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Abstract. We construct two efficient post-quantum ring signatures with anonymity
against full key exposure from isogenies, addressing the limitations of existing isogeny-
based ring signatures.
First, we present an efficient concrete distinguisher for the SQIsign simulator when
the signing key is provided using one transcript. This shows that turning SQIsign
into an efficient full anonymous ring signature requires some new ideas.
Second, we propose a variant of SQIsign (Asiacrypt’20) that is resistant to the
distinguisher attack with only a �1.4 increase in size and we render it to a ring
signature, that we refer to as Erebor. This variant introduces a new zero-knowledge
assumption that ensures full anonymity. The efficiency of Erebor remains comparable
to that of SQIsign, with only a proportional increase due to the ring size. This results
in a signature size of 0.71 KB for 4 users and 1.41 KB for 8 users, making it the most
compact post-quantum ring signature for up to 29 users.
Third, we revisit the GPS signature scheme (Asiacrypt’17), developing efficient
subroutines to make the scheme more efficient and significantly reduce the resulting
signature size. By integrating our scheme with the paradigm by Beullens, Katsumata,
and Pintore (Asiacrypt’20), we achieve an efficient logarithmic ring signature, that
we call Durian, resulting in a signature size of 9.87 KB for a ring of size 1024.

1 Introduction
Ring Signatures. Ring signatures, a cryptographic primitive introduced by Rivest,
Shamir, and Tauman-Kalai [RST01], enable a member of a group (referred to as a ring) to
sign a message on behalf of the entire group without revealing which specific member signed
the message. The original application of ring signatures was to protect whistle-blowers,
allowing them to leak information anonymously while ensuring the information’s credibility
by proving it was released by someone within the group due to unforgeability. Today,
ring signatures are widely utilized in various fields, such as electronic voting systems
[LWW04], confidential transactions in blockchain technology [Noe15, YSL�20, ESZ22],
secure messaging [HKKP21], deniable key exchanges [BFG�22] and deniable AKEM
[GJK24]. In many applications, full anonymity of the underlying ring signature is essential,
ensuring the signer’s anonymity even if all signing keys are exposed.

Ring signatures exist for a variety of classical assumptions [RST01, AOS02, BGLS03,
GK15, YEL�21]. However, these number-theoretic assumptions can be solved by a
quantum computer in polynomial time [Sho94], rendering these schemes insecure against
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adversaries equipped with sufficiently powerful quantum computers. To address this issue,
many post-quantum ring signature schemes have been proposed [KKW18, LAZ19, YEL�21,
BKP20, BDK�22, ESZ22, GJK24]. Among the state-of-the-art proposals are lattice-based
instances of the linear1 ring signatures Gandalf [GJK24] and DualRing [YEL�21], which
needs 1.2 KB for 2 users and 4.7 KB for 8 users respectively and grow linearly with the
ring size. The logarithmic2 ring signature SMILE [LNS21] requires 18 KB for a ring of
size 1024. Among the post-quantum proposals, there are two constructions from isogenies
[BKP20, BDK�22], which are linkable and accountable ring signatures respectively, by
using the isogeny group actions [CLM�18].

The isogeny problem, which lies at the heart of isogeny-based cryptography, conjectures
that given two isogenous elliptic curves, it is hard to compute an isogeny between them.
Imposing restrictions on the elliptic curves leads to the isogeny group action, which
offers richer algebraic properties and has proven to be a versatile branch in isogeny-
based cryptography [LGD21, BKP20, DM20, BDK�22, KLLQ23]. However, due to the
innate structure of abelian group actions, it suffers from the subexponential time attacks
[Kup05, Kup13], so the efficient instantiations of the ring signature [BKP20, BDK�22]
do not meet the quantum security of NIST I [Pei20]. To have efficient instantiations by
scaling the underlying parameters has been an open problem [DFK�23, CLP24] and is
currently a bottleneck for its constructions and applications. Meanwhile, translating these
constructions to the general isogeny case by removing the use of group action has been
recognized as a non-trivial task. This brings us to the main question of this work:

Can we have efficient ring signatures from isogenies
that provides both full anonymity and sufficient post-quantum security?

Isogeny Proof of Knowledge. Isogeny zero-knowledge proof of knowledge (ZKPoK)
for an isogeny problem is an active research area in isogeny research [FJP14, GPS17,
YAJ�17, UJ20, DDGZ22]. Before the SIDH attacks [CD23, Rob23, MMP�23], incorpo-
rating auxiliary information like torsion points was a common research object to consider
[FJP14, YAJ�17, UJ20, DDGZ22]. The GPS signature scheme [GPS17] is another example
of an isogeny ZKPoK, where the signature size is nearly tens of KB to one hundred KB.
However, due to the algorithm’s high complexity, the scheme remains theoretical. The
state-of-art works of isogeny ZKPoK owe credit to distinct approaches showcased in recent
papers [BCC�23, CLL23], both exhibiting comparable performance metrics in proof size
and runtime. Yet, both methodologies entail proof sizes of at least a few hundred KB.

Besides, the prominent isogeny-based signature schemes [DKL�20, DLLW23, DLRW24],
known as SQIsign and SQIsignHD, operate on a sigma-protocol framework without employing
parallel repetitions. This simplifies the proof process while still demonstrating “partial”
knowledge of the endomorphism ring of a supersingular curve E. Full knowledge of this ring
is equivalent to knowing an isogeny between E and a specific E0 with a j-invariant of 0 or
1728. The recent improvements of SQIsign2Ds share the same feature [NOC�25, BDF�25].
Notably, SQIsign stands out for its compactness among NIST submissions for post-quantum
signatures [CSCRSDF�23]. These schemes are natural candidates for adaptation into ring
signatures.

Methodology. It is believed that the schemes mentioned above can be transformed
into 1-out-of-many proofs or ring signatures using standard approaches [CDS94, AOS02,
KKW18, YEL�21]. However, this is not always the case. This limitation arises from the
design of the simulators used in the constructions [DKL�20, DLLW23, DLRW24].

1The signature size grows linear to the ring size.
2The signature size grows logarithmic to the ring size.
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The simulator of a signature scheme is crucial for constructing a ring signature. For
example, the simulators for SQIsignHD and SQIsign2Ds rely on access to an oracle, making
it infeasible to simulate transcripts for a ring signature in a real-world setting. Similarly,
the simulator for SQIsign cannot generate a transcript with a prefix challenge, making it
incompatible with the sequential approach [AOS02, YEL�21]. It is folklore that if the
signing key is given, an efficient distinguisher for the SQISign simulator exists. However,
a rigorous analysis has never been given in the literature. In this work, we present an
efficient algorithm demonstrating that it is possible to distinguish simulated transcripts,
which precludes the use of existing methods to achieve fully anonymous ring signatures
with SQIsign.

1.1 Contributions.
1. We present a concrete distinguisher in theorem 3 for the simulator of SQIsign when

the signing key is provided. Supported by the experimental result, the algorithm is
efficient, requiring only one transcript to distinguish. We stress again that this do
not constitute an attack on SQIsign, as it needs the secret key to execute, and that
the core ideas of this distinguisher were already known to the community, but never
considered relevant for a real-world construction.

2. We propose Erebor 3, a linear ring signature based on a variant of SQIsign that is
resistant to the aforementioned distinguisher attack and introduce a new assumption
for zero-knowledge. Unlike the original SQIsign, this variant is compatible with
both parallel and sequential OR proofs [CDS94, AOS02]. The resulting linear ring
signatures offer full anonymity based on the new assumption, for which we provide a
security argument. This leads to the most compact post-quantum ring signatures
with full anonymity with a ring size less than equal to 29. As an independent
interest, we provide a shorter version considering anonymity without key exposure.

3. We revisit the GPS signature scheme. By tweaking the scheme and developing efficient
subroutines, we make the scheme feasible and significantly reduce the resulting
signature size. Additionally, by integrating our new scheme with an adaptation of the
group action paradigm introduced in [BKP20], we achieve an efficient logarithmic
ring signature Durian 4. This results in the most compact logarithmic post-quantum
ring signatures, providing full anonymity in a statistical sense.

1.2 Technical Overview
Due to the Deuring correspondence (Table 1), an isogeny between two supersingular curves
E and E1 corresponds to a connecting ideal, which serves as both a left EndpEq-ideal and
a right EndpE1q-ideal within the quaternion algebra. For simplicity, we may occasionally
interchange the objects “curve” and “endomorphism ring” and the terms “ideal” and
“isogeny” when the context is clear.

We now explain our contributions in detail. In the context of signatures derived from
non-interactive proof of knowledge identification protocols we can see ring signatures as
a special case of a one-out-of-many proof (namely, OR-proofs): to prove the knowledge
of at least a secret witness associated to one out of many public statements or problems.
Classical techniques like sequential and parallel OR-proofs [CDS94, AOS02] exploit the
same simulator used to prove the honest-verifier zero knowledge property. For identification
protocols achieving statistical indistinguishability between honest transcripts and simulated
ones this immediately implies statistical full-anonymity, while for protocols relying on

3Short for “Eichler order RE-randomizing-Based OR-proof.”
4Short for “DeUring correspondence-based RIng signature with full ANonymity.”
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computational assumptions to prove the indistinguishability, like [DKL�20], there are two
major differences:

• we need the same computational assumption to prove the anonymity,

• to achieve full-anonymity we need indistinguishability to hold even with access to
the secret key.

We start by formally showing that for SQIsign this last point does not hold.

Distinguisher. The high-level idea of the distinguisher is to use the secret key to do the
“reverse engineering” to recover the randomness used in the signing algorithm by exploiting
the Eichler orders’ properties. Roughly, the signing algorithm of SQIsign proceeds as
follows. The protocol is to prove knowledge of the endomorphism ring of a curve Epk.
This is equivalent to proving knowledge of an ideal between Epk and E0, where E0 has a
j-invariant of 1728.

The main algorithm, SigningKLPT, takes as input an ideal I and the secret ideal and
returns a random, equivalent ideal of a power-smooth norm. Here, I is the ideal connecting
the public curve Epk and a challenge curve Ech chosen by the verifier. Importantly, the
randomness of the ideal returned by SigningKLPT hides information about the secret ideal.
In detail, I is first randomized within a class group to obtain Ĩ. Next, the algorithm finds
an equivalent ideal for Ĩ with a power-smooth norm by a few subroutines. Finally, the
resulting ideal is translated into an isogeny between Epk and Ech and sent to the verifier
together with the commitment curve and the challenge isogeny.

In contrast, the simulator procedure is much simpler. It generates a random isogeny
σ1 : Epk Ñ E1

ch of a specific degree and then computes a random challenge isogeny
ϕ̂1ch : E1

ch Ñ E1
cmt of a specific degree. The simulator outputs a simulated transcript as

pE1
cmt, ϕ

1
ch, σ

1q. The main difference between the transcripts is the way to generate the
isogeny σ1. The indistinguishability ensures the computational zero-knowledge property of
SQIsign.

Our distinguisher proceeds as follows. By assuming access to the secret ideal, we can
translate both isogenies to left EndpEpkq-ideals. We may assume the distributions of the
ideals are uniformly random over each support, denoted by Sreal and Ssim, respectively.
We note that even though Sreal � Ssim and Sreal is negligible compared to Ssim, the size of
Sreal is still exponentially large in the security parameter. Hence, enumerating the ideals
to distinguish by querying the oracle will be infeasible. On the other hand, it suffices to
determine if the resulting ideals are in Sreal to distinguish.

In the case of the real transcript, we observe three facts: 1). The ideal, translated
from the isogeny, is the output of SigningKLPT and stays in the same class as Ĩ. 2). The
procedure for finding the equivalent ideal of a power-smooth norm does not depend on the
representative of a class. 3). We can invoke a meet-in-the-middle type approach to recover
the randomness used in the previous procedure.

The last step is feasible because the former part of the equivalent-ideal-finding procedure
has only polynomially-many solutions (see the estimation of 6) and the latter part has
a specific structure (due to the strong approximation) to derive the output. For a more
detailed explanation, refer to Item 2. Therefore, by fixing this ideal and running the
equivalent-ideal-finding subroutines of SigningKLPT, we can recover the randomness used
in SigningKLPT. In contrast, when running on input the simulated transcripts, the
distinguisher will not terminate. Supported by the implementation, the distinguisher
succeeds with an overwhelming probability using just one transcript.

