124.52 82.89 59.69 1.44 527.19 527.19
TSW w = 4, δ = 1.1 124.54 100.69 54.62 1.44 482.47 482.47
TSW w = 8, δ = 1 978.97 673.45 465.53 1.06 4013.53 4013.53
TSW w = 8, δ = 1.1 979.15 792.64 420.59 1.06 3618.22 3618.22

8.2 Results
Now, we discuss the results, which we present in tables 2 and 3. In particular, we discuss
several trade-offs, and how various parameters impact the efficiency of the schemes.
Impacts of Lifetime. The lifetime L has a linear impact on the running time of key
generation, while the time required for signing and verification is almost unaffected. On
the other hand, its impact on signature size and hashing is minimal, as only the Merkle
path changes slightly, along with minor parameter adjustments (see eq. (15)). We note
again that supporting large L results in challenges when it comes to memory management,
as the Merkle tree would not fit in memory.
Impacts of Chunk Sizes. The chain length increases exponentially with the chunk size
w, while the number of chains v only decreases linearly. Thus, increasing w reduces the
signature size linearly as fewer chains are needed. However, verifier hashing and running
times are determined by chain length. This highlights a trade-off between signature size,
computational efficiency, and verifier hashing. The values w = 2 and w = 4 offer the best
balance. In contrast, w = 1 results in large signatures, while w = 8 is computationally
inefficient and hash-inefficient due to very long chains.

16See https://docs.rs/criterion/latest/criterion/.

https://docs.rs/criterion/latest/criterion/

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 37

Table 3: Comparison of instantiations of our generalized XMSS with different incomparable
encoding schemes, all using Poseidon2. We compare instantiations based on Winternitz
(Construction 5, denoted by W) and Target Sum Winternitz (section 5.2, denoted by TSW),
with different parameters. We compare running times, signature size, and verification hash
complexity (worst-case: WC, average-case: AC). For hashing, we count how often the
Poseidon permutation has to be called, and denote the permutation of width t field elements
by πt. Average-case hashing has been determined via simulation. Signature size is given in
KiB (1 KiB = 1024 Bytes). For TSW, we set the target sum to T = ⌈δv(2w − 1)/2⌉.

Encoding Parameters Gen [s] Sign [µs] Ver [µs] Sig [KiB] π16 AC π24 AC π16 WC π24 WC

L
ife

ti
m

e
L

=
218 W w = 1 179.01 362.59 416.54 4.97 81 97 158 97

W w = 2 168.19 350.04 408.67 2.75 122 59 237 59
W w = 4 330.52 638.08 769.41 1.66 325 41 615 41
W w = 8 2717.28 4820 5820 1.11 2917 31 5355 31

TSW w = 1, δ = 1 172.67 541.45 396.56 4.75 77 93 77 93
TSW w = 1, δ = 1.1 172.29 898.22 376.62 4.75 69 93 69 93
TSW w = 2, δ = 1 166.51 530.83 372.93 2.65 117 57 117 57
TSW w = 2, δ = 1.1 166.22 888.55 351.37 2.65 105 57 105 57
TSW w = 4, δ = 1 312.49 1090.00 650.82 1.58 292 39 292 39
TSW w = 4, δ = 1.1 312.64 1670.00 602.75 1.58 263 39 263 39
TSW w = 8, δ = 1 2501.01 9760.00 4900.00 1.06 2550 30 2550 30
TSW w = 8, δ = 1.1 2499.97 14570.00 4320.00 1.06 2295 30 2295 30

L
ife

ti
m

e
L

=
220 W w = 1 780.89 362.44 418.31 5.03 82 99 158 99

W w = 2 705.42 336.30 400.60 2.81 122 61 237 61
W w = 4 1353.18 617.48 746.28 1.72 326 43 615 43
W w = 8 11122.95 4981.20 6039.40 1.34 2917 35 5355 35

TSW w = 1, δ = 1 752.57 520.42 401.32 4.81 77 95 77 95
TSW w = 1, δ = 1.1 731.79 844.01 381.23 4.81 69 95 69 95
TSW w = 2, δ = 1 667.76 527.17 379.56 2.7 117 59 117 59
TSW w = 2, δ = 1.1 668.14 853.66 354.09 2.7 105 59 105 59
TSW w = 4, δ = 1 1249.52 1057.40 661.61 1.64 292 41 292 41
TSW w = 4, δ = 1.1 1248.35 1600.00 603.65 1.64 263 41 263 41
TSW w = 8, δ = 1 9972.32 9509.50 4870.60 1.27 2550 34 2550 34
TSW w = 8, δ = 1.1 9927.97 14271.00 4358.60 1.27 2295 34 2295 34

Winternitz vs. Target Sum. Let us now compare the classical Winternitz instantiation
(W in table 2) and the target sum instantiation (TSW in table 2). When it comes to key
generation time, the classical Winternitz instantiation is slower due to the additional chains
required for the checksum. In terms of signing time, the target sum instantiation is slower
because retries are necessary, until the sum matches the target sum. For verification, the
classical Winternitz instantiation is again slower, and we see that it has larger signatures
and hashing complexities. Both is mostly due to the larger number of chains. Moreover, it
is evident that for the target sum instantiation, the average-case and worst-case hashing
complexities are identical. This highlights that we have an explicit control over hashing
complexity in this variant. Therefore, if one can afford a slight increase in signing time,
the target sum instantiation is clearly preferable.

Signing Time vs. Verifier Hashing. For the target sum instantiation (TSW in table 2),
we see that signing time can be traded off against verifier hashing by increasing the target
sum. Concretely, compare any two consecutive lines in table 2 with the same chunk size w
and δ = 1 versus δ = 1.1. We can observe that signing time increases for δ = 1.1 as more
retries are needed, while verification time and (verification) hashing complexity decrease.

Impacts of Hash Functions. When comparing tables 2 and 3, we observe that Poseidon2-
based instantiations are significantly slower than their SHA-3-based counterparts (con-
cretely, a factor of about 10). Additionally, signature sizes are generally slightly larger for
Poseidon2-based instantiations. This is primarily because the hash function outputs are
vectors of field elements (31 bits) rather than vectors of bytes (8 bits), resulting in less
fine-grained control over their length.

38 Hash-Based Multi-Signatures for Post-Quantum Ethereum

8.3 On Aggregation via Succinct Arguments
While we do not provide concrete benchmarks for signature aggregation using pqSNARKs,
we give a high-level discussion on the topic. We emphasize that the following estimates
are preliminary.
Candidates for pqSNARKs. There are two main approaches to implementing a
pqSNARK for signature aggregation:

1. Custom Circuit Approach. One could design and optimize a dedicated circuit and
employ a hash-based argument, e.g., via post-quantum instances of the Plonky3
framework17 or stwo18. Ideally, these circuits are formally verified before use in
Ethereum.

2. zkVM-Based Approach. Alternatively, one could utilize zkVMs, which can generically
prove the verifier’s code. This approach simplifies the process of writing an Ethereum
specification and is less error-prone. However, it comes at the cost of reduced
efficiency.

Regardless of the choice, any selected pqSNARK must be adaptively knowledge-sound (see
section 4.3).
Aggregate Signature Size. Our preliminary estimates suggest that the aggregate
signature size using Plonky3 (which employs FRI [BBHR18]) ranges from 2 MB to 3
MB. This means as soon as we have more than 1000 signatures, aggregation saves space.
These estimates do not leverage algebraic conjectures commonly used to improve efficiency.
Incorporating such conjectures could further reduce the aggregate signature size. Moreover,
pqSNARKs continue to evolve, promising additional improvements. For example, replacing
FRI with STIR [ACFY24a] or WHIR [ACFY24b] could significantly shrink argument size.
The STIR paper suggests potential reductions by a factor of 2.5, indicating that, when
combined with algebraic conjectures, aggregate signature sizes below 1 MB are achievable.
Aggregation Times. Assuming that verifying a single signature requires approximately
160 hash operations (or Poseidon2 permutations), which corresponds to TSW with param-
eters w = 2, δ = 1.1, we estimate that aggregating up to 10, 000 signatures within one
second is feasible. This estimation is based on the requirement to prove approximately
1.75 · 106 hashes per second, a performance goal that appears attainable given current
advancements in pqSNARKs.

9 Conclusion
In this work, we have presented and analyzed variants of XMSS signatures. We have taken
care to obtain a security analysis leading to efficient and theoretically sound parameters,
and relying on explicitly stated standard model properties of the underlying hash functions.
In combination with a pqSNARK, we view our schemes as a family of proposals for use
in post-quantum Ethereum. The defining features of our schemes are their conceptual
simplicity, reliance solely on hash functions, and the rigorous theoretical analysis supporting
them. Although we have not discussed specific instantiations of the pqSNARK, our work
complements the broader industry efforts to develop efficient and secure pqSNARKs. That
said, we emphasize that reasonable alternatives exist and merit further investigation, and
we refer back to section 2 for a comprehensive discussion.

One key takeaway from our study is that the pqSNARK used to aggregate signatures
must be adaptively knowledge-sound. Another important contribution is our characteriza-
tion of the security properties and levels required of hash functions (e.g., Poseidon2) for

17See https://github.com/plonky3/plonky3.
18See https://github.com/starkware-libs/stwo.

https://github.com/plonky3/plonky3
https://github.com/starkware-libs/stwo

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 39

our proposed schemes. These properties provide concrete targets for cryptanalysis and
further research. In particular, we encourage cryptanalysts to study hash functions like
Poseidon2 with regards to the notions we use.

References
[AAB+24] Marius A. Aardal, Diego F. Aranha, Katharina Boudgoust, Sebastian Kolby,

and Akira Takahashi. Aggregating falcon signatures with LaBRADOR. In
Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part I, volume
14920 of LNCS, pages 71–106. Springer, Cham, August 2024. doi:10.1007/
978-3-031-68376-3_3.

