
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 4, 79 pages.

https://doi.org/10.62056/a09qudhdj
Check for updates

Foundations of Data Availability Sampling
Mathias Hall-Andersen1 , Mark Simkin2 and Benedikt Wagner3

1 ZkSecurity, Denmark
2 Independent Researcher, Denmark

3 Ethereum Foundation, Germany

Abstract. Towards building more scalable blockchains, an approach known as data
availability sampling (DAS) has emerged over the past few years. Large blockchains
like Ethereum are planning to eventually deploy DAS to improve their scalability. In
a nutshell, DAS allows the participants of a network to ensure the full availability of
some data without any one participant downloading it entirely. Despite the significant
practical interest that DAS has received, there are currently no formal definitions
for this primitive, no security notions, and no security proofs for any candidate
constructions. For a cryptographic primitive that may end up being widely deployed
in large real-world systems, this is a rather unsatisfactory state of affairs.
In this work, we initiate a cryptographic study of data availability sampling. To
this end, we define data availability sampling precisely as a clean cryptographic
primitive. Then, we show how data availability sampling relates to erasure codes.
We do so by defining a new type of commitment schemes which naturally generalizes
vector commitments and polynomial commitments. Using our framework, we analyze
existing constructions and prove them secure. In addition, we give new constructions
which are based on weaker assumptions, computationally more efficient, and do not
rely on a trusted setup, at the cost of slightly larger communication complexity.
Finally, we evaluate the trade-offs of the different constructions.
Keywords: Data Availability Sampling · Commitments · Erasure Codes · Coupon
Collector

1 Introduction
As cryptocurrencies continue to grow in popularity, their scalability is becoming more and
more of an issue. While the VISA1 payment system handles around 1700 transactions per
second and claims to be able to handle up to 24000 transactions per second, the Ethereum
blockchain can at most handle around 60 per second2. Increasing the number of transactions
that a blockchain can process is not an easy task. Transactions correspond to data that
needs to be stored in a replicated fashion across a large number of independent validators.
Thus, increasing the number of transactions means increasing the amount of data that
needs to be stored and validated. At its core, blockchains aim to be distributed systems
by the people for the people, which should not require any sort of trusted centralized
authorities. As such, it is of crucial importance that regular individuals with reasonable
amounts of computational power and memory are able to participate in the distributed
systems that form the blockchain.

E-mail: mathias@zksecurity.xyz (Mathias Hall-Andersen), mark@univariate.org (Mark Simkin),
benedikt.wagner@ethereum.org (Benedikt Wagner)

1See https://usa.visa.com/run-your-business/small-business-tools/retail.html.
2A new block on the Ethereum blockchain is produced every 12 seconds, has 15000000 gas available, and

a transaction costs 21000 gas, meaning that the network can process at most 15000000/(21000 · 12) ≈ 60
transactions per second.

This work is licensed under a “CC BY 4.0” license.
Received: 2024-10-09 Accepted: 2024-12-03

https://doi.org/10.62056/a09qudhdj
https://crossmark.crossref.org/dialog/?doi=10.62056/a09qudhdj&domain=pdf&date_stamp=2024-12-24
https://orcid.org/0000-0002-0195-6659
https://orcid.org/0000-0002-7325-5261
https://orcid.org/0000-0002-4620-7264
mailto:mathias@zksecurity.xyz
mailto:mark@univariate.org
mailto:benedikt.wagner@ethereum.org
https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Foundations of Data Availability Sampling

The data that comprises a blockchain can be seen as a sequence of blocks, where each
block is composed of a small block header and a larger block content. To enable everyone
to participate, clients can either join as so called full nodes that store and verify both
block header and content or as light nodes that only store the headers. Light nodes can
still use the functionalities that a blockchain provides as they can verify the information
they receive is consistent with the corresponding block headers. However, they can not
verify whether all data associated with the block headers they store is valid. A block may,
for instance, contain transactions that illegally attempt to spend the same coin twice. This
would not be visible from inspecting the header alone. Therefore, light nodes rely on full
nodes to inform them when an adversarial party tries to provide them with a header for
malformed data. This is done via a mechanism known as fraud proofs.

Abstractly speaking, a fraud proof allows a full node to convince a light node that a
block header and the corresponding block content do not form a valid block. To produce a
fraud proof, the full node needs access to the malformed block’s content, but the adversary
may only publish a header and either partially or fully withhold the corresponding block
content. While full nodes can convince light nodes that a block is malformed, they cannot
convince them that a block’s content is just not available on the network. For this reason,
light nodes need a mechanism for determining whether the block content corresponding to
some header is available or not. Naively, light nodes could attempt to download the full
content in addition to the header, but this would completely defeat the whole point of
being a light node in the first place. Thus, light nodes need some way of efficiently checking
that block contents are fully available on the network without actually fully retrieving
them.

Data availability sampling (DAS) schemes, first introduced by Al-Bassam et al. [ASBK21],
aim to solve the problem outlined above. Informally speaking, such schemes allow a possi-
bly malicious block proposer to encode a bit string data, such as a block’s content, into a
short commitment com and a codeword π. The commitment com is added to the block
header and allows light nodes to verify the availability of the full encoded block content π
by randomly probing it in only a few positions. If enough light nodes successfully probed
π, DAS ensures that the data is indeed fully available. Note that one light node alone
cannot be convinced that the data is fully available, as it only queries a small part of the
encoding and thus we need to talk about sufficiently large groups of light nodes.

Unfortunately, and despite its significant practical importance, there are no proper
theoretical foundations for this new primitive. Existing works [ASBK21, YSL+20, SXKV21,
NNT22] all discuss DAS schemes at an informal level without precise security definitions
and without full proofs of security for the proposed constructions. For a cryptographic
primitive that is planned to become a key component of major blockchains like Ethereum3,
this is a rather unsatisfactory state of affairs.

1.1 Our Contributions
In this work, we provide a comprehensive theoretical treatment of data availability sampling.
We formally define what DAS schemes are, precisely state the security notions they should
satisfy, prove existing constructions such as as the one on the Ethereum roadmap secure,
present new constructions, and finally compare all constructions in terms of concrete
efficiency and discuss various trade-offs.
Formal Definitions. On an intuitive level, a DAS scheme should satisfy three main
properties. First, it should be complete, meaning that verifiers4 holding a valid commitment
com and probing a valid encoding π, should successfully conclude that the encoded data

3See https://ethereum.org/en/developers/docs/data-availability.
4From now on we take a step back from the concrete application and focus more on the primitive itself.

We shall use light nodes, light clients, clients, and verifiers interchangeably to denote the same entities.

https://ethereum.org/en/developers/docs/data-availability

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 3

is fully available. Second, it should be sound in the sense that enough successful probes
to the encoding should allow for recovering some data bit string. Third, a DAS scheme
should provide consistency, requiring that for a fixed but possibly malformed commitment
com, one can recover at most one unique data bit string. We stress that DAS schemes
ensure the full availability of some data, but they do not provide any guarantees about
the structure or the contents thereof. A more detailed discussion and the main formal
definitions themselves, along with several extensions are given in Section 3.
Constructions. We present multiple constructions, some new, others old but previously
unproven. More concretely, we provide four constructions of DAS in this work:

• From Vector Commitments and SNARKs. This can be seen as the “trivial
solution”.

• From Tensor Codes. This is the construction that is currently envisioned by
Ethereum. It was previously lacking any kind of security proof. The fact that data
is encoded via a tensor code and multiple polynomial commitments are combined
makes the analysis we provide somewhat non-trivial.

• In the Random Oracle Model. We present a new construction of DAS based
solely on hash functions modeled as random oracles, and a new construction from
homomorphic collision-resistant hash functions in the random oracle model. The
analysis of these constructions turns out to be highly challenging. In particular the
analysis of the latter one, requires a rather delicate rewinding argument.

In contrast to the tensor code construction, which is envisioned by Ethereum, our two
new constructions avoid a trusted setup and rely on arguably much simpler assumptions
without, for example, relying on q-type assumption. In addition, our construction in the
random oracle model is significantly more efficient as it requires no expensive public key
operations. Moreover, we believe that constructing DAS from simple objects like hash
functions is theoretically interesting.

As a building block that may be of independent interest, we introduce the notion of
erasure code commitments. Roughly, these ensure that any set of openings belonging to the
same commitment must be consistent with at least one codeword from the corresponding
erasure code. Polynomial commitments, for example, can be seen as erasure code commit-
ments for Reed-Solomon codes. We formalize the notion of erasure code commitments,
study their properties, and explain how they are related to DAS.
Benchmarks. In addition to the theoretical parts of our work, we also investigate the
concrete efficiency of all constructions presented in this work. We compare them with
each other, but also with some “naive” approaches to DAS, with respect to metrics like
commitment size, encoding size, number of probes needed per verifier, and number of
probes needed for reconstruction of the data. Our experiments show that no one shoe fits
all and that the choice of construction really depends on the context within which they are
used. We provide a detailed analysis and do our best to elucidate the trade-off between
the different constructions in Section 10.
On the Importance of This Work. The Ethereum blockchain currently has a market
cap of 316 billion US dollars5. This is an unbelievably large amount of money, with many
people having parts of their capital deposited in Ethereum’s digital currency. Ensuring
that these funds do not get lost or stolen, be it through a fault or an adversarial attack,
is a prime example of what cryptography is ultimately for. A gold standard for modern
applications involving cryptography is to have both formal definitions and proofs as well
as security audits of corresponding protocol implementations. Ethereum is planning to

5https://etherscan.io

4 Foundations of Data Availability Sampling

deploy their first DAS techniques soon6 and yet we barely have any formal foundations for
this whole topic. We believe that our work fills an important gap in the literature just by
formally defining the concept of DAS. In addition, we not only prove existing protocols
secure, thereby making sure that Ethereum is not deploying a broken protocol, but we
also provide new efficient protocols without requiring trusted setups. For this reason, we
also believe that our work is of significant practical importance.

1.2 Related Work
DAS schemes are closely related to multiple already existing cryptographic primitives. In
the following, we highlight some differences that make DAS a primitive of its own.
Proofs of Retrievability. The general concept of verifiers ensuring that some encoded
data is fully available via a small number of probes is not new. Proofs of retrievability
(PoR) [JK07, ABC+07, SW08, DVW09, CKW13, SSP13] consider a setting, where a
trusted client encodes some data and then stores the encoding on an untrusted server. DAS
schemes and PoRs are different in multiple ways. The most important difference is that
in DAS, we do not assume the encodings to be generated in an honest manner. To deal
with malicious encodings, we additionally require a consistency property as outlined above.
While it is conceivable that some PoR constructions do achieve some form of consistency,
they would only do so with very poor parameters as they are not designed to quickly detect
malicious encodings. In PoR, a single server stores the encoding and may need to perform
computations on it to respond to verifiers’ queries. In our setting, the verifiers only need
the ability to access arbitrary symbols of the encoding. In particular, this means that our
codewords can be stored in a distributed fashion in a network and need not be fully stored
on a single machine. Lastly, we consider retrieving back the data from the codeword as
part of the functionality that DAS provides, whereas PoR consider it part of the security
definition. As such, PoR schemes may use non-blackbox techniques to extract the original
data, whereas our definitions require that the data is extractable from a sufficient number
of independently performed probes.
Verifiable Information Dispersal. In the verifiable information dispersal setting [Rab89,
CT05, NNT22] a potentially malicious party encodes a bit string and stores the encoding
in a distributed fashion among n servers of which at most t are corrupted. Upon receiving
their share of the encoding, the servers interact with each other to determine whether the
encoding they jointly store is valid or not. This setting inherently considers a non-adaptive
adversary as the encoding needs to be fixed before the servers start interacting with each
other. In our setting, we do not make any assumptions about how many servers there
are, how many of them are corrupt, or how the encoding is stored in the network. We
leave this up to the application that makes use of our DAS schemes, thus allowing for
greater flexibility as the storage servers could for example change over time. Consequently,
we also do not require any interaction between any servers, meaning that encoding is a
non-interactive process. The security notions we formulate for DAS consider adaptive
adversaries that are not bound to a specific malicious encoding, but that can instead just
answer probe requests by the verifiers in an adaptive malicious fashion.
PCPP, IOPP and Proximity Testing. Intuitively, the concepts of (extractable)
probabilistically checkable proofs of proximity (PCPP) [BGH+06] and its interactive
generalization interactive oracle proofs of proximity (IOPP) [BCG+17] share features with
our notion of erasure code commitments: namely a verifier which makes a small number of
queries to the encoding. There are, however, some crucial differences. PCPPs and IOPPs
only ensure that openings are close to a valid codeword, but we require openings to be
consistent with a valid codeword. Furthermore, our commitments rely on computational
assumptions, whereas PCPPs and IOPPs are usually studied in the information-theoretic

6https://www.eip4844.com

https://www.eip4844.com

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 5

security setting and computational assumptions are only used to compile them into non-
interactive arguments. We leave it up to future work to explore the connection between
PCPP/IOPP literature [BGKS20] and erasure code commitments more closely.
Vector, Polynomial, and Functional Commitments. Our new notion of erasure code
commitments is a generalization of both vector commitments [CHL+05, CFM08, LY10]
and polynomial commitments [KZG10, BDFG20, CHM+20], but can (conceptually at
least) be seen as a special case of functional commitments [LRY16]. Our constructions
of erasure code commitments are simpler, computationally more efficient, and rely on
weaker assumptions than the currently known constructions of functional commitments.
In [ADVZ21], the notion of erasure coding proof systems is introduced to construct
verifiable information dispersal. Although their notion shares some similarities with our
notion of erasure code commitments, the presentation in [ADVZ21] is rather informal,
especially when it comes to security definitions. We on the other hand provide precise
security definitions and full proofs for all of our constructions.
Subsequent Work on DAS. Building on our framework, a subsequent work by Hall-
Andersen, Simkin, and Wagner [HSW24] constructs a data availability sampling scheme
without trusted setup from just hash functions (in the random oracle model). Their scheme
improves upon our hash-based construction here in terms of both asymptotic and concrete
efficiency with respect to several important metrics. Concretely, they achieve a smaller
commitment and symbol size at the cost of a slightly larger encoding size. They establish
a tight connection between interactive oracle proofs of proximity [BCG+17] and erasure
code commitments. Using this connection, they construct an erasure code commitment
from the FRI proof system [BBHR18]. Relying on the compiler provided in our work here,
they obtain a data availability sampling scheme.

2 Preliminaries
In this section, we fix notation and preliminaries.
Notation. The set [L] := {1, . . . , L} ⊆ N is a set of the first L natural numbers. If S
is a finite set, s←$ S means that s is sampled uniformly at random from S. If D is a
distribution, x ← D means that x is sampled from D. If A is a probabilistic algorithm,
we write s := A(x; ρ) to indicate that A outputs s on input x with random coins ρ, and
s← A(x) means that ρ is sampled uniformly at random. The notation s ∈ A(x) means
that there are random coins ρ such that A outputs s on input x with these coins ρ. For
an algorithm A, a string s ∈ Σ∗ over some alphabet Σ, and an integer t ∈ N, the notation
y ← As,t(x) indicates that A has t-time oracle access to s on input x and outputs y. That
is, A can query i and obtains the ith symbol si ∈ Σ of s, for at most t queries. Let A
be an algorithm as above, and let B be a (potentially stateful) algorithm B. We write
y ← AB,t(x) to indicate that the oracle queries of A are answered by B. Further, we use
the notation (yi)ℓ

i=1 ← Interact [A,B]t,ℓ (x) to indicate that ℓ independent copies of A get
x as input, and have t-time oracle access to B (i.e., the oracle queries of A are answered
by B), and the ith copy outputs yi for each i ∈ [ℓ]. Here, B can schedule the oracle queries
of these ℓ copies in an arbitrary concurrently interleaved way. That is, B has access to
an oracle OnextQ, that on input i ∈ [ℓ] outputs the next query of the ith copy, given that
B already submitted the response to the previous queries of that copy. All algorithms
get the security parameter n in unary at least implicitly as input. An algorithm A is
said to be PPT if its running time, denoted by T(A), is bounded by a polynomial in its
input. An algorithm A is said to be EPT if its expected running time, denoted by ET(A),
is bounded by a polynomial in its input. We write PrG [E] or Pr [E | G] to denote the
probability that some event E occurs in the experiment G. Also, we denote the event that
an experiment G outputs a bit b by G ⇒ b. A function f is said to be negligible in its

6 Foundations of Data Availability Sampling

input n, if f ∈ n−ω(1). Throughout, negl always denotes a negligible function.
Cryptographic Building Blocks. For some constructions, we make use of common
cryptographic building blocks, including vector commitments, non-interactive arguments,
and homomorphic hash functions. We recall their formal definitions in Appendix A.

3 Definition of Data Availability Sampling
This section is dedicated to presenting our definition of data availability sampling. In
Subsection 3.1, we define a data availability sampling scheme as a cryptographic primitive.
Then, in Subsection 3.2, we introduce extensions for this basic definition.

3.1 Basic Definition

Here, we introduce our definition of a data availability sampling scheme.
Setting. We consider a scenario in which a proposer holds a large piece of data and wants
to store this data within a network, possibly in a distributed way. This data could, for
example, be a block that should be published in a peer-to-peer network running a blockchain.
In addition, to the proposer and the network, there are parties with limited resources, called
(light) clients or verifiers. They can only download small headers, containing information
about the corresponding data, but are not capable of downloading the entire data itself.
They want to verify that the data is available within the network. To do so, light clients
can issue queries to the network. Our formal definition of data availability sampling models
such a scenario.
Syntax. We give a schematic overview of our syntax in Figure 1. Suppose the proposer
holds a piece of data data to be distributed. In our syntax, the proposer runs an algorithm
Encode with input data to obtain a commitment com and an encoding π of the data. We
assume that every party downloads com. For example, we may think of com to be part
of a block header. We do not explicitly model how π is being stored. As our security
notions treat π as being fully controlled by the adversary, this means any way of storing
π is covered. For example, we may think of π as being stored in a distributed way on
nodes within a network. We model clients by two algorithms V1 and V2, where V1 can
probabilistically query positions of the encoding π. The resulting transcript tran, which
contains all queries and responses, is then input into V2, which deterministically outputs 0
(for reject) or 1 (for accept). We split the client into these two algorithms to talk about
(accepting) transcripts explicitly. Finally, we define an algorithm Ext that extracts the
original data data from enough of these transcripts. The idea is that clients share their
transcripts with others and, once a party has enough transcripts, it can run Ext to get
data.
Properties. We now turn to the properties these algorithms should satisfy. Our com-
pleteness definition states that everything works as expected, given that all algorithms
are executed honestly. In our concrete case, this means that if some data data is encoded
honestly, then all clients will accept, and Ext outputs data when run on enough transcripts.

From a security perspective, we would like to ensure that, if clients accept, then data
should be available. We capture this formally in our definition of soundness. To understand
this definition, we need to make the concept of data being available more precise. We do
this using the extraction algorithm Ext that we defined. We can think of data as being
available, if Ext can extract something and it does not output ⊥. With this in mind,
soundness means that if enough clients accept, then Ext can extract something from their
transcripts. Notably, we have to define this in the presence of a malicious encoding π

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 7

Encode π

V1 V2 · · · · · · V1 V2

Ext

data

com com

com

tran tran

data

i πi i πi

Figure 1: Overview of the syntax of a data availability sampling scheme. All algorithms
get system parameters par ← Setup(1n) as input. Algorithm Encode encodes data into
an encoding π. Multiple clients (V1, V2) can then query this encoding. From enough
transcripts, data can be reconstructed using algorithm Ext.

that is fully controlled by an adversary7. The adversary can schedule the queries that the
clients issue and it can answer these queries adaptively. This also shows why we require
that enough clients accept, and not only that one client accepts. An adversary could, for
example, answer the queries of one client honestly and not respond anything to any of
the other clients. Clearly, there is no hope to extract anything from only one accepting
transcript, as it is shorter than the data.

The definitions of completeness and soundness alone are not meaningful by themselves
yet, since Ext could just output some default value when it fails to reconstruct. To be able
to meaningfully say that some data is available, we need to ensure that we will always
recover the same data, no matter where the transcripts come from. We capture this
wish by defining consistency. This notion means that whenever Ext is run twice on two
(possibly intersecting) sets of transcripts and the same commitment com, and it outputs
data1 ̸= ⊥ and data2 ̸= ⊥, respectively, then data1 = data2, i.e., the extracted data is
consistent. In other words, the data availability sampling scheme bootstraps consensus on
the commitment com to consensus on data. Furthermore, it should be noted that for our
consistency notion we let the adversary output the transcripts, which makes it very strong
and flexible. We are now ready to present the complete formal definition.

Definition 1 (Data Availability Sampling Scheme). A data availability sampling scheme
(DAS) with data alphabet Γ, encoding alphabet Σ, data length K ∈ N, encoding length
N ∈ N, query complexity Q ∈ N, and threshold T ∈ N is a tuple DAS = (Setup, Encode, V,
Ext) of algorithms with the following syntax:

• Setup(1n)→ par is a PPT algorithm that takes as input the security parameter, and
outputs system parameters par. All algorithms get par implicitly as input.

• Encode(data)→ (π, com) is a deterministic polynomial time algorithm that takes as
input data data ∈ ΓK and outputs an encoding π ∈ ΣN and a commitment com.

• V = (V1, V2) is a pair of algorithms, where

– Vπ,Q
1 (com) → tran is a PPT algorithm that has Q-time oracle access to an

encoding π ∈ ΣN , gets as input a commitment com, and outputs a transcript
tran, containing the Q queries to π and the respective responses.

– V2(com, tran)→ b is a deterministic polynomial time algorithm that takes as
input a transcript tran, and outputs a bit b ∈ {0, 1}.

7Allowing the adversary to control the encoding in an arbitrary way implies that our notions are
composable with various types of networks that could store the encoding.

8 Foundations of Data Availability Sampling

• Ext(com, tran1, . . . , tranℓ) → data/⊥ is a deterministic polynomial time algorithm
that takes as input a commitment com, a list of transcripts trani, and outputs data
data ∈ ΓK or an abort symbol ⊥.

We require that the following properties are satisfied:

• Completeness. For any par ∈ Setup(1n) and any integer ℓ = poly(n) with ℓ ≥ T ,
and all data ∈ ΓK , we have

Pr

 ∀i ∈ [ℓ] : bi = 1 ∧ data′ = data

∣∣∣∣∣∣∣∣
(π, com) := Encode(data),
∀i ∈ [ℓ] : trani ← Vπ,Q

1 (com),
bi := V2(com, trani),

data′ := Ext(com, tran1, . . . , tranℓ)


≥ 1− negl(n).

• Soundness. For any stateful PPT algorithm A and any integer ℓ = poly(n) with
ℓ ≥ T , the following advantage is negligible:

Advsound
A,ℓ,DAS(n) :=

Pr

 ∀i ∈ [ℓ] : bi = 1 ∧ data′ = ⊥

∣∣∣∣∣∣∣∣
par← Setup(1n), com← A(par),
(trani)ℓ

i=1 ← Interact [V1,A]Q,ℓ (com),
∀i ∈ [ℓ] : bi := V2(com, trani),
data′ := Ext(com, tran1, . . . , tranℓ)

 .

• Consistency. For any PPT algorithm A and any ℓ1, ℓ2 = poly(n), the following
advantage is negligible:

Advcons
A,ℓ1,ℓ2,DAS(n) :=

Pr

 data1 ̸= ⊥
∧ data2 ̸= ⊥
∧ data1 ̸= data2

∣∣∣∣∣∣∣∣
par← Setup(1n),
(com, (tran1,i)ℓ1

i=1 , (tran2,i)ℓ2
i=1)← A(par),

data1 := Ext(com, tran1,1, . . . , tran1,ℓ1),
data2 := Ext(com, tran2,1, . . . , tran2,ℓ2)

 .

Discussion. We want to highlight a few aspects of our definition. First, note that we
require Encode to be deterministic. At a first glance, this may seem to be too restrictive,
as encoding could make use complex cryptographic tools, e.g., a (succinct) non-interactive
argument [BFM88, Kil92, Gro16]. However, observe that in the context of data availability
sampling, we do not require any privacy properties, e.g., zero-knowledge, from these tools.
If any, we require their correctness and soundness properties, which hold even if the
randomness is fixed, i.e., we make these schemes deterministic. Second, one could wonder
why we do not require that re-encoding data leads to the same commitment com in our
soundness definition. Here, we observe that this is not satisfied by natural constructions
based on perfectly-hiding commitments in style of [Ped92, KZG10]. Namely, an adversary
could run (π, com) := Encode(data), rerandomize com (and adjust π if needed), and then
behave honestly. Third, we emphasize that our definition of soundness and consistency
allows the adversary to be fully adaptive. That is, the adversary can schedule the queries
of clients and answer them in an adaptive way. This is much stronger than what is present
in the informal security goals stated by previous works, where the adversary first decides
which parts of the encoding should be available, and then clients start probing. We believe
that such strong adaptive security notions are more appropriate for real-world settings,
where independent verifiers asynchronously query parts of an encoding that is stored in a
distributed fashion among multiple possibly malicious nodes.

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 9

Efficiency Measures. When constructing data availability sampling schemes, there
are several properties we aim to optimize. It is of primary interest to minimize the
computational and communication complexity of clients. In particular, we would like
to minimize the computational complexity of V, the communication complexity log N +
maxs∈Σ |s| per query8, and the size of commitments |com|. Additionally we would also
like to minimize the encoding size |π| and the computational complexity of Encode, i.e.,
the effort of the parties encoding the data and storing the encoding. Lastly, we want
to minimize the number T of transcripts that are needed to reconstruct the data. The
smaller the number T , the more “meaningful” is each verifier’s transcript, when it comes to
establishing the availability of some data. Note that minimizing T and the query complexity
per client Q at the same time also minimizes the total communication complexity that is
needed to reconstruct the data.

Strawman Solutions. At first sight, it may seem easy to construct DAS schemes. Let us
discuss a few natural, but failing attempts. Firstly, we can easily achieve query complexity
Q = 1 and threshold T = 1 by setting Σ := ΓK , i.e., by considering the full data as a
single symbol and letting every client download it in full. Obviously, this solution has a
terrible communication complexity per client query. Alternatively, one can also make this
communication complexity small by storing the whole data as part of the commitment
com, which would be equally undesirable. A slightly more intelligent approach may be to
store the root of a Merkle tree [Mer88], computed over the data, as the commitment and
let the verifiers query random leaves in the tree. This solution has a small commitment size
and a small communication complexity per query, but the required number of transcripts
T for reconstructing the data with high probability would be very large (cf. Example 5).
Intuitively, T being very large corresponds to each client individually not really being
very much convinced about the availability of the full data. Lastly, one could try and use
ideas from the proofs of retrievability literature and first encode the data with an erasure
code, before computing a Merkle tree over the symbols of the code. Note however, that
the encoding may be done in a malicious way. For instance, the first half of the leaves
could correspond to the first half of a valid codeword encoding data, whereas the second
half of the leaves could correspond to the second half of a codeword encoding data′ with
data ̸= data′, which would allow an adversary to violate the consistency requirement. To
prevent this attack, one would need to pick a large value for Q, which would then render
the solution inefficient.

Subset-Soundness. We imagine that clients send the transcripts of their interaction
to the network. Then any node that collects enough of these transcripts should be able
to reconstruct data from these transcripts, according to soundness. However, under the
realistic assumption that an adversary controls parts of the network, it may adaptively
drop some of the transcripts after seeing them. We extend our basic soundness definition
to cover this attack scenario, and call the resulting notion subset-soundness. In this notion,
we run the basic soundness experiment, but additionally let the adversary select a subset of
the transcripts from which we try to reconstruct data. In other words, we let the adversary
drop a limited number of transcripts of its choice. After defining subset-soundness, we
show that it is implied by standard soundness for certain parameter ranges.

Definition 2 (Subset-Soundness). Let DAS = (Setup, Encode, V = (V1, V2), Ext) be a data
availability sampling scheme. We say that DAS satisfies (L, ℓ)-subset-soundness, if for any

8One needs log N bits upload for the query (to specify which position) and maxs∈Σ |s| bits download
for the response.

10 Foundations of Data Availability Sampling

stateful PPT algorithm A, the following advantage is negligible:

Advsub-sound
A,L,ℓ,DAS(n) :=

Pr

 ∀j ∈ [ℓ] : bij
= 1 ∧ data′ = ⊥

∣∣∣∣∣∣∣∣∣∣
par← Setup(1n), com← A(par),
(trani)L

i=1 ← Interact [V1,A]Q,L (com)
∀i ∈ [L] : bi := V2(trani),
(ij)ℓ

j=1 ← A(tran1, . . . , tranL),
data′ := Ext(com, trani1 , . . . , traniℓ

)

 .

Lemma 1. Let DAS = (Setup, Encode, V = (V1, V2), Ext) be a data availability sampling
scheme with threshold T ∈ N, and let L, ℓ ∈ N be such that

(
L
ℓ

)
≤ poly(n) and ℓ ≥ T . Then,

DAS satisfies (L, ℓ)-subset-soundness. More specifically, for any stateful PPT algorithm A,
there is a stateful PPT algorithm B with T(B) ≈ T(A) and

Advsub-sound
A,L,ℓ,DAS(n) ≤

(
L

ℓ

)
· Advsound

A,ℓ,DAS(n).

Proof. The proof is trivial via a guessing argument, i.e. the reduction B simply guesses
the subset that will be chosen by A.

Necessity of Assumptions. Naturally, one can ask whether it is possible to construct a
(non-trivial) data availability sampling scheme satisfying our notions. Throughout this
work, we will show several constructions and therefore show that it is possible. However,
all constructions rely on computational assumptions or idealized models, e.g., the random
oracle model. Again, one can ask whether this is necessary, or whether one can construct
data availability sampling schemes without any cryptographic assumption. The result is
negative: we show that any non-trivial scheme, i.e where the commitment is smaller than
the data, implies a collision-resistant hash function. The hash function is induced by the
mapping from data to com via algorithm Encode. We formally show this in Subsection C.1.

3.2 Extensions
Here, we informally introduce two extensions of our basic definition of data availability
sampling schemes. We postpone a formal definition to Subsection C.2 and Subsection C.3.
Repairability. Ideally, a data availability sampling scheme allows to reconstruct data
even if small parts of the encoding are broken or lost. In this case, it is natural to ask
whether one can return from such a damaged state to a stable state by repairing the
encoding. More precisely, we would like to have a way to recover an encoding from a set
of transcripts with which we can continue as if it was the original encoding. Importantly,
it should work with the original commitment. This enables a transparent repair on the fly
without notifying every party about the change, and without updating the commitment.
For example, one problem when changing the commitment is that we would have to
convince every party that the new commitment commits to the same data as the old one.
We define an extension of data availability with such a repairability feature by requiring
the existence of an algorithm Repair. On input a commitment com and a set of transcripts,
Repair outputs a new encoding π̄. Informally, we expect π̄ to be compatible with the
commitment com, and function as the original encoding, assuming that Repair obtained
enough accepting transcripts. We make this formal by introducing the notion of repair
liveness. In this notion, we let an adversary output a com and interact with clients as in
the subset-soundness notion, i.e., clients query an encoding provided adaptively by the
adversary. Then, we repair from a subset of the resulting transcripts by running algorithm
Repair. Finally, we expect that all clients accept when querying this repaired encoding
with com as input. If this does not hold, the adversary breaks repair liveness.

