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Abstract. The Chou-Orlandi batch oblivious transfer (OT) protocol is a particularly
attractive OT protocol that bridges the gap between practical efficiency and strong
security guarantees and is especially notable due to its simplicity. The security
analysis provided by Chou and Orlandi bases the security of their protocol on the
hardness of the computational Diffie-Hellman (CDH) problem in prime-order groups.
Concretely, in groups in which no better-than-generic algorithms are known for the
CDH problem, their security analysis yields that an attacker running in time t and
issuing q random-oracle queries breaks the security of their protocol with probability
at most ϵ ≤ q2 · t/2κ/2, where κ is the bit-length of the group’s order. This concrete
bound, however, is somewhat insufficient for 256-bit groups (e.g., for κ = 256, it does
not provide any guarantee already for t = 248 and q = 240).
In this work, we establish a tighter concrete security bound for the Chou-Orlandi
protocol. First, we introduce the list square Diffie-Hellman (ℓ-sqDH) problem and
present a tight reduction from the security of the protocol to the hardness of solving
ℓ-sqDH. That is, we completely shift the task of analyzing the concrete security of the
protocol to that of analyzing the concrete hardness of the ℓ-sqDH problem. Second,
we reduce the hardness of the ℓ-sqDH problem to that of the decisional Diffie-Hellman
(DDH) problem without incurring a multiplicative loss. Our key observation is that
although CDH and DDH have the same assumed concrete hardness, relying on the
hardness of DDH enables our reduction to efficiently test the correctness of the
solutions it produces.
Concretely, in groups in which no better-than-generic algorithms are known for the
DDH problem, our analysis yields that an attacker running in time t and issuing
q ≤ t random-oracle queries breaks the security of the Chou-Orlandi protocol with
probability at most ϵ ≤ t/2κ/2 (i.e., we eliminate the above multiplicative q2 term).
We prove our results within the standard real-vs-ideal framework considering static
corruptions by malicious adversaries, and provide a concrete security treatment
by accounting for the statistical distance between a real-model execution and an
ideal-model execution.
Keywords: Oblivious Transfer · Concrete Security

1 Introduction
The pursuit of oblivious transfer (OT) protocols [Rab81, EGL85] that provide both
practical efficiency and strong security guarantees is a driving force in cryptographic
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research. Whereas early approaches to constructing OT protocols resulted in somewhat
unsatisfying trade-offs between their efficiency and security, over the past three decades the
cryptography community has made significant progress towards bridging the gap between
practical efficiency and strong security guarantees (see, for example, [BM90, NP01, AIR01,
Lin08, PVW08] and the many references therein).

The Chou-Orlandi batch OT protocol. A particularly attractive OT protocol
bridging this gap was presented by Chou and Orlandi [CO15a, CO15b], and is especially
notable due to its simplicity. Specifically, Chou and Orlandi constructed an exceedingly
simple and practical batch OT protocol by cleverly manipulating the Diffie-Hellman
key-exchange protocol. Although indications were provided for the protocol’s lack of
UC security (see [CO15b, Sec. 1.1]), the protocol is UC-secure when augmented with
a non-interactive proof of knowledge for each party (as we discuss in Section 1.1, our
results in this work provide along the way a formal proof of this standard observation).
Specifically, for the sender, it suffices to provide a proof of knowledge for the discrete
logarithm of a single group element, while for the receiver, it suffices to provide a proof of
knowledge for the openings of Pedersen commitments.

Although the required proofs of knowledge can be derived from practical Σ-protocols
which can be made non-interactive using the Fiat-Shamir transform [FS87], augmenting
the protocol with these proofs may degrade its practical performance to some extent.
However, it does not affect the simplicity of the protocol, especially when modeling the
proofs of knowledge via ideal functionalities, as elegantly enabled by the modularity of the
UC framework [Can01].

The concrete security of the Chou-Orlandi protocol. The security analysis pro-
vided by Chou and Orlandi bases the security of their protocol on the hardness of the
computational Diffie-Hellman (CDH) problem. Therefore, in prime-order groups in which
no better-than-generic algorithms are known for the CDH problem (e.g., in widely used
256-bit elliptic-curve groups such as Secp256k1 and P-256), the assumed concrete hardness
of the CDH problem enables to derive a concrete security bound that depends on the
running time of the attacker, the number of random-oracle queries issued by the attacker,
and the order of the group.

Concretely, the analysis of Chou and Orlandi shows that any attacker A that runs in
time tA, issues qA random-oracle queries, and breaks the security of their batch OT protocol
with probability ϵA, can be transformed into an algorithm B that runs in time tB ≈ tA and
solves the square Diffie-Hellman (sqDH) problem with probability ϵB = ϵA/q2

A.1 The sqDH
problem considers the task of receiving two group elements, G and a · G, where G is a
generator of a cyclic group of a κ-bit prime order q and a ∈ Zq is uniformly sampled, and
outputting the group element a2 ·G. Bresson, Chevassut, and Checkpoint [BCP04] showed
that solving the sqDH problem reduces to solving the CDH problem on two independent
instances. Therefore, the algorithm B can be transformed into an algorithm C that runs
in time tC ≈ tB and solves the CDH problem with probability ϵC = ϵ2

B. Shoup’s concrete
hardness result for CDH problem [Sho97] provides us with the bound ϵC ≤ t2

C/2κ, which
leads to the bound

ϵA ≤
q2

A · tA

2κ/2 (1)

on the concrete security of the Chou-Orlandi protocol. For various realistic ranges of the
attacker’s running time tA and number of random-oracle queries qA, the bound stated in
Eq. (1) is somewhat insufficient for 256-bit groups (e.g., for κ = 256, it does not provide
any guarantee already for tA = 248 and qA = 240).

