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Abstract. FALCON is a signature selected for standardisation of the new Post-
Quantum Cryptography (PQC) primitives by the National Institute of Standards and
Technology (NIST). However, it remains a challenge to define efficient countermeasures
against side-channel attacks (SCA) for this algorithm. FALCON is a lattice-based
signature that relies on rational numbers, which is unusual in the cryptography field.
Although recent work proposed a solution to mask the addition and the multiplication,
some roadblocks remain, most noticeably, how to protect the floor function. In this
work, we propose to complete the first existing tests of hardening FALCON against
SCA. We perform the mathematical proofs of our methods as well as formal security
proofs in the probing model by ensuring Multiple Input Multiple Output Strong Non-
Interference (MIMO-SNI) security. We provide performances on a laptop computer of
our gadgets as well as of a complete masked FALCON. We notice significant overhead
in doing so and discuss the deployability of our method in a real-world context.
Keywords: Floor Function · Floating-Point Arithmetic · Post-Quantum Cryptogra-
phy · FALCON · Side-Channel Analysis · Masking · MIMO-SNI

1 Introduction
With the rise of quantum computing, mathematical problems that were hard to solve with
current technologies will be easier to break. Among the concerned problems, the Discrete
Logarithm Problem (DLP) could be solved in polynomial time by the Shor quantum
algorithm [Sho99]. As much of the current asymmetric primitives rely on this problem and
will be compromised, new cryptographic primitives are studied. The National Institute
of Standards and Technology (NIST) launched a post-quantum standardisation process
[CCJ+16]. The finalists are CRYSTALS Kyber [BDK+18, NIS24b], CRYSTALS Dilithium
[DKL+18, NIS24a], SPHINCS+ [BHK+19, NIS24c] and FALCON [PFH+20].

Another concern for the security of cryptographic primitives is their robustness to a
Side-Channel opponent. Side-Channel Analysis (SCA) was first introduced by Paul Kocher
[Koc96] in the mid-1990s. This new branch of cryptanalysis focuses on studying the impact
of a cryptosystem on its surroundings. As computations take time and energy, an opponent
able to access the variation of one or both could find correlations between its physical
observations and the data manipulated, thus resulting in a leakage and a security breach.
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2 Masked Floor Function and Application to FALCON

The study of weaknesses in the implementations of new primitives and the way to protect
them is an active field of research.

Although many efforts have been made to protect CRYSTALS Dilithium and CRYSTALS
Kyber, summarised by Ravi et al. [RCDB24], FALCON has been less covered. The
algorithm relies on floating-point arithmetic, for which there is little literature on how to
protect it.

1.1 Related Work
Previous works have identified two main weaknesses within the Falcon signing process:
the preimage computation and the Gaussian sampler. The latter is proved vulnerable by
Karabulut and Aysu [KA21] using an ElectroMagnetic (EM) attack. Their work was later
improved by Guerreau et al. [GMRR22]. To counter these attacks, Chen and Chen [CC24]
propose an implementation of the addition and multiplication of FALCON using a generic
side-channel countermeasure, namely masking. Karabulut and Aysu [KA24] proposed a
similar approach to mask the multiplication of FALCON in hardware. However, neither
works delve into the second weakness of Falcon, the Gaussian sampler.
The Gaussian sampler is vulnerable to timing attacks, as shown by previous work
[GBHLY16, EFGT17, MHS+19, PBY17]. An isochronous design was proposed by Howe
et al. [HPRR20] to counter those attacks. Nonetheless, a successful single power analysis
(SPA) was proposed by Guerreau et al. [GMRR22] and further improved by Zhang et
al. [ZLYW23]. There is currently no masking countermeasure for FALCON’s Gaussian
Sampler. Existing work [EFG+22] tends to rewrite the Gaussian sampler to eliminate the
use of floating arithmetic, thus avoiding the challenge of masking the floor function.

1.2 Contributions
In this work, we further expand the countermeasure of Chen and Chen [CC24] and apply it
to the Gaussian sampler. We propose a masking method based on the mantissa truncation
to compute the floor function, as well as a method to mask the division. We discuss the
application of those methods to masking FALCON.

Based on the previous work by Chen and Chen [CC24], we also verify the higher-
order security of our method in the probing model. Our formal proofs are based on the
Non-Interference (NI) security model first introduced by Barthe et al. [BBD+16]. More
specifically, we use the Probe Propagation Framework from Cassiers and Standaert [CS20]
to prove the Multiple Inputs Multiple Outputs Strong Non-Interference (MIMO-SNI)
security of several of our gadgets.

We provide some performance of our methods and compare them with the unmasked
reference implementation and the previous work of Chen and Chen [CC24]. The imple-
mentation is tested on a laptop computer with an Intel-Core i7-11800H CPU. However, it
could be further optimised.

The source code of this paper is publicly available at the following link:

https://github.com/burak231708/masked_FALCON

2 Notation and Background
2.1 Notations

• We denote by A ∽ B the set A excluding the values of set B, id est (A ∽ B)
⋂

B = ∅.
We denote by K− the negative values of the set K and by K∗ its nonzero values.

https://github.com/burak231708/masked_FALCON
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• For x ∈ R, we denote the floor function of x by ⌊x⌋.

• We will use the dot . as the separator between the integer part i and the fractional
part f of a real number x = i.f .

• If (bi) is a 64-bit Boolean sharing for bit value b, we denote (−bi) a 64-bit Boolean
sharing for 264 − b. It means that if b = 0, (−bi) is a 64-bit boolean sharing for 0,
and b = 1, (−bi) is a 64-bit boolean sharing for 0xffffffffffffffff.

For algorithmic extracts of FALCON [PFH+20], we use the original paper notation.

2.2 FALCON Sign

FALCON [PFH+20] is a Lattice-Based signature using the GPV framework over the
NTRU problem. In this paper, we will focus on the Gaussian sampler used in the signature
algorithm. More details on key generation or verification are available in the original
FALCON paper[PFH+20].

