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Abstract. When sending quantum information over a channel, we want to ensure that
the message remains intact. Quantum error correction and quantum authentication
both aim to protect (quantum) information, but approach this task from two very
different directions: error-correcting codes protect against probabilistic channel noise
and are meant to be very robust against small errors, while authentication codes
prevent adversarial attacks and are designed to be very sensitive against any error,
including small ones.
In practice, when sending an authenticated state over a noisy channel, one would
have to wrap it in an error-correcting code to counterbalance the sensitivity of the
underlying authentication scheme. We study the question of whether this can be done
more efficiently by combining the two functionalities in a single code. To illustrate
the potential of such a combination, we design the threshold code, a modification of
the trap authentication code which preserves that code’s authentication properties,
but which is naturally robust against depolarizing channel noise. We show that the
threshold code needs polylogarithmically fewer qubits to achieve the same level of
security and robustness, compared to the naive composition of the trap code with
any concatenated CSS code. We believe our analysis opens the door to combining
more general error-correction and authentication codes, which could improve the
practicality of the resulting scheme.
Keywords: quantum cryptography · quantum authentication · quantum error-
correction · trap code

1 Introduction
Authentication is one of the most fundamental tasks of modern cryptography – for many
applications it is imperative that the integrity of data is preserved, not just against noise
and random errors, but even against adversarial attacks. Constructions for message
authentication codes (MACs) underlay many important cryptographic protocols that are
in constant use for secure internet communication. We study the notion of quantum
authentication, where instead of wanting to ascertain the integrity of classical data, the
data involved consists of qubits.

Starting with the work of Barnum, Crepeau, Gottesman, Smith, and Tapp [BCG+02],
several quantum authentication codes have been proposed. In our current work, we will
mostly be working with two prominent examples, namely the Clifford code and the trap
code, not going into depth for other examples such as the polynomial code [BCG+06] or
the Auth-QFT-Auth scheme [GYZ17]. The Clifford code [ABOE08] constructs a very
effective authentication scheme, which involves attaching a number of flag qubits to the

E-mail: g.muguruza@uva.nl (Garazi Muguruza), f.speelman@uva.nl (Florian Speelman)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-10-09 Accepted: 2024-12-03

https://doi.org/10.62056/ah2i5w7sf
https://crossmark.crossref.org/dialog/?doi=10.62056/ah2i5w7sf&domain=pdf&date_stamp=2025-01-10
https://orcid.org/0000-0002-9238-8174
https://orcid.org/0009-0006-4627-9520
https://orcid.org/0000-0003-3792-9908
mailto:g.muguruza@uva.nl
mailto:f.speelman@uva.nl
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en


2 An efficient combination of quantum error correction and authentication

plaintext, and then scrambling the state using a random Clifford – this turns out to be a
very efficient way of guaranteeing security, and it can also be used as a building block for
interactive proofs [ABOE08] and multi-party computation [DNS10, DNS12, DGJ+20]. The
trap code [BGS13, BW16] constructs a scheme, for which encoding consists of interspersing
the plaintext (in an error-correcting code) with so-called traps which try to detect an
adversary’s attempted modifications. A very interesting property of this authentication
scheme is its natural interaction with computation; it is possible to perform some quantum
gates ‘transversally’ on qubits of the ciphertext, which results in a valid authentication of a
new ciphertext (with an updated key). This property enabled the trap code to be a crucial
ingredient in various results within quantum cryptography, such as the construction of
quantum one-time programs [BGS13], a scheme for quantum zero-knowledge proofs for
QMA [BJSW16], and verifiable homomorphic encryption [ADSS17]. Also see an extended
version of the trap code which supports key recycling and ciphertext authentication [DS18]
for more context of this code.

Multiple works have followed the first notions of security for the primitive of quantum
authentication of Barnum et al. [BCG+02], which did not consider adversaries entangled
with the encrypted message. An important requirement for authentication protocols is
a composable security notion, which ensures that the scheme is secure when using it
in any arbitrary environment. By using a simulator-based approach to security, several
additional desirable properties to the basic functionality have been proven, such as key
recycling [HLM16, Por17, GYZ17] or quantum ciphertext authentication [AGM18, DS18].
Additionally, it is possible to study the notion of authentication in the setting of compu-
tational security [BMPZ19], including public-key versions of the primitive [AGM21]. In
this work we extensively use the Abstract Cryptography (AC) framework introduced by
Maurer and Renner [MR11], which views cryptography as a resource theory and has been
previously applied successfully to prove security of purity testing based authentication
schemes by Portmann [Por17].

Authentication is usually applied to messages that will be transmitted at some point,
and such a transmission involves incurring some error by the quantum channel which is
used. The MACs present in the literature will inevitably reject whenever any error is
present in the channel. However, it is possible to first encode this message in a quantum
authentication code, and then wrap the result in an error-correction code (see also e.g. the
discussion by [HLM16] and mainly [Por17]).

Observe that the primitives of quantum authentication and error correction have a
conceptual overlap, in the sense that both aim to protect data against modifications.
However, in practice there is a large difference in how they are built: authentication
codes need to protect against any adversarial attack, and therefore often are extremely
sensitive against even minor attempted modifications. For example, if a Pauli operation
would be applied to a single qubit that is part of a Clifford-code authenticated state, the
encoded plaintext would be almost completely scrambled by having a random n-qubit
Pauli operator applied to the entire plaintext. On the other hand, an error-correcting code
should be robust against typical (usually low-weight) modifications of the encoded data.
Given that the goals of these codes are similar, one might wonder whether this is doing
‘double work’ in some sense, making the resulting encoded state larger than necessary.
We stress that the comparison is only interesting when the outer error-correcting code is
indeed doing ‘double encoding’, as is the case for any code that encodes a single qubit of
data like concatenated codes, but does not holds for ‘good’ error-correcting codes with
linear rate and distance.

In this work, we give evidence that this is indeed the case: We construct a code which
functions both as a quantum error-correcting code and as a quantum authentication code,
and which is more efficient than the naive concatenation of these functionalities would
imply. In particular:
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• As an example of a combined code, we present the threshold code. Even though this
is not the main goal of the current work, note that this code preserves several of the
useful computational properties of the original trap code, if a CSS code is used as
the underlying error-correcting code, having essentially the same encoding procedure
as the trap code and only differing in the decoding.

• We show that our scheme is correct and secure, by proving that the resulting code
is a good purity testing code. Because of the generality of the AC framework, the
same security proof will also imply security under most other security definitions (if
these do not require extra properties such as key recycling).