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 11

Example 1 (Accountability for Trivial Repairability). If we were to naively implement
repairability, we would extract the data from a sufficient number of transcripts and
recompute an encoding. Note that this approach will not work in general, because there is
no guarantee that the new encoding is compatible with the old commitment. Especially,
an adversary might be able to compute a functioning pair of commitment and encoding
different from an honestly computed pair for some data. However, when this trivial
approach fails, it produces a certificate that the original commitment was computed
incorrectly. Namely, by having the proposer sign the commitment, a set of transcripts
from which reconstruction is possible but the re-encoding of the data does not yield the
original commitment forms a publicly verifiable certificate that the original encoding and
commitment was not computed honestly. This observation has possible applications in
scenarios where fallback to the trivial data availability scheme is feasible. For example, in
cryptocurrency applications, the full data can be posted on the chain to repair and the
malicious encoders deposit can be forfeited to cover the cost of posting the full data.

Local Accessibility. A natural question to ask is whether one needs to reconstruct the
entire data, even if one is only interested in small parts of it. Concretely, say a client is
interested in learning the ith symbol of the encoded data. We enhance our basic definition
of data availability sampling schemes with such a local accessibility feature by introducing
an algorithm Access. Roughly, it recovers a specific symbol of the encoded data by querying
the encoding. Namely, it gets as input a commitment com and an index i ∈ [K], has oracle
access to an encoding, and outputs a symbol d, which should be understood as being the
ith symbol of the encoded data data. Crucially, we need to ensure that this new way of
obtaining (parts of) the data does not introduce inconsistencies. Thus, we introduce the
notion of local access consistency, which states that whatever Access outputs is consistent
with data extracted using a set of transcripts. More precisely, for any index i ∈ [K], we let
the adversary output a commitment com and a set of transcripts. Then, we run Access on
input com, i to obtain a symbol d. The queries of Access are answered by the adversary.
Further, we run the extractor Ext on input com and the set of transcripts to extract data
data. We require that d is the ith symbol of data, given that both are not ⊥.

Example 2 (Trivial Local Accessibility). There is a simple way to make every data
availability sampling scheme locally accessible. Namely, every data availability sampling
scheme with query complexity Q ∈ N and threshold T ∈ N is locally accessible with query
complexity L = QT , i.e., Access makes QT queries to access one symbol of the data. This
is because Access can simply run T clients internally and then extract from the resulting
transcripts. The clear drawback of this trivial approach is that Access has a huge query
complexity. Ideally, we aim for a way that lets us access any symbol with query complexity
significantly smaller than QT , e.g., only with one query.

4 Overview of Constructions

In this section, we give an overview of our constructions of data availability sampling. We
first introduce a generic framework of constructing data availability sampling from erasure
codes and associated commitment schemes with suitable properties. Equipped with this
framework, we then focus on constructing such commitment schemes for several erasure
codes.

The formal description of our framework is presented in Section 6. The formal
descriptions of the erasure code commitments are presented in Section 7, 8, and 9. Finally,
we compare instantiations of these constructions in terms of efficiency (Section 10).

12 Foundations of Data Availability Sampling

4.1 From Codes and Commitments to Data Availability
We construct data availability schemes by introducing the new notion we call erasure code
commitments. In the following, we first explain what erasure code commitments are. Then,
we explain how to turn them into data availability sampling schemes.
Erasure Code Commitments. Erasure code commitments are binding vector commit-
ments with the additional property that any set of openings produced by a computationally
bounded adversary is consistent with at least one codeword from the erasure code. We
call this additional notion code-binding. The existing notion of polynomial commitments is
a special case for the Reed-Solomon code, although we do not require extraction of the
commitment which is often required in applications of polynomial commitments, nor do we
require hiding. Similarly vector commitments are erasure code commitments for the trivial
erasure code, mapping every message to itself. In Subsection 6.1, we formally define erasure
code commitments. Additionally, we also define a variety of additional security notions for
these commitments and study their relations. We are confident in the usefulness of this
natural generalization of polynomial commitments beyond data availability schemes.
Data Availability from Erasure Code Commitments. From erasure code commit-
ments we follow an intuitive avenue to arrive at a data availability scheme:

• Encoding. The encoding algorithm Encode(data) first applies the erasure code to
data obtaining a codeword, and then commits to the codeword using an erasure
code commitment, which forms the data availability commitment com. The resulting
encoding π consists of the symbols of the codeword and their corresponding openings
of com.

• Clients. The first part of the client Vπ,Q
1 (com) relies on a randomized index sampler

which returns a set of indices in the codeword. The client V1 then queries the
provided indexes of π, the list of responses forms the tran. The second part of the
client V2(com, tran) verifies all the erasure code commitment openings obtained by
V1 against com.

• Extraction. Given enough accepting transcripts, one can then extract the encoded
data (i.e., run algorithm Ext), assuming the transcripts contain sufficiently many of
the symbols of the codeword.

The details on our compiler from erasure code commitments to data availability sampling
are given in Subsection 6.3. It is clear that the parameters of the data availability sampling
scheme depend on the parameters of the erasure code. In addition, the choice of the index
sampler (e.g., sampling uniformly with replacement or without replacement) influences
how many transcripts we need to collect enough distinct symbols of the codeword with
high probability. To capture this, we define the quality of an index sampler. We study
different index samplers and their quality in Subsection 6.2.

4.2 Constructions of Erasure Code Commitments
When constructing data availability sampling schemes, our framework introduced above
allows us to concentrate on erasure codes, erasure code commitments, and index samplers.
Here, we give a brief overview of our erasure code commitments.
Generic Construction. We show that one can generically construct erasure code
commitments for any erasure code from vector commitments and succinct arguments
of knowledge. Namely, this is done by proving that a vector commitment contains a
codeword using a succinct argument of knowledge. The code commitment consists of the
vector commitment and the succinct proof, and the proof is verified by clients. While

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 13

this construction is far from being practical in general, it serves as a template for other
constructions. We formally define and analyze this generic construction in Section 7.
Tensor Construction (Ethereum Construction). Ethereum has proposed a data
availability scheme which can be phrased as an erasure code commitment for the tensor
code of two Reed-Solomon codes: The data is arranged into a square k × k matrix, then
every row is encoded using a Reed-Solomon code, yielding a k × n matrix, finally every
column is encoded using a Reed-Solomon code yielding a n× n matrix. A commitment
is formed by committing to each column individually using a polynomial commitment
(i.e., a code commitment for the Reed-Solomon code), then checking consistency of the
rows by exploiting the linear homomorphism of the commitment similar to Feldman secret
sharing [Fel87]. We provide a formal description and analysis of this scheme for the tensor
code of arbitrary codes in Section 8.
Hash-Based Construction. We provide a new construction for interleaved linear codes
from random oracles, which is partially inspired by the Ligero proximity test [AHIV17].
Encoding and committing is done as follows: The message is first interpreted as a k × k
matrix M ∈ Fk×k over a finite field F. Each row is encoded independently using a linear
code C, leading to a k × n matrix X ∈ Fk×n. The columns are now treated as the symbols
of the interleaved code. To commit to such a codeword, the encoder commits to each
column individually by hashing it with a collision-resistant hash function, producing n
hashes h1, . . . , hn. Including these hashes in the commitment already ensures position-
binding. To ensure code-binding, i.e., that openings are always consistent with the code,
the hashes are fed into a random oracle, which returns a challenge vector9 r ∈ Fk. The
encoder then computes the linear combination w = r⊤X of the rows and includes w in
the commitment. Note that the resulting w always forms a codeword in the code C, which
is checked by the clients as we will describe below. For any fixed set I ⊆ [n] of positions
that an adversary may now open inconsistently with the code, we could in principle argue
that the verification only passes with negligible probability. However, in the notion of
code-binding, the adversary is allowed to freely choose this set I ⊆ [n]. It turns out that,
if the committed X is far from the code, then it is unclear how to make this proof strategy
directly go through. In particular, using this approach would require a too wasteful union
bound over the different choices of I. To solve this issue, we need to add a proximity
test: Using another random oracle, a random set of indices J ⊆ [n] is determined, and the
encoder has to add the columns {Xj}j∈J to the commitment. The encoding π is simply
the codeword X of the interleaved code. To be explicit, a coordinate Xj of the encoding
is verified by checking wj = r⊤Xj and hj = H(Xj). In addition, the openings in J are
checked in a similar manner and it is verified that w is in the code C. An advantage of this
scheme is that we can implement it over small fields for computational efficiency, and the
very small opening overhead. Namely, the opening proof of a position is simply the symbol
itself. On the other hand, the commitment is large, both concretely and asymptotically.
We present the construction in detail in Subsection 9.1.
Construction from Homomorphic Hashing. The hash-based construction for in-
terleaved codes can be optimized by relying on linearly homomorphic hashes, which
improves both the concrete and asymptotic size of the commitment. The description of
this construction is provided in Subsection 9.2.

5 Background on Coding Theory
In this section, we discuss background about coding theory. We introduce notation,
definitions, and basic facts about some specific codes. Looking ahead, we will show how
codes relate to data availability sampling in subsequent sections.

9Depending on the field size, some parallel repetition may be needed.

14 Foundations of Data Availability Sampling

5.1 Codes and Distance
We will now introduce codes and their properties. Informally, a code allows to determin-
istically encode a message over some alphabet Γ into a codeword over some alphabet
Λ.
Erasure Codes. An erasure code has the additional property that any t symbols of the
codeword are sufficient to reconstruct the message, for some t ∈ N. The parameter t is
called the reception efficiency of the code. In this work, we only consider erasure codes.
Before we give the formal definition, we highlight that throughout the paper, we assume
that the encoding and the reconstruction algorithm are efficiently computable. To make
this assumption formal, we would have to talk about families of codes. We opt for a concise
and readable notation instead of doing this.

Definition 3 (Erasure Code). Let k, n, t ∈ N be natural numbers and Γ, Λ be sets. A
function C : Γk → Λn is an erasure code with alphabets Γ, Λ, message length k, code length
n, and reception efficiency t, if there is a deterministic algorithm Reconst, such that for
any m ∈ Γk, and any I ⊆ [n] with |I| ≥ t we have Reconst((m̂i)i∈I) = m for m̂ := C(m).
We say that Reconst is the reconstruction algorithm of C, and assume that Reconst outputs
⊥ if its input is not consistent with any codeword in C or if it gets less than t symbols as
input. For convenience, we sometimes treat an erasure code C as a subset C ⊆ Λn, where
we implicitly mean the image of C, i.e., C(Γk). We may then write x ∈ C to indicate that
x is a codeword.

Distance. In coding theory, we are often interested in the distance between words.
Naturally, the metric we consider is the Hamming metric. Concretely, for two strings x, y
over the same alphabet and with the same length L, we define d (x, y) to be the number
of positions i ∈ [L] for which xi ̸= yi. An important attribute of a code is its minimum
distance, which we define next.

Definition 4 (Minimum Distance). Let C : Γk → Λn be an erasure code. The (absolute)
minimum distance d of C is defined as

d := min
m1 ̸=m2∈Γk

d (C(m1), C(m2)).

Further, we introduce the notion of column-wise distance of matrices in Λℓ×n for some
ℓ ∈ N. This is just the hamming distance when the matrices are treated as strings over Λℓ,
i.e., every column is interpreted as a symbol. To make this explicit when needed, we write
dcol (X, X′) for two such matrices X, X′. Moreover, we extend the notion of distance to
sets. Concretely, for a set of strings S ⊆ Λℓ over some alphabet Λ and a string x ∈ Λℓ,
we define d (S, x) = d (x, S) := mins∈S d (s, x). The same can be done for the column-wise
distance. Finally, we highlight an important property of the minimum distance d. Namely,
if C is an erasure code with minimum distance d and d (C, x) ≤ ⌊(d− 1)/2⌋ for some string
x, then there is a unique codeword c ∈ C which is closest to x. We may say that x is
within unique decoding distance of C.

5.2 Special Families of Codes
In this section, we introduce some families of codes that will be of interest for this work.
Systematic Encoding. We say that a code C has a systematic encoding, if the message
m is contained in the codeword C(m). Such a systematic encoding makes it easy to retrieve
(parts of) the message from the codeword. In our context, we will use this property to
extend the basic functionality of data availability sampling with local accessibility. We
slightly generalize the standard definition of a systematic encoding. One reason for this
generalization is that messages and codewords are over different alphabets.

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 15

Definition 5 (Generalized Systematic Encoding). Let C : Γk → Λn be an erasure code
with alphabets Γ, Λ, message length k, code length n, and reception efficiency t, with
reconstruction algorithm Reconst. We say that C has a generalized systematic encoding, if
the following hold:

• There are two deterministic polynomial time algorithms Find and Proj, such that
for any m ∈ Γk and m̂ := C(m), and for any i ∈ [k] and î := Find(i), we have
Proj(i, m̂î) = mi.

• Let I ⊆ [n] be arbitrary with |I| ≥ t, and let (m̂i)i∈I ∈ Λ|I| be any sequence of
symbols in Λ. Let m := Reconst((m̂i)i∈I), and let I∗ := {i ∈ [k] | Find(i) ∈ I}. Then,
for all i ∈ I∗ and î := Find(i) it should hold that Proj(i, m̂î) = mi.

We say that Proj is the symbol projection algorithm and Find is the symbol finding
algorithm of C.

Linear Erasure Codes. If C is a code that is a subspace of some vector space, we call
it a linear erasure code. Alternatively, when viewing the code as an encoding function,
it corresponds to an injective homomorphism of vector spaces. We restrict ourselves to
vector spaces of finite size in this work.

Definition 6 (Linear Erasure Codes). Let F be a finite field, possibly implicitly parameter-
ized by the security parameter. A linear erasure code over F is an erasure code C : Fk → Fn,
such that C is an injective homomorphism from the vector spaces Fk to the vector space
Fn over F.

Let us discuss some important properties of linear erasure codes. Linear erasure codes
can be specified by one of two matrices. Namely, if C : Fk → Fn is a linear erasure code,
then there is a generator matrix G ∈ Fn×k with full rank such that for all m ∈ Fk we have
C(m) = Gm. Additionally, there is a parity-check matrix H ∈ F(n−k)×n such that C is
exactly the kernel of H. We also have HG = 0.
MDS Codes. The well-known singleton bound states that for linear10 erasure codes
C : Fk → Fn with minimum distance d we have d ≤ n−k +1. An MDS (maximum distance
separable) code is a linear erasure code that satisfies the singleton bound with equality.

Definition 7 (MDS Code). Let C : Fk → Fn be a linear erasure code over field F, and let
d denote its minimum distance. Then, C is called an MDS code, if d = n− k + 1.

MDS codes have several interesting properties. Most importantly for us, every set of
n − k columns of the parity-check matrix forms an invertible matrix. Further, one can
show that for any k symbols xi1 , . . . , xik

there is a unique codeword x ∈ C such that the
ijth symbol of x is xij for all j ∈ [n]. That is, every k symbols are consistent with the code.
To see this, note that the function that maps messages to the symbols of the codeword at
positions i1, . . . , ik is injective and thus surjective.
Reed-Solomon Codes. One of the most widely used MDS codes is the Reed-Solomon
code. Roughly, it corresponds to evaluations of polynomials. More precisely, given an
(ordered) set E = {e1, . . . , en} ⊆ F of size n, the Reed-Solomon code for message length
k works as follows. To encode a given message m ∈ Fk, interpret m as a degree k − 1
polynomial f over F. This can be done in various ways. For example, if a systematic
encoding is needed, one can interpolate f such that it satisfies f(ei) = mi for all i ∈ [k].
Next, f is evaluated at all points in E, leading to the codeword c = (f(e1), . . . , f(en))⊤.
As said, Reed-Solomon codes are MDS codes, meaning that their minimum distance is
n− k + 1. Throughout this work, we will denote the Reed-Solomon code as defined above
by RS[k, n,F], where we leave the set E implicit.

10The singleton bound can also be stated for arbitrary codes, but we do not need that in our work.

16 Foundations of Data Availability Sampling

Interleaved Codes. Let C : Γk → Λn be an erasure code with alphabets Γ, Λ, message
length k, code length n, and reception efficiency t. Given C and Λ′ := Λℓ, we construct
a new code C≡ℓ : Γℓk → Λ′n as follows. To encode a message m ∈ Γℓk, write it as
m = (m(1), . . . , m(ℓ)), where m(i) ∈ Γk for each i ∈ [ℓ]. Then, for each i ∈ [ℓ], compute
m̂(i) := C(m(i)). Now, for each j ∈ [n], the jth symbol of the codeword m̂ is m̂j :=
(m̂(1)

j , . . . , m̂
(ℓ)
j). It is easy to see that if C has reception efficiency t and minimum distance

d, then C≡ℓ also has reception efficiency t and minimum distance d. The code C≡ℓ that
we just constructed is sometimes called interleaved code. We note that sometimes the
interleaved code is defined with codewords of length ℓn over alphabet Λ. For us, it will be
better to treat the codeword as a string of length n over alphabet Λℓ. This is also done
in [CDD+16].
Linear Interleaved Codes. Starting with a linear erasure code C : Fk → Fn, the
interleaved code C≡ℓ : Fℓk → (Fℓ)n can be written in a more concise way. For that, let
G ∈ Fn×k be the generator matrix of C. To encode a message m ∈ Fℓk using C≡ℓ, m
is first written as a matrix M ∈ Fℓ×k in an arbitrary canonical way. Then, each row is
encoded with G. That is, we compute X := MG⊤ ∈ Fℓ×n. Finally, the columns of X are
interpreted as the symbols of the resulting codeword.
Tensor Codes. Given two codes Cr and Cc, with message lengths kr, kc, respectively, one
can write the message as a kc × kr matrix. Then, one can encode the message by encoding
rows with Cr and columns with Cc. This is called the tensor code11 of Cr and Cc. More
concretely, assume two linear erasure codes Cr : Fkr → Fnr and Cc : Fkc → Fnc over the
same field F. Let tr, tc denote their respective reception efficiencies, and Gr ∈ Fnr×kr

and Gc ∈ Fnc×kc denote their respective generator matrices. The tensor code of Cr and
Cc is Cr ⊗ Cc : Fkr·kc → Fnr·nc , which works as follows. To encode a message m ∈ Fkr·kc ,
write m as a matrix M ∈ Fkc×kr in some fixed canonical way. Then, compute X :=
GcMG⊤r ∈ Fnc×nr . Finally, flatten X into a vector x ∈ Fncnr , which is the codeword.
To ease notation, for each j′ ∈ [ncnr], we will write (i, j) := ToMatIdx(j′) to indicate the
unique pair of indices i ∈ [nc], j ∈ [nr] such that xj′ = Xi,j . One can show that the
tensor code is also a linear code. Next, we give a bound on the reception efficiency of the
tensor code. In Appendix D, we show that the reception efficiency of Cr ⊗ Cc as above
is ncnr − (nc − tc + 1)(nr − tr + 1) + 1. For instance, consider a code C : Fk → F2k with
reception efficiency k. Then, the reception efficiency of C ⊗ C is 3k2 − 2k.

6 From Codes to Data Availability Sampling
In this section, we show how to generically construct a data availability sampling scheme
from a special class of commitments for codes. Namely, we abstract existing constructions
that use vector commitments, and polynomial commitments, or similar structured com-
mitments. First, we formally define the commitments that we consider. In a second step,
we introduce and analyze index samplers as the combinatorial core component of the final
data availability sampling scheme. Third, we present and analyze our generic construction
of data availability sampling from any such commitment and any such index sampler.

6.1 Erasure Code Commitments
We introduce erasure code commitments as a generalization of vector commitments and
polynomial commitments. Roughly, we can use such a commitment to commit to a codeword
of an erasure code. One can view a vector commitment as an erasure code commitment
for the identity code, and polynomial commitment as an erasure code commitment for the
Reed-Solomon code.

11Sometimes the tensor code is also called the product code.

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 17

Extractability
(Definition 24)

Comp. Uniqueness
(Definition 23)

Code-Binding
(Definition 10)

Reconstruction-Binding
(Definition 11)

Message-Bound Openings
(Definition 22)

Consistency of DASSoundness of DASRepair Liveness of DAS

Lemma 29 Lemma 2

Lemma 9

Lemma 12

Lemma 10

Lemma 27

Lemma 28

Lemma 30

Figure 2: Overview of the different security properties we define for erasure code commit-
ments, how they relate to each other, and how they relate to the security of the resulting
data availability sampling scheme. An arrow denotes an implication. A dashed arrow
denotes an implication that holds if additionally position-binding is assumed. For the im-
plication from computational uniqueness to code-binding (double dashed), we additionally
assume position-binding and that the code is an MDS code.

Syntax. The next definition introduces the syntax of erasure code commitments.

Definition 8 (Erasure Code Commitment Scheme). Consider an erasure code C : Γk →
Λn with alphabets Γ, Λ, message length k, code length n, reception efficiency t, and
reconstruction algorithm Reconst. An erasure code commitment scheme for C with opening
alphabet Ξ is a tuple CC = (Setup, Com, Open, Ver) of PPT algorithms, with the following
syntax:

• Setup(1n)→ ck takes as input the security parameter and outputs a commitment
key ck.

• Com(ck, m)→ (com, St) takes as input a commitment key ck and a string m ∈ Γk,
and outputs a commitment com and a state St.

• Open(ck, St, i)→ τ takes as input a commitment key ck, a state St, and an index
i ∈ [n], and outputs an opening τ ∈ Ξ.

• Ver(ck, com, i, m̂i, τ) → b is deterministic, takes as input a commitment key ck, a
commitment com, and index i ∈ [n], a symbol m̂i ∈ Λ, and an opening τ ∈ Ξ, and
outputs a bit b ∈ {0, 1}.

Further, we require that the following completeness property holds: For every ck ∈
Setup(1n), every m ∈ Γk, and every i ∈ [n], we have

Pr

Ver(ck, com, i, m̂i, τ) = 1

∣∣∣∣∣∣
(com, St)← Com(ck, m),
m̂ := C(m),
τ ← Open(ck, St, i)

 ≥ 1− negl(n).

Now that we have specified the syntax of erasure code commitment schemes, we turn
to the security properties they should have. We define a variety of such properties, most
importantly position-binding and code-binding. Later, we will see how these properties
imply the security of the resulting data availability sampling scheme. We summarize the
relations between these properties in Figure 2.
Binding Notions. The first notion we define is position-binding, which is analogous to
the position-binding notion for vector commitments. The intuition of position-binding is
that no efficient adversary can open a commitment to two different values at the same
position.

18 Foundations of Data Availability Sampling

Definition 9 (Position-Binding of CC). Let CC = (Setup, Com, Open, Ver) be an erasure
code commitment scheme for an erasure code C. We say that CC is position-binding, if for
every PPT algorithm A, the following advantage is negligible:

Advpos-bind
A,CC (n) := Pr

 m̂ ̸= m̂′

∧ Ver(ck, com, i, m̂, τ) = 1
∧ Ver(ck, com, i, m̂′, τ ′) = 1

∣∣∣∣∣∣ ck← Setup(1n),
(com, i, m̂, τ, m̂′, τ ′)← A(ck)

 .

Requiring only position-binding, we could easily implement an erasure code commitment
by committing to a codeword using a standard vector commitment. However, one should
only be able commit to codewords. For that, we define code-binding. Roughly, it requires
that an adversary can not open a commitment on a set of positions in a way that is
inconsistent with the code.

Definition 10 (Code-Binding of CC). Let CC = (Setup, Com, Open, Ver) be an erasure
code commitment scheme for an erasure code C. We say that CC is code-binding, if for
every PPT algorithm A, the following advantage is negligible:

Advcode-bind
A,CC (n) :=

Pr
[
¬
(
∃c ∈ C(Γk) : ∀i ∈ I : ci = m̂i

)
∧ ∀i ∈ I : Ver(ck, com, i, m̂i, τi) = 1

∣∣∣∣ ck← Setup(1n),
(com, (m̂i, τi)i∈I)← A(ck)

]
.

We introduce a third binding notion called reconstruction-binding. When we want
to use erasure code commitments in the context of data availability sampling schemes,
reconstruction-binding, as defined next, is a natural requirement. Namely, it will ensure
that extracting from two sets of transcripts leads to consistent results. In other words,
reconstruction-binding states that one can not provide two sets of openings for the same
commitment, such that reconstructing from these sets leads to inconsistent messages.
After giving the formal definition of reconstruction-binding, we show that it is implied by
position-binding and code-binding. Later, we show that it implies the consistency property
of our data availability sampling scheme.

Definition 11 (Reconstruction-Binding of CC). Let CC = (Setup, Com, Open, Ver) be an
erasure code commitment scheme for an erasure code C with reception efficiency t and
reconstruction algorithm Reconst. We say that CC is reconstruction-binding, if for every
PPT algorithm A, the following advantage is negligible:

Advrec-bind
A,CC (n) :=

Pr


|I| ≥ t ∧ |I ′| ≥ t ∧ ⊥ /∈ {m, m′}

∧ ∀i ∈ I : Ver(ck, com, i, m̂i, τi) = 1
∧ ∀i ∈ I ′ : Ver(ck, com, i, m̂′i, τ ′i) = 1
∧ m ̸= m′

∣∣∣∣∣∣∣∣∣∣
ck← Setup(1n),
(com, (m̂i, τi)i∈I , (m̂′i, τ ′i)i∈I′)

← A(ck),
m := Reconst((m̂i)i∈I),
m′ := Reconst((m̂′i)i∈I′)

 .

Lemma 2. Let CC = (Setup, Com, Open, Ver) be an erasure code commitment scheme for
an erasure code C. If CC is position-binding and code-binding, then CC is reconstruction-
binding. Precisely, for any PPT algorithm A, there are PPT algorithms B1,B2 with
T(B1) ≈ T(A), T(B2) ≈ T(A), and

Advrec-bind
A,CC (n) ≤ Advpos-bind

B1,CC (n) + Advcode-bind
B2,CC (n).

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 19

The proof of Lemma 2 is given in Subsection F.1.
Other Notions. We introduce further security notions for erasure code commitments. As
indicated by Figure 2, these notions are not directly necessary if we want to construct data
availability sampling schemes satisfying our basic definition in Subsection 3.1. However,
they turn out to be useful for two reasons. First, these notions are necessary if we want to
construct repairable data availability sampling schemes. Second, some of these notions are
stronger than others and help us to avoid repeating parts of our analysis.

The first of these additional notions is a strong notion called extractability. Intuitively,
a (deterministic) erasure code commitment is extractable, if there is an efficient algorithm
Ext that can extract a message m from any commitment com output by an adversary, as
long as the adversary provides at least one opening. When committing to the extracted
message m, one obtains com. This typically requires the use of the algebraic group model.
We formally define the notion of extractability and study it in Subsection E.3.

A second property we consider is called message-bound openings. This property turns
out to be useful for repairability. Intuitively, we want to repair an encoding from a set of
transcripts by first reconstructing the data, and then re-encoding this data. The challenge
is that the new encoding has to be compatible with the old commitment that an adversary
made up. Our notion of message-bound openings ensures this. Namely, it requires that
it is hard for an adversary to come up with two commitments for the same message and
enough valid openings that can not be arbitrarily “mixed-and-matched”. We postpone the
formal definition to Subsection E.1.

A final notion we introduce and study is computational uniqueness. The notion is
almost as the notion of message-bound openings, but just requires the adversary to output
two distinct commitments. In other words, if a scheme is computationally unique, it means
that whenever an adversary can open two commitments to codewords that reconstruct to
the same message, then the commitments are the same. In Subsection E.2, we give the
formal definition and show that this notion is strong enough to imply both code-binding
and message-bound openings.
Simple Examples. Before finishing this section, we mention simple examples of erasure
code commitments. These examples also shed light on how erasure code commitments
relate to other commitment schemes.

Example 3 (Vector Commitments). We can view any vector commitment [Mer88, CF13]
for vectors in Γk as being an erasure code commitment for the code C : Γk → Γk with
x 7→ x for all x ∈ Γk. In this case, code-binding holds trivially and position-binding is
equivalent to the definition of position-binding for vector commitments.

Example 4 (Polynomial Commitments). Polynomial commitments [KZG10] are a special
case of erasure code commitments for the Reed-Solomon code. Our notion of position-
binding matches the definition of position-binding for polynomial commitment schemes in
[KZG10]. Interestingly, [KZG10] does not define a notion matching code-binding. That is,
there is no notion in [KZG10] stating that an adversary can not open a commitment to
points which are not on a polynomial of appropriate degree. It is easy to see that the KZG
polynomial commitment scheme [KZG10] satisfies this notion. For that, it is sufficient to
observe that it is extractable in the algebraic group model [FKL18], see Subsection E.3.

6.2 Index Samplers
Our goal is to construct a data availability sampling scheme from any erasure code
commitment scheme. The high level idea is that clients query and verify some positions of
the encoding. Every such position contains a symbol of a codeword and its corresponding
opening for the erasure code commitment. Now, a natural question is how clients sample
the indices that they query. We abstract the strategy that the clients use by defining so

20 Foundations of Data Availability Sampling

called index samplers. An index sampler is just an algorithm that outputs Q indices in
some range [N]. An example of an index sampler is given by sampling uniformly with
replacement, i.e., the index sampler outputs Q indices sampled uniformly at random from
[N]. Intuitively, different index samplers may lead to different guarantees for the resulting
data availability sampling scheme. For example, an index sampler is a good choice if only
a few clients with a few samples are needed to guarantee that at least a certain number of
distinct indices (i.e., symbols of the codeword) from [N] are touched, and thus data can be
reconstructed. We make this intuition formal by defining the quality of an index sampler.
This measure will translate to the soundness and completeness error of the resulting data
availability sampling scheme.

Definition 12 (Index Sampler). An index sampler with quality ν : N4 → R is a PPT
algorithm Sample with the following syntax and properties:

• Sample(1Q, 1N)→ (ij)j∈[Q] takes as input integers Q, N ∈ N and outputs Q indices
ij ∈ [N].

• For any N, ∆ ∈ N with ∆ < N , and any Q, ℓ ∈ N, we have

Pr
G

 ∣∣∣∣∣∣
⋃

l∈[ℓ]

{il,j | j ∈ [Q]}

∣∣∣∣∣∣ ≤ ∆

 ≤ ν(∆, N, Q, ℓ),

where experiment G is given by running (il,j)j∈[Q] ← Sample(1Q, 1N) for each l ∈ [ℓ].

In the context of data availability sampling schemes, the encoding may be distributed
over many physical nodes. Ideally, indices are sampled in a way that minimizes the number
of nodes a client has to query. For that reason, we define a locality measure for index
samplers. It is defined as the number of physical nodes that the index sampler touches.

Definition 13 (Locality of Index Samplers). Let Sample be an index sampler, Q, N, D ∈
N, ϵ ∈ [0, 1] with D ≤ Q, and S : [N] → N be a function. We say that Sample is
(Q, N,S, D, ϵ)-local, if

Pr
G

[|{S(ij) | j ∈ [Q]}| > D] ≤ ϵ,

where G is given by running (ij)j∈[Q] ← Sample(1Q, 1N).

Of course, every index sampler has optimal locality (i.e. ϵ = 0, Σ = 1) if the function
S is constant, i.e., the entire encoding is stored on one physical node. A more natural
function S would be S(x) = ⌊(x− 1)/Q⌋, i.e., each node stores a contiguous part of the
encoding of equal size.

Next, we discuss three examples of index samplers. Namely, we consider natural index
samplers that sample all indices uniformly at random, either with replacement or without
replacement. Finally, we also introduce an index sampler that is optimized in terms of
locality.
Sampling With Replacement. Sampling with replacement is given via the following
algorithm.