2.2.1 Signature

The signature follows the Hash-Then-Sign strategy. The message m is salted with a
random value r and then hashed into a challenge c. The remainder of the signature aims
to build an instance of the SIS problem on c and a public key h, id est finding s⃗ = (s1, s2)
such as s1 + s2h = c. Hence, s⃗ = (⃗t − z⃗)B with t⃗ a preimage vector and z⃗ provided by
a Gaussian sampler must be computed. Chen and Chen [CC24] focus on masking the
computation of the preimage vector. In this work, we mask the Gaussian sampler and
provide performances for the entire signature algorithm. This algorithm is detailed in
[PFH+20] in the corresponding section.

2.2.2 Gaussian Sampler

The Gaussian Sampler denoted by SamplerZ can be evaluated from the three following
functions, ApproxExp, BerExp, and BaseSampler. In purple are highlighted the operations
that are affected by the countermeasures presented in this work.

ApproxExp. This function returns 263 × ccs× e−x and depends on a matrix C defined
in page 42 of [PFH+20]:

Algorithm 1: ApproxExp(x,ccs) [PFH+20]
Data: floating-point values x ∈ [0, ln(2)] and ccs ∈ [0, 1]
Result: An integral approximation of 263 · ccs · exp(−x)

1 y ← C[0]; // y and z remain in {0 · · · 263 − 1} the whole algorithm
2 z ← ⌊263 · x⌋;
3 for i from 1 to 12 do
4 y ← C[i]− (z · y) >> 63;
5 z ← ⌊263 · ccs⌋;
6 y ← (z · y) >> 63;
7 return y;

BerExp. This function returns 1 with probability ccs× e−x:
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Algorithm 2: BerExp(x,ccs) [PFH+20]
Data: floating-point values x, ccs ≥ 0
Result: A single bit, equal to 1 with probability ≈ ccs · exp(−x)

1 s← ⌊x/ ln(2)⌋ ; // Compute the unique decomposition x = ln(2s) + r with
(r, s) ∈ [0, ln(2))× Z+

2 r ← x− s · ln(2);
3 s← min(s, 63);
4 z ← (2 ·ApproxExp(r, ccs)− 1) >> s;
5 i← 64;
6 do
7 i← i− 8;
8 w ← UniformBits(8)− ((z >> i) & 0xff);
9 while ((w = 0) and (i > 0));

10 return Jw < 0K;

BaseSampler This function samples a random integer between 0 and 18:

Algorithm 3: BaseSampler() [PFH+20]
Data: –
Result: An integer z0 ∈ {0, · · · , 18} such that z ∼ χ

1 u← UniformBits(72);
2 z0 ← 0;
3 for i from 0 to 17 do
4 z0 ← z0 + Ju < RCDT[i]K;
5 return z0;

where RCDT is defined in the Falcon specification [PFH+20].

The Gaussian sampler is constructed as follows:

Algorithm 4: SamplerZ(µ,σ′) [PFH+20]
Data: floating-point values µ,σ′ ∈ R such that σ′ ∈ [σmin, σmax]
Result: z ∈ Z sampled from a distribution very close to DZ,µ,σ′

1 r ← µ− ⌊µ⌋;
2 ccs← σmin/σ′;
3 while 1 do
4 z0 ← BaseSampler();
5 b← UniformBits(8) & 0x1;
6 z ← b + (2 · b− 1)z0;
7 x← (z−r)2

2σ′2 −
z2

0
2σmax

;
8 if BerExp(x, ccs) = 1 then
9 return z + ⌊µ⌋;

2.3 Floor Function

The floor function is defined as follows:

Definition 1. For all x ∈ R, the floor function of x, denoted by ⌊x⌋, returns the greatest
integer z such as z ≤ x.
For all x ∈ R, the truncate function of x = i.f, (i, f) ∈ Z × N, denoted by truncate(x),
returns i.
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2.3.1 Binary64 Encoding

A floating-point is encoded in the binary64 standard (IEEE 754, [IEE19]) with a sign bit
s, a 11-bits long exponent e and a 52-bits long mantissa m such as:

x ∈ R, x = (−1)s × 2e−1023 × (1 + m× 2−52). (1)

2.3.2 Computing The Floor

Computing the floor function on a floating point is performed by truncating the mantissa
according to the value of the exponent and the sign:

• If e < 1023 then if s = 0 then ⌊x⌋ = 0 else ⌊x⌋ = −1. Indeed,

(e < 1023) ∧ (s = 0) =⇒ 0 ≤ x ≤ 2−1 + m× 2−53 < 1
(e < 1023) ∧ (s = 1) =⇒ 0 > x ≥ −2−1 +−m× 2−53 ≥ −1.

(2)

• If e > 1074, then ⌊x⌋ = x. We have

e > 1074 =⇒ |x| = 2e−1023 + m× 2e−1023−52

= (2e−1023) ∈ N∗ + (m× 2e−1075) ∈ N =⇒ x ∈ N∗.
(3)

The sign bit s only changes "∈ N" in "∈ Z−".

• If 1023 ≤ e ≤ 1074, then we truncate the mantissa m of x and remove its 1074− e
last bits m[52−(e−1023):1]. That way we have

1023 ≤ e ≤ 1074 =⇒ x = 2e−1023 + m[64:1075−e] × 252−(e−1023)+e−1023−52

= (2e−1023) ∈ N∗ + (m[64:1075−e]) ∈ N.
(4)

However, this only provides truncate(x). To get ⌊x⌋, one has to take into account
the sign bit s. We can rely on the fact that ∀x ∈ R− ∽ Z, truncate(x) = ⌊x⌋ + 1
and ∀x ∈ R+, truncate(x) = ⌊x⌋. Thus, recovering the sign bit allows to properly
compute the floor function from the truncated one in this case.

