
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 4, 30 pages.

https://doi.org/10.62056/ayl5w4fe-3
Check for updates

Fault-tolerant Verifiable Dynamic SSE with
Forward and Backward Privacy

Bibhas Chandra Das1,3 , Nilanjan Datta1 , Avishek Majumder2

and Subhabrata Samajder1,4

1 Institute for Advancing Intelligence, TCG CREST, India
2 UPES, India

3 Chennai Mathematical Institute, India
4 Academy of Scientific and Innovative Research, India

Abstract. Dynamic Searchable Symmetric Encryption (DSSE) allows users to
securely outsource their data to cloud servers while enabling efficient searches and
updates. The verifiability property of a DSSE construction ensures that users do
not accept incorrect search results from a malicious server while the fault-tolerance
property guarantees the construction functions correctly even with faulty queries
from the client (e.g., adding a keyword to a document multiple times, deleting a
keyword from a document that was never added). There have been very few studies
on fault-tolerant verifiable DSSE schemes that achieve forward privacy, and none of
the existing constructions achieve backward privacy. In this paper, we aim to design
an efficient fault-tolerant verifiable DSSE scheme that provides both forward and
backward privacy. First, we propose a basic fault-tolerant verifiable DSSE scheme,
dubbed FVS1, which achieves forward privacy and stronger backward privacy with
the update pattern (BPUP). However, the communication complexity for the search
operation of this scheme is O(u), where u is the total number of updates for the
search keyword. To address this issue, we propose an efficient variant of the previous
DSSE scheme, called FVS2, which achieves the same functionality with an optimized
communication complexity of O(m + u′) for search queries. Here m is the size of the
result set and u′ is the number of update operations made on the queried keyword
after the previous search made on the keyword. This improvement comes at the
cost of some additional information leakage, but it ensures the construction achieves
backward privacy with the link pattern (BPLP).
Keywords: Verifiable Dynamic Searchable Symmetric Encryption · Conjunctive
Queries · Fault Tolerant · Forward Privacy · Backward Privacy

1 Introduction
In the current digital era, our daily activities generate vast amounts of data. With the
availability of high-speed internet and affordable third-party cloud storage, storing data in
the cloud has become highly convenient. This facilitates easy access and management of
the data. However, much of the data we store is sensitive and confidential, necessitating
encryption to protect it from malicious servers and third-party attackers. A significant
challenge emerges when we need to query this outsourced data, as conventional encryption
methods do not support querying the encrypted information. Generic cryptographic tools
like fully homomorphic encryption (FHE) and oblivious RAM (ORAM) can mitigate this

E-mail: bibhaschandra.das@tcgcrest.org (Bibhas Chandra Das), nilanjan.datta@tcgcrest.org
(Nilanjan Datta), avishek.majumder1991@gmail.com (Avishek Majumder), subhabrata.samajder@tcgcre
st.org (Subhabrata Samajder)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-07-09 Accepted: 2024-12-03

https://doi.org/10.62056/ayl5w4fe-3
https://crossmark.crossref.org/dialog/?doi=10.62056/ayl5w4fe-3&domain=pdf&date_stamp=2024-12-27
https://orcid.org/0009-0007-8279-7330
https://www.tcgcrest.org/people/bibhas-chandra-das/
https://orcid.org/0009-0002-9761-1192
https://www.tcgcrest.org/people/nilanjan-datta/
https://orcid.org/0009-0003-3343-1085
https://www.upes.ac.in/faculty/school-of-computer-science/avishek-majumder
https://orcid.org/0000-0002-5737-2281
https://sites.google.com/view/subhabratasamajder/home
mailto:bibhaschandra.das@tcgcrest.org
mailto:nilanjan.datta@tcgcrest.org
mailto:avishek.majumder1991@gmail.com
mailto:subhabrata.samajder@tcgcrest.org
mailto:subhabrata.samajder@tcgcrest.org
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Fault-tolerant Verifiable Dynamic SSE with Forward and Backward Privacy

issue by enabling protocols that outsource encrypted data to the server during search
queries. However, these tools are impractical for large databases due to their high cost.
Therefore, an alternative solution is necessary to allow clients to perform keyword searches
efficiently over an encrypted database while minimizing information leakage. Searchable
Symmetric Encryption (SSE) [SWP00, CM05, CGKO06, KPR12] is a practical solution
to this problem, which allows clients to search for keywords in encrypted data efficiently
while reducing information leakage.

1.1 Searchable Symmetric Encryption
In SSE, a database is abstracted as a collection of documents, each containing certain
keywords. Each document is associated with a unique identifier, thereby viewing the
database as a collection of keyword-identifier pairs. To facilitate encrypted queries, SSE
generates an index (key-value storage) where each keyword serves as the key, and the list
of document identifiers where the keyword appears serves as value. This indexing method
is known as an “inverted index” [NC07]. This inverted index is then encrypted and stored
by SSE, allowing for secure queries. SSE was first introduced in [SWP00]. The first formal
definition of SSE, which is still in use today, was presented in [CGKO06].

Dynamic Searchable Symmetric Encryption (DSSE). Most of the constructions
mentioned above were designed explicitly for static databases, where once the database
is uploaded to the server, it cannot be modified. However, in a practical scenario, we
need SSE schemes to allow the addition or deletion of keywords to or from documents.
The first definition and security requirements for a truly dynamic SSE (DSSE) scheme,
allowing updates to the database, was introduced in [KPR12]. Since then, numerous DSSE
schemes have been proposed. However, incorporating the ability to update keywords leaks
information from the protocol during the update operation. As shown in [IKK12,CGPR15],
this leakage could be exploited by a malicious server to compromise data privacy. Later,
in [ZKP16], Zhang et al. showed that if the server can trick the client into injecting files
with specific keywords of its choice, it can recover all queries made to the database thus
far. This attack is known as file-injection attack.

Forward and Backward Privacy. The file-injection attack exploited a critical vul-
nerability of an SSE scheme not being “forward private”. Informally, forward privacy
prevents an adversary from linking newly inserted documents to any past queries made to
the database. Forward privacy was first introduced in [CGPR15], with the first formal
definition and a corresponding scheme proposed in [Bos16]. Additionally, the authors
of [CGPR15] discussed another important property known as “backward privacy”. Infor-
mally, backward privacy prevents an adversarial server from learning about any document
identifiers that have been added and subsequently deleted from the database before a
search query. The formal definition and a scheme achieving backward privacy was first
proposed in [BMO17]. Since then forward and backward privacy has been an essential
requirement for an SSE scheme.

Efficiency of DSSE Schemes. The efficiency of a DSSE scheme primarily depends on
the communication complexity of the search operation. An SSE is said to achieve optimal
communication, if the search result size returned by the server is exactly the size as the
set of currently matching documents for the searched keyword. However, just having
optimal communication complexity might not be enough for real-life applications. The
efficiency also critically relies on the client computation (for search and update operations),
and the client storage. Since the server is considered extremely powerful, we do not
consider server computation or server storage as the efficiency metric of a DSSE scheme.
Ideally, while designing a DSSE scheme, we want optimal communication with minimized
client computation and storage. Very few SSE schemes achieve optimal communication

Bibhas Chandra Das, Nilanjan Datta, Avishek Majumder, Subhabrata Samajder 3

complexity. The first forward private scheme that achieves optimal communication is
by [Bos16]. However, they used asymmetric key primitives. The work of [SDY+20] achieved
forward privacy and was IO efficient maintaining optimal communication complexity
only using symmetric key premitives. Their scheme also supported parallel processing.
In [BMO17], Bost et al. proposed three backward private schemes, among which only Janus
achieved optimal communication using puncturable encryption but at the cost of O(nw.dw)
search complexity, where nw is the number of matching document for keyword w and dw is
the number of delete operation performed on w. Thereby, making the scheme impractical
for a large number of deletions. Another scheme that achieves optimal communication
using symmetric puncturable encryption is [SYL+18]. However, both these schemes are
in a re-insertion restriction setting. That is, once a keyword identifier pair is deleted,
the keyword can not be re-inserted into the database with the same identifier. The first
forward and backward private scheme achieving optimal communication in a general setting
(allowing reinsertion) was proposed in [CPS20]. In [CMS25], the authors introduced a
generic framework that transforms any DSSE scheme into a more efficient, equally secure,
and succinct version, thereby reducing communication and computation overhead and
improving the overall efficiency of the DSSE scheme.

1.2 Verifiable and Fault-tolerant DSSE
In general, when designing SSE schemes, it is typically assumed that the server (considered
an adversary) is honest but curious. This means the server follows the protocol correctly
and does not tamper with search results but attempts to learn about the user’s data from
its queries. However, in practice, this assumption may not hold. The server could be
fully dishonest, trying not only to learn about the user data but also to deviate from the
protocol and provide incorrect results. Such adversaries are referred to as malicious. A
verifiable SSE (VSSE) scheme addresses this issue by preventing a malicious server from
deceiving the client. It does so by providing a proof for every search result, allowing the
user to verify the correctness of the results returned by the server.

The first VSSE scheme was proposed in [KO12]. The security of the scheme was
proven in the universal composability (UC) model against non-adaptive adversaries. The
first VSSE against adaptive adversaries was proposed in [CG12]. However, both these
works were done in the static SSE setting. The work of [KO12] was first extended to
verifiable dynamic SSE (VDSSE) scheme in [KO13]. However, the scheme was not forward
private. The first VDSSE scheme achieving forward privacy was proposed in [BFP16]. This
construction was based on incremental multi-set hashing [CDvD+03]. Following this, Zhang
et al. [ZWW+19] proposed another incremental multi-set hash-based SSE in symmetric key
primitive. However, both these constructions require high client-side storage. In [GYZ+21],
Zhang et al. proposed a novel data structure called Accumulative Authentication Tag, that
reduces the storage overhead and also using symmetric key primitive.

All the above-mentioned verifiable DSSE constructions focus solely on preventing
malicious behavior from the server. However, a client unaware of the outsourced database
can also behave maliciously by sending updates for adding the same keyword-identifier
pair multiple times or attempting to delete non-existent data. The incremental hash-based
VDSSE schemes [ZLW+18, ZWW+19] failed to provide correct proof in such scenarios.
A DSSE scheme that can tolerate such careless mistakes from a user is referred to as
fault-tolerant DSSE (FDSSE).

There has been limited research focused on designing DSSE schemes that are both
fault-tolerant and verifiable (FVDSSE). In [SPS14], Stefanov et al. proposed a DSSE
scheme using an ORAM-style data structure with frequent rebuild operations. This scheme
was forward secure and fault-tolerant, but not verifiable. Also, the search operation in
this scheme is inefficient, taking linear time (on the number of documents) in the worst
case. In 2016, Bost et al. [BFP16] proposed three forward private, verifiable DSSE schemes

4 Fault-tolerant Verifiable Dynamic SSE with Forward and Backward Privacy

GVS-Hash, GVS-Acc and GVS-Acc-RSA. The first construction is based on Merkle tree-like
data structures and Multi-Set Hash, while the latter two are based on cryptographic
accumulators. However, none of these constructions are fault-tolerant and they do not
scale well with large databases. In addition to these constructions, Bost et al. [BFP16]
also proposed verifiable versions of Linear SPS and Sublinear SPS introduced in [SPS14].
We refer to these two constructions as Verifiable Linear SPS and Verifiable Sublinear SPS.
Since the base constructions are forward private and fault-tolerant, these verifiable versions
also inherit both these properties. However, the communication complexity remains quite
high. Recently, Yuan et al. [YCR22] proposed an efficient FVDSSE scheme that employs
authenticated encryption (AE) for verification, avoiding the expensive use of Merkle trees
or accumulators, thereby making the construction very fast in practice. Their proposed
generic scheme when instantiated with a forward private scheme [SDY+20] ensures forward
privacy. However, this construction fails to conceal both operations and identifiers during
the search phase, resulting in insecurity against backward privacy. These concerns motivate
us to answer the following question.