[ACFY24a] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. STIR: Reed-
solomon proximity testing with fewer queries. In Leonid Reyzin and Douglas
Stebila, editors, CRYPTO 2024, Part X, volume 14929 of LNCS, pages 380–
413. Springer, Cham, August 2024. doi:10.1007/978-3-031-68403-6_12.

[ACFY24b] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. WHIR:
Reed–solomon proximity testing with super-fast verification. Cryptology
ePrint Archive, Paper 2024/1586, 2024. URL: https://eprint.iacr.org/
2024/1586.

[ACL+22] Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and Sri
Aravinda Krishnan Thyagarajan. Lattice-based SNARKs: Publicly verifiable,
preprocessing, and recursively composable - (extended abstract). In Yevgeniy
Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume 13508
of LNCS, pages 102–132. Springer, Cham, August 2022. doi:10.1007/978-3
-031-15979-4_4.

[ADP24] Nabil Alkeilani Alkadri, Nico Döttling, and Sihang Pu. Practical lattice-based
distributed signatures for a small number of signers. In Christina Pöpper
and Lejla Batina, editors, ACNS 24International Conference on Applied
Cryptography and Network Security, Part I, volume 14583 of LNCS, pages 376–
402. Springer, Cham, March 2024. doi:10.1007/978-3-031-54770-6_15.

[AdSGK24] Shahla Atapoor, Cyprien Delpech de Saint Guilhem, and Al Kindi. STARK-
based signatures from the RPO permutation. Cryptology ePrint Archive,
Paper 2024/1553, 2024. URL: https://eprint.iacr.org/2024/1553.

[AGH10] Jae Hyun Ahn, Matthew Green, and Susan Hohenberger. Synchronized
aggregate signatures: new definitions, constructions and applications. In Ehab
Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM CCS
2010, pages 473–484. ACM Press, October 2010. doi:10.1145/1866307.18
66360.

[BBd+23] Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael
Klooß, Christian Majenz, Shibam Mukherjee, Emmanuela Orsini, Sebastian
Ramacher, Christian Rechberger, Lawrence Roy, and Peter Scholl. FAEST.
Technical report, National Institute of Standards and Technology, 2023. avail-
able at https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-addit
ional-signatures.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-
solomon interactive oracle proofs of proximity. In Ioannis Chatzigiannakis,
Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, ICALP

https://doi.org/10.1007/978-3-031-68376-3_3
https://doi.org/10.1007/978-3-031-68376-3_3
https://doi.org/10.1007/978-3-031-68403-6_12
https://eprint.iacr.org/2024/1586
https://eprint.iacr.org/2024/1586
https://doi.org/10.1007/978-3-031-15979-4_4
https://doi.org/10.1007/978-3-031-15979-4_4
https://doi.org/10.1007/978-3-031-54770-6_15
https://eprint.iacr.org/2024/1553
https://doi.org/10.1145/1866307.1866360
https://doi.org/10.1145/1866307.1866360
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

40 Hash-Based Multi-Signatures for Post-Quantum Ethereum

2018, volume 107 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl, July 2018.
doi:10.4230/LIPIcs.ICALP.2018.14.

[BBK+23] Zvika Brakerski, Maya Farber Brodsky, Yael Tauman Kalai, Alex Lombardi,
and Omer Paneth. SNARGs for monotone policy batch NP. In Helena
Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part II, volume
14082 of LNCS, pages 252–283. Springer, Cham, August 2023. doi:10.1007/
978-3-031-38545-2_9.

[BC24] Dan Boneh and Binyi Chen. LatticeFold: A lattice-based folding scheme and
its applications to succinct proof systems. Cryptology ePrint Archive, Paper
2024/257, 2024. URL: https://eprint.iacr.org/2024/257.

[BCJP24] Maya Farber Brodsky, Arka Rai Choudhuri, Abhishek Jain, and Omer Paneth.
Monotone-policy aggregate signatures. In Marc Joye and Gregor Leander,
editors, EUROCRYPT 2024, Part IV, volume 14654 of LNCS, pages 168–195.
Springer, Cham, May 2024. doi:10.1007/978-3-031-58737-5_7.

[BDE+11] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas Hülsing, and
Markus Rückert. On the security of the Winternitz one-time signature scheme.
In Abderrahmane Nitaj and David Pointcheval, editors, AFRICACRYPT 11,
volume 6737 of LNCS, pages 363–378. Springer, Berlin, Heidelberg, July 2011.
doi:10.1007/978-3-642-21969-6_23.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian
Schaffner, and Mark Zhandry. Random oracles in a quantum world. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume
7073 of LNCS, pages 41–69. Springer, Berlin, Heidelberg, December 2011.
doi:10.1007/978-3-642-25385-0_3.

[BDH11] Johannes A. Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS - A
practical forward secure signature scheme based on minimal security assump-
tions. In Bo-Yin Yang, editor, Post-Quantum Cryptography - 4th Interna-
tional Workshop, PQCrypto 2011, pages 117–129. Springer, Berlin, Heidelberg,
November / December 2011. doi:10.1007/978-3-642-25405-5_8.

[Beu22] Ward Beullens. MAYO: Practical post-quantum signatures from oil-and-
vinegar maps. In Riham AlTawy and Andreas Hülsing, editors, SAC 2021,
volume 13203 of LNCS, pages 355–376. Springer, Cham, September / October
2022. doi:10.1007/978-3-030-99277-4_17.

[BH19] Daniel J. Bernstein and Andreas Hülsing. Decisional second-preimage resis-
tance: When does SPR imply PRE? In Steven D. Galbraith and Shiho Moriai,
editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 33–62.
Springer, Cham, December 2019. doi:10.1007/978-3-030-34618-8_2.

[BHH+15] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben
Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe,
and Zooko Wilcox-O’Hearn. SPHINCS: Practical stateless hash-based signa-
tures. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015,
Part I, volume 9056 of LNCS, pages 368–397. Springer, Berlin, Heidelberg,
April 2015. doi:10.1007/978-3-662-46800-5_15.

[BHK+19] Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen,
Joost Rijneveld, and Peter Schwabe. The SPHINCS+ signature framework.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz,

https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.1007/978-3-031-38545-2_9
https://doi.org/10.1007/978-3-031-38545-2_9
https://eprint.iacr.org/2024/257
https://doi.org/10.1007/978-3-031-58737-5_7
https://doi.org/10.1007/978-3-642-21969-6_23
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25405-5_8
https://doi.org/10.1007/978-3-030-99277-4_17
https://doi.org/10.1007/978-3-030-34618-8_2
https://doi.org/10.1007/978-3-662-46800-5_15

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 41

editors, ACM CCS 2019, pages 2129–2146. ACM Press, November 2019.
doi:10.1145/3319535.3363229.

[BHRvV21] Joppe W. Bos, Andreas Hülsing, Joost Renes, and Christine van Vredendaal.
Rapidly verifiable XMSS signatures. IACR TCHES, 2021(1):137–168, 2021.
URL: https://tches.iacr.org/index.php/TCHES/article/view/8730,
doi:10.46586/tches.v2021.i1.137-168.

[BK20] Dan Boneh and Sam Kim. One-time and interactive aggregate signatures
from lattices, 2020. URL: https://crypto.stanford.edu/~skim13/agg_ot
s.pdf.

[BKPV23] Luk Bettale, Delaram Kahrobaei, Ludovic Perret, and Javier Verbel. Biscuit.
Technical report, National Institute of Standards and Technology, 2023. avail-
able at https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-addit
ional-signatures.

[BS20] Dan Boneh and Victor Shoup. A graduate course in applied cryptography.
2020. URL: https://toc.cryptobook.us/.

[BS23] Ward Beullens and Gregor Seiler. LaBRADOR: Compact proofs for R1CS
from module-SIS. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part V, volume 14085 of LNCS, pages 518–548. Springer,
Cham, August 2023. doi:10.1007/978-3-031-38554-4_17.

[BTT22] Cecilia Boschini, Akira Takahashi, and Mehdi Tibouchi. MuSig-L: Lattice-
based multi-signature with single-round online phase. In Yevgeniy Dodis and
Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume 13508 of LNCS,
pages 276–305. Springer, Cham, August 2022. doi:10.1007/978-3-031-159
79-4_10.

[CF24] Alessandro Chiesa and Giacomo Fenzi. zkSNARKs in the ROM with uncon-
ditional UC-security. In Theory of Cryptography Conference, pages 67–89.
Springer, 2024. doi:10.1007/978-3-031-78011-0_3.

[CFS01] Nicolas Courtois, Matthieu Finiasz, and Nicolas Sendrier. How to achieve
a McEliece-based digital signature scheme. In Colin Boyd, editor, ASI-
ACRYPT 2001, volume 2248 of LNCS, pages 157–174. Springer, Berlin,
Heidelberg, December 2001. doi:10.1007/3-540-45682-1_10.

[Che23] Yanbo Chen. DualMS: Efficient lattice-based two-round multi-signature with
trapdoor-free simulation. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part V, volume 14085 of LNCS, pages 716–747. Springer,
Cham, August 2023. doi:10.1007/978-3-031-38554-4_23.

[CMS19] Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct arguments
in the quantum random oracle model. In Dennis Hofheinz and Alon Rosen,
editors, TCC 2019, Part II, volume 11892 of LNCS, pages 1–29. Springer,
Cham, December 2019. doi:10.1007/978-3-030-36033-7_1.