Remark 1. To compute the truncate(x) function, the same method can be applied but
discard the use of the sign. For the case e < 1023, the result is always 0.
This method requires knowledge of the exponent and the sign, which are both sensitive
values. In this work, we propose a method to perform this truncation securely.

2.4 Masking
Masking is a generic countermeasure against SCA at the algorithmic level. Instead of
processing a sensitive datum, it is split into random shares which are processed separately,
such as in Boolean and Arithmetic masking [MOP08]. For example, the Boolean masking
of a secret bit x in n shares is Mask(x) = (r1, . . . , rn−1, x

⊕n−1
i=1 ri), where the ri are

random bits. Masking security can be evaluated with the t-probing model, first introduced
in [ISW03]. As a consequence, a gadget is said to be secured against t-order attacks if
no information can be recovered by any set of t intermediate values. However, for the
composition of gadgets, we use a stronger model introduced in [BBD+16]: the (Strong)
Non-Interference model.

Definition 2. (t-Non Interference (t-NI ) security [BBD+16]). A gadget is said t-Non
Interference (t-NI ) secure if every set of t intermediate values can be simulated by no more
than t shares of each of its inputs.
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t-NI gadgets composition does not imply t-NI security. We need a stronger definition
for this:

Definition 3. (t-Strong Non Interference (t-SNI ) security [BBD+16]). A gadget is said
t-Strong Non-Interference (t-SNI ) secure if for every set of tI of internal intermediate
values and tO of its output shares with tI + tO ≤t, they can be simulated by no more than
tI shares of each of its inputs.

In this work, we have several gadgets that have multiple inputs and outputs. To formally
prove their security, we use the Multiple Inputs Multiple Outputs SNI (t-MIMO-SNI )
security introduced by Cassiers and Standaert [CS20] to properly compose simple gadgets
into more complex but secured gadgets. We have the following definition:

Definition 4. (t-MIMO-SNI security [CS20]). Let Oi be a set of shares indices for
i = 0, . . . , d− 1. A gadget is t-MIMO-SNI if and only if for any set I of t1 internal probes
and any sets Oi such that there exists a t2 that satisfies t1 + t2 ≤ t and |Oi| ≤ t2 for
i = 0, . . . , d − 1, the sets of probes I ∪ yO0,0 ∪ · · · ∪ yOd−1,d−1 can be simulated with at
most t1 input shares.

Remark 2. In this paper, t-MIMO-SNI secure gadgets with a single output are said
t-MI-SNI secure.

We consider these models in Section 5 to demonstrate the security of our design. We
rely on existing gadgets and propose new ones, as shown in Table 1.

Table 1: List of gadgets, their security and their reference

Algorithm Description Security Reference

SecAnd AND of Boolean shares t-SNI [BBD+16],[ISW03]
SecAdd Addition of Boolean shares t-SNI [BBE+18],[CGTV15]
A2B Arithmetic to Boolean t-SNI [SPOG19]
B2A Boolean to Arithmetic t-SNI [BCZ18]
RefreshMasks t-NI refresh of masks t-NI [BBD+16], [BCZ18]
Refresh t-SNI refresh of masks t-SNI [BBD+16]
SecOr OR of Boolean shares t-SNI [CC24]
SecNonZero NonZero check of shares t-SNI [CC24]
SecFprUrsh Right-shift with sticky bit t-SNI [CC24]
SecFprNorm64 Normalization to [263, 264) t-NI [CC24]
SecFprAdd Floating addition t-SNI [CC24]
SecFprMul Floating multiplication t-SNI [CC24]
SecFprUrshf Right-shift without sticky bit t-MIMO-SNI Algorithm 5
RemoveDecimal Truncate the mantissa t-MIMO-SNI Algorithm 6
SetExponentZero Set exponent to zero t-MIMO-SNI Algorithm 7
SecFprBaseInt Compute the floor t-MIMO-SNI Algorithm 9
SecFprComp Compares two values t-MI-SNI Algorithm 10
SecFprScalePow2 Multiplies by a power of 2 t-SNI Algorithm 11
SecFprInv Inversion t-SNI Algorithm 12
Minimum63 Comparison with 63 t-SNI Algorithm 13

2.4.1 Strategy to mask FALCON

We follow a similar approach to Chen and Chen [CC24]. They take the reference imple-
mentation for the addition and multiplication of floating point value in FALCON and
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"translated" it in a masked form. We do the same for the floor function (Section 3) and
the inverse (Section 4) by taking a naive implementation of each of them in the Binary64
encoding and translating it in a masked form. We then integrate [CC24] and our work in
a proof-of-concept implementation in C for computer (Section 6) following the reference
specification given by the FALCON team to have the performances on the Gaussian
Sampler and then on the entire FALCON.

3 Masking the Floor Function
In Section 2.3.2 we have described how to calculate the floor using floating-point arithmetic.
We now present the corresponding masking gadgets.
Remark 3. With small modifications, our design can also be used to calculate the functions
truncate and rounding.

To perform the floor function, we have to truncate the mantissa, modify the exponent,
and address the sign and the special case of having 0 as a result. To do this, we introduce
several gadgets:

3.1 SecFprUrshf

Algorithm 5: SecFprUrshfloor((myi), (cxi))
Data: 6-bit arithmetic shares (cxi)1≤i≤n for value cx;
64-bit boolean shares (myi)1≤i≤n for sign value my.
Result: 64-bit boolean shares (my′

i)1≤i≤n for value my >> cx
64-bit boolean shares (roti)1≤i≤n for value my[cx:1].