• We compare the resulting scheme to the concatenation of the two primitives separately.
If we define efficiency in terms of amount of qubits needed to obtain certain correctness
and security for a constant-error quantum depolarizing channel, we show how the
resulting scheme is more efficient than applying the codes separately.

2 Preliminaries
2.1 Notation
The single-qubit Pauli matrices given by

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, and Y =

(
0 −i
i 0

)
= iXZ, (1)

form a basis for single-qubit Pauli operations. Note that they are unitaries and any two
Pauli operations either commute or anti-commute. An n-qubit Pauli matrix is given by
n-fold tensor products of single-qubit Paulis, and we denote the Pauli group of n-qubit
Pauli matrices by

Gn := {ikP1 ⊗ P2 ⊗ · · · ⊗ Pn : where Pj ∈ {I,X,Z, Y }, k ∈ [4]}. (2)

The weight of an n-qubit Pauli operation, denoted ω(P ), is the number of non-identity
Paulis in the n-fold tensor product. Moreover, we denote by ωX(P ) and ωZ(P ) the number
of X and Z-Paulis respectively.

The Clifford group, Cn, is the group of n-qubit unitaries that leave the Pauli group
invariant. That is, given P ∈ Gn, for all C ∈ Cn we have ikCPC† ∈ Gn, where k ∈ [4].

The logarithm log is considered in base 2, unless specified otherwise.
The following variant of Chernoff’s bound studies the probability of the majority in a

population becoming the minority, and vice versa.

Lemma 1 ([GH01, Lemma 1]). Consider a population set A and a sub-population B ⊂ A.
Suppose we pick an integer k such that 0 < k < |A| and a random subset S ⊂ A of size k.
Then for any 0 < γ ≤ 1 we can bound the relative size of the sub-population in the sample
S by

P

[
|S ∩B|
k

< (1 − γ) |B|
|A|

]
< exp

(
−γ2 |B|

|A|
k

2

)
. (3)

2.2 Abstract cryptography
AC views cryptography as a resource theory: a protocols constructs an ideal resource from
a real system by means of a simulator. We will describe the basic concepts here, but an
in-depth explanation relevant for this work can be found in section 2 and appendix A of
Portmann’s work [Por17].
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BobAlice
ρ

(a) Insecure quantum channel with an adver-
sary.

BobAlice
ρ

#
(b) Insecure quantum channel with an ad-
versary replaced by a noisy filter.

Figure 1: Insecure channels with and without filters.

In an n-player setting, a resource is an object with n interfaces; allows the players to
input and receive messages. We will denote resources by squares, and inputs/outputs from
the interfaces by lines intersecting with the squares, see figure 1a. If two resources C and
K are available to the players, we write C||K for the parallel composition of the resources:
the resources are simultaneously accessible to the players in any arbitrary order, thus in
particular, the order of composition is irrelevant and C||K = K||C.

A converter models the local operations that the players can perform in their interfaces.
We will denote converters by squares with rounded corners. If a converter σ is connected
to the interface i of the resource C, we write σiC (or equivalently Cσi), see figure 1. A
protocol is defined by a set of converters: one for each honest player. On the one hand, an
adversary is allowed to perform any operation allowed by quantum mechanics, thus it is
essential to prove security against adversaries. On the other hand, for security guarantees
it is not enough to show good performance in presence of adversaries, we also need to
emulate the presence of no adversary. We do this with a special type of converter, called
filters, which emulate an honest behavior, for example without any tampering but still with
noise. We call filtered resources a pair of resource C and filter ♢E , denoted C♢ = (C,♢E).

Definition 1 (Cryptographic security). We say that the protocol πAB = (πA, πB) con-
structs the filtered resource S♢ from C# within (ε, δ), denoted C#

πAB ,(ε,δ)−−−−−−→ S♢, if the
following two conditions hold:

1. In presence of no malicious player, the filtered resources are ε-close to each other

d(πABC#, S♢) ≤ ε.

2. In the presence of an adversary, there exists a simulator σE , δ-close to the real
protocol

d(πABC, σES) ≤ δ.

Here the distance d is the supremum over the set of all possible distinguishers allowed by
quantum mechanics. If the filtered resources S♢ and C# are clear from the context, we say
that πAB is (ε, δ)-secure, or ε-correct and δ-secure.

We differ from the original definition of cryptographic security in [MR11], where security
is defined as the maximum of the two values ε and δ, because these parameters have
independent meanings that are interesting to study separately. The ε in item 1 refers to the
correctness of the protocol. That is, the probability that the protocol running on a noisy
channel without adversary will be distinguishable from an ideal channel. The δ in item 2 is
the usual security in presence of an adversary. Although we might want to consider equal
correctness and security in certain scenarios, splitting these two parameters allows us to
revisit the proofs from Portmann and understand composability of authentication and
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error-correction in terms of cryptographic security parameters. For example, authentication
protocols considered in the literature are not correct in presence of noise, i.e. they will
always reject with high probability, unless they are wrapped in error-correcting codes,
which are correct but not necessarily secure.

Theorem 1 (Serial composition security). Let the protocols π and π′ construct S♢ from
R# and T□ from S♢ within (ε, δ) and (ε′, δ′) respectively, i.e.

R#
π,(ε,δ)−−−−→ S♢ and S♢

π′,(ε′,δ′)−−−−−−→ T□. (4)

Then the serial composition π′π constructs T□ from R# within (ε+ ε′, δ + δ′),

R#
π′π,(ε+ε′,δ+δ′)−−−−−−−−−−→ T□. (5)

Proof. The statement follows directly from the triangle inequality. For ε-correctness we
have that

d(π′πR#, T□) ≤ d(π′πR#, π
′S♢) + d(π′S♢, T□) ≤ d(πR#,S♢) + ε′ ≤ ε+ ε′. (6)

Similarly for δ-security, the composed converter σ′σ is a converter for the composition
since

d(π′πR, σ′σT ) ≤ d(π′πR, π′σS)+d(π′σS, σ′σT ) ≤ d(πR, σS)+d(π′S, σ′T ) ≤ δ+δ′, (7)

where we used commutativity of converters αβC = βαC and the pseudo-metric property
d(αC, αC′) ≤ d(C, C′), see [Mau12].

2.3 Quantum error correction
Since quantum information is very sensitive to errors and noise from the environment;
quantum error correction is developed as a tool to protect data against errors. A [[n, k, d]]
quantum error-correcting code (QECC) is an encoding of k ‘logical qubits’ (which we wish
to protect from errors) into a codeword consisting of n ‘physical qubits’ (auxiliary qubits),
with n > k. The distance d is the minimum weight of a Pauli P to convert one valid
codeword into another.