• Samplewr(1Q, 1N) : For each j ∈ [Q], sample ij←$ [N]. Return (ij)j∈[Q].

We analyze the quality of algorithm Samplewr that samples indices uniformly at random
with replacement.

Lemma 3. Algorithm Samplewr is an index sampler with quality νwr : N4 → R, where

νwr(∆, N, Q, ℓ) =
(

N

∆

)(
∆
N

)Qℓ

.

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 21

In particular, Samplewr is an index sampler with quality ν′wr : N4 → R, where

ν′wr(∆, N, Q, ℓ) = cQℓ−(1−logc(e))∆ for c := ∆/N.

The proof of Lemma 3 is given in Subsection F.2. In Subsection 6.3, we will see that the
quality ν(∆, N, Q, ℓ) of an index sampler corresponds to the advantage of an adversary
against soundness of the resulting data availability sampling scheme. Namely, if our data
consists of K symbols, and our encoding consists of N symbols, such that any ∆ + 1 are
sufficient to reconstruct the data, then we need to choose Q and ℓ such that ν(∆, N, Q, ℓ)
is negligible in the security parameter n. To get an intuition for the bound that Lemma 3
provides, let us consider two examples.
Example 5 (Trivial Encoding). Assume that we do not use any erasure code at all, or in
other words, we use the identity function as an erasure code. In this case, we have K = N
and ∆ = K − 1, because we need all symbols to reconstruct the data. Using the first
bound in Lemma 3, we can upper bound the advantage against soundness by(

N

N − 1

)(
1− 1

N

)Qℓ

= N

(
1− 1

N

)N Qℓ
N

≤ 2log N e−
Qℓ
N = 2log N−log e Qℓ

N .

This bound is negligible once we set
Qℓ ≥ Ω(Nn + N log N) = Ω(Kn + K log K).

Example 6 (Using Erasure Codes). Assume that we encode the K symbols of data with
an erasure code into N = 2K symbols, such that any K of these are sufficient to reconstruct
the data. For example, we could use a Reed-Solomon code and a polynomial commitment to
realize this. We can now use the second bound in Lemma 3 with c = ∆/N < 1/2. This yields
an upper bound on the advantage against soundness of 2−Qℓ+(1−log1/2 e)(K−1) ≤ 2−Qℓ+3K .
The bound is negligible once we set

Qℓ ≥ Ω(K + n).
Now, let us consider the notion of subset-soundness instead. In Lemma 1, we showed
that soundness implies (L, ℓ)-subset-soundness, with a security loss of at most (Le/ℓ)ℓ.
Assuming L = C · ℓ for some constant C > 1, we get an upper bound on the advantage
against (L, ℓ)-subset-soundness of 2ℓ(log C+log e)−Qℓ+3K . If Q ≥ log C +log e+1, this bound
is also negligible once we set Qℓ ≥ Ω(K + n).

The two examples demonstrate that using an erasure code results in a significant
improvement in terms of the number of samples we need to reconstruct the data with
overwhelming probability. Additionally, the second example demonstrates a significant
difference between soundness and subset-soundness. Namely, while having ℓ clients with
Q queries per client is equivalent to having 1 client with ℓQ queries and to having ℓQ
clients with 1 query in terms of soundness, these three settings are not equivalent in terms
of subset-soundness. Especially, to get subset-soundness, we have to set Q large enough.
Intuitively, this is because the number of transcripts from which the adversary can choose
differs in the three settings.

Next, we want to understand the locality of algorithm Samplewr. Intuitively, sampling
indices uniformly at random should lead to a bad locality. The next lemma states exactly
that, especially when N or Q−D is large.
Lemma 4. Let Q, N, D ∈ N, ϵ ∈ [0, 1] with D ≤ Q, and S : [N]→ N be a Q-to-1 function
mapping onto a set of size N/Q. Then, if Samplewr is (Q, N,S, D, ϵ)-local, then

ϵ > 1− eD ·
(

D

N/Q

)Q−D

.

22 Foundations of Data Availability Sampling

The proof of Lemma 4 is given in Subsection F.2.
Sampling Without Replacement. Sampling without replacement is given by the
following algorithm.

• Samplewor(1Q, 1N) : For each j ∈ [Q], sample ij←$ [N] \ {i1, . . . , ij−1}. Return
(ij)j∈[Q].

We analyze the quality of algorithm Samplewor in the following lemma.

Lemma 5. Algorithm Samplewor is an index sampler with quality νwor : N4 → R, where

νwor(∆, N, Q, ℓ) =
(

N

∆

)((
∆
Q

)/(
N

Q

))ℓ

.

The proof of Lemma 5 is given in Subsection F.2.
Segment Sampling. We introduce a third index sampler. The idea is to partition the set
[N] into N/Q segments of size Q. Then, the sampler picks one of the segments at random
and queries this entire segment. The advantage is minimal randomness complexity and
the locality of the sampled indices. We define algorithm Sampleseg as follows:

• Sampleseg(1Q, 1N) : If N mod Q ̸= 0, return (ij)j∈[Q] ← Samplewr(1Q, 1N). Oth-
erwise, sample seg←$ [N/Q]. For each j ∈ [Q], set ij := (seq− 1) Q + j. Return
(ij)j∈[Q].

Next, we analyze the quality and locality of Sampleseg. Intuitively, the analysis of Sampleseg
reduces to an analysis of Samplewr over the segments.

Lemma 6. Assuming algorithm Samplewr is an index sampler with quality νwr : N4 → R,
the algorithm Sampleseg is an index sampler with quality νseg : N4 → R, where

νseg(∆, N, Q, ℓ) =
{

νwr(∆, N, Q, ℓ) if N mod Q ̸= 0
νwr(∆/Q, N/Q, 1, ℓ) if N mod Q = 0

.

In particular, Sampleseg is an index sampler with quality ν′seg : N4 → R, where

ν′seg(∆, N, Q, ℓ) =
{

cQℓ−(1−logc(e))∆ if N mod Q ̸= 0
cℓ−(1−logc(e))∆/Q if N mod Q = 0

for c := ∆/N .

The proof of Lemma 6 is given in Subsection F.2.

Lemma 7. Let Q, N ∈ N be such that Q divides N . Consider S : [N]→ N with S(x) =
⌊(x− 1)/Q⌋. Then, Sampleseg is (Q, N,S, 1, 0)-local.

Lemma 7 follows trivially by inspection.
Simulation. The analytical results in this section heavily rely on the use of probabilistic
bounds, e.g., the union bound or the Chernoff bound. One may ask whether more precise
results can be obtained by other means. To this end, we simulated the three index samplers
discussed in this section and compared their quality. We present and discuss our results in
Appendix J.

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 23

6.3 Construction of Data Availability Sampling Schemes
Now that we have introduced erasure code commitments and index samplers, we come to
the main construction of this section. Namely, we show how to construct a data availability
sampling scheme from any erasure code commitment scheme and any index sampler. If
the erasure code has a generalized systematic encoding, the resulting data availability
sampling scheme is locally accessible with optimal query complexity L = 1.
Overview. We start with an erasure code C with reception efficiency t and an erasure code
commitment scheme CC for it. In the data availability sampling scheme, a proposer encodes
the data data by first applying the code C to it to get a codeword d̂ata = C(data). For
consistency, the proposer commits to this codeword using CC. The resulting commitment
com will be given to the clients. In addition to that, the proposer computes openings τi

for all positions i of the codeword. Then, each symbol d̂atai together with its opening τi

forms a symbol πi of the encoding π. Clients are defined in the following way: First, they
determine some set of indices i1, . . . , iQ using an index sampler and query these indices,
getting (d̂ataij

, τij
) as responses. Then, they verify all openings with respect to com, and

accept if and only if they are all valid. To extract data from a given set of transcripts,
we first check that all transcripts are accepting, and that they contain at least t distinct
positions of π. If this holds, then we have at least t distinct positions of the codeword d̂ata
and can reconstruct the data.
Construction. Let C : Γk → Λn be an erasure code with alphabets Γ, Λ, message length
k, code length n, and reception efficiency t, with reconstruction algorithm Reconst. Let
CC = (Setup, Com, Open, Ver) be an erasure code commitment scheme for C with opening
alphabet Ξ. Further, let Sample be an index sampler with quality ν. We construct a data
availability sampling scheme DAS[CC, Sample] = (Setup, Encode, V, Ext) with data length
K := k, encoding length N := n, data alphabet Γ, encoding alphabet Σ = Λ× Ξ, query
complexity Q ∈ N, and threshold T ∈ N. We emphasize that T and Q have to be chosen
appropriately and depend on n, t, and the quality ν of Sample. We refer to our analysis
for a concrete bound. The construction is as follows.

• Setup(1n)→ par: Run ck← Setup(1n) and set par := ck.

• Encode(data)→ (π, com):

1. Run (com, St) := Com(ck, data; ρ) for some hardcoded coins ρ.
2. Compute d̂ata := C(data).
3. For each i ∈ [N], run τi ← Open(ck, St, i), and set πi := (d̂atai, τi).

• Vπ,Q
1 (com) → tran: Run (ij)j∈[Q] ← Sample(1Q, 1N) and query (d̂ataij

, τij
) := πij

for each j ∈ [Q]. Set tran := (ij , d̂ataij , τij)j∈[Q].

• V2(com, tran) → b: If there is a j ∈ [Q] with Ver(ck, com, ij , d̂ataij , τij) = 0, then
return b := 0. Otherwise, return b := 1.

• Ext(com, tran1, . . . , tranL)→ data/⊥:

1. Write tranl := (il,j , d̂atal,il,j
, τl,il,j

)j∈[Q] for each l ∈ [L].
2. If there is an l ∈ [L] such that V2(com, tranl) = 0, return ⊥.
3. Let I ⊆ [N] be the set of indices i ∈ [N] such that there is a (l, j) ∈ [L]× [Q]

with il,j = i. If |I| < t, then return ⊥.
4. Otherwise, for each i ∈ I, pick an arbitrary such (l, j) ∈ [L]× [Q] with il,j = i

and set d̂atai := d̂atal,il,j
.

24 Foundations of Data Availability Sampling

5. Return data := Reconst((d̂atai)i∈I).

Analysis. Next, we analyze the construction given above. Namely, we show completeness,
soundness, and consistency. For analyzing completeness and soundness, we rely on the
quality of the index sampler in combination with the reception efficiency of C. Namely,
reception efficiency tells us how many of the N indices we need to recover the data. Then,
the quality of the index sampler gives a bound on the probability that we did not collect
enough indices when we have a certain number of clients with a certain number of queries.
This determines the threshold of the scheme, i.e., the number of clients needed to make
the completeness and soundness error negligible. For soundness, we additionally need to
rule out the case that we collected enough indices, but the responses of the adversary
at these indices are not consistent with the code. For that, we can use code-binding of
the commitment scheme. To show consistency, we rely on reconstruction-binding of the
commitment scheme.

Lemma 8. The scheme DAS[CC, Sample] satisfies completeness, if

ν(∆, N, Q, T) ≤ negl(n), where ∆ := t− 1.

Proof. Let ℓ = poly(n), ℓ ≥ T and data ∈ ΓK as in the definition of completeness. First,
by the completeness of CC, we know that the ℓ copies of V2 output 1 in the completeness
experiment, except with negligible probability. Thus, it remains to bound the probability
of the bad event that Ext outputs ⊥ because not enough indices are covered, i.e. the set
I ⊆ [N] of indices i ∈ [N] such that there is a (l, j) ∈ [L]× [Q] with il,j = i has size strictly
less than t. This is equivalent to saying it has size at most ∆. Clearly, if we only consider
the first T instead of all ℓ ≥ T transcripts, the size of this set can not increase. As the
indices are sampled using Sample, one can easily verify that the probability of the bad
event is at most the probability that∣∣∣∣∣∣

⋃
l∈[T]

{il,j | j ∈ [Q]}

∣∣∣∣∣∣ ≤ ∆,

where (il,j)j∈[Q] ← Sample(1Q, 1N) for all l ∈ [T]. By definition of the quality of Sample,
this is at most ν(∆, N, Q, T).

Lemma 9. Assume that CC is code-binding and ν(∆, N, Q, T) is negligible for ∆ := t− 1.
Then, the scheme DAS[CC, Sample] satisfies soundness. Concretely, for any PPT algorithm
A there is a PPT algorithm B with T(B) ≈ T(A) such that for any ℓ ≥ T we have

Advsound
A,ℓ,DAS[CC,Sample](n) ≤ ν(∆, N, Q, T) + Advcode-bind

B,CC (n).

Proof. Consider an adversary A against soundness of DAS[CC, Sample]. We first recall the
soundness game and introduce some notation. First, parameters par := ck ← Setup(1n)
are sampled and given to A. Then, A outputs a commitment com. Then, ℓ copies of V1
are run and their oracle queries are answered by A. Let tranl = (il,j , d̂atal,il,j

, τl,il,j
)j∈[Q]

for l ∈ [ℓ] be the respective transcripts. The adversary A breaks soundness if all of these
verify, i.e., for all l ∈ [ℓ] and all j ∈ [Q] we have Ver(ck, com, il,j , d̂atal,il,j

, τl,il,j
) = 1, and

Ext(com, tran1, . . . , tranℓ) outputs ⊥. Recall that Ext outputs ⊥ either because a transcript
does not verify, or the set I ⊆ [N] of covered indices is not large enough, i.e., |I| < t, or if
algorithm Reconst outputs ⊥. We analyze the game by considering these cases separately.
Namely, we define the following events.

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 25

• Event InvalidTrans: This event occurs, if A breaks soundness and Ext outputs ⊥
because a transcript does not verify.

• Event NotEnough: This event occurs, if A breaks soundness and Ext outputs ⊥
because |I| < t.

• Event Inconsistent: This event occurs, if A breaks soundness and Ext outputs ⊥
because algorithm Reconst outputs ⊥.

It is clear that

Advsound
A,ℓ,DAS[CC,Sample](n) ≤ Pr [InvalidTrans] + Pr [NotEnough] + Pr [Inconsistent].

We bound these three terms separately. First, it is clear that event InvalidTrans can not
occur. This is because if one transcript does not verify, A never wins by definition. Second,
if all copies of V2 output 1, i.e. all transcripts are accepting, we can argue exactly as in
the analysis of completeness. That is, using the quality of Sample, we rule out that not
enough indices are covered and Ext outputs ⊥. We get that the probability of NotEnough
is at most ν(∆, N, Q, T). Finally, we have to bound the probability of Inconsistent. Recall
that algorithm Reconst outputs ⊥ if either not enough symbols are input, or if its input
is not consistent with any codeword. The first case can not happen, as in this case Ext
would have output ⊥ because of |I| < t and Reconst would not have been run. The second
case easily reduces to code-binding. Namely, a reduction B can run A in the soundness
game while forwarding its input ck to A. Then, if Inconsistent occurs, B knows valid
openings that are not consistent with a codeword, and can output these openings to break
codebinding. We get that

Pr [Inconsistent] ≤ Advcode-bind
B,CC (n).

Lemma 10. If CC is reconstruction-binding, then DAS[CC, Sample] satisfies consistency.
Concretely, for any PPT algorithm A there is a PPT algorithm B with T(B) ≈ T(A) such
that for any ℓ1, ℓ2 = poly(n), we have

Advcons
A,ℓ1,ℓ2,DAS[CC,Sample] ≤ Advrec-bind

B,CC (n).

Proof. Let A be an algorithm running in the consistency game of DAS[CC, Sample]. We
construct a reduction B that simulates the consistency game forA and breaks reconstruction-
binding of CC if A breaks consistency. Namely, the reduction B gets as input a commitment
key ck, sets par := ck, and runs A on input par as in the consistency game. Then, A outputs
(com, (tran1,i)ℓ1

i=1 , (tran2,i)ℓ2
i=1). We use the notation Ij , d̂ataj,i for the variables I, d̂atai as

in Ext for the jth extraction, j ∈ {1, 2}. The reduction B outputs com,
(

d̂ata1,i, τ1,i

)
i∈I1

,(
d̂ata2,i, τ2,i

)
i∈I2

. It remains to argue that B breaks reconstruction-binding, assuming that
A breaks consistency. For that, assume both extractions Ext(com, tran1,1, . . . , tran1,ℓ1) and
Ext(com, tran2,1, . . . , tran2,ℓ2) do not output ⊥, and they output data1 ̸= data2. As both
extractions did not output ⊥, the transcripts must contain valid openings τ1,i such that
Ver(ck, com, i, d̂ata1,i, τ1,i) = 1 for all i ∈ I1, and τ2,i such that Ver(ck, com, i, d̂ata2,i, τ2,i) =
1 for all i ∈ I2. Also, it must hold that |I1| ≥ t and |I2| ≥ t. This is by definition of
algorithm Ext. In combination with data1 ̸= data2, this implies that B breaks reconstruction-
binding.

26 Foundations of Data Availability Sampling

Local Accessibility. Now, assume that C has a generalized systematic encoding with
symbol projection algorithm Proj and symbol finding algorithm Find. Then, we show
that our generic construction DAS[CC, Sample] is locally accessible with optimal query
complexity L = 1. For that, we define algorithm Access as follows.

• Accessπ,L(com, i)→ d/⊥:

1. Compute î := Find(i) and query (d̂ataî, τî) := πî.

2. If Ver(ck, com, î, d̂ataî, τî) = 0, return ⊥. Otherwise, return Proj(i, d̂ataî).

By the first part of the definition of a generalized systematic encoding and the completeness
of CC, it is easy to see that local access completeness holds. We show that local access
consistency holds.

Lemma 11. Assume that CC is reconstruction-binding and C has a generalized systematic
encoding. Then, DAS[CC, Sample] with algorithm Access satisfies local access consistency.
Concretely, for any PPT algorithm A there is a PPT algorithm B with T(B) ≈ T(A) such
that for any i0 ∈ [K], and any ℓ = poly(n), we have

Advacc-cons
A,i0,ℓ,DAS,Access(n) ≤ Advrec-bind

B,CC (n).

The proof of Lemma 11 is given in Subsection F.3.
Repairability. Now, assume that CC has message-bound openings. Then, we show that
our generic construction DAS[CC, Sample] is (L, ℓ)-repairable, provided that it satisfies
(L, ℓ)-subset-soundness. For that, we define algorithm Repair as follows.

• Repair(com, tran1, . . . , tranℓ)→ π̄/⊥:

1. Run data := Ext(com, tran1, . . . , tranℓ). If data := ⊥, return ⊥.
2. Compute (π̄, com) := Encode(data) and return π̄.

Lemma 12. If CC has message-bound openings and DAS[CC, Sample] satisfies (L, ℓ)-
subset-soundness, then DAS[CC, Sample] is (L, ℓ)-repairable. Concretely, for any PPT
algorithm A there are PPT algorithms B1,B2 with T(B1) ≈ T(B2) ≈ T(A) such that

Advrepairlive
A,L,ℓ,DAS[CC,Sample],Repair(n) ≤ Advsub-sound

B1,L,ℓ,DAS(n) + Advmb-open
B2,CC (n).

The proof of Lemma 12 is given in Subsection F.3.

7 Commitments for Arbitrary Codes
In this section, we show how to construct an erasure code commitment scheme for any
erasure code from a vector commitment and a non-interactive argument of knowledge.
The idea is simple. We encode the message and commit to the encoding using a vector
commitment. Then, we prove that we committed to a valid codeword. The vector
commitment and the proof will form our erasure code commitment, and openings will
correspond to openings of the vector commitment.
Supported Erasure Code. The scheme presented in this section works generically for
an arbitrary erasure code. Throughout the section, we let C : Γk → Λn be an erasure code
with alphabets Γ, Λ, message length k, code length n, and reception efficiency t, with
reconstruction algorithm Reconst.

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 27

Commitment Construction. Let VC = (Setup, Com, Open, Ver) be a vector commit-
ment scheme over alphabet Λ with length n and opening alphabet Ξ, and let PS =
(Setup, PProve, PVer) be a non-interactive argument of knowledge for relation

R :=
{

(stmt, witn)
∣∣∣∣ witn = m, stmt = (ckVC, comVC, ρ),
∃StVC : (comVC, StVC) = VC.Com(ckVC, C(m); ρ)

}
.

We construct an erasure code commitment scheme CC[C, VC, PS] = (Setup, Com, Open, Ver)
for C with opening alphabet Ξ as follows.

• Setup(1n)→ ck:

1. Compute ckVC ← VC.Setup(1n) and crs← PS.Setup(1n).
2. Sample coins ρ for algorithm VC.Com.
3. Set and return ck := (ckVC, crs, ρ).

• Com(ck, m)→ (com, St):

1. Compute m̂ := C(m).
2. Run (comVC, StVC) := VC.Com(ckVC, m̂; ρ).
3. Compute π ← PProve(crs, stmt, witn) for witn := m and stmt := (ckVC, comVC, ρ).
4. Set and return com := (comVC, π) and St := StVC.

• Open(ck, St, i)→ τ : Return τ ← VC.Open(ckVC, StVC, i).

• Ver(ck, com, i, m̂i, τ)→ b

1. Parse com = (comVC, π)
2. If PVer(crs, stmt, π) = 0 for stmt := (ckVC, comVC, ρ), then return b := 0.
3. If VC.Ver(ckVC, comVC, i, m̂i, τ) = 0, then return b := 0.
4. Return b := 1.

Completeness follows directly from the completeness of VC and PS.
Security. We show that the construction CC[C, VC, PS] above is position-binding and
code-binding. In addition, we show that it has message-bound openings. To recall, the
notion of message-bound openings (cf. Definition 22) implies repairability for the resulting
data availability sampling scheme. In the following, let PS.Ext be the knowledge extractor
of PS.

Lemma 13. If VC is position-binding, then CC[C, VC, PS] is position-binding. Concretely,
for any PPT algorithm A, there is a PPT algorithm B with T(B) ≈ T(A) and

Advpos-bind
A,CC[C,VC,PS](n) ≤ Advpos-bind

B,VC (n).

Proof. Let A be an algorithm breaking position-binding of CC[C, VC, PS]. We construct
an algorithm B breaking position-binding of VC. It gets as input a commitment key
ckVC for VC. It computes crs← PS.Setup(1n) and samples coins ρ for algorithm VC.Com.
Then, it defines ck := (ckVC, crs, ρ) and runs A on input ck. Finally, A outputs (com =
(comVC, π), i, m̂, τ, m̂′, τ ′) and the reduction B outputs (comVC, i, m̂, τ, m̂′, τ ′). As Ver
internally runs VC.Ver, it is clear that B breaks position-binding of VC if A breaks position-
binding of CC[C, VC, PS].

28 Foundations of Data Availability Sampling

Lemma 14. If VC is position-binding and PS satisfies knowledge soundness, then CC[C, VC, PS]
is code-binding. Concretely, for any PPT algorithm A, there are PPT algorithms B1,B2
with T(B1) ≈ T(A), T(B2) ≈ T(A) + T(PS.Ext) + T(C), and

Advcode-bind
A,CC[C,VC,PS](n) ≤ Advkn-sound

B1,PS,PS.Ext(n) + Advpos-bind
B2,VC (n).

We postpone a formal proof to Appendix G. The intuition is as follows. Assume an
adversary breaks code-binding of the scheme. This means the adversary outputs a
commitment com and some openings, such that these openings are valid, but they are not
consistent with the code. In the first step, we extract a witness from the proof contained
in com. This witness is a message m such that the vector commitment part of com is a
commitment of C(m). Because the openings are not consistent with the code, we know that
at least one of these openings is not consistent with the symbol of C(m) at this position,
which allows us to break position-binding.

Lemma 15. If VC is position-binding and PS satisfies knowledge soundness, then CC[C, VC, PS]
has message-bound openings. Concretely, for any PPT algorithm A, there are PPT al-
gorithms B1,B2 with T(B1) ≈ T(A), T(B2) ≈ T(B3) ≈ T(A) + 2 ·T(PS.Ext) + 2 ·T(C),
and

Advmb-open
A,CC (n) ≤ 2 · Advkn-sound

B1,PS,PS.Ext(n) + Advpos-bind
B2,VC (n).

We postpone a formal proof to Appendix G.
Instantiation and Discussion. On the positive side, the construction presented in
this section is generic. That is, we can construct an erasure code commitment for
arbitrary codes from it. Also, the construction serves as a high level recipe for other
constructions that we will present. While these other constructions are tailored to more
specific families of codes, they will also contain parts that mimic the role of the vector
commitment, and parts that take the role of the proof. On the negative side the construction
presented in this section is hard to instantiate efficiently. For example, if we use a hash-
based vector commitment, e.g., a Merkle Tree [Mer88], then the relation for which we
need a non-interactive argument is also defined a hash function, and thus it is too
unstructured for an efficient argument. Additionally, computing the non-interactive
argument is computationally expensive. Finally, well-known impossibility results [GW11,
CGKS23] show the need of non-falsifiable assumptions when we rely on succinct non-
interactive arguments.

8 Commitments for Tensor Codes
In this section, we give a construction of an erasure code commitment scheme for the
tensor code of two given linear codes.
Supported Erasure Code. For our construction, we assume two linear erasure codes
Cr : Fkr → Fnr and Cc : Fkc → Fnc over the same field F. Let tr, tc denote their respective
reception efficiencies, and Gr ∈ Fnr×kr and Gc ∈ Fnc×kc denote their respective generator
matrices. We consider the tensor code Cr ⊗ Cc : Fkr·kc → Fnr·nc .
Commitment Construction. We present an erasure code commitment scheme CC⊗
for the code Cr ⊗ Cc : Fkr·kc → Fnr·nc as above. In the construction, we assume that we
already have an erasure code commitment scheme CCc for the code Cc. Further, we have
to assume that CCc is linear and extractable, in a sense we define next.

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 29

Definition 14 (Linear Erasure Code Commitment Scheme). Let C : Fk → Fn be a linear
erasure code, where F is a finite field. Let CC = (Setup, Com, Open, Ver) be an erasure
code commitment scheme for C. We say that CC is linear if the following properties hold:

• Com is deterministic. We use the notation com = Ĉom(ck, m) for (com, St) =
Com(ck, m).

• The commitment space is a vector space over F with efficiently computable vector
addition and scalar multiplication. We use the usual symbols + and · to denote
these operations.

• For any fixed key ck ∈ Setup(1n), the function Ĉom(ck, ·) is a vector space homomor-
phism over F from the vector space Fk to the commitment space.

From now on, assume that CCc = (Setupc, Comc, Openc, Verc) is linear and extractable.
The new erasure code commitment scheme CC⊗ = (Setup⊗, Com⊗, Open⊗, Ver⊗) for code
Cr ⊗ Cc : Fkr·kc → Fnr·nc is as follows.

• Setup⊗(1n)→ ck: Return ck← Setupc(1n).

• Com⊗(ck, m)→ (com, St):

1. Write m as a matrix M ∈ Fkc×kr and compute Y := MG⊤r ∈ Fkc×nr . Let
Yj ∈ Fkc denote the jth column of Y, for each j ∈ [nr].

2. For each j ∈ [nr], compute (comj , Stj) := Comc(ck, Yj).
3. Set and return com := (com1, . . . , comnr

) and St := (St1, . . . , Stnr
).

• Open⊗(ck, St, j)→ τ : Let (i∗, j∗) := ToMatIdx(j) and return τ ← Openc(ck, Stj∗ , i∗).

• Ver⊗(ck, com, j, m̂j , τ)→ b:

1. Let com = (com1, . . . , comnr
).

2. Let H ∈ F(nr−kr)×nr be the parity-check matrix of Cr.
3. Sample a←$ Fnr−kr and set h := H⊤a.
4. If Ĉomc(ck, 0) ̸=

∑nr

i=1 hj · comj , return 0.
5. Let (i∗, j∗) := ToMatIdx(j).
6. If Verc(ck, comj∗ , i∗, m̂j , τ) = 0, return 0.

Completeness follows directly from the completeness and linearity of CCc.
Security. We first show that the scheme CC⊗ satisfies position-binding. Second, we show
that it is computationally unique (cf. Definition 23). By Lemma 27, this implies that it
has message-bound openings, and thus the resulting data availability sampling scheme is
repairable. Note that the tensor code is not an MDS code, and so Lemma 28, which lifts
computational uniqueness to code-binding, does not apply. Thus, we show code-binding
from scratch.

Lemma 16. If CCc is position-binding, then CC⊗ is position-binding. Concretely, for
every PPT algorithm A, there is a PPT algorithm B with T(B) ≈ T(A), such that

Advpos-bind
A,CC⊗ (n) ≤ Advpos-bind

B,CCc
(n).

Lemma 16 is proven by giving a simple reduction. We postpone the formal details to
Appendix H.

30 Foundations of Data Availability Sampling

Lemma 17. Assume that Cc is an MDS code. If CCc is linear, extractable, and satisfies
position-binding, then CC⊗ is computationally unique. Concretely, for every PPT algorithm
A, there are PPT algorithms B,B′ with T(B) ≈ T(B′) ≈ T(B′′) ≈ T(A), such that

Advc-uniq
A,CC⊗(n) ≤ 2

(
Advextr

B,Ext,CCc
(n) + Advpos-bind

B′,CCc
(n) + 1

|F|

)
.

The formal proof of Lemma 17 is given in Appendix H. We provide an intuition for
the proof. To prove that the scheme is computationally unique, we prove a simpler yet
stronger statement. Namely, we show that whenever an adversary outputs a commitment
com = (com1, . . . , comnr

) and enough valid openings Xi,j ∈ F, τi,j for (i, j) ∈ I ⊆ [nc]×[nr]
that define a message M ∈ Fkc×kr via reconstruction, then committing to M yields com.
To prove this, we first consider every column j ∈ [nr] for which the adversary output an
opening. In the first kr of these columns, we leverage the extractability of CCc to extract
a preimage of the corresponding column commitment comj . Now, we can extend these
columns into a matrix Y with rows in Cr. Our next step is to show that the columns of
Y commit to the comj . For that, we rely on the homomorphic check and the fact that
multiplying by a random element in the span of the parity-check matrix of Cr is as good
as multiplying by the entire parity-check matrix. Next, we use position-binding to argue
that GcY has to be consistent with the openings Xi,j that the adversary output. Finally,
we use this to argue that Y = MG⊤r . In combination, this implies that committing to M
yields com, as desired.

Lemma 18. Assume that Cc is an MDS code. If CCc is linear, extractable, and satisfies
code-binding and position-binding, then CC⊗ satisfies code-binding. Concretely, for every
PPT algorithm A, there are PPT algorithms B,B′ with T(B) ≈ T(B′) ≈ T(B′′) ≈ T(A),
such that

Advcode-bind
A,CC⊗ (n) ≤ Advcode-bind

B,CCc
(n) + Advextr

B′,Ext,CCc
(n) + Advpos-bind

B′′,CCc
(n) + 1

|F|
.

