
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 4, 40 pages.

https://doi.org/10.62056/ab3wa0l5vt
Check for updates

A New Paradigm for Server-Aided MPC
Alessandra Scafuro and Tanner Verbera

North Carolina State University, Computer Science, Raleigh, USA

Abstract. The server-aided model for multiparty computation (MPC) was introduced
to capture a real-world scenario where clients wish to off-load the heavy computation
of MPC protocols to dedicated servers. A rich body of work has studied various trade-
offs between security guarantees (e.g., semi-honest vs malicious), trust assumptions
(e.g., the threshold on corrupted servers), and efficiency.
However, all existing works make the assumption that all clients must agree on
employing the same servers, and accept the same corruption threshold. In this paper,
we challenge this assumption and introduce a new paradigm for server-aided MPC,
where each client can choose their own set of servers and their own threshold of
corrupted servers. In this new model, the privacy of each client is guaranteed as long
as their own threshold is satisfied, regardless of the other servers/clients. We call
this paradigm per-party private server-aided MPC to highlight both a security and
efficiency guarantee: (1) per-party privacy, which means that each party gets their
own privacy guarantees that depend on their own choice of the servers; (2) per-party
complexity, which means that each party only needs to communicate with their chosen
servers. Our primary contribution is a new theoretical framework for server-aided
MPC. We provide two protocols to show feasibility, but leave it as a future work to
investigate protocols that focus on concrete efficiency.
Keywords: MPC · Paradigms

1 Introduction
Multiparty Computation: Secure multiparty computation (MPC) is a cryptographic tech-
nique that allows a set of parties P = {P1, . . . , Pn}, where each party Pi holds secret input
xi, to compute some agreed upon function f(x1, ..., xn) without revealing their inputs
to each other. This problem was first addressed by Yao [Yao86] for the two party case,
using what are now called garbled circuits, and Goldreich, Micali, and Wigderson with the
GMW protocol [GMW87] for the multiparty case. In these works, the communication and
computation complexity of each party is proportional to the complexity of the circuit. In
the case of Yao’s garbled circuits, one party must garble the entire circuit and one must
evaluate the resulting garbled circuit which allows for computation in constant rounds.
GMW is based on secret sharing that allows for local addition, but requires parties to
interact for multiplication, meaning the number of rounds of communication is dependent
on the number of multiplication gates in the circuit. Beaver, Micali, and Rogaway [BMR90]
built on Yao’s garbled circuits to extend it to the multiparty setting. This allowed multiple
parties to compute a circuit in constant rounds, whereas Yao’s approach only worked for
two parties. However, the communication complexity still depends on the circuit.

Because the communication required depends on the complexity of the circuit, compli-
cated functions could become impractical to compute if parties have modest processing
power and bandwidth. The natural next step was to develop protocols that allow multiple

E-mail: ascafur@ncsu.edu (Alessandra Scafuro), tverber@ncsu.edu (Tanner Verber)
aAlessandra Scafuro and Tanner Verber are supported by a research grant from Horizen Labs

This work is licensed under a “CC BY 4.0” license.
Received: 2024-07-09 Accepted: 2024-12-03

https://doi.org/10.62056/ab3wa0l5vt
https://crossmark.crossref.org/dialog/?doi=10.62056/ab3wa0l5vt&domain=pdf&date_stamp=2025-01-03
mailto:ascafur@ncsu.edu
mailto:tverber@ncsu.edu
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Per-Party MPC

parties to securely compute a circuit without requiring communication proportional to the
circuit. To reduce this burden on the parties who hold the input, server-aided MPC was
introduced.

Server-aided Multiparty Computation: Server-aided MPC is a term coined by Kamara,
Mohassel, and Raykova [KMR11] and refers to protocols that make use of a designated set
of servers to perform most of the communication and computation on behalf of the input
holders. The model was introduced to reduce the work of the input holders, who are often
referred to as the clients.

Server-aided MPC has been shown using any number of designated servers, from a
single server (e.g., [FKN94, HLP11, KMR11, KMR12, LTV12]) to multiple servers (e.g.,
[DI05,MGBF14,JNO14,GLO+21]), with varying levels of savings for client computation
and/or communication, and varying levels of security guarantees (we describe these works at
greater length in Related Work (Section 1.2)). Very recently, server-aided MPC has gained
renewed attention for its realistic use case of privacy-preserving machine learning (PPML).
This is because machine learning (ML) often improves with larger training data sets; hence
clients may want to pool their, potentially large, data sets to build a shared and more robust
model. Server-aided MPC protocols that are highly optimized for ML computations have
been shown with two [MZ17,MTZC21], three [MR18,CCPS19,PS20,TKTW21,KPPS21],
and four [BCPS20,KPPS21] servers, while tolerating at most one corrupt server.

Drawbacks of Current Server-Aided Paradigm. All existing work that leverages
server-aided MPC operates under the assumption that all clients agree on the same set
of servers1. Further, clients must have the same corruption threshold. By corruption
threshold, we mean the number of corrupt servers the protocol can tolerate without the
clients losing their input privacy. For example, the clients might pick three servers and
tolerate one being corrupt. If two of the three servers are corrupt, then the adversary
would be able to learn the input of all honest clients. The three chosen servers, and the
threshold of one, would be something that the clients need to agree on before they can
begin executing the protocol.

Forcing clients to agree on a set of servers and a corruption threshold has two primary
drawbacks:

• Diminished Practicality: All clients must agree on the same set of dedicated
servers. This may be difficult to achieve in the real world as clients may have existing
contracts with different sets of servers. For some clients, this would mean sending
their (encoded) data to a new server in order to participate in the protocol rather
than hiring the server that already holds their data. Requiring the client to move
their data to a new server may dissuade them from participating in the MPC protocol
altogether.

• Everyone or no-one privacy: If the number of corrupt servers surpasses the
fixed threshold, then all clients lose their input privacy. If most clients trust the
chosen servers, they may set the corruption threshold low. A client who has little
trust in the servers then would have to either agree with this low threshold and risk
losing their input privacy or opt out of participating in the protocol. This again can
dissuade a particularly distrustful client, or a client with particularly sensitive data,
from participating in the MPC protocol.

This paper aims to overcome these drawbacks with a new approach for server-aided
MPC. In our new paradigm, clients can choose their own set of servers and their own
threshold of how many servers can misbehave, and have the guarantee that as long as their

1Some recent models [CGG+21,GHK+21] allow the set to change over time, but all clients still use the
same sets of servers throughout computation.

Alessandra Scafuro, Tanner Verber 3

own assumption is correct, their input is private, regardless of what other clients chose
and what other servers did. We stress that our new paradigm focuses on per-party privacy
and efficiency. Correctness of the result might not guaranteed if other servers misbehave
(since they can change the input of the clients they represent).

1.1 A New Paradigm: Per-party Private Server-aided MPC
We propose a new paradigm for server-aided MPC called per-party private server-aided
MPC. We consider a setting in which each of the n clients Ci ∈ C chooses their own set of
mi servers SCi ∈ S and their own threshold 1 ≤ τi < mi of how many corrupt servers to
tolerate. Ci will interact only with their own chosen servers SCi

. Further, as long as the
number of malicious servers in SCi

is at most τi, then Ci’s input remains private. If the
malicious servers in SCi

surpass this threshold, however, they will learn Ci’s private input
and will be able to maliciously replace it with an input of their choosing. We do note that
if a single client’s corruption threshold is surpassed, the correctness of the output could
be compromised for all clients, but the privacy of clients who did not surpass their own
threshold will hold, beyond what can be inferred through the output of the function.

Our new paradigm targets two specific properties: per-party efficiency and per-party
privacy.

• Per-Party Efficiency: We require that each client communicate only with their
chosen set of servers. A client should be able to learn the output of the MPC protocol
without talking to any other client, or any other server that they have not specifically
chosen to work on their behalf 2.

• Per-party Privacy for Clients: The privacy of a client’s input is guaranteed
as long as the number of corrupt servers in their chosen set is below their chosen
threshold, aside from what can be learned through the function output. This means
that even if all other clients chose exclusively malicious servers, an honest client
who was able to stay below their threshold of corrupt servers will retain their input
privacy.
For example, a privacy-oriented client may choose to hire m servers with a threshold
of m − 1, trusting the minimum number of servers possible (concretely, the most
conservative might choose to hire only 2 servers and trust only 1). While a different
client, who is more focused on robustness (i.e., does not want to lose their data) may
choose many servers m and set a more relaxed threshold of m/3 (concretely, a client
might choose 5 servers and have their tolerated threshold to be at most 2).

To better understand the per-party private server-aided setting, consider the following
example. Suppose there are three clients, Alice, Bob, and Charlie, who want to perform
MPC but cannot agree on a set of servers or a threshold, so they use our model. Alice
chooses 2 servers, AWS and Azure, with a threshold of 1, Bob chooses Google, IBM,
and Red Hat with threshold 2, and Charlie chooses Google, Azure, and Oracle with a
threshold of 1. Each client will communicate only with their own servers (i.e., Alice only
communicates with AWS and Azure) and only sends input and receives output. Even if
Google, IBM, Red Hat, Oracle, and Azure are all corrupt, Alice’s input will still remain
private, aside from what Google, IBM, Red Hat, Oracle, and Azure together could learn
through the output of the function, as she has not surpassed her threshold. This is true
even though both Bob and Charlie will lose their input privacy.
Contributions Our contributions can be summarized as follows:

2As we explain in the related work section (Section 1.2), this efficiency requirement rules out the
possibility of hiring one server only.

4 Per-Party MPC

• Per-party privacy paradigm: We formally define our new paradigm in the Universally
Composable Framework [Can01], through an ideal functionality FPer-Party, presented
in Section 3 (Figure 3). In this paradigm, we capture a setting where a client’s
privacy depends only on their own choices. As long as a client has chosen less than
their threshold of corrupt servers, their input remains private. Further, a client only
communicates with their chosen servers in our protocol.
Our new paradigm generalizes standard server-aided MPC. If each client chooses the
same set of servers and the same threshold, then this becomes standard server-aided;
a single set of dedicated servers performing computation on behalf of the clients.
However, the clients will still only communicate with the servers and never the other
clients.

• Feasibility result: We provide two natural approaches to building a per-party private
and efficient server-aided MPC protocol in Section 4. The first protocol is based
on general MPC, and the second is a slightly more specific construction based on
FHE. Both protocols are built based off of the same idea: clients share their input
with their chosen servers via verifiable secret sharing, and the servers perform secure
computation among themselves.
Both approaches make use of verifiable secret sharing (VSS) and signatures. These
primitives allow a client to share their input securely with their chosen set of servers,
in a publicly verifiable manner. VSS allows a client to share their input securely
with their chosen set of servers, and the signatures allow servers to confirm that a
particular share has not been altered. Hence, in both our protocols the function f is
augmented with an input validation phase, where the signatures on the VSS shares
are validated and the shares are then reconstructed, and an output sharing phase,
where the output of f is secret shared again. We denote this augmented function by
g.
The first protocol ΠPer-Party (Figure 5) uses an underlying (m, m − 1) UC-secure
MPC protocol Πg, which is executed by the m servers only. The servers, upon
receiving their shares, use Πg to securely reconstruct the input of the clients using
the received shares. Then, the reconstructed inputs are used to compute the function
f(x1, . . . , xn) and share the output. At the end of the execution of Πg, each server
receives a share of their client’s output. These output shares are then sent to the
clients for reconstruction.
Note that we need the MPC protocol to be secure for (m, m − 1) corruptions. A
client’s privacy must depend only on their own choices, therefore we need that the
computation performed by the servers is secure even if a client has chosen only one
honest server (if they have chosen the maximum threshold) and all other servers
chosen by all other clients are corrupt.
In the second protocol ΠF HE

Per-Party (Figure 14), instead of running a general MPC
protocol, the servers use FHE. Therefore, ΠF HE

Per-Party can be thought of as an instanti-
ation of ΠPer-Party where the general MPC protocol is replaced by FHE. The servers
first collaboratively execute the key generation algorithm of a fully homomorphic
encryption (FHE) scheme to receive the public key and a share of the secret key.
This is done using an (m, m − 1) UC-secure MPC protocol ΠKG. They are then
able to encrypt their shares and broadcast the ciphertext to all other servers. Upon
receiving all ciphertexts, a computing server then homomorphically evaluates the
function g. After the homomorphic computation, the computing server sends the
output ciphertexts to all servers, along with a succinct non-interactive argument
(SNARG) that the computation was performed honestly. The servers then use
another (m, m− 1) UC-secure MPC protocol ΠDec to decrypt the ciphertexts and
obtain output shares, which are sent to their respective clients.

Alessandra Scafuro, Tanner Verber 5

In both protocols, a client is able to choose their own threshold using the parameters
of the VSS scheme. Further, a client only sends shares to their servers and receives
shares. Therefore, they need only communicate with their own servers.
Further, in both of our provided protocols, the communication complexity of the
clients is independent of the function. The computation of a client is limited to only
sharing their input and reconstructing their output. Therefore, a client who wishes
to further reduce their workload may opt for a lower threshold.

The two protocols offer trade-offs of communication and computation complexity.
Protocol ΠPer-Party, has high communication overhead for all servers but since it is based
on an MPC-protocol, involves cryptographic primitives that are much faster than FHE
evaluations (e.g. MPC protocols such as “SPDZ” [DPSZ12] involves mainly symmetric-key
primitives). ΠPer-Party should be preferred when all servers can be online and actively
participate in the protocol.

Protocol ΠF HE
Per-Party off-loads the burden of the computation on one computing server

only, who evaluates the function homomorphically. The other servers only engage in the
MPC for key generation and ciphertext decryption, which are independent of the function.
The evaluator, however, must additionally compute a SNARG showing correct evaluation.
This SNARG is computed on the input and output ciphertexts, not within the FHE, but is
dependent on the function. Because the majority of the work is offloaded to an evaluating
server, ΠF HE

Per-Party should be preferred when not all servers can be online for the entire
computation and/or have varying levels of computational ability.