Linear-size Ring Signature. The blueprint under Erebor design is the classical AOS
framework [AOS02], which provides simple and efficient ring signatures from any identifi-
cation protocol. To have a full-anonymous ring signature, we need to modify SQIsignin
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two ways. The primary goal is to address the distinguishability issue when the secret key
is available. We introduce a new KLPT variant (Algorithm 3) for the signing algorithm.
The high-level idea is to randomize and find an equivalent ideal for the secret ideal before
executing SigningKLPT. This gives a better zero-knowledge than SQISign for two reasons.
First, since now the pullback would send an endomorphism to random morphisms, it is
hard to recover the left O0-class using in the signing algorithm. Furthermore, this increases
the possibilities for each intermediate variable by an exponential factor by choosing a
sufficiently large degree for the equivalent ideal. Hence, our new signing KLPT algorithm
makes the abovementioned distinguisher fail. As a result, we obtain an SQISign variant
with a better zero-knowledge guarantee, incurring only minor overheads in efficiency and
signature size. We provide a careful counting argument to analyze the new assumption
and conjecture its hardness in Section 4.3.

Then, to apply the AOS framework [AOS02], we tweak the SQISign diagram: having
the challenge starting from the public key Epk instead of from E0. In this way we can
produce a simulated transcript for any given challenge isogeny. With minor modification
we can employ the same building blocks of SQIsign and achieve the same final results. As
a result, we present the most compact full-anonymous post-quantum ring signature for up
to 31 users.

Logarithmic-size Ring Signature. The GPS signature scheme [GPS17] is based on a
parallel-repeated sigma protocol with a challenge space of size 2. The prover shows the
knowledge of an isogeny between E0 and E, where the endomorphism ring of E0 is known.

At a high level, the prover selects a subgroup S of E of power-smooth size, computes
the codomain curve of the isogeny with the kernel S, and commits to this curve, denoted
as E1. Depending on the challenge bit from t0, 1u, the prover reveals an isogeny path from
either E0 or E to E1. Revealing S suffices to compute the isogeny between E and E1,
which is also simulatable since it does not require a secret key.

When revealing the isogeny between E0 and E1, the prover uses the secret isogeny
between E0 and E to produce the isogeny between E0 and E1. Revealing the composed
isogeny will leak the secret key, so the prover has to compute the endomorphism ring
EndpE1q using the isogeny and the known EndpE0q. Here, we can use the Ramanujan
property of the supersingular isogeny graph to simulate the transcript. Then, the prover
computes the connecting ideal between EndpE0q and EndpE1q and translates the ideal to
an isogeny from E0 to E1 with a power-smooth degree. This translation is the primary
source of inefficiency.

Here, we adopt a different approach. Instead of revealing the isogeny between E0 and
E1, the prover reveals the optimal connecting ideal, which has the smallest norm by using
the lattice reduction in dimension 4. The benefit of using this approach is twofold. First,
this does not require the norm to be power-smooth, thereby avoiding the lengthy loop in
generating the response. Second, the optimal ideal can be represented using approximately
log2ppq, which is nearly optimal given that there are roughly Oppq isomorphism classes
for supersingular curves. By generalizing the algorithms in [DLLW23], we can efficiently
compute this representation, estimating the process to take less than 10ms. To reconstruct
the curve E1 in our scheme, the verifier computes the isogeny using a simple adaptation of
the new ideal-to-isogeny algorithm developed in [BDF�25, Algorithm 3]. This computation
is estimated to take less than 40 ms.

Beullens, Katsumata and Pintore [BKP20] provide a group-action-based framework
for logarithmic ring signatures. Although we are not using group action here, it is
straightforward to construct a logarithmic ring signature using our improved signature
scheme based on the same principles. Given E0 and E1, � � � , EN , to prove the knowledge
of an isogeny between E0 and EI for some I P rN s, the prover computes an isogeny for
each Ei where i P rN s by randomly choosing a subgroup of smooth size over each Ei. The
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prover then shuffles and commits to the codomain curves E1
i. Depending on the challenge

bit in t0, 1u, the prover reveals either all subgroups or an optimal connecting ideal between
EndpE0q and E1

I . We utilize standard optimization techniques to improve the signature
size, as detailed in section 5. Surprisingly, the resulting logarithmic ring signature is only
slightly larger than the group-action counterpart while achieving NIST level 1 security, as
shown in table 4.

2 Preliminaries
Notations. We write N,Z,Q for the sets of natural numbers, integers, and rational
numbers. For N P N, P1pZ{NZq denote the projective space modulo N . For M P N we
let rM s :� t1, � � � ,Mu. For an ideal I, let OLpIq and ORpIq denote the left and the right
order of I respectively.

2.1 Sigma protocols
Definition 1 (Sigma Protocol). A sigma protocol ΠΣ is a three-move identification
protocol for a NP relation R consists of oracle-calling PPT algorithms Gen and pP �
pP1,P2q,V � pV1,V2qq, where V2 is deterministic. We assume Gen, P1 and P2 share states
and so does V1 and V2. Let ChSet denote the challenge space. Then, ΠΣ proceeds as
follows.

• The prover, gets a valid relation px,wq Ð Genp1λq and publish x;

• The prover, on input px,wq P R, runs com Ð PO
1 px,wq and sends a commitment com

to the verifier.

• The verifier runs ch $Ð VO
1 p1λq, drawing a random challenge from ChSet, and sends

it to the prover.

• The prover, given ch, runs rsp Ð PO
2 px,w, chq and returns a response rsp to the

verifier.

• The verifier runs VO
2 px, com, ch, rspq and outputs 1 (accept) or 0 (reject).

Here, O is modeled as a random oracle. For simplicity, we often drop O from the superscript
when it is clear from the context. We assume the statement x is always given as input to
both the prover and the verifier. The protocol transcript pcom, ch, rspq is said to be valid
in case V2pcom, ch, rspq outputs 1.

We consider the following properties for a Σ-protocol:

Correctness. A sigma protocol ΠΣ is said to be correct if for all px,wq P R and the prover
and the verifier both follow the protocol specification, the verifier always outputs 1.

Honest Verifier Zero-Knowledge. We have a few distinct notions for zero-knowledge.
We start with the standard one, then we consider the concepts more relevant to the
SQIsign protocol and our constructions.

We say ΠΣ is tstatistically, computationallyu honest-verifier-zero-knowledge (HVZK )
for relation R if there exists a PPT simulator SO with access to a random oracle O
such that for any λ P N, pair px,wq P R and any tcomputationally unbounded, PPTu
adversary A that makes at most a polynomial number of queries to O, we have

AdvHVZK
ΠΣ

pAq :� |PrrAOpPOpx,wqq � 1s � PrrAOpSOpxqq � 1s| � neglpλq, (1)
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where P � pP1, P2q is a prover running on px,wq and the probability is taken over
the randomness used by pP, V q and by the random oracle.

• ΠΣ is said to be special HVZK if the challenge ch P ChSet is fixed in advance
for both the prover and the simulator and (1) holds for any ch P ChSet.

• ΠΣ is said to be strong HVZK if (1) holds conditioned on that px,wq Ð Genp1λq
and the A is has access to w.

• ΠΣ is said to be weak HVZK if (1) holds conditioned on that px,wq Ð Genp1λq
and the A is has no access to w.

Looking ahead, we will use computationally special strong HVZK and statistically
special HVZK properties respectively to construct ring signatures with full anonymity.
Intuitively, the indistinguishability provided by these properties ensures anonymity even
when the secret key (i.e. w) is exposed. In contrast, we will also show that the sigma
protocol of SQIsign, which has been shown to be weak HVZK, does not satisfy strong
HVZK and hence cannot be transformed into a fully anonymous ring signature using
existing paradigms.

Special Soundness. We say a sigma protocol ΠΣ has special soundness if there exists
a polynomial-time extraction algorithm Extract such that, given a statement x and
any two valid transcripts pcom, ch, rspq and pcom, ch1, rsp1q relative to x and such that
ch � ch1, outputs a witness w satisfying px,wq P R.

High Min-Entropy. We say a sigma protocol ΠΣ has αpλq min-entropy if for any px,wq P
R, and a possibly computationally-unbounded adversary A, we have

Pr
�
com � com1

��com Ð PO
1 px,wq, com1 Ð AOpx,wq� ¤ 2�α,

where the probability is taken over the randomness used by P1 and by the random
oracle. We say ΠΣ has high min-entropy if 2�α is negligible in λ.

A sigma protocol can be transformed to a digital signature via the well-known Fiat-
Shamir transform [FS87] and substituting the random oracle O with a cryptographic hash
function.

2.2 Ring Signature
We give here basic definitions for identification protocols, ring signatures. Then we show
how to construct the latter from AOS squential OR-proofs [AOS02], providing proofs of
security tailored to our situations.

Definition 2 (Ring signature). A ring signature scheme ΠRS consists of four PPT algo-
rithms
pRS.Setup,RS.KeyGen,RS.Sign,RS.Verifyq such that:

RS.Setupp1λq Ñ pp : On input a security parameter 1λ, it returns public parameters pp
used by the scheme.

RS.KeyGenppp, rrq Ñ ppk, skq : On input the public parameters pp and a randomness rr, it
outputs a pair of public and secret keys ppk, skq.

RS.Signpsk, rr,m,Rq Ñ σ : On input a secret key sk, a randomness rr, a message m, and a
list of public keys, i.e., a ring, R � tpk1, . . . , pkNu, it outputs a signature σ.

RS.VerifypR,m, σq Ñ 1{0 : On input a ring R � tpk1, . . . , pkNu, a message m, and a signa-
ture σ, it outputs either 1 (accept) or 0 (reject).
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Correctness: For every security parameter λ P N, N � polypλq, j P rN s, and every
message m the following holds:

Pr

���� RS.VerifypR,m, σq � 1

��������
pp Ð RS.Setupp1λq,

ppki, skiq Ð RS.KeyGenppp, rriq @i P rN s,
R :� ppk1, � � � , pkN q,

σ Ð RS.Signpskj , rrj ,m,Rq.

���� � 1.

Anonymity: A ring signature scheme ΠRS is anonymous if, for all λ P N and N � polypλq
, any PPT adversary A has at most negligible advantage in the following game played
against a challenger.

(i) The challenger runs pp Ð RS.Setup
�
1λ
�

and ppki, skiq Ð RS.KeyGenppp, rriq for
all i P rN s using the randomness rri. It also samples a random bit bÐ t0, 1u;

(ii) The challenger provides pp to A;
(iii) A outputs a challenge pR,m, i0, i1q to the challenger, where the ring R must

contain pki0 and pki1 .
(iv) The challenger then runs σ� Ð RS.Signpskib , rr�,m,Rq, and provides σ� to A;
(v) A outputs a guess b�. If b� � b, we say the adversary A wins.

The advantage of A is defined as

AdvAnon
ΠRS

pAq :� |PrrA winss � 1{2| .

The scheme is full-anonymous or anonymous against full key exposure if any PPT
adversary A has still negligible advantage in the game where at Item ii the challenger
provides also trriuiPrNs to A.

Unforgeability (UF-CMA): A ring signature scheme ΠRS is unforgeable (with respect
to insider corruption) if, for all λ P N and N � polypλq, any PPT adversary A has
at most negligible advantage in the following game played against a challenger.

(i) The challenger runs pp Ð RS.Setupp1λq and generates key pairs ppki, skiq �
RS.KeyGenppp; rriq for all i P rN s using random coins rri. It sets PK :� tpkiuiPrNs

and initializes two empty sets S and C.
(ii) The challenger provides pp and PK to A;
(iii) A can make signing and corruption queries an arbitrary polynomial number of

times:
– psign, i,m,Rq: The challenger checks if pki P R and if so it computes the

signature σ Ð RS.Signpski,m,Rq. The challenger provides σ to A and adds
pi,m,Rq to S;

– pcorrupt, iq: The challenger adds pki to C and returns rri to A.
(iv) A outputs pR�,m�, σ�q. If R� � PKzC, p � ,m�,R�q R S, and RS.Verifyp

R�,m�, σ�q � 1, then we say the adversary A wins.

The advantage of A is defined as AdvUnf
RS pAq � PrrA winss.

In [AOS02] the authors show how to render a set of 3-pass identification protocols
satisfying the Special HVZK property to a ring signature using a circular version of the
Fiat-Shamir transform [FS87]. Since we focus in the application of this construction to
the SQIsign protocol to simplify the exposition we only consider the case in which all the
considered identification protocols are the same. For the signature definition we consider as
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public parameters pp the security parameter λ, the relation R, algorithms Gen,P1,P2,V2,
plus the hash function H : t0, 1u� Ñ ChSet (that takes the role of V1) and the simulator S
from the Special HVZK property. Note that it is important that S generates the transcript
given a predetermined challenge ch P ChSet.

The specifications are in Algorithm 1. If the Σ-protocol is commitment recoverable
(i.e. we can recover the commitment from the challenge and the response) we can avoid
inserting com1, ..., comN in the output signature.

Algorithm 1 AOS Sequential Ring Signature from [AOS02]
RS.KeyGenpppq :

1: Get x,w Ð Genp1λq
2: Assign pk, sk Ð x,w
3: return ppk, skq.