We provide an intuition for proof of Lemma 18. The formal analysis is given in Appendix H.
Assume that an adversary breaks code-binding. By definition, this means that it outputs
a commitment com = (com1, . . . , comnr

) and some openings, such that all of the openings
verify, and no codeword in Cr ⊗ Cc is consistent with these openings. In particular, there
is at least one row or one column for which the openings are not consistent with any
codeword in Cr or Cc, respectively. Consider the case that there is such a column. As com
contains a commitment to that column for scheme CCc, this means that the adversary
breaks code-binding of CCc, which we assume is not possible. In the other case, the
adversary outputs openings in a row that are not consistent with Cr. This case is more
involved, because there are no commitments for rows in com. It turns out that we can
handle this case in a way almost identical to the proof of Lemma 17. Roughly, we can
combine the strong statement that we showed there with the assumption that Cr is an
MDS code and binding of CCc.
Instantiation and Discussion. As an example, we can instantiate the construction
in this section using Reed-Solomon codes for both Cr and Cc. In this case, we need an
extractable linear polynomial commitment scheme for the construction. Here, we can use
the KZG commitment scheme [KZG10]. One can easily see that KZG is extractable and
linear, see Subsection E.3. An instantiation like this is used by Ethereum [Fei23]. One
advantage of this construction is that the size of openings is constant, i.e., it does not
depend on the data length. The main drawback in this case is that we rely on a trusted
setup.

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 31

9 Commitments for Interleaved Codes
In this section, we show two constructions of erasure code commitments for linear interleaved
codes. These construction are partially inspired by Ligero [AHIV17, AHIV23] and mostly
make use of hash functions.

9.1 Construction from Hash Functions
In this section, we present a construction of erasure code commitments for linear interleaved
codes. The main benefit of this construction is that we can purely rely on hash functions.
Supported Erasure Code. Let C : Fk → Fn be a linear erasure code with generator
matrix G ∈ Fn×k and minimum distance d∗ ∈ N. We construct an erasure code commit-
ment for the interleaved code C≡k : Fk2 →

(
Fk
)n. To recall, this code consists of all sets of

columns of matrices that have the form MG⊤ for some M ∈ Fk×k.
Commitment Construction. Let H : {0, 1}∗ → {0, 1}n be a random oracle. Let P, L ∈ N
be parameters, and H1 : {0, 1}∗ → FP×k be a random oracle. Also, let H2 : {0, 1}∗ →

([n]
L

)
be a random oracle. We construct an erasure code commitment scheme CC = (Setup, Com,
Open, Ver) for C≡k. The construction is as follows, making use of subroutines VerCol and
VerCom.

• Setup(1n)→ ck: Return ck := ⊥.

• Com(ck, m)→ (com, St):

1. Write m as a matrix M ∈ Fk×k, and compute X := MG⊤ ∈ Fk×n. Let Xj ∈ Fk

for j ∈ [n] be the jth column of X.
2. For each j ∈ [n], compute hj := H(Xj).
3. Compute R := H1(h1, . . . , hn). We have R ∈ FP×k.
4. Compute linear combinations of rows, i.e., W := RX ∈ FP×n. Observe that

each row of W is in the code C.
5. Compute J := H2(h1, . . . , hn, W). We have J ⊆ [n] and |J | = L.
6. Set com :=

(
(hj)j∈[n], W, (Xj)j∈J

)
and St := ⊥.

• Open(ck, St, j)→ τ : Return τ := ⊥.

• Ver(ck, com, j∗, m̂j∗ = Xj∗ , τ = ⊥)→ b:

1. If VerCol(ck, com, j∗, Xj∗) = 0, return 0, where subroutine VerCol(ck, com, j∗, Xj∗)
is as follows:
(a) Let com =

(
(hj)j∈[n], W, (Xj)j∈J

)
.

(b) If hj∗ ̸= H(Xj∗), return 0.
(c) Compute R := H1(h1, . . . , hn).
(d) Let Wj∗ be the j∗th column of W. If Wj∗ ≠ RXj∗ , return 0. Otherwise,

return 1.
2. If VerCom(ck, com) = 0, return 0, where subroutine VerCom(ck, com) is as

follows:
(a) Let com =

(
(hj)j∈[n], W, (Xj)j∈J

)
.

(b) If there is a row w⊤ ∈ F1×n of W such that w /∈ C, then return 0.
(c) If J ̸= H2(h1, . . . , hn, W), return 0.
(d) Return 1, if for all j ∈ J , we have VerCol(ck, com, j, Xj) = 1. Otherwise,

return 0.

32 Foundations of Data Availability Sampling

3. Return 1.

Completeness can easily be checked.
Security. We show position-binding and code-binding of our construction.

Lemma 19. Let H : {0, 1}∗ → {0, 1}n be a random oracle. Then, the scheme CC is
position-binding. Concretely, for every algorithm A that makes at most QH queries to
random oracle H, we have

Advpos-bind
A,CC (n) ≤ Q2

H
2n

.

Proof. If we have an adversary that breaks position-binding of CC, then it must provide
two distinct preimages of one of the hash values contained in the commitment. Formally,
let A be an algorithm in the position-binding game of CC making at most QH queries to
random oracle H. This includes the queries that algorithm Ver issues when it checks the
validity of openings in A’s final output. The probability that there are two queries x and
x′ of A with x ̸= x′ but H(x) = H(x′) is at most Q2

H/2n. Assuming this event does not
occur, A can not break position-binding, and the claim follows.

Lemma 20. Let H : {0, 1}∗ → {0, 1}n
, H1 : {0, 1}∗ → FP×k, and H2 : {0, 1}∗ →

([n]
L

)
be a

random oracle. Then, the scheme CC is code-binding. Concretely, for any ∆1, ∆2 ∈ [n]
with ∆1 + ∆2 < d∗ and ∆1 ≤ d∗/4, and every algorithm A that makes at most QH, QH1 ,
QH2 queries to random oracles H, H1, H2, respectively, we have

Advcode-bind
A,CC (n) ≤ Q̄HQ̄H1n + Q̄2

H
2n

+ Q̄H1Q̄H2 ·

((
∆1 + 1
|F|

)P

+
(

1− ∆1 + 1
n

)L

+
(

1− ∆2

n

)L

+ 1
|F|P

)
,

where Q̄H := QH + n, Q̄H1 := QH1 + QH2 + 1, Q̄H2 := QH2 + 1.

Code-binding is proven via a sequence of lemmas. The goal is to show Lemma 20, which
states that CC satisfies code-binding. To do that, we first abstract the interactions of the
adversary with the random oracles away. In the resulting game, the adversary essentially
runs an interactive five round protocol with the challenger. Namely, it sends a matrix X
and receives a random challenge matrix R. Then, it sends a matrix W and receives a
challenge J ⊆ [n]. Finally, it submits a set J ′ ⊆ [n]. The adversary wins the game if these
matrices suffice to break code-binding, namely, if (1) there is no X′ in the interleaved code
C≡k that is consistent with X on all columns in J ′, and (2) each row of W is in the code
C, and (3) for all j ∈ J ∪ J ′, we have Wj = RXj . The central lemma of our analysis
(item 35) shows that the adversary can not win this game. We split the proof of it into
three main steps (item 32, 33, and 34):

1. item 32: X has to be close to the interleaved code for a winning adversary. Concretely,
it has to be within the unique decoding distance, i.e., there is a unique X∗ in the
code that is close to X.

2. item 33: RX and W have to be sufficiently close, due to the randomness of challenge
set J .

3. item 34: Using the previous two statements, we get that the distance of RX∗ and
W is at most d∗. As both are in the code, we get that RX∗ = W. Therefore, there
is a column in which X∗ and X differ, but RX∗ and RX agree on that column. The
probability of this can then be bounded, which allows us to prove the central lemma.

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 33

We give the formal analysis in Subsection I.1.
Instantiation and Discussion. The main drawback of the construction presented in this
section is the following. When we use it to construct a data availability sampling scheme, a
single symbol of the encoding is rather large. Concretely, it has size

√
|data|/ log |F| · log |F|

bits, where |data| denotes the size of the encoded data in bits. Another drawback is that
the scheme does not have message-bound openings, as defined in Definition 22. We can
easily see this by considering an adversary that outputs (1) an honest commitment to
some message and enough openings including the first symbol, and (2) an almost honest
commitment to the same message, where h1 is malformed, and enough openings not
including the first symbol. On the other hand, the main advantage of the construction in
this section is that it only relies on the security of hash functions and does not require
expensive operations such as multiplications over cyclic groups or pairings. Especially, no
trusted setup is needed, and we can instantiate the construction over a small field F, e.g.,
the field with 232 elements, leading to computational efficiency.

9.2 Construction from Homomorphic Hash Functions
In this section, we present a variant of our construction in Subsection 9.1. This variant
makes use of homomorphic hash functions (see Definition 19). Compared to the construction
in Subsection 9.1, this can reduce the size of the commitment for certain instantiations.
Supported Erasure Code. Let C : Fk → Fn be a linear erasure code and let G ∈ Fn×k be
its generator matrix. We construct an erasure code commitment scheme for the interleaved
code C≡k : Fk2 →

(
Fk
)n.

Commitment Construction. We make use of random oracles H1 : {0, 1}∗ → FP×k and
H2 : {0, 1}∗ → Fn×L, where P, L ∈ N are parameters. In addition, we rely on a homo-
morphic hash function family HF = (Gen, Eval) with domain D = Fk (see Definition 19).
Denote the key space and range of HF by K,R, respectively. Our erasure code commitment
scheme CC[HF] = (Setup, Com, Open, Ver) for C≡k is as follows.

• Setup(1n)→ ck: Return ck := hk← HF.Gen(1n).

• Com(ck, m)→ (com, St):

1. Write m as a matrix M ∈ Fk×k, and compute X := MG⊤ ∈ Fk×n. Let Xj ∈ Fk

for j ∈ [n] be the jth column of X.
2. For each j ∈ [n], compute hj := HF.Eval(hk, Xj).
3. Compute R := H1(h1, . . . , hn). We have R ∈ FP×k.
4. Compute W := RX ∈ FP×n.
5. Compute S := H2(h1, . . . , hn, W). We have S ∈ Fn×L.
6. Compute Y := XS ∈ Fk×L.
7. Set com :=

(
(hj)j∈[n], W, Y

)
and St := ⊥.

• Open(ck, St, j)→ τ : Return τ := ⊥.

• Ver(ck, com, j∗, m̂j∗ = Xj∗ , τ = ⊥)→ b:

1. If VerCol(ck, com, j∗, Xj∗) = 0, return 0, where subroutine VerCol(ck, com, j∗, Xj∗)
is as follows:
(a) Let com =

(
(hj)j∈[n], W, Y

)
.

(b) If hj∗ ̸= HF.Eval(hk, Xj∗) or Xj∗ /∈ Fk, return 0.
(c) Compute R := H1(h1, . . . , hn).

34 Foundations of Data Availability Sampling

(d) Let Wj∗ be the j∗th column of W. If Wj∗ ≠ RXj∗ , return 0. Otherwise,
return 1.

2. If VerCom(ck, com) = 0, return 0, where subroutine VerCom(ck, com) is as
follows:
(a) Let com =

(
(hj)j∈[n], W, Y

)
.

(b) If there is a row w⊤ ∈ F1×n of W such that w /∈ C, then return 0.
(c) Compute R := H1(h1, . . . , hn).
(d) Set S := H2(h1, . . . , hn, W). Let Sj ∈ Fk and Yj ∈ Fk for j ∈ [L] be the

jth column of S and Y, respectively.
(e) Return 1, if for each j ∈ [L], we have HF.Eval(hk, Yj) = [h1, . . . hn]Sj and

RY = WS. Otherwise, return 0.
3. Return 1.

Completeness easily follows from the homomorphism property of HF.
Security. We show position-binding and code-binding. Position-binding follows directly
from the collision-resistance of HF.

Lemma 21. Given that HF is a homomorphic family of hash functions, we have that
CC[HF] is position-binding. Concretely, for every PPT algorithm A, there is a PPT
algorithm B with T(B) ≈ T(A), such that

Advpos-bind
A,CC[HF](n) ≤ Advcoll

B,HF(n).

Proof. If we have an adversary that breaks position-binding of CC[HF], then it must
provide two distinct preimages of one of the hash values contained in the commitment.
More formally, let A be a PPT algorithm in the position-binding game of CC[HF]. We
construct a reduction B against collision-resistance of HF as follows. Reduction B gets
input hk from the collision-resistance experiment. It defines ck := hk, and runs A on
input ck. When A terminates, it outputs com, j∗, Xj∗ , τ, X′j∗ , τ ′. The reduction outputs
Xj∗ and X′j∗ to the collision-resistance game. It is clear that B perfectly simulates the
position-binding game for A, and its running time is dominated by the running time of A.
Further, assume A breaks position-binding, i.e. Xj∗ ̸= X′j∗ , Ver(ck, com, j∗, Xj∗ , τ) = 1,
and Ver(ck, com, j∗, X′j∗ , τ ′) = 1. Write com =

(
(hj)j∈[n], W, Y

)
. By definition of Ver, in

particular the definition of subroutine VerCol, we know that this implies

HF.Eval(hk, Xj∗) = hj∗ = HF.Eval(hk, X′j∗).

As Xj∗ ̸= X′j∗ , B breaks collision-resistance.

Lemma 22. Let HF be a homomorphic family of hash functions. Let H1 : {0, 1}∗ → FP×k,
and H2 : {0, 1}∗ → Fn×L be a random oracle. Then, the scheme CC[HF] is code-binding.
Concretely, for any PPT algorithm A that makes at most QH1 , QH2 queries to random
oracles H1, H2, respectively, there is an EPT algorithm B with expected running time
ET(B) ≈ (1 + n)T(A) and

Advcode-bind
A,CC[HF](n) ≤ Q̄H1Q̄H2 ·

(
n

|F|L
+ 1
|F|P

+ 1
|F|L

+ Advcoll
B,HF(n)

)
,

where Q̄H1 := QH1 + QH2 + 1 and Q̄H2 := QH2 + 1.

We provide an overview of the proof strategy we use to prove Lemma 22. The formal
analysis is given in Subsection I.2. To show code-binding, we first specify a security game
without random oracles by abstracting random oracles away. The central lemma of our

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 35

analysis (item 36) shows that the adversary can not win this game. Then, we show code-
binding using this central lemma, similar to what we have done for our construction based
on (non-homomorphic) hash functions. In the game of our central lemma, the adversary
first obtains a hash key hk and then specifies hash values h1, . . . , hn. Then, a matrix R is
sampled at random from FP×k and given to the adversary. The adversary outputs a matrix
W, and gets back a random matrix S ∈ Fn×L. This reflects the interaction between the
adversary and the random oracles. Finally, the adverary outputs Y, J ′, (Xj)j∈J′ , which
reflects that the adversary outputs a commitment and some openings in the code-binding
game. The adversary wins if the matrices and openings satisfy all conditions as in the
code-binding game. For examples, the openings Xj have to satisfy HF.Eval(hk, Xj) = hj .
A major challenge we have to deal with when proving our central lemma is that initially we
only get hash values h1, . . . , hn from the adversary, and not their preimages. Later, we get
some of the preimages. This is in contrast to our construction based on non-homomorphic
hash functions modeled as random oracles, for which we could easily extract the preimages
by observing the random oracle. Thus, we need another way of extracting these preimages.
Our idea is as follows. We first fix some hash key and adversarial randomness, leading to
fixed hash values h1, . . . , hn. Then, we run the rest of the experiment a number of times,
i.e., we rewind the adversary. Recall that one winning condition is that a homomorphic
check on the hash values, given by the condition HF.Eval(hk, Yj) = [h1, . . . hn]Sj for each
j ∈ [L]. From this check, we observe that if we have enough such S with enough linearly
independent columns, we find the preimages of h1, . . . , hn by solving a linear system of
equations. Once we have this, we run the game a final time, rule out inconsistent openings
by reducing to collision-resistance, and conclude using statistical arguments. Turning this
intuition into a formal proof is surprisingly challenging, especially to make the rewinding
work without subtle problems. For example, to get expected polynomial running time of
our reduction, we have to ensure that the rewinding always (not only in an overwhelming
fraction of cases) ends after a finite number of repetitions.

Instantiation and Discussion. The scheme presented in this section comes with many
of the drawbacks and advantages of the scheme presented in Subsection 9.1. Namely,
while a single symbol of the encoding is rather large, we avoid a trusted setup when
instantiating the homomorphic hash function appropriately. In contrast to the scheme
in Subsection 9.1, we can get a smaller commitment when using a large field. This is
because we only require minimal parallel repetition (parameter L) whereas the scheme
in Subsection 9.1 requires a large L even with a large field. The price we pay is the use
of a computationally more expensive large field and public key operations. An example
instantiation of the homomorphic hash function is the function

Zk
p → G, (x1, . . . , xk) 7→

k∏
i=1

gxi
i

over a cyclic group G of prime order p with generators gi. The function is collision-resistant
if the DLOG assumption holds in G. We leave investigating a lattice-based instantiation of
the homomorphic hash function as future work.

10 Evaluation and Comparison

In this section, we give an overview of how the different constructions compare in terms of
efficiency. As many of these constructions are written in a generic way, we can not cover all
possible instantiations and parameter settings. Instead, we pick reasonable instantiations,
suitable for comparison across schemes.

36 Foundations of Data Availability Sampling

10.1 Setting the Stage
Before we discuss the results of our comparison, we first explain which constructions of
data availability sampling we consider, which aspects we analyze, and how our results are
derived.
Schemes. We consider data availability sampling schemes that follow our construction
in Section 6. That is, they are constructed using an erasure code C, an erasure code
commitment CC for C, and an index sampler. We use the index sampler Samplewr from
Subsection 6.2, i.e. sampling with replacement, and assume that each client makes Q = 1
query, which has no effect for this particular sampler.
Concrete Erasure Code Commitments. All our concrete instantiations of erasure
code commitments target 128-bits of computational security, and we include two “trivial”
schemes as a baseline. The following schemes are compared:

• Naive, the naive scheme, where the encoding has a single symbol, containing all the
data, and the commitment is a SHA-256 hash of the data.

• Merkle, a trivial scheme based on Merkle Trees [Mer88] and the identity code.

• RS, a scheme where we encode the data using a Reed-Solomon code and commit to
it using the KZG [KZG10] polynomial commitment scheme.

• Tensor, an instantiation of the tensor code construction (Section 8) using KZG as a
base scheme.

• Hash, the scheme for interleaved codes from random oracles (Subsection 9.1), instan-
tiated with SHA-256 and Reed-Solomon codes over a 32-bit field.

• HomHash, the scheme for interleaved codes from homomorphic hashing (Subsec-
tion 9.2), instantiated with Pedersen commitments over the Secp256k1 curve, SHA-
256, and Reed-Solomon codes over the scalar field of Secp256k1.

An overview is provided in Table 1.
Qualitative Criteria. To evaluate the schemes mentioned above, we consider both
qualitative aspects and efficiency aspects. In terms of qualitative aspects we are interested
in the cryptographic assumptions, the idealized models that the schemes rely on and
whether the schemes require a trusted setup.
Efficiency Criteria. We compare the schemes by fixing the data size. Then, we compute
the encoding and commitment size and the communication complexity per query of a client.
We are also interested in estimating the threshold of the schemes, i.e., the number of queries
need to be made by clients, such that the probability of reconstructing is overwhelming.
In our comparison, we want it to be at least 1 − 2−40 (40-bits of statistical security).
We determine the threshold using the bounds in Lemma 3 and Example 5 as well as 6.
Once we determined the threshold, we can then also compute the overall communication
complexity required to reconstruct the data. Finally, we will briefly discuss the asymptotic
computational efficiency of the schemes. We leave implementing the schemes and comparing
concrete running times for future work.

10.2 Results
We implemented our methodology in Python scripts given in Appendix K. Our results are
presented in Table 2, 3, and Figure 3. We now discuss the results.
Assumptions, Models, and Setup. In terms of qualitative criteria, the schemes Hash,
Naive, Merkle are the most desirable ones, as they do not rely on a trusted setup and only
rely on hash functions. Scheme HomHash is also a good choice as it avoids trusted setup.

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 37

Table 1: Overview of the different instantiations of erasure code commitments that we
compare in Section 10. For each scheme, parameter k is picked such that the input domain
fits the data length. The notation RS[k, n,F]⊗ is a short notation for RS[k, n,F] ⊗
RS[k, n,F].

Name Code C Commitment CC Parameters/Comments
Naive - Hash All data in one encoding symbol
Merkle Identity Merkle Tree Size of Leaf: 210 bit
RS RS[k, n,F] KZG [KZG10] n = 4k, F = Zp

Tensor RS[k, n,F]⊗ Section 8 n = 2k, F = Zp

Hash RS[k, n,F]≡k Subsection 9.1 n = 4k, |F| = 232, P = 8, L = 64
HomHash RS[k, n,F]≡k Subsection 9.2 Pedersen Hash, n = 4k,F = Zp, P = L = 2

Table 2: Qualitative comparison of different data availability sampling schemes. The
details of the schemes are given in Table 1. We compare the cryptographic assumptions
and idealized models that these schemes use, and whether they rely on a trusted setup or
not.

Scheme Assumption Idealized Model Trusted Setup
Naive Hash - ✗
Merkle Hash - ✗
RS q-Type AGM ✓
Tensor q-Type AGM ✓
Hash - ROM ✗
HomHash DLOG ROM ✗

Depending on the instantiation of the homomorphic hash function, it only relies on mild
cryptographic assumptions, e.g., DLOG. Schemes RS and Tensor require trusted setup and
stronger assumptions.
Encoding Size. In terms of encoding size, schemes RS and Tensor have a slightly larger
encoding than Hash and HomHash, which comes from the KZG [KZG10] openings that
have to be stored in addition to the codeword. It is natural that Hash and HomHash have
(almost) the same encoding size, as they encode data using the same code with no explicit
opening, the field size does not affect the size of the encoding significantly – the minimal
discrepancy comes from rounding.
Commitment Size. In terms of commitment size, schemes Naive, Merkle, RS, and
Tensor perform best. The commitment for Naive, Merkle is a single hash value. For RS, the
commitment is a single group element over a group of size p, namely, a single KZG [KZG10]
commitment. Especially, the commitment size for these three schemes Naive, Merkle, and
RS is constant, i.e., independent of the size of the data. For Tensor, Θ(

√
|data|/ log p) such

KZG commitments are needed. The schemes Hash and HomHash perform worse in terms
of commitment size. Especially, Hash has a larger commitment. This is due to the small
field size, we require large repetition factor L which shows up in the commitment size.
Concretely, the commitment contains L random columns of the codeword, which are of
size k =

√
|data|/32 field elements. On the other hand, for HomHash, we had to choose

a large field to implement the homomorphic hash function, leading to small repetition
factors and thus a smaller commitment size than for Hash.
Communication per Query. In terms of communication complexity per query, scheme
Naive disqualifies, as expected. Optimal with respect to this measure are RS and Tensor,
for which the communication complexity per query is constant, i.e., independent of the
data size. This is because both return a single KZG [KZG10] opening and a single

38 Foundations of Data Availability Sampling

field element. Schemes Hash and HomHash perform worse in terms of communication
complexity per query, which is due to the use of the interleaved code, which has symbols of
size f ·

√
|data|/f , where f is the number of bits needed to represent one field element. If

we compare these two schemes, we see the inverse of what we saw for the commitment size.
Namely, Hash performs better. This can be explained by the different field sizes. Namely,
f does not cancel out in the symbol size f ·

√
|data|/f =

√
|data| ·

√
f . The ratio between√

256 and
√

32 matches the gap that we see in Table 3 and Figure 3.
Total Communication. Multiplying the communication per query with the number
of samples required to reconstruct the data with high probability, we obtain the total
communication cost. We see that Merkle disqualifies due to a huge number of samples,
which follows Lemma 3 and Example 5 and Example 6. Further, we see that RS and
Tensor perform worse than Hash and HomHash. This is because Hash and HomHash use
an interleaved code, leading to a smaller number of symbols and therefore to a smaller
number of required samples. One could expect that the large communication per query of
Hash and HomHash outweighs this, but our results show that this is not the case. We can
explain this by comparing with scheme Naive, which has only one symbol. Of course, this
scheme achieves the optimal total communication of exactly |data|. We can think of Hash
and HomHash as being between this naive scheme and schemes like RS and Tensor. Namely,
they have a small number of large symbols. We thus expect that the total communication
gets worse if we increase the number of symbols and decrease their size.
Computational Efficiency. Clients are computationally lightweight in all schemes. For
example, in KZG-based constructions (RS and Tensor), each sample is verified using two
pairings. For encoding, the computational complexity for all schemes depends on the
encoding complexity for the underlying code. For the interleaved constructions (Hash
and HomHash), we can assume that the code has encoding time of Θ(k log k) using FFT
techniques. Then, encoding for the interleaved code takes time Θ(

√
k · (
√

k log
√

k)) =
Θ(k log k). A similar complexity can be achieved for Tensor if KZG opening proofs are
computed efficiently using recent techniques [FK23].
Conclusion. Clearly, the schemes Naive and Merkle are far from being usable in practice
due to huge communication costs per query or in total, respectively. They should only
be understood as a baseline. If we are interested in using schemes that do not rely on
trusted setup and use minimal assumptions, the schemes Hash and HomHash are desirable.
If we compare these two, Hash performs better in terms of communication complexity per
query, but worse in terms of commitment size. Additionally, Hash avoids computationally
expensive public key operations and instead only needs hash operations and arithmetic
over small fields. On the other hand, if the communication effort per client is our primary
goal, schemes RS and Tensor are the best choice, as the commitment size is minimal and
the communication per query is constant.

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 39

Table 3: Efficiency comparison of different data availability sampling schemes. Details of
the schemes are given in Table 1. For given size of data, we compare the size of commitments
com, encodings π, and communication complexity per query. Column “Samples” shows
the total number of samples that clients need to query such that data can be reconstructed
with probability at least 1− 2−40, and the final column denotes the total communication
cost for this process.

Scheme |com| [KB] |π| [MB] Query [KB] Samples Total [MB]

|d
at

a|
=

1
M

B Naive 0.03 1.00 1000.00 1 1.00
Merkle 0.03 4.25 0.55 286655 156.40
RS 0.05 8.00 0.10 35881 3.52
Tensor 6.96 8.07 0.10 160115 15.70
Hash 256.00 4.00 2.00 879 1.76
HomHash 80.00 4.01 5.67 323 1.83

|d
at

a|
=

32
M

B Naive 0.03 32.00 32000.00 1 32.00
Merkle 0.03 176.00 0.71 10038776 7089.80
RS 0.05 256.00 0.10 1147584 113.23
Tensor 39.22 256.32 0.10 4626776 456.52
Hash 1448.45 128.05 11.32 4888 55.32
HomHash 452.00 128.00 32.00 1740 55.68

0 50 100 150
0

1

2

3

|data| [MB]

|c
om

|[
M

B
]

0 50 100 150
0

0.5

1

|data| [MB]

|π
|[

G
B

]

0 50 100 150
0

20
40
60

|data| [MB]

Q
ue

ry
[K

B
]

0 50 100 150
0

1

2

|data| [MB]

To
ta

l[
M

B
]

RS Tensor Hash HomHash

Figure 3: Efficiency of data availability sampling schemes. The details of the schemes
are given in Table 1. We compare the size of commitments, the size of the encoding,
the communication complexity per query, and the total communication complexity when
increasing the data size. Schemes Naive and Merkle are omitted.

40 Foundations of Data Availability Sampling

References
[ABC+07] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Lea

Kissner, Zachary N. J. Peterson, and Dawn Song. Provable data possession at
untrusted stores. In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F.
Syverson, editors, ACM CCS 2007, pages 598–609. ACM Press, October 2007.
doi:10.1145/1315245.1315318.

[ADVZ21] Nicolas Alhaddad, Sisi Duan, Mayank Varia, and Haibin Zhang. Succinct
erasure coding proof systems. Cryptology ePrint Archive, Report 2021/1500,
2021. https://eprint.iacr.org/2021/1500.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasub-
ramaniam. Ligero: Lightweight sublinear arguments without a trusted setup.
In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017, pages 2087–2104. ACM Press, October / November
2017. doi:10.1145/3133956.3134104.

[AHIV23] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasub-
ramaniam. Ligero: lightweight sublinear arguments without a trusted setup.
Des. Codes Cryptogr., 91(11):3379–3424, 2023. URL: https://doi.org/10.1
007/s10623-023-01222-8, doi:10.1007/S10623-023-01222-8.

[ASBK21] Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi. Fraud
and data availability proofs: Detecting invalid blocks in light clients. In Nikita
Borisov and Claudia Díaz, editors, Financial Cryptography and Data Security
- 25th International Conference, FC 2021, Virtual Event, March 1-5, 2021,
Revised Selected Papers, Part II, volume 12675 of Lecture Notes in Computer
Science, pages 279–298. Springer, 2021. doi:10.1007/978-3-662-64331-0_
15.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-
solomon interactive oracle proofs of proximity. In Ioannis Chatzigiannakis,
Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, ICALP
2018, volume 107 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl, July 2018.
doi:10.4230/LIPIcs.ICALP.2018.14.

[BCG+17] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and
Nicholas Spooner. Interactive oracle proofs with constant rate and query
complexity. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca
Muscholl, editors, ICALP 2017, volume 80 of LIPIcs, pages 40:1–40:15. Schloss
Dagstuhl, July 2017. doi:10.4230/LIPIcs.ICALP.2017.40.

[BDFG20] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Efficient polynomial
commitment schemes for multiple points and polynomials. Cryptology ePrint
Archive, Report 2020/081, 2020. https://eprint.iacr.org/2020/081.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge
and its applications (extended abstract). In 20th ACM STOC, pages 103–112.
ACM Press, May 1988. doi:10.1145/62212.62222.

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil
Vadhan. Robust pcps of proximity, shorter pcps, and applications to coding.
SIAM Journal on Computing, 36(4):889–974, 2006. arXiv:https://doi.org/
10.1137/S0097539705446810, doi:10.1137/S0097539705446810.

https://doi.org/10.1145/1315245.1315318
https://eprint.iacr.org/2021/1500
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/s10623-023-01222-8
https://doi.org/10.1007/s10623-023-01222-8
https://doi.org/10.1007/S10623-023-01222-8
https://doi.org/10.1007/978-3-662-64331-0_15
https://doi.org/10.1007/978-3-662-64331-0_15
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.4230/LIPIcs.ICALP.2017.40
https://eprint.iacr.org/2020/081
https://doi.org/10.1145/62212.62222
https://arxiv.org/abs/https://doi.org/10.1137/S0097539705446810
https://arxiv.org/abs/https://doi.org/10.1137/S0097539705446810
https://doi.org/10.1137/S0097539705446810

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 41

[BGKS20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-
FRI: Sampling outside the box improves soundness. In Thomas Vidick, editor,
ITCS 2020, volume 151, pages 5:1–5:32. LIPIcs, January 2020. doi:10.4230/
LIPIcs.ITCS.2020.5.

[CDD+16] Ignacio Cascudo, Ivan Damgård, Bernardo David, Nico Döttling, and Jes-
per Buus Nielsen. Rate-1, linear time and additively homomorphic UC com-
mitments. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part III, volume 9816 of LNCS, pages 179–207. Springer, Heidelberg, August
2016. doi:10.1007/978-3-662-53015-3_7.

[CF13] Dario Catalano and Dario Fiore. Vector commitments and their applications.
In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778
of LNCS, pages 55–72. Springer, Heidelberg, February / March 2013. doi:
10.1007/978-3-642-36362-7_5.

[CFM08] Dario Catalano, Dario Fiore, and Mariagrazia Messina. Zero-knowledge sets
with short proofs. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965
of LNCS, pages 433–450. Springer, Heidelberg, April 2008. doi:10.1007/97
8-3-540-78967-3_25.