Both protocols, however, are costly. In both cases, we have input that is shared under
VSS being reconstructed, a function that is being computed, and output to be shared
under VSS, all performed either in MPC or FHE. The primary challenge in constructing
efficient Per-Party private protocols is that a client must assume that all servers chosen by
any other client may be malicious. This, along with tolerating an all but one threshold for
the client’s own set, leads to the requirement that the inner protocol assume all but one
servers are malicious.

1.2 Related Work
Server-Aided MPC Server-aided MPC was introduced to reduce the work done by
the clients by offloading the work to a set of designated servers. There are two primary
approaches to server-aided MPC: single server (e.g., [FKN94, KMR11, HLP11, KMR12,
CKKC13,CMTB16,BPP+17,MOR16]), and multi-servers (e.g., [MZ17,MR18,CCPS19,
BCPS20,PS20,WGC19]).

Most existing single-server protocols either require clients to do work proportional to
the circuit [FKN94, HLP11], require the clients to interact with one another [KMR11,
CMTB16, BPP+17], or require communication between the clients and server during
execution [CKKC13]. In contrast, we provide a protocol in which the clients connect only
to their servers and only to provide input and to learn output, do not need to interact
with each other, and the input of the clients remains private as long as the number of
corrupt servers they chose is below their chosen threshold.

The server-aided model has been heavily employed for performing machine learning
training and inference in a privacy-preserving manner. In Privacy-Preserving Machine
Learning (PPML) clients with potentially very large datasets outsource the training and/or
inference of ML models to a designated set of servers. There are server-aided protocols
for private logistic and linear regression [MZ17,MR18,CCPS19,BCPS20,PS20,KPPS21],
support vector machines [CCPS19], neural networks [MZ17, MR18, BLCW19, BCPS20,
PS20,TKTW21,KPPS21], decision trees [MTZC21]. The protocols to build these models
are built on a variety of cryptographic techniques. ABY3 [MR18] provided a general
framework for ML in the three-server setting built on secret sharing and garbled circuits.

6 Per-Party MPC

BLAZE [PS20] introduced a three-server protocol built on secret sharing that makes use
of an input-dependent pre-processing phase to support an efficient online phase. Lastly,
Ma, Zhao, and Chow [MTZC21] present a protocol in the two-server model, that allows
clients to outsource decision tree inference to two servers using secret sharing and garbled
circuits.

In all such works, the clients must agree on the same group of servers and accept the
corruption threshold fixed by the protocol.

MPC with Dynamic Parties A recent line of research in MPC is in allowing dynamic
sets of parties to participate in the execution of the protocol. Damgård, Escudero, and
Polychroniadou model this in Phoenix [DEP23], where the adversary can force honest
parties offline for some amount of the computation. These parties are later able to rejoin
the protocol without being considered malicious, and the protocol is able to continue
execution without them. With Phoenix, Damgård, Escudero, and Polychroniadou model
the realistic setting where honest parties may fail and be put offline for some amount of
time.

In Fluid MPC [CGG+21] the servers are allowed to participate in subsets of execution
rather than the entire protocol. This is taken even further with maximal fluidity, where
parties need only stay for one round of communication. Rachuri and Scholl [RS22]
combined Fluid MPC and SPDZ to create a fluid MPC protocol that is secure against a
malicious adversary controlling all but one of the parties involved. Bienstock, Escudero,
and Polychroniadou [BEP23] presented Fluid MPC protocols that require only O(n)
communication per-gate, improving over the existing protocols requiring O(n2) where n is
the number of parties online in a given round. David et al. [DDG+23] consider a layered
MPC model, where parties can be organized as a layered graph and parties communicate
only with the next layer. David et al. extend the results of BGW [BGW88] and achieve
perfect full security in the layered setting with a corruption threshold of n/3.

Finally, YOSO models dynamic participation in a slightly different way. YOSO (“you
only speak once”) [GHK+21] protocols are protocols where parties only speak once during
their participation in the protocol. A maximally fluid MPC protocol [CGG+21] is then
considered a YOSO protocol if each set of parties in each round is independent.

In each of these works, clients still use the same set of servers throughout computation,
differing from our protocols.

Differing Opinions on Set Ups The work of [GGJS11] and [GO14] also investigate
the question of what happens if parties do not have the same belief about trustworthy
servers.

Garg, Jain, and Sahai [GGJS11] show how to do MPC when the different parties
involved in the protocol have different beliefs about which set up is to be trusted (e.g.,
common reference string (CRS), random oracle [BR93], or token hardware [Kat07]), and
a party’s privacy is guaranteed if their beliefs hold true. Groth and Ostrovsky [GO14]
pose a similar question, but for the cases in which there are multiple CRSs and not all of
them are trusted by all the participants, and show how MPC can be done when only a
majority of them were computed honestly. Lastly, recent works have studied the setting
where parties are assigned a trust grade [SH21] or weight [GJM+23]. That is, certain
parties are deemed more likely to be honest than others, and privacy depends on the sum
of the weight of the corrupted parties being below some level. As with MPC with dynamic
parties, these works are not directly related to our work but are worth considering when
discussing how the setting of MPC has grown.

MPC via FHE. Many works explored the using homomorphic encryption to reduce the
computation overhead of clients in secure computation [AJL+12,LTV12,CKL21]. FHE

Alessandra Scafuro, Tanner Verber 7

allows the clients to encrypt their inputs and send them to a server, who performs the
computation on their behalf. The main challenge here is to establish the key for FHE in a
secure manner. Multi-key FHE was introduced in [LTV12,AJJM20] to allow servers to
operate on ciphertexts computed under different keys. Such approaches are not applicable
in our setting where we require that clients only speak with their own set of servers (and
not other clients/servers).

2 Preliminaries
In the following subsections, we provide background on the building blocks used to construct
our protocols.

2.1 Secure Multiparty Computation (MPC)
Secure multiparty computation (MPC) protocols allow a group of n parties C = {C1, . . . , Cn},
each with their own private inputs xi, to compute some function f(x1, . . . , xn) = (y1, . . . , yn)
such that each party learns only their output yi. An (n, t) MPC protocol is one in which
there are n parties providing inputs and t corrupt parties are tolerated.

Security of an MPC protocol is shown through the real world-ideal world paradigm [Can01,
Lin17]. In this paradigm, there exists an environment Z controlling the inputs of the
corrupt parties. In the real world, the MPC protocol Π is performed as it would be in
practice; there are clients and servers, some of them corrupted by a PPT adversary A.

In the ideal world, there is an ideal functionality Ff that is a trusted third party for
computing f(x1, . . . , xn). There is an ideal PPT adversary, SIM, simulating the protocol
for the corrupt parties. The goal of the simulator is to extract the inputs of the corrupt
parties to provide to the ideal functionality, ensure the corrupt parties receive the correct
output, and simulate the protocol such that the environment cannot distinguish between a
real and ideal execution.

Let Π be an MPC protocol, Ff be an ideal functionality for computing f : ({0, 1}λ)n →
({0, 1}λ)n, and negl(λ) be a negligible function in the security parameter λ. Define the
security of an MPC protocol as follows:

Definition 1. Let n ∈ N, Ff be an ideal functionality, and Π be an n-party protocol.
We say that Π securely realizes Ff if for every real-world adversary A, there exists a
PPT adversary SIM in the ideal world, controlling the same parties, such that for any
environment Z

REALΠ,A,Z ≈ IDEALFf ,SIM,Z

2.2 Verifiable Secret Sharing (VSS)
Verifiable secret sharing (VSS) allows a dealer C to choose a threshold τ and send shares
of a secret value s to a set of m parties S = {S1, . . . , Sm} such that no subset of parties
P ⊆ S ∪ C with |P| ≤ τ < m can recover the secret. Secret sharing becomes verifiable
when we can guarantee that the shares do encode some secret, regardless of whether the
dealer was malicious. That is, given a set of more than τ shares, reconstruction will not
fail.

VSS is used to distribute secrets in the presence of a malicious dealer. Verifying the
shares allows the parties in S to ensure that they were not sent an invalid share by the
malicious dealer. A VSS scheme consists of two algorithms:

• Share(s, τ, m) : On input a secret s, a threshold τ , and the number of parties to
receive shares m, this algorithm outputs m shares (s1, . . . , sm)

8 Per-Party MPC

Sig-ForgeA,Σ(λ)

1. (pkΣ, skΣ) = Σ.Gen(1λ).

2. (m, σ)← AΣ.Signsk(·)(pk) let Q be the set of queries A asked to the oracle.

3. If 1 = Σ.Verify(pkΣ, m, σ) and m /∈ Q output 1; otherwise output 0.

Figure 1: EUF-CMA Game for Σ

• Reconst(s1, . . . , sτ+1): On input a set of τ + 1 shares, this algorithm outputs the
secret s

We give a definition of VSS [CCP22] in Definition 2.

Definition 2. Let VSS = (Share, Reconst) be a set of protocols for a dealer C to distribute
a secret s to m parties S such that no subset of parties holding at most τ < m shares
can recover the original secret. We say VSS is a Verifiable Secret Sharing Scheme if it
satisfies the following properties in the presence of malicious adversary A controlling less
than τ + 1 parties:

• Privacy: If C is honest, then the view of A after Share contains no a posteriori
information about the original secret s

• Correctness: If C is honest, then at the end of Share the parties S each hold shares
of s. With these shares, any subset of parties holding more than τ valid shares can
use Reconst to retrieve the original secret s.

• Committed: If C is corrupt, then at the end of Share the parties S each hold shares
of some value s′, potentially different from s. With these shares, any subset of parties
holding more than τ valid shares can use Reconst to retrieve the secret s′.

2.3 Digital Signatures
Digital signatures allow a party C to sign a message, such that any other party, given
the signer’s verification key, can verify that the message came from the client. A digital
signature scheme Σ = (Gen, Sign, Verify) for a message space M is a tuple of three PPT
algorithms:

• Gen(1λ): The key generation algorithm that takes 1λ as input and outputs a pair of
public and private keys (pkΣ, skΣ).

• Sign(skΣ, m): The signing algorithm that takes a private key skΣ and a message m
from the message space M as input and outputs a signature σ.

• Verify(pkΣ, σ, m): The verification algorithm that takes a public key pkΣ, a message
m, and a signature σ as input and outputs 1 if a valid signature and 0 if an invalid
signature.

We present the existential unforgeability under chosen message attacks game Sig-ForgeA,Σ
in Figure 1 to capture unforgeability.

We give the definition of unforgeable signatures [KL14] in Definition 3.

Alessandra Scafuro, Tanner Verber 9

Definition 3. A signature scheme Σ = (Gen, Sign, Verify) is existentially unforgeable
under adaptive chosen-message attack if for all PPT adversaries A there exists a
negligible function negl such that

Pr[Sig-ForgeA,Σ(λ) = 1] ≤ negl(λ)

Further, Σ is correct if for (pkΣ, skΣ) = Σ.Gen(1λ), m ∈M , it holds that 1 = Σ.Verify(pkΣ, m,
Σ.Sign(skΣ, m)) except with a negligible probability.

2.4 Succinct Non-Interactive Arguments (SNARG)
A succinct non-interactive argument (SNARG) [Mic94,BCC+17,KPY19,CCH+19,JKKZ21,
CJJ21, HJKS22] allows a prover P to generate a proof π for a statement stmt using a
witness w such that any party given (π, stmt) can verify that (stmt, w) ∈ R for some
relation R. In this work, we consider SNARGs for relations in P . Further, to be succinct,
the size of the proof is sublinear in the size of w. A SNARG consists of a pair of algorithms:

• SetUp(1λ): On input the security parameter λ, this algorithm outputs a common
reference string crs

• Prove(crs, stmt, w): On input a statement stmt and a witness w, this algorithm
outputs a proof π

• Verify(crs, π, stmt): On input a statement stmt and a proof π, this algorithm outputs
0 or 1

We give the formal definition of a SNARG in Definition 4 [HJKS22].

Definition 4. Let R be an NP relation. SNARG = (SetUp, Prove, Verify) is a succinct
non-interactive argument if

• Completeness: For any statement stmt and witness w such that (stmt, w) ∈ R it
holds that

Pr

[
SNARG.Verify(crs, π, stmt) = 1

∣∣∣∣ crs← SNARG.SetUp(1λ)
SNARG.Prove(crs, stmt, w) = π

]
= 1

• Soundness: There exists a negligible function negl such that for any PPT adversary
A it holds that

Pr

[
(stmt, w) /∈ R

∣∣∣∣ crs← SNARG.SetUp(1λ)
(stmt, π)← A(crs)

SNARG.Verify(crs, stmt, π) = 1

]
≤ negl(λ)

for any witness w

2.5 Fully Homomorphic Encryption (FHE)
A fully homomorphic encryption (FHE) scheme [Gen09] is an encryption scheme that
allows for any circuit of any depth to be evaluated on the ciphertexts. An FHE scheme
FHE = (KeyGen, Enc, Eval, Dec) is a tuple of algorithms defined as follows:

• KeyGen(1λ ; r): On input the security parameter λ, this algorithm outputs a public
key pk, an evaluation key evk, and a secret key sk. r is the implicit randomness
used in key generation

10 Per-Party MPC

PubKcpa
A,FHE(λ)

1. (pk, evk, sk) = FHE.KeyGen(1λ).

2. Send (pk, evk) to A.

3. Receive equal length messages m0, m1 from A

4. Choose a uniform bit b
$←− {0, 1}

4.1 Compute ct∗ = FHE.Enc(pk, mb)
4.2 Send ct∗ to A

5. Upon receipt of bit b′ from A, if b′ = b output 1, else output 0

Figure 2: IND-CPA game for FHE

• Enc(pk, m): On input the public key pk and a message m, this algorithm outputs a
ciphertext ct

• Eval(evk, f, {ct1, . . . , ctn}): On input the evaluation key evk, a function f , and a set
of ciphertexts {ct1, . . . , ctn}, this function outputs a ciphertext ct. Execution im-
plicitly results in trans, the transcript of computation, consisting of the intermediate
states of computation

• Dec(sk, ct): On input the secret key sk and a ciphertext ct, this algorithm outputs
the value m∗

First, we give the CPA indistinguishability expirement [KL14] in Figure 2.
We give the formal definition of CPA security in Definition 5 [KL14] and of full

homomorphism in Definition 6 [BV14].