1 (mi)1≤i≤n ← ((1 << 63), 0, · · · , 0);
2 Refresh((cxi));
3 for j from 1 to n do
4 Right-Rotate (myi) by cxj ;
5 (myi)← RefreshMasks((myi));
6 Right-Rotate (mi) by cxj ;
7 (mi)← RefreshMasks((mi));
8 len← 1;
9 while len ≤ 32 do

10 (mi)← (mi ⊕ (mi >> len));
11 len← len << 1;
12 (my′

i)← SecAnd((myi), (mi));
13 (roti)← SecAnd((myi), (¬(mi)));
14 return ((my′

i), (roti));

This gadget is a modification of the SecFprUrsh gadget from [CC24] (Algorithm 9 page
286). Our method, SecFprUrshf (Algorithm 5), does not keep the sticky bit but returns
the removed part instead.

3.2 RemoveDecimal
The SecFrpUrshfloor gadget is used within another gadget, RemoveDecimal (Algorithm
6). We use this gadget to truncate the mantissa. We first shift the mantissa my by
cd = 52− cx, using SecFprUrshfloor. Once the mantissa is shifted, we have performed the
function truncate(x). As described in Section 2.3.2, for the floor we also have to check
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Algorithm 6: RemoveDecimalfloor((myi), (eyi), (syi), (cxi))
Data: 64-bit boolean shares (myi)1≤i≤n for mantissa value my;
16-bit arithmetic shares (eyi)1≤i≤n for exponent value ey;
1-bit boolean shares (syi)1≤i≤n for sign value sy
16-bit arithmetic shares (cxi)1≤i≤n for value cx = ex-2013.
Result: 64-bit boolean shares (my′

i)1≤i≤n for mantissa value my >> (52− cx);
16-bit arithmetic shares (ey′

i)1≤i≤n for exponent value ey + (52− cx)
1 cx1 ← cx1 − 52;
2 (ci)← A2B((cxi));
3 (cpi)← ((c(16)

i )) ;
4 (ci)← SecAnd(Refresh((ci)), (−cpi));
5 (cxi)← B2A((ci));
6 (my′

i), (roti)← SecFprUrshf ((myi), (−cxi));
7 (bi)← SecNonZero((roti));
8 (cpi)← SecAnd((cpi), (syi));
9 (cpi)← SecAnd((cpi), (bi));

10 (my′
i)← SecAdd((my′

i), (cpi));
11 (ey′

i)← (Refresh(eyi)− cxi);
12 return ((my′

i), (ey′
i), (bi));

whether the sign sy is 1. In that case, we check by applying SecNonZero on the mantissa
part removed by SecFprUrshfloor, with result denoted b. If the result is 0, we apply the
floor function to a negative integer. Otherwise, we have to retrieve 1 from the final result
in accordance with Section 2.3.2 and proceed by securely adding cp = s ∧ b to the shifted
my, as summarised in Table 2.

Table 2: Truth table of cp = s ∧ b and interpretations

sy b cp = sy ∧ b Interpretation

0 b 0 x is a positive real
1 0 0 x is a negative integer
1 1 1 x is a non-integer negative real

3.3 SetExponentZero

Algorithm 7: SetExponentZerofloor((eyi), (syi), (bi))
Data: 16-bit arithmetic shares (eyi)1≤i≤n for exponent value ey;
1-bit boolean shares (syi)1≤i≤n for sign value sy
64-bit boolean shares (bi)1≤i≤n.
Result: 16-bit boolean shares (eyi)1≤i≤n for exponent value ey + (52− cx);
1-bit boolean shares (syi)1≤i≤n for sign value.

1 (eyi)← A2B((eyi));
2 (b′

i)← (−syi);
3 (b′

i)← SecOr((b′
i), (bi));

4 (eyi)← SecAnd((eyi, b′
i));

5 (syi)← SecAnd((syi, b′
i));

6 return ((eyi), (syi));
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Finally, we have to address the exponent computation. This is done with the SetExpo-
nentZero gadget (Algorithm 7). This function handles specific binary64 encoding cases,
specifically the encoding of 0 and the one of −1. In fact, if | x |< 1 and sy = 0, then the
expected result is 0 in binary64 form. Otherwise, if sy = 1 and | x |< 1, then the expected
result is −1 in binary64 form. Table 3 highlights the relationship between sy, b and the
expected result.

Table 3: Encoding 0, -1 or others: Truth table

−sy b −sy ∨ b Interpretation

0 · · · 0 0 · · · 0 0 · · · 0 "Small" positive number : ey = 0 and sy = 0
1 · · · 1 0 · · · 0 1 · · · 1 "Small" negative number : ey = 1023 and sy = 1
−sy 1 · · · 1 01 · · · 1 Non zero number : ey = ey and sy = sy

3.4 SecFprBaseIntf :

The gadget SecFprBaseIntf (Algorithm 9) is the main function of the masked floor, the
masked truncate, and the masked rounding. Gadgets and Zerof are parameterized1 by
these functions.

This paper focusses on f = floor. The sign, exponent and mantissa are extracted
from the masked Binary64 encoding used by [CC24] and place them into three variables
sy, ey, and my, which are directly linked to the output of the algorithm. This extraction is
performed with the SecFprExtract algorithm (Algorithm 8):

Algorithm 8: SecFprExtract(x)
Data: 64-bit boolean shares (xi)1≤i≤n for value x
Result: 64-bit boolean shares (mxi)1≤i≤n for mantissa value mx;
16-bit arithmetic shares (exi)1≤i≤n for exponent value ex;
1-bit boolean shares (sxi)1≤i≤n for sign value s.

1 (mxi)← (x[52:1]
i );

2 (mxi)← SecAdd((mxi), (252, 0, · · · , 0)); // add implicit bit in the
mantissa

3 (exi)← (x[63:53]
i );

4 (exi)← B2A((exi));
5 (sxi)← (x(64)

i );
6 return ((mxi), (exi), (sxi));

The inequality cx = ey − Zerof < 0, corresponding to Equation 2, is checked. If cx is
negative, | x |< 1 and we remove the decimals by my = 0. The algorithm SetExponentZero
(Algorithm 7) is called later in the algorithm to encode the result according to this case.
The two remaining cases are dealt with by RemoveDecimalfloor (Algorithm 6), as described
in Section 2.3.2. The cases are as follows: If cx ≥ 52, then x is an integer as shown in
Equation 3 and no modification of the mantissa is required. Otherwise, if 0 ≤ cx ≤ 51, we
truncate the mantissa.