After the encoded information is subjected to noise, we perform a collective measurement
on the n qubits which will enable us to diagnose the type of error that occurred, called
error syndrome. Afterwards, error decoding or recovery is performed, to return to the
original state of the code. We say that a [[n, k, d]] QECC can correct t errors if recovery
is successful for any superoperator with support on the set of Pauli operators of weight
up to t. In any case, we assume that we can always decode, possibly to a different state
than the input if more than t errors are present. Moreover, sometimes we are satisfied
just with knowing if an error has occurred, without the need to reverse it. We call this
the error-detection property of the code. In fact, a QECC with distance d can correct
t = (d−1)/2 errors. For a more in-depth analysis we refer the reader to standard literature
in error correction [NC10, Pre99].

Stabilizer codes introduced by Gottesman [Got96] allow us to describe quantum states
in terms of the operators stabilizing them instead of working with the state itself, by
means of group theory techniques for the Pauli group. Any two elements of the Pauli
group Gn either commute or anti-commute and square to ±I, which we will use to describe
codewords. Given an abelian subgroup S of Gn, we define the stabilizer code VS to be the
stable states under the action of elements of S. That is,

VS := {|ψ⟩ : M |ψ⟩ = |ψ⟩ , M ∈ S}. (8)
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Let us denote by S1, . . . , Sm the generators of the stabilizer group S = ⟨S1, . . . , Sm⟩.
Since any Pauli error P ∈ Gn either commutes or anti-commutes with each element of
the generator, we can define the vector sP = (s1,P , . . . , sm,P ) such that sj,P = 0 if Pj

commutes with Sj , and sj,P = 1 if it anti-commutes. Therefore,

SjP |ψ⟩ = (−1)sj,PPSi |ψ⟩ = (−1)sj,PP |ψ⟩ , for all |ψ⟩ ∈ VS . (9)

We call the vector s the syndrome of the error-correcting code. Errors with non-zero
syndrome for some element in the stabilizer M ∈ S can be detected by the QECC – i.e. the
ones that anti-commute with some element of the stabilizer. However, commuting errors
are undetectable, and will change the code whenever they are not part of the stabilizer. If
we denote by S⊥ the set of Paulis that commute with the stabilizer, i.e.

S⊥ := {P ∈ Gn : PM = MP for allM ∈ S}, (10)

then the set of undetectable errors that change the data non-trivially is S⊥ \ S.
Purity testing codes are exactly the stabilizer codes that detect any non-trivial Pauli at-

tack with high probability. This property makes them extremely well suited for constructing
authentication schemes as we will see in section 2.4.

Definition 2. A set {Vk}k∈K of stabilizer codes, each with respective stabilizer subgroup
Sk, is ε-purity testing if, when the code is selected uniformly at random, the probability of
any Pauli error P ∈ Gn acting non-trivially on the data and not being detected is upper
bounded by ε. That is,

Pr
k∈K

(
P ∈ S⊥

k \ Sk

)
≤ ε. (11)

There is also a more general family of codes that will be useful for our analysis.

Definition 3. Let α ∈ (0, 1]. We say that a family of quantum error-correcting codes
[[n, 1, d]] with stabilizer group S and threshold pth has decay of order α if there exist
constants κ, β > 0 such that

Pr
(
X ∈ S⊥ \ S

)
≤ κ (p/pth)βnα

, when p < pth. (12)

Note that the distance of a code is uniquely determined by the size d = Θ(nα).
For example, well known concatenated codes fall into this category. Given a [[n, 1, d]]

QECC, we can recursively encode each encoded qubit in n physical qubits, which can be
encoded again such that each layer L of concatenation is a [[nL, 1, dL]] QECC, see [Pre99].
After L levels of concatenation, the probability of failed recovery is upper bounded by

Pr
(
X ∈ S⊥ \ S

)
≤
(

n

t+ 1

)−1((
n

t+ 1

)
p

)(t+1)L

. (13)

Note that if p < pth :=
(

n
t+1
)−1, then we can make the failure probability as small as

desired by increasing the number of layers. This is, a [[nL, 1, dL]] concatenated codes has
decay α := logn(t+ 1).

2.4 Quantum authentication
In the context of constructive cryptography, a quantum authentication protocol is expected
to construct an authenticated quantum channel, S, from nothing but an insecure quantum
channel and a secret key source. The goal of a secure quantum channel is to allow Alice to
send m qubits to Bob without Eve tampering with the data. On the one hand, they cannot
stop Eve from learning that a message has been transmitted nor cutting the communication
lines. Hence Eve’s actions can be described as a bit 0 when Bob gets the message, and 1
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Eve
m 0, 1

Bob
ρ, ⊥

Alice
ρ

(a) Secure authenticated quantum channel
with adversary Eve.

m 0

Bob
ρ, ⊥

Alice
ρ

♢

(b) Secure authenticated quantum channel
with no adversary present.

Figure 2: Characterization of an authenticated quantum channel S♢.

BobAlice

Key

req. req.πA πB

C
ρ′, ⊥ρ

Eve

k k

Figure 3: The real system for quantum message authentication.

when he does not. On the other hand, in the presence of no adversary, Eve’s interface is
substituted by a filter ♢E that models an honest behavior, in this case always allowing
Bob to receive exactly the message that Alice sent. Figure 2 is a graphical description of
the channel S♢.

In order to construct the filtered resource S♢, quantum authentication protocols will use
a shared secret key K and an insecure quantum channel C#, here the filter ♢E represents
an honest behavior instead of an adversary, and the filter #E is a noisy channel. After
receiving a message ρ, the protocol πA authenticates it with the key k received from K and
sends the message to the insecure quantum channel C. The protocol πB upon receiving a
message checks its validity with the shared secret key k, and outputs either ρ′ or an error
message ⊥. In absence of an adversary, we substitute Eve’s interface by a noise filter #E .
Note that for our purposes we are not considering key resources, which greatly simplifies
Portmann’s descriptions [Por17, Section 3].

A generic way of constructing authentication codes was given by Barnum et al. [BCG+02]
using purity-testing codes. In these schemes, the message is first encoded using a [[n, 1, d]]
purity-testing error-correcting code, and then encrypted with a quantum one-time pad
using the shared secret key, see Protocol 1.

We previously defined a quantum message authentication system as a protocol that
constructs an authenticated quantum channel S♢ as in figure 2, from some shared secret
key K and an insecure quantum channel C#, where the filter introduces noise. Portmann
showed that the scheme from protocol 1 based on purity-testing codes provides quantum
authentication protocols, given that the filter is noiseless, denoted □E .