Can we construct an efficient fault-tolerant verifiable DSSE scheme achieving
both forward and backward privacy?

1.3 Our Contribution
In this paper, we affirmatively address the above question and propose two Verifiable
DSSE constructions that achieve fault tolerance, and forward and backward privacy. Our
contributions are twofold.

• We first propose a basic fault-tolerant verifiable DSSE scheme, dubbed FVS1, that
achieves forward privacy and backward privacy with update pattern (BPUP). The
construction uses client computation of O(u) and O(1) for update and search opera-
tions, respectively. The communication complexity is O(1) for update operations.
However, the communication complexity is O(u) for search queries. The client storage
required for the construction is O(|W | log |D|).

• Next, we propose an efficient variant of the previous DSSE scheme, dubbed FVS2,
that achieves optimized communication complexity of O(m + u′), where m is the size
of the result set and u′ is the number of update operations made on the searched
keyword after the previous search made on the keyword. For keywords that are
updated less frequently, this complexity essentially boils down to O(m). This comes at
the cost of some additional information leakage, which ensures that the construction
achieves a weaker notion of backward privacy, called backward privacy with link
pattern (BPLP). The forward privacy remains as it is. The client computations for
search and update operations and the client storage remain the same as those of the
basic scheme.

To the best of our knowledge, this is the first work that proposes fault-tolerant, verifiable
DSSE constructions achieving both forward and backward privacy.

Road Map: We discuss all the notations, necessary background, and security definitions
in Sect. 2. In Sect. 3, we propose our first construction FVS1. We provide a high-level
overview and the formal specification followed by the security of the construction. We
conclude the section by highlighting the limitations of the construction. In Sect. 4, we
propose our second and main construction FVS2 that extends the previous construction to
address the limitations of the previous scheme. We highlight how the modifications help
us to obtain improved efficiency. We provide all security results of the construction. Next,
in Sect. 5, we provide a detailed security analysis of our proposals. Finally, we conclude
with some open research directions in Sect. 6.

Bibhas Chandra Das, Nilanjan Datta, Avishek Majumder, Subhabrata Samajder 5

1.4 A Comparative Study with Popular Verifiable DSSE Schemes
In this section, we provide a comparative study of our proposed schemes with state-of-
the-art verifiable DSSE schemes in terms of efficiency (communication complexity, client
computation, and client storage), security (forward and backward privacy), and fault
tolerance. The comparison is summarized in Table 1. We use the shorthand notations
FP, BP, and FT to denote forward privacy, backward privacy, and fault-tolerant. By
‘Computation’ and ‘Communication’, we mean the computational and communication
complexity, respectively. We use the notation W to denote the number of distinct keywords
in the database, |D| to indicate the number of documents in the database, and N to
represent the total number of keyword-document pairs in the database. Here ϵ is a fixed
constant between 0 to 1. α is the number of times the queried keyword was historically
added to the database and λ denotes the security parameter. Note that, every scheme
except Kurosawa and Ohtaki [KO13], has server-side storage O(N). For [KO13], the
storage space is O(|W | · |D|). We would like to point out that a few SSE schemes achieve
lower client-side storage as shown in the table. However, that comes at the cost of forward
privacy or additional computation and communication costs during update operations.
Exploring a DSSE scheme that achieves forward privacy with a constant update cost
while maintaining lower client-side storage compared to our scheme would be an intriguing
research direction.

Table 1: Comparison of Our Schemes with Existing Verifiable DSSE schemes.
Construction Computation Communication Client Storage FP FT BPSearch Update Search Update

[KO13] O(|D|) O(u|D|) O(m) O(1) O(1) ✗ ✗ ✗

GVS-Hash [BFP16] O(m + log W) O(u · log W) O(m + log W) O(log W) O(1) ✓ ✗ ✗

GVS-Acc-Pairing [BFP16] O(m) O(uW ϵ) O(m + log W) O(log W) O(1) ✓ ✗ ✗

GVS-Acc-RSA [BFP16] O(m + W ϵ) O(u) O(m + log W) O(log W) O(1) ✓ ✗ ✗

[ZWW+19] O(u) O(1) O(m) O(1) O(|W |λ) ✓ ✗ ✗

Verifiable Linear SPS [BFP16] O(α + log N) O(u · log2 N) O(m + log N) O(log N) O(λ log N) ✓ ✓ ✗

Verifiable Sublinear SPS [BFP16] O(m · log3 N) O(u · log2 N) O(m + log N) O(log N) O(λ log N) ✓ ✓ ✗

[YCR22] O(m + uw) O(1) O(m + uw) O(1) O(W log |D|) ✓ ✓ ✗

FVS1 (Sec. 3) O(u) O(1) O(u) O(1) O(W log |D|) ✓ ✓ BPUP
FVS2 (Sec. 4) O(m + u′) O(1) O(m + u′) O(1) O(W log |D|) ✓ ✓ BPLP

2 Preliminaries
For any natural number n ∈ N, we write [n] to denote the set {1, . . . , n}. For a random
variable X, we write X

$←− X to denote that the random variable X is sampled uniformly
at random from the set X . The output x of a deterministic algorithm A is denoted by
x← A. For two variables x, y, we write x← y to denote the assignment of the value in y
to the variable x. We refer to λ ∈ N as the security parameter and denote by poly(λ) and
negl(λ) as a generic polynomial function and negligible function of λ, respectively. For a
protocol P between A and B input (resp. output) is separated by ‘;’ signifies that the first
part of the input (resp. output) is for participant A and second part is for participant B.

Databases: Let W = {w1, . . . , wn} be the set of all distinct keywords, which we call the
dictionary of keywords. Let F = {f1, . . . , fs} be a collection of files such that each file fi

is associated with an identifier id and it contains keywords from W. Let ID be the set of
all identifiers and DB = {(w, id) : w ∈ W, id ∈ ID} be the set of all keyword-identifier
pairs such that a given pair (w, id) ∈ DB if and only if the keyword w is in a file having
the identifier id. For a given keyword w ∈ W, DB(w) denotes the set of all file identifiers
containing w as keywords. Let, |W| denote the number of keywords in DB. Similarly,
|DB(w)| denotes the number of files containing the keyword w, |DB| denotes the number

6 Fault-tolerant Verifiable Dynamic SSE with Forward and Backward Privacy

of distinct keyword-identifier pairs and |Upd(w)| the number of times update operations
have been carried out involving the keyword w.

2.1 Cryptographic Primitives
Pseudo-Random Function (PRF): Let Func({0, 1}n) be the set of all functions from
{0, 1}n to {0, 1}n and F : {0, 1}k × {0, 1}n → {0, 1}n be a family of keyed functions from
{0, 1}n to {0, 1}n. The PRF advantage of F for a distinguisher A is defined as the difference
between the following two probability distributions. The probability that A interacting
with FK for a randomly sampled secret key K and outputs 1, and the probability that A
interacting with a function R chosen uniformly at random from Func({0, 1}n), i.e.,

AdvPRF
F (A) ∆=

∣∣∣Pr
K

[AFK = 1]− Pr
R

[AR = 1]
∣∣∣ .

We say that F is a PRF if the above advantage is negligible for any distinguisher A.
Similarly we can define PRP advantage for a function F as AdvPRP

F (A) if the adversary
can not distinguish it from a random permutation with more than negligible probability.

Hash Function: A hash function H : {0, 1}∗ → {0, 1}n is a function that takes a message
of arbitrary length and produces a fixed length string. A hash function usually has three
properties: (a) pre-image resistance, (b) second pre-image resistance and (c) collision
resistance. A hash function H is said to pre-image resistant if for a given y, it is “difficult”
to find an x such that H(x) = y. A hash function H is said to second pre-image resistant
if, for a given x and H(x), it is "difficult" to find an another x′ ̸= x such that H(x′) = H(x).
Finally, a hash function H is said to collision resistant if it is “difficult” to find a pair
(x, x′) with x ̸= x′ such that H(x) = H(x′).

Symmetric-Key Encryption: A symmetric key encryption scheme SE is a tuple of
polynomial time algorithms SE.Gen, SE.Enc, and SE.Dec. The key generation algorithm
SE.Gen takes the security parameter λ as input and outputs a secret key K ∈ K, where
K is the key space. The symmetric encryption algorithm SE.Enc : K × {0, 1}∗ → {0, 1}∗

takes a secret key K ∈ K and a plaintext M ∈ {0, 1}∗ as input and outputs a ciphertext
C ∈ {0, 1}|M |. Finally, SE.Dec : K × {0, 1}∗ → {0, 1}∗ is a deterministic algorithm that
takes a secret key K ∈ K and a ciphertext C ∈ {0, 1}∗ as input and outputs the decrypted
plaintext M ∈ {0, 1}|C| iff SE.Enc(K, M) = C. A symmetric encryption scheme SE is said
to have privacy, if it has PRF security i.e. no adversary can distinguish SE from a random
function R of identical domain and range with non-negligible probability. Formally, we
define advantage of A as:

AdvPriv
SE (A) ∆=

∣∣PrK [ASE.EncK = 1]− PrR[AR = 1]
∣∣.

For SE to achieve privacy, the above advantage should be negligible for any adversary A.

Authenticated Encrypion: An authenticated encryption AE is a tuple of algorithms
(AE.Enc,AE.VDec). The authenticated encryption algorithm AE.Enc : K ×N × {0, 1}⋆ →
{0, 1}⋆ is a function that takes a key K ∈ K, a nonce N ∈ N , and a message M ∈ {0, 1}⋆

and returns a tagged ciphertext C ∈ {0, 1}|M |+τ , where τ is the tag size. The corresponding
verified decryption algorithm AE.VDec : K × N × {0, 1}⋆ → {0, 1}⋆ ∪ {⊥} is a function
that takes a key K ∈ K, a nonce N ∈ N , and a tagged ciphertext C ∈ {0, 1}⋆ and returns
the corresponding message M ∈ {0, 1}|C|−τ , if it is a valid tagged ciphertext. Otherwise, it
returns ⊥. An authenticated encryption algorithm AE demands the following two security
requirements:
Privacy. Intuitively, an authenticated encryption scheme AE is said to have privacy,

Bibhas Chandra Das, Nilanjan Datta, Avishek Majumder, Subhabrata Samajder 7

if it has PRF security i.e. no adversary can distinguish AE from a random function
R of identical domain and range with non-negligible probability. Formally, we define
privacy-advantage of A as:

AdvPriv
AE (A) ∆=

∣∣PrK [AAE.EncK = 1]− PrR[AR = 1]
∣∣.

For AE to achieve privacy, the above advantage should be negligible for any adversary A.
Authenticity. Intuitively, AE is said to have authenticity (also called cipher-text integrity),
if no adversary can forge, i.e., construct a fresh, valid (ciphertext, tag) pair with non-
negligible probability. More formally, we define authenticity-advantage of A as:

AdvAuth
AE (A) ∆= PrK [(N, C)← AAE.EncK , AE.VDec(K, N, C) ̸= ⊥].

We call AE achieves authenticity if the above advantage is negligible for any adversary A.

2.2 Verifiable DSSE Scheme
An VDSSE scheme Σ = (SetUp, Search, Update) consists of three protocols (possibly
probabilistic) SetUp, Search, and Update between the client and the server. We adopted
the following definition of FVDSSE from [YCR22].

(K, σc; EDB) ← SetUp(1λ, DB;⊥): In the setup protocol, the client takes as input the
security parameter 1λ and the database DB and outputs a key K state σc for the client,
which is kept secret, and an encrypted database EDB, which is sent to the server.