RS.Signpskl,m,Rq :
1: Get coml Ð P1ppkl, sklq;
2: Set chl�1 Ð Hpcoml,R,m, pkl�1q;
3: Parse ppk1, � � � , pkN q Ð R
4: for i � l � 1, ..., N, 1, ..., l � 1 do
5: Get comi, rspi Ð Sppki, chiq;
6: Set chi�1 Ð Hpcomi,R,m, pki�1q;
7: Get rspl Ð P2pskl, coml, chlq;
8: return σ � pch1, rsp1, ..., rspN ,

com1, ..., comN q.

RS.VerifypR,m, σq :
1: for i � 1, ..., N do
2: if not V2ppki, comi, chi, rspiq then
3: return reject;
4: chi�1 Ð Hpcomi,R,m, pki�1q;
5: if ch1 � chN�1 then
6: return accept.
7: else
8: return reject.

A proof for the security of the construction can be found in [YEL�21]. We generalize
the results to our case for completeness, since we involve Σ-protocols with different zero-
knowledge notions. The proofs are quite straightforward and we provide them in Section A.
As for the signature definition we focus on the case of all Σ protocols ΠId being equal.

Proposition 1. If ΠId satisfies the special weak (resp., strong) computational HVZK
property the ring signature scheme (Algorithm 1) is anonymous (resp., full-anonymous) in
the programmable random oracle model.

Proposition 2. If ΠId satisfies Definition 3 the ring signature scheme (Algorithm 1) is
unforgeable (UF-CMA) in the programmable random oracle model.

2.3 Isogenies and Quaternions

In this section, we recall several useful mathematical definitions. Below, we assume some
familiarity of the reader with basic notions on elliptic curves, isogenies, quaternion algebras
and their link through the Deuring correspondence. We refer the reader to [Sil09, Voi21]
for a more complete treatment of the overall theory, and to [Ler22, Chapter 2] for a
presentation of the Deuring correspondence as we use it. We give a brief overview as
follows.

The Deuring correspondence is a mathematical result linking integral lattices of Bp,8,
the quaternion algebra ramified at p and 8 to supersingular elliptic curves and their
isogenies. To any isomorphism class of supersingular elliptic curves (up to Galois conjugacy)
the Deuring correspondence associates the isomorphism class of its endomorphism ring
which is an isomorphism class of maximal orders. For this reason, in this work, we often
implicitly consider curves and orders up to isomorphisms.



10 Erebor and Durian: Full Anonymous Ring Signatures from Isogenies

Quaternion algebras, orders and ideals. This paragraph is almost a verbatim of
[DLLW23]. The endomorphism rings of supersingular elliptic curves over Fp2 are isomorphic
to maximal orders of Bp,8, the quaternion algebra ramified at p and 8. We fix a basis
1, i, j, k of Bp,8, satisfying i2 � �q, j2 � �p and k � ij � �ji for some positive integer
q. The canonical involution of conjugation sends an element α � a � ib � jc � kd to
α � a � pib � jc � kdq. A fractional ideal I is a Z-lattice of rank four inside Bp,8. We
define npαq � αᾱ. For an ideal I, we denote by npIq the norm of I as the largest rational
number such that npαq P npIqZ for any α P I. Given fractional ideals I and J , if J � I
then the index rI : Js is defined to be the order of the finite quotient group I{J . We
define the ideal conjugate I � tα, α P Iu. An order O is a subring of Bp,8 that is also a
fractional ideal. An order is called maximal when it is not contained in any other larger
order. The left order of a fractional ideal is defined as OLpIq � tα P Bp,8 | αI � Iu and
similarly for the right order ORpIq. Then I is said to be an pOLpIq,ORpIqq-ideal or a left
OLpIq-ideal. A fractional ideal is integral if it is contained in its left order, or equivalently
in its right order; we refer to integral ideals hereafter as ideals. An ideal can be written as
I � OLpIqα�OLpIqnpIq � OLpIqxα, npIqy for some α P OLpIq. Two left O-ideals I and
J are equivalent if there exists β P B�

p,8, such that I � Jβ. For a given O, this defines
equivalence classes of left O-ideals, and we denote the set of such classes by ClpOq. Also,
for any ideal K and any α P B�

p,8, we write χIpαq � Kα{npKq. Ideals equivalent to K
are precisely the ideals χIpαq with α P Izt0u.

Through the notion of kernel ideal, it is possible to associate an isogeny φ : E Ñ E1 with
an ideal Iφ of left order O and right order O1 where Iφ � tα P O0 : αpP q � 0 for all P P
kerpφqu and O � EndpEq and O1 � EndpE1q. We will keep this notation Iφ throughout
this document.

Special Extremal Order. A special extremal order is an order O0 in Bp,8 which
contains a suborder of the form R � jR, where R � Zrωs � Qpiq is a quadratic order
and ω has minimal discriminant. When p � 3 mod 4, we have the special extremal
order O0 � x1, i, i�j2 , 1�k

2 y, with i2 � �1, j2 � �p and k � ij. It is isomorphic to the
endomorphism ring EndpE0q of the elliptic curve of j-invariant 1728. For the rest of the
paper, we fix this special extremal order O0, with subring Zrωs, and the corresponding
elliptic curve E0.

Eichler Orders An Eichler order is the intersection of two maximal orders inside Bp,8. In
our settings we consider the case D � O0XO � Z�I, with O0,O being the endomorphism
rings of the supersingular elliptic curves E0, E linked by the the cyclic isogeny ϕI : E0 Ñ E
where the kernel of ϕI is E0rIs :� tP P E0pFp2q : αpP q � 0 for all α P Iu. Endomorphisms
contained in Eichler orders have the nice properties of remaining endomorphisms when
pushed by ϕI from E0 to E , thus if we consider two equivalent left O0 ideals J1, J2 of
norms coprimes to npIq such that J1 � χJ2pβq for β P J2 X D then the ideals remain
equivalent when pushed through I, i.e. rIs�J1 � rIs�J2. Because of these properties
Eichler orders are essential for performing calculations on maximal orders different from
O0, more on this can be read in [DKL�20, Voi21, Ler22].

The Effective Deuring Correspondence. For our applications, we need to make this
theoretical correspondence effective as shown in Table 1 . In particular, the most important
task for us is to take an ideal and compute the corresponding isogeny. There now exists
several distinct variants of this algorithm [DKL�20, DLLW23, Ler23, BDF�25, ON25]. In
this work we are going to need two flavors of it. The first one targets the case where the
norm is odd, whereas the second one requires the norm of the ideal to be translated to be
a long power of 2.
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Table 1: The Deuring correspondence, a summary given in [DLLW23].
Supersingular j-invariants over Fp2 Maximal orders in Bp,8
jpEq (up to Galois conjugacy) O � EndpEq (up to isomorphism)
pE1, φq with φ : E Ñ E1 Iφ integral left O-ideal and right O1-ideal
θ P EndpE0q Principal ideal Oθ
degpφq npIφq
φ̂ Īφ

φ : E Ñ E1, ψ : E Ñ E1 Equivalent ideals Iφ � Iψ

Supersingular j-invariants over Fp2 ClpOq
τ � ρ : E Ñ E1 Ñ E2 Iτ�ρ � Iρ � Iτ
N -isogenies (up to isomorphism) ClpOq, with Eichler order O of level N

The odd generic case was recently addressed in [BDF�25, Algorithm 3] with an
algorithm that takes in input a left ideal I, and outputs an efficient way to evaluate
φI : E Ñ EI on any point of EpFp2q. Note that the algorithm described in [BDF�25]
imposes a strong restriction on the domain E (it needs to be a very specific curve E0),
however, a generic algorithm can be derived from the restricted one by applying it twice,
once between E0 and E and once between E0 and EI , and then composing the results to
be able to evaluate φI . In the rest of this work, we call this algorithm AnyIdealToIsogeny,
and we assume that it takes an ideal I between maximal orders in Bp,8 and outputs the
domain E and codomain EI of φI , and a representation F of φI allowing to evaluate φI
on any points of EpFpkq in a polynomial (in log p and log npIq) number of operations over
Fpk .

An algorithm for the power of two case is at the heart of the signing procedure of
SQIsign [DKL�20]. It was improved several times since then: first in [DLLW23], and then
later on in [Ler23, NOC�25] using dimension 2 isogenies, we refer to IdealToIsopJ, Iϕq as
the algorithm taking as input a left O0-ideal Iϕ, with ϕ : E0 Ñ E, and an ideal J such
that OLpJq � ORpIϕq of norm a power of 2 that returns the isogeny ϕJ : E Ñ E1.

We do not provide a full description of all these ideal-to-isogenies algorithms because
they are quite technical and the results are still actively progressing as there have been
a lot of recent improvements , and the inner details are not really relevant for our work
anyway as we only need to use them as black-boxes. We refer the reader to the various
references we gave for more details.

We will also need a translation algorithm that works from isogenies to ideal when the
degree is a power of two. For that task, we will use the algorithm described in [DLRW24,
Appendix A.4]. In the rest of this work, this algorithm is denoted by IsoToIdeal.

Counting Equivalent Isogenies Thanks to the Deuring correspondence we can as-
sociate any left O-ideal I of reduced norm d to an isogeny ϕI : E Ñ E1 with codomain
supersingular elliptic curve E with EndpEq � O of degree d.

Using [Voi21, Lemma 42.2.8] for any ϕI : E Ñ E1 we have an isomorphism of left
O-modules:

ϕ�I : hompE,E1q Ñ I

ψ ÞÑ ψ̂ � ϕI ,

where hompE,E1q collects the isogenies from E to E1.
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Our main tool is the Van Der Corput’s inequality used on a lattice Λ � R4 [vdC35]
(an improvement of the Minkowski inequality):

# tv⃗ P Λ | }v⃗} ¤ ru ¥ 2
Z
π2

32
r4

VolpΛq
^
� 1 . (2)

Given two supersingular elliptic curves E,E1 we label as IsoBpE,E1q � hompE,E1q
the set of isogenies with domain E and codomain E1 with prime degree lower than B.
We want now to lower-bound the cardinality of IsoBpE,E1q, for that we need to use
the normalized norm map nIpαq � npαq

npIq , for α P I, to induce a metric on the lattice
in such a way that nIpϕ�I pψqq � degpψq. To effectively use inequality (2) we need to
compute the discriminant of the lattice with respect to nI and we proceed as in [KLPT14].
Thanks to [Voi21, Theorem 15.5.5] we know that detpO0q � p2 since it is maximal, and
by [Voi21, Lemma 15.2.15] we can derive detpIq from the index of the ideal in the order,
since detpIq � |O{I|2 detpOq � npIq4 detpOq. Since we are in dimension 4 lattices we can
conclude that with respect to nI the volume of I is p2.

To use (2) we consider the norm } � } � a
nIp�q, then we use the bound on r � ?

B
and VolpΛq � p (the square root of the discriminant). So we have that there are at least
0.61B2

p isogenies of degree less than B. Under the heuristic that degrees are distributed
uniformly we know that the probability of it being prime can be approximated as logpBq�1

using the prime counting function, so we have at least

0.61
logpBq

B2

p
(3)

prime degree isogenies in hompE,E1q.

Supersingular Isogeny Graphs. Let p ¥ 5 be a prime number. For any ℓ � p, we have
an ℓ�isogeny graph where each vertex corresponds to the j-invariant of a supersingular
graph and each edge corresponds to an ℓ-isogeny between the two vertices (i.e. the
supersingular curves). The graph can essentially be viewed as undirected due to the
existence of the dual isogeny except for the vertex of j-invariant 0 or 1728. An ℓ-isogeny
graph is full-connected and ℓ� 1-regular.

Moreover, the graph is Ramanujan so for a random walk from any vertex in the graph
converges to the stationary distribution fast. We conclude the property with the following
theorem from [PW24].

Theorem 1. There is a bound n � Oplogℓppq � logℓp2λqq such that the two following
distributions have negligible (in λ) statistical distance:

• stationary distribution over an ℓ-isogeny graph;

• end point distribution of a random walk starting from any distribution of length ¥ n.

The recent work [BCC�23] showed that Ramanujan property holds also for the ℓ-
isogeny graph of elliptic curves with d Borel level structures, i.e. the graph with vertices
the pairs pE, ϕq with E a supersingular elliptic curve and ϕ : E Ñ � a cyclic isogeny of
degree d not divisible by p, up to isomorphism, with edges the ℓ-isogenies linking the
curves and pushing the d-isogenies one to the other.

Theorem 2 (Theorem 11 [BCC�23]). Given any distribution π on the ℓ-isogeny graph
of elliptic curves with d Borel level structures, then the statistical distance between the
distribution obtained after a random walk of length k and the stationary distribution on
the graph is bounded by: ?

3
2 K�1 pℓ� 1qpk � 1q � 2

pℓ� 1q
?
ℓk

, (4)
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with K �
�
pp�1qd

12
±
q

�
1� 1

q

		�1{2
, for q ranging over the prime divisors of d.