[DFMS24] Giuseppe D’Alconzo, Andrea Flamini, Alessio Meneghetti, and Edoardo Sig-
norini. A framework for group action-based multi-signatures and applications
to LESS, MEDS, and ALTEQ. Cryptology ePrint Archive, Paper 2024/1691,
2024. URL: https://eprint.iacr.org/2024/1691.

https://doi.org/10.1145/3319535.3363229
https://tches.iacr.org/index.php/TCHES/article/view/8730
https://doi.org/10.46586/tches.v2021.i1.137-168
https://crypto.stanford.edu/~skim13/agg_ots.pdf
https://crypto.stanford.edu/~skim13/agg_ots.pdf
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://toc.cryptobook.us/
https://doi.org/10.1007/978-3-031-38554-4_17
https://doi.org/10.1007/978-3-031-15979-4_10
https://doi.org/10.1007/978-3-031-15979-4_10
https://doi.org/10.1007/978-3-031-78011-0_3
https://doi.org/10.1007/3-540-45682-1_10
https://doi.org/10.1007/978-3-031-38554-4_23
https://doi.org/10.1007/978-3-030-36033-7_1
https://eprint.iacr.org/2024/1691

42 Hash-Based Multi-Signatures for Post-Quantum Ethereum

[DGKV22] Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. Rate-1
non-interactive arguments for batch-NP and applications. In 63rd FOCS,
pages 1057–1068. IEEE Computer Society Press, October / November 2022.
doi:10.1109/FOCS54457.2022.00103.

[DGNW20] Manu Drijvers, Sergey Gorbunov, Gregory Neven, and Hoeteck Wee. Pixel:
Multi-signatures for consensus. In Srdjan Capkun and Franziska Roesner, ed-
itors, USENIX Security 2020, pages 2093–2110. USENIX Association, August
2020.

[DHSS20] Yarkın Doröz, Jeffrey Hoffstein, Joseph H. Silverman, and Berk Sunar. MM-
SAT: A scheme for multimessage multiuser signature aggregation. Cryptology
ePrint Archive, Report 2020/520, 2020. URL: https://eprint.iacr.org/
2020/520.

[DKL+20] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin
Wesolowski. SQISign: Compact post-quantum signatures from quaternions and
isogenies. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part I, volume 12491 of LNCS, pages 64–93. Springer, Cham, December 2020.
doi:10.1007/978-3-030-64837-4_3.

[DLL+17] Léo Ducas, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor
Seiler, and Damien Stehlé. CRYSTALS – Dilithium: Digital signatures from
module lattices. Cryptology ePrint Archive, Report 2017/633, 2017. URL:
https://eprint.iacr.org/2017/633.

[DLRW24] Pierrick Dartois, Antonin Leroux, Damien Robert, and Benjamin Wesolowski.
SQIsignHD: New dimensions in cryptography. In Marc Joye and Gregor
Leander, editors, EUROCRYPT 2024, Part I, volume 14651 of LNCS, pages
3–32. Springer, Cham, May 2024. doi:10.1007/978-3-031-58716-0_1.

[DOTT21] Ivan Damgård, Claudio Orlandi, Akira Takahashi, and Mehdi Tibouchi. Two-
round n-out-of-n and multi-signatures and trapdoor commitment from lattices.
In Juan Garay, editor, PKC 2021, Part I, volume 12710 of LNCS, pages
99–130. Springer, Cham, May 2021. doi:10.1007/978-3-030-75245-3_5.

[DSS05] C. Dods, Nigel P. Smart, and Martijn Stam. Hash based digital signature
schemes. In Nigel P. Smart, editor, 10th IMA International Conference on
Cryptography and Coding, volume 3796 of LNCS, pages 96–115. Springer,
Berlin, Heidelberg, December 2005. doi:10.1007/11586821_8.

[FHSZ23] Nils Fleischhacker, Gottfried Herold, Mark Simkin, and Zhenfei Zhang.
Chipmunk: Better synchronized multi-signatures from lattices. In Weizhi
Meng, Christian Damsgaard Jensen, Cas Cremers, and Engin Kirda, edi-
tors, ACM CCS 2023, pages 386–400. ACM Press, November 2023. doi:
10.1145/3576915.3623219.

[FKNP24] Giacomo Fenzi, Christian Knabenhans, Ngoc Khanh Nguyen, and Duc Tu
Pham. Lova: Lattice-based folding scheme from unstructured lattices. Cryp-
tology ePrint Archive, Paper 2024/1964, 2024. URL: https://eprint.iacr.
org/2024/1964.

[Flu17] Scott Fluhrer. Reassessing grover’s algorithm. Cryptology ePrint Archive,
Report 2017/811, 2017. URL: https://eprint.iacr.org/2017/811.

https://doi.org/10.1109/FOCS54457.2022.00103
https://eprint.iacr.org/2020/520
https://eprint.iacr.org/2020/520
https://doi.org/10.1007/978-3-030-64837-4_3
https://eprint.iacr.org/2017/633
https://doi.org/10.1007/978-3-031-58716-0_1
https://doi.org/10.1007/978-3-030-75245-3_5
https://doi.org/10.1007/11586821_8
https://doi.org/10.1145/3576915.3623219
https://doi.org/10.1145/3576915.3623219
https://eprint.iacr.org/2024/1964
https://eprint.iacr.org/2024/1964
https://eprint.iacr.org/2017/811

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 43

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86,
volume 263 of LNCS, pages 186–194. Springer, Berlin, Heidelberg, August
1987. doi:10.1007/3-540-47721-7_12.

[FSZ22] Nils Fleischhacker, Mark Simkin, and Zhenfei Zhang. Squirrel: Efficient
synchronized multi-signatures from lattices. In Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 1109–1123.
ACM Press, November 2022. doi:10.1145/3548606.3560655.

[GHHM21] Alex B. Grilo, Kathrin Hövelmanns, Andreas Hülsing, and Christian Majenz.
Tight adaptive reprogramming in the QROM. In Mehdi Tibouchi and Huax-
iong Wang, editors, ASIACRYPT 2021, Part I, volume 13090 of LNCS, pages
637–667. Springer, Cham, December 2021. doi:10.1007/978-3-030-92062
-3_22.

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. Poseidon: A new hash function for zero-knowledge proof
systems. In Michael Bailey and Rachel Greenstadt, editors, USENIX Security
2021, pages 519–535. USENIX Association, August 2021.

[GKS23] Lorenzo Grassi, Dmitry Khovratovich, and Markus Schofnegger. Poseidon2:
A faster version of the poseidon hash function. In Nadia El Mrabet, Luca De
Feo, and Sylvain Duquesne, editors, AFRICACRYPT 23, volume 14064 of
LNCS, pages 177–203. Springer, Cham, July 2023. doi:10.1007/978-3-031
-37679-5_8.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In Richard E. Ladner and
Cynthia Dwork, editors, 40th ACM STOC, pages 197–206. ACM Press, May
2008. doi:10.1145/1374376.1374407.

[GR06] Craig Gentry and Zulfikar Ramzan. Identity-based aggregate signatures.
In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors,
PKC 2006, volume 3958 of LNCS, pages 257–273. Springer, Berlin, Heidelberg,
April 2006. doi:10.1007/11745853_17.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In
28th ACM STOC, pages 212–219. ACM Press, May 1996. doi:10.1145/23
7814.237866.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments
from all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan,
editors, 43rd ACM STOC, pages 99–108. ACM Press, June 2011. doi:
10.1145/1993636.1993651.

[HBD+22] Andreas Hülsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder,
Scott Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis, Stefan Kölbl, Tanja
Lange, Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen, Christian
Rechberger, Joost Rijneveld, Peter Schwabe, Jean-Philippe Aumasson, Bas
Westerbaan, and Ward Beullens. SPHINCS+. Technical report, National
Institute of Standards and Technology, 2022. available at https://csrc.nis
t.gov/Projects/post-quantum-cryptography/selected-algorithms-2
022.

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/3548606.3560655
https://doi.org/10.1007/978-3-030-92062-3_22
https://doi.org/10.1007/978-3-030-92062-3_22
https://doi.org/10.1007/978-3-031-37679-5_8
https://doi.org/10.1007/978-3-031-37679-5_8
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/11745853_17
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1145/1993636.1993651
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

44 Hash-Based Multi-Signatures for Post-Quantum Ethereum

[HBG+18] Andreas Huelsing, Denis Butin, Stefan-Lukas Gazdag, Joost Rijneveld, and
Aziz Mohaisen. XMSS: eXtended Merkle Signature Scheme. RFC 8391,
May 2018. URL: https://www.rfc-editor.org/info/rfc8391, doi:
10.17487/RFC8391.

[HK22] Andreas Hülsing and Mikhail A. Kudinov. Recovering the tight security
proof of SPHINCS+. In Shweta Agrawal and Dongdai Lin, editors, ASI-
ACRYPT 2022, Part IV, volume 13794 of LNCS, pages 3–33. Springer, Cham,
December 2022. doi:10.1007/978-3-031-22972-5_1.

[HKRY23] Andreas Hülsing, Mikhail A. Kudinov, Eyal Ronen, and Eylon Yogev.
SPHINCS+C: Compressing SPHINCS+ with (almost) no cost. In 2023
IEEE Symposium on Security and Privacy, pages 1435–1453. IEEE Computer
Society Press, May 2023. doi:10.1109/SP46215.2023.10179381.

[HLP24] Ulrich Haböck, David Levit, and Shahar Papini. Circle STARKs. Cryptology
ePrint Archive, Report 2024/278, 2024. URL: https://eprint.iacr.org/
2024/278.

[HRB13] Andreas Hülsing, Lea Rausch, and Johannes Buchmann. Optimal param-
eters for XMSS MT. In Alfredo Cuzzocrea, Christian Kittl, Dimitris E.
Simos, Edgar R. Weippl, and Lida Xu, editors, Security Engineering and
Intelligence Informatics - CD-ARES 2013 Workshops: MoCrySEn and Se-
CIHD, Regensburg, Germany, September 2-6, 2013. Proceedings, volume
8128 of Lecture Notes in Computer Science, pages 194–208. Springer, 2013.
doi:10.1007/978-3-642-40588-4_14.

[HRS16] Andreas Hülsing, Joost Rijneveld, and Fang Song. Mitigating multi-target
attacks in hash-based signatures. In Chen-Mou Cheng, Kai-Min Chung,
Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part I, volume
9614 of LNCS, pages 387–416. Springer, Berlin, Heidelberg, March 2016.
doi:10.1007/978-3-662-49384-7_15.