[CGKS23] Matteo Campanelli, Chaya Ganesh, Hamidreza Khoshakhlagh, and Janno
Siim. Impossibilities in succinct arguments: Black-box extraction and more.
In Nadia El Mrabet, Luca De Feo, and Sylvain Duquesne, editors, Progress
in Cryptology - AFRICACRYPT 2023 - 14th International Conference on
Cryptology in Africa, Sousse, Tunisia, July 19-21, 2023, Proceedings, volume
14064 of Lecture Notes in Computer Science, pages 465–489. Springer, 2023.
doi:10.1007/978-3-031-37679-5_20.

[CHL+05] Melissa Chase, Alexander Healy, Anna Lysyanskaya, Tal Malkin, and Leonid
Reyzin. Mercurial commitments with applications to zero-knowledge sets. In
Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages
422–439. Springer, Heidelberg, May 2005. doi:10.1007/11426639_25.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely,
and Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with universal and
updatable SRS. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part I, volume 12105 of LNCS, pages 738–768. Springer, Heidelberg, May 2020.
doi:10.1007/978-3-030-45721-1_26.

[CKW13] David Cash, Alptekin Küpçü, and Daniel Wichs. Dynamic proofs of retriev-
ability via oblivious RAM. In Thomas Johansson and Phong Q. Nguyen,
editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 279–295. Springer,
Heidelberg, May 2013. doi:10.1007/978-3-642-38348-9_17.

[CT05] Christian Cachin and Stefano Tessaro. Asynchronous verifiable information dis-
persal. In Pierre Fraigniaud, editor, Distributed Computing, 19th International
Conference, DISC 2005, Cracow, Poland, September 26-29, 2005, Proceedings,
volume 3724 of Lecture Notes in Computer Science, pages 503–504. Springer,
2005. doi:10.1007/11561927_42.

[DVW09] Yevgeniy Dodis, Salil P. Vadhan, and Daniel Wichs. Proofs of retrievability
via hardness amplification. In Omer Reingold, editor, TCC 2009, volume 5444
of LNCS, pages 109–127. Springer, Heidelberg, March 2009. doi:10.1007/97
8-3-642-00457-5_8.

https://doi.org/10.4230/LIPIcs.ITCS.2020.5
https://doi.org/10.4230/LIPIcs.ITCS.2020.5
https://doi.org/10.1007/978-3-662-53015-3_7
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-540-78967-3_25
https://doi.org/10.1007/978-3-540-78967-3_25
https://doi.org/10.1007/978-3-031-37679-5_20
https://doi.org/10.1007/11426639_25
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-642-38348-9_17
https://doi.org/10.1007/11561927_42
https://doi.org/10.1007/978-3-642-00457-5_8
https://doi.org/10.1007/978-3-642-00457-5_8

42 Foundations of Data Availability Sampling

[Fei23] Dankrad Feist. Data availability encoding. https://notes.ethereum.org/R
easmW86SuKqC2FaX83T1g, 2023. Accessed: 2023-05-08.

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing.
In 28th FOCS, pages 427–437. IEEE Computer Society Press, October 1987.
doi:10.1109/SFCS.1987.4.

[FK23] Dankrad Feist and Dmitry Khovratovich. Fast amortized KZG proofs. Cryp-
tology ePrint Archive, Report 2023/033, 2023. https://eprint.iacr.org/
2023/033.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer, Hei-
delberg, August 2018. doi:10.1007/978-3-319-96881-0_2.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016. doi:
10.1007/978-3-662-49896-5_11.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments
from all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors,
43rd ACM STOC, pages 99–108. ACM Press, June 2011. doi:10.1145/1993
636.1993651.

[HSW24] Mathias Hall-Andersen, Mark Simkin, and Benedikt Wagner. FRIDA: data
availability sampling from FRI. In Leonid Reyzin and Douglas Stebila, editors,
Advances in Cryptology - CRYPTO 2024 - 44th Annual International Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 18-22, 2024, Proceedings,
Part VI, volume 14925 of Lecture Notes in Computer Science, pages 289–324.
Springer, 2024. doi:10.1007/978-3-031-68391-6_9.

[JK07] Ari Juels and Burton S. Kaliski Jr. Pors: proofs of retrievability for large
files. In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson,
editors, ACM CCS 2007, pages 584–597. ACM Press, October 2007. doi:
10.1145/1315245.1315317.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended
abstract). In 24th ACM STOC, pages 723–732. ACM Press, May 1992. doi:
10.1145/129712.129782.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size com-
mitments to polynomials and their applications. In Masayuki Abe, editor,
ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer, Heidelberg,
December 2010. doi:10.1007/978-3-642-17373-8_11.

[LRY16] Benoît Libert, Somindu C. Ramanna, and Moti Yung. Functional commitment
schemes: From polynomial commitments to pairing-based accumulators from
simple assumptions. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval
Rabani, and Davide Sangiorgi, editors, ICALP 2016, volume 55 of LIPIcs,
pages 30:1–30:14. Schloss Dagstuhl, July 2016. doi:10.4230/LIPIcs.ICALP
.2016.30.

[LY10] Benoît Libert and Moti Yung. Concise mercurial vector commitments and
independent zero-knowledge sets with short proofs. In Daniele Micciancio,
editor, TCC 2010, volume 5978 of LNCS, pages 499–517. Springer, Heidelberg,
February 2010. doi:10.1007/978-3-642-11799-2_30.

https://notes.ethereum.org/ReasmW86SuKqC2FaX83T1g
https://notes.ethereum.org/ReasmW86SuKqC2FaX83T1g
https://doi.org/10.1109/SFCS.1987.4
https://eprint.iacr.org/2023/033
https://eprint.iacr.org/2023/033
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1007/978-3-031-68391-6_9
https://doi.org/10.1145/1315245.1315317
https://doi.org/10.1145/1315245.1315317
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.1007/978-3-642-11799-2_30

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 43

[Mer88] Ralph C. Merkle. A digital signature based on a conventional encryption
function. In Carl Pomerance, editor, CRYPTO’87, volume 293 of LNCS, pages
369–378. Springer, Heidelberg, August 1988. doi:10.1007/3-540-48184-2_3
2.

[NNT22] Kamilla Nazirkhanova, Joachim Neu, and David Tse. Information dispersal
with provable retrievability for rollups. In Maurice Herlihy and Neha Narula,
editors, Proceedings of the 4th ACM Conference on Advances in Financial
Technologies, AFT 2022, Cambridge, MA, USA, September 19-21, 2022, pages
180–197. ACM, 2022. doi:10.1145/3558535.3559778.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS,
pages 129–140. Springer, Heidelberg, August 1992. doi:10.1007/3-540-467
66-1_9.

[Rab89] Michael O. Rabin. Efficient dispersal of information for security, load balancing,
and fault tolerance. J. ACM, 36(2):335–348, 1989. doi:10.1145/62044.62050.

[SSP13] Elaine Shi, Emil Stefanov, and Charalampos Papamanthou. Practical dynamic
proofs of retrievability. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti
Yung, editors, ACM CCS 2013, pages 325–336. ACM Press, November 2013.
doi:10.1145/2508859.2516669.

[SW08] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In Josef
Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS, pages 90–107.
Springer, Heidelberg, December 2008. doi:10.1007/978-3-540-89255-7_7.

[SXKV21] Peiyao Sheng, Bowen Xue, Sreeram Kannan, and Pramod Viswanath. ACeD:
Scalable data availability oracle. In Nikita Borisov and Claudia Díaz, editors,
FC 2021, Part II, volume 12675 of LNCS, pages 299–318. Springer, Heidelberg,
March 2021. doi:10.1007/978-3-662-64331-0_16.

[YSL+20] Mingchao Yu, Saeid Sahraei, Songze Li, Salman Avestimehr, Sreeram Kannan,
and Pramod Viswanath. Coded merkle tree: Solving data availability attacks
in blockchains. In Joseph Bonneau and Nadia Heninger, editors, FC 2020,
volume 12059 of LNCS, pages 114–134. Springer, Heidelberg, February 2020.
doi:10.1007/978-3-030-51280-4_8.

A Definition of Cryptographic Building Blocks
Definition 15 (Vector Commitment Scheme). A vector commitment scheme over alphabet
Σ with length ℓ and opening alphabet Ξ is a tuple VC = (Setup, Com, Open, Ver) of PPT
algorithms, with the following syntax:

• Setup(1n)→ ck takes as input the security parameter, and outputs a commitment
key ck.

• Com(ck, m)→ (com, St) takes as input a commitment key ck and a string m ∈ Σℓ,
and outputs a commitment com and a state St.

• Open(ck, St, i)→ τ takes as input a commitment key ck, a state St, and an index
i ∈ [ℓ], and outputs an opening τ ∈ Ξ.

• Ver(ck, com, i, mi, τ) → b is deterministic, takes as input a commitment key ck, a
commitment com, and index i ∈ [ℓ], a symbol mi ∈ Σ, and an opening τ ∈ Ξ, and
outputs a bit b ∈ {0, 1}.

https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1145/3558535.3559778
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1145/62044.62050
https://doi.org/10.1145/2508859.2516669
https://doi.org/10.1007/978-3-540-89255-7_7
https://doi.org/10.1007/978-3-662-64331-0_16
https://doi.org/10.1007/978-3-030-51280-4_8

44 Foundations of Data Availability Sampling

Further, we require that the following completeness property holds: For every ck ∈
Setup(1n), every m ∈ Σℓ, and every i ∈ [ℓ], we have

Pr
[
Ver(ck, com, i, mi, τ) = 1

∣∣∣∣ (com, St)← Com(ck, m),
τ ← Open(ck, St, i)

]
≥ 1− negl(n).

Definition 16 (Position-Binding of VC). Let VC = (Setup, Com, Open, Ver) be a vector
commitment scheme over alphabet Σ with length ℓ. We say that VC is position-binding, if
for every PPT algorithm A, the following advantage is negligible:

Advpos-bind
A,VC (n) := Pr

 m ̸= m′

∧ Ver(ck, com, i, m, τ) = 1
∧ Ver(ck, com, i, m′, τ ′) = 1

∣∣∣∣∣∣ ck← Setup(1n),
(com, i, m, τ, m′, τ ′)← A(ck)

 .

Definition 17 (NP-Relation). Let R = (Rn)n be a family of binary relations Rn ⊆
{0, 1}∗ × {0, 1}∗. We define the language of yes-instances Ln via

Ln :=
{

stmt ∈ {0, 1}∗
∣∣ ∃ witn ∈ {0, 1}∗ : (stmt, witn) ∈ Rn

}
.

We say that R is an NP-relation, if the following properties hold:

• There exists a polynomial poly, such that for any stmt ∈ Ln, we have |stmt| ≤ poly(n).

• Membership in Rn is efficiently decidable, i.e. there exists a deterministic polynomial
time algorithm that decides Rn.

• There is a polynomial poly′ such that for all (stmt, witn) ∈ Rn we have |witn| ≤
poly′(|stmt|).

Definition 18 (Non-Interactive Argument of Knowledge). Let R be an NP-relation. A
non-interactive argument of knowledge for R is a tuple PS = (Setup, PProve, PVer) of PPT
algorithms with the following syntax:

• Setup(1n) → crs takes as input the security parameter, and outputs a common
reference string crs.

• PProve(crs, stmt, witn)→ π takes as input a common reference string crs, a statement
stmt, and a witness witn, and outputs a proof π.

• PVer(crs, stmt, π)→ b is deterministic, takes as input a common reference string crs,
a statement stmt, a proof π, and outputs a bit b ∈ {0, 1}.

We require that the following properties hold:

• Completeness. For all crs ∈ Setup(1n), and all (stmt, witn) ∈ Rn, we have

Pr [PVer(crs, stmt, π) = 1 | π ← PProve(crs, stmt, witn)] = 1.

• Knowledge Soundness. There is a PPT algorithm Ext, such that for any PPT
algorithm A, the following advantage is negligible:

Advkn-sound
A,PS,Ext(n) :=

Pr

(stmt, witn) /∈ Rn ∧ PVer(crs, stmt, π) = 1

∣∣∣∣∣∣
crs← Setup(1n),

(stmt, π)← A(crs),
witn← Ext(crs, stmt, π).

 .

We say that Ext is the knowledge extractor of PS.

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 45

Definition 19 (Homomorphic Hash Function). Let K = {Kn}n,D = {Dn}n,R = {Rn}n

be families of sets, such that for each n, Dn and Rn are abelian groups. We denote both
group operations additively. A homomorphic hash function family with key space K,
domain D, and range R is a pair HF = (Gen, Eval) of PPT algorithms, with the following
syntax:

• Gen(1n)→ hk takes as input the security parameter, and outputs a hash key hk ∈ Kn.

• Eval(hk, x)→ y is deterministic, takes as input a hash key hk ∈ Kn, and an element
x ∈ Dn, and outputs an element y ∈ Rn.

Further, we require that the following properties holds:

• Homomorphism. For any hk ∈ Gen(1n), and all x, x′ ∈ Dn, we have

Eval(hk, x + x′) = Eval(hk, x) + Eval(hk, x′).

• Collision-Resistance. For any EPT algorithm A, the following advantage is
negligible:

Advcoll
A,HF(n) := Pr

[
x ̸= x′

∧ Eval(hk, x) = Eval(hk, x′)

∣∣∣∣ hk← Gen(1n),
(x, x′)← A(hk)

]
.

For simplicity, we omit the subscript n and write K,D,R instead of Kn,Dn,Rn, if n is
clear from the context.

B Some Useful Bounds
Lemma 23 (Chernoff Bound). Let X1, . . . , Xt be independent random variables with
values in {0, 1}. Let δ ≥ 0. Then, we have

Pr
[

t∑
i=1

Xi ≤ (1− δ)µ
]
≤ exp(−δ2µ/2), for µ := E

[
t∑

i=1
Xi

]
.

Lemma 24. Let N, D, L ∈ N with D, L ≤ N , L ≤ N −∆. Then, we have(
N −D

L

)/(
N

L

)
≤
(

1− D

N

)L

.

Proof. We have

(
N −D

L

)/(
N

L

)
= (N −D)! · L! · (N − L)!

L! · (N −D − L)! ·N ! =
L−1∏
i=0

N −D − i

N − i

=
N∏

j=N−L+1

j −D

j
=

N∏
j=N−L+1

1− D

j
≤

N∏
j=N−L+1

1− D

N
=
(

1− D

N

)L

.

46 Foundations of Data Availability Sampling

C Omitted Details from Section 3
C.1 Omitted Details from Subsection 3.1
The following lemma shows that data availability sampling, in particular the consistency
property, implies a collision-resistant hash function induced by the mapping from data to
com via algorithm Encode, given that the commitment com is smaller than the data data.

Lemma 25. Let DAS = (Setup, Encode, V = (V1, V2), Ext) be a data availability sampling
scheme with threshold T ∈ N. For any PPT algorithm A, there is a PPT algorithm B with
T(B) ≈ T(A) + 2T(Encode) + 2TT(V1) and

Pr

 data1 ̸= data2
∧ com1 = com2

∣∣∣∣∣∣∣∣
par← Setup(1n),
(data1, data2)← A(par),
(π1, com1) := Encode(data1),
(π2, com2) := Encode(data2).

 ≤ Advcons
B,T,T,DAS(n) + negl(n).

Proof. Let A be a PPT algorithm that on input par outputs (data1, data2) such that
there are π1, π2 with (π1, com) = Encode(data1) and (π2, com) = Encode(data2). Then, we
construct an algorithm B against consistency of DAS as follows:

• When B gets as input par, it runs (data1, data2)← A(par).

• Then, it computes (π1, com1) := Encode(data1) and (π2, com2) := Encode(data2). If
data1 = data2 or com1 ̸= com2, B aborts. Otherwise, it sets com := com1 = com2.

• Next, B runs tranj,i ← Vπj ,Q
1 (com) for all i ∈ [T] and j ∈ {1, 2}

• Finally, B outputs (com, (tran1,i)T
i=1 , (tran2,i)T

i=1).

We claim that, except with negligible probability, B breaks consistency. Namely, by
completeness of DAS, with overwhelming probability the following event holds for both
j ∈ {1, 2}:

datak = Ext(tranj,1, . . . , tranj,ℓj).

As data1 ̸= data2, B breaks consistency.

C.2 Extension: Repairability
Definition 20 (Repairable DAS). Let DAS = (Setup, Encode, V = (V1, V2), Ext) be a data
availability sampling scheme with encoding alphabet Σ, data length K ∈ N, and encoding
length N ∈ N. We say that DAS is (L, ℓ)-repairable, if there is a deterministic polynomial
time algorithm Repair, with the following syntax and properties:

• Repair(com, tran1, . . . , tranℓ) → π̄/⊥ takes as input a commitment com, a list of
transcripts trani, and outputs an encoding π̄ ∈ ΣN or an abort symbol ⊥.

• Repair Liveness. Let A be a stateful algorithm and consider the following experi-
ment G:

1. Run par← Setup(1n) and com← A(par).
2. Run (trani)L

i=1 ← Interact [V1,A]Q,L (com) and bi := V2(com, trani) for all i ∈
[L].

3. Run (ij)ℓ
j=1 ← A(tran1, . . . , tranL).

4. Run π̄ ← Repair(com, trani1 , . . . , traniℓ
).

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 47

5. For all i ∈ [L], run tran′i ← Vπ̄,Q
1 (com) and b′i := V2(com, tran′i).

Then, we require that for any stateful PPT algorithm A, the following advantage is
negligible:

Advrepairlive
A,L,ℓ,DAS,Repair(n) := Pr

G

[
∀j ∈ [ℓ] : bij

= 1 ∧ ∃i ∈ [L] : b′i = 0
]
.

On Soundness and Consistency. One may wonder why we do not define any consistency
or soundness property for a scenario where clients interact with a repaired codeword. We
claim that this is not needed, as our consistency and soundness notions for data availability
sampling schemes are robust enough to cover such scenarios. The intuition is that whatever
scenario could happen including algorithm Repair and violate soundness or consistency,
could be simulated by an adversary in the soundness or consistency game, respectively.

C.3 Extension: Local Accessibility
Definition 21 (Locally Accessible DAS). Let DAS = (Setup, Encode, V = (V1, V2), Ext)
be a data availability sampling scheme with data alphabet Γ, encoding alphabet Σ, data
length K ∈ N, and encoding length N ∈ N. We say that DAS is locally accessible with
query complexity L, if there is a PPT algorithm Access, with the following syntax and
properties:

• Accessπ,L(com, i) → d/⊥ takes as input a commitment com, and an index i ∈ [K],
gets L-time oracle access to an encoding π ∈ ΣN , and outputs a symbol d ∈ Γ or an
abort symbol ⊥.

• Local Access Completeness. For any par ∈ Setup(1n), any i ∈ [K], and all
data ∈ ΓK , we have

Pr
[

d = datai

∣∣∣∣ (π, com) := Encode(data),
d← Accessπ,L(com, i)

]
≥ 1− negl(n).

• Local Access Consistency. For any stateful PPT algorithm A, any index i ∈ [K],
and any integer ℓ = poly(n), the following advantage is negligible:

Advacc-cons
A,i,ℓ,DAS,Access(n) :=

Pr

 data ̸= ⊥ ∧ d ̸= ⊥ ∧ d ̸= datai

∣∣∣∣∣∣∣∣
par← Setup(1n), com← A(par),
d← AccessA,L(com, i),
(tran1, . . . , tranℓ)← A(par),
data := Ext(com, tran1, . . . , tranℓ)

 .

D Omitted Details from Section 5
Lemma 26. Let Cr : Fkr → Fnr and Cc : Fkc → Fnc be linear erasure codes with reception
efficiencies tr, tc, respectively. Then, Cr ⊗ Cc : Fkr·kc → Fnr·nc is an erasure code with
reception efficiency

t = ncnr − (nc − tc + 1)(nr − tr + 1) + 1.

Proof. We want to reconstruct data M ∈ Fkc×kr given a set of symbols of X = GcMG⊤r ∈
Fnc×nr . Let X ⊆ [nc] × [nr] be the set of indices of these symbols in X, i.e., for each
(i, j) ∈ X , we know Xi,j ∈ F. We say that a row i ∈ [nc] (resp. column j ∈ [nr]) is saturated
if we have at least tr (resp. tc) symbols, i.e., |X ∩{i}× [nr]| ≥ tr (resp. X ∩ [nc]×{j} ≥ tc).
Clearly, if a row (resp. column) is saturated, we can reconstruct the entire row (resp.

48 Foundations of Data Availability Sampling

column) using reconstruction of the codes Cr (resp. Cc). Now, assume there is no way
in which we can reconstruct M. If at least tc rows are saturated, we can reconstruct the
entire matrix, contradicting our assumption. Thus, assume that at most tc − 1 rows are
saturated. Each saturated row has at most nr symbols in X . There are nc − (tc − 1)
remaining rows, all of which are not saturated. Each of those has at most tr − 1 symbols
in X . Thus, we have at most (tc − 1)nr + (nc − tc + 1)(tr − 1) symbols in X . In summary,
if we can not reconstruct M, then X has size at most (tc − 1)nr + (nc − tc + 1)(tr − 1),
which can be simplified to ncnr − (nc − tc + 1)(nr − tr + 1) + 1.

E Additional Notions for Erasure Code Commitments
In this section, we define additional notions for erasure code commitment schemes that
are helpful in some cases.

E.1 Message-Bound Openings
We formally define the notion of message-bound openings for erasure code commitment
schemes. To recall, this notion is used when proving repairability of the resulting data
availability sampling scheme, see Subsection 6.3.
Definition 22 (Message-Bound Openings). Let CC = (Setup, Com, Open, Ver) be an
erasure code commitment scheme for an erasure code C with reception efficiency t and
reconstruction algorithm Reconst. We say that CC has message-bound openings, if for
every PPT algorithm A, the following advantage is negligible:

Advmb-open
A,CC (n) :=

Pr


|I0| ≥ t ∧ |I1| ≥ t ∧ ⊥ /∈ {m0, m1}

∧ m0 = m1
∧ ∀i ∈ I0 : Ver(ck, com0, i, m̂0,i, τ0,i) = 1
∧ ∀i ∈ I1 : Ver(ck, com1, i, m̂1,i, τ1,i) = 1
∧ ∃i ∈ I1 : Ver(ck, com0, i, m̂1,i, τ1,i) = 0

∣∣∣∣∣∣∣∣∣∣
ck← Setup(1n),(

(com0, (m̂0,i, τ0,i)i∈I0)
(com1, (m̂1,i, τ1,i)i∈I1)

)
← A(ck),

m0 := Reconst((m̂0,i)i∈I0),
m1 := Reconst((m̂1,i)i∈I1)

 .

E.2 Computational Uniqueness
We define the notion of computational uniqueness for erasure code commitments and study
its implications.
Definition 23 (Computational Uniqueness). Let CC = (Setup, Com, Open, Ver) be an
erasure code commitment scheme for an erasure code C with reception efficiency t and
reconstruction algorithm Reconst. We say that CC is computationally unique, if for every
PPT algorithm A, the following advantage is negligible:

Advc-uniq
A,CC (n) :=

Pr


|I0| ≥ t ∧ |I1| ≥ t ∧ ⊥ /∈ {m0, m1} ∧m0 = m1

∧ ∀i ∈ I0 : Ver(ck, com0, i, m̂0,i, τ0,i) = 1
∧ ∀i ∈ I1 : Ver(ck, com1, i, m̂1,i, τ1,i) = 1
∧ com0 ̸= com1

∣∣∣∣∣∣∣∣∣∣
ck← Setup(1n),(

(com0, (m̂0,i, τ0,i)i∈I0)
(com1, (m̂1,i, τ1,i)i∈I1)

)
← A(ck),

m0 := Reconst((m̂0,i)i∈I0),
m1 := Reconst((m̂1,i)i∈I1)

 .

We show that computational uniqueness implies both message-bound openings and
code-binding. Remark that the converse direction is not true. Message-bound openings do
not imply computational uniqueness.

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 49

Lemma 27. Let C : Γk → Λn be an erasure code. Let CC = (Setup, Com, Open, Ver) be an
erasure code commitment scheme for C such that CC is computationally unique. Then,
CC has message-bound openings. Concretely, for any PPT algorithm A, there is a PPT
algorithm B with T(B) ≈ T(A) and

Advmb-open
A,CC (n) ≤ Advc-uniq

B,CC (n).

Proof. Let A be an adversary against the message-bound openings property of CC. We
construct an adversary B against computational uniqueness as follows:

1. B gets as input a commitment key ck. Then, B runsA on input ck to get commitments
and openings (com0, (m̂0,i, τ0,i)i∈I0) and (com1, (m̂1,i, τ1,i)i∈I1).

2. B outputs (com0, (m̂0,i, τ0,i)i∈I0) and (com1, (m̂1,i, τ1,i)i∈I1).

Note that if com0 = com1, the adversary A trivially loses the message-bound opening
game. Thus, if A wins in the message-bound openings game, B wins the computational
uniqueness game.

Lemma 28. Let C : Γk → Λn be an MDS code. Let CC = (Setup, Com, Open, Ver) be an
erasure code commitment scheme for C such that CC is computationally unique and satisfies
position-binding. Then, CC satisfies code-binding. Concretely, for any PPT algorithm A
there are PPT algorithms B1,B2 with T(B1) ≈ T(A), T(B2) ≈ T(A), and

Advcode-bind
A,CC (n) ≤ Advpos-bind

B1,CC (n) + Advc-uniq
B2,CC(n).

Proof. We first recall the code-binding game for an adversary A as in the statement. The
adversary A first gets a freshly sampled commitment key ck← Setup(1n). Then, it outputs
a commitment and a few openings. Denote them by (com0, (m̂0,i, τ0,i)i∈I0), where I0 ⊆ [n]
is the set of positions for which the adversary opens the commitment. Then, A breaks
code-binding, if all openings verify, i.e., Ver(ck, com0, i, m̂0,i, τ0,i) = 1 for all i ∈ I0, and
there is no codeword in C that is consistent with these openings m̂0,i. Our proof is as
follows. We first oberve that |I0| > k has to hold, as C is an MDS code. Next, let R ⊂ I0
be the set of the first k of the openings. Further, let m = Reconst((m̂0,i)i∈R), m̂1 = C(m),
and (com1, St)← Com(ck, m). We know that m ≠ ⊥ as C is an MDS code. In other words,
m̂1 ∈ C is the unique codeword consistent with the openings in R. Now, we can consider
two cases. In the first case, com1 = com0. In this case, we break position-binding. This is
because there has to be at least one i∗ ∈ I0 with m̂0,i∗ ≠ m̂1,i∗ , as otherwise the openings
output by A would be consistent with the codeword m̂1. A reduction can just compute an
opening for m̂1,i∗ honestly and use it in combination with m̂0,i∗ , τ0,i∗ to break position-
binding. In the second case, com1 ̸= com0. Here, we break computational uniqueness.
Namely, a reduction can output com0 with all openings output by the adversary in R, and
output com1 with enough honestly computed openings. We omit a more formal exposition
of these two reductions.

E.3 Extractability
We define the notion of extractability for erasure code commitment schemes, and study its
implications. We start with the formal definition.

Definition 24 (Extractable CC). Let C : Γk → Λn be an erasure code. Let CC =
(Setup, Com, Open, Ver) be an erasure code commitment scheme for C such that Com is
deterministic, and use the notation com = Ĉom(ck, m) for (com, St) = Com(ck, m). We say

50 Foundations of Data Availability Sampling

that CC is extractable, if there is a PPT algorithm Ext, such that for any PPT algorithm
A, the following advantage is negligible:

Advextr
A,Ext,CC(n) := Pr

 Ver(ck, com, i, m̂, τ) = 1
∧ Ĉom(ck, m) ̸= com

∣∣∣∣∣∣
ck← Setup(1n),
(com, i, m̂, τ)← A(ck),
m← Ext(ck, com, i, m̂, τ)

 .

Next, we show that extractability is a strong notion, in a sense that, in combination
with position-binding, it implies code-binding and computational uniqueness.

Lemma 29. Let C : Γk → Λn be an erasure code. Let CC = (Setup, Com, Open, Ver)
be an erasure code commitment scheme for C such that Com is deterministic. Further,
assume that CC is position-binding and extractable. Then, CC is computationally unique.
Concretely, for any PPT algorithm A, there are PPT algorithms B,B′ with T(B) ≈ T(A),
T(B′) ≈ T(A), and

Advc-uniq
A,CC (n) ≤ 2 · Advextr

B,Ext,CC(n) + Advpos-bind
B′,CC (n).

Proof. Let A be an algorithm that breaks computational uniqueness of CC. That is,
it gets as input a commitment key ck and outputs commitments com0 and com1 as
well as two sets of openings (m̂0,i, τ0,i)i∈I0 and (m̂1,i, τ1,i)i∈I1 . It breaks computational
uniqueness if com0 ̸= com1, all openings verify, i.e., for all b ∈ {0, 1} and all i ∈ Ib we have
Ver(ck, comb, i, m̂b,i, τb,i) = 1, and both sets of openings reconstruct to the same message,
i.e., |I0| ≥ t, |I1| ≥ t, and for m0 := Reconst((m̂0,i)i∈I0) and m1 := Reconst((m̂1,i)i∈I1)
we have m0 = m1 and both are not ⊥. To prove that A can not win, our strategy
is to extract two messages that commit to com0 and com1, respectively. For that, we
use the extractability of CC. Then, we argue that they have to be the same. More
precisely, we run m∗0 ← Ext(ck, com0, i0, m̂0,i0 , τ0,i0) for some arbitrary, say the first,
i0 ∈ I0, and m∗1 ← Ext(ck, com1, i1, m̂1,i1 , τ1,i1) for some arbitrary, say the first, i1 ∈ I1,
where Ext is the extractor that exists by extractability of CC. Extractability tells us that
Ĉom(ck, m∗0) = com0 and Ĉom(ck, m∗1) = com1, except with probability 2 · Advextr

B,Ext,CC(n)
for some reduction B. Thus, as soon as we can show that m∗0 = m∗1, we know that A
can not break computational uniqueness. To show this, we define m̃0 := C(m0) and
m̃1 := C(m1). Using a reduction B′ to position-binding, we can argue that m̂b,i = m̃b,i for
both b ∈ {0, 1} and each i ∈ Ib, except with probability Advpos-bind

B′,CC (n). Thus, we have

m∗0 = Reconst((m̃0,i)i∈I0) = Reconst((m̂0,i)i∈I0) = m0.

Analogously, we can show that m∗1 = m1. As m0 = m1, we can conclude that m∗0 = m∗1.

Lemma 30. Let C : Γk → Λn be an erasure code. Let CC = (Setup, Com, Open, Ver) be an
erasure code commitment scheme for C such that Com is deterministic. Further, assume
that CC is position-binding and extractable. Then, CC is code-binding. Concretely, for any
PPT algorithm A, there are PPT algorithms B,B′ with T(B) ≈ T(A), T(B′) ≈ T(A), and

Advc-uniq
A,CC (n) ≤ Advextr

B,Ext,CC(n) + Advpos-bind
B′,CC (n).