Theorem 2 ([Por17, Lemma D.1]). Given a δ-purity testing protocol [[n, 1, d]], let πauth
AB =

(πA, πB) denote the converter corresponding to Alice and Bob’s protocols 1. Then πauth
AB

constructs an authenticated quantum channel S♢, given an insecure noiseless quantum
channel C□ and a secret shared key K within (0, δauth), where δauth = max{δ, 2−(n−1)}.
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Protocol 1 Quantum ‘encode-then-encrypt’ message authentication scheme from purity-
testing codes.
Setting. At the beginning of the protocol the encoder and decoder have access to secret
shared key (k, l) ∈ K, with K := K0 × K1 not necessarily of the same size. Let {Vk}k∈K0

be a family of purity-testing codes.
Encoding.

1: Given input data qubit ρd, append the (n− 1)-qubit syndrome state |0⟩⟨0|⊗(n−1).
2: Encode everything with the purity testing code according to the secret shared key
k ∈ K0, to obtain Vk(ρd ⊗ |0⟩⟨0|⊗(n−1))V †

k .
3: Encrypt the message with a quantum one-time pad using the key l ∈ K1, the final

message is the following

Authk,l(ρd) = PlVk(ρd ⊗ |0⟩⟨0|⊗(n−1))V †
k Pl. (14)

Decoding.
1: First decrypt the data using l.
2: Decode the data according to the error-correcting code Vk given by the key k.
3: Measure the syndrome register in the computational basis. If the measurement outcome

is 0, accept the protocol. Else, abort.

That is,

C□||K πauth
AB ,(0,δauth)−−−−−−−−→ S♢. (15)

2.5 Noisy channels
Given a noisy quantum channel between Alice A and Bob B, where the noise is represented
by a quantum operation FA→B , we say that there exists an error-correction protocol πecc

AB ,
defined by an encoding map EA and a decoding map DB , correcting the errors induced by
FA→B within εecc, if

1
2 ∥DB ◦ FA→B ◦ EA − IA→B∥⋄ ≤ εecc. (16)

We can rewrite the above statement in the abstract cryptography language.

Lemma 2 ([Por17, Lemma 4.2]). Let #E be a filter introducing the noise given by the
quantum operation F , and let □E be a noiseless filter. If there exists an error correction
protocol πecc

AB = (πecc
A , πecc

B ) that corrects the errors induced by F within εecc, then πecc
AB

constructs a noiseless channel C□, from a noisy channel Ĉ# within (εecc, 0). That is,

Ĉ#
πecc

AB ,(εecc,0)−−−−−−−−→ C□. (17)

It is now clear what the relevance of splitting the cryptographic security definition in
terms of correctness and security is, a direct consequence of theorems 1 and 2, and lemma 2,
is that a δ-secure authentication scheme wrapped in an ε-correct error-correcting code
constructs an (ε, δ)-secure authenticated quantum channel, instead of an (ε+ δ)-secure
from the original composition theorem.

In order to be able to compare explicit schemes, we will restrict to a basic type of
noise, typically used in error correction literature, i.i.d. Pauli noise. We will assume that
when qubits are sent through a noisy channel, they independently undergo a X, Y or
Z Pauli error with probabilities pX , pY and pZ respectively. This model is interesting
not only because it models many interesting real situations, but also because the Pauli
operators are a basis of single-qubit operations, and thus protection against i.i.d. Pauli
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noise for a single qubit implies protection against any single-qubit error. Moreover, in the
‘encode-then-encrypt’ authentication scheme, the one-time-pad encryption and the Pauli
twirl make any attack become a Pauli attack. This means that for the security proof it is
enough to prove security against Pauli attacks [BGS13], which is also the reason why the
underlying error-correction codes are required to be purity-testing codes.

Let Fn denote a quantum noise channel acting on n-qubits independently, which we
can write in terms of the basis elements of single-qubit operations Fn = F⊗n, where

F(ρ) := (1 − pX − pY − pZ)ρ+ pXXρX
† + pY Y ρY

† + pZZρZ
†. (18)

This channel leaves the state untouched with probability pI := 1 − pX − pY − pZ and each
Pauli operation is applied with probability pX , pY and pZ respectively. As mentioned
earlier, we will assume that the noise is i.i.d. distributed. Therefore, we can write the noise
channel acting on a n-qubit register as

Fn(ρ) =
∑

k1+k2+k3+k4=n
k1,k2,k3,k4≥0

(
n

k1, k2, k3, k4

) ∏
j∈{I,X,Y,Z}

p
kj

j σ
kj

j ρ(σ†
j )kj . (19)

The depolarizing channel, the most commonly used noise model in error-correction
literature [Ter15], is of this type. When a qubit goes through the depolarizing channel,
the channel erases the qubit and substitutes it by a completely mixed state I/2 with
probability p, and leaves the qubit untouched with probability 1 − p. In notation from
equation 19, this is the same as saying that with probability 1 − p the qubit is being left
untouched, and each Pauli operation will be applied with probability p/3. Therefore, the
depolarizing noise acting on n-qubits can be written as

Fn(ρ) =
∑

k1+···+k4=n
k1,...,k4≥0

(
n

k1, . . . , k4

)
(1 − p)k1

(p
3

)n−k1 ∏
j∈{X,Y,Z}

σ
kj

j ρ(σ†
j )kj ,

= (1 − p)nρ+ (1 − p)n−1 p

3

n∑
k=1

∑
j∈{I,X,Y,Z}

σk
j ρ(σ†

j )k + · · · .

(20)

3 Explicit composed protocols
Attempting to protect our data against both noise and attacks can be seen in the AC
framework of section 2.2 as constructing a noiseless secure channel C (correct and secure)
from a noisy insecure channel Ĉ#. In practice, this is obtained by concatenating an
authenticating scheme from section 2.4 with an error-correcting code from section 2.3.
Unfortunately, both these constructions involve encoding logical qubits in redundant
physical qubits for protection, and thus the dimension of the secure and insecure channels
can differ vastly.

In this section we analyse the cost-effectiveness of two of the most used authentication
schemes: the trap and Clifford schemes. They are both purity testing code families, see
definition 2, i.e. the probability of non-trivial errors being undetected by the codes is low.
In short, the trap scheme consists of two error-correcting codes, such that the inner code
corrects low-weight noise and the traps detect high-weight attacks, hence the adversary
cannot effectively choose a relevant attack without being detected. The Clifford scheme on
the other hand is a single error-correcting code that randomizes the weight of the error,
actually making it strong purity testing, meaning it detects any error with high probability.