1Zerofloor = Zerotrunc = 1023 and Zeroround = 1022
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Algorithm 9: SecFprBaseIntf(x)
Data: 64-bit boolean shares (xi)1≤i≤n for value x
Result: 64-bit boolean shares (yi)1≤i≤n for mantissa value y = f(x).

1 ((myi), (eyi), (syi))← SecFprExtract((xi));
2 Refresh((syi));
3 (cxi)← (eyi), cx1 ← ey1 − Zerof ;
4 (ci)← A2B((cx

(16)
i ));

5 (myi)← SecAnd((myi), (¬(−ci)));
6 (myi), (eyi), (Rndi)← RemoveDecimalf ((myi), (eyi), (syi),Refresh((cxi)));
7 (myi), (eyi)← SecFprNorm64((myi), (eyi));
8 (myi)← (my

[63:11]
i );

9 ey1 ← ey1 + 11;
10 (ey′

i), (sy′
i)← SetExponentZerof ((eyi), (¬(−ci)), (syi), (Rndi));

11 (y(64)
i )← (syi), (y[63:53]

i )← (eyi), (y[52:1]
i )← (myi);

12 return (yi);

As the algorithm RemoveDecimal does not normalise the mantissa, SecFprNorm64 (see
[CC24] Algorithm 10 page 286) is called and returns a shifted my as well as ey to set the
mantissa back to bits [52 : 1] and update ey. Finally, the last step in the algorithm, before
reformatting the initial encoding, consists of computing the specific encoding of "0" if it is
the expected result, by applying the SetExponentZerof function (Algorithm 7).

4 Application to Falcon: Gaussian Sampler
The floor function has been described above, and we propose now to address the SamplerZ
function (Algorithm 4 or see [PFH+20] Algorithm 15 page 43). In the algorithms SamplerZ
and BerExp (Algorithm 2 or see [PFH+20] Algorithm 14 page 43), division operations are
used. Most of these divisions involve constants as the divisor, allowing us to precalculate
the inverse and perform a multiplication. However, the first division in SamplerZ (line 2)
involves a division with secret information. Hence, we must perform a division securely
by an arbitrary value. To divide by x, we invert it and then compute a multiplication.
Computing the inverse involves performing a Euclidean division until obtaining sufficient
precision (55 bits) to construct it.

4.1 Division
Let x = (sx, ex, mx) and 1

x = y = (sy, ey, my). As the inverse operation preserves the sign,
sy = sx. To compute the exponent ey, we subtract 1023 by cx = ex − 1023 + b, where
b depends on if x is a power of two and cheap to invert in Binary64. This condition is
verified when the mantissa is 0. If not, we set b = 1 to further subtract 1023 and get the
correct exponent ey. This is obtained by performing b =SecNonZero(mx). The exponent
is computed with the following Equation 5:

ey = 1023− (ex − 1023 + b) = 2046− ex − b (5)

Computing the mantissa corresponds to the Euclidean division: first, the dividend d =
(1 << cx) is compared to x by computing comp = SecFprComp(d, x) (Algorithm 10). The
comparison algorithm is an adaptation of the swap part of the SecFprAdd function (see
[CC24] Algorithm 13 page 290) where a similar comparison is performed.

If x < d, then the comparison algorithm outputs 1. This result is carried over to the
new mantissa, and we add −x to d. Otherwise, if comp = 0, no addition is performed on
d. To continue the Euclidean division, d is shifted one time to the left. Performing this
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Algorithm 10: SecFprComp((xi), (yi))
Data: 64-bit boolean shares (xi)1≤i≤n for value x;
64-bit boolean shares (yi)1≤i≤n for sign value y.
Result: 1-bit boolean shares (compi)1≤i≤n for value Jx < yK

1 Refresh((xi));
2 (mxi)← (x[63:1]

i ), (myi)← (y[63:1]
i );

3 (di)← SecAdd((mxi), (¬my1, my2, · · · , myn));
4 Refresh((di));
5 (bi)← SecNonZero((¬d1, d2, · · · , dn));
6 (b′

i)← SecNonZero((¬(d1 ⊕ 263), d2, · · · , dn));
7 (compi)← (d(63)

i ⊕ bi ⊕ b′
i);

8 return (compi);

shift is done by calling the SecFprScalePow2 (Algorithm 11) function. This function either
multiplies by 2 or divides by 2 its input, and truncates the result if necessary.

Algorithm 11: SecFprScalePow2((xi), p)
Data: 64-bit boolean shares (xi)1≤i≤n for value x;
An integer p.
Result: 64-bit boolean shares (yi)1≤i≤n for value x× 2p

1 (sxi), (exi), (mxi)← SecFprExtract((xi));
2 (bi)← SecNonZero((xi));
3 ex1 ← ex1 + p;
4 (exi)← A2B((exi));
5 (eyi)← SecAnd((exi),−(bi));
6 (y(64)

i )← (syi), (y[63:53]
i )← (eyi), (y[53:1]

i )← (myi);
7 return Refresh(yi);

After we compute these 53 bits (52 plus the implicit bit) of the mantissa my, two
additional bits are calculated to preserve the sticky bit. Consequently, we have the 55 bits
of the mantissa my.