Proof. We only sketch the proof, as it is very similar to the proof of Lemma 29. Let A
be an adversary against code-binding of CC. That is, A gets as input a commitment
key ck ← Setup(1n) and outputs a commitment and a few openings. We denote them

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 51

by (com, (m̂i, τi)i∈I), where I ⊆ [n] is the set of positions for which the adversary opens
the commitment. The adversary A breaks code-binding if all openings verify, and there
is no codeword that is consistent with the openings. Now, our goal is to break position-
binding with a reduction B′. For that, B′ first runs the extractor, namely, it runs
m∗ ← Ext(ck, com, i0, m̂i0 , τi0) for some arbitrary, say the first, i0 ∈ I. Except with
probability Advextr

B,Ext,CC(n) for some reduction B, we have that Ĉom(ck, m∗) = com. Then,
setting m̂∗ := C(m∗), reduction B′ can compute valid openings τ∗i for m̂∗ with respect to
com for any position i ∈ [n]. As no codeword is consistent with A’s openings m̂i, we know
that there is at least one i∗ ∈ I for which m̂∗i∗ ̸= m̂i∗ . Reduction B′ can thus output com,
i∗, m̂∗i∗ , τ∗i∗ , m̂i∗ , τi∗ to break position-binding of CC.

Lemma 31 (Informal). The KZG polynomial commitment scheme [KZG10] is extractable
in the algebraic group model.

Proof Sketch. Suppose A is an algebraic algorithm running in the extractability game. It
gets as input a commitment key g, gs, . . . , gsk−1 for some degree bound k − 1. Then, it
outputs a commitment com, elements x, y ∈ Zp, and an opening τ . As both com and τ
are group elements and A is algebraic, it also outputs coefficients αi and γi such that
com =

∏k−1
i=0

(
gsi
)αi

and τ =
∏k−1

i=0

(
gsi
)γi

. The extractor can now just output the
polynomial defined by coefficients αi.

F Omitted Details from Section 6
F.1 Omitted Details from Subsection 6.1
Proof of Lemma 2. Let A be an adversary against reconstruction-binding of CC. That
is, A outputs (com, (m̂i, τi)i∈I , (m̂′i, τ ′i)i∈I′) on input ck← Setup(1n). We distinguish two
cases by defining the following events:

• Event Win: This event occurs if A breaks reconstruction-binding, i.e. for m :=
Reconst((m̂i)i∈I) and m′ := Reconst((m̂′i)i∈I′) we have |I| ≥ t,|I ′| ≥ t, m ̸= m′,
Ver(ck, com, i, m̂i, τi) = 1 for all i ∈ I and Ver(ck, com, i, m̂′i, τ ′i) = 1 for all i ∈ I ′.

• Event BreakPosBind: This event occurs if there is an index i∗ ∈ I ∩ I ′ such that
m̂i∗ ̸= m̂′i∗ .

Clearly, we can write

Advrec-bind
A,k,CC(n) = Pr [Win] = Pr [Win ∧ BreakPosBind] + Pr [Win ∧ ¬BreakPosBind].

We bound these terms individually. First, consider the event Win ∧ BreakPosBind. Note
that if this event occurs, then especially τi∗ and τ ′i∗ are valid openings for m̂i∗ ̸= m̂′i∗ ,
respectively. Therefore, we can easily bound the probability of this event using a reduction
B1 that breaks position-binding of CC as follows: On input ck, B1 runs A(ck) and gets
(com, (m̂i, τi)i∈I , (m̂′i, τ ′i)i∈I′). Then, B1 checks if event Win ∧ BreakPosBind occurs, which
can be done efficiently. If it does, B1 outputs (com, i∗, m̂i∗ , τi∗ , m̂′i∗ , τ ′i∗), where i∗ is the
index in the definition of BreakPosBind. It is easy to see that B1 breaks position-binding if
event Win ∧ BreakPosBind occurs, and the running time of B1 is dominated by running A.

Next, we bound the probability of Win∧¬BreakPosBind. Assume that this event occurs.
Then we know that for all i ∈ I ∩ I ′ we have m̂i = m̂′i, i.e. m̂ and m̂′ are consistent on
I ∩ I ′. We can define

m̂∗i :=


m̂i, if i ∈ I \ I ′,

m̂i = m̂′i, if i ∈ I ∩ I ′,

m̂′i, if i ∈ I ′ \ I

for all i ∈ I ∪ I ′.

52 Foundations of Data Availability Sampling

Note that for all m̂∗i , i ∈ I ∪ I ′, we have valid openings τi, as Win occurs. We claim that
there is no m∗ ∈ Γk, such that the codeword c = C(m∗) is consistent with (m̂∗i)i∈I∪I′ . Once
this is established, the reduction B2 breaking code-binding by outputting (m̂∗i)i∈I∪I′ is
clear. Assume towards contradiction that such an m∗ ∈ Γk exists. Then by completeness of
algorithm Reconst, and because both (m̂i)i∈I and (m̂′i)i∈I′ are a subsequence of c = C(m∗),
we have Reconstk((m̂i)i∈I) = m∗ = Reconst((m̂′i)i∈I′). A contradiction.

F.2 Omitted Details from Subsection 6.2
Proof of Lemma 3. We want to analyze the quality of algorithm Samplewr that samples
indices uniformly at random with replacement. Recall that for that, we have to upper
bound the probability that ℓ invocations of Samplewr(1Q, 1N) jointly sample at most ∆
distinct indices in [N]. To this end, consider the experiment (il,j)j∈[Q] ← Samplewr(1Q, 1N)
for each l ∈ [ℓ] as in the definition of index samplers. For each subset I ⊆ [N] with |I| ≤ ∆,
let EI be the event that the sampled indices il,j are all in I. Then, it is clear that

Pr
G

 ∣∣∣∣∣∣
⋃

l∈[ℓ]

{il,j | j ∈ [Q]}

∣∣∣∣∣∣ ≤ ∆

 ≤ ∑
I⊆[N], |I|≤∆

Pr [EI].

Now, we fix one such subset I. The probability of EI is at most(
|I|
N

)Qℓ

≤
(

∆
N

)Qℓ

,

because all Qℓ indices are sampled independently. As there are
(

N
∆
)

such subsets, the first
part of the lemma follows. To obtain the simpler bound, we use the fact

∀n ∈ N : ∀k ∈ [n] :
(

n

k

)
<
(n · e

k

)k

.

Then, we have (
N

∆

)(
∆
N

)Qℓ

<
N∆ · e∆

∆∆ · ∆Qℓ

NQℓ
= e∆ ·N∆−Qℓ ·∆Qℓ−∆.

Now, we use c := ∆/N , and conclude with

e∆ ·N∆−Qℓ ·∆Qℓ−∆ = e∆ ·N∆−Qℓ · (cN)Qℓ−∆

≤ e∆ · cQℓ−∆ ≤ clogc(e)∆+Qℓ−∆ ≤ cQℓ−(1−logc(e))∆.

Proof of Lemma 4. We analyze the locality of sampling uniformly with replacement. For
that, consider the experiment (ij)j∈[Q] ← Samplewr(1Q, 1N) and define the set Γ := {S(ij) |
j ∈ [Q]}. Then, we need to upper bound the probability that Γ is of size at most D. For
that, fix any subset I ⊂ N of size D. Using a union bound, we can as well upper bound
the probability of Γ ⊆ I. As all indices ij are sampled independently from [N], and S is a
Q-to-1 mapping onto a set of size N/Q, the probability that I ⊂ N is (D/(N/Q))Q. In
combination, we have

Pr [|Γ| ≤ D] =
(

N/Q

D

)
· Pr [Γ ⊆ I] =

(
N/Q

D

)
·
(

D

N/Q

)Q

<

(
e ·N/Q

D

)D

·
(

D

N/Q

)Q

= eD ·
(

D

N/Q

)Q−D

,

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 53

where we used the fact

∀n ∈ N : ∀k ∈ [n] :
(

n

k

)
<
(n · e

k

)k

.

Proof of Lemma 5. We want to analyze the quality of sampling uniformly without replace-
ment. Recall that for that, we have to upper bound the probability that ℓ invocations of
Samplewor(1Q, 1N) jointly sample at most ∆ distinct indices in [N]. Consider the experi-
ment (il,j)j∈[Q] ← Sample(1Q, 1N) for each l ∈ [ℓ] as in the definition of index samplers.
For each subset I ⊆ [N] with |I| = ∆, let EI be the event that the sampled indices il,j are
all in I. Then, we have

Pr

 ∣∣∣∣∣∣
⋃

l∈[ℓ]

{il,j | j ∈ [Q]}

∣∣∣∣∣∣ ≤ ∆

 ≤ ∑
I⊆[N], |I|≤∆

Pr [EI].

Now, fix one such subset I. The probability of EI is at most((
∆
Q

)/(
N

Q

))ℓ

.

This is because each of the ℓ invocations of the sampler samples uniformly from
([N]

Q

)
, and

all invocations are independent. As there are
(

N
∆
)

such subsets I, the claim follows.

Proof of Lemma 6. It is clear that the claim holds for N mod Q ̸= 0. Thus, assume
that N is a multiple of Q and set N ′ := N/Q. Now, observe that ℓ copies of Sampleseg
output at most ∆ distinct indices, if and only of they sample at most ∆′ := ∆/Q distinct
segments seg1, . . . , segℓ ∈ [N ′]. We can view the sampling of seg1, . . . , segℓ as ℓ independent
executions of Samplewr(11, 1N ′), which shows the claim.

F.3 Omitted Details from Subsection 6.3
Proof of Lemma 11. Let A be an algorithm against local access consistency, and let
i0 ∈ [K]. We first recall the local access consistency game. In this game, A first gets
parameters par = ck ← Setup(1n) as input. Then, it outputs a commitment com. Next,
algorithm Access is run on input com, i0 and with oracle access to A. The algorithm outputs
d after making exactly one query to A. Finally, A outputs transcripts (tran1, . . . , tranℓ) and
data := Ext(com, tran1, . . . , tranℓ) is run. The adversary A breaks local access consistency,
if data ̸= ⊥, d ̸= ⊥, and d ̸= datai0 . Intuitively, this means that the outputs of Access and
Ext are not consistent. Now, let us introduce some notation. As in algorithm Ext, write
tranl := (il,j , d̂atal,il,j

, τl,il,j
)j∈[Q] for each l ∈ [L], and define the set I ⊆ [N] of indices

i ∈ [N] such that there is a (l, j) ∈ [L] × [Q] with il,j = i. Further, let (d̂ata
′
î0

, τ ′
î0

) be
the result of the query that Access made. Assuming data ̸= ⊥, we know that |I| ≥ t,
by definition of Ext. Define the index i1 := î0 if î0 ∈ I and i1 ∈ I arbitrary if î0 /∈ I.
Then, define the set I ′ := (I \ {i1}) ∪ {̂i0}. Clearly, we have |I ′| = |I| ≥ t(K). For each
i ∈ I, define d̂atai exactly as in algorithm Ext. Further, for each i ∈ I define τi to be
the corresponding opening such that Ver(ck, com, i, d̂atai, τi) = 1. For each i ∈ I \ {i1},
set d̂ata

′
i := d̂atai and τ ′i := τi. Now, we claim that (com, (d̂atai, τi)i∈I , (d̂ata

′
i, τ ′i)i∈I′) is

an output with which a reduction B can break reconstruction-binding of CC. Clearly, a
reduction can compute this output. Further, we |I| ≥ t and |I ′| ≥ t, as already observed.
As data ̸= ⊥ and d ̸= ⊥, we know that all openings are valid, i.e. Ver(ck, com, i, m̂i, τi) = 1

54 Foundations of Data Availability Sampling

and Ver(ck, com, i, m̂′i, τ ′i) = 1 for all i ∈ I, i′ ∈ I ′. Finally, we know that the i0th symbol
of m := Reconst((m̂i)i∈I) and the i0th symbol of m′ := Reconst((m̂′i)i∈I′) are distinct.
This is because the i0th symbol of m′ is d by the second property generalized systematic
encoding, and the i0th symbol of m is datai0 by definition of Ext.

Proof of Lemma 12. LetA be an adversary against the (L, ℓ)-repairability of DAS[CC, Sample].
We first recall the repair liveness game. In this game, parameters par := ck← Setup(1n)
are generated and A is run on input par. Then, A outputs a commitment com. After
that, L copies of V1(com) are run, where their oracle queries are answered by A. Let
tran1, . . . , tranL denote the resulting transcripts that they output, and bi := V2(com, trani)
for all i ∈ [L]. Then, A gets to pick a subset {i1, . . . , iℓ} ⊆ [L] of ℓ of these transcripts
and algorithm Repair is run on input com, trani1 , . . . , traniℓ

. It outputs a new encoding
π̄ or ⊥. If it does not output ⊥, all L clients are run again, i.e., tran′i ← Vπ̄,Q

1 (com) and
b′i := V2(com, tran′i) for all i ∈ [L]. The adversary A breaks repair liveness, if for all j ∈ [L],
we have bij

= 1, i.e., all selected clients accepted before the repairing took place, but there
is some i ∈ [L] with b′i = 0. The latter includes the case where Repair output ⊥. We will
now distinguish two cases, captured by the following two events.

• Event RepairBot: This event occurs, if Repair outputs ⊥ and the adversary breaks
repair liveness.

• Event RepairSucc: This event occurs, if Repair does not output ⊥, i.e., it outputs an
encoding π̄, and the adversary breaks repair liveness.

Clearly, we have

Advrepairlive
A,L,ℓ,DAS[CC,Sample],Repair(n) ≤ Pr [RepairBot] + RepairSucc.

We will bound the probability of both events separately. Let us start with event RepairBot.
Recall that algorithm Repair internally runs Ext(com, trani1 , . . . , traniℓ

), and only outputs
⊥ if Ext does. Therefore, if event RepairBot occurs, the adversary first received parameters,
then it output a commitment, and then it found ℓ accepting out of L transcripts, such
that these do not suffice to reconstruct the data. Intuitively, this means that the adversary
breaks subset-soundness of DAS[CC, Sample]. Indeed, one can make this intuition formal.
We only sketch a reduction B1 here. A reduction that runs in the subset-soundness game
gets as input par and forwards them to A. Then, it gets a commitment com and outputs
it to the subset-soundness game. It simulates the interaction with L copies of V1 by
forwarding between A and the subset-soundness game. Finally, it forwards A’s selection
of indices i1, . . . , iℓ to the subset-soundness game. One can easily see that this reduction
breaks (L, ℓ)-subset-soundness if event RepairBot occurs. We have

Pr [RepairBot] ≤ Advsub-sound
B1,L,ℓ,DAS(n).

Next, we want to bound the probability of event RepairSucc. Intuitively, if this event
occurs, then Ext run within Repair was able to reconstruct data data, and thus (π̄, com) =
Encode(data), but the new encoding π̄ does not verify with respect to the initial commitment
com. If we recall the structure of an encoding, i.e., each symbol consists of an opening for
the erasure code commitment com, then we see that the adversary must intuitively break
message-bound openings in this case. More precisely, this works as follows. Because d̂ata
was extracted by Ext, we know by definition of Ext that the transcripts trani1 , . . . , traniℓ

contain at least t valid symbols and openings d̂atai, τi for commitment com. Due to
completeness, the new encoding π̄ contains at least t valid openings τ̄i for d̂atai and
commitment com. Here d̂ata := C(data) as computed in Encode by algorithm Repair.
Assuming adversary breaks repair liveness, we know that one of the clients after the

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 55

repairing rejects, i.e., b′i = 0 for some i ∈ [L]. By definition of V2, this means that at least
one of the new valid openings, say the jth, contained in the new encoding π̄ does not work
with the old commitment com. More precisely, letting (d̂ataj , τ̄j) be the jth symbol of π̄,
we know that Ver(ck, com, j, d̂ataj , τ̄j) = 0. This leads to a reduction B2 that breaks the
message-bound openings property of CC. The reduction gets as input the commitment key
ck and runs A in the repair liveness game with par := ck. If event RepairSucc occurs, the
reduction outputs com, (d̂ataj , τj)j and com, (d̂ataj , τ̄i)j . We have

Pr [RepairSucc] ≤ Advmb-open
B2,CC (n).

G Omitted Details from Section 7
Proof of Lemma 14. We prove the statement via a sequence of games. Let A be an
algorithm in the code-binding game of CC[C, VC, PS].
Game G0: We define G0 to be the code-binding game of CC[C, VC, PS]. That is, adversary
A gets as input ck = (ckVC, crs, ρ) generated as in Setup and outputs (com, (m̂i, τi)i∈I)
to break code-biding. The game outputs 1 if all τi are valid openings for m̂i,, i.e.
Ver(ck, com, i, m̂i, τi) = 1 for all i ∈ I, and there is no m such that the m̂i are com-
patible with C(m). By definition, we have

Pr [G0 ⇒ 1] = Advcode-bind
A,CC[C,VC,PS](n).

Game G1: This game is defined as G0, with an additional check at the end. Namely,
after A outputs (com, (m̂i, τi)i∈I), the game parses com = (comVC, π) and sets stmt :=
(ckVC, comVC, ρ). Then, it runs witn ← PS.Ext(crs, stmt, π). It returns 0 if we have
(stmt, witn) /∈ R and PVer(crs, stmt, π) = 1. Otherwise, it returns whatever G0 would
have returned. It is clear that the difference between G0 and G1 can be bounded using a
straight-forward reduction B1 that breaks knowledge soundness of PS. We have

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ Advkn-sound
B1,PS,PS.Ext(n).

Finally, we bound the probability that G1 outputs 1 using a reduction B2 that breaks
position-binding of VC. The intuition is as follows: If G1 outputs 1, we extracted witness
witn = m such that for m̂∗ := C(m) we have (comVC, StVC) = VC.Com(ckVC, m̂∗; ρ) for
some state StVC, due to the definition of relation R. If G1 outputs 1, then in particular
A breaks code-binding. Thus, there must be some index i such that the returned m̂i is
different from m̂∗i . By completeness of VC, we can use StVC to compute a valid opening τi

for m̂∗i for commitment comVC. Now, we have valid openings for comVC for two different
symbols m̂i ̸= m̂∗i at position i, i.e. we break position-binding. It is trivial to turn this
intuition into a formal reduction B2, which gets as input ckVC, simulates G1 for A, and
outputs m̂i, m̂∗i along with their respective openings. We have

Pr [G1 ⇒ 1] ≤ Advpos-bind
B2,VC (n).

Proof of Lemma 15. We prove the statement via a sequence of games.
Game G0: Game G0 is the message-bound openings game. Recall that in this game, A
outputs com0, (m̂0,i, τ0,i)i∈I0 and com1, (m̂1,i, τ1,i)i∈I1 on input ck = (ckVC, crs, ρ). The
game G0 outputs 1, i.e., A breaks the message-bound openings property of CC, if both
sets of openings (m̂0,i, τ0,i)i∈I0 and (m̂1,i, τ1,i)i∈I1 allow to reconstruct the same message,

56 Foundations of Data Availability Sampling

the openings verify with respect to their respective commitments, but the openings in
I1 do not all verify with respect to com0. Recall that com0 and com1 have the form
com0 = (comVC,0, π0) and com1 = (comVC,1, π1), respectively. It will be our goal to
show that the vector commitments comVC,0, comVC,1 are the same. It is clear from the
construction that this implies that A can not win. We have

Advmb-open
A,CC (n) = Pr [G0 ⇒ 1].

Game G1: In G1, we use the knowledge extractor PS.Ext of PS to extract witnesses
from the proofs π0 and π1 contained in com0 and com1. Namely, the game runs m0 ←
PS.Ext(crs, (ckVC, comVC,0, ρ), π0) and m1 ← PS.Ext(crs, (ckVC, comVC,1, ρ), π1). The game
outputs 0 if the first component of VC.Com(ckVC, C(m0); ρ) is not comVC,0 or the first
component of VC.Com(ckVC, C(m1); ρ) is not comVC,1. Otherwise, G1 behaves as G0.
Clearly, the difference between games G0 and G1 can bounded using the knowledge
soundness of PS, i.e., we have a reduction B1 with

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ 2 · Advkn-sound
B1,PS,PS.Ext(n).

Game G2: Game G2 is as game G1, but with an additional modification of the winning
condition. Namely, if there is a b ∈ {0, 1}, and an i ∈ Ib such that m̂b,i ̸= C(mb)i, then the
game outputs 0. Otherwise, it behaves as G1. Here, recall that m̂b,i is part of the opening
that A outputs, and mb is the message that the game extracts from πb as described in G1.
Note that for m̂b,i, A also outputs an opening τb,i that verifies with respect to comVC,b.
Also, a reduction can obtain a valid opening for C(mb)i using ρ. Thus, we can easily
construct a reduction B2 that breaks position-binding of VC if A can distinguish G1 and
G2. We have

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤ Advpos-bind
B2,VC (n).

We can now argue that the probability that G2 outputs 1 is zero. For that, observe that

m0 = Reconst((m̂0,i)i∈I0) = Reconst((m̂1,i)i∈I1) = m1,

where the second equality follows from the winning condition of message-bound openings,
and the first and last equality follow from correctness of Reconst. From that, we get that
the vector commitments comVC,0 and comVC,1 contained in com0 and com1 are the same.
One can observe that in this case, A can never win, i.e.,

Pr [G2 ⇒ 1] = 0.

H Omitted Details from Section 8
Proof of Lemma 16. Let A be an adversary against position-binding of CC⊗. We give
a reduction B that runs A internally, and breaks position-binding of CCc if A breaks
position-binding of CC⊗. Namely, B gets as input a commitment key ck and runs A
on input ck. Then, A terminates with output (com, j, m̂, τ, m̂′, τ ′). Finally, B writes
com = (com1, . . . , comnr), sets (i∗, j∗) := ToMatIdx(j), and outputs (comj∗ , i∗, m̂, τ, m̂′, τ ′).
Clearly, B perfectly simulates the position-binding game for A, and its running time is
dominated by the running time of A. Assuming that A breaks position-binding, we
know that m̂ ̸= m̂′, and by definition of Ver⊗, we have Ver⊗(ck, comj∗ , i∗, m̂, τ) = 1 and
Ver⊗(ck, comj∗ , i∗, m̂′, τ ′) = 1. This means that B breaks position-binding of CCc.

Proof of Lemma 17. We prove computational uniqueness by showing a simpler yet stronger
statement. Namely, let A be a PPT algorithm. Assume that A gets as input a commitment

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 57

key ck ← Setupc(1n) and outputs a commitment com = (com1, . . . , comnr
), and some

openings. We denote these openings by Xi,j ∈ F, τi,j for (i, j) ∈ I ⊆ [nc] × [nr], where
I denotes the set of indices for which A opens the commitment. Further, assume the
following three conditions hold:

• The size of I is at least the reception efficiency t of Cr ⊗ Cc.

• The reconstruction algorithm of Cr⊗Cc does not output ⊥. The output is m ∈ Fkckr ,
which defines a matrix M ∈ Fkc×kr .

• All openings Xi,j ∈ F, τi,j are valid according to Ver⊗.

In this case, we have (except with some negligible probability δ) that for all j ∈ [nr] we
have Ĉomc(ck, (MG⊤r)j) = comj , where (MG⊤r)j denotes the jth column of MGr. It can
easily be observed that this statement implies computational uniqueness and the advantage
against computational uniqueness is bounded by 2δ. The rest of the proof is dedicated to
showing this statement. We do so by providing a sequence of games.
Game G0: We start with G0, which models the setting above. Namely, in game G0, the
game first samples ck← Setupc(1n). Then, it runs A on input ck. As a result A outputs a
commitment com = (com1, . . . , comnr

) and openings Xi,j ∈ F, τi,j for (i, j) ∈ I ⊆ [nc]×[nr]
as above. The game outputs 1 if the three conditions from above hold, but there is a
j ∈ [nr] such that Ĉomc(ck, (MG⊤r)j) ̸= comj . Our goal is to upper bound

δ := Pr [G0 ⇒ 1].

Before we continue with the next game, we introduce the set I∗ ⊆ [nr], which is defined as

I∗ := {j ∈ [nr] | ∃i ∈ [nr] : (i, j) ∈ I} .

Intuitively, I∗ corresponds the set of columns in which the adversary opened any index. It
is easy to see that I∗ contains at least kr elements if G0 outputs 1.
Game G1: This game is as G0, but we additionally run the extractor Ext of the commit-
ment scheme CCc a few times. Precisely, after obtaining the output from A, the game
does the following for each j ∈ I∗: It first tries to extract a preimage of the commit-
ment comj via Yj ← Ext(ck, comj , i, Xi,j , τi,j), where i ∈ [nr] is the first index such that
(i, j) ∈ I. Here, we have Yj ∈ Fkc . Then, the game outputs 0 and terminates if for
(com, St) = Comc(ck, Yj) we have com ̸= comj . Finally, if the game did not yet terminate
after having done this for all j ∈ I∗, it returns whatever G0 would return. Clearly, games
G0 and G1 only differ if extraction fails, i.e., A manages to output an opening Xi,j , τi,j as
above which verifies with respect to commitment comj , but for which Ext does not output
a correct preimage Yj . A straight-forward reduction B against extractability of CCc shows

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ Advextr
B,Ext,CCc

(n).

Game G2: This game is as G1, but we introduce a bad event and let the game abort if
it occurs. To define the bad event, we first recall that during verification of A’s output,
vectors a ∈ Fnr−kr are sampled uniformly, and the equation Ĉomc(ck, 0) ̸=

∑nr

i=1 hj · comj

is checked, where h = H⊤a. Written differently, it is checked that Ĉomc(ck, 0) = com H⊤a.

• Event LinCol: This event occurs, if Ĉomc(ck, 0) = com H⊤a, but there is a column of
com H⊤ which is not equal to Ĉomc(ck, 0), where a ∈ Fnr−kr is sampled uniformly
during verification (see algorithm Ver⊗).

We can easily bound the probability of LinCol. For that, observe that if a column of com H⊤
is not equal to Ĉomc(ck, 0), then the map a 7→ com H⊤a is a non-zero homomorphism

58 Foundations of Data Availability Sampling

from Fnr−kr to the commitment space. As a is sampled uniformly and independent of
everything else, the probability that it ends up being in the kernel of this map is at most
1/|F|. We have

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤ Pr [LinCol] ≤ 1
|F|

.

Next, we introduce some notation. Namely, we define the set H ⊆ [nr] to be the first kr

indices in I∗. Further, we define the set W := [nr] \ H of the remaining indices. Having
defined the sets H and W, we now define certain matrices and vectors:

• Consider the parity-check matrix H ∈ F(nr−kr)×nr of Cr. We split H into two matrices
HH ∈ F(nr−kr)×kr and HW ∈ F(nr−kr)×(nr−kr). This is done in the following way:
The matrix HH contains all columns with indices in H, and the matrix HW contains
all columns with indices in W . Both are ordered in the canonical way. Observe that
because of our assumption that Cr is an MDS code, we know that HW and H⊤W are
invertible.

• We partition the commitments comj , j ∈ [nr] in the same way into comH = (comj)j∈H
and comW = (comj)j∈W .

• Recall from G1 that the game extracts vectors Yj ∈ Fkc for every j ∈ I∗. In
particular, it extracts Yj for every j ∈ H ⊆ I∗. We arrange these Yj for j ∈ H into
a matrix YH ∈ Fkc×kr . Further, we define the matrix

YW := −YHH⊤H
(
H⊤W

)−1
.

Also, we define the matrix Y ∈ Fkc×nr by merging YH and YW in the natural way,
i.e., the columns in H of Y are filled by YH and the columns in W are filled by YW ,
both by respecting the natural order.

• We encode the matrix Y that we just defined using the code Cc. That is, we define a
matrix X̂ := GcY ∈ Fnc×nr .

The intuition is as follows: The matrix YW completes the extracted YH into a matrix with
rows in the code. The matrix is consistent with the commitments and openings output by
A, as we will show. We continue by making this intuition formal in the following claims.

Claim. Consider the notations and assumptions from the proof of Lemma 17. Every row
of Y and every row of X̂ is in the code Cr.

We prove Appendix H. To do so, it is sufficient to show that YH⊤ = 0. Observe that

YH⊤ = YHH⊤H + YWH⊤W
= YHH⊤H −YHH⊤H

(
H⊤W

)−1 H⊤W
= YHH⊤H −YHH⊤H = 0.

Claim. Consider the notations and assumptions from the proof of Lemma 17. Let j ∈ [nr]
be arbitrary. Then for the jth column Yj of Y, we have that Ĉomc(ck, Yj) = comj.

To prove Appendix H, we first observe that by G1 and the definition of YH, the claim
holds for all j ∈ H. Thus, it remains to prove the claim for all j ∈ W. For that, we
first recall from G2, that every column of com H⊤ is equal to Ĉomc(ck, 0). Using the
homomorphic properties of Ĉomc(ck, ·), this implies that

comW H⊤W = −comH H⊤H.

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 59

Now, multiplying both sides with
(
H⊤W

)−1, we have

comW = −comH H⊤H
(
H⊤W

)−1
.

If we now look at one specific column j ∈ W of this equation, we have

comj = −comH H⊤H
(
H⊤W

)−1
j

= Ĉomc(ck, YHH⊤H
(
H⊤W

)−1
j

) = Ĉomc(ck, Yj),

as desired.

Claim. Consider the notations and assumptions from the proof of Lemma 17. Let
(i, j) ∈ I be arbitrary. Then, we have Xi,j = X̂i,j, except with probability Advpos-bind

B′,CCc
(n),

for a reduction B′ with T(B′) ≈ T(A).

To see that Appendix H holds, observe that a reduction simulating G2 knows a preimage
Yj for all commitments comj output by the adversary (cf. Appendix H). Thus, in case
Xi,j ̸= X̂i,j holds for some (i, j) ∈ I, a reduction can output comj , the opening Xi,j , τi,j ,
and an opening for X̂i,j to break position-binding of CCc. The reduction can compute the
latter opening as it knows Yj .

Finally, we show how to use the three claims to argue that (except with the probability
bounded by reduction B′ in Appendix H) G2 does not output 1. This is done as follows.
From Appendix H, we know that X̂ = GcM̃G⊤r for some M̃ ∈ Fkc×nr . As |I| ≥ t, we
thus know that M̃ is defined by the output by the reconstruction algorithm on input
(X̂i,j)(i,j)∈I . As Xi,j = X̂i,j for all (i, j) ∈ I, we know that this input is the same as
(Xi,j)(i,j)∈I . An initial assumption (see G0) was that reconstructing from (Xi,j)(i,j)∈I

yields M. Therefore, we have M̃ = M. Thus, we showed that GcY = X̂ = GcMG⊤r . As
Gc induces an injective mapping, we have Y = MG⊤r . Thus, by Appendix H, we have
that the jth column of MG⊤r commits to comj for all j ∈ [nr], which is what we wanted
to show. In summary, we showed that

δ ≤ Advextr
B,Ext,CCc

(n) + Advpos-bind
B′,CCc

(n) + 1
|F|

.

Proof of Lemma 18. We want to prove that CC⊗ is code-binding. For that, we consider
two cases. Namely, either the adversary outputs openings such that in at least one
column the openings are not consistent with any codeword, or it does the same for at
least one row. Formally, consider the code-binding game of CC⊗. In this game, first a
key ck ← Setupc(1n) is generated. Then, the adversary A gets this key and outputs a
commitment com = (com1, . . . , comnr

), and some openings. We denote these openings by
Xi,j ∈ F, τi,j for (i, j) ∈ I ⊆ [nc] × [nr], where I denotes the set of indices for which A
opens the commitment. In terms of notation, we define Ir(i) to be the set of indices in row
i that are contained in I, and Ic(j) to be the set of indices in column j that are contained
in I. More formally, we set

Ir(i) := {j ∈ [nr] | (i, j) ∈ I}, Ic(j) := {i ∈ [nc] | (i, j) ∈ I},

for each i ∈ [nc] and each j ∈ [nr] The adversary A breaks code-binding, if all openings
verify, and there is no codeword that is consistent with these openings. Now, we define
two events.

