HELP: Everlasting Privacy through Server-Aided Randomness
Authors
Abstract
Everlasting (EL) privacy offers an attractive solution to the Store-Now-Decrypt-Later (SNDL) problem, where future increases in the attacker's capability could break systems which are believed to be secure today. Instead of requiring full information-theoretic security, everlasting privacy allows computationally-secure transmissions of ephemeral secrets, which are only "effective" for a limited periods of time, after which their compromise is provably useless for the SNDL attacker.
In this work we revisit such everlasting privacy model of Dodis and Yeo (ITC'21), which we call Hypervisor EverLasting Privacy (HELP). HELP is a novel architecture for generating shared randomness using a network of semi-trusted servers (or "hypervisors"), trading the need to store/distribute large shared secrets with the assumptions that it is hard to: (a) simultaneously compromise too many publicly accessible ad-hoc servers; and (b) break a computationally-secure encryption scheme very quickly. While Dodis and Yeo presented good HELP solutions in the asymptotic sense, their solutions were concretely expensive and used heavy tools (like large finite fields or gigantic Toeplitz matrices).
We abstract and generalize the HELP architecture to allow for more efficient instantiations, and construct several concretely efficient HELP solutions. Our solutions use elementary cryptographic operations, such as hashing and message authentication. We also prove a very strong composition theorem showing that our EL architecture can use any message transmission method which is computationally-secure in the Universal Composability (UC) framework. This is the first positive composition result for everlasting privacy, which was otherwise known to suffer from many "non-composition" results (Müller-Quade and Unruh; J of Cryptology'10).
References
How to cite
Yevgeniy Dodis, Jiaxin Guan, Peter Hall, and Alison Lin, HELP: Everlasting Privacy through Server-Aided Randomness. IACR Communications in Cryptology, vol. 1, no. 4, Jan 13, 2025, doi: 10.62056/a3w7tr-10k.
License
Copyright is held by the author(s)
This work is licensed under a Creative Commons Attribution (CC BY) license.