((σc, DB(w)) or Reject; EDB)← Search(K, σc, w; EDB): In the search protocol, the client
takes as input the secret key K, the client’s state σc, and the keyword w to be searched.
The server takes as input the encrypted database EDB. Finally, the client outputs (possibly)
an updated state σc and the server outputs (possibly) an updated encrypted database
EDB. Now, if the search result returned by the server got verified, the client additionally
outputs DB(w), otherwise outputs Reject.

(σc; EDB) ← Update(K, σc, op, (w, id); EDB): In the update protocol, the client takes as
input the secret key K, the client’s state σc, an operation op ∈ {add, del} and the keyword-
identifier pair (w, id) to be updated. The server takes as input the encrypted database
EDB. The client outputs an updated state σc and the server outputs an updated encrypted
database EDB. An update protocol is always considered to be successful.

2.2.1 Correctness of Verifiable DSSE Scheme

Informally, a VDSSE scheme is said to be correct if, when the search result returned by
the server for every searched keyword w is DB(w) and the result passes the verification
on the client side except with negligible probability. For a formal definition, readers are
requested to visit [BFP16].

2.2.2 Soundness of a Verifiable DSSE Scheme

Soundness guarantees that if the server is malicious, i.e., it returns an incorrect search
result, the client can detect the server’s malicious behavior. Formally, let us assume
Σ = (Setup, Search, Update) denote a verifiable DSSE scheme. Now consider the following
VDSSESoundΣ

A(λ) game:

• A chooses a database DB and is provided with EDB← Setup(1λ).

8 Fault-tolerant Verifiable Dynamic SSE with Forward and Backward Privacy

• The adversary adaptively makes search or update queries. For a search query, A
chooses a keyword w and receives the output of Σ.Search(K, s, w). For an update
query, it chooses (op, id, w) and is given the output of Σ.Update(K, s, op, id, w; EDB).
Note that A could control the operations on the server side arbitrarily, such as
replying with forged information.

• The game outputs 1, if the result of a search query on a keyword w ∈W is neither
the set DB(w) nor the string "Reject".

We say Σ satisfies soundness if for all PPT adversaries A, there exists a negligible function
negl such that:

AdvSound
Σ (A) ∆= Pr[VDSSESoundΣ

A = 1] ≤ negl(λ).

2.2.3 Security of a Verifiable DSSE Scheme

The security definition of SSE follows a read-world ideal-world simulation paradigm. The
security model of a DSSE is parameterized by a well-defined set of leakage functions
L that models the leakage of the original scheme. So the view of an adversary in the
real world can be simulated with all the information given by L. A DSSE scheme
Σ = (SetUp, Search, Update), is said to have the following leakage function given by

L ∆=
(
LSetUp,LSearch,LUpdate) ,

where LSetUp, LSearch and LUpdate denotes the information leaked to an adversarial server
A during the setup, search, and update phases, respectively. The following defines the
adaptive security of an SSE [KPR12,Bos16,CPS20].

Definition 1 (L-semantic security). Let, Σ = (SetUp, Search, Update) be a DSSE scheme
and L =

(
LSetUp,LUpdate , LSearch)

, be stateful functions, we say Σ is L-semantically secure
if for all probabilistic polynomial time, adaptive adversaries A there exists a probabilistic
polynomial time simulator S such that∣∣∣Pr

[
RealΣA(λ) = 1

]
− Pr

[
IdealΣA,S(λ) = 1

]∣∣∣ ≤ negl(λ),

where the experiment Real and Ideal is defined as follows.

RealΣA (λ): The adversary A(1λ) outputs a database DB, and the experiment first computes
an encrypted database EDB, where (K, σc, EDB)← Σ.SetUp

(
1λ, DB

)
and provides

EDB to A. Subsequently for every query of A, the experiment returns either
(res, σc, EDB) ← Σ.Search (K, σc, q; EDB) if the query is a search query or, returns
(σc, EDB)← Σ.Update (K, σc, q ; EDB) it q is an update query. Finally A outputs a
single bit b which the experiment uses as its own output.

IdealΣA,S(λ): The adversary A(1λ) outputs a database DB, and the experiment first returns
an encrypted database EDB← S(LSetUp (DB)). Provides EDB to A. Subsequently for
every query ofA, the experiment returns either a transcript generated by S(LSearch (q))
if the query is a search query or, S(LUpdate (q)) it q is an update query. Finally A
outputs a single bit b which the experiment uses as its output.

We now define the forward and backward privacy of SSE.

Bibhas Chandra Das, Nilanjan Datta, Avishek Majumder, Subhabrata Samajder 9

2.3 Forward and Backward Privacy
So far we have informally introduced the notion of forward and backward privacy. Informally,
forward privacy prevents linking previously performed search queries to future update
queries, and backward privacy prevents revealing document identifiers containing a keyword
w which has been removed from the database. The notion of forward and backward privacy
was first introduced (informally) in [SPS14] and the first formal definition and a scheme
achieving them were provided in [Bos16] and [BMO17], respectively. To formally define the
notion of forward and backward privacy we first define a few common leakage functions.

Common Leakage Functions. DSSE is a protocol between the client and the server.
The communication between them can be completely captured via a transcript of search
and update queries, denoted as Q. The transcript is a list of search and update queries
written as (t, w) (for search query) and (t, op, (w, id)) (for update query), respectively,
where t is the timestamp, op ∈ {add, del}. Now consider the following leakage functions.

• sp(w): The search pattern leakage for a keyword w is defined as all the timestamp
where the keyword w as been searched for, i.e.,

sp(w) = {t : (t, w) ∈ Q}.

• Hist(w): The update history leakage of w contains the list of all updates made to w,
i.e.,

Hist(w) = {(t, op, id) : (t, op, (w, id)) ∈ Q}.

• Updates(w) and Updatesop(w): The leakage functions Updates(w) and Updatesop(w)
capture the timestamps and (timestamp, operation) pair of all the update history
made for w. Formally,

Updates(w) = {t : (t, op, (w, id)) ∈ Q}, and
Updatesop(w) = {(t, op) : (t, op, (w, id)) ∈ Q}.

• TimeDB(w): For a keyword w, this leakage function stores the list of (timestamp,
identifier) pairs such that the identifier id containing the keyword w was added but
never deleted after that. Formally,

TimeDB(w) = {(t, id) : (t, add, (w, id)) ∈ Q and ∀ t′ > t, (t′, del, (w, id)) /∈ Q}.

• DelHist(w): The delete history leakage function contains the timestamps of all the
deletion operations on w along with the timestamps of the corresponding additions.
Formally,

DelHist(w) = {(t+, t−) : ∃ id s.t. (t+, add, (w, id)) ∈ Q and (t−, del, (w, id)) ∈ Q}.

Using these leakage functions, we now define the following notion of forward privacy [Bos16,
CPS20]. For any two leakage function L1 and L2 we write L1 ⪯ L2 to denote L1 leaks at
most as L2 leaks, and by L1 ≺ L2 we mean L1 leaks strictly less than L2 leaks.

Definition 2 (Forward Privacy). A DSSE scheme Σ with leakage function L =
(
LSetUp,

LUpdate,LSearch)
is called forward private if the leakage function L can be written as follows.

LSetUp = ∅, LSearch ⪯ {sp(w), Hist(w)}, LUpdate ⪯ {op}.

10 Fault-tolerant Verifiable Dynamic SSE with Forward and Backward Privacy

Next, we focus on the backward privacy notions. In [BMO17], Bost et al. defined the
following three types of backward privacy in increasing order of leakage and decreasing
order of security.

(i) Backward Privacy with Insertion Pattern (BPIP) or Type-I,

(ii) Backward Privacy with Update Pattern (BPUP) or Type-II, and

(iii) Weak Backward Privacy (WBP) or Type-III.

Definition 3 (Backward Privacy). A DSSE scheme Σ with leakage function LBPIP =(
LSetUp

BPIP ,LSearch
BPIP ,LUpdate

BPIP

)
(or LBPUP, or LWBP) is called BPIP (similarly BPUP, or WBP)

backward private if the leakage function LBPIP (similarly LBPUP and LWBP) can be written
as follows.
LSetUp

BPIP = ∅, LSearch
BPIP ⪯ {sp(w), TimeDB(w), |Updates(w)|}, LUpdate

BPIP ⪯ {op},
LSetUp

BPUP = ∅, LSearch
BPUP ⪯ {sp(w), TimeDB(w), Updates(w)}, LUpdate

BPUP ⪯ {op, w},
LSetUp

WBP = ∅, LSearch
WBP ⪯ {sp(w), TimeDB(w), Updates(w), DelHist(w)}, LUpdate

WBP ⪯ {op, w}.

Note that the notion of weak backward privacy only applies to a re-insertion restriction
setting, which is, once a (keyword, identifier) pair is removed, the same can not be re-
inserted into the database. In [CPS20], Chatterjee et al. demonstrated that the leakage
function of the above three definitions of backward privacy is not complete. Also the
leakage function LSetUp

WBP is not in a general non-restricted setting. Finally, Chatterjee et al.
in [CPS20], introduced a new definition of backward privacy called Backward Privacy with
Link Pattern (BPLP).

To understand this notion, we introduce some additional leakage functions. We use
the notation DBx(w) to denote the list of identifiers matching a search query on w at
timestamp tx. For two consecutive search queries on w at timestamp tx and tx+1, we
define three link pattern leakage LP1, LP2 and LP3 as follows.

LP1(w) = {(t, id) : id ∈ DBx(w) and (t, op, (w, id)) ∈ Q; tx < t < tx+1} ,

LP2(w) = {(t, id) : id ∈ DBx+1(w) and (t, op, (w, id)) ∈ Q; tx < t < tx+1} ,

LP3(w) = {(t, t′) : (t, op, (w, id)) ∈ Q and (t′, op, (w, id)) ∈ Q; tx < t < t′ < tx+1} .

Finally, we define, LDB as the list of identifiers matching w for the current search in order
of their insertions. With these leakages, they defined backward privacy with link pattern
as follows.

Definition 4 (Backward privacy with link pattern (BPLP)). A DSSE scheme Σ with
leakage LBPLP =

(
LSetUp

BPLP ,LSearch
BPLP ,LUpdate

BPLP

)
is called BPLP backward private if the leakage

function L can be written as following.

LSetUp
BPLP = ∅, LUpdate

BPLP = ∅,
LSearch

BPLP ⪯ {sp(w), Updatesop(w), LP1(w), LP2(w), LP3(w), LDB(w)} .

3 FVS1: The Basic Construction
In this section, we propose our first construction, called FVS1. Our construction ensures
correctness at the same time is verifiable and fault-tolerant.

Bibhas Chandra Das, Nilanjan Datta, Avishek Majumder, Subhabrata Samajder 11

High-level Overview: The core idea is to record the update history securely on the
server. Additionally, proof is generated for each update operation using an authenticated
encryption scheme. During a search query, the server is expected to return the proofs
corresponding to all the updates on the searched keyword. The client stores the number of
updates corresponding to each keyword in its local memory. The server might attempt to
tamper with the result by omitting some proofs, sending random values, or even adding
extra proofs. In any such case, there will either be a mismatch between the number of
proofs and the number of updates on the keyword, or some of the verified decryption
algorithms will fail on the client side. Consequently, our scheme, FVS1, is verifiable against
an active malicious adversary. Regarding the fault tolerance aspect, an incorrect update
query on keyword w depends on the sequence of updates on w. Both the server and client
maintain this order when storing or retrieving the values generated from the updates. An
index id is added to the Result ID set corresponding to a keyword w only once. Moreover,
the server checks updates in reverse order, ensuring that id is added to the Result ID set
before it becomes part of the set Delete ID set. This ensures situations such as deleting a
keyword from an identifier before adding it to the identifier are handled properly.