Taking the amount of qubits necessary as a parameter for efficiency, in this section we
analyse the cost-effectiveness of protecting a single qubit of data against both noise and
attacks. We study both the trap of the Clifford scheme for the authentication and consider
only single-qubit error-correcting codes.
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3.1 Trap scheme
Given a fixed [[n, 1, d]] error-correcting code with encoder Encn : C2 → C2n and de-
coder Decn : C2n → C2, the trap authentication scheme constructs a set {Vk}k∈K of purity
testing codes encoding 1 logical qubit in 3n physical qubits, by first encoding each data
qubit ρd in n physical qubits, appending 2n ‘traps’ to the encoded data (n copies of |0⟩⟨0|
and another n copies of |+⟩⟨+|); the resulting 3n-qubit registers are permuted attending
to a secret shared key k ∈ K. The purity-testing codes needed for the encode-then-encrypt
scheme in protocol 1 are given by:

Vk(ρd)= πk(Encn(ρd) ⊗ |0⟩⟨0|n ⊗ |+⟩⟨+|n)π†
k

:= πk(I2n ⊗H⊗n)(Encn(ρd) ⊗ |0⟩⟨0|2n−1)(I2n ⊗H⊗n)π†
k.

(21)

When decoding, first the inverse permutation, according to the secret key, is applied.
Finally, the data registers are decoded according to the fixed error-correcting code and
the traps are measured in the computational and Hadamard bases respectively. Here we
consider the underlying code as error correcting, for the sake of fair comparison with later
codes, but there is also an error detection variant of the trap code [BGS13].

Lemma 3 ([BW16, Theorem 5.2]). The trap code with inner error-correcting code [[n, 1, d]]
is (1/3) d+1

2 -purity testing.

Given a purity testing code, the discussion in sections 2.4 and 2.5 ensures us that
if there exists an error-correcting protocol correcting the errors induced by the noisy
channel within error εecc, then composing qubit-wise the trap code encoded qubits with
the error-correcting code will give rise to an εecc-correct and (1/3) d+1

2 -secure protocol.
The following theorem rephrases the security and correctness of the composed protocol in
terms of the number of qubits. For simplicity of the analysis we assume the channel is
affected by depolarizing noise.

Proposition 1. Let πtrap be the trap authentication scheme with a family [[nin, 1, din]]
of inner codes of decay αin, and πecc a family [[nout, 1, dout]] of outer codes of decay αout,
with pin and pout thresholds respectively and κin < pout. Let #E be a filter introducing the
noise given by the depolarizing channel with channel error p < pin and p < pout. Then to
obtain ε-correctness and δ-security, i.e.

Ĉ#||K πtrapπecc,(ε,δ)−−−−−−−−→ Sm
♢ , (22)

it is sufficient for the total amount of qubits ntotal to grow as

ntotal = Ω
(

log(1/ε)1/αout log(1/δ)1/αin
)
. (23)

Proof. Let us denote by Sin the stabilizer subgroup of the inner code and by S the one of
the trap code concatenated with the error-correcting code.
Security. Since the inner code uniquely determines the security it is natural to start with
it. By lemma 3, given P ∈ Gnin , δ-security is obtained whenever

Pr
k∈K

(
P ∈ (Sin)⊥

k \ (Sin)k

)
≤
(

1
3

)Θ(n
αin
in )+1

2

≤ δ. (24)

Taking logarithms on both sides we obtain,

Θ (nαin
in ) + 1
2 ≥ log(1/δ)

log(3) i.e. nin ≥ Ω
(

log(1/δ)1/αin
)
. (25)
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Correctness. Note in equation 21 how the first ninnout qubits have double encoding, and
the last 2ninnout only one, thus the probability of being detected for ninnout of the qubits
is not uniquely determined by the outer error-correcting code. Then the error probability
is bounded by

Pr
(
X ∈ S⊥ \ S

)
≤ κout

(
Pr
(
X ∈ S⊥

in \ Sin
)
/pout

)nαout
+ 2ninκout(p/pout)nαout

≤ κout

(
κin

pout

)n
αout
out

(
p

pin

)n
αin
in n

αout
out

+ 2ninκout

(
p

pout

)n
αout
out

,
(26)

thus we achieve ε-correctness whenever Pr
(
X ∈ S⊥ \ S

)
≤ ε, thus it would be enough for

both following conditions to holdκout

(
κin
pout

)n
αout
out

(
p

pin

)n
αin
in n

αout
out ≤ ε/2

2ninκout

(
p

pout

)n
αout
out ≤ ε/2.

(27)

For the first item in equation 27, by taking logarithms we need

nαout
out log

(
pout

κin

)
+ nαin

in nαout
out log pin

p
≥ log

(
2κout

ε

)
, (28)

thus it is enough for any of the following two to hold,

nαout
out log

(
pout

κin

)
≥ log

(
2κout

ε

)
and nαin

in nαout
out log pin

p
≥ log

(
2κout

ε

)
. (29)

Note that the first requirement is weaker than the second one, thus it is enough to ask

nout ≥ Ω
(

log(1/ε)1/αout
)
. (30)

For the second item in equation 27, by taking logarithms we need

nαout
out log

(
pout

p

)
≥ log

(
4ninκout

ε

)
i.e. nout ≥ Ω

([
log(nin) + log

(
1
ε

)]1/αout
)
, (31)

but this requirement is weaker than the one in equation 30, thus proving the desired
bound.

3.2 Clifford scheme
The Clifford authentication scheme is based on a set of purity testing unitaries {Ck}k∈K
given by the Clifford group. The authentication scheme first appends to the data qubit ρd, n
‘traps’ (n copies of |0⟩⟨0|) and finally a Clifford element Ck is applied to the resulting (n+1)-
qubit registers attending to a secret shared key k ∈ K. Without the need for encryption,
the authenticated data is directly given by:

Authk(ρd) := Ck(ρd ⊗ |0⟩⟨0|n)C†
k. (32)

When decoding, first the inverse Clifford operation, according to the secret key, is applied.
Finally, the traps are measured in the computational basis.

It is not difficult to see that the n-trap Clifford authentication scheme is 2−n-secure.
However, the Clifford twirl will map any Pauli operation to an arbitrary-weight one, not
being able to distinguish between low and high weight operations and hence making
it impractical over noisy channels. It is therefore imperative to compose it with an
error-correcting code for practical uses.
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Proposition 2. Let πc be the nin-qubit Clifford authentication scheme, and πecc a family
[[nout, 1, dout]] of outer codes of decay αout, with pout threshold. Let #E be a filter intro-
ducing the noise given by the depolarizing channel with channel error p < pout. Then to
obtain ε-correctness and δ-security, i.e.