Definition 5. An encryption scheme FHE = (KeyGen, Enc, Eval, Dec) is IND-CPA secure
if for all PPT adversaries A there exists a negligible function negl such that

Pr[PubKcpa
A,FHE(λ) = 1] ≤ 1/2 + negl(λ)

Definition 6. An encryption scheme FHE = (KeyGen, Enc, Eval, Dec) is Fully Homo-
morphic if for any function f : {{0, 1}λ}n → {0, 1}∗ for all n ∈ N

Pr[FHE.Dec(sk, FHE.Eval(evk, f, {ct1, . . . , ctn})) ̸= f(x1, . . . , xn)] ≤ negl(λ)

Where (pk, evk, sk) = FHE.KeyGen(1λ) and cti = FHE.Enc(pk, xi). Further, there
exists a polynomial p(λ) such that the output of FHE.Eval(evk, f, {ct1, . . . , ctn}) is at
most p(λ) bits long.

3 Definition of Per-Party Private Server-Aided MPC
The following section defines our execution environment followed by a definition of our
new paradigm through an ideal functionality. In this paradigm, the privacy of a client’s
input depends only on the servers chosen by that client and is not impacted by the other
clients, aside from what can be learned through the output of the function. Further, we

Alessandra Scafuro, Tanner Verber 11

require that clients speak only to the servers they have chosen. While we allow clients to
choose their own servers, we do require that any server that wishes to participate (and
therefore is eligible to be chosen by a client) is part of a public registry Sreg.

We refer to a single client as Ci and the set of n clients as C. A single server is referred
to as both Sk and Si,j . We use the latter to identify the server by their client and their
identity related to that client (i.e. Si,j is the jth server in client i’s set SCi). The former
is used when referring to a server in a setting in which the client or clients who chose it
are either not known or not relevant. The set of m servers is denoted by S ⊆ Sreg, where
Sreg is the set of servers that can be chosen by a client, and the set of mi servers chosen
by a specific client Ci is referred to by SCi

.
When referring to a client or server that is known to be malicious, we use a ∗. For

example, a malicious client and server would be referred to C∗
i and S∗

k respectively.
Similarly, we use ∗ to mark a value that could have been maliciously modified. For
example, a server S∗

k that receives a share si,j could modify it. So when this server sends
the share to another party, we denote it as s∗

i,j .
Real World Execution. We have a set of n clients C and a set of m servers S. Each
client Ci ∈ C picks its own set of mi servers SCi ∈ S ⊆ Sreg, such that 1 ≤ i ≤ n and
1 < mi ≤ m. The servers in SCi are the only parties (meaning clients or servers) that
Ci will communicate with. Ci also chooses its own threshold 1 ≤ τi < mi, the maximum
number of corrupted servers tolerated in SCi

.
Let A be the adversary in the real world controlling a subset of the clients CM ⊂ C and

servers SM ⊂ S, where the clients in CM and servers in SM are chosen by the environment
Z.
Ideal World Execution. In the ideal world, we have an ideal functionality FPer-Party
(Figure 3) for computing the function f(x1, ..., xn) = (y1, ..., yn) with per-party privacy.
Let SIM be the ideal adversary controlling a subset of clients CM ⊂ C and servers SM ⊂ S,
again with these subsets chosen by the environment Z.

In this functionality, the ideal world adversary SIM notifies FPer-Party which clients
and servers are corrupt. Then, each client Ci informs FPer-Party of which servers SCi they
have chosen, and the threshold τi of corruption that they will tolerate. Next, there is
an input phase where each client Ci sends their input xi to the ideal functionality. For
any client Ci who has chosen more malicious servers than their threshold can tolerate,
FPer-Party sends the client input xi to SIM, who replies with a potentially maliciously
altered input x∗

i to be used on Ci’s behalf during computation.
A similar process occurs in the output phase, where the output yi of a client Ci who

has chosen more than their threshold of corrupt servers is sent to SIM and replaced with
a maliciously altered output y∗

i , which may equal ⊥ if the corrupt servers decide to not
provide output.

This is how FPer-Party captures the per-party private paradigm. The execution of the
protocol continues in the event that an honest client loses their input privacy, and, further,
the adversary is now given control over that client’s input and output. Specifically, if a
client chooses too many malicious servers, the adversary not only learns the input and
output of this client, but they may maliciously change the input and output, or refuse to
provide input or output all together.

The formal description of FPer-Party can be found in Figure 3.

4 Protocols for Per-Party Private Server-Aided MPC
In this section, we present our two protocols: ΠPer-Party (Figure 5), where the servers use
an (m, m− 1) UC-secure MPC protocol to compute the function and ΠF HE

Per-Party (Figure 14),
where the servers compute the function using FHE, and use (m, m− 1) UC-secure MPC
to generate keys for FHE and decrypt the ciphertexts.

12 Per-Party MPC

Functionality FPer-Party

This functionality has access to the public server registry Sreg, and initializes the mapping
of clients to servers Map = ∅

Set Up:

1. SIM (CORRUPTIONS, CM , SM)−−−−−−−−−−−−−−→ FPer-Party

2. SIM
(CLIENT-SET, C∗

i , SC∗
i

, τi)
−−−−−−−−−−−−−−−−→ FPer-Party for each malicious client C∗

i

2.1 Set Map[(C∗
i , τi)] = SC∗

i

3. Ci

(CLIENT-SET, Ci, SCi
, τi)

−−−−−−−−−−−−−−−→ FPer-Party for each honest client Ci

3.1 Set Map[(Ci, τi)] = SCi

4. If SCi
⊈ Sreg, for any Ci output ⊥ and abort. Else continue

5. FPer-Party
(MAPPING, Map)−−−−−−−−−−→ SIM

Input:

1. Ci
(CLIENT-INPUT, Ci, xi)−−−−−−−−−−−−−→ FPer-Party For each honest Ci

2. FPer-Party
((CLIENT-INPUT, Ci, xi), ...)−−−−−−−−−−−−−−−−−→ SIM For each Ci such that |SCi

∩ SM | > τi

Computation:

1. SIM
(RUN,(CLIENT-INPUT,C∗

i ,xi),
..., (MAL-INPUT,Cj ,x∗

i), ...)−−−−−−−−−−−−−−−−→ FPer-Party for each malicious C∗
i and honest Cj such

that |SCj
∩ SM | > τj

1.1 Compute f(x1, ..., xn) = (y1, ..., yn)

2. Else if SIM (RUN, Abort)−−−−−−−→ FPer-Party

2.1 Output ⊥ and abort

Output:

1. FPer-Party
((CLIENT-OUTPUT, Ci, yi), ...)−−−−−−−−−−−−−−−−−→ SIM for each Ci such that |SCi

∩ SM | > τi

2. FPer-Party
((CLIENT-OUTPUT, C∗

i , yi), ...)−−−−−−−−−−−−−−−−−−→ SIM For each malicious C∗
i

3. SIM ((MAL-OUTPUT, Ci, y∗
i), ...)−−−−−−−−−−−−−−−−→ FPer-Party for each Ci such that |SCi

∩ SM | > τi

3.1 Set yi = y∗
i for each y∗

i received

4. FPer-Party
(CLIENT-OUTPUT, Ci, yi)−−−−−−−−−−−−−−→ Ci for each honest Ci

Figure 3: Ideal Functionality for Per-Party Server-Aided MPC of Function f(x1, ..., xn)

Alessandra Scafuro, Tanner Verber 13

Function g

• Input: VSS = (Share, Reconst), a verifiable secret sharing
scheme. Σ = (Gen, Sign, Verify), a signature scheme. Ik =
{(s1,1σ1,1, pkΣ

1,1), ..., (sn,mn
, σn,mn

, pkΣ
n,mn

)}, the set of shares and signatures
where (si,j , σi,j , pkΣ

i) is held by Sk iff Sk = Si,j ∈ SCi . Map the mapping of clients
to servers

• Output: Ok = {s′
1,1, ...s′

n,mn
}, the set of shares where s′

i,j is held by Sk iff Sk =
Si,j ∈ SCi

1. For 1 ≤ i ≤ n

1.1 Let pkΣ
i be the verification key submitted by more than τi of the servers in SCi

1.1.1 If no such set exists, set xi = 0 and skip to next iteration
1.2 Set Ri = ∅
1.3 If Σ.Verify(pkΣ

i , σi,j , (si,j , Ci, Si,j) = 1, set Ri = Ri ∪ si,j for all j ∈ [mi]
1.4 If |Ri| ≤ τi, set xi = 0
1.5 Else set xi = VSS.Reconst(Ri)

2. (y1, ..., yn) = f(x1, ..., xn)

3. For 1 ≤ i ≤ n

3.1 (s′
i,1, . . . , s′

i,mi
) = VSS.Share(yi, τi, mi)

4. For 1 ≤ k ≤ m

4.1 Ok = (s′
i,j , ...) for i, j such that Sk = Si,j ∈ SCi

Figure 4: g The Function for Computing f on shares

Before describing our protocols, we introduce the function g(VSS, Σ, I1, ..., Im,
Map) = (O1, ...,Om) (Figure 4) where Ij and Oj contain the input/output shares of
server Sj respectively. g securely reconstructs shares, computes the function f(x1, ..., xn) =
(y1, ..., yn), and outputs shares to the servers.

4.1 Per-Party Private Server-Aided based on MPC
In our MPC-based protocol, clients first compute shares of their input according to VSS,
then sign the shares along with their unique public identity and the unique public identity
of the server to receive their shares. The shares, signatures, and Ci’s verification key are
then sent to the designated servers.

After this, the servers use a (m, m−1) UC-secure MPC protocol Πg (where m is the total
number of servers participating) to compute the function g(VSS, Σ, I1, ..., Im, Map) =
(O1, ...,Om) (Figure 4). Each server provides their set of shares as input to the protocol
and receives shares of the output after execution. The shares are then returned to the
client.

We give the formal description of ΠPer-Party in Figure 5. We remind the reader that we
assume the existence of authenticated point-to-point channels between all clients and their
chosen servers, and authenticated point-to-point channels and an authenticated broadcast
channel between all servers.

14 Per-Party MPC

Protocol ΠPer-Party

Inputs: xi for each client Ci, i ∈ [1, ..., n]. Πg, a (m, m − 1) UC-secure MPC protocol
for ideal functionality Fg. VSS = (Share, Reconst), a verifiable secret sharing scheme.
Σ = (Gen, Sign, Verify), a signature scheme.
Outputs: yi for each client Ci, i ∈ [1, ..., n]

1. Set Up: For each client Ci

1.1 Choose a set of servers SCi from registry Sreg

1.2 Choose threshold τi < |SCi |
1.3 Compute (pkΣ

i , skΣ
i) = Σ.Gen(1λ)

1.4 Announce (Ci,SCi
, τi)

2. Input Phase: For each client Ci

2.1 Compute VSS.Share(xi, τi, mi) = (si,1, ..., si,mi)
2.2 For each j ∈ [1, . . . , mi], compute σi,j = Σ.Sign(skΣ

i , (si,j , Ci, Si,j)
2.3 Send (si,j , σi,j , pkΣ

i) to each Si,j ∈ SCi

2.4 For each server Si,j ∈ SCi
, if Σ.Verify(pkΣ

i , (si,j , Ci, Si,j)) = 0 abort, else
continue

3. Computation Phase: Servers cooperatively execute Πg

3.1 Input Phase: Let Ik = {(si,j , σi,j , pkΣ
i)}Sk=Si,j∈SCi

Each server Sk provides Ik as input to Πg.
3.2 Computation Phase: S run Πg to compute g(VSS, Σ, I1, ..., Im, Map) =

(O1, ...,Om) (4). If g aborts, then Πg aborts and returns the same thing that g
did.

3.3 Output Phase: Sk receives Ok = {s′
i,j}Sk=Si,j∈SCi

as output from Πg

4. Output Phase: Each Sk parses Ok = {s′
i,j}Sk=Si,j∈SCi

and sends s′
i,j to Ci

For each Ci, if VSS.Reconst(s′
i,1, . . . , s′

i,mi
) = yi fails, output ⊥ and abort. Else

output yi

Figure 5: Per-Party Private MPC Protocol ΠPer-Party

Alessandra Scafuro, Tanner Verber 15

Algorithm SIM - Set Up

1. C∗
i

(CLIENT-SET, C∗
i , SC∗

i
, τi)

−−−−−−−−−−−−−−−−→ SIM for malicious C∗
i

2. SIM (CORRUPTIONS, CM , SM)−−−−−−−−−−−−−−→ FPer-Party

3. SIM
(CLIENT-SET, C∗

i , SC∗
i

, τi)
−−−−−−−−−−−−−−−−→ FPer-Party for each malicious C∗

i

4. FPer-Party
(MAPPING, Map)−−−−−−−−−−→ SIM

5. For each honest Ci

5.1 Compute (pkΣ
i , skΣ

i) = Σ.Gen(1λ)

Figure 6: Set Up Phase of SIM

4.2 Security of MPC-Based Protocol
We give our first main theorem in Theorem 1.

Theorem 1. If Πg is an (m, m− 1) UC-secure MPC protocol for function g (Figure 4),
VSS is an information theoretic private (τi, mi)-threshold verified secret sharing scheme
for 1 ≤ τi < mi and 1 ≤ i ≤ n, and Σ = (Gen, Sign, Verify) is an EUF-CMA signature
scheme, where n is the number of clients and mi is the number of servers chosen by client
Ci then Protocol ΠPer-Party (Figure 5) UC-realizes FPer-Party (Figure 3).

Correctness Our proof of correctness is straightforward, based on the correctness of
VSS (Definition 2) and the correctness of the signature scheme (Definition 3), and the fact
that Πg must also be correct (Definition 1).

Simulator In this section, we define our simulator SIM. SIM can be seen in Figures 6,
7, 8, and 9. We divide the simulator into 4 algorithms, one for each phase of the protocol,
for readability purposes only. These algorithms are to be run consecutively.