As shown in [KLPT14, EHL�18, PW24], there are many equivalent forms of the original
isogeny problem on the supersingular isogeny graph. Here we consider the two following
problems, on which the security of our schemes are based. Notably, they are equivalent
to the original isogeny problem [EHL�18, Wes22, PW24].

Problem 1. Given E0 where EndpE0q is a special extremal order in Bp,8, the supersingular
endomorphism ring problem on a supersingular elliptic curve E requires to find an ideal I
which is a left-EndpE0q ideal and a right-EndpEq ideal.

Problem 2. The supersingular endomorphism problem on a supersingular elliptic curve
E requires to find a non-scalar smooth endomorphism α : E Ñ E.

3 Zero-Knowledge for SQISign
In this section, we investigate the zero-knowledge property of the SQIsign identification
scheme. The main result of this section is to present an efficient distinguisher for SQIsign
when the secret key is given.

To start, we sketch the SQIsign scheme. The core of the protocol is to prove knowledge
of the endomorphism ring of a curve Epk. The prover commits to another curve Ecmt
and receives a challenge isogeny ϕch : Ecmt Ñ Ech. The prover must then provide a cyclic
isogeny from Epk to Ecmt that factors through ϕch. Also, we sketch the simulator as follows:
it computes a random isogeny σ1 : Epk Ñ E1

ch of a specific degree and then computes a
random challenge isogeny ϕ̂1ch : E1

ch Ñ E1
cmt of a specific degree. The simulator outputs a

simulated transcript as pE1
cmt, ϕ

1
ch, σ

1q. For a more detailed description, refer to [DKL�20].
Clearly, the simulation above is not special HVZK because the challenge ϕch necessitates

the existence of the curve E1
ch in advance for the simulation. The limitation does not

constitute any immediate issue for a signature scheme but rendering it unusable to define a
ring signature with Algorithm 1 for instance. Then, we will show that it is computationally
weak HVZK instead of the strong one. To understand these limitations we go more into
detail for the core procedure SigningKLPT, recalling some security results from literature
and showing how to distinguish simulated transcripts when having access to the secret key.

Procedure of SigningKLPT. Algorithm 2 is the main signing algorithm of SQIsign
introduced in [DKL�20], which can be viewed as a modification of the KLPT algorithm
from [KLPT14]. The algorithm consists of four main subrountines:

• EquivalentRandomEichlerIdealpI,Nζq: on input a left O-ideal and Nζ P N returning
an equivalent ideal uniformly distributed in the class set ClDpOq of norm coprime
to Nζ ; here ClDpOq denotes the collection of the equivalence classes over the set of
integral O-ideals and the equivalence is defined by the identity under the intersection
with D.

• EquivalentPrimeIdealO0pIq: on input a left-O0 ideal returning the smallest equivalent
ideal to I of prime norm;

• FullRepresentIntegerO0pMq: on input M P Z and M ¡ p returning γ � x � yi �
z i�j2 � t 1�k

2 with npγq �M ;

• FullStrongApproximationFpC,D,Nq: on input C,D P Z, a (semi)prime N , returning
µ1 P O0 such that µ � λpC � iDqj �Nµ1 has norm dividing F.
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The parameters e0, e1, and e � e0 � e1 are properly chosen to ensure the termination of
the algorithm. Going into details about the particular algorithms involved is out of the
scope of the paper, so we refer the reader to [DKL�20, CSCRSDF�23, DLLW23] for a
more detailed treatment.

Algorithm 2 SigningKLPTpI, Iζq
Require: I left O-ideal, Iζ left O0-ideal, right O-ideal of coprime norms.
Ensure: J � I of norm ℓe.

1: Get C Ð EquivalentRandomEichlerIdealpI,Nζq; � Uniformly distributed in ClDpOq
2: Set C1 Ð rIζs� C;
3: Get LÐ EquivalentPrimeIdealO0pC1q of prime norm NL � npLq;
4: Store δ P C1 such that L � χC1pδq;
5: Compute γ Ð FullRepresentIntegerO0pNLℓe0q;
6: Find pC0 : D0q P P1pZ{NLZq with γj pC0 � iD0q P L;
7: Find pC1 : D1q P P1 pZ{NζZq such that γj pC1 � ωD1q δ P Z� Iζ � D;
8: Compute C � CRTNζ ,N pC0, C1q and D � CRTNζ ,N pD0, D1q
9: Fix N Ð NLNζ and e1 � e� e0;

10: Get µÐ FullStrongApproximationℓe1 pC,D,Nq � µ � λpC � iDqj �Nµ1 of norm ℓe1

11: Set β � γµ; � npβq � Nℓe, β P L and βδ P D
12: return J � rIζs� χLpβq � J � rIζs� χC1pβδq

Distribution of SigningKLPT’s outputs. We recall the characterization of the distri-
bution of the output of SigningKLPT from [DKL�20, Section 7.2] and [DLLW23, Section
6]. Let ζ : E0 Ñ E of degree Nζ , O be the endomorphism ring of E and D be the Eichler
order O0 XO. We consider UC,Nζ

, equivalently UL,Nζ
, the set of all isogenies ι from the

isomorphism class of E0 of degree Drsp such that ι̂ � ϕL � β P L where C and L are the
intermediate variables defined as in Algorithm 2.

Proposition 3 (Prop 10 and Lemma 14 [DKL�20]). The set

PNζ
:�

¤
CPClpO0q

UC,Nζ
(5)

can be computed from the sole knowledge of Nζ . Moreover, under the heuristic assumptions
from [DKL�20, Section 7.3]5 the output distribution of SigningKLPT pI, Iζq, on input I
drawn uniformly from the non-trivial classes in ClpOq, is statistically indistinguishable
form the uniform distribution on the set rIζs� Iι | ι P PNζ

(
.

Hence, the security assumption of SQIsign zero-knowledge can thereby be summarised
as follows:

Problem 3. Let p be a prime, and Drsp a smooth integer. Let ζ : E0 Ñ E be a random
isogeny drawn from a probability distribution on the set of cyclic isogenies with domain E0
of degree Nζ .

The problem is, given p,Drsp, E,Nζ , to distinguish which of the following cases is, given
access to an oracle that outputs isogenies σ : E Ñ � of degree Drsp sampled uniformly at
random:

1. From a set of cyclic isogenies of degree Drsp; or
5These assumptions can be found in Section C
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2. From rζs�PNζ
, where PNζ

is defined in eq. (5).

Our distinguisher is based on two following facts.

1. L, the output of EquivalentPrimeIdealO0pC1q, is deterministic up to C P ClDpOq drawn
in Algorithm 2;

2. β computed in Algorithm 2 as γ � µ has the following traits:

(a) γ is one of the possible output of FullRepresentIntegerpNℓe0q with NL � npLq
(Algorithm 2). Note that from [KLPT14] we can estimate the number of possible
outputs of FullRepresentInteger as

?
NLℓe0

?
p logppqhpRq (6)

with hpRq the class number of the ring R � Z` Zi;
(b) µ � pC � iDqj P Rj mod NNζO0, with ppC2 � D2qℓe1 being a quadratic

residue modulo NLNζ and γpC � iDqj P L modulo NL (Algorithm 2).

Theorem 3. Let the parameters to be specified as SQIsign ([CSCRSDF�23]). There
exists a polynomial-time algorithm solving Problem 3 with only one query when the secret
ζ : E0 Ñ E is given. Equivalently if ζ is given, we can distinguish a simulated transcript
from a real one.

Proof. Let σ : E Ñ Ech be the received isogeny, thanks to ζ we can compute the pullback
ι � rζs�σ and the associated ideal Iι using IsoToIdeal. Even though PNτ has a size of
Θ̃ppNτ q, which is exponentially large in the security parameter λ, it remains a set of
negligible cardinality relative to the number of cyclic isogenies of degree Drsp due to the
choice of parameter. Therefore, for a uniformly sampled cyclic isogeny σ of degree Drsp,
the probability that ι P PNτ

is negligible. Hence, to solve Problem 3, we only need to
efficiently verify whether ι P PNτ

or not.
Observe that the output I 1 of SigningKLPT is rIζs�χLpβq for β P D (where L is defined

in Algorithm 2), so, if actually ι P PNτ we can compute the deterministic prime norm ideal
L � EquivalentPrimeIdealpIιq, that only depends on the equivalence class of Iι. We define
β as the unique element of L such that χLpβq � Iι.

Then, given L, we can enumerate in polynomial time all possible γ Ð FullRepresentIntegerpNℓe0q
where the number of possible solutions of γ is polynomial thanks to Equation (6). For
each possible γ we can compute µÐ γ�1β. If ι P PNτ then µ mod pNNτ q P Rj and we
can rewrite it as Ci�Dij. Then we check if it satisfies the condition from step Item 2b.
If this is true, we assert that σ is the isogeny generated from the second distribution.

Remark 1. Even in the case in which we are given another connecting isogeny κ : E0 Ñ E
we can still recover ζ : E0 Ñ E if Nζ is smaller than ?

p. In fact in this case, with high
probability, ζ is the isogeny of smallest degree connecting E0 Ñ E, that can be recovered
by looking at the shortest vector in the ideal Iκ.

We provide our proof-of-concept implementation in SageMath. The experiments
validates Theorem 3 and only requires a few seconds to distinguish. Our proof-of-
concept implementation in SageMath can be found in giacomoborin/RingSQISign-poc.
Note that the folder is written as a fork of the SageMath SQISign implementation
LearningToSQI/SQISign-SageMath that provides the mathematical functionalities used in
the scheme.

https://github.com/giacomoborin/RingSQISign-poc
https://github.com/LearningToSQI/SQISign-SageMath
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4 Linear Ring Signatures
The primary goal of this section is to present a fully anonymous ring signature. To
achieve this, we introduce a new KLPT variant for the signing algorithm to address the
distinguishability issues described in the previous section. Subsequently, we propose a new
SQISign variant that offers a better zero-knowledge guarantee with mild overhead. To
apply the AOS construction (Algorithm 1), we slightly modify the SQISign framework
to enable the simulation of a signature with a given challenge isogeny. Finally, we then
provide an analysis of the new zero-knowledge assumption.

These two modifications are independent of each other. We begin with the simple
modification of the SQISign framework, which is more straightforward, to streamline the
presentation.
Remark 2. As described in Section 1, the SQIsignHD protocol [DLRW24], a variant of
SQIsign that leverages efficient representations involving higher-dimensional isogenies,
cannot be used to construct ring signatures using known paradigms in the literature.
This limitation boils down to its simulation procedure requiring the uniform generation
of random isogenies of arbitrary degrees, and there is no known method to construct
such an oracle in polynomial time. The same limitation applies to other HD variants
[BDF�25, NOC�25, DF25].

4.1 Computational Special Zero-knowledge Variant
There are several ways to get a SQIsign variant with Special Honest-verifier Zero-knowledge.
Arguably, the simpler one is to generate the challenge starting from the public key Epk as
in Figure 1. The choice to compute the challenge isogeny from the commitment curve in
the original scheme was probably motivated by efficiency, but it is not at all a necessity, for
example in other SQIsign variants relying on higher dimensional isogenies we are already
dealing with a diagram as in Figure 1, like [BDF�25, RK24]. For the one dimensional
case, the protocol can be modified as follows.

Protocol 1. We assume Setup is run as in SQIsign, then:

• Key Generation: Sample a random isogeny walk τsk : E0 Ñ Epk of degree � p and
return the public key Epk and the secret key τsk;

• Commitment: Sample a random isogeny walk ψ : E0 Ñ Ecmt of prime degree
bounded by an integer Bcmt and commit to Ecmt.

• Challenge: Sample a random isogeny ϕch : Epk Ñ Ech of degree Dc � 2λ and send
ϕch as a challenge;

• Response: Consider the ideal I associated to the composition ϕch � τsk � ψ̂, get an
equivalent ideal of power-smooth norm Drsp via executing SigningKLPTpI, Iψq. Then
translate it to an isogeny σ : Ecmt Ñ Ech such that ϕ̂ch � σ of degree Drsp and being
cyclic. Then, return σ as response.

• Verification: Check that σ is an isogeny from Ecmt to the expected codomain Ech
and ϕ̂ch � σ is cyclic.

To analyze the underlying security of Protocol 1 we consider a slightly different
characterization analogue to Problem 3 to take into account the runtime generation of the
connecting isogeny.

Problem 4. Let p be a prime, and Drsp a smooth integer and a supersingular elliptic
curve E1. The problem ask to distinguish between isogenies σ : E Ñ E1 of degree Drsp
sampled either
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E0

Ecmt

Epk

Ech

τsk

ψ

σ

ϕch

Figure 1: Special variant.