1Chou and Orlandi proved that if an attacker A breaks the security of their protocol with probability
ϵA, then A must have issued two random-oracle queries that can be used to solve the sqDH problem. Thus,
guessing the indices of these two queries leads to the q2

A factor.
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1.1 Our Contributions
In this work, we establish a tighter concrete security bound for the Chou-Orlandi protocol
(when augmented with proofs of knowledge, as noted above). Our tighter analysis consists
of the following two steps:

• First, we introduce the list square Diffie-Hellman (ℓ-sqDH) problem and present a
tight reduction from the security of the protocol to the hardness of solving ℓ-sqDH.
The ℓ-sqDH problem is a generalization of the sqDH problem, which considers the
task of receiving two group elements, G and a · G (as in the sqDH problem), and
outputting a list of at most ℓ group elements that must contain the group element
a2 ·G. The length ℓ of the list in our reduction is exactly the number of random-oracle
queries qA issued by the attacker of the protocol, and this already improves upon
the reduction of Chou and Orlandi (i.e., even without our second step) by reducing
the dependence on the number of such queries from q2

A to qA. The fact that our
reduction to the hardness of the ℓ-sqDH problem is tight enables us to completely
shift the task of analyzing the concrete security of the protocol to that of analyzing
the concrete hardness of the ℓ-sqDH problem.

• Second, we prove that the hardness of the ℓ-sqDH problem reduces to that of the
decisional Diffie-Hellman (DDH) problem without incurring a multiplicative loss that
depends on ℓ in either the success probability or the running time. By relying on the
hardness of the DDH problem instead of the CDH problem, we only incur an additive
loss of ℓ2/2κ in the success probability. Here, our key observation is that although
the CDH and DDH problems have the exact same assumed concrete hardness [Sho97],
relying on the DDH problem enables our reduction to test various candidates that
it produces (using the idea underlying the above-mentioned reduction of Bresson,
Chevassut, and Checkpoint [BCP04]) for the group element a2 ·G. Equipped with
this observation, we show that any algorithm B that runs in time tB and solves the
ℓ-sqDH problem with probability ϵB can be transformed into an algorithm C that
runs in time tC ≈ tB and solves the DDH problem with probability ϵC ≥ ϵ2

B − ℓ2/2κ.

Putting together our two steps and relying on the assumed concrete hardness of the
DDH problem [Sho97], we obtain the following bound on the security of the Chou-Orlandi
protocol (which, for simplicity, we state here in an informal manner):

Theorem 1 (Informal). Let A be an attacker that runs in time tA, issues qA random-oracle
queries, and breaks the security of the Chou-Orlandi protocol with probability ϵA in a κ-bit
prime-order group. Then,

ϵA ≤
√

t2
A + q2

A
2κ

(2)

Note that although we have included the additive q2
A/2κ term in the bound stated in

Eq. (2) (to explicitly account for the minor security loss in reducing ℓ-sqDH to DDH), the
number qA of random-oracle queries issued by an attacker is clearly upper bounded by
the attacker’s running time tA. Therefore, up to a multiplicative factor of

√
2, our bound

implies the bound tA/2κ/2, which should be compared to the bound q2
A · tA/2κ/2 provided

by the analysis of Chou and Orlandi.
We provide our analysis within the standard real-vs-ideal framework considering static

corruptions by malicious adversaries. Within this framework, we provide a concrete security
treatment by accounting for the statistical distance between a real-model execution with a
given adversary and an ideal-model execution with a corresponding simulator (the simulator
we construct is black-box and non-rewinding, which implies UC security [KLR10]). More
specifically, we bound the statistical distance between an ideal-model execution and an
execution in a hybrid model in which the underlying zero-knowledge functionalities are
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modeled via ideal functionalities. This guarantees that our concrete analysis focuses on
the security of the protocol in a modular manner that distinguishes between any security
loss that may result from the protocol itself and any such loss that may result from any
particular choice for implementing the zero-knowledge functionalities.

1.2 Paper Organization
The remainder of this paper is organized as follows. First, in Section 2, we present some
standard notation and basic cryptographic assumptions, as well as briefly provide the
required background on the real-vs-ideal framework for two-party computation. In Section
3, we introduce the List Square Diffie-Hellman problem and analyze its concrete hardness.
In Section 4, we present the augmented Chou-Orlandi protocol and analyze its concrete
security.

2 Preliminaries
For any distribution X, we denote by x← X the process of sampling a value x from the
distribution X. Similarly, for any set X , we denote by x ← X the process of sampling
a value x from the uniform distribution over X . For any two distributions, X and Y ,
we denote by SD(X, Y ) their statistical distance. A function ν : N→ R+ is negligible if
for any polynomial p(·) there exists an integer N such that for all κ > N it holds that
ν(κ) ≤ 1/p(κ). For any two distribution ensembles, X = {Xκ}κ∈N and Y = {Yκ}κ∈N, we
let X ≡s Y denote the existence of a negligible function ν such that SD(Xκ, Yκ) ≤ ν(κ)
for all κ ∈ N.