[Hül13] Andreas Hülsing. W-OTS+ - shorter signatures for hash-based signature
schemes. In Amr Youssef, Abderrahmane Nitaj, and Aboul Ella Hassanien,
editors, AFRICACRYPT 13, volume 7918 of LNCS, pages 173–188. Springer,
Berlin, Heidelberg, June 2013. doi:10.1007/978-3-642-38553-7_10.

[HW18] Susan Hohenberger and Brent Waters. Synchronized aggregate signatures
from the RSA assumption. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 197–229.
Springer, Cham, April / May 2018. doi:10.1007/978-3-319-78375-8_7.

[KBM23] Dmitry Khovratovich, Mario Marhuenda Beltrán, and Bart Mennink. Generic
security of the SAFE API and its applications. In ASIACRYPT (8), volume
14445 of Lecture Notes in Computer Science, pages 301–327. Springer, 2023.
doi:10.1007/978-981-99-8742-9_10.

[KCLM22] Irakliy Khaburzaniya, Konstantinos Chalkias, Kevin Lewi, and Harjasleen
Malvai. Aggregating and thresholdizing hash-based signatures using STARKs.
In Yuji Suga, Kouichi Sakurai, Xuhua Ding, and Kazue Sako, editors, ASI-
ACCS 22, pages 393–407. ACM Press, May / June 2022. doi:10.1145/3488
932.3524128.

[KKF21] Mikhail Aleksandrovich Kudinov, Evgeniy Olegovich Kiktenko, and Alek-
sey Konstantinovich Fedorov. Security analysis of the w-ots+ signature

https://www.rfc-editor.org/info/rfc8391
https://doi.org/10.17487/RFC8391
https://doi.org/10.17487/RFC8391
https://doi.org/10.1007/978-3-031-22972-5_1
https://doi.org/10.1109/SP46215.2023.10179381
https://eprint.iacr.org/2024/278
https://eprint.iacr.org/2024/278
https://doi.org/10.1007/978-3-642-40588-4_14
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-642-38553-7_10
https://doi.org/10.1007/978-3-319-78375-8_7
https://doi.org/10.1007/978-981-99-8742-9_10
https://doi.org/10.1145/3488932.3524128
https://doi.org/10.1145/3488932.3524128

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 45

scheme: Updating security bounds. Matematicheskie Voprosy Kriptografii
[Mathematical Aspects of Cryptography], 12(2):129–145, June 2021. URL:
http://dx.doi.org/10.4213/mvk362, doi:10.4213/mvk362.

[KLM06] Phillip Kaye, Raymond Laflamme, and Michele Mosca. An introduction to
quantum computing. Oxford University Press, 2006.

[LDK+20] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-DILITHIUM. Tech-
nical report, National Institute of Standards and Technology, 2020. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/post
-quantum-cryptography-standardization/round-3-submissions.

[LLL+24] Qiqi Lai, Feng-Hao Liu, Yang Lu, Haiyang Xue, and Yong Yu. Scalable two-
round n-out-of-n and multi-signatures from lattices in the quantum random
oracle model. Cryptology ePrint Archive, Paper 2024/1574, 2024. URL:
https://eprint.iacr.org/2024/1574.

[LM08] Vadim Lyubashevsky and Daniele Micciancio. Asymptotically efficient lattice-
based digital signatures. In Ran Canetti, editor, TCC 2008, volume 4948
of LNCS, pages 37–54. Springer, Berlin, Heidelberg, March 2008. doi:
10.1007/978-3-540-78524-8_3.

[LMQW22] Alex Lombardi, Ethan Mook, Willy Quach, and Daniel Wichs. Post-quantum
insecurity from LWE. In Eike Kiltz and Vinod Vaikuntanathan, editors,
TCC 2022, Part I, volume 13747 of LNCS, pages 3–32. Springer, Cham,
November 2022. doi:10.1007/978-3-031-22318-1_1.

[Mer79] Ralph Charles Merkle. Secrecy, authentication, and public key systems. Stan-
ford university, 1979.

[Nat15] National Institute of Standards and Technology. SHA-3 Standard:
Permutation-based hash and extendable-output functions. Federal Infor-
mation Processing Standards Publication (FIPS), 2015.

[Nat16] National Institute of Standards and Technology. Submission requirements and
evaluation criteria for the post-quantum cryptography standardization process.
National Institute of Standards and Technology Reports, 2016. available at
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Crypt
ography/documents/call-for-proposals-final-dec-2016.pdf. URL:
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptog
raphy/documents/call-for-proposals-final-dec-2016.pdf.

[PFH+20] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. FALCON. Technical report, National Institute of
Standards and Technology, 2020. available at https://csrc.nist.gov/pr
ojects/post-quantum-cryptography/post-quantum-cryptography-sta
ndardization/round-3-submissions.

[SEMR24] Maria Corte-Real Santos, Jonathan Komada Eriksen, Michael Meyer, and
Krijn Reijnders. AprèsSQI: Extra fast verification for SQIsign using extension-
field signing. In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024,
Part I, volume 14651 of LNCS, pages 63–93. Springer, Cham, May 2024.
doi:10.1007/978-3-031-58716-0_3.

http://dx.doi.org/10.4213/mvk362
https://doi.org/10.4213/mvk362
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://eprint.iacr.org/2024/1574
https://doi.org/10.1007/978-3-540-78524-8_3
https://doi.org/10.1007/978-3-540-78524-8_3
https://doi.org/10.1007/978-3-031-22318-1_1
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/978-3-031-58716-0_3

46 Hash-Based Multi-Signatures for Post-Quantum Ethereum

[Ste94] Jacques Stern. A new identification scheme based on syndrome decoding. In
Douglas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 13–21.
Springer, Berlin, Heidelberg, August 1994. doi:10.1007/3-540-48329-2_2.

[TS23] Toi Tomita and Junji Shikata. Compact aggregate signature from module-
lattices. Cryptology ePrint Archive, Report 2023/471, 2023. URL: https:
//eprint.iacr.org/2023/471.

[Unr17] Dominique Unruh. Post-quantum security of Fiat-Shamir. In Tsuyoshi Takagi
and Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624 of
LNCS, pages 65–95. Springer, Cham, December 2017. doi:10.1007/978-3
-319-70694-8_3.

[Unr21] Dominique Unruh. Compressed permutation oracles (and the collision-
resistance of sponge/SHA3). Cryptology ePrint Archive, Paper 2021/062,
2021. URL: https://eprint.iacr.org/2021/062.

[WW22] Brent Waters and David J. Wu. Batch arguments for NP and more from
standard bilinear group assumptions. In Yevgeniy Dodis and Thomas Shrimp-
ton, editors, CRYPTO 2022, Part II, volume 13508 of LNCS, pages 433–463.
Springer, Cham, August 2022. doi:10.1007/978-3-031-15979-4_15.

[Zal99] Christof Zalka. Grover’s quantum searching algorithm is optimal. Phys. Rev.
A, 60:2746–2751, Oct 1999. doi:10.1103/PhysRevA.60.2746.

[ZCF24] Hadas Zeilberger, Binyi Chen, and Ben Fisch. BaseFold: Efficient field-
agnostic polynomial commitment schemes from foldable codes. In Leonid
Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part X, volume 14929
of LNCS, pages 138–169. Springer, Cham, August 2024. doi:10.1007/978-3
-031-68403-6_5.

[ZCY23] Kaiyi Zhang, Hongrui Cui, and Yu Yu. Revisiting the constant-sum winternitz
one-time signature with applications to SPHINCS+ and XMSS. In Helena
Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part V, volume
14085 of LNCS, pages 455–483. Springer, Cham, August 2023. doi:10.1007/
978-3-031-38554-4_15.

[Zha12] Mark Zhandry. How to construct quantum random functions. In 53rd
FOCS, pages 679–687. IEEE Computer Society Press, October 2012. doi:
10.1109/FOCS.2012.37.

Supplementary Material

A Postponed Definitions
A.1 Multi-Signatures
Definition 12 (Synchronized Multi-Signature Scheme). Let L ∈ N be a natural number.
A synchronized (non-interactive) multi-signature scheme with lifetime L is a tuple of
efficient algorithms MS = (Gen, Sig, Aggregate, Ver) with the following syntax:

• Gen(par)→ (pk, sk) takes as input system parameters par and outputs a public key
pk and a secret key sk.

• Sig(sk, ep, m)→ σ takes as input a secret key sk, an epoch ep ∈ [L], and a message
m ∈ {0, 1}lmsg and outputs a signature σ.

https://doi.org/10.1007/3-540-48329-2_2
https://eprint.iacr.org/2023/471
https://eprint.iacr.org/2023/471
https://doi.org/10.1007/978-3-319-70694-8_3
https://doi.org/10.1007/978-3-319-70694-8_3
https://eprint.iacr.org/2021/062
https://doi.org/10.1007/978-3-031-15979-4_15
https://doi.org/10.1103/PhysRevA.60.2746
https://doi.org/10.1007/978-3-031-68403-6_5
https://doi.org/10.1007/978-3-031-68403-6_5
https://doi.org/10.1007/978-3-031-38554-4_15
https://doi.org/10.1007/978-3-031-38554-4_15
https://doi.org/10.1109/FOCS.2012.37
https://doi.org/10.1109/FOCS.2012.37

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 47

• Aggregate(ep, m, ((pki, σi))k
i=1)→ σ̄ is deterministic, takes as input an epoch ep ∈ [L],

a message m ∈ {0, 1}lmsg , and a list of public keys and signatures (pki, σi), and outputs
an aggregate signature σ̄.

• Ver((pki)k
i=1, ep, m, σ̄) → b is deterministic, takes as input a list of public keys

pk1, . . . , pkk, an epoch ep ∈ [L], a message m ∈ {0, 1}lmsg , and an aggregate signature
σ̄, and outputs a bit b ∈ {0, 1}.