• Event BreakCol: This event occurs, if all openings verify, and there is a column
j ∈ [nr], such that no codeword of code Cc is consistent with the openings Xi,j for
i ∈ Ic(j).

60 Foundations of Data Availability Sampling

• Event BreakRow: This event occurs, if all openings verify, and there is a row i ∈ [nc],
such that no codeword of code Cr is consistent with the openings Xi,j for j ∈ Ir(i).

If A breaks code-binding, at least one of these two events must occur. Therefore, we have

Advcode-bind
A,CC⊗ (n) ≤ Pr [BreakCol] + Pr [BreakRow ∧ ¬BreakCol].

Note that each column j ∈ [nr] is associated to a commitment comj output by the
adversary. Thus, if event BreakCol occurs, a reduction B can break code-binding of CCc.
The reduction is trivial and we omit it here. We have

Pr [BreakCol] ≤ Advcode-bind
B,CCc

(n).

For the rest of the proof, we focus on bounding the probability of event BreakRow ∧
¬BreakCol. That is, we need to argue that the adversary can not output openings of a row
such that no codeword (in the code Cr) is consistent with the openings. We prove this via
a sequence of games. This is almost identical to the proof of Lemma 17, and we encourage
the reader to read the proof of Lemma 17 first.
Game G0: Game G0 is exactly the code-binding game as above, with the modification
that it outputs 1 if and only if event BreakRow∧¬BreakCol occurs. If it occurs, let i∗ ∈ [nc]
be the first row that triggers event BreakRow. That is, let i∗ be the first row for which no
codeword of Cr is consistent with the openings Xi∗,j for j ∈ Ir(i∗). By definition, we have

Pr [BreakRow ∧ ¬BreakCol] = Pr [G0 ⇒ 1].

The rest of the proof will not use the openings other than Xi∗,j for j ∈ Ir(i∗).
Game G1: Game G1 is as G0. In addition, G1 runs the extractor Ext of the column
commitment scheme CCc a few times. Namely, when obtaining the output from A, the
game does the following for each j ∈ Ir(i∗): It first runs Yj ← Ext(ck, comj , i∗, Xi∗,j , τi∗,j)
to extract a preimage of comj . We have Yj ∈ Fkc . The game outputs 0 and terminates if for
(com, St) = Comc(ck, Yj) we have com ̸= comj . Finally, if the game did not yet terminate
after having done this for all j ∈ Ir(i∗), it continues as G0 would do. The difference
between G0 and G1 can easily be bounded using reduction B′ against extractability of
CCc. We have

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ Advextr
B′,Ext,CCc

(n).
Game G2: This game is as G1, with an additional bad event on which the game aborts.
Namely, recall that during verification of A’s output, vectors a ∈ Fnr−kr are sampled
uniformly, and the game checks the equation Ĉomc(ck, 0) ̸=

∑nr

i=1 hj ·comj , where h = H⊤a.
That is, it is checked that Ĉomc(ck, 0) = com H⊤a. We define event LinCol exactly as in
G2 of the proof of Lemma 17.

• Event LinCol: This event occurs, if Ĉomc(ck, 0) = com H⊤a, but there is a column of
com H⊤ which is not equal to Ĉomc(ck, 0), where a ∈ Fnr−kr is sampled uniformly
during verification (see algorithm Ver⊗).

The probability of LinCol is at most 1/|F|, which can be seen as in the proof of Lemma 17.
We have

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤ Pr [LinCol] ≤ 1
|F|

.

Next, we introduce some notation, which is similar to the notation in the proof of Lemma 17.
The set H ⊆ [nr] is defined to be the first kr indices in Ir(i∗). The set W is defined as
W := [nr] \ H. Recall that if the game outputs 1, the adversary output openings for all
indices j ∈ H in row i∗. Additionally, it may have output openings for some indices in W .
We will later see that there is at least one index in W for which the adversary provided an
opening. We now define certain matrices and vectors as in the proof of Lemma 17:

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 61

• Let H ∈ F(nr−kr)×nr be the parity-check matrix of Cr. We split H into two matrices
HH ∈ F(nr−kr)×kr and HW ∈ F(nr−kr)×(nr−kr). This is done as follows: The matrix
HH contains all columns with indices in H, and the matrix HW contains all columns
with indices in W. Both are ordered in the canonical way. As Cr is an MDS code,
we know that HW and H⊤W are invertible.

• We partition the commitments comj , j ∈ [nr] in the same way into comH =
(comj)j∈H and comW = (comj)j∈W .

• Recall that the game extracts vectors Yj ∈ Fkc for every j ∈ Ir(i∗) (see G1).
Especially, it extracts Yj for every j ∈ H ⊆ Ir(i∗). We arrange these Yj for j ∈ H
into a matrix YH ∈ Fkc×kr . We define

YW := −YHH⊤H
(
H⊤W

)−1
.

We define the matrix Y ∈ Fkc×nr by merging YH and YW in the natural way, i.e.,
the columns in H of Y are filled by YH and the columns in W are filled by YW ,
both by respecting the natural order.

• We define a matrix X̂ := GcY ∈ Fnc×nr .

The intuition is as follows: The matrix YW completes the extracted YH into a matrix with
rows in the code, which is consistent with the commitments output by A. As we assume
that A breaks code-binding, we know that this completed matrix has to be different from
the output of A, which will allow us to break binding of CCc. To make this intuition
formal, we will show three claims.

Claim. Consider the notations and assumptions from the proof of Lemma 18. Every row
of Y and every row of X̂ is in the code Cr.

The proof of Appendix H is identical to the proof of Appendix H.

Claim. Consider the notations and assumptions from the proof of Lemma 18. Let j ∈ [nr]
be arbitrary. Then for the jth column Yj of Y, we have that Ĉomc(ck, Yj) = comj.

The proof of Appendix H is identical to the proof of Appendix H.

Claim. Consider the notations and assumptions from the proof of Lemma 18. There is at
least one j∗ ∈ W such that A output an opening of index (i∗, j∗), i.e., j∗ ∈ Ir(i∗), and for
this j∗, the opening Xi∗,j∗ ∈ F output by A is different from the element X̂i∗,j∗ .

To prove Appendix H, observe that if no j∗ ∈ W is opened or all openings in W are
consistent with X̂, then the opened indices in row i∗ are consistent with the i∗th row of X̂.
However, by Appendix H, the i∗th row of X̂ is in Cr. This contradicts the definition of i∗.

Now that we made these observations, we can bound the probability that G2 outputs 1
using a reduction B′′ that breaks position-binding of CCc. The reduction can be summarized
as follows: It gets as input the commitment key ck and forwards it to A. Once A outputs
a commitment com = (com1, . . . , comnr

) and openings, B′′ does all the steps as in G2. If
G2 outputs 1, B′′ knows the row i∗. It computes the matrix Y as defined above. Then,
B′′ finds the index j∗ as in Appendix H. Now, note that B′′ can break position-binding of
CCc by outputting comj∗ , the opening that A output, and an opening for X̂i∗,j∗ . Note
that B′′ can compute this opening, because it knows the commitment preimage Yj∗ of
comj∗ (see Appendix H). We have

Pr [G2 ⇒ 1] ≤ Advpos-bind
B′′,CCc

(n).

62 Foundations of Data Availability Sampling

I Omitted Details from Section 9
I.1 Omitted Details from Subsection 9.1
Lemma 32. Let ∆ ∈ [n]. Let A be any stateful algorithm, and consider the following
experiment G:

1. Run A to obtain X ∈ Fk×n. Let Xj ∈ Fk for j ∈ [n] be the jth column of X.

2. Sample a matrix R←$ FP×k.

3. Run A on input R, and get a matrix W ∈ FP×n from A. Let Wj ∈ FP be the jth
column of W, for each j ∈ [n].

4. Sample J←$
([n]

L

)
and set Win := 0. If the following three conditions hold, set

Win := 1:

(a) For each row w⊤ ∈ F1×n of W, we have w ∈ C.
(b) For all j ∈ J , we have Wj = RXj.
(c) We have dcol

(
C≡k, X

)
> ∆.

Then, for any A and any ∆ as above that satisfies ∆ < d∗/4, we have

Pr
G

[Win = 1] ≤
(

∆ + 1
|F|

)P

+
(

1− ∆ + 1
n

)L

.

Proof. The proof follows the arguments in [AHIV23], Theorem B.1. Consider game G
specified in the lemma, and let the variables X, R, W be as in the game. We define the
following event in game G:

• Event CloseRX: This event occurs, if there is a Y ∈ C≡P such that dcol (Y, RX) ≤ ∆.

Note that CloseRX implies that for each row y⊤ of Y and the corresponding row r⊤X
of RX, we have d

(
y⊤, r⊤X

)
≤ ∆. Now, we can apply Lemma 4.2 in [AHIV23] to each

column and get

Pr
G

[Win = 1 ∧ CloseRX] ≤
(

∆ + 1
|F|

)P

.

Further, we can write

Pr
G

[Win = 1] ≤ Pr
G

[Win = 1 ∧ ¬CloseRX] + Pr
G

[Win = 1 ∧ CloseRX].

Thus, it remains to bound the probability that CloseRX does not occur and Win = 1. If
CloseRX does not occur and Win = 1, we know that W ∈ C≡P , and for each Y ∈ C≡P

we have dcol (Y, RX) > ∆. Thus, we have dcol (W, RX) > ∆, meaning that there are at
most n−∆− 1 columns on which W and RX agree. Denote the set of these columns by
J∗ ⊆ [n], |J∗| ≤ n−∆− 1. The probability that CloseRX does not occur and Win = 1 can
now be bounded by the probability that J ⊆ J∗, which is at most(|J∗|

L

)(
n
L

) ≤ (n−∆−1
L

)(
n
L

) ≤
(

1− ∆ + 1
n

)L

,

where we used Lemma 24.

Lemma 33. Let ∆ ∈ [n]. Let A be any stateful algorithm, and consider the following
experiment G:

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 63

1. Run A to obtain matrices X ∈ Fk×n, W ∈ FP×n, and R ∈ FP×k. Let Xj ∈ Fk

(resp. Wj ∈ FP) for j ∈ [n] be the jth column of X (resp. W).

2. Sample J←$
([n]

L

)
and set Win := 0. If the following two conditions hold, set Win := 1:

(a) For all j ∈ J , we have Wj = RXj.
(b) We have dcol (RX, W) > ∆.

Then, for any A and any ∆ as above, we have

Pr
G

[Win = 1] ≤
(

1− ∆
n

)L

.

Proof. Consider an algorithm A running in the game specified by the lemma. Clearly, if
n−∆ < L, the probability that Win = 1 is zero. So, assume that L ≤ n−∆, and let J∗

be the set of columns j ∈ [n] in which RX and W differ. Note that J∗ is fixed before J
is sampled. If the second winning condition holds, we know that |J∗| > ∆. If the first
winning condition holds, we know that J ⊆ [n] \ J∗. As J is sampled uniformly at random
from the size L subsets of [n], we have can upper bound the probability of J ⊆ [n] \ J by(

n−|J∗|
L

)(
n
L

) ≤
(

n−∆
L

)(
n
L

) ≤
(

1− ∆
n

)L

,

where we used Lemma 24.

Lemma 34. Let ∆1, ∆2 ∈ [n]. Let A be any stateful algorithm, and consider the following
experiment G:

1. Run A to obtain X ∈ Fk×n. Let Xj ∈ Fk for j ∈ [n] be the jth column of X.

2. Sample a matrix R←$ FP×k.

3. Run A on input R, and get a matrix W ∈ FP×n and a set J ⊆ [n] from A. Let
Wj ∈ FP be the jth column of W, for each j ∈ [n].

4. Set Win := 0. If the following four conditions hold, set Win := 1:

(a) There is a X∗ ∈ C≡k, such that dcol (X∗, X) ≤ ∆1.
(b) There is no X′ ∈ C≡k, such that for each j ∈ J , the jth column of X′ is equal

to Xj.
(c) For each row w⊤ ∈ F1×n of W, we have w ∈ C.
(d) For all j ∈ J , we have Wj = RXj, and we have dcol (RX, W) ≤ ∆2.

Then, for any A and any ∆1, ∆2 as above that satisfy ∆1 +∆2 < d∗ and ∆1 ≤ ⌊(d∗ − 1)/2⌋,
we have

Pr
G

[Win = 1] ≤ 1
|F|P

.

Proof. Let A be an algorithm in the game specified in the lemma. Consider the event
that A wins, i.e. Win = 1. If this event occurs, we note that due to the assumption
∆1 ≤ ⌊(d∗ − 1)/2⌋, we know that X∗ from the first winning condition is uniquely determined
by X. Because X∗ ∈ C≡k, the second winning condition implies that there is at least one

64 Foundations of Data Availability Sampling

column j∗ ∈ J such that the j∗th column of X∗, denoted X∗j∗ is not equal to Xj∗ . By the
fourth winning condition, we have Wj∗ = RXj∗ . Further, we have

dcol (RX∗, W) ≤ dcol (RX∗, RX) + dcol (RX, W) ≤ ∆1 + ∆2 < d∗.

Because dcol (RX∗, W) < d∗ and RX∗ ∈ C≡P and W ∈ C≡P , we have RX∗ = W. Thus,
we have

RXj∗ = Wj∗ = RX∗j∗ .

In summary, we showed the probability that Win = 1 can be upper bounded by the
probability of RXj∗ = RX∗j∗ , where Xj∗ , X∗j∗ are fixed arbitrarily such that Xj∗ ̸= X∗j∗ ,
and R ∈ FP×k is sampled uniformly. Each row of R is sampled independently, and thus
we have

Pr
R

[
RXj∗ = RX∗j∗

]
≤
(

1
|F|

)P

.

Lemma 35. Let A be any stateful algorithm, and consider the following experiment G:

1. Run A to obtain X ∈ Fk×n. Let Xj ∈ Fk for j ∈ [n] be the jth column of X.

2. Sample a matrix R←$ FP×k.

3. Run A on input R, and get a matrix W ∈ FP×n. Let Wj ∈ FP be the jth column
of W, for each j ∈ [n].

4. Sample a set J←$
([n]

L

)
.

5. Run A on input J , and obtain an output J ′ from A.

6. Set Win := 0. If the following four conditions hold, set Win := 1:

(a) There is no X′ ∈ C≡k, such that for each j ∈ J ′, the jth column of X′ is equal
to Xj.

(b) For each row w⊤ ∈ F1×n of W, we have w ∈ C.
(c) For all j ∈ J , we have Wj = RXj.
(d) For all j ∈ J ′, we have Wj = RXj.

Then, for any A as above, and any ∆1, ∆2 ∈ [n] with ∆1 + ∆2 < d∗ and ∆1 ≤ d∗/4, we
have

Pr
G

[Win = 1] ≤
(

∆1 + 1
|F|

)P

+
(

1− ∆1 + 1
n

)L

+
(

1− ∆2

n

)L

+ 1
|F|P

.

Proof. We prove the statement via a sequence of games, using item 32, 33, and 34.
Game G0: This game is as game G from the lemma, and it outputs 1 if and only if
Win = 1. We have

Pr
G

[Win = 1] = Pr [G0 ⇒ 1].

Game G1: In this game, we change the winning condition of the game. Namely, the game
additionally checks if dcol

(
C≡k, X

)
≤ ∆1. If dcol

(
C≡k, X

)
> ∆1, the game outputs 0. If

all previous winning conditions hold, and dcol

(
C≡k, X

)
≤ ∆1, the game outputs 1. It is

clear that games G0 and G1 only differ if dcol

(
C≡k, X

)
> ∆1. A simple reduction that

runs in the game in item 32 shows that

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤
(

∆1 + 1
|F|

)P

+
(

1− ∆1 + 1
n

)L

.

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 65

Game G2: In this game, we change the winning condition of the game again. Namely,
as an additional check, the game checks if dcol (RX, W) > ∆2. If this holds, it outputs
0. Otherwise, it behaves as G1. We can easily bound the difference between G1 and G2
using a reduction that runs in the game in item 33, and get

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤
(

1− ∆2

n

)L

.

Finally, we can easily bound the probability that G2 outputs 1 using item 34. We get

Pr [G2 ⇒ 1] ≤ 1
|F|P

.

Proof of Lemma 20. We first make some simple changes using a sequence of games. Then,
we prove the statement via a reduction that runs in the game specified in item 35.
Game G0: Let A be an algorithm as in the lemma, running in the code-binding game
of CC. We refer to this game as G0. That is, A is run with input ck := ⊥ and access
to random oracles H, H1, H2. It makes at most QH, QH1 , QH2 queries to random oracles
H, H1, H2. Then, A outputs a commitment com =

(
(hj)j∈[n], W, (Xj)j∈J

)
and symbols

X′j ∈ Fk for all j in some set J ′ ⊆ [n]. Technically, A also outputs openings τj = ⊥
for all j ∈ J ′. The game outputs 1, if there is no X̂ ∈ C≡k such that X̂ is consistent
with (X′j)j∈J′ , and all openings verify, i.e. VerCom(ck, com) = 1 and for all j ∈ J ′ it
holds that VerCol(ck, com, j, X′j) = 1. Without loss of generality, we assume that A never
queries the same input to the same random oracle twice, and that A made all queries that
algorithm Ver makes to check A’s final output. Also, we assume that whenever A makes
a query H2(h1, . . . , hn, W), it queried H1(h1, . . . , hn) before. These assumptions can be
achieved by wrapping an additional algorithm around A, which increases QH, QH1 , QH2 to
Q̄H := QH + n, Q̄H1 := QH1 + QH2 + 1, Q̄H2 := QH2 + 1, respectively. We have

Pr [G0 ⇒ 1] = Advcode-bind
A,CC (n).

Game G1: This game is defined as G0, but we introduce two bad events HashPre and
HashColl and let the game abort if this event occurs. The events are defined as follows.

• Event HashPre: This event occurs, if A ever makes a query H1(h1, . . . , hn), and later
makes a query H(x) for some input x ∈ {0, 1}∗ such that H(x) = hj for some j ∈ [n].
Phrased differently, this event occurs, if A makes a query H(x) that evaluates to hj ,
and hj has been input to H1 before in a query H1(h1, . . . , hn).

• Event HashColl: This event occurs, if A ever makes two different query H(x), H(x′)
for x ̸= x′ ∈ {0, 1}∗ such that H(x) = H(x′).

Using a union bound over all pairs of queries to H, we can bound the probability of HashColl
by Q̄2

H/2n. To bound the probability of event HashPre, note that for a fixed query to H, a
fixed query to H1, and a fixed index j ∈ [n], the probability that HashPre occurs for these
queries and this index is 2−n. Thus, a union bound leads to

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ Pr [HashPre] + Pr [HashColl] ≤ Q̄HQ̄H1n

2n
+ Q̄2

H
2n

.

Game G2: In this game, we guess the random oracle queries that are used for A’s final
output. More precisely, the game is as G1, but if first samples two indices i1←$ [Q̄H1] and
i2←$ [Q̄H2]. Then, it runs G1 as it is. If the i1th query to H1 occurs after the i2th query

66 Foundations of Data Availability Sampling

to H2, the game aborts. Also, let the i1th query to H1 be H1(h1, . . . , hn) and the i2th
query to H2 be H2(h′1, . . . , h′n, W). If (h1, . . . , hn) ̸= (h′1, . . . , h′n), the game also aborts.
Consider the final output com =

(
(hj)j∈[n], W, (Xj)j∈J

)
of A. If the i1th query to H1 was

H1(h1, . . . , hn) and the i2th query to H2 was H2(h1, . . . , hn, W), the game continues as
G1 does. Otherwise, it aborts. If G1 outputs 1, there has to be some indices i∗1, i∗2 that
correspond to the hash queries of A’s final output, and such that i∗1th query to H1 occurs
before the i∗2th query to H2. Therefore, G2 outputs 1 if and only if i1 = i∗1 and i2 = i∗2
and G1 outputs 1. Note that A’s view is independent of the indices i1, i2 until a potential
abort occurs. Thus, we have

Pr [G1 ⇒ 1] ≤ Q̄H1Q̄H2 · Pr [G2 ⇒ 1].

Now, we can easily bound the probability that G2 outputs 1 using a reduction B that
runs in the game specified in item 35. The reduction is as follows.

1. Reduction B simulates G2 for A, including all aborts specified before.

2. Let the i1th query to H1 be H1(h1, . . . , hn) and the i2th query to H2 be H2(h1, . . . , hn, W).
We know that the i1th query to H1 occurs first, as otherwise G2 and the reduction
would abort.

(a) When the i1th query to H1 happens, B extracts a matrix X̂ as follows: For
each j ∈ [n], reduction B checks if there is a previous random oracle query of
the form H(X̂j) = hj , where X̂j ∈ Fk. As we ruled out event HashColl, there
can be at most one such query. If such a query is found, it sets the jth column
of X̂ to be X̂j . Otherwise, it sets the jth column of X̂ to be 0. Then, the
reduction outputs X̂ to the game, and gets as input a matrix R. The reduction
sets H1(h1, . . . , hn) := R, and continues the execution of A.

(b) When the i2th query to H2 happens, the reduction outputs W to the game,
and gets as input a set J . It sets H2(h1, . . . , hn, W) := J , and continues A’s
execution.

3. When A terminates with final output com =
(
(hj)j∈[n], W, (Xj)j∈J

)
and X′j ∈ Fk

for all j in some set J ′ ⊆ [n], the reduction first does all checks as in G2. Note that
if all checks pass, we know that all Xj and all X′j are consistent with X̂ (cf. events
HashColl and HashPre). The reduction now outputs J ′ and terminates.

It is clear that the reduction perfectly simulates G2 for A. Also, one can observe that if
G2 outputs 1, then all winning conditions in the game specified in item 35 hold. Thus,
using item 35, we have

Pr [G2 ⇒ 1] ≤
(

∆1 + 1
|F|

)P

+
(

1− ∆1 + 1
n

)L

+
(

1− ∆2

n

)L

+ 1
|F|P

.

I.2 Omitted Details from Subsection 9.2
Lemma 36. Let A be any stateful algorithm, and consider the following experiment G:

1. Generate hk← HF.Gen(1n).

2. Run A on input hk to obtain h1, . . . , hn ∈ R.

3. Sample a matrix R←$ FP×k.

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 67

4. Run A on input R, and get a matrix W ∈ FP×n. Let Wj ∈ FP be the jth column
of W, for each j ∈ [n].

5. Sample a matrix S←$ Fn×L.

6. Run A on input S, and obtain an output Y, J ′, (Xj)j∈J′ from A.

7. Set Win := 0. If the following four conditions hold, set Win := 1:

(a) There is no X′ ∈ C≡k, such that for each j ∈ J ′, the jth column of X′ is equal
to Xj.

(b) For all j ∈ J ′, we have Wj = RXj and HF.Eval(hk, Xj) = hj.
(c) For each row w⊤ ∈ F1×n of W, we have w ∈ C.
(d) For each j ∈ [L], we have HF.Eval(hk, Yj) = [h1, . . . hn]Sj and RY = WS.

Then, for any PPT algorithm A in the above game, there is an EPT algorithm B with
expected running time ET(B) ≈ (1 + n)T(A) we have

Pr
G

[Win = 1] ≤ n

|F|L
+ 1
|F|P

+ 1
|F|L

+ Advcoll
B,HF(n).

Proof. Our proof strategy is as follows. We first sample a random a hash key hk and
adversarial randomness, and fix it. Then, we run game G with this fixed key and randomness
multiple times with independent challenges, until we can extract preimages of all hash
values h1, . . . , hn. We run G′ a final time, rule out inconsistencies by reducing to collision-
resistance, and use statistical arguments to finish the proof.

We will now proceed more formally. Let A be a PPT algorithm in the game G specified
in the lemma. We define ε0 := PrG [Win = 1]. We want to bound this probability ε0.
Assume that A makes use of ℓ = poly(n) random coins. By making states and randomness
explicit, we can write A as a triple of PPT algorithms (A0,A1,A2), with the following
syntax:

• A0(hk; ρ)→ (St0, h1, . . . , hn) takes as input the key hk and random coins ρ ∈ {0, 1}ℓ.
It outputs a state St0 and values h1, . . . , hn ∈ R.

• A1(St0, R)→ (St1, W) is deterministic, takes as input St0, a matrix R, and outputs
a state St1 and a matrix W.

• A2(St1, S)→ (Y, J ′, (Xj)j∈J′) is deterministic, takes as input St1 and a matrix S,
and outputs Y, J ′, (Xj)j∈J′ .

Note that assuming that A gets all its random coins in the beginning is without loss of
generality, as A0 can just pass these coins to A1 and A2 via its state. We introduce another
notation. Namely, we denote the game G with fixed hash key hk and fixed adversarial
random coins ρ by G(hk, ρ). Also, we define εhk,ρ := PrG(hk,ρ) [Win = 1] for any hk, ρ.
Game G′: We define a new game G′. In this game, we run the adversary multiple times
with the same hk and ρ. Formally, we define G′ as follows.

1. Generate hk← HF.Gen(1n) and sample ρ←$ {0, 1}ℓ.

2. Run G(hk, ρ) and denote all variables x involved in this game run by x0. For
example, variables Win, S in this game run are denoted by Win(0), S(0), respectively.
If Win(0) = 0, abort.

3. Initialize an empty list S := ∅, an empty map SY[·], and a counter q := 1.

68 Foundations of Data Availability Sampling

4. While |S| < n, repeat the following:

(a) Run G(hk, ρ). Denote all variables x involved in this game run by x(q). For
example, variables Win, S in this game run are denoted by Win(q), S(q), respec-
tively.

(b) If Win(q) = 1, then insert S(q) into S. Further, set SY[S] := Y.
(c) Set q := q + 1.

5. Set q∗ := q.

We will now analyze this game. Namely, we shall show two things. First, we establish a
relation between the probability of Win = 1 in G and Win(0) = 1 in G′. Second, we argue
that the game runs in expected polynomial time.

Claim. Consider the notations and assumptions from the proof of item 36. We have

Pr
G′

[
Win(0) = 1

]
= Pr
G

[Win = 1] = ε0.

We prove item I.2. Namely, first observe that if hk, ρ is fixed in G′, then item 2 is
clearly independent of the rest of the game. Therefore, we have

Pr
G′

[
Win(0) = 1

∣∣∣ (hk, ρ) = (h̄k, ρ̄)
]

= Pr
G(h̄k,ρ̄)

[Win = 1] = Pr
G

[
Win = 1

∣∣ (hk, ρ) = (h̄k, ρ̄)
]

for each h̄k, ρ̄. Now, we can use the law of total probability to finish the proof of the claim,
i.e.

Pr
G′

[
Win(0) = 1

]
=
∑
h̄k,ρ̄

Pr
G′

[
Win(0) = 1

∣∣∣ (hk, ρ) = (h̄k, ρ̄)
]
· Pr

hk,ρ

[
(hk, ρ) = (h̄k, ρ̄)

]
=
∑
h̄k,ρ̄

Pr
G

[
Win = 1

∣∣ (hk, ρ) = (h̄k, ρ̄)
]
· Pr

hk,ρ

[
(hk, ρ) = (h̄k, ρ̄)

]
= Pr
G

[Win = 1].

Claim. Consider the notations and assumptions from the proof of item 36. The expected
running time of G′ is at most 1 + n times the running time of G.

We prove item I.2. We show the bound on the running time for any fixed hk, ρ, which
implies that it holds for random hk, ρ. Denote the random variable modeling the running
time of G′ by T ′ and the running time of G by T . Consider the case where εhk,ρ = 0. Then,
game G′ always stops in item 2. Thus, we can assume that εhk,ρ > 0 from now on. We
shall first argue that the expected number of iterations q∗ of the loop in item 4 is bounded
by n/εhk,ρ. Then, we can conclude using the law of total expectation and linearity of
expectation. Namely,

E [T ′] = Pr
[
Win(0) = 0

]
E
[
T ′ |Win(0) = 0

]
+ Pr

[
Win(0) = 1

]
E
[
T ′ |Win(0) = 1

]
·

= (1− εhk,ρ) · T + εhk,ρ ·
(

T + E
[
q∗ |Win(0) = 1

]
· T
)

= (1 + εhk,ρ · E [q∗]) · T = (1 + n) · T,

where we used that for fixed hk, ρ, the random variable q∗ is indepdendent of Win(0). It
remains to argue that E [q∗] ≤ n/εhk,ρ. For each i ∈ [n], let Xi be the random variable
equal to the number of iterations of item 4 needed to increase the size of S from i− 1 to
i. Then, by linearity of expectation and the fact that q∗ =

∑n
i=1, it is sufficient bound

the expectation of each Xi by 1/εhk,ρ. For that, consider the probability that in a fixed
iteration of the loop in item 4, a matrix is added to the list S. By definition, it is added if

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 69

Win(q) = 1. The probability of Win(q) = 1 is exactly εhk,ρ. Thus, Xi follows a geometric
distribution with parameter εhk,ρ, which has expectation 1/εhk,ρ, as desired. This finishes
the proof of item I.2.

Game G′′: We slightly modify game G′ into a game G′′. Formally, we define G′′ as follows.

1. Run item 1 to item 5 of game G′.

2. Set X̄ = 0. Also, initialize an empty set S ′ = ∅ and an empty map SY′[·].

3. Iterate over the matrices in S. Namely, for each i ∈ [n], do the following:

(a) Let S ∈ Fn×L be the ith matrix in S.
(b) If there is no column s of S that is linearly independent to the set S ′, then set

Extr := 0 and abort the game.
(c) Otherwise, let s be such a column, say the jth. Insert s into S ′, and set SY′ := y,

where y is the jth column of SY[S].

4. Set Extr := 1.

5. By construction, the vectors contained in S ′ are linearly independent. Arrange them
as columns into an invertible matrix S̄ ∈ Fn×n. Similarly, arrange the n vectors in
the multi-set {SY′[s] | s ∈ S ′} into a matrix Ȳ ∈ Fk×n. Ensure that for each s ∈ S ′,
if s is the jth column of S̄, then y := SY′[s] is the jth column of Ȳ.

6. Compute X̄ := ȲS̄−1. We denote the columns of X̄ by X̄j for each j ∈ [n].

In item I.2, we bound the probability of Extr = 0 conditioned on the game not aborting
and any fixed hash key and randomness. Using this claim, we get for any fixed h̄k, ρ̄ with
εh̄k,ρ̄ > 0, that

Pr
G′′

[
Win(0) = 1 ∧ Extr = 0 | (hk, ρ) = (h̄k, ρ̄)

]
= Pr

G′′

[
Extr = 0 |Win(0) = 1 ∧ (hk, ρ) = (h̄k, ρ̄)

]
· Pr
G′′

[
Win(0) = 1 | (hk, ρ) = (h̄k, ρ̄)

]
≤ n

εh̄k,ρ̄ · |F|L
· εh̄k,ρ̄ = n

|F|L
.

The same upper bound holds trivially for any h̄k, ρ̄ with εh̄k,ρ̄ = 0. This implies that

Pr
G′′

[
Win(0) = 1 ∧ Extr = 0

]
=
∑
h̄k,ρ̄

Pr
G′′

[
Win(0) = 1 ∧ Extr = 0 | (hk, ρ) = (h̄k, ρ̄)

]
· Pr
G′′

[
(hk, ρ) = (h̄k, ρ̄)

]
≤
∑
h̄k,ρ̄

n

|F|L
Pr
G′′

[
(hk, ρ) = (h̄k, ρ̄)

]
= n

|F|L
.