2.1 Groups and Hardness Assumptions
We rely on cryptographic hardness assumptions in prime-order groups, and model such
groups as generated via a group-generation algorithm GGen. On input 1κ, where κ ∈ N
is the security parameter, such a group-generation algorithm outputs the description
G = (G, G, q) of a cyclic group G of order q that is generated by G ∈ G, where q is a κ-bit
prime.

Relative to groups G = (G, G, q) that are produced by such a group-generation algorithm,
our starting point for computational hardness is based on the computational Diffie-Hellman
(CDH), decisional Diffie-Hellman (DDH), and square Diffie-Hellman (sqDH) problems,
defined as follows:

Definition 1. Let GGen be a group-generation algorithm. For κ ∈ N and algorithm A, let

AdvCDH
GGen,A(κ) def= Pr

(a,b)←Z2
q

[A (G, a ·G, b ·G) = ab ·G]

AdvDDH
GGen,A(κ) def=

∣∣∣∣∣ Pr
(a,b)←Z2

q

[A (G, a ·G, b ·G, ab ·G) = 1]

− Pr
(a,b,c)←Z3

q

[A (G, a ·G, b ·G, c ·G) = 1]
∣∣∣∣∣

AdvsqDH
GGen,A(κ) def= Pr

a←Zq

[
A (G, a ·G) = a2 ·G

]
where the probability is additionally taken over the choice of G = (G, G, q)← GGen(1κ)
and over A’s internal randomness.
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Definition 2. For X ∈ {CDH, DDH, sqDH}, we say that the X problem is hard with respect
to GGen if for any probabilistic polynomial-time non-uniform algorithm A there exists a
negligible function ν such that for all κ ∈ N it holds that

AdvX
GGen,A(κ) ≤ ν(κ) .

In addition, for any functions t = t(κ) and ϵ = ϵ(κ), we say that the X problem is (t, ϵ)-hard
with respect to GGen if for any non-uniform algorithm A that runs in time t and for all
κ ∈ N it holds that

AdvX
GGen,A(κ) ≤ ϵ(κ) .

Concrete security baseline: Generic-group CDH and DDH hardness. As our
baseline for analyzing the concrete security guarantees of our protocol, we rely on the
classic generic-group hardness of the CDH and DDH problems (which is identical to that of
the discrete logarithm problem) [Sho97, Mau05]. Specifically, following standard practice
in groups where no better-than-generic algorithms are currently known for these problems,
we rely on the following assumption with respect to some underlying group-generation
algorithm:

Assumption 2 (Concrete hardness of CDH and DDH). For each X ∈ {CDH, DDH} and
for any t = t(κ), the X-problem is (t, ϵ)-hard with respect to an underlying GGen, where
ϵ(κ) = t2(κ)/2κ.

Although an analogous assumption can be made for the concrete hardness of the
sqDH problem, the sqDH problem is somewhat less studied compared to the extensively
explored CDH and DDH problems. To minimize the extent to which its concrete hardness
is dependent on idealized models, Bresson, Chevassut, and Checkpoint [BCP04] proved the
following lemma, which reduces the task of solving the sqDH problem to that of solving
the CDH problem on two independent instances:

Lemma 1 ([BCP04]). Let GGen be a group-generation algorithm. For any sqDH-algorithm
A that runs in time tA = tA(κ) there exists a CDH-algorithm B that runs in time tB(κ) ≤
2tA(κ) + 5τmult(κ) + 2τadd(κ) + 3τinv(κ) such that

AdvsqDH
GGen,A(κ) ≤

√
AdvCDH

GGen,B(κ),

for all κ ∈ N, where τmult(κ), τadd(κ) and τinv(κ) denote upper bounds on the running
times required for computing the group multiplication, addition and inversion operations,
respectively, in groups produced by GGen(1κ).

2.2 Secure Two-Party Computation
We consider the standard real-vs-ideal framework for static corruptions by malicious
adversaries. In what follows, for any function g(x1, x2) we denote by Fg the functionality
that computes g(x1, x2) when given inputs x1 and x2 from P1 and P2, respectively. We
now formally define executions in the real model, the ideal model, and the hybrid model
for a protocol Π and functionality Fg.

Execution in the real model. When executing a two-party protocol Π in the real
model, the real-model adversary A first receives the input of the corrupted party and
an arbitrary auxiliary input aux. Then, the adversary takes the role of the corrupted
party by sending all messages on their behalf using an arbitrary polynomial-time strategy,
whereas the honest party follows the instructions of the protocol using their prescribed
input. We denote by REALΠ,A(aux)(x1, x2, κ) the joint distribution of the random variables
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corresponding to the output of the adversary A and the output of the honest party in
an execution of Π in the real model, where P1 holds input (1κ, x1) and P2 holds input
(1κ, x2).

Execution in the ideal model. When computing a functionality Fg in the ideal model,
the ideal-model adversary Sim first receives the input of the corrupted party and an
arbitrary auxiliary input aux. Then, both parties send inputs to a trusted party, where
the honest party sends their prescribed input, and the corrupted party controlled by Sim
may send any value of their choice. We denote by (x1, x2) the prescribed inputs of the
two parties, and by (x′1, x′2) the inputs sent to the trusted party (we assume that if one of
these inputs is invalid then the trusted party substitutes it with some default input).