Further, we say that MS has correctness error at most δ : N → R, if for all k ∈ N, all
(pki, ski) ∈ Gen(par) for i ∈ [k], all epochs ep ∈ [L], and all messages m ∈ {0, 1}lmsg , we
have

Pr
[
Ver((pki)k

i=1, ep, m, σ̄) = 0
∣∣∣∣ ∀i ∈ [k] : σi ← Sig(ski, ep, m),

σ̄ ← Aggregate(ep, m, ((pki, σi))k
i=1)

]
≤ δ(k).

Definition 13 (Synchronized Multi-Signature Security). Let MS = (Gen, Sig, Aggregate,
Ver) be a synchronized signature scheme with lifetime L, let A be any algorithm. Consider
the following experiment MS-SY-UF-CMASIG(A):

1. Generate keys (pk, sk)← Gen(par).

2. Run A on input par and pk, and with (classical) access to the following oracle:

• Sig(ep, m) for ep ∈ [L], m ∈ {0, 1}lmsg : If Signed[ep] ̸= ⊥, then return ⊥.
Otherwise, compute σ ← Sig(sk, ep, m), set Signed[ep] := m, and return σ.

3. Obtain from A a forgery (k∗, (pk∗i)k∗

i=1, ep∗, m∗, σ̄∗) with ep∗ ∈ [L] and m∗ ∈ {0, 1}lmsg .
Output 1 if it holds that Ver((pk∗i)k∗

i=1, ep∗, m∗, σ̄∗) = 1, m∗ ̸= Signed[ep∗], and there
is an i such that pk∗i = pk. Otherwise, output 0.

For any algorithm A, we define the following advantage:

AdvMS-SY-UF-CMA
MS (A) := Pr [MS-SY-UF-CMAMS(A)⇒ 1].

A.2 Non-Interactive Argument Systems
In the following, we define non-interactive argument systems. We will make black-box
use of these systems for our multi-signature construction, as the focus of our work is to
explore the security and efficiency of hash-based candidates for the underlying signature
scheme. Nonetheless, finding a secure, efficient, and conceptually simple instantiation
of such argument systems will be a necessary next step on the road to post-quantum
proof-of-stake.

Definition 14 (Non-Interactive Proof System). Let Γ ⊆ {0, 1}∗ × {0, 1}∗ be a relation,
where for a pair (stmt, witn) ∈ Γ, we refer to stmt as the statement, and witn as the witness.
Let H be a random oracle. A non-interactive argument system for Γ with respect to H is
defined to be a pair of efficient algorithms AS = (ArgProve, ArgVer) with (classical) oracle
access to H and the following syntax:

• ArgProveH(stmt, witn)→ π is deterministic19, takes as input a statement stmt and a
witness witn, and outputs an argument string π.

• ArgVerH(stmt, π) → b is deterministic, takes as input a statement stmt and an
argument string π, and outputs a bit b ∈ {0, 1}.

19As we do not require any zero-knowledge property, we can assume that proving is deterministic.

48 Hash-Based Multi-Signatures for Post-Quantum Ethereum

Further, we say that AS has correctness error at most δ, if for all pairs (stmt, witn) ∈ Γ,
we have

Pr
[
ArgVerH(stmt, π) = 0 | π := ArgProveH(stmt, witn)

]
≤ δ,

with probability taken over the randomness of H.

Remark 9 (Succinctness). To obtain non-trivial aggregation of signatures, we need that
the argument system is succinct, meaning that the size of π is significantly smaller than
the size of the witness.
Remark 10 (Random Oracles). We highlight again that the verifier of the signature scheme
should not make random oracle calls. More precisely, what we need to avoid is that
the relation Γ that we prove is defined with respect to a random oracle. On the other
hand, the succinct argument itself can use random oracles, and it has been shown that for
succinctness, non-falsifiable assumptions are necessary [GW11].

The security property of interest is knowledge soundness, which intuitively guarantees
that any efficient prover capable of producing a valid (i.e., verifying) argument string
must also know a valid witness. This is typically formalized by requiring the existence of
an efficient extractor that can derive the witness from the argument string. Knowledge
soundness is particularly useful in our setting where we want to prove that aggregating
signatures with a succinct argument yields a secure multi-signature. In the security proof,
we first extract all individual signatures from the aggregate signature and then reduce to
the security of the underlying signature scheme.

The formal definition of knowledge soundness involves significant subtleties, as ex-
tensively discussed by Unruh [Unr17]. These challenges become even more pronounced
when considering quantum adversaries that can query the random oracle in superposition.
This is relevant for analyzing argument systems in the quantum random oracle model
(QROM) [BDF+11]. Two concrete examples highlight these subtleties: First, Chiesa et
al. [CMS19] demonstrate that modern pqSNARKs based on hash-functions are knowledge-
sound in the QROM. Unfortunately, their definition is non-adaptive, meaning that the
statement cannot depend on the results of random oracle queries. In the context of aggre-
gating signatures, the statement corresponds to the list of public keys and the message,
which can indeed be chosen adversarially after querying the random oracle. Despite this
limitation, the results of Chiesa et al. remain an important indication that pqSNARKs are
a post-quantum secure method for aggregation. Second, Unruh’s final definition [Unr17]
allows the extractor arbitrary black-box access to the adversary, including the ability to
rewind it20. However, in applications like signature aggregation, we need to argue that the
extracted individual signature is fresh (i.e., not derived from the signing oracle). Running
the adversary multiple times to extract signatures makes this argument unclear.

To address this, we use a definition of knowledge soundness that is both adaptive and
straight-line: (1) the (quantum) extractor provides the random oracle to the adversary. (2)
once the adversary terminates, the extractor must extract a valid witness. We conjecture
that state-of-the-art pqSNARK constructions satisfy this adaptive straight-line definition21.
Verifying this conjecture in the quantum setting is an important avenue for future work.

Definition 15 (Knowledge Soundness). Let Γ ⊆ {0, 1}∗ × {0, 1}∗ be a relation. Let H
be random oracle. Let AS = (ArgProve, ArgVer) be a non-interactive argument system
for Γ with respect to H. Let A be an algorithm. Consider the following experiment,
KN-REALAS(A):

1. Run A with quantum access to H and obtain an output (stmt, π).
20Rewinding is particularly problematic in quantum settings, but readers unfamiliar with this issue may

disregard it for now.
21In the classical random oracle model, hash-based pqSNARKs are already known to satisfy strong

notions of adaptive straight-line extractability [CF24].

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 49

2. Output ArgVerH(stmt, π).

Let Ext be another algorithm, and consider the experiment KN-IDEALAS,Ext(A):

1. Run A with quantum access to an oracle H provided by Ext and obtain an output
(stmt, π).

2. Run Ext on input (stmt, π) and obtain witn from Ext.

3. Output ArgVerH(stmt, π) ∧ (stmt, witn) ∈ Γ.

Then, we say that AS is an argument of knowledge with extractor Ext, loss LossAS,Ext : R→
R, where LossAS,Ext is a non-decreasing function, and extraction time θ, if for every quantum
algorithm A that makes at most t quantum queries to H in KN-REALAS(A), we have
that KN-IDEALAS,Ext(A) runs in time θ(t) and

Pr [KN-REALAS(A)⇒ 1] ≤ LossAS,Ext (Pr [KN-IDEALAS,Ext(A)⇒ 1]) .

B (Quantum) Random Oracle Tools
To get an impression for how to set parameters, we use heuristic bounds for the security
notions we have defined for tweakable hash functions. To derive these bounds, we use the
(classical and quantum) random oracle model, relying on several tools that we present in
this section.
Adaptive Reprogramming. The first tool that we need is adaptive reprogramming,
as introduced and analyzed in [GHHM21]. We first define the experiment, and the recall
a bound in the quantum random oracle model. For convenience, we also state a simple
bound in the classical random oracle.

Definition 16 (Adaptive reprogramming [GHHM21]). Let X1, X2 and Y be finite sets,
and let A be a stateful algorithm. Let R, q ∈ N. Consider the following experiment
Reprob:

• Sample a random oracle O0
$← Y X1×X2 , i.e., O0 : X1 ×X2 → Y .

• Define a copy of O0 as O1 := O0.

• Run A with (classical or quantum) access to Ob and classical access to oracle
Reprogram : X2 → X1, where A is allowed to make up to q queries to Ob and up to
R queries to Reprogram.

• Obtain from A a bit b′ ∈ {0, 1} and output b′.

Here, the oracle Reprogram(x2) is defined the following way:

1. Sample (x1, y) $← X1 × Y .

2. O1 := O(x1,x2)7→y
1 , i.e., O1 is reprogrammed such that O1(x1, x2) = y.

3. Return x1.

For any such algorithm A, we define the following advantage:

AdvRepro
R,q (A) = |Pr [Repro0(A)⇒ 1]− Pr [Repro1(A)⇒ 1]| .

50 Hash-Based Multi-Signatures for Post-Quantum Ethereum

Lemma 9 ([GHHM21]). Let X1, X2 and Y be finite sets, and let A be any algorithm in
the game in definition 16. Assume that A issues R many classical calls to Reprogram and
q many quantum queries to Ob. Then, we have

AdvRepro
R,q (A) ≤ 3R

2 ·
√

q

|X1|
.

Lemma 10. Let X1, X2 and Y be finite sets, and let A be any classical algorithm in the
game in definition 16. Assume that A issues R many classical calls to Reprogram and q
many classical queries to Ob. Then, we have

AdvRepro
R,q (A) ≤ R · q

|X1|
.

Proof. To detect the reprogramming the adversary must query the random oracle on at
least one of the reprogrammed seeds x1 before the reprogramming query. Since these are
chosen uniformly at random the probability that a x1 collides with one of the q queries
that were done before is q/|X1|. With a union bound, we get the claimed bound.