Thus, we have

ε0 = Pr
G′

[
Win(0) = 1

]
≤ Pr
G′′

[
Win(0) = 1 ∧ Extr = 1

]
+ Pr
G′′

[
Win(0) = 1 ∧ Extr = 0

]

≤ Pr
G′′

[
Win(0) = 1 ∧ Extr = 1

]
+ n

|F|L
.

Finally, we will bound the probability that Win(0) = 1 and Extr = 1 in game G′′. For
that, we introduce the following events in G′′.

70 Foundations of Data Availability Sampling

• Event HColl: This event occurs, if Y(0) ̸= X̄S(0) or there is a j ∈ J ′(0), such that
X̄j ̸= X(0)

j .

• Event InCode: This event occurs, if R(0)X̄ ∈ C≡P .

By the law of total probability, we have

Pr
G′′

[
Win(0) = 1 ∧ Extr = 1

]
≤ Pr
G′′

[
Win(0) = 1 ∧ Extr = 1 ∧ HColl

]
+ Pr
G′′

[
Win(0) = 1 ∧ Extr = 1 ∧ ¬HColl ∧ InCode

]
+ Pr
G′′

[
Win(0) = 1 ∧ Extr = 1 ∧ ¬HColl ∧ ¬InCode

]
.

We bound these terms separately in claims item I.2, I.2, and I.2. In combination, this will
conclude the proof.

Claim. Consider the notations and assumptions from the proof of item 36. Let h̄k ∈
HF.Gen(1n) and ρ̄ ∈ {0, 1}ℓ be fixed arbitrarily. Then, we have

Pr
G′′

[
Extr = 0 |Win(0) = 1 ∧ (hk, ρ) = (h̄k, ρ̄)

]
≤ n

εh̄k,ρ̄ · |F|L
.

We prove item I.2. To this end, consider a fixed h̄k and ρ̄ and assume Win(0) = 1. We
can bound the probability of Extr = 0 occurring in a fixed iteration of the loop, say the
ith. Then, the result will follow using a union bound over all the n iterations. So, consider
the ith iteration of the loop, and assume that at the beginning of this ith iteration of the
loop, we have r := |S ′| < n. Then, S ′ is a set of r linearly independent vectors over F,
which span a subspace D ⊂ Fn of dimension r < n. Let qi be the iteration of the loop
in item 4 of game G′ in which the ith matrix of S has been added to S. Recall that in
this qith iteration, G(h̄k, ρ̄) has been executed, and the only random choices in this game
are the challenge matrices R(qi) and S(qi). As we know that Win(qi) = 1, we can think
of R(qi), S(qi) as being sampled uniformly at random from the set Γ ⊆ FP×k × Fn×L of
matrices (R, S) for which Win = 1 in G(h̄k, ρ̄) with challenges R, S. This set has size at
least one. More precisely, by definition of εh̄k,ρ̄, it has size εh̄k,ρ̄ · |FP×k| · |Fn×L| > 0. Then,
by what we have discussed so far, the probability of Extr = 0 occurring in the ith iteration
of the loop is at most

Pr
(R(qi),S(qi))←$ Γ

[
S(qi) ∈ DL

]
= |F

P×k| · |D|L

|Γ| = |FP×k| · |F|rL

εh̄k,ρ̄ · |FP×k| · |Fn×L|

= 1
εh̄k,ρ̄ · |F|(n−r)L

≤ 1
εh̄k,ρ̄ · |F|L

,

where we used r < n. This finishes the proof of item I.2.

Claim. Consider the notations and assumptions from the proof of item 36. Then, there is
an algorithm B with expected running time ET(B) ≈ (1 + n)T(A) and

Pr
G′′

[
Win(0) = 1 ∧ Extr = 1 ∧ HColl

]
≤ Advcoll

B,HF(n).

To prove item I.2, we will argue that the two sub-events specified in event HColl imply
a collision for HF. Then, one can construct a reduction to collision-resistance. Such a
reduction gets as input the hashing key hk, runs G′′, and outputs the collision if event
Win(0) = 1 and Extr = 1 and HColl occurs. In this way, the reduction perfectly simulates
G′′ for A, and the expected running time of the reduction is polynomial. It remains to

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 71

argue that Win(0) = 1 and Extr = 1 and HColl implies a collision. The reader may then
observe that these collisions can be efficiently found by the reduction. So, assume that
these three events occur. First, it is clear that for each q ∈ [q∗] ∪ {0}, the hash values
h

(q)
1 , . . . , h

(q)
n sent by A are the same. This is because A gets the same hk and randomness

ρ in every run of G. Thus, we can just denote these hash values by h1, . . . , hn. Now, we
claim that for each column j ∈ [n], we have HF.Eval(hk, X̄j) = hj . To see this, fix an
arbitrary j∗ ∈ [n]. We have

HF.Eval(hk, X̄j∗) = HF.Eval(hk, ȲS̄−1
j∗) =

[
HF.Eval(hk, Ȳ1)

∣∣ · · · ∣∣ HF.Eval(hk, Ȳn)
]

S̄−1
j∗

using the definition of X̄ := ȲS̄−1 and the homomorphic property of HF. We continue
using the fact that the responses are accepting, namely

[
HF.Eval(hk, Ȳ1)

∣∣ · · · ∣∣ HF.Eval(hk, Ȳn)
]

S̄−1
j∗ =

 n∑
j=1

hjS̄j,1

∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣

n∑
j=1

hjS̄j,n

 S̄−1
j∗

= [h1 | · · · | hn] · S̄ · S̄−1
j∗ = hj∗ .

Now that we established this, it is clear that the two sub-events of HColl imply a collision,
and the claim follows.

Claim. Consider the notations and assumptions from the proof of item 36. Then

Pr
G′′

[
Win(0) = 1 ∧ Extr = 1 ∧ ¬HColl ∧ InCode

]
≤ 1
|F|P

.

To prove item I.2, assume event Win(0) = 1 ∧ Extr = 1 ∧ ¬HColl ∧ InCode occurs in G′′.
Then, because of ¬HColl, we know that the columns X(0)

j for j ∈ J ′(0) are consistent with
the columns of X̄. Because of the second condition required for Win(0) = 1, we thus know
that X̄ /∈ C≡k. Thus, the event of interest implies that

X̄ /∈ C≡k ∧R(0)X̄ ∈ C≡P ,

where X̄ is independent of R(0) ∈ FP×k. Let H ∈ F(n−k)×n be the parity-check matrix of
G. That is, for all a ∈ Fn, we have Ha = 0 if and only if a ∈ C. Then, we have

X̄H⊤ ̸= 0 ∧R(0)X̄H⊤ = 0.

As all rows of R(0) are independent, this event occurs with probability at most 1/|F|P .

Claim. Consider the notations and assumptions from the proof of item 36. Then

Pr
G′′

[
Win(0) = 1 ∧ Extr = 1 ∧ ¬HColl ∧ ¬InCode

]
≤ 1
|F|L

.

To prove item I.2, assume that event Win(0) = 1 ∧ Extr = 1 ∧ ¬HColl ∧ ¬InCode occurs
in G′′. Then, we know that R(0)Y(0) = W(0)S(0), because Win(0) = 1. Also, we know
that Y(0) = X̄S(0) because ¬HColl. This implies that R(0)X̄S(0) = W(0)S(0). Because
¬InCode, we also know that R(0)X̄ ̸= W(0). Thus, we obtain that

(R(0)X̄−W(0))S(0) = 0 ∧R(0)X̄−W(0) ̸= 0,

where R(0)X̄−W(0) and S(0) ∈ Fn×L are independent. This occurs with probability at
most 1/|F|L, as all columns of S(0) are sampled independently.

72 Foundations of Data Availability Sampling

Proof of Lemma 22. We prove the lemma using item 36. Except for that, the proof is
almost identical to the proof of Lemma 20.
Game G0: Let A be an algorithm as in the lemma, running in the code-binding game
of CC[HF]. We call this code-binding game G0. Recall that in this game, A receives a
commitment key ck = hk← HF.Gen(1n) and gets oracle access random oracles H1, H2. We
assume that A makes at most QH1 , QH2 queries to random oracles H1, H2, respectively.
Then, A outputs a commitment com =

(
(hj)j∈[n], W, Y

)
and symbols X′j ∈ Fk for all j in

some set J ′ ⊆ [n]. The game G0 outputs 1, if there is no X̂ ∈ C≡k such that X̂ is consistent
with (X′j)j∈J′ , and all openings verify, i.e. VerCom(ck, com) = 1 and for all j ∈ J ′ it holds
that VerCol(ck, com, j, X′j) = 1. As in the proof of Lemma 20, we assume without loss of
generality that A never queries the same input to the same random oracle twice, and that
A made all queries that algorithm Ver makes to check A’s final output. Also, we assume
that whenever A makes a query H2(h1, . . . , hn, W), it queried H1(h1, . . . , hn) before. As
in the proof of Lemma 20, this increases QH1 and QH2 to Q̄H1 := QH1 + QH2 + 1 and
Q̄H2 := QH2 + 1, respectively. We have

Pr [G0 ⇒ 1] = Advcode-bind
A,CC[HF](n).

Game G1: In game G1, we let the game guess the random oracle queries related to A’s
final output. Namely, in the beginning of the game, indices i1←$ [Q̄H1] and i2←$ [Q̄H2]
are sampled. Then, G1 behaves as G0. Let the i1th query to H1 be H1(h1, . . . , hn)
and the i2th query to H2 be H2(h′1, . . . , h′n, W). If (h1, . . . , hn) ̸= (h′1, . . . , h′n), or the
i1th query to H1 occurs after the i2th query to H2, the game aborts. Once A outputs
com =

(
(hj)j∈[n], W, Y

)
and X′j ∈ Fk for all j ∈ J ′, the game checks if the i1th query to

H1 was H1(h1, . . . , hn) and the i2th query to H2 was H2(h1, . . . , hn, W). If not, the game
aborts. Otherwise, it continues as G0 does. One can easily see that

Pr [G0 ⇒ 1] ≤ Q̄H1Q̄H2 · Pr [G1 ⇒ 1].

Now, we can bound the probability that G1 outputs 1 using a reduction, which runs in the
game given in item 36. Roughly, it embeds its challenges into the i1th and i2th random
oracle queries to H1 and H2, respectively. By item 36, we get that there is an algorithm B
with

Pr [G1 ⇒ 1] ≤ n

|F|L
+ 1
|F|P

+ 1
|F|L

+ Advcoll
B,HF(n).

J Simulation of Index Samplers
While the analytical results in Subsection 6.2 provide bounds on the quality of different
index samplers, their analysis makes heavy use of bounds, e.g., the union bound. Thus, it
is natural to ask whether one can obtain more precise results by analyzing and comparing
index samplers other means, e.g., via simulation.
Experiment. We can think of index sampling as the following balls-into-bins experiment.
We have N bins and ℓ players. Each player is allowed to throw Q balls into the bins,
following some fixed strategy, which is given by the index sampler algorithm Sample(1Q, 1N).
More precisely, the players all start with the same state. Further, they are not aware of
any identifiers to break symmetry and can not communicate. Each player starts with a
random tape and runs (ij)j∈[Q] ← Sample(1Q, 1N). Then, it throws its balls into the bins
i1, . . . , iQ. We want to estimate the probability that less than K bins are non-empty after
the experiment.
Setup. For our simulation, we implemented the experiment in C++. We ran the
experiment for the three index samplers Samplewr (sampling uniformly with replacement),

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 73

Samplewor (sampling uniformly without replacement), and Sampleseg (segment sampling).
We estimated the probability of interest by averaging over 20000 runs of the experiment.
This process was repeated for various combinations of ℓ, Q, N, K. When we select such
parameter sets, we pay attention to avoid divisibility issues. For example, say we used
segment sampling with Q = 64 and we want to have at least K = N/4 non-empty bins out
of N . A first intuition would tell us that for N = 1152 we would need less samples to ensure
that than for N = 1280. However, we would observe the opposite due to a divisibility
phenomenon. Namely, for N = 1152 we would have to collect at least K/Q = 4.5 out of
N/Q = 18 segments, i.e., 5 out of 18. For N = 1280 we would have to collect K/Q = 5 out
of N/Q = 20 segments, i.e., 5 out of 20. Collecting 5 out of 20 requires less samples than
5 out of 18, contradicting our initial intuition. Such phenomenons distract from the actual
message we want to convey and the asymptotic behavior of index samples. Therefore, we
choose parameters that avoid these divisibility issues.
Results. We present our some of our simulation results in Figure 4 and 5. We briefly
want to discuss them here. First, consider Figure 4. The figure shows how the failure
probability p, i.e., the probability of having less than K non-empty bins out of N bins in
total, relates to the total number of samples ℓ ·Q. We see that both for collecting quarter
and half of the bins, the failure probability rapidly decreases when the number of samples
is slightly more than K. For collecting three quarters, we see that we need about 2K
samples to reach that point, which fits our intuition. Comparing the different samplers, we
see that for sampling uniformly range in which the failure probability decreases is smaller
than for segment sampling.

Second, consider Figure 5. The figure shows how many samples we need to get the
failure probability p below a fixed threshold. Again, we see that segment sampling with a
large segment size Q = 32 leads to worse results. Namely, to get p below the treshold, we
need significantly more samples than for uniform sampling with and without replacement.
Segment sampling with a small segment size Q = 8 has only a minimal impact. Also,
Figure 5 shows that there is almost no difference between sampling with replacement and
sampling without replacement. We expect the difference to grow when Q approaches K.
For all samplers, Figure 5 suggests that the number of samples is linear in the number of
bins N , which is in line with our analytical results in Subsection 6.2.
Conclusion. Our simulation suggests that sampling without replacement does not perform
significantly better than sampling with replacement. As sampling with replacement is much
easier to implement efficiently, we may disregard sampling without replacement. Segment
sampling with small segment sizes seems to lead only to a minimal loss in quality. Due to
its reduced randomness complexity, the improved locality, and ease of implementation, it
qualifies a good choice in practice.

74 Foundations of Data Availability Sampling

600 800
0

0.5

1

Samples ℓ · Q

Fa
ilu

re
P

ro
ba

bi
lit

y
p K = 512, N = 2048

1,000 1,500 2,000
0

0.5

1

Samples ℓ · Q

Fa
ilu

re
P

ro
ba

bi
lit

y
p K = 1024, N = 2048

With Replacement
Without Replacement, Q = 8
Without Replacement, Q = 32

Segment, Q = 8
Segment, Q = 32

2,000 3,000 4,000
0

0.5

1

Samples ℓ · Q

Fa
ilu

re
P

ro
ba

bi
lit

y
p K = 1536, N = 2048

Figure 4: Simulation results for the failure probability p, i.e., the probability of having
less than K non-empty bins out of N bins in total after ℓ players threw Q balls into the
bins according to the given index sampler.

1,000 1,500 2,000

400

600

800

Number of Bins N

Sa
m

pl
es

ℓ
·Q

K/N = 1/4

1,000 1,500 2,000

1,000

1,500

2,000

Number of Bins N

Sa
m

pl
es

ℓ
·Q

K/N = 1/2

With Replacement
Without Replacement, Q = 8
Without Replacement, Q = 32

Segment, Q = 8
Segment, Q = 32

1,000 1,500 2,000

2,000

3,000

4,000

Number of Bins N

Sa
m

pl
es

ℓ
·Q

K/N = 3/4

Figure 5: Simulation results for the total number of samples ℓ ·Q needed to get p ≤ 0.001,
where p is the failure probability, i.e., the probability of having less than K non-empty
bins out of N bins in total after ℓ players threw Q balls into the bins according to the
given index sampler.

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 75

K Script for Parameter Computation

Listing 1: Python script to compute the parameters for different codes. A discussion is
given in Section 10.
from dataclasses import dataclass

import math

Statistical Security Parameter for Soundness
SECPAR_SOUND = 40

@dataclass
class Code:

size_msg_symbol : int # size of one symbol in the message
size_code_symbol : int # size of one symbol in the code
msg_len : int # number of symbols in the message
codeword_len : int # number of symbols in the codeword
reception : int # number of symbols needed to reconstruct (worst case)
samples : int # number of random samples to reconstruct with high probability

def interleave (self , ell):
return Code(

size_msg_symbol = self. size_msg_symbol * ell ,
size_code_symbol = self. size_code_symbol * ell ,
msg_len = self.msg_len ,
codeword_len = self. codeword_len ,
reception = self.reception ,
samples = self. samples

)

def tensor (self , col):
assert self. size_msg_symbol == col. size_msg_symbol
assert self. size_code_symbol == col. size_code_symbol
assert self. size_msg_symbol == self. size_code_symbol

row_dist = self. codeword_len - self. reception + 1
col_dist = col. codeword_len - col. reception + 1
codeword_len = self. codeword_len * col. codeword_len

’’’
Example :

D D | o o
D D | o o
----+----
o o | o o
o o | o o

Where D is the data.
The reception is 8, since 7 is not enough to reconstruct :

o o | o x
o o | o x
----+----
o o | o x
x x | x x

Given the symbols marked with x, I cannot reconstruct the data.
’’’
reception = codeword_len - row_dist * col_dist + 1
’’’
To determine the number of samples , we have multiple options .
we can use the minimum of all resulting number of samples

Option 1: use reception and generalized coupon collector
As reception is a " worst case bound ", this may not be tight

Option 2: use a more direct analysis .
not being able to reconstruct
-> there is a row we can not reconstruct
-> union bound over all rows
-> for fixed row , assume we can not reconstruct
-> there is a set of t_r - 1 positions (t_r = reception in rows)
such that all queries in that row are in that set
-> we union bounding over all of these sets
-> for each fixed set , the probability that
all queries in that row are in that set is
(1 -((n_r - t_r + 1) /(n_r*n_c)))^{ number of samples }
so the total probability of not being able to reconstruct is at most
n_c * (n_r choose t_r - 1) * (1 -((n_r - t_r + 1) /(n_r*n_c)))^{ number of samples }
and (n_r choose t_r - 1) <= (n_r * e / (t_r - 1))^(t_r - 1)

Option 3: same as Option 2 but reversed roles

Asymptotic example : Tensor C: F^k -> F^{2k} with itself
Option 1 -> Omega (k^2 + sec_par) samples
Option 2/3 -> Omega (k^2 + sec_par * k) samples

Concretely , Option 2/3 will be tighter , especially for large k
’’’
samples_via_reception = samples_from_reception (SECPAR_SOUND , reception , codeword_len)

loge = math.log2(math.e)
lognc = math.log2(col. codeword_len)
lognr = math.log2(self. codeword_len)
logbinomr = (self. reception - 1) * (lognr + loge - math.log2(self. reception - 1))
loginnerr = math.log2 (1.0 - (self. codeword_len - self. reception + 1)/ codeword_len)
logbinomc = (col. reception - 1) * (lognc + loge - math.log2(col. reception - 1))
loginnerc = math.log2 (1.0 - (col. codeword_len - col. reception + 1)/ codeword_len)

76 Foundations of Data Availability Sampling

samples_direct_via_rows = int(math.ceil (-(lognc + logbinomr + SECPAR_SOUND)/ loginnerr))
samples_direct_via_cols = int(math.ceil (-(lognr + logbinomc + SECPAR_SOUND)/ loginnerc))

samples_direct = min(samples_direct_via_rows , samples_direct_via_cols)
samples = min(samples_direct , samples_via_reception)

return Code(
size_msg_symbol = self. size_msg_symbol ,
msg_len = self. msg_len * col.msg_len ,
size_code_symbol = self. size_code_symbol ,
codeword_len = codeword_len ,
reception = reception ,
samples = samples

)

def __eq__ (self , other):
return (

self. size_msg_symbol == other . size_msg_symbol
and self. size_code_symbol == other . size_code_symbol
and self. msg_len == other . msg_len
and self. codeword_len == other . codeword_len
and self. reception == other . reception

)

def is_identity (self):
return (

self. size_msg_symbol == self. size_code_symbol
and self. msg_len == self. codeword_len

)

def samples_from_reception (sec_par , reception , codeword_len):
’’’
Compute the number of samples needed to reconstruct
data with probability at least 1 -2^{ - sec_par } based on
the reception efficiency and a generalized coupon collector .
Note: this may not be the tightest for all schemes (e.g. Tensor)
’’’
special case: if only one symbol is needed , we are done
if reception == 1:

return 1

special case: if all symbols are needed : just regular coupon collector
if reception == codeword_len :

n = codeword_len
s = math.ceil ((n / math.log(math.e, 2)) * (math.log(n, 2) + sec_par))
return int(s)

generalized coupon collector
delta = reception - 1
c = delta / codeword_len
s = math.ceil(- sec_par / math.log2(c) + (1.0 - math.log(math.e,c))* delta)
return int(s)

Identity code
def makeTrivialCode (chunksize , k):

return Code(
size_msg_symbol = chunksize ,
msg_len = k,
size_code_symbol = chunksize ,
codeword_len = k,
reception = k,
samples = samples_from_reception (SECPAR_SOUND , k, k)

)

Reed - Solomon Code
Polynomial of degree k -1 over field with field element length fsize
Evaluated at n points
def makeRSCode (fsize , k, n):

assert k <= n
assert 2** fsize >= n, ’no such reed - solomon code :(’
return Code(

size_msg_symbol = fsize ,
msg_len = k,
size_code_symbol = fsize ,
codeword_len = n,
reception = k,
samples = samples_from_reception (SECPAR_SOUND , k, n)

)

tests
assert makeRSCode (5, 2, 4). tensor (makeRSCode (5, 2, 4)). reception == 8
assert makeRSCode (5, 2, 4). reception == 2

Listing 2: Python script to compute the parameters for different data availability sampling
schemes. A discussion is given in Section 10.
#!/ usr/bin/env python

import math

Some constants .
Sizes of group elements , field elements , and hashes in bits
BLS_FE_SIZE = 48.0 * 8.0
BLS_GE_SIZE = 48.0 * 8.0

Let ’s say we use the SECP256_k1 curve
PEDERSEN_FE_SIZE = 32.0 * 8.0
PEDERSEN_GE_SIZE = 33.0 * 8.0

Let ’s say we use SHA256

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 77

HASH_SIZE = 256

from dataclasses import dataclass

from codes import *

@dataclass
class Scheme :

code: Code # code that is used
com_size : int # size of commitment in bits
opening_overhead : int # overhead of opening a symbol in the encoding

def samples (self):
’’’
i.e. the number of random samples needed to collect
enough symbols except with small probability
’’’
return self.code. samples

def total_comm (self):
’’’
Compute the total communication in bits.
’’’
return self. comm_per_query () * self. samples ()

def comm_per_query (self):
’’’
Compute the communication per query in bits.
’’’
return math.log2(self.code. codeword_len) + self. opening_overhead + self.code. size_code_symbol

def encoding_size (self):
’’’
Compute the size of the encoding in bits.
’’’
return self.code. codeword_len * (self. opening_overhead + self.code. size_code_symbol)

def reception (self):
’’’
Compute the reception of the code.
’’’
return self.code. reception

def encoding_length (self):
’’’
Compute the length of the encoding .
’’’
return self.code. codeword_len

Naive scheme
Put all the data in one symbol , and let the commitment be a hash
def makeNaiveScheme (datasize):

return Scheme (
code = Code(

size_msg_symbol = datasize ,
msg_len = 1,
size_code_symbol = datasize ,
codeword_len = 1,
reception = 1,
samples = 1

),
com_size = HASH_SIZE ,
opening_overhead = 0

)

Merkle scheme
Take a merkle tree and the identity code
def makeMerkleScheme (datasize , chunksize =1024) :

k = math.ceil(datasize / chunksize)
return Scheme (

code = makeTrivialCode (chunksize , k),
com_size = HASH_SIZE ,
opening_overhead = math.ceil(math.log(k, 2))* HASH_SIZE

)

KZG Commitment , interpreted as an erasure code commitment for the RS code
The RS Code is set to have parameters k,n with n = invrate * k
def makeKZGScheme (datasize , invrate =4):

k = math.ceil(datasize / BLS_FE_SIZE)
return Scheme (

code = makeRSCode (
BLS_FE_SIZE ,
k,
k * invrate

),
com_size = BLS_GE_SIZE ,
opening_overhead = BLS_GE_SIZE ,

)

Tensor Code Commitment , where each dimension is expanded with inverse rate invrate .
That is , data is a k x k matrix , and the codeword is a n x n matrix , with n = invrate * k
Both column and row code are RS codes .
def makeTensorScheme (datasize , invrate =2):

m = math.ceil(datasize / BLS_FE_SIZE)
k = math.ceil(math.sqrt(m))
n = invrate * k

rs = makeRSCode (BLS_FE_SIZE , k, n)

return Scheme (
code = rs. tensor (rs),

78 Foundations of Data Availability Sampling

com_size = BLS_GE_SIZE * k,
opening_overhead = BLS_GE_SIZE ,

)

Hash - Based Code Commitment , over field with elements of size fsize ,
parallel repetition parameters P and L. Data is treated as a k x k matrix ,
and codewords are k x n matrices , where n = k* invrate .
def makeHashBasedScheme (datasize , fsize =32 , P=8, L=64 , invrate =4):

m = math.ceil(datasize / fsize)
k = math.ceil(math.sqrt(m))
n = invrate * k
rs = makeRSCode (fsize , k, n)

return Scheme (
code = rs. interleave (k),
com_size = n * HASH_SIZE + P * n * fsize + L * k * fsize ,
opening_overhead = 0,

)

Homomorphic Hash - Based Code Commitment
instantiated with Pedersen Hash
parallel repetition parameters P and L. Data is treated as a k x k matrix ,
and codewords are k x n matrices , where n = k* invrate .
def makeHomHashBasedScheme (datasize , P=2, L=2, invrate =4):

m = math.ceil(datasize / PEDERSEN_FE_SIZE)
k = math.ceil(math.sqrt(m))
n = invrate * k
rs = makeRSCode (PEDERSEN_FE_SIZE , k, n)

return Scheme (
code = rs. interleave (k),
com_size = n * PEDERSEN_GE_SIZE + P * n * PEDERSEN_FE_SIZE + L * k * PEDERSEN_FE_SIZE ,
opening_overhead = 0,

)

Listing 3: Python script to compute the tables in Section 10.
#!/ usr/bin/env python

import math
import sys
from tabulate import tabulate

from schemes import *

def makeRow (name ,scheme ,tex):
comsize = ’{:.2f}’. format (round (scheme . com_size /8000.0 ,2))
encodingsize = ’{:.2f}’. format (round (scheme . encoding_size () / 8000000.0 ,2))
commpqsize = ’{:.2f}’. format (round (scheme . comm_per_query () / 8000.0 ,2))
reception = scheme . reception ()
encodinglength = scheme . encoding_length ()
samples = scheme . samples ()
commsize = ’{:.2f}’. format (round (scheme . total_comm () / 8000000.0 ,2))
if tex:

row = ["\Inst"+name ,comsize , encodingsize , commpqsize ,samples , commsize]
else:

row = [name ,comsize , encodingsize , commpqsize ,(reception , encodinglength),samples , commsize]
return row

##

opts = [opt for opt in sys.argv [1:] if opt. startswith ("-")]
args = [arg for arg in sys.argv [1:] if not arg. startswith ("-")]

if len(args) == 0:
print (" Missing Argument : Datasize in Megabytes .")
print ("Hint: To print the table in LaTeX code , add the option -l.")
sys.exit (-1)

datasize = int(args [0]) *8000000

Print to LaTeX
tex = "-l" in opts

if tex:
table = [["Name","|com|","| Encoding |","Comm. p. Q."," Samples ","Comm Total "]]

else:
table = [["Name","|com| [KB]","| Encoding | [MB]","Comm. p. Q. [KB]"," Reception "," Samples ","Comm Total [MB]"]]

scheme = makeNaiveScheme (datasize)
table . append (makeRow (" Naive ",scheme ,tex))

scheme = makeMerkleScheme (datasize)
table . append (makeRow (" Merkle ",scheme ,tex))

scheme = makeKZGScheme (datasize)
table . append (makeRow ("RS",scheme ,tex))

scheme = makeTensorScheme (datasize)
table . append (makeRow (" Tensor ",scheme ,tex))

scheme = makeHashBasedScheme (datasize)
table . append (makeRow ("Hash",scheme ,tex))

scheme = makeHomHashBasedScheme (datasize)
table . append (makeRow (" HomHash ",scheme ,tex))

if tex:
print (tabulate (table , headers =’firstrow ’,tablefmt =’latex_raw ’,disable_numparse =True))

Mathias Hall-Andersen, Mark Simkin, Benedikt Wagner 79

else:
print (tabulate (table , headers =’firstrow ’,tablefmt =’fancy_grid ’))

Listing 4: Python script to compute the graphs in Section 10.
#!/ usr/bin/env python

import math
import sys
import csv
import os

from schemes import *

DATASIZEUNIT = 8000*1000 # Megabytes
DATASIZERANGE = range (1 ,156 ,15)

def writeCSV (path ,d):
with open(path , mode="w") as outfile :

writer = csv. writer (outfile , delimiter =’,’)
for x in d:

writer . writerow ([x,d[x]])

Writes the graphs for a given scheme
into a csv file
def writeScheme (name , makeScheme):

commitment = {}
commpq = {}
commtotal = {}
encoding = {}

for s in DATASIZERANGE :
datasize = s* DATASIZEUNIT
scheme = makeScheme (datasize)
commitment [s] = scheme . com_size / 8000000 # MB
commpq [s] = scheme . comm_per_query () /8000 # KB
commtotal [s] = scheme . total_comm () /8000000000 # GB
encoding [s] = scheme . encoding_size () /8000000000 # GB

if not os.path. exists ("./ csvdata /"):
os. makedirs ("./ csvdata ")

writeCSV ("./ csvdata /"+name+"_com.csv",commitment)
writeCSV ("./ csvdata /"+name+" _comm_pq .csv",commpq)
writeCSV ("./ csvdata /"+name+" _comm_total .csv",commtotal)
writeCSV ("./ csvdata /"+name+" _encoding .csv",encoding)

###
writeScheme ("rs",makeKZGScheme)
writeScheme (" tensor ",makeTensorScheme)
writeScheme ("hash",makeHashBasedScheme)
writeScheme (" homhash ",makeHomHashBasedScheme)

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Definition of Data Availability Sampling
	Basic Definition
	Extensions

	Overview of Constructions
	From Codes and Commitments to Data Availability
	Constructions of Erasure Code Commitments

	Background on Coding Theory
	Codes and Distance
	Special Families of Codes

	From Codes to Data Availability Sampling
	Erasure Code Commitments
	Index Samplers
	Construction of Data Availability Sampling Schemes

	Commitments for Arbitrary Codes
	Commitments for Tensor Codes
	Commitments for Interleaved Codes
	Construction from Hash Functions
	Construction from Homomorphic Hash Functions

	Evaluation and Comparison
	Setting the Stage
	Results

	References
	Definition of Cryptographic Building Blocks
	Some Useful Bounds
	Omitted Details from Section 3
	Omitted Details from Subsection 3.1
	Extension: Repairability
	Extension: Local Accessibility

	Omitted Details from Section 5
	Additional Notions for Erasure Code Commitments
	Message-Bound Openings
	Computational Uniqueness
	Extractability

	Omitted Details from Section 6
	Omitted Details from Subsection 6.1
	Omitted Details from Subsection 6.2
	Omitted Details from Subsection 6.3

	Omitted Details from Section 7
	Omitted Details from Section 8
	Omitted Details from Section 9
	Omitted Details from Subsection 9.1
	Omitted Details from Subsection 9.2

	Simulation of Index Samplers
	Script for Parameter Computation