In turn, the trusted party computes (y1, y2) = g(x′1, x′2), and sends ideal-model adver-
sary Sim the output yi of the corrupted party Pi. If the adversary responds with continue,
then the trusted party sends y3−i to the honest party P3−i who outputs y3−i. Otherwise, if
the adversary responds with abort, then the trusted party sends abort to the honest party
P3−i who outputs abort. We denote by IDEALFg,Sim(aux)(x1, x2, κ) the joint distribution
of the random variables corresponding to the output of the adversary Sim and the output
of the honest party in an ideal-model computation of Fg, where P1 holds input (1κ, x1)
and P2 holds input (1κ, x2).

Execution in the F-hybrid model. The above formulation of executing a protocol Π
in the real model extends to that of executing a protocol Π in the F -hybrid model, where
both parties may access a trusted party that computes F with abort as in the ideal model.
That is, whenever either one of the parties or both parties send inputs to the trusted
party computing F , the trusted party first sends the output of the corrupted party to
the adversary. Then, the adversary responds with either continue or abort, instructing the
trusted party to send the honest party either their output or abort, respectively. We denote
by HYBRIDFΠ,A(aux)(x1, x2, κ) the joint distribution of the random variables corresponding
to the output of the adversary A and the output of the honest party in an execution of Π
in the F-hybrid model, where P1 holds input (1κ, x1) and P2 holds input (1κ, x2).

Definition 3. Let Π, F and g be as above. Then, Π is said to securely compute Fg

with abort if for any i ∈ {1, 2} and for every probabilistic polynomial-time adversary A
in the F-hybrid model corrupting the party Pi, there exists a probabilistic polynomial-
time adversary Sim in the ideal model corrupting the same party Pi such that for any
x1, x2, aux ∈ {0, 1}∗ it holds that{

HYBRIDFΠ,A(aux)(x1, x2, κ)
}
≡s

{
IDEALFg,Sim(aux)(x1, x2, κ)

}
UC security. The proof security we present in Section 4 provides an ideal-model
adversary S that simulates the view of any adversary A in the hybrid model without
rewinding it. Therefore, if the ideal functionalities in the hybrid model are instantiated
with UC-secure protocols [Can01], then the entire protocol is UC-secure as proven by
Kushilevitz, Lindell and Rabin [KLR10].2

2.3 Ideal Functionalities
We now present the (batch) oblivious transfer functionality that we prove to be realized
by the augmented Chou-Orlandi protocol, as well as the ideal functionalities on which the
protocol relies within the hybrid model:

2For computationally-secure protocols, Kushilevitz, Lindell and Rabin [KLR10] require input availability
(or start synchronization), which is satisfied in our setting since we consider static corruptions in a two-party
setting.
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• FOT. The OT functionality with batch parameter n ∈ N is defined as follows:

– Upon receiving (sender, {(mj,0, mj,1)}j∈[n]) from party Pi and (receiver, c) from
party P3−i, where i ∈ {1, 2} and c = (c1, . . . , cn) ∈ {0, 1}n, send (receive,
{mj,cj

}j∈[n]) to party P3−i.

• FGGen. The group-generation functionality is defined as follows:

– Upon receiving (generate, 1κ) from both parties, produce a description G =
(G, G, q) of a cyclic group G of order q that is generated by G ∈ G, where q is
a κ-bit prime, and send (group,G) to both parties.

• FRO. The random-oracle functionality with output-length parameter n ∈ N is defined
as follows:

– Upon receiving (evaluate, x) from party Pi, where i ∈ {1, 2}, if a pair (x, y) has
been previously stored then send (output, x, y) to Pi. If a tuple (x, y) has not
been previously stored, uniformly sample y ← {0, 1}n, store the pair (x, y), and
send (output, x, y) to Pi.

• FZK-DL and FZK-PED. The ZK-DL and (batched) ZK-PED functionalities over a
group G = (G, G, q) are defined as the following standard zero-knowledge functionality
for the relations RDL = {((G, A), a) ∈ G2 × Zq | A = a ·G} and RPED = {((G, A,
{Ci}i∈[n]), {(ci, ri)}i∈[n]) ∈ Gn+2 × Z2n

q | Ci = ci ·A + ri ·G ∀i ∈ [n]}, respectively:

– Upon receiving (proof, x, w) from party Pi, where i ∈ {1, 2}, if (x, w) /∈ R then
send (reject, x) to party P3−i, and otherwise send (verified, x) to party P3−i.

3 The List-sqDH Problem and its Concrete Hardness
The concrete security guarantees we provide in this work rely on the following assumption,
which is parameterized by a function ℓ = ℓ(κ) of the security parameter κ ∈ N. In what
follows, recall that GGen is a group-generation algorithm that on input 1κ produces a
description G = (G, G, q) of a cyclic group G of order q that is generated by G ∈ G, where
q is a κ-bit prime.

Definition 4 (List-square Diffie-Hellman (ℓ-sqDH)). For any κ ∈ N, function ℓ = ℓ(κ),
and algorithm A, let

Advℓ-sqDH
GGen,A(κ) def= Pr

[
A (G, a ·G) = (G1, . . . , Gℓ) ∧ ∃i ∈ [ℓ] s.t. Gi = a2 ·G

]
,

where the probability is taken over the choices of G = (G, G, q)← GGen(1κ) and a← Zq,
and over A’s internal randomness.

Definition 5. We say that the ℓ-sqDH problem is hard with respect to GGen if for any
probabilistic polynomial-time non-uniform algorithm A there exists a negligible function ν
such that for all κ ∈ N it holds that

Advℓ-sqDH
GGen,A(κ) ≤ ν(κ) .