3.1 Specification
Here, we describe the setup, search (also verify), and update functionality of FVS1. The
construction uses two data structures TSet and RSet. The data structure TSet stores
necessary information about each update on w and RSet stores the result sets corresponding
to a keyword w. The construction also keeps two counters verw and updw corresponding
to each keyword w that represents the total number of search operations performed on the
current searched keyword w before that instance and the number of update operations
performed on w after the previous search query (on w), respectively. The client stores these
two counters in a σc[w] state array. We have used five PRFs FS , FT , FV , FR, and FP

with domain {0, 1}λ × {0, 1}∗ and range {0, 1}∗, two hash functions H1, H2 with domain
{0, 1}∗ and range {0, 1}2λ. Also, we have used an authenticated encryption scheme AE with
AE.Enc : {0, 1}λ × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ and AE.Dec : {0, 1}λ × {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ and finally a symmetric encryption scheme SE with SE.Enc : {0, 1}λ × {0, 1}∗ →
{0, 1}∗ and SE.Dec : {0, 1}λ × {0, 1}∗ → {0, 1}∗.

Setup: In the setup phase, all the keys are chosen uniformly at random from {0, 1}λ,
TSet, RSet data structures are initialized as empty and the encrypted database EDB is
defined as EDB = (TSet, RSet). The state array σc indexed by the keyword w ∈ W is also
initialized to ⊥.

Algorithm 1 : FVS1.SetUp(1λ,⊥)

1: KS , KT , KV , KR, KP
$←− {0, 1}λ

2: σc, TSet, RSet← []
3: K← (KS , KT , KV , KR, KP)

4: EDB = (TSet, RSet)
5: Store (K, σc) at Client
6: Send EDB to Server

Update: For any update query (op, (w, id)), the client generates a search token st
uniformly at random and generates a value corresponding to the update by masking the
PRF evaluation of the current update query with the op, w, and id involved in the update.
In addition, it generates a link that will interconnect the current update with the previous
update on this same keyword following the idea of [Bos16,SDY+20]. This is done in such
a manner that once the server is provided with the search token and the desired hash key,
it will be able to traverse back on all the updates on w but will not be able to guess any

12 Fault-tolerant Verifiable Dynamic SSE with Forward and Backward Privacy

future update. This, by definition, guarantees the forward privacy. Along with the link
and the value, a proof is generated to correspond to the update operation. The proof is
a ciphertext of a secure authenticated encryption scheme that uses a (keyword, version)
dependent key, op∥id as input and updw as the nonce. The value, proof , and link are
then sent to the server, which stores these in the TSet array. An algorithmic description
of the update operation of our proposed construction FVS1 is given in Algorithm 2.

Algorithm 2 : FVS1.Update(K, σc, op, w, id; EDB)

1: function Client
2: K = (KS , KT , KV , KR, KP)
3: (verw, updw)← σc[w]
4: if (verw, updw) = ⊥ then
5: verw ← 0, updw ← 0
6: updw ← updw + 1
7: sw ← FS(KS , w)
8: st← FT (KT , w∥updw∥verw)
9: value← FV (KV , st)⊕ op∥id

10: if updw = 1 then
11: pst← {0, 1}λ

12: else
13: pst← FT (KT , w∥updw − 1∥verw)
14: addr ← H1(sw, st)
15: link ← H2(sw, st)⊕ pst
16: pw ← FP (KP , w∥verw)
17: proof ← AE.Enc(pw, updw, op∥id)
18: σc[w]← (verw, updw)
19: Send (addr, value, link, proof) to Server

1: function Server
2: Parse EDB as (TSet, RSet)
3: TSet[addr]← (value, link, proof)

Search: Our search protocol is a two-round protocol. In the first phase of the search
operation with the keyword w, the client computes the current search token st from the
state array σc[w] and sends it to the server. We follow the approach of [SDY+20,CPS20]
and store the search results in a separate data structure RSet. So, if the search is not
the first search with w, an extra addr value is sent to the server along with st. This is to
enable the server to learn about the encrypted identifiers from the previous search. With
the st value the server gets back the corresponding value, proof and link from TSet. The
value and proof are then stored sequentially in Val and Proof array respectively whereas,
the link is used to get back the previous search token pst. This process continues until
the server reaches the first update. Also, if there is a result stored from the previous
search query in RSet, the corresponding value and proof are retrieved and are then put in
Val[0] and Proof[0] respectively. The Val and Proof arrays are then sent to the client. This
concludes the first round of the search operation. An algorithmic description of this round
is given in Algorithm 3. In the second round of the search query, the client first unmasks
the information about the op and id values for each entry of Val array starting from the
end of the array. This is to take care of any faulty operation during updates. According to
the op the client decides whether to put the corresponding id in the the result set Rid or
not. For the encrypted identifiers in Val[0], first they are decrypted, and the corresponding
ids are again added to the result set if they are not deleted between the two latest searches.
Now the client runs the verification algorithm on Rid and Proof. By security of AE, the
client becomes confident about the server’s behavior once the AE.VDec on any Proof[i]
with nonce i returns a valid message of the form op∥id. This way, another RidP is prepared
from the Proof array. Only if Rid matches with RidP the client then outputs Rid as the
search result. It also encrypts Rid along with a new proof corresponding to Rid and sends

Bibhas Chandra Das, Nilanjan Datta, Avishek Majumder, Subhabrata Samajder 13

it to the server. The server stores the encrypted result set and the corresponding proof in
RSet. An algorithmic description of this round is given in Algorithm 4.

Algorithm 3 : FVS1.Search (K, σc, w; EDB) - Round 1
1: function Client
2: K = (KS , KT , KV , KR, KP)
3: (verw, updw)← σc[w]
4: sw, st← ⊥
5: addrw ← FR(KR, w)
6: if (verw, updw) = ⊥ then
7: return ∅
8: if updw ̸= 0 then
9: sw ← FS(KS , w)

10: st← FT (KT , w∥updw∥verw)
11: Send (addrw, st, sw, σc[w]) to Server.

1: function Server
2: Proof, Val← empty list
3: RAddr, Pval← ∅
4: (verw, updw)← σc[w]
5: for i = updw down to 1 do
6: addr ← H1(sw, st)
7: RAddr← RAddr ∪ {addr}
8: (value, link, proof)← TSet[addr]
9: Proof[i]← proof

10: Val[i]← value
11: st← link ⊕H2(sw, st)
12: if verw > 0 then
13: (eRid, proof)← RSet[addrw]
14: Proof[0]← proof
15: Val[0]← eRid

16: for addr ∈ RAddr do
17: Delete TSet[addr]
18: Send (Val, Proof) to Client.

3.2 Security Results
In this section, we describe the leakage profile of FVS1 and then state the privacy and
soundness security results of FVS1. The proof of the Theorems is deferred to Sect. 5.

3.2.1 Privacy of FVS1

We first define the leakage profile of FVS1, denoted as LFVS1 as given below.

LFVS1 =
(
LSetUp

FVS1 ,LUpdate
FVS1 ,LSearch

FVS1

)
, where

LSetUp
FVS1 = ∅, LUpdate

FVS1 = ∅, LSearch
FVS1 ⪯ {sp(w), TimeDB(w), Updates(w)}.

We want to highlight that as per the forward and backward privacy definitions stated in
Sect. 2.3, the above leakage profile ensures that our construction FVS1 achieves forward
privacy and backward privacy with update pattern (BPUP).

For the above-mentioned leakage profile, in the following, we state the security theorem
for our FVS1 construction as:

Theorem 1. Let FS , FT , FV , FR, and FP be independent and secure PRFs, H1, and H2
be hash functions modeled as random oracles, SE be a secure symmetric encryption scheme
and AE be a secure authenticated encryption scheme. Then, our proposed construction
FVS1 is LFVS1-adaptively secure, achieves forward and backward privacy with update pattern
(BPUP). Formally, we have:

|Pr[FVS1A(λ) = 1]− Pr[IdealA,S(λ) = 1]|
≤ AdvPRF

FS
(A1) + AdvPRF

FT
(A2) + AdvPRF

FV
(A3) + AdvPRF

FR
((A4) + AdvP RF

FP
(A5) +

AdvP riv
SE (B1) + AdvPriv

AE (B2) + AdvAuth
AE (B3) + 2q2

22λ
+ q2

2s
.

14 Fault-tolerant Verifiable Dynamic SSE with Forward and Backward Privacy

Algorithm 4 : FVS1.Search(K, σc, w; EDB) - Round 2
1: function Client
2: K = (KS , KT , KV , KR, KP)
3: Rid, Del, PrvRes← ∅
4: (verw, updw)← σc[w]
5: for i = updw down to 1 do
6: op∥id← FV (KV , st)⊕ Val[i]
7: if op = add and id /∈ Del then
8: Rid← Rid ∪ {id}
9: if op = del then

10: Del← Del ∪ {id}
11: if verw ̸= 0 then
12: RK ← FT (KT , w∥0∥verw + 1)
13: PrvRes← SE.Dec(RK , Val[0])
14: for each id ∈ PrvRes do
15: if id /∈ Del then
16: Rid← Rid ∪ {id}
17: v ← Verify(Rid, Proof, K, σc, w)
18: if v = 0 then
19: return Reject
20: else
21: verw ← verw + 1, and updw ← 0
22: RK ← FT (KT , w∥updw∥verw)
23: eRid← SE.Enc(RK , Rid)
24: pw ← FP (KP , w∥verw)
25: proof ← AE.Enc(pw, updw, Rid)
26: σc(w)← (verw, updw)
27: Send eRid, proof to Server.
28: return Rid

1: function Server
2: RSet[addrw]← (eRid, proof)

1: function Verify
2: K = (KS , KT , KV , KR, KP)
3: RidP ← ∅
4: (verw, updw)← σc[w]
5: if verw = 0 then
6: if |Proof| ̸= updw then
7: return 0
8: else
9: if |Proof| ̸= updw + 1 then

10: return 0
11: if verw > 1 then
12: pw ← F3(KP , w∥verw − 1)
13: r ← AE.VD(pw, 0, Proof[0])
14: if r = ⊥ then
15: return 0
16: else
17: RidP ← RidP ∪ {r}
18: pw ← F3(KP , w∥verw)
19: for i = 1 to updw do
20: r ← AE.VD(pw, i, Proof[i])
21: if r = ⊥ then
22: return 0
23: else
24: op∥id← r
25: if op = add then
26: RidP ← RidP ∪ {id}
27: else
28: RidP ← RidP \ {id}
29: if Rid = RidP then
30: return 1
31: else
32: return 0

Remark 1. We have modeled cryptographic primitives in both constructions using PRFs
and random oracles. While PRFs (or PRPs) are a standard assumption in symmetric key
modes, the random oracle assumption is a stronger one. However, note that almost all
the state-of-the-art schemes (including all the DSSE schemes mentioned in Table 1) use
this assumption to argue for security. One possible solution to mitigate this is to replace
the hash (which is assumed to be a random oracle) with a PRF in the same manner as
shown in [SPS14]. However, in that case, the client needs to provide more tokens during a
search operation that requires additional client computation and communication costs up
to O(u′).

3.2.2 Soundness of FVS1

In the following, we state the soundness theorem for FVS1 as follows:

Theorem 2. If AE satisfies authenticity as defined in section 2.1, then our proposed
scheme FVS1 achieves soundness even in the presence of faulty update queries. Formally
we have

Pr[VDSSESoundFVS1
A (λ)] ≤ AdvAuth

AE (A1) + AdvCorrect
FVS1 (A2).