Ĉ#||K πcπecc,(ε,δ)−−−−−−−→ Sm
♢ , (33)

it is sufficient for the total amount of qubits ntotal to grow as

ntotal = Ω
(

log(1/ε)1/αout log(1/δ)
)
. (34)

Proof. Let us denote by Sc the stabilizer subgroup of the Clifford code and by S the one
of the Clifford code concatenated with the error-correcting code.
Security. Since the nin-trap Clifford code is 2−nin purity-testing, we obtain δ-security
whenever

Pr
k∈K

(
P ∈ (Sc)⊥

k \ (Sc)k

)
≤ 2−nin ≤ δ i.e. nin ≥ Ω (log(1/δ)) . (35)

Correctness. Note that none of the errors can permeate the outer error-correcting code,
because the Clifford operation will map it to an arbitrary weight Pauli operation and
therefore will be detected by the traps. Hence we achieve ε-correctness whenever

Pr
(
X ∈ S⊥ \ S

)
≤ (nin + 1)κout

(
p

pout

)n
αout
out

≤ ε. (36)

Taking logarithms on both sides we obtain,

nαout
out ≥ log

(
pout

p

)−1
log
(

(nin + 1)κout

ε

)
i.e. nout ≥ Ω

(
log(1/ε)1/αout

)
. (37)

4 The threshold authentication scheme
Both Hayden, Leung and Mayers [HLM16] and Portmann [Por17] constructions of composed
protocols, it is assumed that the authentication scheme rejects whenever an error is present
– which is always the case with very high probability when sending information through
noisy channels – and therefore an error-correcting code is necessary to make the schemes
useful. However, from the structure of the composition, the number of qubits used in
such a construction blows up both with the size of the purity-testing code used in the
authentication scheme and the error-correcting code. It is therefore natural to ask if such a
composition is even necessary, and if we cannot design a protocol that directly constructs
an authenticated quantum channel from a noisy insecure channel and shared secret key.
This is exactly what the threshold scheme we propose in this section does.

The threshold scheme is an adaptation of the trap scheme where, with the same
encoding, we require Bob to accept the message whenever low amount of errors are
detected. In other words, we use the traps as they were originally intended, to measure
the amount of error present in the encoded data and decide if these errors pertain to
noise or an attack. In principle, this should not be enough, as the correctable errors of
an error-correcting code grow sub-linearly in the size of the code, while for example for
the depolarizing channel the number of errors is linear in the size of the code. However,
error-correcting codes with fixed decay actually correct linear amount of errors with very
high probability, which is enough to form a purity-testing family of codes.
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The threshold code is constructed as follows. Given a fixed [[n, 1, d]] error-correcting
code with encoder Encn : C2 → C2n and decoder Decn : C2n → C2, the threshold authenti-
cation scheme first encodes each data qubit ρd in n physical qubits and then appending 2n
‘traps’ to the encoded data (n copies of |0⟩⟨0| and another n copies of |+⟩⟨+|); the re-
sulting 3n-qubit registers are permuted attending to a secret shared key k ∈ K. The
authenticated states are given by:

Vk(ρd) := πk(Encn(ρd) ⊗ |0⟩⟨0|n ⊗ |+⟩⟨+|n)π†
k. (38)

When decoding, first the inverse permutation, according to the secret key, is applied.
Finally, the data registers are decoded according to the fixed error-correcting code and
the traps are measured in the computational and Hadamard bases respectively. However,
only if less than a threshold τn, with τ ∈ [0, 2], of errors are present does the receiver
accept the message. The threshold τn allows us to tune the the amount of error we are
willing to accept, depending on the noise of the channel, more efficiently than adding an
entire new error-correcting code to each qubit. The explicit construction of the threshold
authentication scheme is given in Protocol 2.

Protocol 2 Threshold authentication scheme πthr
AB .

Setting. At the beginning of the protocol the encoder and decoder have access to secret
shared key (k, l) ∈ K, with K := K0 ×K1 not necessarily of the same size. Let (Encn,Decn)
be an [[n, 1, d]] error-correcting code and {πk}k∈K0 a family of permutations.
Encoding.

1: Encode the input data qubit into n qubits with the fixed error correcting code Encn(ρd).
2: Append 2n computational basis states |0⟩⟨0|⊗2n and apply a Hadamard gate to each

of the last n qubits.
3: Apply the permutation πk to all the qubit registers according to the secret key k ∈ K0.
4: Finally, encrypt the message with a quantum one-time pad using the secret key l ∈ K1,

obtaining thus

Authk,l(ρd) = Plπk

(
Encn(ρd) ⊗ |0⟩⟨0|⊗n ⊗ |+⟩⟨+|⊗n

)
π†

kPl. (39)

Decoding.
1: First decrypt the data using l.
2: Apply the inverse permutation according to k.
3: Measure the second to last n registers in the computational basis, and the last n

registers in the Hadamard basis. If less than a threshold τn of qubits differ from the
expected outcome, i.e. |0⟩⟨0|n ⊗ |+⟩⟨+|n, accept the protocol. Else, abort.

4: If the protocol has been accepted, decode the data register with the decoder Decn.

Since there is no outer error-correcting code in our protocol, we have to ensure that
the threshold scheme constructs directly a noiseless secure quantum channel from nothing
but a noisy insecure quantum channel and a shared secret key. We will separate this task
in two steps, first proving the correctness and then the security.

4.1 Correctness
We want to prove that when we use our protocol with a noisy channel, the outcome
is nearly indistinguishable from using a noiseless secure channel without adversary, see
figure 4.

Proposition 3. Let #E be a filter introducing the noise given by the depolarizing channel
with channel error p. Let [[n, 1, d]] be a family of error-correcting codes with threshold



14 An efficient combination of quantum error correction and authentication
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(a) Threshold protocol with no adversary
present.

m 0

Bob
ρ, ⊥

Alice
ρ

♢

(b) Authenticated quantum channel with no
adversary present.

Figure 4: Comparison between the threshold protocol in a noisy channel and a secure
authenticated quantum channel without adversary.

pth > p and decay α. Let πthr
AB be the threshold authentication scheme built from these

error-correcting codes and with threshold parameter τ > 4p/3 as in protocol 2. Then πthr
AB

is ε-correct, i.e.
d(πthr

AB(C#||K),S♢) ≤ ε, (40)
with

ε = κ2−βnα log(pth/p) + 2−n(τ−4p/3)2 log(e). (41)

Proof. To prove correctness within ε we have to show that the threshold protocol πthr
AB

constructs a noiseless secure channel S♢ such that the real system transmitted through a
noisy channel πthr

AB(C#||K) cannot be distinguished from the ideal system S♢. Note that
distinguishability in presence of no adversary is exactly the diamond norm between the
identity map and the encoding-noise-decoding map of the threshold code, i.e.

d(πthr
AB(C#||K),S♢) = 1

2
∥∥Dthr ◦ F ◦ Ethr − I

∥∥
⋄ . (42)

Given a random variable X ∈ {I,X,Z, Y }, let ω(X) ∈ {0, 1} be a random variable denoting
if the operator describes a non-trivial error on a qubit or not, i.e.