In addition, for any functions t = t(κ) and ϵ = ϵ(κ), we say that the ℓ-sqDH problem is
(t, ϵ)-hard with respect to GGen if for any non-uniform algorithm A that runs in time t and
for all κ ∈ N it holds that

Advℓ-sqDH
GGen,A(κ) ≤ ϵ(κ) .
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Note that, for ℓ = 1, the 1-sqDH problem is identical to the sqDH problem, and as
ℓ increases, then algorithms for solving the ℓ-sqDH problem are allowed to output more
potential candidates for a2 ·G. Nevertheless, for any ℓ ∈ N, any algorithm A for solving
the ℓ-sqDH problem can be transformed into an algorithm B for solving the sqDH problem
by choosing uniformly one the ℓ outputs produced by A and outputting it. The running
time tB of the algorithm B is essentially identical to the running time tA of the algorithm
A, and for any κ ∈ N it holds that

Advℓ-sqDH
GGen,A(κ) ≤ ℓ ·AdvsqDH

GGen,B(κ) .

For large values of ℓ, such as the number qA of random-oracle queries issued by the
algorithm A (as obtained by our security proof in Section 4), this leads to a rather loose
concrete security guarantee. Specifically, when relying on the assumed generic hardness
of the CDH problem as our baseline (see Assumption 2), Lemma 1 of Bresson, Chevassut
and Pointcheval [BCP04] yields the bound

Advℓ-sqDH
GGen,A(κ) ≤ ℓ ·

√
(tA)2

2κ
= ℓ · tA

2κ/2 .

In the following lemma, we present a more direct approach for establishing concrete security
guarantees for the ℓ-sqDH problem by reducing its security directly to that of the DDH
problem (instead of reducing its security to the CDH problem via the sqDH problem). This
enables us to obtain a concrete security bound that is essentially identical to that of the
sqDH problem by relying on the assumed generic hardness of the DDH problem as our
baseline. This direct approach provides a much stronger concrete security guarantee for
the ℓ-sqDH problem already for 256-bit groups.

As a technical ingredient, our proof relies on the ability to decide, as fast as possible,
whether two sets have a non-empty intersection. Each set consists of ℓ strings of length
κ bits (representing group elements), and the running time required for this task affects
the tightness of our statement. For stating our lemma without restricting ourselves to a
particular implementation, we denote by tSI(ℓ, κ) an upper bound on the time required for
deciding whether such two sets have a non-empty intersection.

Lemma 2. Let ℓ = ℓ(κ) be a function of the security parameter κ ∈ N. For any ℓ-sqDH
algorithm A that runs in time tA = tA(κ) there exists a DDH algorithm D that runs in time
tD ≤ 2tA + tSI(ℓ, κ) + (ℓ + 4) · τadd(κ) + τinv(κ) such that

Advℓ-sqDH
GGen,A(κ) ≤

√
AdvDDH

GGen,D(κ) + ℓ2

2κ

for every κ ∈ N, where τadd(κ) and τinv(κ) denote the running times required for computing
the group addition and inversion operations, respectively, in groups produced by GGen(1κ).

We note that it is quite simple to avoid a quadratic overhead of tSI = ℓ2 (which will
not yield any concrete security improvement) by sorting the two lists in time O(ℓ log ℓ).
More subtle approaches may be used to reduce this overhead to O(ℓ). For example,
given a dictionary data structure that supports (with high probability) a linear time
initialization and constant-time lookups in the unit-cost RAM model (see, for example,
[Pag00, PR04, ANS10] and the many references therein), one can initialize the dictionary
to hold the ℓ strings of the first set, then perform a lookup for each string of the second set
(for simplicity, we ignore the polynomially-small error probability that such a dictionary
may introduce). Accounting for group addition at unit cost, we then obtain tD ≤ 2tA +O(ℓ),
and therefore the concrete security bound provided by Lemma 2 for the ℓ-sqDH problem
is equivalent to the bound tA/2κ/2 provided by Lemma 1 for the sqDH problem.
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Proof of Lemma 2. Let ℓ = ℓ(κ) be a function of the security parameter κ ∈ N, and let
A be an algorithm for the ℓ-sqDH problem. Let D be the following DDH algorithm:

1. On input (G, Ha, Hb, W ), where G = (G, G, q) and Ha, Hb, W ∈ G, compute

(G1, . . . , Gℓ) ← A (G, Ha + Hb)
(G′1, . . . , G′ℓ) ← A (G, Ha −Hb)

2. Let L = {G1, . . . , Gℓ} and L′ = {4 ·W + G′1, . . . , 4 ·W + G′ℓ}.

3. If L ∩ L′ ̸= ∅ then output 1, and otherwise output 0.

For analyzing D’s success probability, note that if the group element W is uniformly
distributed and independent of Ha and Hb, then it is also independent of the inputs,
Ha + Hb and Ha − Hb, provided to A. Thus, it is also independent of the outputs,
(G1, . . . , Gℓ) and (G′1, . . . , G′ℓ), produced by A. Therefore, when considering the case in
which Ha = a · G, Hb = b · G and W = c · G for uniformly and independently sampled
a, b, c← Zq, it holds that

Pr [D (G, Ha, Hb, W ) = 1] = Pr
[
∃i, j ∈ [ℓ] s.t. Gi = 4 ·W + G′j

]
≤

∑
i,j∈[ℓ]

Pr
[
4 ·W = Gi −G′j

]
= ℓ2

q

≤ ℓ2

2κ
. (3)

For considering the case in which Ha = a ·G, Hb = b ·G and W = ab ·G for uniformly and
independently sampled a, b← Zq, we denote by Success and Success′ the events in which
A is successful in their first and second execution, respectively. Since the transformation
(a, b) → (a + b, a − b) is invertible over Zq, the inputs Ha + Hb = (a + b) · G and
Ha−Hb = (a− b) ·G are similarly uniformly and independently distributed, and therefore
the events Success and Success′ are independent. Conditioned on these two events, there
exist i, j ∈ [ℓ] such that Gi = (a + b)2 ·G and G′j = (a− b)2 ·G, and therefore

Gi −G′j = 4ab ·G = 4 ·W.