1. uniformly random between cyclic isogenies of degree Drsp with E a uniformly random
supersingular elliptic curve;

2. uniformly random in rζs�PNζ
, where PNζ

is defined in (5), where ζ : E0 Ñ E is a
random isogeny drawn from a probability distribution on the set of cyclic isogenies
with domain E0, and Nζ is its degree.

Proposition 4. Protocol 1 is correct, special sound for the relation defined in Problem 2,
and computationally special weak honest-verifier zero-knowledge basing on the hardness of
Problem 4 and the heuristic assumptions from [DKL�20, Section 7.3]6.

Proof. The correctness is immediately implied by the correctness of the SigningKLPT
procedure (Prop 9. [DKL�20]). We prove the special soundness essentially in the same
way as in [DKL�20]. Given two valid transcripts for the same commitment: pEcmt, ϕch, σq
and pEcmt, ϕ

1
ch, σ

1q with ϕch � ϕ1ch, then the composition

ϕ̂1ch � σ1 � σ̂ � ϕch

is by definition an endomorphism of smooth degree pDcDrspq2. We claim this is a non-scalar
endomorphism. Since they are valid transcripts the endomorphism is a composition of
cyclic isogenies ϕ̂1ch � σ1 and the dual of ϕ̂ch � σ. Suppose for the purpose of a contradiction
that the endomorphism is scalar, then we have

ϕ̂1ch � σ1 � ϕ̂ch � σ ,
due to the uniqueness of the dual isogeny. This contradicts to the fact that ϕch � ϕ1ch.
Hence, the protocol has special soundness for the relation defined by the Supersingular
Endomorphsim Problem on Epk (Problem 2).

Regarding computational special zero-knowledge, we first consider the simple simulator
SpEpk, Drsp, ϕchq as follows. On input an arbitrary challenge ϕch : Epk Ñ Ech, it samples
uniformly σ1 : E Ñ Ech of degree Drsp and outputs pE, ϕch, σ

1q. We consider now
Problem 4 with E1 � Ech. The simulator distribution is clearly the same as the first
distribution of Problem 4, while the original output is equivalent to second distribution
due to Proposition 3 under the same heuristic assumptions as SQIsign.

It is clear that this simple variant is still not “strong” HVZK for the same reason
described in the previous section. Indeed, the commitment isogeny ψ can be recovered from
the knowledge of the endomorphism ring of Epk, we can thereby construct a distinguisher,
with access to the secret key, using again Theorem 3 to distinguish simulated transcripts.

4.2 Connecting Isogeny Randomization
This subsection presents a variant of the KLPT algorithm providing a better zero-knowledge
guarantee and the strong HVZK property. Our key idea here is to randomize the connecting
ideal between the starting curve E0 and the commitment one Ecmt prior to SigningKLPT.

6These assumptions can be found in Section C
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In this way, we will have exponentially many possible connecting isogeny candidates.
From the perspective of Deuring correspondence, this implies that even if we know the
endomorphism ring of Ecmt because of σ̂�ϕch�τsk, we still cannot distinguish the connecting
ideal used for SigningKLPT.

Accordingly, we can implement this strategy by modifying Protocol 1 in the response
phase. Prior to the execution of SigningKLPT, we take a uniformly random equivalent ideal
to Iψ of prime norm bounded by Bcmt, which corresponds to a random connecting isogeny of
prime degree. We select Bcmt in such a way that there are exponentially many possibilities.
We summarize this process via a new procedure RSigningKLPT in Algorithm 3.

Algorithm 3 RSigningKLPTpJ, I, Bcmtq
Require: A left O-ideal J , and I, a left O0-ideal and right O-ideal, Bcmt ¡ ?

p
Ensure: J 1 � J of norm ℓe

1: Compute a reduced basis tα1, ..., α4u of I,
2: Fix mi accordingly to the basis;
3: repeat
4: Sample xi P r�mi,mis for i � 1, 2, 3, 4;
5: Set αÐ °4

i�1 xiαi
6: until npαq ¤ npIqBcmt
7: Set Iψ Ð I ᾱ

npIq ; � We get ψ P IsoBcmtpE0, ψq
8: Set J Ð α

npIqJ ; � Ensure OLpJq � ORpIψq
9: return SigningKLPTpJ, Iψq.

Selection of mi The selection of the integers mi in Algorithm 3 is crucial both to achieve
efficiency and a uniform distribution of ψ in IsoBcmtpE0, Ecmtq. Since by triangle inequality
we know that npαq ¤ °4

i�1 m
2
iλi, with λi � npαiq, we can expect to fix mi slightly larger

than
a
BcmtnpIq{4λi (say twice the size). To do that we consider the Gram-Schmidt

orthogonalization tα�1 , ..., α�4 u and the Gram-Schmidt coefficient µij for our basis (see e.g.
[NS04]), with respect to the inner product induced by the reduced trace, in such a way
that

αi � α�i �
¸
j i

µijα
�
j .

Then we fix m4 �
a
BcmtnpIq{λ�4 and recursively mi �

a
BcmtnpIq{λ�i �

°
j¡i |µji|mj for

i � 3, 2, 1 (with λ�i � npα�i q). In this way we can ensure that if npαq ¤ BcmtnpIq then
|xi| ¤ mi. By straightforward rejection sampling arguments we have that the isogenies
obtained at Algorithm 3 are uniformly distributed on IsoBcmtpE0, Ecmtq.

4.3 Security
We now argue about the strong HVZK property of the new protocol instantiated with this
additional randomization step by reducing it to a new version of Problem 4 that consider
the new randomization step. Then we analyse why the knowledge of a connecting isogeny
cannot lead to a distinguisher attack as for Theorem 3.

Problem 5. Let p � 1 mod 4 be a prime, Bcmt an integer, Drsp a smooth integer. Given
E0 elliptic curve of j-invariant 1728 and E a random curve of known endomorphism ring
O, and a cyclic left O-ideal Iη of norm Drsp, distinguish from which of the two set Iη has
been uniformly sampled:

• all cyclic left O-ideals of norm Drsp;
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• the union:  rIψs�Iι | ι P Pdegpψq, ψ P IsoBcmtpE0, Eq
(
. (7)

where Pdegpψq is defined as in (5).

Lemma 1. For Protocol 1 used with Algorithm 3 the strong computational HVZK reduces
to the hardness of Problem 5 if the heuristic assumptions from [DKL�20, Section 7.3]
hold7.

Proof. To prove the proposition we consider the same simulator from the proof of Propo-
sition 4 that outputs a uniformly random isogeny of degree Drsp and we show that a
distinguisher for this simulator, aided with the secret key τsk : E0 Ñ Epk, can be rendered
to a distinguisher for Problem 5. Given the curve E and an input left O-ideal Iζ we can
translate it to a cyclic isogeny ζ : E Ñ E1

ch, we generate then an isogeny ϕ̂1ch : E1
ch Ñ E1

pk
and we compute a connecting isogeny τ 1sk : E0 Ñ E1

pk using the knowledge of the endomor-
phism ring. So we have the valid transcript pE, ϕ1ch, ζq associated to the key τ 1sk : E0 Ñ E1

pk
that we can feed to the HVZK distinguisher.

We argue now about the statistical indistinguishability of the inputs for the two
cases. While it is clear that for the uniformly random one the distributions are the same,
while for the second one we need to argue that the output of Algorithm 3 is statistically
indistinguishable from the uniform distribution on the set from (7). This is immediate from
the construction of the protocol, in fact the set is indexed over the connecting isogenies of
prime bounded degree IsoBcmtpE0, Eq, that results from the uniform sampling performed
the first randomization step in Algorithm 3. For a fixed isogeny ψ, so equivalently for an
ideal Iψ, we need to prove that the output ideal distribution of SigningKLPT is statistically
indistinguishable from the uniform distribution on: rIψs�Iι | ι P Pdegpψq

(
,

that is implied by Proposition 4 under the assumptions from [DKL�20, Section 7.3].

Security Analysis We argue now about the hardness of Problem 5. The set in (7) is
constructed by using multiple of pushforward of the sets PNζ

, so all the security arguments
from [DKL�20, Appendix B] and [DLLW23] still applies. Also, the hardness of the problem
is immediately related to the size of the set IsoBcmtpE0, Eq, so to the bound Bcmt. In fact
we can consider a distinguisher that search through all the possible connecting isogeny of
prime degree and apply theorem 3 (let C be the computational cost of this attack). The
computational cost of this algorithm is

O p#IsoBcmtpE0, Eq � Cq .

For this reason we choose Bcmt accordingly to (3) such that #IsoBcmtpE0, Eq is exponential,
in particular we go for the conservative choice of taking it bigger than 2λ.

We analyse further how the randomization thwarts the distinguisher. Note that the
first step of the distinguisher is the recover of the prime norm ideal L obtained from
EquivalentPrimeIdealpCq. However the correctness of this step relies on finding the correct
equivalence class C via rIψs�Iσ, but this happens only with negligible probability if we are
pulling through a random connecting isogeny. To see this consider the response isogeny
σ : ψ Ñ E1 of large degree Drsp, two random isogenies ψ0, ψ1 P IsoBcmtpE0, Eq (let ψ0 be
the one used to generate the response) and the ideals I0, I1 associated to the pullback
isogenies rψ0s�σ, rψ1s�σ.

Thanks to the Deuring correspondence we know that the ideals I0, I1 are equivalent if
and only if rψ0s�σ, rψ1s�σ share the same codomain, but, by the commutativity property

7These assumptions can be found in Section C
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of the diagrams, this is equivalent to ask that rσs�ψ0, rσs�ψ1 share the same codomain, as
you can see from the following scheme.

Ecmt E1

E0 E2

σ

ψ0 ψ1 rσs�ψ0rσs�ψ1

rψ0s
�σ

rψ1s
�σ

Now, observe that the pushforward isogenies rσs�ψ0, rσs�ψ1 distribution is statistically
indistinguishable from the uniform distribution of cyclic isogenies with the same respective
degrees. To prove this, since we have that Drsp � ℓe � O

�
p3B3

cmt
�

(more on that in
Section 4.4), we can use Theorem 2 and bound the statistical distance from the uniform
distribution is bounded by the negligible quantity

O

�
pBcmta
p3B3

cmt

�
� O

�
ppBcmtq� 1

2

	
.

Hence, since the pushforward isogenies are random walks in the supersingular isogeny
graph of degree bigger than ?

p, also their domains distributions are statically close
to uniform by Theorem 1. We conclude that I0 and I1 are equivalent with negligible
probability. Suppose however that in some way we recover even partial information about
the ideal L or the involved endomorphism, we still cannot use it to start a meet-in-the-
middle like attack since the isogenies are of prime degree. Given the previous discussion
we conclude that we have reasonable evidence that Problem 5 is hard.

4.4 Our Ring Signature Construction
We can finally define our first ring signature Erebor obtained by applying Algorithm 1
to Protocol 1. Observe that both the optimizations from [CEMR24, DLLW23] known
for KLPT-based SQIsign can be used for our ring signature. We have in Algorithm 4 a
full-anonymous version Erebor-full that uses Algorithm 3. To sample the challenge we use
a hash function H that on input a curve E1, a ring R, a message M, and a curve E returns
the coordinates of a cyclic subgroup of E of order Dc with respect to a deterministically
generated torsion basis of ErDcs. For compactness we do not go into details on the
various translations between kernels, isogenies and ideals.

As for [DKL�20] we take a prime p � 22λ to ensure the hardness of Problem 2. The
public keys are the j-invariant of the supersingular curves (so we need N � 4 log2ppq bits
to represent them). Each transcript of Protocol 1 pEcmt, ϕch, σq can be compressed to
pkerpϕchq, σ̂q since kerpϕchq is a subgroup of Epk and the commitment Ecmt can be recovered
as the codomain of σ̂. Thus the signature size is:

costpϕchqlooomooon
ch1

� N � costpσ̂qloomoon
rsp

. (8)

We can bound the final degree Drsp for the response σ using Lemma 11 of rDKL�20s,
so

Drsp � 3 logppq � 3 logpBcmtq �O plog logppqq . (9)

We fix Bcmt ¥ 2 λ
2 p

1
2 (in this way from the estimation 3 we have at least 2λ prime degree

equivalent isogenies) and get logpDrspq � 9
2 logppq�3λ2 �O plog logppqq. This is an increase
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of 40% with respect to the results from [DKL�20], where logpDrspq � 15
4 logppq that result

in an expected 40% increase for all the more relevant scheme parameters and timings.
Note that if we are not interested in achieving full-anonymity we do not need to use

Algorithm 3 at Algorithm 4 and we can actually employ in the commitment generation
(Algorithm 4) the same procedure used in the optimized KeyGen from [DKL�20, Appendix
D]. In this way we get a much smaller degree for the commitment isogeny Nψ � p

1
4 , so the

response degree is again logpDrspq � 15
4 logppq, resulting in a shorter signature. We refer

to this construction as Erebor-short.
Thanks to the previous discussions on Protocol 1 we can finally prove:

Theorem 4. The Erebor-full (resp., short) ring signature scheme is unforgeable and full-
anonymous (resp., anonymous) over the programmable random oracle model if Problems 2
and 5 (resp., Problems 2 and 4) are hard under the same heuristic assumptions from
[DKL�20, Section 7.3]8.