In the setup phase (Figure 6), SIM simply notifies the ideal functionality FPer-Party
of which clients and servers are corrupt, and the set of servers chosen by each corrupt
client by using the (CORRUPTIONS, CM , SM) and (CLIENT-SET, C∗

i , SC∗
i
, τi) commands

respectively.
During the input phase (Figure 7), SIM receives the input of honest clients who chose

too many corrupt servers. SIM then simulates the sharing of input for the malicious
servers. If SIM knows the input xi being shared it computes an honest share. Otherwise,
SIM sends shares of zero. During this phase, SIM also learns shares sent by a malicious
client to honest servers.
SIM makes use of SIMΠg , the simulator for Πg, to learn the remaining shares of the

malicious clients during the computation phase (Figure 8). SIM plays the role of Fg,
the ideal functionality for computing the function g (Figure 4), for SIMΠg . In doing so,
SIM learns all shares held by the malicious servers. This means SIM learns the shares
sent by a malicious client C∗

i to the honest servers in SC∗
i

during the input phase (Figure 7)
and learns the shares sent to the malicious servers in SC∗

i
during the computation phase

(Figure 8). SIM will then attempt to reconstruct C∗
i ’s input and provide it to FPer-Party.

Further, during the computation phase (Figure 8) SIM learns the shares held by
malicious servers chosen by the honest clients. The shares sent to these malicious servers

16 Per-Party MPC

Algorithm SIM - Input

1. For each Ci such that |SCi
∩ SM | > τi

1.1 FPer-Party
(CLIENT-INPUT, Ci, xi)−−−−−−−−−−−−−→ SIM

2. For honest Ci and honest Sk

2.1 SIM sends and receives nothing

3. For malicious C∗
i and honest Sk

3.1 C∗
i

(si,j ,σi,j ,pkΣ
i)−−−−−−−−−→ SIM such that Sk = Si,j ∈ SCi

4. For honest Ci and malicious S∗
k

4.1 If SIM knows xi

4.1.1 SIM computes VSS.Share(xi, τi, mi) = (si,1, . . . , si,mi)
4.1.2 SIM computes σi,j = Σ.Sign(skΣ

i , (si,j , Ci, Si,j))

4.1.3 SIM (si,j ,σi,j ,pkΣ
i)−−−−−−−−−→ S∗

k such that S∗
k = Si,j ∈ SCi

4.2 Else if SIM does not know xi

4.2.1 SIM computes VSS.Share(0, τi, mi) = (s̃i,1, . . . , s̃i,mi
)

4.2.2 SIM computes σ̃i,j = Σ.Sign(skΣ
i , (si,j , Ci, Si,j))

4.2.3 SIM
(̃si,j ,σ̃i,j ,pkΣ

i)
−−−−−−−−−→ S∗

k such that S∗
k = Si,j ∈ SCi

5. For malicious C∗
i and malicious S∗

k

5.1 SIM sends and receives nothing

Figure 7: Input Phase of SIM

Alessandra Scafuro, Tanner Verber 17

were initially computed by SIM, but could have been modified by the malicious servers
since. If an honest client Ci has chosen too many corrupt servers, SIM uses these shares
to attempt to reconstruct the potentially maliciously altered input x∗

i that is used on
behalf of Ci in computation and sends x∗

i to FPer-Party.
In both cases above, signatures on the shares are verified, and only shares with verified

signatures are used to reconstruct. If there are not enough verified shares (that is, τi or
less) then the input is set to 0. Else, if reconstruction fails, SIM outputs ReconstAbort
and aborts.

Finally, during the output phase (Figure 9), SIM finishes the simulation of Πg for
SIMΠg . This involves computing honest shares when the output of a client Ci is known,
as is the case when Ci chose too many malicious servers or Ci themself is malicious, or
shares of zero when the output is unknown.

For an honest client, Ci who has chosen more than τi malicious servers, SIM intercepts
the shares these malicious servers attempt to send to Ci. After intercepting these shares,
SIM reconstructs the maliciously altered output y∗

i and sends it to FPer-Party as the output
that Ci is to receive. If reconstruction fails in this case, we take this as the malicious
servers refusing to provide output. Thus, the client receives ⊥ as output.

Simulator Runtime Next, we will prove that SIM runs in probabilistic polynomial
time (PPT).

In the set up phase (Figure 6), SIM simply sends the set of servers for each corrupt
client (determined by the environment) to the ideal functionality FPer-Party, receives the
mapping Map from FPer-Party, then sends the set of corrupt clients CM and servers SM to
the ideal functionality FPer-Party. Lastly, the simulator generates key pairs for the signature
scheme Σ for all honest clients. This can all be done in polynomial time.

In the input phase (Figure 7), aside from sending messages, SIM computes VSS.Share
and Σ.Sign for potentially every client. Both VSS.Share and Σ.Sign are polynomial time
algorithms.

Then, in the computation phase (Figure 8), SIM makes use of SIMΠg , which is a
PPT simulator for the UC-secure MPC protocol, and forwards messages on behalf of this
simulator. Aside from the messages sent, SIM runs Σ.Verify and VSS.Reconst. Both of
these are polynomial time algorithms.

Lastly, in the output phase (Figure 9), SIM continues to make use of SIMΠg , which
is a PPT simulator for the UC-secure MPC protocol, and forwards messages on behalf
of this simulator. Aside from the messages sent, SIM computes VSS.Share, which as we
have stated is a polynomial time algorithm.

Since each phase can be computed in polynomial time, we know that SIM runs in
probabilistic polynomial time.

Indistinguishability Finally, we prove that the real and ideal worlds are indistinguish-
able through a series of hybrids. We will start from the real-world protocol ΠPer-Party and
build hybrids, proving indistinguishability between each, until we reach the ideal world.

Consider the following hybrids:

• Hyb0: This is the real world execution of the protocol ΠPer-Party

• Hyb1: This is the same as Hyb0, except that the adversary outputs ReconstAbort
and aborts if the reconstruction of input shares fails

• Hyb2: This is the same as Hyb1, except that the adversary outputs SigFail if
malicious servers submit a signature that was not computed by the adversary, but
still verifies.

18 Per-Party MPC

Algorithm SIM - Computation

1. FPer-Party
(RUN)−−−→ SIM

2. Set ABORT = False

3. SIM activates SIMΠg , the simulator for Πg

4. SIM (SM)−−−→ SIMΠg

5. SIMΠg simulates Πg

5.1 For any message ρ sent by S∗
k ∈ SM to honest Sj

5.1.1 S∗
k

(ρ)−−→ SIM (ρ)−−→ SIMΠg

5.2 For any message α sent by honest Sj to S∗
k ∈ SM

5.2.1 SIMΠg
(α)−−→ SIM (α)−−→ S∗

k

6. For corrupt S∗
k ∈ SM , SIM intercepts messages intended for Fg

6.1 SIMΠg

(SERVER-INPUT, S∗
k , Ik)

−−−−−−−−−−−−−−→ SIM

7. For honest Ci and corrupt S∗
i,j such that |SCi

∩ SM | ≤ τi

7.1 For all (s∗
i,j , σ∗

i,j , pkΣ
i) ∈ Ik, if s∗

i,j ̸= si,j and Σ.Verify(pkΣ
i , σ∗

i,j , (s∗
i,j , Ci, S∗

i,j)) =
1 output SigFail and abort

8. For corrupt C∗
i and all S∗

i,j ∈ SC∗
i

8.1 Let pkΣ
i be the key submitted by more than τi of the servers in SC∗

i

8.1.1 If no such set exists, set x∗
i = 0 and skip to next iteration

8.2 Set Ri = ∅
8.3 If Σ.Verify(pkΣ

i , (si,j , C∗
i , S∗

i,j)) = 1, set Ri = Ri ∪ si,j

8.4 If |Ri| ≤ τi, set xi = 0
8.5 Else compute x∗

i = VSS.Reconst(Ri)
8.5.1 If VSS.Reconst(Ri) fails, set ABORT = True and go to 10

9. For honest Ci such that |SCi
∩ SM | > τi

9.1 Let pkΣ
i be the key submitted by more than τi of the servers in SCi

9.1.1 If no such set exists, set x∗
i = 0 and skip to next iteration

9.2 Set Ri = ∅
9.3 If Σ.Verify(pkΣ

i , (si,j , Ci, Si,j)) = 1, set Ri = Ri ∪ si,j

9.4 If |Ri| ≤ τi, set xi = 0
9.5 Else compute x∗

i = VSS.Reconst(Ri)
9.5.1 If VSS.Reconst(Ri) fails, set ABORT = True and go to 10

10. If ABORT = False, SIM
(RUN, (CLIENT-INPUT, C∗

i , xi), ...,
(MAL-INPUT, Cj , x∗

j), ...)
−−−−−−−−−−−−−−−−−−−−→ FPer-Party for each malicious

C∗
i and honest Cj such that |SCj ∩ SM | > τj

11. Else, SIM (RUN, Abort)−−−−−−−→ FPer-Party, output ReconstAbort and abort

Figure 8: Computation Phase of SIM

Alessandra Scafuro, Tanner Verber 19

Algorithm SIM - Output

1. FPer-Party
((CLIENT-OUTPUT, Ci, yi), ...)−−−−−−−−−−−−−−−−−→ SIM For each Ci such that Ci /∈ CM and |SCi ∩

SM | > τi

2. FPer-Party
((CLIENT-OUTPUT, C∗

i , yi), ...)−−−−−−−−−−−−−−−−−−→ SIM for each malicious C∗
i

3. For all S∗
k ∈ SM

3.1 For all i, j such that S∗
k = S∗

i,j ∈ SCi

3.1.1 If SIM knows yi

3.1.1.1 SIM computes VSS.Share(yi, τi, mi) = (s′
i,1, . . . , s′

i,mi
) if not already

computed
3.1.1.2 Set Ok = Ok ∪ {s′

i,j}
3.1.2 Else

3.1.2.1 SIM computes VSS.Share(0, τi, mi) = (s̃′
i,1, . . . , s̃i,mi

) if not already
computed

3.1.2.2 Set Ok = Ok ∪ {s̃′
i,j}

4. SIM ((SERVER-OUTPUT, S∗
k , Ok), ...)

−−−−−−−−−−−−−−−−−−→ SIMΠg for each malicious S∗
k

5. SIMΠg continues to simulate Πg

5.1 For any message ρ′ sent by S∗
k ∈ SM to honest Sj

5.1.1 S∗
k

(ρ′)−−→ SIM (ρ′)−−→ SIMΠg

5.2 For any message α′ sent by honest Sj to S∗
k ∈ SM

5.2.1 SIMΠg
(α′)−−→ SIM (α′)−−→ S∗

k

6. SIMΠg ends the simulation of Πg

7. For each S∗
k ∈ SM such that S∗

k = S∗
i,j for honest Ci such that |SCi

∩ SM | > τi

7.1 S∗
k

(s∗
i,j)
−−−→ SIM

7.2 If VSS.Reconst(s∗
i,0, . . . , s∗

i,ℓ) succeeds
7.2.1 Compute VSS.Reconst(s∗

i,0, . . . , s∗
i,ℓ) = y∗

i such that τi < ℓ = |SCi ∩ SM |
7.3 Else

7.3.1 Set y∗
i = ⊥

8. SIM ((MAL-OUTPUT, Ci, y∗
i), ...)−−−−−−−−−−−−−−−−→ FPer-Party for each honest Ci such that |SCi ∩ SM | > τi

9. For malicious C∗
i and honest Sk = Si,j ∈ SC∗

i

9.1 SIM computes VSS.Share(yi, τi, mi) = (s′
i,1, . . . , s′

i,mi
) if not already computed

9.2 SIM
(s′

i,j)
−−−→ C∗

i

Figure 9: Output Phase of SIM

20 Per-Party MPC

B(λ):

1. Receive pkΣ from the challenger

2. Activate A

3. Send Map, CM ,SM to A

4. Send xi for Ci ∈ CM to A

5. Simulate as in Hyb1, using pkΣ as the verification key of some Ci /∈ SM that has
chosen corrupt servers

6. In the input phase, query the oracle with (si,j , Ci, S∗
i,j) to receive σi,j for all S∗

i,j ∈ SCi

7. Continue simulating Hyb1

8. In the computation phase, upon receipt of Ik for all S∗
k ∈ SCi , for (s∗

i,j , σ∗
i,j , pkΣ) ∈ Ik

8.1 If s∗
i,j ̸= si,j and Σ.Verify(pkΣ, (s∗

i,j , Ci, S∗
i,j)) = 1, submit (s∗

i,j , Ci, S∗
i,j) to the

challenger as a forgery

9. Abort

Figure 10: B An Adversary for Computing Forged Signatures against Σ

• Hyb3: This is the same as Hyb2, except instead of the servers S computing Πg, it
is simulated by SIMΠg

• Hyb4: This is the same as Hyb3, except instead of honest clients sending shares of
their input xi, they send shares of 0 and commitments to these shares

Lemma 1. If VSS = (Share, Reconst) is a verifiable secret sharing scheme, then Hyb1 is
indistinguishable from Hyb0

Proof. In Hyb1, the signatures on shares are verified, and only those that pass verification
are used to reconstruct. If there are less than τi + 1 shares that pass, xi is set to be 0.
Therefore, the only way Hyb1 aborts is if there are τi + 1 shares that do not reconstruct
to any value, but have signatures that verify. However, by the committed property of
verifiable secret sharing (Definition 2), we know that a set of τi + 1 shares must reconstruct
to some value. Therefore, Hyb1 aborts with ReconstAbort with negligible probability.

Lemma 2. If Σ = (Gen, Sign, Verify) is an EUF-CMA signature scheme, Hyb2 is indis-
tinguishable from Hyb1

Proof. Proceed by contradiction. That is, assume that there exists an adversary A that can
provide a transcript allowing the environment Z to distinguish between Hyb2 and Hyb1
with non-negligible probability. We can then construct a reduction B to the unforgeability
of signatures. We define B in Figure 10.

The only difference between Hyb2 and Hyb1 is that the simulator aborts with SigFail
if a malicious server chosen by an honest client submits a signature that verifies on a share
not computed by the client. Since A can distinguish between Hyb2 and Hyb1, we know
that the probability that A submits s∗

i,j ̸= si,j such that Σ.Verify(pkΣ, (s∗
i,j , Ci, S∗

i,j)) = 1 is
non negligible. Therefore, B submits a forgery with the same non-negligible probability.