ω(Xj) =
{

1 if Xj ̸= I

0 if Xj = I.
(43)

Let X1, . . . , X3n be independent random variables such that the first n fail with probability
p and the last 2n fail with probability 2p/3, i.e.

Pr(ω(Xj) = 1) =
{
p for j = 1, . . . , n,
2p/3 for j = n+ 1, . . . , 3n.

(44)

We do this distinction because we have computational and Hadamard bases traps, thus
the probability of rejection is different. We denote by X the tensor product of the first
n variables, i.e. X := X1,⊗ · · · ⊗ Xn. We achieve ε-correctness whenever the rejection
probability of the traps or the failed recovery of the error-correcting code encoding the
data qubits is less than ε. That is,

Pr

{X ∈ S⊥ \ S
}

∪


3n∑

j=n

ω(Xj) ≥ τn


 = Pr

(
X ∈ S⊥ \ S

)
+ Pr

 3n∑
j=n

ω(Xj) ≥ τn


≤ κ (p/pth)βnα

+ exp
(
−n(τ − 4p/3)2) (45)
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whenever p < pth, where we used Hoeffding’s inequality with τ > 4p/3.

4.2 Security
With security we mean that, in presence of a malicious player, there exists a simulator
in the ‘ideal protocol’ that is indistinguishable from the ‘real protocol’. However, instead
of constructing this simulator, it is enough to show that the threshold scheme constructs
a set of codes that is purity testing, which will provide us with security by theorem 2.
Although Portmann’s original proof constructs a secure channel from a noiseless channel,
in the security proof the filters are substituted by an adversary, and therefore work for our
setting as well.

By setting the threshold properly, we can leverage the fact that error-correcting codes
correct a linear amount of errors with high probability to prove that the threshold scheme
is purity testing.

Proposition 4. Let #E be a filter introducing the noise given by the depolarizing channel
with channel error p. Let [[n, 1, d]] be a family of error-correcting codes with threshold
pth > p and decay α. Let πthr

AB be the threshold authentication scheme built from these
error-correcting codes and with threshold parameter τ < 2pth as in protocol 2. Then πthr

AB

is δ-secure, i.e. there exists a simulator σE, δ-close to the real protocol

d(πrm
ABC, σES) ≤ δ, (46)

with

δ = max
{

10κ
9
√

2π
√

3b(1 − b)
exp
(

− ln(n)
2 − βnα ln(pth/b)

)
, exp

(
−n3b

2

(
1 − τ

2b

)2
)}

,

(47)
where b := pth

2 + τ
4 .

Proof. We will prove security by showing that the threshold scheme constructs a family of
purity-testing codes, this is, that if the permutation key is selected uniformly at random,
the probability of any Pauli error E ∈ Gn acting non-trivially on the data and not being
detected is upper bounded by δ. The threshold code, for a key k ∈ K0, is characterized by
the codes

Vk(ρd) = πk(Encn(ρd) ⊗ |0⟩⟨0|n ⊗ |+⟩⟨+|n)π†
k. (48)

The first n qubits are used to decode the inner error-correcting code, and the last 2n
are the traps, such that the protocol rejects whenever more than τn non-zero traps are
detected. Let us denote by Sin the stabilizer subgroup of the inner error-correcting code.
For a particular permutation πk, on the one hand, the set of Paulis that are not detected is

S⊥
k := {π†

k(P ⊗Q⊗R)πk : P ∈ S⊥
in, ωX(Q) + ωZ(R) ≤ r}. (49)

On the other hand, since the traps are invariant to Z and X operations respectively, the
Paulis that act trivially on the message are

Sk := {π†
k(P ⊗Q⊗R)πk : P ∈ Sin, Q ∈ {I, Z}⊗n, R ∈ {I,X}⊗n}. (50)

We can also split the set of permutations in terms of the error correction and the trap
detection

Π0(E) := {π ∈ Π3n : E = π†(P ⊗ T )π, P ∈ S⊥
in \ Sin, T ∈ G2n},

Π1(E) := {π ∈ Π3n : E = π†(P ⊗Q⊗R)π, P ∈ Gn, ωX(Q) + ωZ(R) ≤ τn},
(51)
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so that we can bound the purity testing parameter by the minimum size of both sets

Pr
k∈K0

(
E ∈ S⊥

k \ Sk

)
≤ min

{∣∣Π0(E)
∣∣

|Π3n|
,

∣∣Π1(E)
∣∣

|Π3n|

}
. (52)

Given an operator E ∈ G3n, we will divide the proof in two cases attending to its weight,
where the weight of an operator is defined as the sum of the weight of the elements in its
tensor product,

ω(E) :=
3n∑

j=1
ω(Ej), where ω(Ej) :=

{
1 if Ej ̸= I

0 if Ej = I.
(53)

Note that it is enough to bound one of the sets from equation 52 for different weight
attacks.
Case 1: ω(E) ≤ 3npth. For low-weight attacks, still linear in the total size of the protocol,
we expect the error-correcting code to correct them with high probability. Since the set of
Pauli operators acting non-trivially and being undetected is exactly the same as the set of
operators that the error-correcting code fails to decode correctly and they are randomized
because of the one-time pad, we can rewrite it in terms of random variables. We define a
set of i.i.d. random variables X1, . . . , X3n such that

Pr(ω(Xj) = 1) = ω(E)
3n for j ∈ [n]. (54)

We denote by X the tensor product of the first n variables, i.e. X := X1,⊗ · · · ⊗ Xn.
Condition on a fixed amount of registers suffering an error, we have the bound

∣∣Π0(E)
∣∣

|Π3n|
≤ Pr

X ∈ S⊥
in \ Sin

∣∣∣∣∣∣
3n∑

j=1
ω(Xj) = ω(E)

 ≤
Pr
(
X ∈ S⊥

in \ Sin
)

Pr
(∑3n

j=1 ω(Xj) = ω(E)
)

≤ 10κ
9
√

2π(3npth)βnα

ω(E)βnα√
ω(E)(1 − ω(E)/3n)

.