Proof. Regarding Erebor-full, since the underlying sigma protocol (Protocol 1) is special
sound and strong special HVZK by Proposition 4. Also, Erebor-short has weak special
HVZK as explained above. By Proposition 2, we prove the results.

Remark 3. We point out that a similar linear ring signature construction can be achieved
using the parallel OR-proof [CDS94], however this would lean to an increase in signature
length by a factor of pN � 1qcostpϕchq.

5 Logarithmic Ring Signatures
In this section we describe how to construct logarithmic ring signatures based on the
endomorphism ring problem (Problem 1).

Unlike our other construction introduced in Section 4, this ring signature protocol
is not directly based on SQIsign. In fact, it is conceptually closer to the GPS signature
[GPS17], and we can improve it with the recent algorithmic improvements obtained by
the use of higher dimensional isogenies and in particular the recent algorithm to translate
ideal to isogenies from [BDF�25]. This algorithm is the most important subroutine of
an efficient method OrderToCurve to compute the curve associated through the Deuring
correspondence to a given maximal order that is at the heart of our signing method.

5.1 Compressed Endomorphism Ring Representation.
In this section, we give a heuristic method to encode the isomorphism class of maximal
order O � Bp,8 in approximately log p bits. This method works very well in practice
and is very efficient. Also, note that it is essentially optimal as there are Oppq distinct
isomorphism classes of maximal order in Bp,8.

A maximal order O in Bp,8 is a dimension-4 lattice contained inside Bp,8. Thus, it
can be given by a basis of 4 elements. Since 1 is always contained in any order O, we
always know one basis element, and so 3 other elements of B�

p,8 suffice to define O. Each
element of Bp,8 can be given by four coefficients in Q as their coefficients in the basis
1, i, j, k of Bp,8. However, this representation is not very compact. The best bound on the
coefficients of the smallest basis of O allows us to get a representation of size � 3 log p at
best. As we explained already this is not optimal, as there are less than p maximal orders
inside Bp,8.

Our idea to obtain an optimal compression is to use an ideal connecting O (or rather
an order isomorphic to O) and O0, i.e. an ideal whose left order is O0 and right order is

8These assumptions can be found in Section C
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Algorithm 4 Erebor-full Ring Signature Scheme

RS.Setupp1λq :
1: Get SQI-friendly prime p � 22λ

2: Set Bcmt ¥ 2 λ
2 p

1
2 ;

3: return pp,Bcmtq.

RS.KeyGenpppq :
1: Sample Iτsk of norm 22λ

2: Compute τsk : E0 Ñ Epk;
3: return pEpk, Iτskq.

RS.SignpIplqτsk ,M,R � tEp1q
pk , ..., E

pNq
pk uq :

1: Sample ψ : E0 Ñ E
plq
cmt and Iψ;

� This can be done with the same proce-
dure used in the KeyGen of [DKL�20],
also for short take Nψ � p1{4

2: Set Kl�1 Ð H
�
E
plq
cmt,R,M, E

pl�1q
pk

	
;

3: for i � l � 1, ..., N, 1, ..., l � 1 do
4: Get ϕpiqch : Epiq

pk Ñ E
piq
ch from Ki

5: Sample σ̂piq : Epiq
ch Ñ E

piq
cmt;

� Done by computing a random
isogeny

6: Set Ki�1 Ð H
�
E
piq
cmt,R,M, E

pi�1q
pk

	
;

7: Get ϕplqch : Eplq
pk Ñ E

plq
ch from Kl;

8: Using τ plqsk find I
plq
ϕch

;
� Apply IsoToIdeal on the pullback
rτ plqsk s�ϕplqch

9: Set J Ð Īψ � Iplqτsk � Iplqϕch
10: Get J 1 Ð RSigningKLPTpJ, Iψ, Bcmtq;

� For short use SigningKLPT
11: Get σplq Ð IdealToIsopJ 1, Iψq;
12: return σ � pK1, σ̂

piq, ..., σ̂pNqq.

RS.VerifypR,m, σq :
1: for i � 1, ..., r do
2: Check σpiq degree;
3: Get ϕpiqch : Epiq

pk Ñ E
piq
ch from Ki;

4: Compute σ̂piq � ϕpiqch : Epiq
pk Ñ Epiq;

5: if σ̂piq � ϕpiqch is not cyclic then
6: return reject;
7: Ki�1 Ð H

�
Epiq,R,M, Epi�1q

pk

	
;

8: if K1 � KN�1 then
9: return accept.

10: else
11: return reject.
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isomorphic to O, where O0 is the special extremal order in Bp,8 (for instance when p � 3
mod 4, we have O0 � x1, i, i�j2 , 1�k

2 y).
It can be shown that there always exists such an ideal of norm N   ?

p (see [KLPT14,
Section 3.1] for instance). The purpose of the rest of this section is to show that it is
possible to encode an O0 ideal of norm N in approximately logN bits.

The main result behind our representation method is the following lemma. We recall
that a primitive quaternion element is an element γ contained in an order O such that
there does not exists any integer k ¡ 1 such that γ{k P O.

Lemma 2. Let p be a prime, and N be any integer coprime to p. Let O0 be a maximal
order of Bp,8 and let I be a left O0-ideal of norm N and let ι, γ be two primitive quaternion
elements in O0 such that npιq is coprime to N , γ R Zris and gcdpnpγq, N2q � N . Then,
there exists pa : bq P P1pZ{NZq such that I � O0xγpa� ιbq, Ny and gcdpa, b,Nq � 1.

Proof. By the definition of γ, the ideal O0xγ,Ny, has norm N . We adapt the proof of
[DLLW23, Lemma 8] to the case of generic N easily as the norm is not required to be
of the form ℓf in the proof. Together with existence shown in the proof of [DLLW23,
Proposition 9], we know there exists a, b such that γpa � ιbq P I and gcdpa, bq � 1.
This implies I � O0xγpa � ιbq, Ny; otherwise, there exists n P N dividing N such that
Erns � kerpγpa� ιbqq, which is not possible since gcdpa, b,Nq � 1 and ι, γ are primitive.
Since multiplying both a and b by any integer coprime to N will not change that fact, we
can consider pa : bq as an element in P1pZ{NZq.

When O0 is a special extremal order, it is easy to devise a way to generate a ι and a γ
satisfying the requirements of Lemma 2 from O0 and N . Then, finding suitable a, b can
be done by linear algebra modulo N as is done in [DLLW23, Algorithm 4].

Thus, when O0 is canonical, giving N and an element pa : bq P P1pZ{NZq suffices to
determine uniquely any ideal of norm N and recover it efficiently.

It only remains to show that we can give the data of an integer N and an element
pa : bq P P1pZ{NZq with gcdpa, bq � 1 in � 2 logN bits.

Let a0 � gcdpa,Nq and b0 � gcdpb,Nq and let c   N be an integer such that
c � pb{b0qpa{a0q�1 mod N . Then, pa : bq � pa0 : b0cq, and N, pa : bq can be represented
by the four integers N{pa0b0q, a0, b0, c. It is easy to see that this four elements can be
represented in � 2 logN bits.

We give a precise description of the algorithm CompressMaxOrder in the section as in
Algorithm 5. We also require following efficient algorithms as subroutines, which can be
found in [DKL�20].

• ConnectingIdealpO1,O2q: on input two maximal orders O1,O2 in Bp,8 returning a
connecting ideal;

• FullRepresentIntegerO0pMq: on input M P Z and M ¡ p returning γ � x � yi �
z i�j2 � t 1�k

2 with npγq �M ;

• EquivalentIdealO0pIq: on input a left O0-ideal I returning the equivalent left O0-ideal
of the smallest norm.

The length of the output of CompressMaxOrder depends on N , which can be bounded
above by ?p as we explained already. Looking ahead, we will use our compression technique
to represent the isogeny between the curves corresponding to O0 and O1 respectively. Since
CompressMaxOrder uses the connecting ideal of the smallest norm and does not depend on
the representative of the input order, the representation does not leak the information of
the exact isogeny used to reach the corresponding curves.

If CompressMaxOrder is running in such a way that the “random” choices made to
generate γ and ι are deterministic (meaning that anyone running the computation for
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Algorithm 5 CompressMaxOrderO0

Require: O � Bp,8 a maximal order.
Ensure: a compressed representation of O

1: I Ð ConnectingIdealpO0,Oq.
2: J Ð EquivalentIdealO0pIq.
3: N Ð npJq.
4: γ Ð FullRepresentIntegerO0pNpp� 1qq � Primitive γ
5: Take random elements in O0 until finding an element ι of norm coprime to N .
6: Compute values a, b with gcdpa, b,Nq � 1 such that J � O0xγpa� ιbq, Ny.
7: a0 Ð gcdpa,Nq, b0 Ð gcdpb,Nq, cÐ pb{b0qpa{a0q�1 mod N .
8: return N{pa0b0q, a0, b0, c.

the same values of p,N,O0 will end up with the same γ and ι), then it is possible to
decompress an output of CompressMaxOrder to find the maximal order given in input (or
at least a maximal order in the same isomorphism class which is enough for us). This
yields the decompression algorithm that we describe as Algorithm 6.

Algorithm 6 DecompressMaxOrder
Require: a compressed representation s of O.
Ensure: a maximal order O P Bp,8

1: Parse s as four integers x, a1, b1, c1.
2: N Ð xa1b1

3: γ Ð FullRepresentIntegerO0pNpp� 1qq � Primitive γ
4: Take random elements in O0 until finding an element ι of norm coprime to N .
5: Compute J � O0xγpa1 � ιb1c1q, Ny.
6: return ORpJq.

5.2 Maximal Order to Curve
In this section, we give a brief description of an algorithm OrderToCurve to compute an
elliptic curve whose endomorphism ring is isomorphic to a maximal order O � Bp,8 given
in input. This algorithm is quite easily built from AnyIdealToIsogeny algorithm introduced
as [BDF�25, Algorithm 3] (see Section 2.3 for more details on this algorithm).

Algorithm 7 OrderToCurve
Require: a maximal order O P Bp,8
Ensure: a curve E with EndpEq � O

1: Compute I � IpO0,Oq the ideal connecting O0 and O.
2: E0, E, F Ð AnyIdealToIsogenypIq
3: return E.

5.3 Our Sigma Protocol for Logarithmic Size Ring Signature
We consider the “OR relation” defined in Problem 1, where the prover proves the possession
of an ideal which is a connecting ideal between E0 and one of E1, � � � , EM . Concretely,

RE0 � tptEiuiPrMs, pl, Iqq | OLpIq � EndpE0q ^ORpIq � EndpElqu.
Before introducing the base OR sigma protocol for the logarithmic ring signature. We

need the following efficient algorithms as the ingredients:
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• KerGenDpE, rq : on input a smooth number smooth D, a curve E and r P rD � 1s
returning a cyclic kernel in E of degree D � p, which is deterministic by fixing the
randomness r. This can be instantiated by generating a canonical basis tP,Qu for
ErDs and determining the kernel with r.

• IsoToIdealIpϕq : on input a left O0-ideal I and ϕ : E Ñ E1 where ORpIq � EndpE1q
returning an O0-ideal J such that ORpJq � EndpE1q.

• A pseudorandom number generator. We will model it by using a random oracle
OpExpand}�q.

• A collision-resistant hash function. We will use this to compress the input for the
Merkle tree function. We will instantiate it by using a random oracle OpCom}�q.

• MerkleTreep�q, getMerklePathp�q,ReconstructRootp�q : the collision-resistant Merkle
Tree function set that are able to hide the index for any node and path pair given
by getMerklePathp�q is given. We use the instantiation in [BKP20] together with its
properties, which can be instantiated by using a collision-resistant hash function
from t0, 1uλ to t0, 1u2λ. We give a brief overview in Section B.