Therefore, conditioned on the events Success and Success′, the algorithm D always outputs
1, and we have

Pr [D (G, a ·G, b ·G, ab ·G) = 1] ≥ Pr
[
Success ∧ Success′

]
= (Pr [Success])2

=
(

Advℓ-sqDH
GGen,A(κ)

)2
. (4)

Putting together Eq. (3) and (4) we obtain

AdvDDH
GGen,D(κ) = |[D (G, a ·G, b ·G, ab ·G) = 1]− [D (G, a ·G, b ·G, c ·G) = 1]|

≥
(

Advℓ-sqDH
GGen,A(κ)

)2
− ℓ2

2κ
,

where a, b, c← Zq, as required. Finally, in terms of D’s running time, note that D invokes
A twice, performs ℓ + 4 additions of group elements and a single inversion of a group
element, and determines whether L∩L′ ̸= ∅. Thus, tD ≤ 2tA + tSI(ℓ, κ) + (ℓ + 4) · τadd + τinv.
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4 The Augmented Oblivious Transfer Protocol
In this section we present the augmented Chou-Orlandi batch oblivious transfer protocol
and analyze its security. As discussed in Section 1.1, we provide our analysis within the
standard real-vs-ideal framework considering static corruptions by malicious adversaries.
In this framework, we consider a hybrid model in which the underlying zero-knowledge
functionalities are modeled via ideal functionalities. This guarantees that our concrete
analysis focuses on the security of the protocol in a modular manner that distinguishes
between any security loss that may result from the protocol itself and any such loss that
may result from any particular choice for implementing the zero-knowledge functionalities.
In addition to the zero-knowledge functionalities, the protocol relies on ideal functionalities
for modeling a random oracle and a group-generation algorithm (see Section 2.3 for formal
descriptions of the ideal functionalities).

The protocol, described in Figure 1, is parameterized by the security parameter κ ∈ N,
and by a “batch parameter” n = n(κ) that determines the number of oblivious transfer
instances whose executions are batched together. For simplicity, we assume that the
sender’s input strings are of length κ bits.

Correctness. As shown by Chou and Orlandi [CO15a], for any inputs {(mi,0, mi,1)}i∈[n]
and c = (c1, . . . , cn) ∈ {0, 1}n, and for any i ∈ [n], the correctness of the protocol is
established by distinguishing between the cases ci = 0 and ci = 1:

• Case I: ci = 0. In this case, the receiver computes Ci = ri · G and the sender
computes Di,0 = a ·Ci = (a · ri) ·G. Then, the receiver recovers the exact same Di,0
by computing ri ·A = ri · (a ·G), and this enables to retrieve mi,0.

• Case II: ci = 1. In this case, the receiver computes Ci = A + ri ·G = (a + ri) ·G and
the sender computes Di,1 = a · Ci − T = (a · (a + ri)− a2) ·G = (a · ri) ·G. Then,
the receiver recovers the exact same Di,1 by computing ri ·A = ri · (a ·G), and this
enables to retrieve mi,1.

Security. The following lemma captures the concrete security guarantees of the protocol
ΠOT:

Lemma 3. Let F = (FGGen,FRO,FZK-DL,FZK-PED), let tA = tA(κ) and qA = qA(κ) be
functions of the security parameter κ ∈ N, and let A be an adversary in the F-hybrid model
that runs in time tA and issues at most qA queries to the random-oracle functionality. Then,
there exist a non-rewinding ideal-model adversary Sim that runs in time tSim = O(tA) and
a non-uniform algorithm B for solving the qA-sqDH problem that runs in time tB = O(tA)
for which

SD
(

HYBRIDFΠOT,A(aux)(x1, x2, κ), IDEALFOT,Sim(aux)(x1, x2, κ)
)
≤ AdvqA-sqDH

GGen,B (κ)

for any security parameter κ ∈ N, input (x1, x2) =
(
{(mi,0, mi,1)}i∈[n] , c

)
, and auxiliary

information aux ∈ {0, 1}∗.

We note that the non-uniformity of the qA-sqDH algorithm B is used for providing it
with a triplet (x1, x2, aux) that essentially maximizes the statistical distance between the
hybrid and ideal executions for our ideal-model adversary Sim for every κ ∈ N (see the
proof below). This form of non-uniformity is not essential, and can be avoided by using the
above protocol to implement a random-sender OT, in which the sender randomly samples
the input {(mi,0, mi,1)}i∈[n] instead of being provided with a prescribed input. Then, a
full-fledged OT protocol is easily derived from a random-sender one using the standard



Iftach Haitner, Gil Segev 11

technique of masking the sender’s actual input with the randomly-sampled one (this does
not affect the concrete security of the protocol).