Bibhas Chandra Das, Nilanjan Datta, Avishek Majumder, Subhabrata Samajder 15

3.3 Limitations of FVS1

Our proposed construction is highly efficient from the leakage point of view - it reveals very
little information to the adversarial server during update and search queries. Specifically,
the update leakage is nonexistent, and the only leakages related to the search queries are
the timestamps of all update and search queries on the search keyword, Updates(w) and
sp(w). However, the communication complexity of the search algorithm is proportional to
the number of update operations on w because the server sends all masked (op, id) pairs
related to keyword w to the client for further processing. Since the client must process
each of these ciphertexts to obtain the actual result set, the computation complexity on the
client side is similarly high. This limits the practicality of our FVS1 scheme and motivates
us to a modified construction that achieves better communication complexity.

4 FVS2: An Efficient Fault-Tolerant Verifiable DSSE

The objective of this work is to design a DSSE scheme that achieves optimal communication
complexity while ensuring forward and backward privacy. In this section, we present an
updated version of the previous scheme, dubbed FVS2, which meets these goals. We begin
with a high-level overview of the modifications and then provide a formal description of
all the algorithms. Following this, we outline the security results, with detailed proofs
deferred to Sect. 5.

4.1 Specification

Our goal is to achieve optimal communication and client-side computation during search
operations. We need the server to provide information corresponding precisely to the set of
documents currently matching the searched keyword w. To achieve this, we have assigned a
tag to each updated identifier with the following property: between two consecutive search
queries on w, regardless of the underlying update op, the same tag will be generated for all
updates involving w, and id. Additionally, during a search query, the server is delegated
to learn about the actual update op. This enables the server to compute the set of tags
belonging to the result set independently. Consequently, both the communication cost and
client-side computation cost are reduced to optimal levels while maintaining backward
privacy. The algorithmic descriptions of the setup and update procedures for FVS2 are
presented in Algorithms 5 and 6, respectively. The search algorithm is divided into two
parts - Round 1 and Round 2 - with the corresponding algorithms provided in Algorithm 7
and Algorithm 8, respectively.

Algorithm 5 : FVS2.Setup(1λ,⊥)

1: KS , KT , KR, KP , KG
$←− {0, 1}λ

2: σc, TSet, RSet← ∅
3: K← (KS , KT , KR, KP , KG)

4: EDB = (TSet, RSet)
5: Store (K, σc) at Client
6: Send EDB to Server

4.2 Security Results

In this subsection, we describe the leakage profile of FVS2 and then state the privacy and
soundness security results of FVS2. The proof of the Theorems is deferred to Sect. 5.

16 Fault-tolerant Verifiable Dynamic SSE with Forward and Backward Privacy

Algorithm 6 : FVS2.Update (K, σc, op, w, id; EDB)
1: function Client
2: K = (KS , KT , KG, KR, KP)
3: (verw, updw)← σc[w]
4: if (verw, updw) = ⊥ then
5: verw ← 0, updw ← 0
6: updw ← updw + 1
7: sw ← FS(KS , w)
8: st← FT (KT , w∥updw∥verw)
9: addr ← H1(sw, st)

10: tag ← G(KG, w∥id∥verw)
11: if updw = 1 then
12: value← H2(sw, st)⊕ 0λ∥op∥tag
13: else
14: pst← FT (KT , w∥updw − 1∥verw)
15: value← H2(sw, st)⊕ pst∥op∥tag

16: pw ← FP (KP , w∥verw)
17: proof ← AE.Enc(pw, updw, op∥id)
18: σc ← (verw, updw)
19: Send (addr, value, proofu) to Server

1: function Server
2: Parse EDB as (TSet, RSet)
3: TSet[addr]← (value, proof)

Algorithm 7 : FVS2.Search(K, σc, w; EDB) - Round I
1: function Client
2: K = (KS , KT , KG, KR, KP)
3: (verw, updw)← σc[w]
4: if (verw, updw) = ⊥ then
5: return ϕ

6: addrw ← FR(KR, w)
7: sw ← FS(KS , w)
8: st← FT (KT , w∥updw∥verw)
9: Send (addrw, st, sw, σc[w]) to Server.

1: function Server
2: Proof← empty list
3: RAddr, TagSet, DelTag, PrvTag← ∅
4: for i = updw down to 1 do
5: addr ← H1(sw, st)
6: RAddr← RAddr ∪ {addr}
7: (value, proof)← TSet[addr]
8: Proof[i]← proof
9: st∥op∥tag ← value⊕H2(sw, st)

10: if op = add and tag /∈ DelTag then
11: TagSet← TagSet ∪ {tag}
12: if op = del then
13: DelTag← DelTag ∪ {tag}
14: if verw > 0 then
15: (PrvTag, proof)← RSet[addrw]
16: Proof[0]← proof
17: for each tag ∈ PrvTag do
18: if tag /∈ DelTag then
19: TagSet← TagSet ∪ {tag}
20: for each addr ∈ RAddr do
21: Delete TSet[addr]
22: Send (TagSet, Proof) to Client.

4.2.1 Privacy of FVS2

The leakage profile of our FVS2 construction is defined as a stateful function LFVS2, defined
as:

LFVS2 =
(
LSetUp

FVS2 ,LUpdate
FVS2 ,LSearch

FVS2

)
,

Bibhas Chandra Das, Nilanjan Datta, Avishek Majumder, Subhabrata Samajder 17

Algorithm 8 : FVS2.Search(K, σc, w; EDB) - Round II
1: function Client
2: K = (KS , KT , KG, KR, KP)
3: Rid, PrvTag← ∅
4: for each tag ∈ TagSet do
5: w∥id∥tag ← G−1(KG, tag)
6: Rid← Rid ∪ {id}
7: v ← Verify(Rid, P, K, st, w)
8: if v = 0 then
9: return Reject

10: else
11: (verw, updw)← σc[w]
12: verw ← verw + 1
13: updw ← 0
14: for each tag ∈ TagSet do
15: tag ← G(KG, w∥id∥verw)
16: PrvTag← PrvTag ∪ {tag}
17: pw ← FP (KP , w∥verw)
18: proof ← AE.Enc(pw, updw, Rid)
19: Send PrvTag, proof to Server.
20: return Rid

1: function Server
2: RSet[addrw]← (PrvTag, proof)

1: function Verify
2: K = (KS , KT , KG, KR, KP)
3: RidP ← ∅
4: (verw, updw)← σc[w]
5: if verw = 0 then
6: if |Proof| ̸= updw then
7: return 0
8: else
9: if |Proof| ̸= updw + 1 then

10: return 0
11: if verw > 1 then
12: pw ← F3(KP , w∥verw − 1)
13: r ← AE.VDec(pw, 0, Proof[0])
14: if r = ⊥ then
15: return 0
16: else
17: RidP ← RidP ∪ r

18: pw ← F3(KP , w∥verw)
19: for i = 1 to updw do
20: r ← AE.VDec(pw, i, Proof[i])
21: if r = ⊥ then
22: return 0
23: else
24: op∥id← r
25: if op = add then
26: RidP ← RidP ∪ {id}
27: else
28: RidP ← RidP \ {id}
29: if Rid = RidP then
30: return 1
31: else
32: return 0

where

LSetUp
FVS2 () = LUpdate

FVS2 (op, (w, id)) = ∅,
LSearch

FVS2 (w) ⪯ {sp(w), Updatesop(w), LP1(w), LP2(w), LP3(w), LDB(w)} .

We justify the leakage profile of FVS2 in Sect. A. Note that as per the definitions of
forward and backward privacy stated in Sect. 2.3, the above leakage profile ensures that
our construction FVS2 achieves forward privacy and backward privacy with link pattern
(BPLP).

For the above-mentioned leakage profile, in the following, we state the main security
theorem for our FVS2 construction as:

Theorem 3. Let FS , FT , FR and FP be independent and secure PRFs, G be a secure PRP,
H1, H2 be hash functions modelled as random oracles, and AE be a secure authenticated
encryption scheme. Then, our proposed construction FVS2 is LFVS2-adaptively secure,
achieves forward privacy and backward privacy with link pattern (BPLP). Formally, we

18 Fault-tolerant Verifiable Dynamic SSE with Forward and Backward Privacy

have:

|Pr[FVS2A(λ) = 1]− Pr[IdealA,S(λ) = 1]|
≤ AdvPRF

FS
(A1) + AdvPRF

FT
(A2) + AdvPRF

FR
(A3) + AdvPRF

FP
(A4) + AdvPRP

G (A5) +

AdvPriv
AE (B1) + AdvAuth

AE (B2) + 2q2

22λ
.

4.2.2 Soundness of FVS2

Theorem 4. If AE satisfies authenticity as defined in section 2.1, then FVS2 achieves
soundness even in the presence of faulty update queries. Formally, A2, such that

Pr[VDSSESoundFVS2
A (λ)] ≤ AdvAuth

AE (A1) + AdvCorrect
FVS2 (A2).

5 Security Analysis
In this section, we prove all the theorems.

5.1 Proof of Theorem 1 and Theorem 3
In this section, we first rigorously prove Theorem 3 and then provide a sketch of Theorem
1 that follows from the previous theorem. To prove Theorem 3, we follow the standard
approach, as used in [CJJ+13, CGKO06], and define a sequence of games between the
challenger C and the adversary A. The first game (i.e., Game G0) computes a distribution
identical to the real experiment FVS2A(λ) and the final game (i.e., Game G5) considers
a simulator S that perfectly simulates a distribution identical to the ideal experiment
IdealA,S(λ), given the leakage function of FVS2. As per the basic requirement for security,
we have shown that the design of the games is done in such a manner that the views of
the adversary A in each pair of consecutive games are computationally indistinguishable.
Game G0: This game is identical to the real experiment FVS2A(λ). The challenger
generates the transcript corresponding to each update and search query using Algorithms 6,
7, 8 for FVS2.
Game G1: This game is identical to Game G0 except that response to every call to
the PRFs FS , FT , FR and FP are generated using tables TabS , TabT , TabR and TabP ,
respectively. The table access is done following the lazy sampling [Zha19] technique: when
an entry in a table is first accessed it is chosen at random and the chosen value is used for
further access. Since all of FS , FT , FR, and FP are secure PRFs, it is easy to see that:∣∣ Pr[G1 = 1]−Pr[G0 = 1]

∣∣ ≤ AdvPRF
FS

(A1)+AdvPRF
FT

(A2)+AdvPRF
FR

(A3)+AdvPRF
FP

(A4).
(1)

Game G2: This game is identical to Game G1 except that the response to every call to the
PRP G is prepared using table TabG. Similarly as above the table access is done following
the lazy smapling [Zha19] technique. Compared to the PRFs the only difference for PRP
G is that the responses are chosen without replacement in this case. Since G is a secure
PRP, it is easy to see that:∣∣ Pr[G2 = 1]− Pr[G1 = 1]

∣∣ ≤ AdvPRP
G (A5). (2)

Game G3: In this game, we replace the hash functions H1 and H2 with random oracles
while generating the transcript for different queries. As example consider H1: During
update query addr is chosen randomly from {0, 1}λ and then the value addr is stored in
table Tabaddr with corresponding w∥updw∥verw. Now during the search query when H1 is
accessed for some fixed key∥arg, the client randomly programs the oracle H1 using table

Bibhas Chandra Das, Nilanjan Datta, Avishek Majumder, Subhabrata Samajder 19

Algorithm 9 : H1(key∥arg)
1: v ← TabH1 (key∥arg)
2: if v = ⊥ then
3: v

$←− {0, 1}λ

4: TabH1 (key∥arg)← v

5: return v

TabH1 as described in algorithm 9. The TabH1 stores the value Tabaddr[w∥updw∥verw]
corresponding to the key sw∥st where st← σc[w∥updw∥verw].