(55)

Case 2: ω(E) ≥ 3τn/2. High weight attacks will be detected by the traps with high
probability, even when a linear amount of them τn are triggered before aborting the
protocol. Although we cannot leverage the independence of errors as in the security proof
of the trap code, we can apply a sampling variant of the Chernoff bound, see lemma 1.
Let us define the total population to be all the registers A := {1, . . . , 3n}, and the sub-
population the traps B := {n, . . . , 3n}. Given a Pauli attack E of weight ω(E) and a
random sample S ⊂ A, with |S| = ω(E), we have

∣∣Π1(E)
∣∣

|Π3n|
≤ Pr

 3n∑
j=n

ω(Ej) < τn

 = Pr

 3n∑
j=n

ω(Ej) < (1 − γ) |B|
|A|

ω

 (56)

< exp
(

−γ2 |B|
|A|

ω(E)
2

)
= exp

(
−ω(E)

3

(
1 − 3τn

2ω(E)

)2
)
, (57)

where γ = 1− 3τn
2ω , with γ ∈ (0, 1) whenever ω(E) > 3τn/2. Finally, since the adversary will

pick the optimal weight, we need a bound independent of the weight ω(E). We can ensure
this by choosing a non-empty overlap of the two cases, which holds whenever τ < 2pth,
and picking a weight in the middle of the accepted ones e.g. ω(E) = 3n

(
pth

2 + τ
4
)

= 3nb.
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This provides an upper bound on the purity-testing parameter

Pr
k∈K0

(
E ∈ S⊥

k \ Sk

)
≤ max

{
10κ

9
√

2π
√

3b(1 − b)
exp
(

− ln(n)
2 − βnα ln(pth/b)

)
, exp

(
−n3b

2

(
1 − τ

2b

)2
)}

.

(58)

4.3 Efficiency in terms of qubits
We can combine the correctness and security requirements of the threshold scheme to obtain
the sufficient amount of qubits that the threshold scheme requires to obtain (ε, δ)-security.
The effectiveness of the threshold scheme lies in the fact that instead of encoding the traps
in an error-correcting code to allow some error, we can just tune the threshold parameter
τ to the noise scenario whilst being able to detect adversaries. That is, in contrast to the
composed authentication and error correction, we can construct a secure quantum channel
from a noisy insecure channel and secret key without the need to double encode our qubits
in two error-correcting codes.

Theorem 3. Let #E be a filter introducing the noise given by the depolarizing channel
with channel error p. Let [[n, 1, d]] be a family of error-correcting codes with threshold
pth > p and decay α. Let πthr

AB be the threshold authentication scheme built from these
error-correcting codes and with threshold parameter τ ∈

( 4p
3 , 2pth

)
as in protocol 2. Then

for πthr
AB to obtain ε-correctness and δ-security, i.e.

Ĉ#||K πthr,(ε,δ)−−−−−−→ S♢, (59)

it is sufficient for the total amount of qubits ntotal to grow as

ntotal ≥ Ω
(

max
{

log(1/ε)1/α
, log(1/δ)1/α

})
. (60)

Proof. In order to obtain ε-correctness, from proposition 3 we need

κ2−βnα log(pth/p) + 2−n(τ−4p/3)2 log(e) ≤ ε, (61)

thus would be enough if both following conditions held,{
κ2−βnα log(pth/p) ≤ ε/2
2−n(τ−4p/3)2 log(e) ≤ ε/2.

(62)

For the first item in equation 62, by taking logarithms we need

nα ≥ 1
β log(pth/p)

log
(

2κ
ε

)
, (63)

and for the second item in equation 62, also by taking logarithms

n ≥ 1
(τ − 4p/3)2 log(e) log(2/ε). (64)

Since the second condition is weaker, both conditions in equation 62 will hold whenever

n ≥ Ω(log(1/ε)1/α). (65)
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For δ-security, from proposition 4 we need

max
{

10κ
9
√

2π
√

3b(1 − b)
exp
(

− ln(n)
2 − βnα ln(pth/b)

)
, exp

(
−n3b

2

(
1 − τ

2b

)2
)}

≤ δ.

(66)
Note that the above conditions can be simplified as the following two equations holding{

A exp(− ln(n)/2) exp(−Bnα) ≤ δ

exp(−nC) ≤ δ
(67)

for the constants

A := 10κ
9
√

2π
√

3b(1 − b)
, B := β ln(pth/b) and C := 3b

2

(
1 − τ

2b

)2
. (68)

By taking logarithms, we see that the first item in equation 67 holds whenever

ln(n)/2 +Bnα ≥ ln(A/δ), i.e. n ≥ Ω
(

log(1/δ)1/α
)
. (69)

The second item in equation 67 holds whenever

n ≥ 1
C

ln(1/δ), (70)

a weaker condition than equation 69, thus reaching the desired conclusion.

5 Conclusions
We studied the combination of authentication and error-correction in a single primitive,
and we saw that the size blowups of authentication and error correction are (slightly-more
than) multiplied in a naively composed protocol to determine the total blowup. As an
example of the potential of looking at these properties together, we designed the threshold
scheme, for which the resource usage is only dependent on the maximum blowup of the
two functionalities.

Code Decay of αin and αout ε = κδ or ε = δκ for κ > 1
Threshold max{O(ln(1/ε)1/αin), O(ln(1/δ)1/αin)} O(ln(1/δ)1/αin)

Trap O(ln(1/ε)1/αout ln(1/δ)1/αin) O(ln(1/δ)1/αin+1/αout)
Clifford O(ln(1/ε)1/αout ln(1/δ)) O(ln(1/δ)1/αout+1)

Figure 5: Comparison for [n, 1, d] QECC.

Given an inner error correcting code of decay αin and an outer one of decay αout, we
see that in the usual scenario where the security is more important than the error, δ = ε1/κ

as in the third column of figure 5, the threshold scheme performs better than both the
trap and Clifford scheme.

Note that if we have a ECC code of decay α = 1, meaning that the distance of the
code is linear in the size (as good as it can get), then the Clifford code is not better than
the trap code (while the trap code has more functionalities), but the threshold code still
have a polylogarithmic lower requirement in number of qubits to obtain the same security
and correctness.

We leave as an open question what is the maximum gain in efficiency of combining
these functionalities. For instance, it is an interesting question whether it is possible to
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make the Clifford code error-robust in a more efficient way, or if the threshold code is the
optimal code. Our analysis opens the door to combining more general error-correction and
authentication codes, which could improve the practicality of the resulting scheme.

In the current work we only considered the notions of information-theoretic security
where the integrity of the plaintext is important, and we do not study key recycling.
It could be interesting to combine some of these notions – for instance, to construct a
computationally-secure scheme for authentication which also functions as error-correcting
code in an efficient way.

Additionally, a code which is both error-correcting and authenticating is in some sense
the opposite of ciphertext authentication. Therefore it could be interesting to consider if
there is a natural way of combining these functionalities, and what the maximum amount
of key recycling possible is.
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