Lemma 3. If Πg is a UC-secure MPC protocol, Hyb3 is indistinguishable from Hyb2

Alessandra Scafuro, Tanner Verber 21

ZΠg (λ)

1. Activate Z.

2. Receive Map, CM , SM , x1, ..., xn and (τ1, . . . , τn) from Z

3. For each client C∗
i ∈ CM , send the information Z expects after a client is corrupted

4. For each server S∗
k ∈ SM , instruct B to corrupt S∗

k and forward the information Z
expects to receive after a server is corrupted

5. For each client Ci, share xi and sign honestly

6. For each server Sk forward the share/s intended for the server to Z

7. For each server Sk, construct Ik according to the mapping

8. Provide each Ik to Sk as input to the execution of Πg

9. Instruct B to execute Πg, interacting with Z as needed

10. Receive Ok as output from Πg and forward to Z for corrupt servers

11. For each client Ci, forward the expected shares to Z as if they were sent by the
servers in SCi

12. Output whatever Z outputs

Figure 11: ZΠg A Distinguishing Environment for UC-Secure MPC Protocol Πg

Proof. Proceed by contradiction. That is, assume that there exists an environment Z that
can distinguish between Hyb3 and Hyb2 with some non-negligible probability p(λ). We
can then use Z to construct a reduction ZΠg , which is an environment with the goal of
distinguishing between the real and ideal execution of Πg. ZΠg will act as the adversary
for Z, using the transcript received from the challenger as the execution of Πg.
ZΠg controls an adversary B that has corrupted some subset of the servers executing

Πg in either the real or the ideal world and let these worlds be Πg and Πg
IDEAL respectively.

In order to properly simulate the hybrid worlds for Z, ZΠg will play the role of the clients.
We define ZΠg in Figure 11.

There are two possible cases here: either ZΠg is in the real world (i.e. Πg) and holds
or ZΠg is in the ideal world (i.e. Πg

IDEAL).

• Case Πg:
In this case, ZΠg perfectly emulates Hyb2, as in line 9 of Figure 11 the execution of
Πg happens in the real world as expected. Recall that the execution of Πg is the
only difference between Hyb2 and Hyb3. In all other steps, ZΠg emulates Hyb2 by
sharing according to the protocol ΠPer-Party, and forwarding all messages expected by
Z. So ZΠg outputs 1 with the same probability as Z, therefore

Pr[ZΠg (λ)→ 1|Πg] = Pr[Z(λ)→ 1|Hyb2]

• Case Πg
IDEAL:

In this case, ZΠg perfectly emulates Hyb3, as in line 9 of Figure 11 the execution of
Πg is simulated by SIMΠg as expected in Hyb3. In all other steps, ZΠg emulates

22 Per-Party MPC

Hyb3 by sharing according to the protocol ΠPer-Party, and forwarding all messages
expected by Z. So ZΠg outputs 1 with the same probability as Z, therefore

Pr[ZΠg (λ)→ 1|Πg
IDEAL] = Pr[Z(λ)→ 1|Hyb3]

In both cases we see that ZΠg outputs 1 with the same probability as Z, which gives us

|Pr[ZΠg (λ)→ 1|Πg]− Pr[ZΠg (λ)→ 1|Πg
IDEAL]|

= |Pr[Z(λ)→ 1|Hyb2]− Pr[Z(λ)→ 1|Hyb3]| = p(λ)

This is a contradiction, as we have found an environment that can distinguish between
Πg and Πg

IDEAL with non-negligible probability p(λ), but Πg was assumed to be UC-secure.
Therefore, Hyb3 is indistinguishable from Hyb2.

Lemma 4. If VSS = (Share, Reconst) is an information theoretic private verifiable secret
sharing scheme, Hyb4 is indistinguishable from Hyb3

Proof. The proof of Lemma 4 follows from the privacy property of VSS (Definition 2).
Because the VSS scheme that we use is information-theoretic private, even an adversary
with unlimited computational power cannot distinguish between a share of 0 and a share
xi. Therefore, we know that Hyb4 is indistinguishable from Hyb3.

4.3 Per-Party Private Server-aided MPC from FHE

Here we present a second protocol based on fully homomorphic encryption. This protocol
is very similar to ΠPer-Party, except that the general MPC protocol run by the servers is
replaced by a slightly more specific instantiation based on FHE. We provide a full formal
treatment here for completeness.

In this protocol, the clients’ procedure is the same. The servers use an MPC protocol
ΠKG to run the key generation algorithm of an FHE scheme [BV14]. Each server contributes
randomness to the key generation algorithm and receives the public key pk, the evaluation
key evk, and a share of the secret key skk for Sk as output. The servers then encrypt
the shares and signatures they received from their clients and send the ciphertexts to one
computing server. Without loss of generality, let this server be S1.

The computing server homomorphically evaluates the function g(VSS, Σ, I1, . . . , Im, Map)
(Figure 4), computes a SNARG πout proving correct output given the input ciphertexts,
and returns the ciphertexts of output shares and proof to the respective servers. Finally,
the servers use another MPC protocol ΠDec to run the decryption algorithm of the FHE
scheme on the output ciphertexts to obtain their output shares and return these shares
to their clients. ΠDec takes as input the set of ciphertexts from the computing server S1,
along with the proof of correct computation, and every server’s share of the secret key skk.
ΠDec then verifies the proof πout and decrypts the output ciphertexts. Each server then
receives their respective share of their client’s output.

Before giving the formal description of our protocol, we introduce the ideal func-
tionalities FKG (Figure 12) and FDec (Figure 13). Let ΠKG and ΠDec be two (m, m − 1)
UC-secure MPC protocols realizing each functionality respectively. Note that we assume
for an FHE scheme, given the public key pk and secret key sk, it is easy to verify that
(pk, sk)← FHE.KeyGen(1λ).

We give the formal description of ΠF HE
Per-Party in Figure 14.

Alessandra Scafuro, Tanner Verber 23

Functionality FKG
This functionality is parameterized by FHE.KeyGen(·)
KeyGen

1. For honest party Pi

1.1 Pi
(KG-RAND,Pi,ri)−−−−−−−−−→ FKG

1.2 FKG
(KG-RAND,Pi)−−−−−−−→ SIM

2. For corrupt party P ∗
i

2.1 SIM (KG-RAND,P ∗
i ,ri)−−−−−−−−−→ FKG

3. Compute (pk, evk, sk) = FHE.KeyGen(1λ ; r1 ⊕ . . .⊕ rm)

4. Choose sk1, . . . , skm−1
$←− K for key space K

5. Set skm = sk ⊕ sk1 ⊕ . . . skm−1

6. For honest party Pi

6.1 FKG
(KEY-SHARE,Pi,pk,evk,ski)−−−−−−−−−−−−−−−−→ Pi

6.2 FKG
(KEY-SHARE,Pi,pk,evk)−−−−−−−−−−−−−→ SIM

7. For corrupt party P ∗
i

7.1 FKG
(KEY-SHARE,P ∗

i ,pk,evk,ski)−−−−−−−−−−−−−−−−→ SIM

Figure 12: FKG The Ideal Functionality for FHE Key Generation

24 Per-Party MPC

Functionality FDec
This functionality is parameterized by FHE.Dec(·)
Dec

1. For honest Pi

1.1 P1
(DEC-INPUT,Pi,(cti

1,...,cti
m),pki,ski)−−−−−−−−−−−−−−−−−−−−−−→ FDec

1.2 FDec
(DEC-INPUT,Pi)−−−−−−−−−→ SIM

2. Else

2.1 SIM (DEC-INPUT,Pi,(cti
1,...,cti

m),pki,ski)−−−−−−−−−−−−−−−−−−−−−−→ FDec

3. If pki ̸= pkj for any i, j ∈ [m], output ⊥, else set pk = pki

4. If cti
k ̸= ctj

k for any i, j, k ∈ [m], output ⊥

5. Compute sk = sk1 ⊕ . . .⊕ skm

6. If sk is not the secret key to pk, output ⊥

7. Else compute si = FHE.Dec(sk, cti) for i ∈ [m]

8. For honest Pi

8.1 FDec
(DEC-OUTPUT,Pi,si)−−−−−−−−−−−→ Pi

8.2 FDec
(DEC-OUTPUT,Pi)−−−−−−−−−→ SIM

9. For corrupt P ∗
i

9.1 FDec
(DEC-OUTPUT,P ∗

i ,si)−−−−−−−−−−−→ SIM

Figure 13: FDec The Ideal Functionality for FHE Decryption

Alessandra Scafuro, Tanner Verber 25

Protocol ΠF HE
Per-Party

Inputs: xi for each client Ci, i ∈ [1, ..., n]. FHE = (KeyGen, Enc, Eval, Dec), a fully
homomorphic encryption scheme. VSS = (Share, Reconst), a verifiable secret sharing
scheme. Σ = (Gen, Sign, Verify), a signature scheme. ΠKG, ΠDec two (m, m − 1) UC-
secure MPC protocols for ideal functionalities FKG and FDec respectively. SNARG =
(SetUp, Prove, Verify), a SNARG. crs, a common reference string generated by a trusted
set up.
Outputs: yi for each client Ci, i ∈ [1, ..., n]

1. Set Up:

1.1 Each client Ci

1.1.1 Choose a set of servers SCi
from registry Sreg

1.1.2 Choose a threshold τi < |SCi
|

1.1.3 Compute (pkΣ, skΣ) = Σ.Gen(1λ)
1.1.4 Announce (Ci,SCi

, τi)
1.2 All servers collaboratively run ΠKG to execute FHE.KeyGen(1λ)

1.2.1 Server Sk receives pk, evk, and skk as output, where skk is a share of the
secret key

2. Input Phase: Each client Ci

2.1 Compute VSS.Share(xi, τi, mi) = (si,1, ..., si,mi)
2.2 For each j ∈ [1, . . . , mi] compute σi,j = Σ.Sign(skΣ

i , (si,j , Ci, Si,j))
2.3 Send (si,j , σi,j , pkΣ

i) to Si,j

2.4 For each server Si,j ∈ SCi
, if Σ.Verify(pkΣ

i , (si,j , Ci, Si,j)) = 0 abort, else
continue

3. Computation Phase: Let (si,j , σi,j , pkΣ
i) ∈ Ik iff Sk = Si,j ∈ SCi

3.1 For Sk ∈ S
3.1.1 Compute ctin

i,j = FHE.Enc(pk, (si,j , σi,j , pkΣ
i)) for each (si,j , σi,j) ∈ Ik

Broadcast each ctin
i,j to all servers

3.2 S1, upon receiving all ciphertexts ctin
i,j ,

3.2.1 Compute FHE.Eval(evk, g, ctin
1,1, . . . , ctin

n,mn
) = (ctout

1,1 , . . . , ctout
n,mn

). Let
trans be the transcript of the computation

3.2.2 Compute SNARG.Prove(crs, (g, pk, evk, ctin
1,1, . . . , ctin

n,mn
, ctout

1,1 , . . . ,

ctout
n,mn

), trans) = πout, a proof that
FHE.Eval(evk, g, ctin

1,1, . . . , ctin
n,mn

; r) = (ctout
1,1 , . . . , ctout

n,mi
)

3.2.3 Broadcast (ctout
1,1 , . . . , ctout

n,mn
, πout) to all servers

3.3 All servers run ΠDec to execute FHE.Dec((sk1⊕. . .⊕skm), (ctout
1,1 , . . . , ctout

n,mn
)) =

(O1, . . . ,Om) where each Sk = Si,j has as input (ctout
1,1 , . . . , ctout

n,mn
, pk, skk) and

receives s′
i,j as output

4. Output Phase: For all s′
i,j ∈ Ok, server Sk returns s′

i,j to Ci.
If VSS.Reconst(s′

i,1, . . . , s′
i,mi

) = yi fails, output ⊥ and abort. Else output yi

Figure 14: Per-Party Private MPC Protocol ΠF HE
Per-Party

26 Per-Party MPC

4.4 Security of FHE-Based Protocol
Here we present our second main theorem, Theorem 2.

Theorem 2. If protocols ΠKG and ΠDec UC-realize FKG and FDec respectively in presence
of (m− 1) corruptions, if FHE is a secure fully homomorphic encryption scheme, and VSS
is an information theoretic private (τi, mi)-threshold verifiable secret sharing scheme for
1 ≤ τi < mi and 1 ≤ i ≤ n, and Σ = (Gen, Sign, Verify) is an EUF-CMA signature scheme,
where n is the number of clients and mi is the number of servers chosen by client Ci then
Protocol ΠF HE

Per-Party (Figure 14) UC-realizes FPer-Party (Figure 3).

Correctness Our proof of correctness is mostly straightforward, based on the correctness
of ΠKG, ΠDec, FHE and VSS.

Simulator We give our simulator SIMFHE in Figures 15, 16, 17, and 18. We divide the
simulator into four algorithms for readability purposes only. These algorithms are to be
run consecutively.

In the set up phase (Figure 15), SIMFHE notifies the ideal functionality of the set of
corrupt servers and clients, as well as the set of chosen servers and chosen threshold of
the malicious clients. Then, SIMFHE simulates the execution of ΠKG using the underlying
simulator SIMFHE

ΠKG . As a result of this simulation, SIMFHE learns the shares of the secret
key held by each malicious server. Lastly, for all honest clients Ci, SIMFHE chooses a key
pair for the signature scheme Σ.