HRS-Framework for Sets. The second tool that we need is the HRS-framework
from [HRS16]. The idea is that an adversary that is given oracle access to a boolean
function should have a hard time to find an input which evaluates to 1, assuming the boolean
function has only a few such inputs. Although the authors of [HRS16] used functions over
a boolean input domain {0, 1}c, the results naturally generalize to functions that map an
arbitrary set to {0, 1}. Here, we present this adaptation of the HRS-Framework [HRS16]
to arbitrary sets.

Definition 17 (HRS-Framework for Sets [HRS16]). Let S be a set, and let F = {f : S →
{0, 1}} be the collection of all functions that map elements of S to {0, 1}. Let λ ∈ [0, 1]
and ε > 0. Define a family of distributions Dλ on F such that a function f ← Dλ drawn
from Dλ satisfies

f : x 7→

{
1 with probability λ,

0 with probability 1− λ
for any x ∈ S,

where all choices are made independently. The average case search problem Avg-Searchλ is
the problem of finding an x ∈ S such that f(x) = 1 given (classical or quantum) oracle
access to f ← Dλ. Namely, for any algorithm A, we define

AdvAvg-Searchλ
(A) := Pr

[
f(x) = 1

∣∣ f ← Dλ, x← Af (·)
]

.

Lemma 11 ([HRS16], [BHRvV21]). For any algorithm A that makes at most q queries
to f , it holds that

AdvAvg-Searchλ
(A) ≤

{
λ(q + 1), if A is a classical algorithm with classical access to f

8λ(q + 1)2, if A is a quantum algorithm with quantum access to f
.

To give a proof for lemma 11 we follow the same steps as in [HRS16], but we do not
make a restriction to bit strings. We present this proof here for completeness, relying on
Theorem 7.2 from [Zha12], as recalled next.

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 51

Theorem 3 ([Zha12]). Fix an integer q, and let Dλ be a family of distributions on
{f : X → Y} indexed by λ ∈ [0, 1]. Suppose there is an integer d such that for every 2q
pairs (xi, yi) ∈ X × Y, the function (in λ)

pλ := Pr
f←Dλ

[∀i ∈ {1, . . . , 2q} : f (xi) = yi]

is a polynomial of degree at most d in λ. Then, any quantum algorithm A making q queries
can only distinguish Dλ from D0 with probability at most 2λd2, i.e.,∣∣∣∣∣ Pr

f
$←D0

[
Af () = 1

]
− Pr

f
$←Dλ

[
Af () = 1

]∣∣∣∣∣ ≤ 2λd2.

Proof of lemma 11. To translate the result from theorem 3 to our needs, we set X = S
and Y = {0, 1}. Let k be the number of yi = 1 in an arbitrary collection of 2q pairs
{(xi, yi)}2q

i=1. Then, by the definition of pλ we have

pλ := Pr
f←Dλ

[∀i ∈ {1, . . . , 2q} : f (xi) = yi] = λk(1− λ)2q−k.

Hence, pλ is a polynomial in λ with degree at most 2q. Hence, the advantage in distin-
guishing f from Dλ and f from D0 is bounded by 8λq2. Since the distribution D0 always
outputs the constant 0 function, obtaining a marked item (i.e., x ∈ S with f(x) = 1) for
f ← Dλ immediately distinguishes Dλ from D0. Given an algorithm A that queries f and
outputs x after q queries, it is sufficient to do one more query to check if f(x) = 1 and
distinguish Dλ from D0. Thus, we obtain that

AdvAvg-Searchλ
(A) ≤ 8λ(q + 1)2.

The classical bound just follows from the fact that each query can be successful with
probability λ and if the adversary has not found a solution through the first q queries it
may output a random guess.

C Multi-Target Undetectability
In this section, we revisit the analysis of undetectability. In [HK22], the analysis was given
for a tweakable hash function of the form P × T × {0, 1}n → {0, 1}n. We show that the
proof also works for the case of a tweakable hash function Th : P ×T ×M→ H, i.e., with
general input and output domains. We emphasize that this does not introduce a new proof,
and we simply follow the proof from [HK22] while removing the unnecessary restriction on
the function’s input and output spaces.

Definition 18 (Distinguishing Weights). Let F be the set of all functions of the form
M→ {0, 1}, and define the sets Si = {f ∈ F | wt(f) = i} where wt(f) = |{x | f(x) = 1}|.
Let A be a (stateful) algorithm. Consider the following experiment DistSi,Sj (A):

1. Sample b $← {0, 1}.

2. Run A with (quantum) access to an oracle f :

• If b = 0, set f $← Si.
• If b = 1, set f $← Sj .

3. After no more than q queries to f from A obtain a bit b′ ∈ {0, 1} and output b′.

52 Hash-Based Multi-Signatures for Post-Quantum Ethereum

For any such algorithm A, we define the following advantage:

AdvDist(Si,Sj)
F,q (A) =

∣∣∣Pr
[
DistSi,Sj (A)⇒ 1 | b = 0

]
− Pr

[
DistSi,Sj (A)⇒ 1 | b = 1

]∣∣∣ .

One can derive the following lemma from Theorem 9.3.2 and Lemma 9.3.6 in [KLM06].

Lemma 12 ([KLM06]). Let Si be as defined above. The advantage of any q query quantum
algorithm in distinguishing S0 from S1 is AdvDist(S0,S1)

F,q (A) ≤ 6q/
√
|M|.

In our reduction we need sets Sl
0 and Sl

1. We say f : [l] ×M → {0, 1}n is in Sl
i, if

f(j, ·) ∈ Si for every j ∈ [l]. We now show that distinguishing f $← Sl
1 from f $← Sl

0 is as
hard as distinguishing f $← S1 from f $← S0.

Lemma 13. Consider sets S0, S1, Sl
0, Sl

1 as defined above. Then, AdvDist(S0,S1)
F,q (A) =

AdvDist(Sl
0,Sl

1)
F,q (A).

Proof. Assume an algorithm A can distinguish f $← S1 from f $← S0. Then, to distinguish
f $← Sl

1 from f $← Sl
0, we run A on f(1, ·). Hence, AdvDist(S0,S1)

F,q (A) ≤ AdvDist(Sl
0,Sl

1)
F,q (A).

To show equality we now give the reduction in the opposite direction. Without loss of
generality we view the elements of M as integers {0, . . . , |M| − 1} or as values in Z|M|.
Assume we have an algorithm that distinguishes f $← Sl

1 from f $← Sl
0. Our task is to

distinguish f ′ $← S1 from f ′ $← S0. To build f from f ′ we sample a random value from M
using a random function e : [l] →M, and set f(i, x) := f ′(x + e(i) mod |M|). One can
see that if f ′ was a constant zero function then f is a collection of constant zero functions,
so f ∈ Sl

0. On the other hand, if f ′ ∈ S1 then for each i, the function f(i, ·) outputs
1 for exactly one random value, since e(i) were chosen uniformly at random, so f ∈ Sl

1.
Also, as all the e(i) are uniform and independent, f is distributed uniformly in Sl

1. Hence,
AdvDist(S0,S1)

F,q (A) ≥ AdvDist(Sl
0,Sl

1)
F,q (A).

Theorem 4. Let Th : P × T ×M→ H a tweakable hash function modeled as quantum
random oracle. Consider any quantum adversary A against undetectability for a given
M′ ⊆ M, for p targets making q queries to Th. Then, there is a quantum adversary B
that makes 2q queries to its oracle and distinguishes Sp

0 from Sp
1 with

AdvSM-UD
Th,M′,p(A) ≤ AdvDist(Sp

0 ,Sp
1)

F,2q (B) ≤ 12q√
|M′|

.

Proof. The first inequality is show exactly as in [HK22]. Using lemmas 12 and 13, we get
the second inequality and complete the proof.

D Multi-Target Collision Resistance with Random Sam-
pling

In definition 6, we have introduced the notion of multi-target collision resistance with
random sampling. We will now show that this notion is indeed plausible by giving an
analysis in the (quantum) random oracle model. As a result, we obtain an upper bound
on the success probability of any adversary in breaking the notion. Naturally, this bound
depends on the number of random oracle queries. We prove the following theorem.

Theorem 5. Let Th : P × T × (M×R)→ H be a tweakable hash function modeled as
a (classical or quantum) random oracle, that takes a public parameter P ∈ P, a tweak
T ∈ T and an input that consists of two parts: a message M ∈ M and a seed ρ ∈ R.
Let Prop : H → {0, 1} be any property. Let A be any (classical or quantum) adversary

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 53

against multi-target collision resistance with random sampling (definition 6) that makes
at most q (classical or quantum) queries to the random oracle Th and p classical queries
to its challenge oracle. Then, there exists a (classical or quantum) adversary B against
Avg-Search1/|H| that makes no more than q′ = q + pK queries to its oracle and a (classical
or quantum) adversary C in the game Repro as in definition 16 that makes no more than
q′ = q+pK queries to its random oracle and no more than pK queries to its reprogramming
oracle such that:

AdvSM-rTCR,K
Th,p,Prop (A) ≤ AdvAvg-Search1/|H|

(B) + AdvRepro
pK,q+pK(C).

Consequently, from lemmas 9 to 11, we obtain the following bounds:

AdvSM-rTCR,K
Th,p,Prop (A) ≤ (q′ + 1)

|H|
+ q′pK

|R|
for a classical adversary.

AdvSM-rTCR,K
Th,p,Prop (A) ≤ 8(q′ + 1)2

|H|
+ 3 · pK

2 ·

√
q′

|R|
for a quantum adversary.

Proof. We give a sequence of games Game.i to prove the claim, and denote the probability
that the ith game outputs 1 by AdvGame.i

Th,p,Prop(A).
Game.0: Our initial game is the original game for multi-target collision resistance with
random sampling, see definition 6. To recall, the adversary gets as input a parameter P
and it gets classical access to a challenge oracle that takes as input some message M ∈M
and a tweak T ∈ T . The tweak must be fresh (not used in the previous queries). The
oracle then randomly samples a seed ρ $← R until the digest x := Th(P, T, M, ρ) satisfies
property Prop. If the oracle finds such a seed then it returns (x, ρ). If the oracle does not
manage to find a seed after K tries, it returns ⊥. The task of the adversary is to find a
message and a seed that collides with one of the returned digests under the same tweak.
By definition, we have

AdvSM-rTCR,K
Th,p,Prop (A) = AdvGame.0

Th,p,Prop(A).