Equipped with Lemma 3, the following corollary now follows directly by combining it
with Lemma 2:

Corollary 1. Based on Assumption 2, for any adversary A in the F-hybrid model that
runs in time tA and issues at most qA queries to the random-oracle functionality there
exists a non-rewinding ideal-model adversary Sim that runs in time tSim = O(tA) for which

SD
(

HYBRIDFΠOT,A(aux)(x1, x2, κ), IDEALFOT,Sim(aux)(x1, x2, κ)
)
≤

√
t2
A(κ) + q2

A(κ)
2κ

for any security parameter κ ∈ N, input (x1, x2) =
(
{(mi,0, mi,0)}i∈[n] , c

)
, and auxiliary

information aux ∈ {0, 1}∗.

The Batch Oblivious Transfer Protocol ΠOT

Parameters: Security parameter κ ∈ N, batch parameter n ∈ N.

Ideal functionalities: FGGen, FRO = H : {0, 1}∗ → {0, 1}κ, FZK-DL and FZK-PED.

Parties and inputs:
• Sender S: {(mi,0, mi,1)}i∈[n], where mi,b ∈ {0, 1}κ for every i ∈ [n] and b ∈ {0, 1}.
• Receiver R: c = (c1, . . . , cn) ∈ {0, 1}n.

Execution:
1. The parties jointly call FGGen on input 1κ, and obtain a description G = (G, G, q) of a cyclic

group G of order q that is generated by G ∈ G, where q is a κ-bit prime.
2. S: Sample a← Zq, send A = a ·G to R, and send (proof, (G, A), a) to FZK-DL.
3. R: Upon receiving A from S and (verified, (G, A)) from FZK-DL, sample r = (r1, . . . , rn)← Zn

q ,
and for every i ∈ [n] compute Ci = ci ·A+ri ·G. Then, send (proof, (G, A, C1, . . . , Cn), (c, r))
to FZK-PED.

4. S: Upon receiving (verified, (G, A, C1, . . . , Cn)) from FZK-PED, set T = a2 ·G, and for every
i ∈ [n] compute

Di,0 = a · Ci

Di,1 = Di,0 − T

ki,b = H (i, Di,b) for each b ∈ {0, 1}
wi,b = ki,b ⊕mi,b for each b ∈ {0, 1}.

Then, send {(wi,0, wi,1)}i∈[n] to R.
5. R: Upon receiving {(wi,0, wi,1)}i∈[n] from S, for every i ∈ [n] compute

Di,ci = ri ·A
ki,ci = H (i, Di,ci )

mi,ci = ki,ci ⊕ wi,ci ,

and output (m1,c1 , . . . , mn,cn ).

Figure 1: The Batch Oblivious Transfer Protocol ΠOT.

In the remainder of this section, we provide the proof of Lemma 3.
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Proof of Lemma 3. We separately consider the case where the sender S is corrupted
and the case where the receiver R is corrupted.

Case I: S is corrupted. Let A be a probabilistic polynomial-time adversary corrupting S
in the F -hybrid model, where F = (FGGen,FRO,FZK-DL,FZK-PED), and denote by (x1, x2) =(
{(mi,0, mi,1)}i∈[n] , c

)
the inputs held by the parties in the ideal model. We construct a

probabilistic polynomial-time ideal-model adversary Sim as follows:

1. On input ({(mi,0, mi,0)}i∈[n] , aux), perfectly simulate the group-generation function-
ality FGGen by producing a description G = (G, G, q) of a cyclic group G of order q
that is generated by G ∈ G, where q is a κ-bit prime.

2. Invoke A on the input ({(mi,0, mi,0)}i∈[n] , aux) and the description G of the cyclic
group. Throughout the execution of A, whenever A issues a random-oracle query x,
perfectly simulate the random-oracle functionality FRO: If the query x has been pre-
viously made then retrieve the stored value H(x) and respond with (output, x, H(x)).
Otherwise, uniformly sample H(x)← {0, 1}κ, store the pair (x, H(x)), and respond
with (output, x, H(x)).

3. Obtain the messages A and (proof, (G, A), a) sent from A to R and FZK-DL, respectively.
If A ̸= a ·G, then submit some fixed input on behalf of S to the ideal functionality
FOT, respond to FOT with abort, and output A’s output. Otherwise (i.e., A = a ·G),
continue to the next step.

4. Sample r = (r1, . . . , rn) ← Zn
q , and for every i ∈ [n] compute Ci = ri · G. Then,

send (verified, (G, A, C1, . . . , Cn)) to A on behalf of FZK-PED, and obtain the messages
{(wi,0, wi,1)}i∈[n] sent from A to R.

5. Set T = a2 ·G, and for every i ∈ [n] compute

Di,0 = a · Ci

Di,1 = Di,0 − T

ki,b = H (i, Di,b) for each b ∈ {0, 1}
m′i,b = ki,b ⊕ wi,b for each b ∈ {0, 1}.

6. Submit the input
{(

m′i,0, m′i,1
)}

i∈[n] on behalf of S to the ideal functionality FOT,
respond to FOT with continue, and output A’s output.

Provided with the above description of Sim, the perfect hiding property of the Ped-
ersen commitments C1, . . . , Cn (together with our above analysis of the correctness
of the protocol), guarantee that the two distributions HYBRIDFΠOT,A(aux)(x1, x2, κ) and
IDEALFOT,S(aux)(x1, x2, κ) are identical. Specifically, the only difference is that Sim com-
putes Ci = ri ·G instead of Ci = ci · A + ri ·G for every i ∈ [n]. However, the resulting
distributions are identical since each ri ∈ Zq is sampled uniformly.