During the input phase (Figure 16), FPer-Party notifies SIMFHE of the input of a client
who chose greater than their threshold of malicious servers. This is because these malicious
servers will not only learn the input of the client, but have the ability to replace the
client’s input with one of their choosing. Then, there are four cases for clients sending
input to their servers. (1) If both the client and server are honest, there is nothing to
simulate. (2) If the client is malicious but the server is honest, SIMFHE intercepts the
share and signature intended for the honest server. (3) If the client is honest but the
server is malicious, then SIMFHE must “fake” the share and signature. If SIMFHE knows
the honest client’s input xi (i.e. Ci choose too many malicious servers), then SIMFHE

computes shares and signatures honestly. If SIMFHE does not know xi, then SIMFHE

shares 0. (4) If both the client and the server are malicious, there is nothing to simulate.
Next, in the computation phase (Figure 17), the simulator receives all input ciphertexts

of the malicious servers via broadcast. For an honest server Si,j , if SIMFHE already knows
a share for Si,j (i.e. received it from a malicious client C∗

i or already computed shares of 0
for SCi), SIMFHE encrypts the share and broadcasts. Else SIMFHE encrypts 0.

Then, SIMFHE decrypts the input ciphertexts to obtain the input shares of the
malicious servers. This is done both to reconstruct a malicious client’s input and to
determine if, for a client who chose too many malicious servers, the malicious clients
have altered an honest client’s input. When reconstructing inputs, SIMFHE verifies the
signatures sent by each malicious server. If a malicious server submits a signature not
computed by SIMFHE which still verifies under the client’s verification key pkΣ, then
SIMFHE aborts. If there does not exist more than τi servers in the set SCi

that agree on
the client’s verification key pkΣ

i , the client’s input is set to 0. Further, if there are not more
than τi signatures that verify, the client’s input is set to 0. Else SIMFHE reconstructs xi

using the shares that verify. If reconstruction fails, SIMFHE aborts.
SIMFHE then sends the reconstructed inputs to FPer-Party. If the computing server

S1 is corrupted, then S1 performs the homomorphic computation and proof πout. Else
SIMFHE performs this computation and proof. SIMFHE then begins the simulation of
ΠDec. Through this simulation, SIMFHE receives the shares of the secret key of each
malicious server.

Alessandra Scafuro, Tanner Verber 27

Algorithm SIMFHE - Set Up

1. Choose crs← SNARG.SetUp(1λ) and publish

2. C∗
i

(CLIENT-SET, C∗
i , SC∗

i
, τi)

−−−−−−−−−−−−−−−−→ SIMFHE for malicious C∗
i

3. SIMFHE (CORRUPTIONS, CM , SM)−−−−−−−−−−−−−−→ FPer-Party

4. SIMFHE
(CLIENT-SET, C∗

i , SC∗
i

, τi)
−−−−−−−−−−−−−−−−→ FPer-Party for each malicious C∗

i

5. FPer-Party
(MAPPING, Map)−−−−−−−−−−→ SIMFHE

6. SIMFHE activates SIMFHE
ΠKG , the simulator for ΠKG

7. SIMFHE
ΠKG simulates ΠKG

7.1 For any message ρ sent by S∗
k ∈ SM

7.1.1 S∗
k

(ρ)−−→ SIMFHE (ρ)−−→ SIMFHE
ΠKG

7.2 For any message α sent by honest Sj to S∗
k ∈ SM

7.2.1 SIMFHE
ΠKG

(α)−−→ SIMFHE (α)−−→ S∗
k

7.3 For each corrupt S∗
k ∈ SM , SIMFHE intercepts messages intended for FKG

7.3.1 SIMFHE
ΠKG

(KG-RAND,S∗
k ,rk)

−−−−−−−−−→ SIM

7.3.2 Sample ri
$←− {0, 1}λ such that Si ∈ S \ SM

7.3.3 Run (pk, evk, sk) = FHE.KeyGen(1λ ; r0 ⊕ . . .⊕ rm)
7.3.4 Choose {sk1, . . . , skm−1}

$←− K where K is the key space of FHE, and set
skm = sk1 ⊕ . . .⊕ skm−1 ⊕ sk

7.4 For each corrupt server S∗
k ∈ SM

7.4.1 SIMFHE (KEY-SHARE,S∗
k ,pk,evk,skk)

−−−−−−−−−−−−−−−−→ SIMFHE
ΠKG

8. For each honest Ci

8.1 Compute (pkΣ
i , skΣ

i) = Σ.Gen(1λ)

Figure 15: Set Up Phase of SIMFHE

28 Per-Party MPC

Algorithm SIMFHE - Input Phase

1. For each Ci such that |SCi
∩ SM | > τi

1.1 FPer-Party
(CLIENT-INPUT, Ci, xi)−−−−−−−−−−−−−→ SIMFHE

2. For honest Ci and honest Sk

2.1 SIMFHE sends and receives nothing

3. For malicious C∗
i and honest Sk

3.1 C∗
i

(sin
i,j ,σi,j ,pkΣ

i)
−−−−−−−−−→ SIMFHE such that Sk = Si,j ∈ SCi

4. For honest Ci and malicious S∗
k = S∗

i,j

4.1 If SIMFHE knows xi

4.1.1 SIMFHE computes VSS.Share(xi, τi, mi) = (si,1, . . . , si,mi) if not already
computed

4.1.2 SIMFHE computes Σ.Sign(skΣ
i , (si,j , Ci, S∗

i,j))

4.1.3 SIMFHE (si,j ,σi,j ,pkΣ
i)−−−−−−−−−→ S∗

k

4.2 Else if SIMFHE does not know xi

4.2.1 SIMFHE computes VSS.Share(0, τi, mi) = (s̃i,1, . . . , s̃i,mi
) if not already

computed
4.2.2 SIMFHE computes σ̃i,j = Σ.Sign(skΣ

i , (s̃i,j , Ci, S∗
i,j))

4.2.3 SIMFHE (̃si,j ,σ̃i,j ,pkΣ
i)

−−−−−−−−−→ S∗
k such that S∗

k = Si,j ∈ SCi

5. For malicious C∗
i and malicious S∗

k

5.1 SIMFHE sends and receives nothing

Figure 16: Input Phase of SIMFHE

Alessandra Scafuro, Tanner Verber 29

Algorithm SIMFHE - Computation Phase

1. FPer-Party
(RUN)−−−→ SIMFHE, set ABORT = False, receive ctin

i,j via broadcast ∀ S∗
i,j ∈ SM

2. ∀ Si,j /∈ SM , if (si,j , σi,j) exists, compute ctin
i,j = FHE.Enc(pk, si,j), else compute

c̃ti,j
in

= FHE.Enc(pk, 0) , and broadcast all ciphertexts to all servers

3. ∀ ctin
i,j compute (s∗

i,j , σ∗
i,j) = FHE.Dec(sk, ctin

i,j)

4. For honest Ci and corrupt S∗
i,j such that |SCi

∩ SM | ≤ τi, ∀ (s∗
i,j , σ∗

i,j) if s∗
i,j ̸= si,j

and Σ.Verify(pkΣ
i , σ∗

i,j , (s∗
i,j , Ci, S∗

i,j)) = 1 output SigFail and abort

5. For corrupt C∗
i and all S∗

i,j ∈ SCi

5.1 Let pkΣ
i be submitted by more than τi servers in SC∗

i
, if ∄ pkΣ

i , set x∗
i = 0 and

Ri = ∅, if Σ.Verify(pkΣ
i , σ∗

i,j , (s∗
i,j , C∗

i , S∗
i,j)) set Ri = Ri ∩ si,j ∀ Si,j ∈ SCi

5.2 If |Ri| ≤ τi, set xi = 0, else compute xi = VSS.Reconst(Ri). If reconstruction
fails, set ABORT = True and go to 9

6. For Ci /∈ CM such that |SM ∩ SCi
| > τi

6.1 Let pkΣ
i be the key submitted by more than τi of the servers in SCi

, if no such
set exists, set x∗

i = 0 and Ri = ∅
6.2 If Σ.Verify(pkΣ

i , σ∗
i,j , (s∗

i,j , C∗
i , S∗

i,j)) set Ri = Ri ∩ si,j for all Si,j ∈ SCi

6.3 If |Ri| ≤ τi set xi = 0, else compute xi = VSS.Reconst(Ri). If reconstruction
fails, set ABORT = True and go to 9

7. If ABORT = False, SIMFHE (RUN, (CLIENT-INPUT, C∗
i , xi), ..., (MAL-INPUT, Cj , x∗

j), ...)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

FPer-Party for each malicious C∗
i and honest Cj such that |SCj

∩ SM | > τj , else
SIMFHE (RUN, Abort)−−−−−−−→ FPer-Party, output ReconstAbort and abort

8. If S∗
1 ∈ SM , receive (ctout

1,1 , . . . , ctout
n,mn

, πout) from S∗
1 and compute

SNARG.Verify(crs, πout, (g, pk, evk, ctin
1,1, . . . , ctin

n,mn
, ctout

1,1 , . . . , ctout
n,mn

)) = b, if b = 0
abort

8.1 ∀ ctout
i,j compute s′

i,j = FHE.Dec(sk, ctout
i,j), if s′

i,j /∈ Ok for
g(VSS, Σ, I1, . . . , Im) = (O1, . . . ,Om) and any Sk = Si,j , output SoundFail
and abort

9. If S1 /∈ SM , compute FHE.Eval(evk, g, ctin
1,1, . . . , ctin

n,mn
) = (ctout

1,1 , . . . , ctout
n,mn

) and
let trans be the transcript resulting from the computation

9.1 Compute SNARG.Prove(crs, (g, pk, evk, ctin
1,1, . . . , ctin

n,mn
, ctout

1,1 , . . . , ctout
n,mn

),
trans) = πout, a proof that FHE.Eval(evk, g, ctin

1,1, . . . , ctin
n,mn

) =
(ctout

1,1 , . . . , ctout
n,mi

) and broadcast (ctout
1,1 , . . . , ctout

n,mn
, πout) to all malicious

servers

10. Activate SIMFHE
ΠDec , the simulator for ΠDec

10.1 ∀ ρ sent by S∗
k ∈ SM , S∗

k

(ρ)−−→ SIMFHE (ρ)−−→ SIMFHE
ΠKG

10.2 ∀ α sent by honest Sj to S∗
k ∈ SM , SIMFHE

ΠKG
(α)−−→ SIMFHE (α)−−→ S∗

k

10.3 For S∗
k ∈ SM , SIMFHE

ΠDec

(DEC-INPUT,S∗
k ,(ctout,k

1,1 ,...,ctout,k
n,mn

),pkk,skk)
−−−−−−−−−−−−−−−−−−−−−−−−−−−→ SIMFHE

10.3.1 If ctout,a
i,j ̸= ctout,b

i,j or pka ̸= pkb for any i ∈ [n], j ∈ [m], and S∗
a , S∗

b ∈ SM ,
abort

Figure 17: Computation Phase of SIMFHE

30 Per-Party MPC

Algorithm SIMFHE - Output Phase

1. FPer-Party
((CLIENT-OUTPUT, Ci, yi), ...)−−−−−−−−−−−−−−−−−→ SIMFHE For each Ci such that |SCi

∩ SM | > τi

2. FPer-Party
((CLIENT-OUTPUT, C∗

i , yi), ...)−−−−−−−−−−−−−−−−−−→ SIMFHE for each malicious C∗
i

3. SIMFHE computes VSS.Share(yi, τi, mi) = (s′
i,1, . . . , s′

i,mi
) for all Ci ∈ CM and Ci

such that |SCi ∩ SM | > τi

4. SIMFHE (DEC-OUTPUT,S∗
i,j ,s′

i,j)
−−−−−−−−−−−−−→ SIMFHE

ΠDec for all S∗
i,j ∈ SM

5. Finish the simulation of ΠDec

6. For each honest Ci such that |SCi
∩ SM | > τi

6.1 S∗
i,j

(s∗
i,j)
−−−→ SIMFHE for all S∗

i,j ∈ SCi

6.2 Compute VSS.Reconst(s∗
i,0, . . . , s∗

i,ℓ) = y∗
i such that τi < ℓ = |SCi

∩ SM |. If
reconstruction fails, set y∗

i = ⊥

7. SIMFHE ((MAL-OUTPUT, Ci, y∗
i), ...)−−−−−−−−−−−−−−−−→ FPer-Party for each honest Ci such that |SCi∩SM | > τi

8. For malicious C∗
i and honest Sk = Si,j ∈ SC∗

i

8.1 SIMFHE (s′
i,j)
−−−→ C∗

i

Figure 18: Output Phase of SIMFHE

Alessandra Scafuro, Tanner Verber 31

Finally, in the output phase (Figure 18), SIMFHE uses the outputs yi provided by
FPer-Party in the simulation of ΠDec to ensure that corrupt clients receive the correct output.
Further, SIMFHE intercepts the shares sent by malicious servers to an honest client
who chose too many corrupt servers. These shares are used to reconstruct the client’s
maliciously altered output, which is then provided to FPer-Party. In the final step, SIMFHE

sends shares of a malicious client’s output on behalf of the honest servers they chose.

Simulator Run Time The proof of polynomial runtime is straightforward, based on
the fact that VSS, FHE, SNARG, ΠKG, and ΠDec are all polynomial time.

Indistinguishability We prove the indistinguishability of the real and ideal worlds via
a series of hybrids. Consider the following hybrids:

• Hyb0 : The real world execution of ΠF HE
Per-Party

• Hyb1 : This is the same as Hyb0, except that the adversary outputs ReconstAbort
if the reconstruction of input shares fails

• Hyb2 : This is the same as Hyb1, except that FHE.KeyGen is simulated by SIMFHE
ΠKG

instead of run via the protocol ΠKG

• Hyb3 : This is the same as Hyb2, except the adversary aborts with SoundFail if
the computing server uses the incorrect output in the proof πout

• Hyb4 : This is the same as Hyb3, except FHE.Dec is simulated by SIMFHE
ΠDec instead

of run via the protocol ΠDec

• Hyb5 : This is the same as Hyb4, except that ciphertexts of 0 are sent as input for
honest server Si,j chosen by honest client Ci instead of ciphertexts of si,j

• Hyb6 : This is the same as Hyb5, except that the adversary outputs SigFail if
a malicious server chosen by an honest client submits a signature that was not
computed by the adversary

• Hyb7 : This is the same as Hyb6, except that instead of honest clients sending
shares of their input, shares of 0 are sent instead

Lemma 5. If VSS = (Share, Reconst) is a verifiable secret sharing scheme, then Hyb1 is
indistinguishable from Hyb0

Proof. Follows from the proof of Lemma 1.