Game.1: Now consider Game.1 in which we sample the seed and the output uniformly at
random to answer the challenge queries. To align our responses with the Th we reprogram
the hash function. Intuitively, since Th is modeled as a random oracle, we can bound the
probability that the adversary notices this reprogramming using the Repro game. The
formal representation of Game.1 is the following, where A gets (classical or quantum)
access to Th throughout the game:

1. Generate a random public parameter P $← P.

2. Run A on input P with classical access to an oracle that takes T ∈ T and M ∈M
and works as follows:

• If |Q| ≥ p or there is a tuple (T, M ′, ρ′) ∈ Q, for some M ′, ρ′ return ⊥.
• Otherwise Set ctr = 0 and x = ⊥. While ctr < K and x = ⊥:

(a) Sample ρ $← R.
(b) Sample y $← H.
(c) Program Th(P, T, M, ρ) := y.
(d) If Prop(y) = 1: Insert (T, M, ρ) into Q and set x := y.
(e) Else: Set x := ⊥, ρ := ⊥.
(f) Set ctr := ctr + 1.

• If x = ⊥: Insert (T, M,⊥) into Q.

54 Hash-Based Multi-Signatures for Post-Quantum Ethereum

• Output (x, ρ).

3. Obtain from A an output (j, M∗, ρ∗) with M ∈M, j ∈ [|Q|]. Denote the jth entry
in Q by (Mj , Tj , ρj).

4. Output 1 if Th(P, Tj , Mj , ρj) = Th(P, Tj , M∗, ρ∗) and (M∗, ρ∗) ̸= (Mj , ρj). Other-
wise, output 0.

Here the difference from Game.0 is in Lines (b) and (c) of the challenge oracle. Instead of
querying Th we generate the output uniformly at random and reprogram Th to match the
generated value. Note, that the call to the challenge oracle in Game.1 can be represented
as two calls in the Repro game: a call to Reprogram and an O1 call afterwards. Here,
we consider (P, T, M) ∈ X2 and ρ ∈ X1 = R. In this reduction, we make at most p ·K
reprogramming calls and p ·K + q calls to Th. As a result we obtain

|AdvGame.0
Th,p,Prop(A)− AdvGame.1

Th,p,Prop(A)| ≤ AdvRepro
pK,q+pK(C).

Game.2: We now change how the tweakable hash function (currently modeled as a random
oracle) is defined. Concretely, we define it based on a boolean function f : T ×M×R →
{0, 1} with f ← Dλ, for λ = 1/|H|. Looking ahead, in this way we will later be able to use
the HRS framework (see definition 17). In addition, we change the reprogramming routine.
We will see that these changes are purely conceptual and do not change the view of the
adversary. So we claim that the success probability in Game.2 will stay the same as in
Game.1. First we show how to construct a tweakable hash function from the boolean
function f .

1. Generate a random tweakable hash function Th′ and public parameter P .

2. For each t ∈ T , sample an ordered set St and a pair (ρ∗t , xt) as follows: Set ctr = 0
and x = ⊥. While ctr < K and x = ⊥:

(a) Sample ρ $← R.
(b) Sample y $← H.
(c) If Prop(y) = 1: Append (ρ, y) to St, set x := y, ρ∗ := ρ, and define (ρ∗t , xt) :=

(ρ∗, x).
(d) Else: Append (ρ, y) to St and set x = ⊥.

3. Sample random functions gt : M×R→ H \ {xt} for each t ∈ T .

4. Construct a function g : T ×M×R → H the following way: On input (t, m, ρ) check

• If f(Ti, m, ρ) = 1 : Return xt.
• If f(Ti, m, ρ) ̸= 1 : Return gt(m, ρ)

5. Define Th as Th(p, t, (m, ρ)) :=
{

g(t, m, ρ), if p = P.

Th′(p, t, m, ρ), otherwise.

Note that the constructed Th is still a uniformly random function. Next we update our
reprogramming techniques by using the values from our construction of Th. This is a
purely conceptual change. The new game is as follows (with the winning condition as
before):

1. Use the parameter P generated in the construction of Th.

2. Run A with an input P and with (classical) access to an oracle that takes T ∈ T
and M ∈M and works as follows:

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 55

• If |Q| ≥ p or there is a tuple (T, M ′, ρ′) ∈ Q, for some M ′, ρ′ return ⊥.
• For each input (ρj , yj) ∈ ST :

– Program Th(P, T, M, ρj) := yj .
• Insert (T, M, ρ∗T) into Q, where (ρ∗T , xT) ∈ DT .
• Output (xT , ρ∗T).

Through these two changes we managed to incorporate the boolean function into the game
while keeping all the distributions the same. As we have argued, we get

AdvGame.1
Th,p,Prop(A) = AdvGame.2

Th,p,Prop(A).

Final reduction: In the previous game we managed to incorporate the boolean function
into the construction of Th and updated the reprogramming routine. As a result, a successful
forgery should satisfy Th(P, Tj , Mj , ρj) = Th(P, Tj , M∗, ρ∗) = xTj and (M∗, ρ∗) ̸= (Mj , ρj).
This means that (Tj , M∗, ρ∗) must satisfy the boolean function f by construction. Hence,
we can use the forgery in a reduction to break the AdvAvg-Search1/|H|

property. We get

AdvGame.2
Th,p,Prop(A) ≤ AdvAvg-Search1/|H|

(B).

This concludes the proof.

E Multi-Target Collision Resistance
In this section, we give a bound on success probability against multi-target collision
resistance (see definition 3) in the random oracle model, assuming a classical adversary.
In [HK22], an analysis was given in the quantum random oracle model. We reuse their
proof ideas to derive a bound in the classical setting. In addition, we give an updated
bound for quantum adversary against tweakable hash function, where |P| ≠ 2k for some k.

Definition 19 (Distinguishing from Constant Zero). Let fP : P → {0, 1} be the boolean
function, with fP (pp) = 1 if and only if pp = P . Let f0 : P → {0, 1} be the boolean
function for which f0(x) = 0 for all pp ∈ P. Let A be a (stateful) algorithm, and consider
the following experiment ZeroDist(A):

1. Generate a random public parameter P $← P.

2. Flip a random coin b $← {0, 1}.

3. If b = 1 give A oracle access to fP . If b = 0 give A oracle access to f0.

4. When A signals to continue, then remove the access to the given oracle and continue
running A with input P .

5. Obtain from A a bit b′ ∈ {0, 1} and output b′.

For any such algorithm A, we define the following advantage:

AdvZeroDist(A) = |Pr [ZeroDist(A)⇒ 1 | b = 0]− Pr [ZeroDist(A)⇒ 1 | b = 1]| .

Lemma 14. Let A be a classical algorithm that makes no more then q classical queries to
its oracle. Then, we have

AdvZeroDist(A) ≤ q

|P|
.

56 Hash-Based Multi-Signatures for Post-Quantum Ethereum

Proof. It is straightforward to see that if the oracle has not been queried during the first
stage on the selected public parameter P then indistinguishability holds. The probability
that the public parameter will match one of the q queries is bounded by q/|P|.

To give a more general bound (i.e., for |P| ≠ 2k) for target collision resistance in
the quantum random oracle model, first recall that in [HK22], the authors rely on the
(**) bound from [HRS16], which states that AdvZeroDist(A) ≤ 4q2/2k, if P = {0, 1}k. If
2k < |P| < 2k+1, without loss of generality we can view P as being represented by (k + 1)-
bit integers in 0, . . . , |P| − 1. In the following lemma, we consider this setting, and the
experiment ZeroDist(A) where the adversary A is quantum and it has quantum access
to the boolean function.

Lemma 15. Let A be a quantum algorithm that makes no more then q quantum queries
to its oracle. Then, we have

AdvZeroDist(A) ≤ 8q2

|P|
.

Proof. Assume there is a quantum adversary A that breaks ZeroDist of a boolean function
that operates on P with probability at least ϵ. Then, it is straightforward to show that it
can be utilized to break ZeroDist for K̂ $← {0, 1}k+1 with probability at least 1/2ϵ, since
the probability that P ∈ P for a random P $← {0, 1}k+1 is at least 1/2. Hence, we can
conclude that ϵ ≤ 8q2/2k+1 ≤ 8q2/|P|.

Lemma 16 ([HK22]). Let Th be a tweakable hash function modeled as a random oracle.
For any quantum algorithm A against multi-target collision resistance (see definition 3) that
makes at most q quantum queries to its random oracle Th, there are quantum adversaries
B (making 2q queries) and C (making 2q queries) such that

AdvSM-TCR
Th,p (A) ≤ AdvAvg-Search1/|H|

(B) + AdvZeroDist(C).

We can reuse this result from [HK22] since the reductions work regardless whether
the adversary is quantum or classical, and if the adversary is classical, then so are the
reductions. By using the classical bounds from lemmas 11 and 14, we get the classical
counterpart. We also state the updated bound in the quantum random oracle model.

Lemma 17. Let Th be a tweakable hash function modeled as a random oracle. For any
classical algorithm A against multi-target collision resistance (see definition 3) that makes
at most q classical queries to its random oracle Th, we have

AdvSM-TCR
Th,p (A) ≤ 2q + 1

|H|
+ 2q

|P|
.

Lemma 18. Let Th be a tweakable hash function modeled as a random oracle. For any
quantum algorithm A against multi-target collision resistance (see definition 3) that makes
at most q quantum queries to its random oracle Th, we have

AdvSM-TCR
Th,p (A) ≤ 32(q + 1)2

|H|
+ 32q2

|P|
.