Note that inconsistency can occur during this client calls to H1, to be specific for
some w∥updw∥verw it may happen that H1(sw∥σc[w∥updw∥verw] ̸= Tabaddr[w∥updw∥verw].
This happens when the client randomly selects some value x for σc[w∥updw∥verw] but
sw∥x is already used as input of H1 by the adversary. But since in Game G3 all these
values are generated randomly, the probability that such an inconsistency occurs is upper
bounded by p/22λ, when the adversary makes p many queries to H1. Assuming the total
number of triples w∥updw∥verw to be p∗, for H1 and H2 together we have,

∣∣ Pr[G3 = 1]− Pr[G2 = 1]
∣∣ ≤ 2pp∗

22λ
≤ 2q2

22λ
. (3)

Game G4: Moving forward, we now change the way the response to the encryption and
decryption query to the authenticated encryption AE scheme is generated. When there is a
query to AE.Enc with key k, message m and nonce n, a response is chosen randomly from
{0, 1}s, where s indicates the size of the actual ciphertext. This value is then stored in
Tabproof corresponding to (k, n, m). The decryption queries are then replied to following
algorithm 10. Since the authenticated encryption scheme AE is secure, it is easy to see

Algorithm 10 : AE.VDec(k, n, proof)
1: if Tabproof = ⊥ then
2: r

$←− ⊥
3: else
4: (K, N, M)← Tabproof [proof]
5: if k ̸= K or n ̸= N then
6: r ← ⊥
7: else
8: r ←M
9: return r

that: ∣∣ Pr[G4 = 1]− Pr[G3 = 1]
∣∣ ≤ AdvPriv

AE (B1) + AdvAuth
AE (B2). (4)

Game G5: Observe that each operation during the update query can uniquely be char-
acterized by its corresponding global timestamp t. Hence in this game, we modify the
computations during the update queries as: every table access with w∥updw∥verw is
replaced by table access with corresponding time stamp t. Hence,∣∣ Pr[G5 = 1]− Pr[G4 = 1]

∣∣ = 0. (5)

Now we will construct a simulator SFVS2 that, given only the access of the leakage
function LFVS2 but not the actual queries, can generate transcripts for the update and
search queries. Remember that the transcript needs to follow the same distribution
defined in Game G5. The simulator’s behavior for the setup and update operations are
described formally in the Supporting Material C. Finally the theorem follows as we combine
Eqn. (1), (2), (3), (4), (5) together.

20 Fault-tolerant Verifiable Dynamic SSE with Forward and Backward Privacy

The proof of Theorem 1 follows similarly and we provide the sketch in the Supplementary
Material B.

5.2 Proof of Theorem 2 and 4
In this section, we first rigorously prove Theorem 2. The proof of Theorem 4 is identical
to the proof of Theorem 2, and hence, we skip it. Before delving into the formal proof
we recall that Theorem 2 says that if the underlying AE has authenticity security and
the construction FVS1 is correct, then the client should be able to identify any malicious
behavior of the server. We follow the standard verification proof technique as used in
[Bos16,YCR22] and reduce the soundness advantage to the authenticity of AE and the
correctness of FVS1 through a sequence of games S0 to S3. The difference between these
games lies strictly in the corresponding verify algorithm and everything else remains the
same.
Game S0: In this game, the verify algorithm is the same as the function Verify in
algorithm 4. Hence, by definition

Pr[VDSSESoundFVS1
A] = Pr[S0(1λ) = 1] (6)

Game S1: The first change that we have done in this game is that the function Verify here
besides returning 1 for the correct and complete result, also returns 1, if the adversary
produces any forged proof FP [i], i ∈ {0, 1, · · · , c}({1, · · · , c} for verw > 0), that passes
the verification step of AE.VDec. The modified Verify function is depicted in the left part
of Algorithm 11. For FP [i], to be a forged proof, the corresponding ciphertext must not be
produced by encryption of AE and with key pw and nonce i. Remember that S0 outputs
1, if all the c (c + 1 for verw > 0) proofs pass the verification algorithm of the AE.VDec.
Thus, we have

Pr[S0(1λ) = 1] ≤ Pr[S1(1λ) = 1]. (7)

Game S2: In this game we further change the conditions of returning 1 of the function
Verify as depicted in the right part of Algorithm 11. Observe that if the adversarial server
can forge a proof FP [i] which passes the verification but is not a ciphertext produced by
the encryption of AE and with key pw and nonce i, S1 outputs 1 but S0 will output 0.
Consequently,

Pr[S1(1λ) = 1]− Pr[S2(1λ) = 1] ≤ AdvAuth
AE (A1). (8)

Game S3: Finally, in this game, we assume that there is no collision in the hash table
TSet, i.e. given the latest σc the adversary can unambiguously find the recently added
entry related to searched keyword w. So, if some adversary can distinguish between game
S2 and game S3, it can break the correctness of our FVS1 scheme:

Pr[S2(1λ) = 1]− Pr[S3(1λ) = 1] ≤ AdvCorrect
FVS1 (A2). (9)

Now let us try to compute Pr[S3(1λ) = 1]. Note that, if an adversary behaves maliciously,
then either of the following three cases occur:

• Case 1: The adversary sends an incomplete proof. Here, as described in function Ver-
ify in game S3, the client uses the current update count updw to check whether the
number of proofs in Proof list is correct or not. Since the update counter is stored
on the client side, such an incomplete array of proofs will always be rejected.

• Case 2: Some of the proofs are forged or positioned incorrectly. Again, by definition
of the game S3, such an array of proofs will always be rejected.

Bibhas Chandra Das, Nilanjan Datta, Avishek Majumder, Subhabrata Samajder 21

Algorithm 11 : Verify(K, σc, w; EDB) Algorithm for Game S1 (left) and S2 (right)
1: function Client
2: K = (KS , KT , KV , KR, KP)
3: RidP ← ∅
4: (verw, updw)← σc[w]
5: if verw = 0 then
6: if |Proof| ≠ updw then
7: return 0
8: else
9: if |Proof| ≠ updw + 1 then

10: return 0
11: if verw > 1 then
12: pw ← F3(KP , w∥verw − 1)
13: r ← AE.VDec(pw, 0, Proof[0])
14: if r ̸= ⊥ and FP[0] is forged then
15: return 1
16: if r = ⊥ then
17: return 0
18: else
19: RidP ← RidP ∪ r

20: pw ← F3(KP , w∥verw)
21: for i = 1 to updw do
22: r ← AE.VDec(pw, i, P[i])
23: if r ̸= ⊥ and FP[i] is not forged then
24: return 1
25: if r = ⊥ then
26: return 0
27: else
28: op∥id← r
29: if op = add then
30: RidP ← RidP ∪ {id}
31: else
32: RidP ← RidP \ {id}
33: if Rid = RidP then
34: return 1
35: else
36: return 0

1: function Client
2: K = (KS , KT , KV , KR, KP)
3: RidP ← ∅
4: (verw, updw)← σc[w]
5: if verw = 0 then
6: if |Proof| ̸= updw then
7: return 0
8: else
9: if |Proof| ̸= updw + 1 then

10: return 0
11: if verw > 1 then
12: pw ← F3(KP , w∥verw − 1)
13: if FP[0] is not forged then
14: return 0
15: else
16: RidP ← RidP ∪ r

17: pw ← F3(KP , w∥verw)
18: for i = 1 to updw do
19: if FP[i] is not forged then
20: return 0
21: else
22: op∥id← r
23: if op = add then
24: RidP ← RidP ∪ {id}
25: else
26: RidP ← RidP \ {id}
27: if Rid = RidP then
28: return 1
29: else
30: return 0

• Case 3: The adversary sends an incomplete or incorrect Val. Now, from the above
two cases, it is guaranteed that the Proof array is correct and complete. So, the
client can easily compute the set RidP . However, such a tampered Val array will
produce a different Rid, and hence, the output of the function Verify will be rejected.
Consequently, here also, the output of S3 will not be 1.

Hence, we have Pr[S3(1λ) = 1] = 0. Now, combining this with Eqn. (6), (7), (8), (9) with
the lemma to obtain the result.

6 Conclusion
This paper proposes two designs achieving forward and backward private verifiable DSSE
schemes. While the first construction achieves stronger BPUP backward privacy but high
communication complexity, the latter achieves optimal communication at the cost of
having slightly weaker BPLP backward privacy. Extending the work to design forward and
backward secure verifiable conjunctive DSSE scheme is an interesting open problem.

22 Fault-tolerant Verifiable Dynamic SSE with Forward and Backward Privacy

References
[BFP16] Raphael Bost, Pierre-Alain Fouque, and David Pointcheval. Verifiable dynamic

symmetric searchable encryption: Optimality and forward security. IACR
Cryptol. ePrint Arch., page 62, 2016. URL: http://eprint.iacr.org/2016
/062.

[BMO17] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. Forward and backward
private searchable encryption from constrained cryptographic primitives. In
Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors,
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017, pages 1465–1482. ACM, 2017. doi:10.1145/3133956.3133980.

[Bos16] Raphael Bost.
∑

oφoς: Forward secure searchable encryption. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and
Shai Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October 24-28,
2016, pages 1143–1154. ACM, 2016. doi:10.1145/2976749.2978303.

[CDvD+03] Dwaine E. Clarke, Srinivas Devadas, Marten van Dijk, Blaise Gassend, and
G. Edward Suh. Incremental multiset hash functions and their application to
memory integrity checking. In Chi-Sung Laih, editor, Advances in Cryptology
- ASIACRYPT 2003, 9th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Taipei, Taiwan, November 30 -
December 4, 2003, Proceedings, volume 2894 of Lecture Notes in Computer Sci-
ence, pages 188–207. Springer, 2003. doi:10.1007/978-3-540-40061-5_12.

[CG12] Qi Chai and Guang Gong. Verifiable symmetric searchable encryption for
semi-honest-but-curious cloud servers. In Proceedings of IEEE International
Conference on Communications, ICC 2012, Ottawa, ON, Canada, June 10-15,
2012, pages 917–922. IEEE, 2012. doi:10.1109/ICC.2012.6364125.

[CGKO06] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Search-
able symmetric encryption: improved definitions and efficient constructions. In
Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors,
Proceedings of the 13th ACM Conference on Computer and Communications
Security, CCS 2006, Alexandria, VA, USA, October 30 - November 3, 2006,
pages 79–88. ACM, 2006. doi:10.1145/1180405.1180417.

[CGPR15] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-
abuse attacks against searchable encryption. In Indrajit Ray, Ninghui Li,
and Christopher Kruegel, editors, Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, Denver, CO, USA,
October 12-16, 2015, pages 668–679. ACM, 2015. doi:10.1145/2810103.28
13700.

[CJJ+13] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-
Catalin Rosu, and Michael Steiner. Highly-scalable searchable symmetric
encryption with support for boolean queries. In Ran Canetti and Juan A.
Garay, editors, Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I, volume 8042 of Lecture Notes in Computer Science, pages 353–373.
Springer, 2013. doi:10.1007/978-3-642-40041-4_20.

http://eprint.iacr.org/2016/062
http://eprint.iacr.org/2016/062
https://doi.org/10.1145/3133956.3133980
https://doi.org/10.1145/2976749.2978303
https://doi.org/10.1007/978-3-540-40061-5_12
https://doi.org/10.1109/ICC.2012.6364125
https://doi.org/10.1145/1180405.1180417
https://doi.org/10.1145/2810103.2813700
https://doi.org/10.1145/2810103.2813700
https://doi.org/10.1007/978-3-642-40041-4_20

Bibhas Chandra Das, Nilanjan Datta, Avishek Majumder, Subhabrata Samajder 23

[CM05] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword
searches on remote encrypted data. In John Ioannidis, Angelos D. Keromytis,
and Moti Yung, editors, Applied Cryptography and Network Security, Third
International Conference, ACNS 2005, New York, NY, USA, June 7-10,
2005, Proceedings, volume 3531 of Lecture Notes in Computer Science, pages
442–455, 2005. doi:10.1007/11496137_30.