4.2 Masking BerExp
BerExp (Algorithm 2) requires a secure computation of a minimum and a right-shift by a
sensitive value. For the minimum, the comparison is made between a constant equal to 63
and the sensitive value we will denote here by X = (sX, eX, mX). We check if X ≥ 64.
To do so, we verify that the exponent eX is greater than 1029 and its sign sX is 0. In
BerExp, X is always positive, and we only check the exponent condition. As eX is a
signed integer, we verify it by looking at the sign of the computation of ϵ = eX − 1029.
We use an A2B conversion to extract the sign bit sϵ. The final output is given by the
mask of ((−sϵ)∧X)∨ ((−(¬sϵ))∧ 63). The calculations of the minimum are performed in
Algorithm 13.

To right-shift a binary64 masked Y to another binary64 masked X ∈ J0, 63K, we use
SecFprUrsh (Algorithm). However, we first convert X, a 64-bit boolean sharing, into a
6-bit arithmetic sharing. We denote X = (sX, eX, mX). We must take into account the
possibility that X = 0. Thus, when injecting the implicit bit into each share, we take
the mantissa mX and compute: mX ′ = SecNonZero(eX)||mX. To keep only the integer
value, we perform a right-shift of the mantissa mX ′ by 52− (eX − 1023). This is done
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Algorithm 12: SecFprInv((xi))
Data: 64-bit boolean shares (xi)1≤i≤n for value x.
Result: 64-bit boolean shares (yi)1≤i≤n for value 1/x

1 (sxi), (exi), (mxi)← SecFprExtract((xi));
2 (bi)← SecNonZero((mxi));
3 (bai)← B2A(bi);
4 (edi)← (exi + bai);
5 (eyi)← (−edi);
6 (eyi)← A2B((eyi)), (edi)← A2B((edi));
7 (di)← (edi << 52);
8 (minusXi)← Or((263, 0, · · · , 0), (xi));
9 for j from 1 to 55 do

10 (compi)← SecFprComp((xi), (di));
11 (myi)← (myi ⊕ (compi << (63− j)));
12 (xcpyi)← SecAnd((minusXi),−(compi));
13 (di)← SecFprAdd((xcpyi), (di));
14 (di)← SecFprScalePow2((di), 1);
15 (myi)← SecAnd((myi),−(bi));
16 (y(64)

i )←Refresh((sxi)), (y[63:53]
i )← (eyi), (y[52:1]

i )← (my
[54:3]
i );

17 (fi)← SecOr(Refresh(my
(1)
i ), (my

(3)
i ));

18 (fi)← SecAnd((fi), (my
(2)
i ));

19 (yi)← SecAdd((yi), (fi));
20 return (yi);

with the SecFprUrsh function:

m = SecFprUrsh(mX ′, 52− eX + 1023) (6)

The result m is a 64-bit boolean sharing. As X ∈ J0, 63K, only the 6 lower bits can be
masks of 1, all other bits are known to be masks of 0. Thus, we apply a B2A conversion
on those 6 bits to get the masked integer value of X as an arithmetic sharing. The result
of the shift of Y by X is therefore SecFprUrsh(Y ,m[6:1]).

5 Security Proof
In this section we cover the t-SNI security of our design with n = t + 1 shares. We use
the Probe Propagation Framework introduced in [CS20] to both prove the t-SNI and
t-MIMO-SNI security of our gadgets. This framework highlights where the information a
probe gathers comes from in a circuit. We first recall their methodology, which relies on
graphs.

Definition 5. (Gadget Composition, [CS20]) A gadget composition G over n shares is a
directed acyclic graph (DAG) whose vertices are composing gadgets (which are gadgets
over n shares) or inputs/outputs, and edges are connections between those gadgets. For
each composing gadget, there is a one-to-one mapping between its m inputs and the
incoming edges of the associated vertex. Furthermore, each outgoing edge is associated
to an output of the gadget (there can be multiple edges associated to the same output).
Output vertices (resp., input vertices) have one (resp., zero) incoming edge and zero (resp.,
any number of) outgoing edge(s). A gadget composition can be instantiated by mapping
each vertex to the corresponding gadget or n inputs/outputs,and each edge to n wires
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Algorithm 13: Minimum63((xi))
Data: 64-bit boolean shares (xi)1≤i≤n for positive integer x;
Result: 64-bit boolean shares (yi)1≤i≤n equal to the minimum between 63 and x

1 (sxi), (exi), (mxi)← SecFprExtract((xi));
2 (sti) is a masking of the value 63;
3 ex1 ← ex1 − 1029;
4 (exi)← A2B((exi));
5 (rAi)← SecAnd((−(exi)(16)), (xi));
6 (rBi)← SecAnd((−(¬(exi)(16))), (sti));
7 (yi)← SecOr((rAi), (rBi));
8 return (yi);

(which connect the composing gadgets). The inputs and outputs of the composing gadgets
are erased in the instantiation process. We use the term composite gadget to refer to the
instantiation of a gadget composition.

In their work, Cassiers and Standaert [CS20] introduced a new computation graph
model based on the gadget composition DAG. They forbid the connection of more than
one edge to an output of a gadget or an input gate. Forbidden cases are addressed with
the Splitj gadget, which takes one input and returns j duplicates of it. For simplicity,
they assume that all composing gadgets are t-NI operation gadgets, t-SNI Refresh gadgets
or Splitj gadgets. They model t-SNI gadgets as t-NI ones followed by a t-SNI Refresh.
We do the same for t-MIMO-SNI gadgets. To graphically prove the t-MIMO-SNI security
of a gadget composition, we use the Simplified Computation Graph (SCG) model:

Definition 6. (Simplified Computation Graph (SCG), [CS20]) The simplification of the
computation graph G is the graph that is obtained from G by removing all t-SNI Refresh
vertices and their incident edges.

According to [CS20] (Proposition 7, page 2549), to prove the t-NI security of a gadget
composition, it is sufficient to verify that its SCG is a Single Path - NI Built gadget
(SP-NIB):

Definition 7. (Single Path - NI Built gadget (SP-NIB), [CS20]) A composite gadget G is
SP-NIB if it is implemented with only NI gadgets and SNI refreshes, and if for any pair of
vertices u, v in the corresponding simplified computation graph there exists at most one
path from u to v.