We now sketch the base OR sigma protocol as shown in Figure 2.

round 1: P1O
1 ptEiuiPrMs, pl, Iqq

1: seed $Ð t0, 1uλ
2: pr, bits1, � � � , bitsM q Ð OpExpand}seedq � Sample r1 P rD � 1s and bitsi P t0, 1uλ
3: for i from 1 to M do
4: E1

i, ϕ
1
i Ð KerGenDpEi, rq

5: Ci Ð OpCom}jpE1
iq}bitsiq � Create commitments Ci P t0, 1u2λ

6: proot, treeq Ð MerkleTreepC1, � � � ,CN q
7: Prover sends com Ð root to Verifier.

round 2: V1
1pcomq

1: ch $Ð t0, 1u
2: Verifier sends ch to Prover.

round 3: P1
2ppl, Iq, chq

1: if ch � 1 then
2: J Ð IsoToIdealIpϕ1iq
3: path Ð getMerklePathptree, lq
4: sO Ð CompressMaxOrderpORpJqq
5: rsp Ð psO, path, bitslq
6: else
7: rsp Ð seed
8: Prover sends rsp to Verifier

Verification: V1O
2 pcom, ch, rspq

1: proot, chq Ð pcom, chq
2: if ch � 1 then
3: ps, path, bitsq Ð rsp
4: O1 Ð DecompressMaxOrderpsq
5: E1 Ð OrderToCurvepO1q
6: rC Ð OpCom}jpE1q}bitsq
7: �root Ð ReconstructRootprC, pathq
8: Verifier accepts if �root � root
9: else

10: Repeat round 1 with seed Ð rsp
11: Output accept if the computation

results in root, otherwise reject

Figure 2: Construction of the base OR sigma protocol ΠΣ � pP1 � pP1
1,P1

2q,V1 � pV1
1,V1

2qq
for the relation Rsig. Informally, OpExpand}�q and OpCom}�q are a PRG and a commitment
scheme instantiated by the random oracle, respectively.

Theorem 5. The sigma protocol ΠΣ described in Figure 2 is correct and λ min-entroy.

Proof. When the challenge is ch � 0, the prover sends the seed to the verifier. The
computation of the verifier will result in the same commitment (root) in this case.

When ch � 1, the prover sends psO, path, bitslq to the verifier, where sO Ð
CompressMaxOrderpORpJqq and ORpJq � EndpE1

lq. For O1, the output of
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DecompressMaxOrderpsOq, we have O1 � EndpE1
lq by the Deuring’s correspondence, since

DecompressMaxOrder obtains O1 by reconstructing a connecting ideal equivalent to J .
Hence, OrderToCurvepO1q gives a curve isomorphic to E1

l and results in the same j-invariant.
Hence, ReconstructRoot will produce the same commitment. Besides, since we model
OpCom}�q as a random oracle, the scheme has λ entropy.

Theorem 6. The ΠΣ depicted in Figure 2 has Special Soundness if OpCom}�q and
MerkleTreep�q is collision resistant.

Proof. Given two valid transcripts pcom, 0, rsp0q and pcom, 1, rsp1q under the same state-
ment ptEiuiPrMsq, the extractor Extract proceeds as follows.

1. Generate by using the transcript pcom, 0, rsp0q and following the prover’s first round
procedure, obtain ϕi, Ci Ð OpCom}jpE1

iq}bitsiq for each i P rN s and the root
pcom, treeq Ð MerkleTreepC1, � � � ,CN q.

2. Generate by using the transcript pcom, 0, rsp1q and following the verification pro-
cedure, obtain O1 Ð DecompressMaxOrderpsq, E1 Ð OrderToCurvepO1q and rC Ð
OpCom}jpE1q}bitsq.
Also, extract the ideal rJ during the execution of DecompressMaxOrder.

3. Find l̃ P rN s such that Cl̃ � rC and assert jpE1q � jpE1
l̃
q.

4. Return rI where the ideal rI Ð IsoToIdeal
rJpϕ̂lq.

In Item 3, if such an index l̃ does not exist, then a collision occurs in the Merkle
tree as shown in [BKP20, Lemma 2.9]. Similarly, if the first condition is satisfied
and jpE1q � jpE1

l̃
q, a collision is detected for OpCom}�q. It suffices to show that rI is

a connecting ideal between EndpE0q and EndpEIq. Given that rJ is a connecting ideal
between EndpE0q and EndpE1

Iq and ϕ̂I : E1
I Ñ EI , the mapping IsoToIdeal

rJpϕ̂Iq provides
the connecting ideal between EndpE0q and EndpEIq. Therefore, the scheme demonstrates
special soundness.

Theorem 7. The scheme ΠΣ depicted in Figure 2 is statistically special honest-verifier
zero-knowledge. Concretely, there exists a simulator S such that for any statement and
witness in the relation and computationally-unbounded adversary A with at most Q queries
to the random oracle, we have

AdvHVZK
ΠΣ

pAq ¤ Q{2λ � neglpλq

for some negligible function neglpλq.
Proof. Let x � tEiuiPrMs be a statement and fixed. The simulator S with access to the
random oracle O runs on input x and ch P t0, 1u as follows.

1. When ch � 0, S follows the same procedure as a real prover and outputs a transcript
pcom, 0, rspq where a witness is not required in this case.

2. When ch � 1, the simulator generates a cyclic isogeny from E0 of degree D
uniformly at random and computes the codomain curve E1, generates bits $Ð
t0, 1uλ, and computes C1 � OpCom}jpE1q}bitsq. S computes the connecting ideal
J by using IsoToIdeal such that ORpJq � EndpE1q, then computes sO by using
CompressMaxOrder. Next, S generates dummy commitments C2, � � � ,CM

$Ð t0, 1u2λ

and computes proot, treeq Ð MerkleTreepC1, � � � ,CM q. Then, S computes path Ð
ptree, 1q. Set com � root and rsp � psO, path, bitsq. S returns pcom, 1, rspq.
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Clearly, for the case ch � 0, the simulation is perfect. To show the transcripts are
indistinguishable, we use a hybrid argument by introducing a series of simulators S0 �
P,S1,S2,S3 � S. In each simulation, we gradually modify the transcripts from S0, identical
to the real prover P using a witness, to S3, identical to S witness. For i P t1, 2, 3u, we
define the advantage of Si to be

AdvipAq :� ��PrrAOpSO
i�1px,w, 1qq � 1s � PrrAOpSO

i px,w, 1qq � 1s�� .
S1 proceeds the same as a real prover P except that it is not using OpExpand}�q

and OpCom}�q to generate pr, bits1, � � � , bitsM q and tCiuiPrMs�tIu. Instead, it samples the
elements uniformly at random from the corresponding domain. Since OpExpand}�q and
OpCom}�q are modeled by a random oracle, the elements follows the same distribution
except for those that have been queried. Since seed and bitsi for each i have λ bits of
min-entropy, we have Adv1pAq ¤ Q{2λ.

S2 proceeds the same as S1 except that it is not using generating E1
l from El and is not

using the secret ideal I between E0 and El to generate the ideal J . Instead, it generates
a cyclic isogeny from E0 of degree D uniformly at random and computes the codomain
curve E1

l. Also, it is able to compute J by using IsoToIdeal without using I. Due to the
choice of D, by Theorem 1, the statistical distances of the output distributions is bounded
by neglpλq for some negligible function neglpλq. We have Adv1pAq ¤ Adv2pAq � neglpλq.

S3 � S is using 1 as the index to generate the root instead of l P rM s. By Lemma 4 in
Section B , the output follows the same distribution. Hence, we have Adv2pAq � Adv3pAq.
By a union bound, we have AdvHVZK

ΠΣ
pAq ¤ Q{2λ � neglpλq.

6 Instantiations
We estimate the parameters and the performance for Erebor and Durian, summarized in
Tables 3 and 4 with a comparison with the state-of-art ring signature schemes in the
post-quantum literature and the isogeny literature.

We will provide our proof-of-concept implementation in SageMath for Erebor in the
full version of the paper.

Linear-size Ring Signature. For Erebor the final signature parameters and the timings
depends on the particular prime p and the subroutines used during the computations. We
try to provide some size estimates below as functions of p, e, where 2e � Drsp, the security
parameter λ and the number of users in the ring N . We write costpxq for the size of a
compressed representation of the data x. Most of the compression techniques mentioned
below are rather standard for SQIsign.

Since the starting curve of ϕch is the public key we can represent it with the coordinates of
a generator of the kernel subgroup, so costpϕchq � λ � log2pDcq. Moreover, σ̂ : Ech Ñ Ecmt
can be compressed as described in [DKL�20, Section 8.5] e � 4pre{f s � 1q, where f is
the exponent of the maximum available power-of-2 torsion (i.e. the maximum such that
2f | pp2�1q). We stress that using primes with more 2-torsion available, i.e. a bigger f , like
the ones from [CEMR24, Ler23, ON25] improves the compression efficiency since the factor
is reduced 4pre{f s� 1q. Also, all the other compression techniques from [CEMR24] can be
used in this context by obtaining different trade off between efficiency and compression. As
of now not all these new variants have been implemented and properly compared, so, to give
a conservative estimate of the final signature size for level of security NIST I, we consider
the prime p3923 from [DLLW23]. By fixing e � 1365 (� 9

2 logppq � 3
2128 � 3 logplogppqq)

we get costpσ̂q � 181B for the full version, while for the short one we get costpσ̂q � 133B
by fixing e � 1000 as in [DLLW23].

With respect to timings, from Algorithm 4, we see that for signing we need to perform,
in order:
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1. One generation of a commitment isogeny ψ : E0 Ñ E
plq
cmt and the corresponding ideal

Iψ. In principle there could be several ways to do this, since we have no constrains
on the norm of Iψ, however, all the known IdealToIso algorithms require at some
point to have a connecting ideal and isogeny of degree a power of ℓ. A way to satisfy
this requirement is to use here the efficient KeyGen procedure of SQIsign [DKL�20,
Appendix D], so we use the key generation timings as an upperbound of the step
cost.

2. N � 1 simulations. This means computing a degree Dc �Drsp isogeny (we need it to
compute σ̂ � ϕch to get the commitment). Since Drsp is a large power of ℓ we need
to do this generation sequentially, similarly to what is done in the (de)compression
of the isogeny in [DKL�20]. The cost of this part is dominated by the cost of the
isogeny computations.

3. One generation of a response, that has the same cost of performing a SQIsign KLPT
based signature, possibly adjusted to the increased value for Drsp. It is well known
that this cost is dominated by the IdealToIso procedure.

For the verification we only need to repeat SQIsign verification N times. As for the
simulation, the cost is dominated by the computation of isogenies of degree Dc �Drsp. For
NIST I, we provide in Table 2 an estimate of the costs as a function of the number of
users N in millions of cycles. As a baseline, we take the numbers provided in [DLLW23,
Table 4] for the optimized C implementation with the prime p3923 for KeyGen, Sign and
Verify as an approximation of commitment generation, IdealToIso and and the long isogeny
computations, respectively. For the variant of Erebor-full we scaled Sign and Verify linearly
by �1.4, a coefficient that upperbound the rate of the length of the response e � 1365 over
the length of the response in SQIsign e � 1000.

Note that these estimates give an upper bound on the actual timings. Leroux in
[Ler23], and Onuki and Nakagawa in [ON25] described improved variant of SQIsign’s ideal-
to-isogeny translation method using high dimensional isogenies that should outperform
the approach in [DLLW23]. Since no competitive implementation was provided yet for
these new algorithms, we rather use the results from [DLLW23].

Table 2: Size in bytes (B) and efficiency estimates in Millions of CPU cycles (MC) for
Erebor.

NIST I Signing (MC) Ver. (MC) Signature size (B)
Erebor-full pN � 1q � 42� 3203 N � 42 16�N � 181
Erebor-short pN � 1q � 30� 2408 N � 30 16�N � 133

Logarithmic-size Ring Signature. For Durian in Section 5, we can take the underlying
prime the same as [BDF�25] p � 5 � 2248 � 1 where we can find a smooth torsion subgroup
easily and the execution of KerGen is fast when the degree D is a power of 2 smaller than
2248. We remark that the signature size of Durian is solely based on the parameter p
and the security parameter λ regardless of other parameters like D. For the ring size N ,
when the challenge is 0, the response has λ bits. When the challenge is 1, the response
is approximately log2ppq � rlog2pNqs � 2λ� λ where log2ppq upper-bounds the output of
CompressMaxOrder. Hence, the signature is expected to take plog2ppq � rlog2pNqs � 2λ�
2λq � λ{2 bits. However, if we use the standard Fiat-Shamir with unbalanced challenge
space technique to mitigate the overhead incurred by the increasing ring size, as in [BKP20]
(see [BDK�22, Lai24] for obtaining a tight reduction without rewinding) and a seed tree
to compress the seeds for the zero challenges [BKP20] (see [BPS�23, Appendix B] for a
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precise upperbound to the size). Here, the challenge space consists of n-bits strings of
Hamming weight k. We consider N � 2, N � 8 and N � 210. By taking λ � 128 and
log2ppq � 251 targeting NIST I, if we choose mild parameters pn, kq � p193, 35q, p193, 35q
and p455, 23q respectively such that

�
n
k

� ¡ 2λ to obtain more compact signatures of 4.08KB,
6.29KB and 9.87KB respectively. The choice will not slow down the overall performance
too much.

We did not implement Durian but we can estimate the running time based on extrap-
olation from the recent C implementation from [BDF�25] (exact cycle counts for the
underlying operations were not presented so we do not have a more precise estimate). The
operations: KerGen, IsoToIdeal and CompressMaxOrder operations do not take more than
10ms each on average to generate a response. During verification, each execution of the
DecompressMaxOrder and OrderToCurve operations takes less than 40 ms on average.