[CMS25] Debrup Chakraborty, Avishek Majumder, and Subhabrata Samajder. Making
searchable symmetric encryption schemes smaller and faster. Int. J. Inf. Sec.,
24(1):10, 2025. URL: https://doi.org/10.1007/s10207-024-00915-y,
doi:10.1007/S10207-024-00915-Y.

[CPS20] Sanjit Chatterjee, Shravan Kumar Parshuram Puria, and Akash Shah. Efficient
backward private searchable encryption. J. Comput. Secur., 28(2):229–267,
2020. doi:10.3233/JCS-191322.

[GYZ+21] Xinrui Ge, Jia Yu, Hanlin Zhang, Chengyu Hu, Zengpeng Li, Zhan Qin, and
Rong Hao. Towards achieving keyword search over dynamic encrypted cloud
data with symmetric-key based verification. IEEE Trans. Dependable Secur.
Comput., 18(1):490–504, 2021. doi:10.1109/TDSC.2019.2896258.

[HWKS98] Chris Hall, David A. Wagner, John Kelsey, and Bruce Schneier. Building prfs
from prps. In Hugo Krawczyk, editor, Advances in Cryptology - CRYPTO ’98,
18th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 23-27, 1998, Proceedings, volume 1462 of Lecture Notes in
Computer Science, pages 370–389. Springer, 1998. URL: https://doi.org/
10.1007/BFb0055742, doi:10.1007/BFB0055742.

[IKK12] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access
pattern disclosure on searchable encryption: Ramification, attack and mitiga-
tion. In 19th Annual Network and Distributed System Security Symposium,
NDSS 2012, San Diego, California, USA, February 5-8, 2012. The Internet
Society, 2012. URL: https://www.ndss-symposium.org/ndss2012/access
-pattern-disclosure-searchable-encryption-ramification-attack-a
nd-mitigation.

[KO12] Kaoru Kurosawa and Yasuhiro Ohtaki. Uc-secure searchable symmetric
encryption. In Angelos D. Keromytis, editor, Financial Cryptography and
Data Security - 16th International Conference, FC 2012, Kralendijk, Bonaire,
February 27 - March 2, 2012, Revised Selected Papers, volume 7397 of Lecture
Notes in Computer Science, pages 285–298. Springer, 2012. doi:10.1007/97
8-3-642-32946-3_21.

[KO13] Kaoru Kurosawa and Yasuhiro Ohtaki. How to update documents verifiably
in searchable symmetric encryption. In Michel Abdalla, Cristina Nita-Rotaru,
and Ricardo Dahab, editors, Cryptology and Network Security - 12th In-
ternational Conference, CANS 2013, Paraty, Brazil, November 20-22. 2013.
Proceedings, volume 8257 of Lecture Notes in Computer Science, pages 309–328.
Springer, 2013. doi:10.1007/978-3-319-02937-5_17.

[KPR12] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic
searchable symmetric encryption. In Ting Yu, George Danezis, and Virgil D.
Gligor, editors, the ACM Conference on Computer and Communications
Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012, pages 965–976.
ACM, 2012. doi:10.1145/2382196.2382298.

https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/s10207-024-00915-y
https://doi.org/10.1007/S10207-024-00915-Y
https://doi.org/10.3233/JCS-191322
https://doi.org/10.1109/TDSC.2019.2896258
https://doi.org/10.1007/BFb0055742
https://doi.org/10.1007/BFb0055742
https://doi.org/10.1007/BFB0055742
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://doi.org/10.1007/978-3-642-32946-3_21
https://doi.org/10.1007/978-3-642-32946-3_21
https://doi.org/10.1007/978-3-319-02937-5_17
https://doi.org/10.1145/2382196.2382298

24 Fault-tolerant Verifiable Dynamic SSE with Forward and Backward Privacy

[NC07] Alexandros Ntoulas and Junghoo Cho. Pruning policies for two-tiered inverted
index with correctness guarantee. In Wessel Kraaij, Arjen P. de Vries, Charles
L. A. Clarke, Norbert Fuhr, and Noriko Kando, editors, SIGIR 2007: Proceed-
ings of the 30th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, Amsterdam, The Netherlands, July
23-27, 2007, pages 191–198. ACM, 2007. doi:10.1145/1277741.1277776.

[SDY+20] Xiangfu Song, Changyu Dong, Dandan Yuan, Qiuliang Xu, and Minghao
Zhao. Forward private searchable symmetric encryption with optimized I/O
efficiency. IEEE Trans. Dependable Secur. Comput., 17(5):912–927, 2020.
doi:10.1109/TDSC.2018.2822294.

[SPS14] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical dynamic
searchable encryption with small leakage. In 21st Annual Network and
Distributed System Security Symposium, NDSS 2014, San Diego, California,
USA, February 23-26, 2014. The Internet Society, 2014. URL: https://www.
ndss-symposium.org/ndss2014/practical-dynamic-searchable-encry
ption-small-leakage.

[SWP00] Dawn Xiaodong Song, David A. Wagner, and Adrian Perrig. Practical
techniques for searches on encrypted data. In 2000 IEEE Symposium on
Security and Privacy, Berkeley, California, USA, May 14-17, 2000, pages
44–55. IEEE Computer Society, 2000. doi:10.1109/SECPRI.2000.848445.

[SYL+18] Shifeng Sun, Xingliang Yuan, Joseph K. Liu, Ron Steinfeld, Amin Sakzad,
Viet Vo, and Surya Nepal. Practical backward-secure searchable encryption
from symmetric puncturable encryption. In David Lie, Mohammad Mannan,
Michael Backes, and XiaoFeng Wang, editors, Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018, pages 763–780. ACM, 2018.
doi:10.1145/3243734.3243782.

[YCR22] Dandan Yuan, Shujie Cui, and Giovanni Russello. We can make mis-
takes: Fault-tolerant forward private verifiable dynamic searchable sym-
metric encryption. In 7th IEEE European Symposium on Security and
Privacy, EuroS&P 2022, Genoa, Italy, June 6-10, 2022, pages 587–605.
IEEE, 2022. URL: https://doi.org/10.1109/EuroSP53844.2022.00043,
doi:10.1109/EUROSP53844.2022.00043.

[Zha19] Mark Zhandry. How to record quantum queries, and applications to quantum
indifferentiability. In Alexandra Boldyreva and Daniele Micciancio, editors,
Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings,
Part II, volume 11693 of Lecture Notes in Computer Science, pages 239–268.
Springer, 2019. doi:10.1007/978-3-030-26951-7_9.

[ZKP16] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your
queries are belong to us: The power of file-injection attacks on searchable
encryption. In Thorsten Holz and Stefan Savage, editors, 25th USENIX
Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12,
2016, pages 707–720. USENIX Association, 2016. URL: https://www.usen
ix.org/conference/usenixsecurity16/technical-sessions/presenta
tion/zhang.

[ZLW+18] Jie Zhu, Qi Li, Cong Wang, Xingliang Yuan, Qian Wang, and Kui Ren.
Enabling generic, verifiable, and secure data search in cloud services. IEEE

https://doi.org/10.1145/1277741.1277776
https://doi.org/10.1109/TDSC.2018.2822294
https://www.ndss-symposium.org/ndss2014/practical-dynamic-searchable-encryption-small-leakage
https://www.ndss-symposium.org/ndss2014/practical-dynamic-searchable-encryption-small-leakage
https://www.ndss-symposium.org/ndss2014/practical-dynamic-searchable-encryption-small-leakage
https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1145/3243734.3243782
https://doi.org/10.1109/EuroSP53844.2022.00043
https://doi.org/10.1109/EUROSP53844.2022.00043
https://doi.org/10.1007/978-3-030-26951-7_9
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/zhang
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/zhang
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/zhang

Bibhas Chandra Das, Nilanjan Datta, Avishek Majumder, Subhabrata Samajder 25

Trans. Parallel Distributed Syst., 29(8):1721–1735, 2018. doi:10.1109/TPDS
.2018.2808283.

[ZWW+19] Zhongjun Zhang, Jianfeng Wang, Yunling Wang, Yaping Su, and Xiaofeng
Chen. Towards efficient verifiable forward secure searchable symmetric en-
cryption. In Kazue Sako, Steve A. Schneider, and Peter Y. A. Ryan, editors,
Computer Security - ESORICS 2019 - 24th European Symposium on Research
in Computer Security, Luxembourg, September 23-27, 2019, Proceedings,
Part II, volume 11736 of Lecture Notes in Computer Science, pages 304–321.
Springer, 2019. doi:10.1007/978-3-030-29962-0_15.

A Understanding the Leakage Profile for FVS2
During the execution of our FVS2 scheme, let Q be the list of all queries issued by the client
with |Q| = q. From Algorithms 5 it is clear that the setup phase leaks no information to the
server, as we outsource an empty database EDB which does not contain any information
about the original database. Hence we conclude,

LSetUp
FVS2 () = ∅.

Now with every search and update operation, the server starts learning information
about the encrypted database. Some of these information (leakages) are trivial to an
SSE scheme (like update token leaks the number of (w, id) being updated) and hence are
not considered as leakage, while the others leakages are specific to construction. In the
following, we will elaborate on the non-trivial leakages of our construction. We’ll show that
the leakage of our construction is subsumed by the leakage function for forward privacy
and backward privacy with link pattern (BPLP) defined in Section 2.3. Hence, if there
exists a PPT simulator that can simulate an indistinguishable transcript with the leakages
of our construction then by definition of forward and backward privacy construction FVS2
is also forward and backward private with link pattern.

Leakage on Updates: During the update phase (see Algorithm 6) for every update the
client sends the server three values (addr, value, proofu), where,

1. addr ← H1(sw, st),

2. value← H2(sw, st)⊕ 0λ∥op∥tag

3. proof ← AE.Enc(pw, updw, op∥id).

Also, sw ← FS(KS , w∥verw), st ← FT (KT , w∥updw∥verw). tag ← G(KG, w∥id∥verw),
and pw ← FP (KP , w∥verw) For every update operation on a keyword-identifier pair (w, id),
the pair (updw, verw) is unique. Thus, as H1 and H2 are secure hash functions, the addr
and value generated for every update are unique and unlikable, hence, they do not leak
anything about the input of the update function. Now the proof that is being sent, as
the pair (updw, verw) are always unique for a (w, id) pair, either the pw or updw will be
unique for any two update. Thus leaks nothing. So we conclude,

LUpdate
FVS2 (op, (w, id)) = ∅.

Leakage on Search: Now we argue that, during a search query for keyword w the
leakage to the server is,

LSearch
FVS2 (w) ⪯ {sp(w), Updatesop(w), LP1(w), LP2(w), LP3(w), LDB(w)} .

https://doi.org/10.1109/TPDS.2018.2808283
https://doi.org/10.1109/TPDS.2018.2808283
https://doi.org/10.1007/978-3-030-29962-0_15

26 Fault-tolerant Verifiable Dynamic SSE with Forward and Backward Privacy

For every search query, the client always sends sw ← FS(KS , w) to the server. Thus
whenever the same keyword is searched, the value sw will be the same, and the server
learns sp(w). Now during a search query, the server checks all the updates on w and
figures out whether an encrypted identifier (specifically the tag) belongs to the search
result or not. In this process, the server learns LDB(w). At the same time, it learns about
the timestamps of the update operations on w along with the specific update op (add or
delete). This is captured by the notion Updatesop from [CPS20], described as follows:

Updatesop(w) = {(t, op) : (t, op, (w, id)) ∈ Q}.