The conditions required for a gadget composition to verify t-MIMO-SNI security are
as follows:

Proposition 1. A composite gadget G is t-MIMO-SNI if it satisfies the three following
conditions. (i) G is SP-NIB. (ii) For any pair of output nodes u1, u2 there is no node v
such that there is a path from v to u1 and a path from v to u2. (iii) For any pair of input
nodes u1, u2 there is no node v such that there is a path from u1 to v and a path from u2
to v.

In this section, we present the SCGs for each one of our gadgets and ensure that they
either verify the Proposition 1 (t-MIMO-SNI ) or are SP-NIB (t-NI ). For t-SNI gadgets,
we also use SCGs to first prove that they are SP-NIB and thus t-NI. Then we highlight
that there is no path from any input node to the output node, thus proving that a probe
on the output cannot propagate to the inputs, which is a sufficient condition to prove that
a t-NI gadget composition is t-SNI secure.
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5.1 SCG Legend
For readability, we keep t-SNI Refreshes on the SCG. They are, however, converted to an
edge and grayed out. They are not taken into account when looking at the SCG properties.
We also coloured the t-MIMO-SNI gadgets differently to highlight them. They will be
considered at t-NI nodes in the SCG proofs. Finally, the inputs will always be aligned on
the left and the outputs on the right of the graphs.

Table 4: SCG legend

R : t-SNI Refresh represented as an edge.

Splitj

: Splitj vertex (has j outgoing edges).

: t-NI vertex.

: t-MIMO-SNI vertex.
(ioi) : Input/output nodes.

5.2 Floor Function
5.2.1 SecFprUrsh

Lemma 1. The gadget SecFprUrshfloor (Algorithm 5) is t-MIMO-SNI secure.

(myi)

(cxi) Split2

For loop

For loop ⊕

Split2

Split2 ¬ SecAnd

SecAnd (my′i)

(roti)R

R

R

R

R

Figure 1: SCG of SecFprUrshfloor

Proof. The gadget SecFprUrshfloor is a slight modification of the gadget SecFprUrsh
from [CC24]. Our gadget does not compute the sticky bit, but retains the rotated-out
information. We rely on their proof regarding the t-SNI security of the For loop (see
[CC24], Lemma 3 and Figure 2) to justify our representation of the two For loop nodes as
t-NI ones followed each by a t-SNI Refresh in the SCG. The graph in Figure 1 verifies
Proposition 1. To ensure that condition (iii) is verified, a t-SNI Refresh is performed on
the input (cxi).

5.2.2 RemoveDecimal

Lemma 2. The gadget RemoveDecimalfloor (Algorithm 6) is t-MIMO-SNI secure.
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(eyi)

(cxi)

(myi)

(syi)

A2B Split2

Split2

SecAnd B2A Split2

+ (ey′i)

SecAnd SecAnd

SecFprUrshf SecNonZero

Split2

SecAdd (my′i)

(bi)
R

R

R

R

R

R R
R R

R

Figure 2: SCG of RemoveDecimalfloor

Proof. The SCG in Figure 2 verifies the Proposition 1. The t-MIMO-SNI security of the
SecFprUrshf node is proven in Lemma 1. We perform a t-SNI Refresh on the input (eyi)
to cut it from the output (ey′

i), otherwise the gadget would be t-NI secure only.

5.2.3 SetExponentZero

Lemma 3. The gadget SetExponentZerofloor (Algorithm 7) is t-MIMO-SNI secure.

(eyi)

(bi)

(syi)

A2B
SecAnd

Split2

SecOr Split2

SecAnd

(ey′i)

(sy′i)

R

R

R

R

R

Figure 3: SCG of SetExponentZerofloor

Proof. The Proposition 1 is verified in Figure 3. To ensure condition (iii), we perform a
t-SNI Refresh on the (syi) input.

Theorem 1. The gadget SecFprBaseIntfloor (Algorithm 9) is t-MIMO-SNI secure.

Proof. The Proposition 1 is verified in Figure 4. To ensure condition (iii), we perform a
t-SNI Refresh on the (syi) input. The SecFprNorm64 gadget has multiple outputs, but its
t-NI security has been proved in [CC24] (Lemma 4, page 291).

5.3 Inverse
5.3.1 SecFprComp

Lemma 4. The gadget SecFprComp (Algorithm 10) is t-MI-SNI secure.
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(myi)

(eyi)

(syi)

Split2

SecAnd

Split2

A2B ¬ Split2

RemoveDecimalf

Split2

SecFprNorm64

SetExponentZerof
(ey′i)

(sy′i)

(my′i)
R

R

R

RR

R

R

R

R

Figure 4: SCG of SecFprBaseIntfloor

(xi)

(yi) ¬

SecAdd Split3

¬

¬⊕

SecNonZero

SecNonZero

⊕
(compi)

R

R

RR

Figure 5: SCG of SecFprComp

Proof. The SCG in Figure 5 verifies Proposition 1. To ensure the third condition of the
proposition, a t-SNI Refresh is performed on the input (xi). The gadget has only one
output node. Thus, it is t-MI-SNI secure (the Multiple Output or MO condition is not
required).

5.3.2 SecFprScalePow2

Lemma 5. The gadget SecFprScalePow2 (Algorithm 11) is t-SNI secure.

Proof. The SCG in Figure 6 is SP-NIB. The gadget is thus at least t-NI secure. As there is
no path from any input to the output node, a probe placed on the output cannot propagate
to the input gates, and we have a t-SNI secure gadget.

5.3.3 SecFprInv

We first start by proving the following lemma.