F Multi-Target Preimage Resistance
In this section we derive a new bound for multi-target preimage resistance (see definition 4)
in the quantum random oracle model. Although there was a security analysis of multi-
target preimage resistance based on some conjecture (see [BH19, BHK+19, HK22]), we
want to give a bound that is not relying on any conjecture. To this end, we first introduce
the related notion of single-function, multi-target one-wayness for distinct tweaks and
analyze its security, and then reduce multi-target preimage resistance to it.

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 57

F.1 Multi-Target One-Wayness
We start with a definition of single-function, multi-target one-wayness for distinct tweaks.
This notion is different from multi-target preimage resistance in that the challenges are
generated uniformly at random from the output space, rather then by computing a hash
of a random input.

Definition 20 (Multi-Target One-Wayness). Let Th : P × T ×M→ H be a tweakable
hash function as defined in definition 1. Let A be a (stateful) algorithm, M′ ⊆M, and
p ∈ [|T |]. Consider the following experiment SM-OWTh,M′,p(A):

1. Generate a random public parameter P $← P.

2. Run A with (classical) access to an oracle that takes T ∈ T and works as follows:

• If |Q| ≥ p or there is an y′ ∈ H with (T, y′) ∈ Q, return ⊥.
• Otherwise, sample y $← H, insert (T, y) into the list Q and output y.

3. When A signals to continue, then continue running A with input P , but without the
oracle access.

4. Obtain from A an output (j, M) with M ∈M′, j ∈ [|Q|]. Denote the jth entry in Q
by (Tj , yj).

5. Output 1 if Th(P, Tj , M) = yj . Otherwise, output 0.

For any such algorithm A, we define the following advantage:

AdvSM-OW
Th,M′,p(A) := Pr[SM-OWTh,M′,p(A)⇒ 1].

Theorem 6. Let Th : P ×T ×M→ H be a tweakable hash function modeled as a random
oracle. Let A be any quantum adversary against multi-target one-wayness (definition 20)
on subspace M′ ⊆M, that makes at most q quantum queries to Th and p classical query
to its challenge oracle. Then, there is a quantum adversary B against Avg-Search1/|H| that
makes q queries to its oracle, such that

AdvSM-OW
Th,M′,p(A) ≤ AdvAvg-Search1/|H|

(B) ≤ 8(q + 1)2

|H|
.

Proof. We prove the statement via a sequence of games, where the probability that the
ith game outputs 1 is denoted by AdvGame.i

Th,M′,p(A). Without loss of generality we view the
set H as n bit representation of integers {0, . . . , |H| − 1}.
Game.0: Our initial game is the original game for multi-target one-wayness, see defini-
tion 20. By definition, we have

AdvSM-OW
Th,M′,p(A) = AdvGame.0

Th,M′,p(A).

Game.1: This game is different from Game.0 in the way we construct the hash function
Th. For the construction we will need several random functions:

• Function g : T → H;

• Function Th′ : P × T ×M→ H;

• Function h′ : T ×M′ → H \ {0}n;

• Boolean function f : T ×M′ → {0, 1} sampled from the distribution D1/|H|, see
definition 17.

58 Hash-Based Multi-Signatures for Post-Quantum Ethereum

Using h′, we construct a random function h : T ×M′ → H, but with the constraint that
h(t, x) never evaluates to g(t). The construction of h is as follows:

1. On input t, x compute h′(t, x) = y′ ∈ H \ {0}n;

2. If y′ ≤ g(t): Return y′ − 1;

3. If y′ > g(t): Return y′.

With g, h, Th′, and f , we now explain how Th is implemented in this game. First a
random P $← P is sampled. Then, Th works as follows on input pp ∈ P, t ∈ T , x ∈M:

• If pp = P ∧ x ∈M′ ∧ f(t, x) = 1: Return g(t).

• If pp = P ∧ x ∈M′ ∧ f(t, x) ̸= 1: Return h(t, x).

• If pp ̸= P ∨ x /∈M′: Return Th′(pp, t, x).

One can see that the distribution of Th is still uniform. We will use this very P instead of
sampling a new one and use function g to respond to the challenge queries. Concretely,
Game.1 is as follows, where A obtains quantum random oracle access to Th throughout
the game:

1. Sample P and use it for Th as explained above.

2. Run A with (classical) access to an oracle that takes T ∈ T and works as follows:

• If |Q| ≥ p or there is an y′ ∈ H with (T, y′) ∈ Q, return ⊥.
• Otherwise, compute y = g(T), insert (T, y) into the list Q and output y.

3. When A signals to continue, then continue running A with input P , but without the
oracle access.

4. Obtain from A an output (j, M) with M ∈M′, j ∈ [|Q|]. Denote the jth entry in Q
by (Tj , yj).

5. Output 1 if Th(P, Tj , M) = yj . Otherwise, output 0.

Since all the distributions remained the same the success probability of A also remains the
same.

AdvGame.0
Th,M′,p(A) = AdvGame.1

Th,M′,p(A).

Final reduction: The last step is to bound the success probability of the adversary in
Game.1. One can see that any solution for Game.1 corresponds to the solution for the
Avg-Search1/|H| problem. Namely, the adversary must output a solution with the selected
public parameter P and in the subspace M′. For such a solution we have two options:
either f(Tj , M) = 1, or f(Tj , M) ̸= 1. If f(Tj , M) = 1 then (Tj , M) constitutes a solution
for Avg-Search1/|H|. If f(Tj , M) ̸= 1, then Th(P, Tj , M) would evaluate to h(Tj , M), which
was constructed to be never equal to g(Tj) = yj and hence this can not be a solution. Note
that during our reduction we do not have to query f during the challenge queries and only
need f for queries to Th. We denote the number of queries to Th as q, so our reduction
does no more then q queries to f . Hence,

AdvGame.1
Th,M′,p(A) ≤ AdvAvg-Search1/|H|

(B).

This concludes the proof.

Justin Drake, Dmitry Khovratovich, Mikhail Kudinov, Benedikt Wagner 59

F.2 Multi-Target Preimage Resistance
Now that we have a bound on multi-target one-wayness, we can prove a bound on multi-
target preimage resistance.

Theorem 7. Let Th : P×T ×M→ H be a tweakable hash function modeled as a quantum
random oracle. Let A be any quantum adversary against multi-target preimage resistance
(definition 4) on subspace M′ ⊆M, that makes at most q quantum queries to Th and p
classical query to its challenge oracle. Then, there are quantum algorithms B making at
most q quantum queries to Th and C making at most q + 1 quantum queries such that

AdvSM-PRE
Th,M′,p(A) ≤ AdvSM-OW

Th,M′,p(B) + AdvSM-UD
Th,M′,p(C).

Consequently, we have

AdvSM-PRE
Th,M′,p(A) ≤ 8(q + 1)2

|H|
+ 12(q + 1)√

|M′|
.

using the bounds we already know.

Proof. We prove the statement via a sequence of games, where the probability that the
ith game outputs 1 is denoted by AdvGame.i

Th,M′,p(A).
Game.0: Our initial game is the original game for multi-target preimage resistance, see
definition 4. By definition, we have

AdvSM-PRE
Th,M′,p(A) = AdvGame.0

Th,M′,p(A).

Game.1: This game is different from Game.0 in the way we respond to the challenges.
Instead of sampling a random input and returning a hash of the inputs we return a random
value from H. Note that the difference in these two games matches exactly the two cases
in the undetectability game (see definition 5). A precise representation of Game.1 is the
following, where A gets quantum random oracle access to Th throughout the game:

1. Generate a random public parameter P $← P.

2. Run A with (classical) access to an oracle that takes T ∈ T and works as follows:

• If |Q| ≥ p or there is an y′ ∈ H with (T, y′) ∈ Q, return ⊥.
• Otherwise, sample y $← H, insert (T, y) into the list Q and output y.

3. When A signals to continue, then continue running A with input P , but without the
oracle access.

4. Obtain from A an output (j, M) with M ∈M′, j ∈ [|Q|]. Denote the jth entry in Q
by (Tj , yj).

5. Output 1 if Th(P, Tj , M) = yj . Otherwise, output 0.

It is clear that there is a trivial reduction C such that

|AdvGame.0
Th,M′,p(A)− AdvGame.1

Th,M′,p(A)| ≤ AdvSM-UD
Th,M′,p(C).

Final reduction: The final step is to bound the success probability of the adversary in
Game.1. One can see that the description of Game.1 exactly matches the description of
the multi-target one-wayness experiment for subspace M′, see definition 20. Hence,

AdvGame.1
Th,M′,p(A) ≤ AdvSM-OW

Th,M′,p(B).

This concludes the proof.

	Introduction
	Our Work
	Outline

	Related Work and Alternative Approaches
	Aggregation using Succinct Arguments
	Hash-Based Signatures
	Other Post-Quantum Aggregate and Multi-Signatures

	Preliminaries
	Tweakable Hash Functions
	Signatures and Multi-Signatures
	Merkle Trees
	Non-Interactive Argument Systems

	Generalized XMSS Multi-Signature
	Incomparable Encoding Schemes
	Generalized XMSS Signature
	Multi-Signature Construction

	Instantiations of Incomparable Encodings
	Classical Winternitz
	Target Sum Winternitz

	Parameter Requirements
	Instantiations of Tweakable Hash Functions
	Tweak Functions
	Tweakable Hash From SHA-3
	Tweakable Hash From Poseidon2

	Efficiency
	Setup
	Results
	On Aggregation via Succinct Arguments

	Conclusion
	References
	Postponed Definitions
	Multi-Signatures
	Non-Interactive Argument Systems

	(Quantum) Random Oracle Tools
	Multi-Target Undetectability
	Multi-Target Collision Resistance with Random Sampling
	Multi-Target Collision Resistance
	Multi-Target Preimage Resistance
	Multi-Target One-Wayness
	Multi-Target Preimage Resistance