Lemma 6. If ΠKG is a UC-secure MPC protocol, Hyb2 is indistinguishable from Hyb1

Proof. Follows from the proof of Lemma 3.

Lemma 7. If SNARG = (SetUp, Prove, Verify) is a sound succinct non-interactive argu-
ment, Hyb3 is indistinguishable from Hyb2

Proof. Towards a contradiction, assume that Pr[SIMFHE(1λ) → SoundFail] = p(λ) for
non-negligible p(λ). Then, we can construct a reduction B that violates the soundness of
SNARG, using A controlling the corrupt clients and servers in the ideal world. We define
B in Figure 19.

As we can see, A submits a proof πout that verifies but FHE.Eval(evk, g, ctin
1,1, . . . ,

ctin
n,mn

) ̸= (ctout
1,1 , . . . , ctout

n,mi
). The conditions checked by B are exactly the conditions

required for SIMFHE to abort with SoundFail. Therefore, B violates the soundness of
SNARG with the same probability as SIMFHE has of aborting with SoundFail. This is a
contradiction, thus SIMFHE aborts with SoundFail with negligible probability.

32 Per-Party MPC

B(crs)

1. Activate A(1λ)

2. Simulate as in Hyb2, using crs as the common reference string, until step 11 of the
computation phase

3. If S1 is not corrupt, abort

4. Else

4.1 Receive (ctout
1,1 , . . . , ctout

n,mn
, πout) from A

4.2 Compute SNARG.Verify(crs, πout, (ctin
1,1, . . . ,

ctin
n,mn

, ctout
1,1 , . . . , ctout

n,mn
)) = b, if b = 0 abort

4.2.1 For all ctout
i,j compute s′

i,j = FHE.Dec(sk, ctout
i,j)

4.2.2 If s′
i,j /∈ Ok for g(VSS, Σ, I1, . . . , Im) = (O1, . . . ,Om) and any Sk = Si,j ,

submit (πout, (ctin
1,1, . . . , ctin

n,mn
, ctout

1,1 , . . . ,

ctout
n,mn

)) to the challenger

Figure 19: B - The Adversary for Soundness of SNARG

Lemma 8. If ΠDec is a UC-secure MPC protocol, Hyb3 is indistinguishable from Hyb4

Proof. Follows from the proof of Lemma 3

Lemma 9. If FHE = (KeyGen, Enc, Eval, Dec) is an IND-CPA secure encryption scheme,
Hyb4 is indistinguishable from Hyb5

Proof. We prove indistinguishability through a series of sub-hybrids. Let {ctin
i,j}Si,j /∈SM

be
the set of ciphertexts sent by the honest servers at the beginning of the computation phase.
Then, let Hyb3,i be such that the first i− 1 ciphertexts in {ctin

i,j}Si,j /∈SM
are encryptions

of zero c̃ti′,j′ , and all following ciphertexts are encryptions of input shares.

Note that Hyb4,1 is exactly Hyb4, as all ciphertexts are honest encryptions of input
shares. Likewise, Hyb4,|Si,j /∈SM | is exactly Hyb5, as all ciphertexts are encryptions of 0.
It suffices to prove that Hyb4,i is indistinguishable from Hyb4,i+1.

Towards a contradiction assume that there exists an adversary Z that can distinguish
between Hyb4,i and Hyb4,i+1. We can then construct an adversary A that violates the
CPA security of FHE. We define A in Figure 20.

Alessandra Scafuro, Tanner Verber 33

A(1λ)

1. Receive (pk, evk) from the challenger

2. Activate Z

3. Receive Map, CM ,SM xi for Ci ∈ CM and τ1, . . . , τn from Z

4. For each C∗
i ∈ CM send the information Z expects after a client is corrupted

5. For each S∗
k ∈ SM , send the information Z expects after a server is corrupted

6. Upon simulating ΠKG, use (pk, evk) as the public key and evaluation key

7. Simulate as in Hyb4,i until each server Si,j has their share si,j

7.1 Without loss of generality, let Si′,j′ hold the ith share in the set {sin
i,j}Si,j /∈SM

7.2 Let m0 = si′,j′ and m1 = 0
7.3 Send m0, m1 to the challenger and receive ct∗

7.4 Use ct∗ as the ciphertext for server Si′,j′

8. Finish simulating as in Hyb4,i

9. Output whatever Z outputs

Figure 20: A - The Adversary for the IND-CPA Game

There are two cases here, either ct∗ = FHE.Enc(pk, m0) or ct∗ = FHE.Enc(pk, m1)

• Case ct∗ = FHE.Enc(pk, m0): In this case, the ciphertext used as input by server
Si′,j′ is a ciphertext of an honestly computed share. This is exactly what Z expects
when the transcript received is from Hyb4,i

• Case ct∗ = FHE.Enc(pk, m1): In this case, the ciphertext used as input by server
Si′,j′ is a ciphertext of 0. This is exactly what Z expects when the transcript received
is from Hyb4,i+1

Therefore, A has the same probability of winning the CPA game as Z has of distinguish-
ing between Hyb4,i and Hyb4,i+1. Since Hyb4,1 is exactly Hyb4 and Hyb4,|Si,j /∈SM | is
exactly Hyb5, this means that Hyb4 is indistinguishable from Hyb5.

Lemma 10. If Σ = (Gen, Sign, Verify) is an EUF-CMA signature scheme, Hyb6 is
indistinguishable from Hyb5

Proof. Follows from the proof of Lemma 2.

Lemma 11. If VSS = (Share, Reconst) is an information theoretic private verifiable secret
sharing scheme, Hyb7 is indistinguishable from Hyb6

Proof. Follows from the proof of Lemma 4.

References
[AJJM20] Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta.

Multi-key fully-homomorphic encryption in the plain model. In Rafael Pass
and Krzysztof Pietrzak, editors, Theory of Cryptography - 18th International

34 Per-Party MPC

Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020, Proceed-
ings, Part I, volume 12550 of Lecture Notes in Computer Science, pages 28–57.
Springer, 2020. doi:10.1007/978-3-030-64375-1_2.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low commu-
nication, computation and interaction via threshold FHE. In David Pointcheval
and Thomas Johansson, editors, Advances in Cryptology - EUROCRYPT 2012
- 31st Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings,
volume 7237 of Lecture Notes in Computer Science, pages 483–501. Springer,
2012. doi:10.1007/978-3-642-29011-4_29.

[BCC+17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin,
Aviad Rubinstein, and Eran Tromer. The hunting of the SNARK. J. Cryptol.,
30(4):989–1066, 2017. URL: https://doi.org/10.1007/s00145-016-924
1-9, doi:10.1007/S00145-016-9241-9.

[BCPS20] Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith Suresh. FLASH: fast
and robust framework for privacy-preserving machine learning. Proc. Priv.
Enhancing Technol., 2020(2):459–480, 2020. URL: https://doi.org/10.247
8/popets-2020-0036, doi:10.2478/POPETS-2020-0036.

[BEP23] Alexander Bienstock, Daniel Escudero, and Antigoni Polychroniadou. On
linear communication complexity for (maximally) fluid MPC. In Helena
Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology - CRYPTO
2023 - 43rd Annual International Cryptology Conference, CRYPTO 2023,
Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part I, volume
14081 of Lecture Notes in Computer Science, pages 263–294. Springer, 2023.
doi:10.1007/978-3-031-38557-5_9.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation (extended
abstract). In Janos Simon, editor, Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA,
pages 1–10. ACM, 1988. doi:10.1145/62212.62213.

[BLCW19] Fabian Boemer, Yixing Lao, Rosario Cammarota, and Casimir Wierzynski.
ngraph-he: a graph compiler for deep learning on homomorphically encrypted
data. In Francesca Palumbo, Michela Becchi, Martin Schulz, and Kento Sato,
editors, Proceedings of the 16th ACM International Conference on Computing
Frontiers, CF 2019, Alghero, Italy, April 30 - May 2, 2019, pages 3–13. ACM,
2019. doi:10.1145/3310273.3323047.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity
of secure protocols (extended abstract). In Harriet Ortiz, editor, Proceedings
of the 22nd Annual ACM Symposium on Theory of Computing, May 13-
17, 1990, Baltimore, Maryland, USA, pages 503–513. ACM, 1990. doi:
10.1145/100216.100287.

[BPP+17] Foteini Baldimtsi, Dimitrios Papadopoulos, Stavros Papadopoulos, Alessandra
Scafuro, and Nikos Triandopoulos. Server-aided secure computation with
off-line parties. In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes,
editors, Computer Security - ESORICS 2017 - 22nd European Symposium
on Research in Computer Security, Oslo, Norway, September 11-15, 2017,

https://doi.org/10.1007/978-3-030-64375-1_2
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/s00145-016-9241-9
https://doi.org/10.1007/s00145-016-9241-9
https://doi.org/10.1007/S00145-016-9241-9
https://doi.org/10.2478/popets-2020-0036
https://doi.org/10.2478/popets-2020-0036
https://doi.org/10.2478/POPETS-2020-0036
https://doi.org/10.1007/978-3-031-38557-5_9
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/3310273.3323047
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287

Alessandra Scafuro, Tanner Verber 35

Proceedings, Part I, volume 10492 of Lecture Notes in Computer Science, pages
103–123. Springer, 2017. doi:10.1007/978-3-319-66402-6_8.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi
Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, CCS ’93, Proceedings
of the 1st ACM Conference on Computer and Communications Security,
Fairfax, Virginia, USA, November 3-5, 1993, pages 62–73. ACM, 1993. doi:
10.1145/168588.168596.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) LWE. SIAM J. Comput., 43(2):831–
871, 2014. doi:10.1137/120868669.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd Annual Symposium on Foundations of Computer
Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages
136–145. IEEE Computer Society, 2001. doi:10.1109/SFCS.2001.959888.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum,
Ron D. Rothblum, and Daniel Wichs. Fiat-shamir: from practice to theory.
In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix,
AZ, USA, June 23-26, 2019, pages 1082–1090. ACM, 2019. doi:10.1145/33
13276.3316380.

[CCP22] Anirudh Chandramouli, Ashish Choudhury, and Arpita Patra. A survey on
perfectly secure verifiable secret-sharing. ACM Comput. Surv., 54(11s):232:1–
232:36, 2022. doi:10.1145/3512344.

[CCPS19] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. ASTRA:
high throughput 3pc over rings with application to secure prediction. In Radu
Sion and Charalampos Papamanthou, editors, Proceedings of the 2019 ACM
SIGSAC Conference on Cloud Computing Security Workshop, CCSW@CCS
2019, London, UK, November 11, 2019, pages 81–92. ACM, 2019. doi:
10.1145/3338466.3358922.

[CGG+21] Arka Rai Choudhuri, Aarushi Goel, Matthew Green, Abhishek Jain, and
Gabriel Kaptchuk. Fluid MPC: secure multiparty computation with dynamic
participants. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology
- CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO
2021, Virtual Event, August 16-20, 2021, Proceedings, Part II, volume 12826
of Lecture Notes in Computer Science, pages 94–123. Springer, 2021. doi:
10.1007/978-3-030-84245-1_4.

[CJJ21] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Snargs for $\math-
cal{P}$ from LWE. In 62nd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages
68–79. IEEE, 2021. doi:10.1109/FOCS52979.2021.00016.

[CKKC13] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Carlos Cid.
Multi-client non-interactive verifiable computation. In Amit Sahai, edi-
tor, Theory of Cryptography - 10th Theory of Cryptography Conference,
TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings, volume 7785 of
Lecture Notes in Computer Science, pages 499–518. Springer, 2013. doi:
10.1007/978-3-642-36594-2_28.

https://doi.org/10.1007/978-3-319-66402-6_8
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1137/120868669
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1145/3512344
https://doi.org/10.1145/3338466.3358922
https://doi.org/10.1145/3338466.3358922
https://doi.org/10.1007/978-3-030-84245-1_4
https://doi.org/10.1007/978-3-030-84245-1_4
https://doi.org/10.1109/FOCS52979.2021.00016
https://doi.org/10.1007/978-3-642-36594-2_28
https://doi.org/10.1007/978-3-642-36594-2_28

36 Per-Party MPC

[CKL21] Jung Hee Cheon, Dongwoo Kim, and Keewoo Lee. Mhz2k: MPC from HE
over $\mathbb {Z}_{2ˆk}$ with new packing, simpler reshare, and better
ZKP. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology -
CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO
2021, Virtual Event, August 16-20, 2021, Proceedings, Part II, volume 12826
of Lecture Notes in Computer Science, pages 426–456. Springer, 2021. doi:
10.1007/978-3-030-84245-1_15.

[CMTB16] Henry Carter, Benjamin Mood, Patrick Traynor, and Kevin R. B. Butler.
Secure outsourced garbled circuit evaluation for mobile devices. J. Comput.
Secur., 24(2):137–180, 2016. doi:10.3233/JCS-150540.

[DDG+23] Bernardo David, Giovanni Deligios, Aarushi Goel, Yuval Ishai, Anders Konring,
Eyal Kushilevitz, Chen-Da Liu-Zhang, and Varun Narayanan. Perfect MPC
over layered graphs. In Helena Handschuh and Anna Lysyanskaya, editors,
Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryp-
tology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24,
2023, Proceedings, Part I, volume 14081 of Lecture Notes in Computer Science,
pages 360–392. Springer, 2023. doi:10.1007/978-3-031-38557-5_12.

[DEP23] Ivan Damgård, Daniel Escudero, and Antigoni Polychroniadou. Phoenix:
Secure computation in an unstable network with dropouts and comebacks.
In Kai-Min Chung, editor, 4th Conference on Information-Theoretic Cryp-
tography, ITC 2023, June 6-8, 2023, Aarhus University, Aarhus, Denmark,
volume 267 of LIPIcs, pages 7:1–7:21. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.ITC.2023.7,
doi:10.4230/LIPICS.ITC.2023.7.