Therefore, for N � 2, we estimate that Durian would take approximately 4.2 sec-
onds for signing. Unfortunately, due to the slow subroutines DecompressMaxOrder and
OrderToCurve, verification would require about 4.5 seconds. When N � 8, we estimate the
signing time to be 15 seconds and the verification time to be 14 seconds. When N � 1024,
it will take tens of minutes to 1 hour to sign and verify. We estimate Durian has better
performance than Calamari while offering a stronger quantum security level (since there is
no known sub-exponential time quantum attack). The calculation is as follows.

• For signing, Calamari requires n � N group actions, whereas Durian requires n �
N executions of KerGen plus k executions of IsoToIdeal and CompressMaxOrder.
Given that each CSIDH-512 group action takes approximately 40 ms (as detailed in
[BKV19]), and assuming KerGen is about 4 times faster (10 ms), we expect Durian to
achieve faster signing when nN ¡ 1.33 � k, which is typically the case in our settings.

• Comparison of Verification Efficiency: For verification, Calamari needs pn� kqN � k
group actions, while Durian requires pn�kq�N executions of KerGen and k executions
of DecompressMaxOrder and OrderToCurve. Assuming DecompressMaxOrder and
OrderToCurve require roughly the same time as a single group action, Durian achieves
a consistently faster verification with an approximate time savings of pn� kqN � 30
ms.

Table 3: A comparison between full anonymous ring signatures in the literature where the
signature size grows linearly in the ring size. The size unit is in KB. N represents the ring
size. Problem 2, the supersingular endomorphism problem, is equivalent to the isogeny
problem [EHL�18, PW24].

pk sk sig size with N � Hardness Security
size size 2 4 8 Assumption Level

(Quantum)

Erebor-full (4) 0.06 0.03 0.35 0.71 1.41 Problems 2 and 5 NIST I
Gandalf [GJK24] 0.89 * 1.2 2.4 4.8 R-NTRU, R-SIS NIST I
DualRing [YEL�21] 2.84 0.23 4.56 4.64 4.74 M-LWE, M-SIS NIST I

7 Conclusion
In this paper, we presented a distinguisher for the SQISign simulator by exploiting the
access to the secret key. Our implementation shows that this distinguisher is efficient,
requiring only one transcript. The result implies that SQISign cannot be adapted into a
fully anonymous ring signature using existing methodologies.
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Table 4: A comparison between full anonymous logarithmic-size ring signatures in the
literature. The size unit is in KB. N represents the ring size. SMILE provides logarithmic
ring signature with size of form N � 32i and has 15.96KB for N � 32. Problem 1, the
supersingular endomorphism ring problem, is tightly equivalent to the isogeny problem
[EHL�18].

pk sk sig size with N � Hardness Security
size size 2 23 210 Assumption Level

(Quantum)

Durian (Figure 2) 0.06 0.8 4.08 6.29 9.87 Problem 1 NIST I
SMILE� [LNS21] 2.00 1.73 / { 17.27 M-SIS, M-LWE NIST I
Calamari
[BKP20]

0.06 0.03 3.5 5.4 9.6 GAIP ¥ 60

Building on this, we introduced the first two ring signature schemes based on isogenies
that achieve both quantum security and anonymity against key exposure.

The first construction, Erebor, is a linear-size ring signature scheme that improves upon
SQISign by strengthening the zero-knowledge assumption. We gave arguments for the
hardness of the assumption, but still we leave as an open task to investigate it even further.
This scheme offers the most compact fully anonymous post-quantum ring signature for up
to 29 users.

The second construction, Durian, is a logarithmic-size ring signature scheme that
improves the GPS signature scheme. This scheme offers the most compact logarithmic-size
ring signature in the post-quantum literature.
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in [AABN02], is equivalent to the security of the signature obtained via the Fiat-Shamir
transform and it is implied by the previously given definitions (see e.g. [CSCRSDF�23,
Section 9.1]).

Definition 3 ([AABN02]). A sigma-protocol ΠΣ is secure against impersonation under
passive attacks if, for any polynomial time adversary A, the probability of winning the
following impersonator game is negligible in λ:

(i) The challenger sample a random pair px,wq Ð Genp1λq and send x to A;

(ii) A can query a polynomial number of valid transcripts;

(iii) A send a valid commitment com� to the challenger;

(iv) the challenger send a uniformly random ch� P ChSet;

(v) A output a response rsp�, A wins if V2px, com, ch, rspq � 1 (accepts).

For convenience we restate the Proposition 1 and 2, then provide the proofs using basic
game based arguments.

Proposition 5. If ΠId satisfies the special weak (strong) computational HVZK property the
AOS ring signature (Algorithm 1) is anonymous (against key exposure) in the programmable
random oracle model.

Proof of Proposition 1. Consider and adversary A against the anonymity property playing
the game G. We start a modified version of the game G� in which using the random oracle
we generate the signature σ� without using skib . This can be done by sampling chib at
random, obtaining comib , rspib Ð Spchibq and then reprogramming the random oracle so
that Hpcomib�1,R,m, pkibq Ñ chib . If a record for that input already exists we can just
restart the signature simulation process.

Since G� outputs are independent of b necessarily PrrA wins G�s � 1
2 , so

AdvAnon
ΠRS

pAq � |PrrA wins Gs � PrrA wins G�s| ,

but the only difference between the two games is the use of the simulator S, so |PrrA wins Gs�
PrrA wins G�s| is bounded by the advantage against the weak HVZK. It is immediate to
notice that if we also feed the secret keys (i.e. the witnesses) to A we are in the same case
of the strong HVZK.

Proposition 6. If ΠId satisfies Definition 3 the AOS ring signature (Algorithm 1) is
unforgeable (UF-CMA) in the programmable random oracle model.

Proof of Proposition 2. Consider and adversary A against the UF-CMA property playing
the game G. In the reprogramming random oracle model we show how to render it to an
adversary against the impersonation game Gimp ([AABN02, Definition 2.1]) for the sigma
protocol involved in the ring signature. Let ϵ be the probability of winning this game and
qH, qsig the number of respectively random oracle and signing queries.

We start the impersonator game and we receive from the challenger the public key
(i.e. statement) pkimp, we then query the impersonator challenger for qsig valid transcripts.
Then we simulate the UF-CMA game in this way:

(i) We generate key pairs ppki, skiq � RS.KeyGenppp; rriq for all i P rN s but for one
random index iimp, and we fix pkiimp Ð pkimp. We set PK :� tpkiuiPrNs and initializes
two empty sets S and C.

(ii) The challenger provides PK to A;
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(iii) A can make signing and corruption queries an arbitrary polynomial number of times:

– psign, pki,m,Rq: if i � iimp and pki P R we sign the message and return the
signature σ to A. If i � iimp we use one of the valid transcripts pcomq, chq, rspqq
previously queried to simulate the signature via reprogramming the random
oracle. We surely have enough of them since the number of singing queries
is bounded. We start the signature procedure committing to comq, then we
reprogram the random oracle so that the last query output chq. and return it
to A. We then always add pi,m,R, σq to S.

– pcorrupt, iq: If i � iimp we declare failure and exit, otherwise we add pki to C
and returns rri to A.

The simulation of H as a random oracle is our main tool for the reduction. We can
assume without loos of generality that the queries are always of the form com�,R�,M�, pk�.
We also keep a time-ordered registry R of any query pcom�,R�,M�, pk�, ch�q, with ch�
being the output. Also at the start we select at random two of the qH queries q1, q2 to be
reprogrammed.

At the q1-th query we take the commitment comq1 . If it is valid for pkimp we send it
to the challenger and receive the challenge chimp. We then reprogram the q2-th query to
output chimp if pkimp is queried.

If the adversary A outputs a valid forgery σ � pch�1 , rsp�1 , ..., rsp�r , com�
1 , ..., com�

r q for
M�,R� we then look in the register at the oracle queries. Also we index the keys with
respect to the order in R.

Because of the ring structure of the oracle calls there must exist at least one reverse
index iR such that pcom�

iR
,R�,M�, pkiR�1q has been queried before pcom�

iR�1,R�,M�, pkiRq.
Since the public key are all generated by Gen with probability at least 1{n the reverse
index is the one associated to pkimp

9. Also, with probability
�
qH
2
��1 these two queries are

exactly q1, q2, so com�
iR

is the one sent to the challenger and chiR � chimp is the received
challenge. The validity of the final signature implies that ppkimp, com�

iR
, chimp, rsp�iRq is a

valid transcript, that we can send to the challenger, so

AdvUnf
RS pAq ¤ n �

�
qH
2



� ϵ . (10)

B Index-hiding Merkle trees
The definition of index-hiding Merkle tree is taken almost verbatim from [BKP20]. Merkle
trees [Mer88] allow one to hash a list of elements A � pa0, � � � , aN q into one hash value
(often called the root). At a later point, one can efficiently prove to a third party that an
element ai was included at a certain position in the list A. In the following, we consider a
slight modification of the standard Merkle tree construction, such that one can prove that
a single element ai was included in the tree without revealing its position in the list.
Formally, the Merkle tree technique consists of three algorithms (MerkleTree, getMerklePath,
ReconstructRoot) with access to a common hash function HColl : t0, 1u� Ñ t0, 1u2λ.

• MerkleTreepAq Ñ proot, treeq: On input a list of 2k elements A � pa1, � � � , a2kq, with
k P N, it constructs a binary tree of height k with tli � HCollpaiquiPr2ks as its leaf
nodes, and where every internal node h with children hleft and hright equals the hash
digest of a concatenation of its two children. While it is standard to consider the

9note that here we take into consideration also the case in which pkimp R R�
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concatenation hleft}hright, we consider a variation which consists in ordering the two
children according to the lexicographical order (or any other total order on binary
strings). We denote by (hleft, hrightqlex this modified concatenation. The algorithm
then outputs the root root of the Merkle tree, as well as a description of the entire
tree tree.

• getMerklePathptree, Iq Ñ path: On input the description of a Merkle tree tree and
an index i P r2ks, it outputs the list path, which contains the sibling of li (i.e. a
node, different from li, that has the same parent as li), as well as the sibling of any
ancestor of li, ordered by decreasing height.

• ReconstructRootpa, pathq Ñ root: On input an element a in the list of elements
A � pa1, � � � , a2kq and path � pn1, � � � , nkq, it outputs a reconstructed root root1 � hk,
which is calculated by putting h0 � HCollpaq and defining hi for i P rks recursively as
hi � HCollpphi�1, niqlexq.

If the hash function HColl that is used in the Merkle tree is collision-resistant, then the
following easy lemma implies that the Merkle tree construction is binding, i.e. that one
cannot construct a path that “proves" that a value b R A � pa1, . . . , aN q is part of the list
A that was used to construct the Merkle tree without breaking the collision-resistance of
the underlying hash function HColl.

Lemma 3 (Binding for Merkle Tree). There is an efficient extractor algorithm that, given
the description tree of a Merkle tree (having root root and constructed using the list of
elements A) and pb, pathq such that b R A and ReconstructRootpb, pathq � root, outputs a
collision for the hash function HColl.

The use of the lexicographical order to concatenate two children nodes in the Merkle
tree construction implies that the output path of the getMerklePath algorithm information-
theoretically hides the index i P rN s given as input. Formally, we have the following.

Lemma 4 (Index Hiding for Merkle Tree). Let N P N be a power of 2, D,D1 be two
arbitrary distributions over t0, 1u� and DI , with I P rN s, be the distribution defined as

DI �

���� paI , path, rootq

��������
aI Ð D,

ai Ð D1 @ 1 ¤ i � I ¤ N,
ptree, rootq Ð MerkleTreepAq,
path Ð getMerklePathptree, Iq

����
where A � pa1, . . . , aN q. Then we have DI � DJ for all I, J P rN s.

C Assumptions from [DKL�20, Section 7.3]
We briefly recall here the assumption that we implicitly refer in Sections 3 and 4 to make
the work more self-contained.

Assumption 1 ([DKL�20]). We can fix a given degree D � ℓe with e depending only on
p, such that SigningKLPT (Algorithm 2) succeeds in finding an output of norm D for any
input with overwhelming probability.

The way to fix the parameter e is explained in [DKL�20, Lemma 11], and it is the same
reference we used for (9) in Section 4.4. The other assumption regards the distribution of
ideal classes on the set PNζ

:

Assumption 2. The distribution of classes obtained by taking the classes of the ideals Iι
corresponding to ι P PNζ

is statistically close to the uniform distribution on ClDpO0q.
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Note that this assumption is much less restrictive than assuming the hardness of
Problem 3 since we are considering ideal classes instead of ideals, so they carry no
information on the isogeny ι, but only on its domain and codomain.
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