Lemma 6. The For loop in gadget SecFprInv (Algorithm 12, Line 9 to 14) is t-NI
secure.
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(xi) Split2 SecNonZero

SecFprExtract

+p A2B

SecAnd

∥ (yi)

R

R

R

R

R

Figure 6: SCG of SecFprScalePow2

(myi)

(minusXi)

(xi)

(di)

SecFprComp

Split2

Split2

⊕

SecAnd SecFprAdd SecFprScalePow2 (di)

(myi)

RRRR

Figure 7: SCG of the For loop in the SecFprInv gadget

Proof. The SCG in Figure 7 is SP-NIB. Thus, an isolated instance of the loop is t-NI secure.
To ensure that the composition of instances remains t-NI secure, we proceed recursively.
The outputs (di) and (myi) are used as inputs for the next instance. The propagation
of a probe from the output (di) is immediately blocked by a t-SNI Refresh in the SCG.
This is sufficient to ensure the composition of two instances of the loop. Recursively, the
composition of all instances of the For loop in the SecFprInv can be modelled as a SCG
which verifies SP-NIB.

Remark 4. As SecFprComp is t-MI-SNI secure, all the inputs of the For loop verify the
third condition of the Proposition 1. This fact will be used in the proof of the following
theorem:

Theorem 2. The gadget SecFprInv (Algorithm 12) is t-SNI secure.

Proof. At first glance, the SCG in Figure 8 is not SP-NIB as it seems that two paths are
possible from the input (xi) to the node For loop. However, according to Remark 4, there
is no node v within the SCG of the For loop (Figure 7) such that there is a path from an
input node to v and also from a different input node to v. Thus, by replacing the For loop
with its SCG, the SCG in Figure 8 is SP-NIB. As there is no path from (xi) to (yi), the
gadget is t-SNI secure.

5.4 Minimum63
Lemma 7. The gadget Minimum63 (Algorithm 13) is t-SNI secure.

Proof. The SCG in Figure 9 is SP-NIB. There is no path from the input node to the
output.
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(xi) Split3

SecFprExtract

SecNonZero

Split2

B2A

+ Split2

A2B

A2B

Or
For
loop

SecAnd Split4

∥ SecOr

SecAnd

SecAdd (yi)

R

R

R

R

R

R

R

R

Figure 8: SCG of SecFprInv

(xi) Split2

SecFprExtract A2B Split2

SecAnd

¬ SecAnd

SecOr (yi)

R

R

R

R

Figure 9: SCG of Minimum63

6 Performances
Some results are shown in Table 5. This implementation is not optimised and is performed
on a laptop computer equipped with an Intel Core i7-11800H CPU. The compiler used
is gcc version 9.4.0. We have considered our performance of SecFprAdd and SecFprMul
as reference and compared our work with that of Chen and Chen [CC24], as they used a
different hardware (Intel Core i9-12900KF). We have designed our code around 3 shares
and some well-known optimisations for 2 shares masking have not been implemented.

Table 5: Time in microseconds

Algorithm [PFH+20] 2 Shares 3 Shares 4 Shares

SecFprAdd [CC24] 0.000 11 3.949 9.469 17.143
SecFprMul [CC24] 0.000 14 2.641 7.096 12.686

SecFprBaseIntfloor 0.000 136 2.976 7.205 13.125
SecFprUrshfloor - 0.228 0.330 0.493
SecFprInv 0.000 138 268.209 740.935 1283.108
SecFprComp - 0.732 1.451 2.519
SecFprScalPwo2 - 0.649 1.673 2.762
ApproxExp 0.000 126 94.236 239.578 441.347
BerExp 0.005 446 112.061 288.597 522.388
SamplerZ 0.114 417.141 1071.943 1974.423

To replicate the performances of the calls to the Gaussian Sampler by FALCON, we
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performed SamplerZ by the same amount of iterations required in both FALCON-512 and
FALCON-1024. Table 5 highlights the impact of the division computation on SamplerZ.
The SecFprInv gadget is the main bottleneck of our design as it involves 55 SecFprAdd.
On the other hand, our SecFprBaseIntfloor gadget is no more costly than one SecFprAdd.

We also tested a masked complete version of FALCON. The methodology used to fully
mask FALCON is to rely on the high-level view of the signature and use Chen and Chen
[CC24] gadgets or the ones presented in this paper when required. Its performances are
summarised in Table 6. We do not perform the signature rejection. Thus, in a real-world
use case, the performances might be doubled on average. Our results clearly highlight that
this masking methodology for FALCON is not ready for deployment.

Table 6: Masked FALCON in seconds

FALCON FFSampling Compress Preimage Total

FALCON 512 (2 shares) 3.157 130 0.001 258 0.040 156 3.198 545
FALCON 512 (3 shares) 6.284 270 0.002 396 0.081 091 6.367 758
FALCON 1024 (2 shares) 6.825 461 0.002 594 0.080 565 6.908 620
FALCON 1024 (3 shares) 12.759 945 0.004 814 0.162 189 12.926 950

7 Conclusion
In this paper we have extended the work of Chen and Chen [CC24] and have used their
gadgets and new gadgets to mask the floor function (Section 3). The Gaussian sampler of
FALCON (Section 4) has been protected with this floor gadget. Furthermore, to complete
this task, we provided a masked implementation of the division (Section 4). We discussed
the t-SNI properties of our gadgets (Section 5). Finally, we provided some performances
on a laptop computer equipped with an Intel Core CPU (Section 6), highlighting the
non-readiness state of this masking methodology for real world deployment.
Future works could investigate better masking methodologies and/or algorithmic improve-
ments. For instance, reducing the division’s cost should lead to better performances, as
it is the main bottleneck in our current design. New masking methods for floating-point
arithmetic, less reliant on A2B and B2A conversions, could be studied and offer better
performances. Other representations than Binary64 could also be of interest, but should
first be allowed in the FALCON standard. Finally, fault-injection resilient designs could
be of interest.
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