[DI05] Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using
a black-box pseudorandom generator. In Victor Shoup, editor, Advances in
Cryptology - CRYPTO 2005: 25th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 14-18, 2005, Proceedings, volume
3621 of Lecture Notes in Computer Science, pages 378–394. Springer, 2005.
doi:10.1007/11535218_23.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Reihaneh Safavi-
Naini and Ran Canetti, editors, Advances in Cryptology - CRYPTO 2012 -
32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2012. Proceedings, volume 7417 of Lecture Notes in Computer Science, pages
643–662. Springer, 2012. doi:10.1007/978-3-642-32009-5_38.

[FKN94] Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure com-
putation (extended abstract). In Frank Thomson Leighton and Michael T.
Goodrich, editors, Proceedings of the Twenty-Sixth Annual ACM Symposium
on Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada, pages
554–563. ACM, 1994. doi:10.1145/195058.195408.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, USA, 2009. URL: https://searchworks.stanford.edu/view/
8493082.

[GGJS11] Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Bringing people
of different beliefs together to do UC. In Yuval Ishai, editor, Theory of
Cryptography - 8th Theory of Cryptography Conference, TCC 2011, Providence,

https://doi.org/10.1007/978-3-030-84245-1_15
https://doi.org/10.1007/978-3-030-84245-1_15
https://doi.org/10.3233/JCS-150540
https://doi.org/10.1007/978-3-031-38557-5_12
https://doi.org/10.4230/LIPIcs.ITC.2023.7
https://doi.org/10.4230/LIPICS.ITC.2023.7
https://doi.org/10.1007/11535218_23
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1145/195058.195408
https://searchworks.stanford.edu/view/8493082
https://searchworks.stanford.edu/view/8493082

Alessandra Scafuro, Tanner Verber 37

RI, USA, March 28-30, 2011. Proceedings, volume 6597 of Lecture Notes in
Computer Science, pages 311–328. Springer, 2011. doi:10.1007/978-3-642
-19571-6_19.

[GHK+21] Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus
Nielsen, Tal Rabin, and Sophia Yakoubov. YOSO: you only speak once -
secure MPC with stateless ephemeral roles. In Tal Malkin and Chris Peikert,
editors, Advances in Cryptology - CRYPTO 2021 - 41st Annual International
Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021,
Proceedings, Part II, volume 12826 of Lecture Notes in Computer Science,
pages 64–93. Springer, 2021. doi:10.1007/978-3-030-84245-1_3.

[GJM+23] Sanjam Garg, Abhishek Jain, Pratyay Mukherjee, Rohit Sinha, Mingyuan
Wang, and Yinuo Zhang. Cryptography with weights: Mpc, encryption
and signatures. In Helena Handschuh and Anna Lysyanskaya, editors, Ad-
vances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology
Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023,
Proceedings, Part I, volume 14081 of Lecture Notes in Computer Science, pages
295–327. Springer, 2023. doi:10.1007/978-3-031-38557-5_10.

[GLO+21] Vipul Goyal, Hanjun Li, Rafail Ostrovsky, Antigoni Polychroniadou, and Yifan
Song. ATLAS: efficient and scalable MPC in the honest majority setting. In
Tal Malkin and Chris Peikert, editors, Advances in Cryptology - CRYPTO
2021 - 41st Annual International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16-20, 2021, Proceedings, Part II, volume 12826 of
Lecture Notes in Computer Science, pages 244–274. Springer, 2021. doi:
10.1007/978-3-030-84245-1_9.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred V. Aho, editor, Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, 1987, New York, New York, USA, pages 218–229. ACM,
1987. doi:10.1145/28395.28420.

[GO14] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. J.
Cryptol., 27(3):506–543, 2014. URL: https://doi.org/10.1007/s00145-0
13-9152-y, doi:10.1007/S00145-013-9152-Y.

[HJKS22] James Hulett, Ruta Jawale, Dakshita Khurana, and Akshayaram Srinivasan.
Snargs for P from sub-exponential DDH and QR. In Orr Dunkelman and
Stefan Dziembowski, editors, Advances in Cryptology - EUROCRYPT 2022
- 41st Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Trondheim, Norway, May 30 - June 3, 2022, Pro-
ceedings, Part II, volume 13276 of Lecture Notes in Computer Science, pages
520–549. Springer, 2022. doi:10.1007/978-3-031-07085-3_18.

[HLP11] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on
the web: Computing without simultaneous interaction. In Phillip Rogaway,
editor, Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, volume
6841 of Lecture Notes in Computer Science, pages 132–150. Springer, 2011.
doi:10.1007/978-3-642-22792-9_8.

[JKKZ21] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Yun Zhang.
Snargs for bounded depth computations and PPAD hardness from sub-
exponential LWE. In Samir Khuller and Virginia Vassilevska Williams, editors,

https://doi.org/10.1007/978-3-642-19571-6_19
https://doi.org/10.1007/978-3-642-19571-6_19
https://doi.org/10.1007/978-3-030-84245-1_3
https://doi.org/10.1007/978-3-031-38557-5_10
https://doi.org/10.1007/978-3-030-84245-1_9
https://doi.org/10.1007/978-3-030-84245-1_9
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/s00145-013-9152-y
https://doi.org/10.1007/s00145-013-9152-y
https://doi.org/10.1007/S00145-013-9152-Y
https://doi.org/10.1007/978-3-031-07085-3_18
https://doi.org/10.1007/978-3-642-22792-9_8

38 Per-Party MPC

STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Com-
puting, Virtual Event, Italy, June 21-25, 2021, pages 708–721. ACM, 2021.
doi:10.1145/3406325.3451055.

[JNO14] Thomas P. Jakobsen, Jesper Buus Nielsen, and Claudio Orlandi. A framework
for outsourcing of secure computation. In Gail-Joon Ahn, Alina Oprea, and
Reihaneh Safavi-Naini, editors, Proceedings of the 6th edition of the ACM
Workshop on Cloud Computing Security, CCSW ’14, Scottsdale, Arizona, USA,
November 7, 2014, pages 81–92. ACM, 2014. doi:10.1145/2664168.2664170.

[Kat07] Jonathan Katz. Universally composable multi-party computation using tamper-
proof hardware. In Moni Naor, editor, Advances in Cryptology - EUROCRYPT
2007, 26th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Barcelona, Spain, May 20-24, 2007, Proceedings,
volume 4515 of Lecture Notes in Computer Science, pages 115–128. Springer,
2007. doi:10.1007/978-3-540-72540-4_7.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography,
Second Edition. CRC Press, 2014. URL: https://www.crcpress.com/Intro
duction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/b
ook/9781466570269.

[KMR11] Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing multi-
party computation. IACR Cryptol. ePrint Arch., page 272, 2011. URL:
http://eprint.iacr.org/2011/272.

[KMR12] Seny Kamara, Payman Mohassel, and Ben Riva. Salus: a system for server-
aided secure function evaluation. In Ting Yu, George Danezis, and Virgil D.
Gligor, editors, the ACM Conference on Computer and Communications
Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012, pages 797–808.
ACM, 2012. doi:10.1145/2382196.2382280.

[KPPS21] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. SWIFT: super-
fast and robust privacy-preserving machine learning. In Michael D. Bailey
and Rachel Greenstadt, editors, 30th USENIX Security Symposium, USENIX
Security 2021, August 11-13, 2021, pages 2651–2668. USENIX Association,
2021. URL: https://www.usenix.org/conference/usenixsecurity21/p
resentation/koti.

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computa-
tions publicly. In Moses Charikar and Edith Cohen, editors, Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, Phoenix, AZ, USA, June 23-26, 2019, pages 1115–1124. ACM, 2019.
doi:10.1145/3313276.3316411.

[Lin17] Yehuda Lindell. How to simulate it - A tutorial on the simulation proof
technique. In Yehuda Lindell, editor, Tutorials on the Foundations of Cryp-
tography, pages 277–346. Springer International Publishing, 2017. doi:
10.1007/978-3-319-57048-8_6.

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly
multiparty computation on the cloud via multikey fully homomorphic en-
cryption. In Howard J. Karloff and Toniann Pitassi, editors, Proceedings
of the 44th Symposium on Theory of Computing Conference, STOC 2012,
New York, NY, USA, May 19 - 22, 2012, pages 1219–1234. ACM, 2012.
doi:10.1145/2213977.2214086.

https://doi.org/10.1145/3406325.3451055
https://doi.org/10.1145/2664168.2664170
https://doi.org/10.1007/978-3-540-72540-4_7
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
http://eprint.iacr.org/2011/272
https://doi.org/10.1145/2382196.2382280
https://www.usenix.org/conference/usenixsecurity21/presentation/koti
https://www.usenix.org/conference/usenixsecurity21/presentation/koti
https://doi.org/10.1145/3313276.3316411
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1145/2213977.2214086

Alessandra Scafuro, Tanner Verber 39

[MGBF14] Benjamin Mood, Debayan Gupta, Kevin R. B. Butler, and Joan Feigenbaum.
Reuse it or lose it: More efficient secure computation through reuse of encrypted
values. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, Scottsdale, AZ, USA, November 3-7, 2014, pages 582–596. ACM,
2014. doi:10.1145/2660267.2660285.

[Mic94] Silvio Micali. CS proofs (extended abstracts). In 35th Annual Symposium
on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-22
November 1994, pages 436–453. IEEE Computer Society, 1994. doi:10.1109/
SFCS.1994.365746.

[MOR16] Payman Mohassel, Ostap Orobets, and Ben Riva. Efficient server-aided 2pc
for mobile phones. Proc. Priv. Enhancing Technol., 2016(2):82–99, 2016. URL:
https://doi.org/10.1515/popets-2016-0006, doi:10.1515/POPETS-201
6-0006.

[MR18] Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for
machine learning. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada,
October 15-19, 2018, pages 35–52. ACM, 2018. doi:10.1145/3243734.3243
760.

[MTZC21] Jack P. K. Ma, Raymond K. H. Tai, Yongjun Zhao, and Sherman S. M.
Chow. Let’s stride blindfolded in a forest: Sublinear multi-client decision
trees evaluation. In 28th Annual Network and Distributed System Security
Symposium, NDSS 2021, virtually, February 21-25, 2021. The Internet Society,
2021. URL: https://www.ndss-symposium.org/ndss-paper/lets-strid
e-blindfolded-in-a-forest-sublinear-multi-client-decision-trees
-evaluation/.

[MZ17] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE Symposium on Security
and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pages 19–38.
IEEE Computer Society, 2017. doi:10.1109/SP.2017.12.

[PS20] Arpita Patra and Ajith Suresh. BLAZE: blazing fast privacy-preserving
machine learning. In 27th Annual Network and Distributed System Security
Symposium, NDSS 2020, San Diego, California, USA, February 23-26, 2020.
The Internet Society, 2020. URL: https://www.ndss-symposium.org/nds
s-paper/blaze-blazing-fast-privacy-preserving-machine-learnin
g/.

[RS22] Rahul Rachuri and Peter Scholl. Le mans: Dynamic and fluid MPC for
dishonest majority. In Yevgeniy Dodis and Thomas Shrimpton, editors, Ad-
vances in Cryptology - CRYPTO 2022 - 42nd Annual International Cryptology
Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022,
Proceedings, Part I, volume 13507 of Lecture Notes in Computer Science, pages
719–749. Springer, 2022. doi:10.1007/978-3-031-15802-5_25.

[SH21] Jaskaran V. Singh and Nicholas Hopper. Grades of trust in multiparty
computation. IACR Cryptol. ePrint Arch., page 82, 2021. URL: https:
//eprint.iacr.org/2021/082.

https://doi.org/10.1145/2660267.2660285
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1515/popets-2016-0006
https://doi.org/10.1515/POPETS-2016-0006
https://doi.org/10.1515/POPETS-2016-0006
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1145/3243734.3243760
https://www.ndss-symposium.org/ndss-paper/lets-stride-blindfolded-in-a-forest-sublinear-multi-client-decision-trees-evaluation/
https://www.ndss-symposium.org/ndss-paper/lets-stride-blindfolded-in-a-forest-sublinear-multi-client-decision-trees-evaluation/
https://www.ndss-symposium.org/ndss-paper/lets-stride-blindfolded-in-a-forest-sublinear-multi-client-decision-trees-evaluation/
https://doi.org/10.1109/SP.2017.12
https://www.ndss-symposium.org/ndss-paper/blaze-blazing-fast-privacy-preserving-machine-learning/
https://www.ndss-symposium.org/ndss-paper/blaze-blazing-fast-privacy-preserving-machine-learning/
https://www.ndss-symposium.org/ndss-paper/blaze-blazing-fast-privacy-preserving-machine-learning/
https://doi.org/10.1007/978-3-031-15802-5_25
https://eprint.iacr.org/2021/082
https://eprint.iacr.org/2021/082

40 Per-Party MPC

[TKTW21] Sijun Tan, Brian Knott, Yuan Tian, and David J. Wu. Cryptgpu: Fast
privacy-preserving machine learning on the GPU. In 42nd IEEE Symposium
on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021,
pages 1021–1038. IEEE, 2021. doi:10.1109/SP40001.2021.00098.

[WGC19] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Securenn: 3-party secure
computation for neural network training. Proc. Priv. Enhancing Technol.,
2019(3):26–49, 2019. URL: https://doi.org/10.2478/popets-2019-0035,
doi:10.2478/POPETS-2019-0035.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th Annual Symposium on Foundations of Computer Science,
Toronto, Canada, 27-29 October 1986, pages 162–167. IEEE Computer Society,
1986. doi:10.1109/SFCS.1986.25.

https://doi.org/10.1109/SP40001.2021.00098
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.2478/POPETS-2019-0035
https://doi.org/10.1109/SFCS.1986.25

	Introduction
	A New Paradigm: Per-party Private Server-aided MPC
	Related Work

	Preliminaries
	Secure Multiparty Computation (MPC)
	Verifiable Secret Sharing (VSS)
	Digital Signatures
	Succinct Non-Interactive Arguments (SNARG)
	Fully Homomorphic Encryption (FHE)

	Definition of Per-Party Private Server-Aided MPC
	Protocols for Per-Party Private Server-Aided MPC
	Per-Party Private Server-Aided based on MPC
	Security of MPC-Based Protocol
	Per-Party Private Server-aided MPC from FHE
	Security of FHE-Based Protocol

	References