Now as tag, (which is tag ← G(KG, w∥id∥verw)) is the same for a (w, id) pair for a
fixed verw (that is in between two searches). Thus, the server can able to link which are
the updates that correspond to the same (w, id) in between two searches. The server
(adversary) learns,

LP3(w) = {(t, t′) : (t, op, (w, id)) ∈ Q and (t′, op, (w, id)) ∈ Q; tx < t < t′ < tx+1} .

Now let us consider two consecutive searches on w at tx and tx+1, and the corresponding
search result DBx and DBx+1 respectively. If and id ∈ DBx(w) and any further operation
on that id with the same keyword happened then the server always learns that as the tags
generated are the same. A similar argument holds for id ∈ DBx+1(w). Hence the following
two leakages.

LP1(w) = {(t, id) : id ∈ DBx(w) and (t, op, (w, id)) ∈ Q; tx < t < tx+1} ,

LP2(w) = {(t, id) : id ∈ DBx+1(w) and (t, op, (w, id)) ∈ Q; tx < t < tx+1} .

Taken everything together, we summarize the leakage profile of FVS2 as follows:

LFVS2 =
(
LSetUp

FVS2 ,LUpdate
FVS2 ,LSearch

FVS2

)
,

where

LSetUp
FVS2 () = LUpdate

FVS2 (op, (w, id)) = ∅,
LSearch

FVS2 (w) ⪯ {sp(w), Updatesop(w), LP1(w), LP2(w), LP3(w), LDB(w)} .

So following definition 2.3 we can argue that FVS2 achieves forward privacy and BPLP
backward-privacy notion for single keyword DSSE.

B Proof of Theorem 1 - A Brief Sketch
The proof of this result follows the same standard approach of defining a sequence of
games between the challenger C and the adversary A. The first game (i.e., Game B0)
computes a distribution identical to the real experiment FVS1 A(λ) and the final game
(i.e., Game B5) considers a simulator S that perfectly simulates a distribution identical to
the ideal experiment IdealA,S(λ), given the leakage function of FVS1.

Game B0: This game is identical to the real experiment FVS1 FVS1(λ). The challenger
generates the transcript corresponding to each update and search query using Algorithms 2,
3, 4 for FVS1.
Game B1: This game is identical to Game B0 except that response to every call to the
PRFs FS , FT , FV , FR and FP are generated using tables TabS , TabT , TabV , TabR and TabP ,
respectively. The table access is done following the lazy sampling [Zha19] technique: when

Bibhas Chandra Das, Nilanjan Datta, Avishek Majumder, Subhabrata Samajder 27

an entry in a table is first accessed it is chosen at random and the chosen value is used for
further access. Since all of FS , FT , FV , FR, and FP are secure PRFs, it is easy to see that:∣∣ Pr[B1 = 1]− Pr[B0 = 1]

∣∣ ≤ AdvPRF
FS

(A1) + AdvPRF
FT

(A2) + AdvPRF
FV

(A3) +
AdvPRF

FR
(A4) + AdvPRF

FP
(A5). (10)

Game B2: In this game, we program the hash functions H1 and H2 with random oracles
while generating the transcript for different queries. During update query addr is chosen
randomly from {0, 1}λ and then the value addr is stored in table Tabaddr with corresponding
w∥updw∥verw. Now during the search query when H1 is accessed for some fixed key∥arg,
the client randomly programs the oracle H1 using table TabH1 as described in algorithm 9.
The TabH1 stores the value Tabaddr[w∥updw∥verw] corresponding to the key sw∥st where
st← σc[w∥updw∥verw].

As in the proof of theorem 3, inconsistency can occur during this client calls to H1.
To be specific for some w∥updw∥verw it may happen that H1(sw∥σc[w∥updw∥verw] ̸=
Tabaddr[w∥updw∥verw]. Similarly as before, for H1 and H2 together we have,∣∣ Pr[B2 = 1]− Pr[B1 = 1]

∣∣ ≤ 2pp∗

22λ
≤ 2q2

22λ
. (11)

Game B3: We now change the way the eRids are generated by the symmetric encryption
scheme SE in Algorithm 4. When there is a query to SE.Enc with key k, message m, a
response is chosen randomly from {0, 1}s, where s indicates the size of the actual ciphertext.
Since the symmetric encryption scheme SE is modeled as a secure PRP, following PRP/PRF
switching lemma [HWKS98] we have:∣∣ Pr[B3 = 1]− Pr[B2 = 1]

∣∣ ≤ AdvPriv
SE (B1) + q2

2s
. (12)

Game B4: Moving forward, we now change the way the response to the encryption and
decryption query to the authenticated encryption AE scheme is generated. When there
is a query to AE.Enc with key k, message m and nonce n, a response is chosen randomly
from {0, 1}s, where s indicates the size of the actual ciphertext. This value is then stored
in Tabproof corresponding to (k, n, m). The decryption queries are then replied to by
algorithm 10. Since the authenticated encryption scheme AE is secure, it is easy to see
that: ∣∣ Pr[B4 = 1]− Pr[B3 = 1]

∣∣ ≤ AdvPriv
AE (B2) + AdvAuth

AE (B3). (13)
Game B5: Observe that each operation during the update query can uniquely be char-
acterized by its corresponding global timestamp t. Hence in this game, we modify the
computations during the update queries as: every table access with w∥updw∥verw is
replaced by table access with corresponding time stamp t. Hence,∣∣ Pr[B5 = 1]− Pr[B4 = 1]

∣∣ = 0. (14)

Now we claim that it is possible to construct a simulator SFVS1 that generates the
transcript for each update and search query. Note that the transcripts will have to follow
the same distribution as in Game B5. Also, SFVS1 does not have access to the actual
queries but it has access to the leakage function LFVS1. The description of the simulator
SFVS1 is similar to that of SFVS2, given in Supplementary Material C, and hence skipped.
Finally the theorem follows as we combine Eqn. (10), (11), (12), (13), (14) together.

C Description of the Simulator SFVS2

The Setup Algorithm of SFVS2: The simulator simply initializes the timestamp to 0.
The algorithm is given in Algorithm 12.

28 Fault-tolerant Verifiable Dynamic SSE with Forward and Backward Privacy

Algorithm 12 : S.Setup(⊥)
1: t← 0

The Update Algorithm of SFVS2: Following Game G5, the simulator randomly chooses
addr, value, and proof and stores them in the corresponding tables for further use. In
each table the values are stored corresponding to the update time stamp t. The algorithm
description of the update operation is given in Algorithm 13.

Algorithm 13 : S.Update (⊥)
1: function Client
2: TabA[t] $←− {0, 1}λ

3: TabV [t] $←− {0, 1}5λ

4: proof
$←− {0, 1}|AE.Enc(∗,∗,∗)|

5: TabP [proof]← t
6: t← t + 1

The Search Algorithm of SFVS2: During the search queries SFVS2 first sends latest
st, sw and (updw, verw) to the server. This is done by accessing the corresponding tables
TabT , TabS . (updw, verw) are retrieved from the search leakage of FVS2. Also accessing
TabR sends addrw to the server. The detailed description of the two search phases is
depicted in Algorithm 14 and 15.

Bibhas Chandra Das, Nilanjan Datta, Avishek Majumder, Subhabrata Samajder 29

Algorithm 14 : S.Search(sp(w), Updatesop(w), LP1(w), LP2(w), LP3(w), LDB(w)) Round
I

1: function Client
2: {t1, t2, · · · , ts} ← sp(w)
3: v ← s− 1
4: if v = 0 then
5: Denote searched keyword as w

6: sw
$←− {0, 1}λ

7: TabS [t1]← (sw, w)
8: else
9: (sw, w)← TabS [t1]

10: if Updatesop[ts, w] = ⊥ then
11: return ϕ

12: if v = 0 then
13: addrw

$←− {0, 1}λ

14: TabR(w)← addrw

15: else
16: addrw ← TabR(w)
17: {(tu1 , opu1), (tu2 , opu2), · · · (tuc , opuc)} ← Updatesop(ts, w) \ Updatesop(ts−1, w)
18: for i = 1 to c do
19: st[i] $←− {0, 1}λ

20: TabT [w∥i∥v]← st[i]
21: Program H1 such that H1(sw, st[i])← TabA[tui]
22: if (id, tui) ∈ LP1 for some id then
23: tag ← TabG[v∥id]
24: else if (id, tui) ∈ LP2 for some id then
25: if (t, tui) ∈ LP3 for some t then
26: tag ← TabG[v∥id]
27: else
28: tag

$←− {0, 1}λ

29: TabG[v∥id]← tag

30: else
31: if ((tuj , tui) ∈ LP3 for some tuj then
32: tag ← TabG[v, iduj]
33: else
34: idui

$←− {0, 1}λ

35: tag
$←− {0, 1}λ

36: TabG[v, idui]← tag

37: Program H2 such that H2(sw, st[i])← TabV [tui]⊕ st[i− 1]∥opui∥tag

38: Send (addrw, stuc , sw, (v, c)) to Server.

30 Fault-tolerant Verifiable Dynamic SSE with Forward and Backward Privacy

Algorithm 15 : S.Search(sp(w), Updatesop(w), LP1(w), LP2(w), LP3(w), LDB(w)) Round
II

1: function Client
2: Rid, PrvTag← ∅
3: {t1, t2, · · · , ts} ← sp(w)
4: v ← s− 1
5: (sw, w)← TabS [t1]
6: {(tu1 , opu1), (tu2 , opu2), · · · (tuc , opuc)} ← Updatesop(ts, w) \ Updatesop(ts−1, w)
7: Obtain DB(w) from LDB(w)
8: if v = 0 then
9: if |Proof| ≠ c then

10: return Reject
11: else
12: for i = 1 to c do
13: if TabP [Proof[i]] ̸= tui then
14: return Reject
15: else
16: if |Proof| ≠ c + 1 then
17: return Reject
18: else
19: for i = 1 to c do
20: if TabP [Proof[i]] ̸= tui then
21: return Reject
22: if TabP [Proof[0]] ̸= ts−1 then
23: return Reject
24: for each tag ∈ TagSet do
25: if ∃ id such that TabG[v∥id] = tag then
26: Rid← Rid ∪ {id}
27: else
28: return Reject
29: if Rid ̸= DB(w) then
30: return Reject
31: else
32: v ← v + 1
33: for each id ∈ Rid do
34: tag

$←− {0, 1}λ

35: TabG[v∥id]← tag
36: PrvTag← PrvTag ∪ {tag}
37: proof ← {0, 1}|AE.Enc(∗,∗,∗)|

38: TabP [proof]← ts

39: Send PrvTag, proof to Server.
40: return Rid

	Introduction
	Searchable Symmetric Encryption
	Verifiable and Fault-tolerant DSSE
	Our Contribution
	A Comparative Study with Popular Verifiable DSSE Schemes

	Preliminaries
	Cryptographic Primitives
	Verifiable DSSE Scheme
	Forward and Backward Privacy

	FVS1: The Basic Construction
	Specification
	Security Results
	Limitations of FVS1

	FVS2: An Efficient Fault-Tolerant Verifiable DSSE
	Specification
	Security Results

	Security Analysis
	Proof of Theorem 1 and Theorem 3
	Proof of Theorem 2 and 4

	Conclusion
	References
	Understanding the Leakage Profile for FVS2
	Proof of Theorem 1 - A Brief Sketch
	Description of the Simulator SFVS2