Case II: R is corrupted. Let A be a probabilistic polynomial-time adversary corrupt-
ing R in the F-hybrid model, where F = (FGGen,FRO,FZK-DL,FZK-PED), and denote by
(x1, x2) =

(
{(mi,0, mi,0)}i∈[n] , c

)
the inputs held by the parties in the ideal model. We

construct a probabilistic polynomial-time ideal-model adversary Sim as follows:

1. On input (c, aux), perfectly simulate the group-generation functionality FGGen by
producing a description G = (G, G, q) of a cyclic group G of order q that is generated
by G ∈ G, where q is a κ-bit prime.
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2. Invoke A on the input (c, aux) and the description G of the cyclic group. Throughout
the execution of A, whenever A issues a random-oracle query x, perfectly simulate
the random-oracle functionality FRO: If the query x has been previously made
then retrieve the stored value H(x) and respond with (output, x, H(x)). Otherwise,
uniformly sample H(x) ← {0, 1}κ, store the pair (x, H(x)), and respond with
(output, x, H(x)).

3. Sample A← G uniformly, and send A and (verified, (G, A)) to A on behalf of S and
FZK-DL, respectively.

4. Obtain the message (proof, (G, A, C1, . . . , Cn), (c′, r′)) sent by A to FZK-PED, and let
c′ = (c′1, . . . , c′n) ∈ {0, 1}n and r′ = (r′1, . . . , r′n) ∈ Zn

q . If for some i ∈ [n] it holds
that Ci ̸= c′i · A + r′i ·G, then submit some fixed input on behalf of R to the ideal
functionality FOT, respond to FOT with abort, and output A’s output. Otherwise
(i.e., Ci = c′i ·A + r′i ·G for every i ∈ [n]), continue to the next step.

5. Submit the input c′ on behalf of R to the ideal functionality FOT, and obtain an
output {mi}i∈[n] from FOT.

6. For every i ∈ [n] compute Di,c′
i

= r′i · A and set ki,c′
i

= H(i, Di,c′
i
). If H(i, Di,c′

i
)

has not yet been defined via a random oracle query previously issued by A, then
uniformly sample H(i, Di,c′

i
)← {0, 1}κ and store the pair ((i, Di,c′

i
), H(i, Di,c′

i
)) for

consistently responding to A’s following random oracle queries.

7. For every i ∈ [n] set wi,c′
i

= ki,c′
i
⊕mi, and uniformly sample wi,1−c′

i
← {0, 1}κ.

8. Send {(wi,0, wi,1)}i∈[n] to A on behalf of S, and output A’s output.

Provided with the above description of Sim, we now upper bound the statistical distance
between the two distributions HYBRIDFΠOT,A(aux)(x1, x2, κ) and IDEALFOT,S(aux)(x1, x2, κ).
First, note that the values Di,c′

i
= r′i ·A are identically distributed in both cases. Therefore

the only difference is that Sim uniformly sample wi,1−c′
i
← {0, 1}κ, instead of defining

Di,1−c′
i

= a2 ·G− r′i ·A and then setting wi,1−c′
i

= mi,1−c′
i
⊕H(i, Di,1−c′

i
). Therefore, as

long as for every i ∈ [n] the adversary A does not query the random-oracle functionality on
the input (i, a2 ·G− r′i ·A), then the two distributions HYBRIDFΠOT,A(aux)(x1, x2, κ) and
IDEALFOT,S(aux)(x1, x2, κ) are identical. Thus, letting E(x1, x2, aux, κ) denote the event in
which during the simulation by Sim the adversary A queries the random-oracle functionality
on the input (i, a2 ·G− r′i ·A) for some i ∈ [n], it holds that

SD
(

HYBRIDFΠOT,A(aux)(x1, x2, κ), IDEALFOT,Sim(aux)(x1, x2, κ)
)
≤ Pr [E(x1, x2, aux, κ)] .

In the remainder of the analysis of this case, we present an algorithm B for solving the
qA-sqDH problem for which

Pr [E(x1, x2, aux, κ)] ≤ AdvqA-sqDH
GGen,B (κ) (5)

for every κ ∈ N and for every (x1, x2, aux). On input (1κ,G, A), algorithm B first internally
emulates the above-described ideal-model execution IDEALFOT,S(aux)(x1, x2, κ) for the
triplet (x1, x2, aux) that maximizes the probability of the event E(x1, x2, aux, κ) (note that,
for every k ∈ N, we use (x1, x2, aux) as a non-uniform advice for the algorithm B).

Let r′ = (r′1, . . . , r′n) ∈ Zn
q denote the values extracted by Sim in Step 4 of Sim’s

description, and let {(ij , Hj)}j∈[qA] denote the random oracle queries issued by A. For
every j ∈ [qA], algorithm B computes Gj = r′ij

·A + Hj and outputs (G1, . . . , GqA). Clearly,
if A queries the random-oracle functionality on the input (i, a2 ·G− r′i ·A) for some i ∈ [n],
then for some j ∈ [qA] it holds that (ij , Hj) = (ij , a2 ·G−r′ij

·A), and therefore Gj = a2 ·G.
That is, in this case, the algorithm B solves the given qA-sqDH instance, and therefore Eq.
5 holds as required.
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