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Abstract. A fully homomorphic encryption (FHE) scheme allows a client to encrypt
and delegate its data to a server that performs computation on the encrypted data
that the client can then decrypt. While FHE gives confidentiality to clients’ data, it
does not protect the server’s input and computation. Nevertheless, FHE schemes are
still helpful in building delegation protocols that reduce communication complexity,
as the ciphertext’s size is independent of the size of the computation performed on
them.
We can further extend FHE by a property called circuit privacy, which guarantees
that the result of computing on ciphertexts reveals no information on the computed
function and the inputs of the server. Thereby, circuit private FHE gives rise to round
optimal and communication efficient secure two-party computation protocols. In this
work, we design a randomized FHEW/TFHE-style bootstrapping algorithm whose
single invocation sanitizes a ciphertext and, consequently, serves as a tool to provide
circuit privacy. We give an extensive analysis, propose parameters, and provide a C++
implementation of our scheme. Our bootstrapping can sanitize a ciphertext to achieve
circuit privacy at an 80-bit statistical security level in between 1.3 and 0.9 seconds,
depending which Gaussian sampling algorithm is used, and whether the parameter
set targets a fast Fourier or a number theoretic transform-based implementation. In
addition, we can perform non-sanitized bootstrapping in around 0.27 or 0.14 seconds.
Crucially, we do not need to increase the parameters to perform computation before
or after sanitization takes place. For comparison’s sake, we revisit the Ducas-Stehlé
washing machine method. In particular, we give a tight analysis, estimate efficiency,
review old, and provide new parameters.
Keywords: Fully Homomorphic Encryption · Circuit Privacy

1 Introduction
Fully homomorphic encryption (FHE) is an encryption scheme that allows performing
arbitrary computation on encrypted data. A client encrypts a message m and sends the
ciphertext to a server which, given a function F , returns another ciphertext that decrypts
to F (m). The concept of FHE was first introduced by Rivest, Adleman and Dertouzos
[RAD78], and the first theoretical realization of that concept is due to Gentry [Gen09b].

A critical property for FHE is circuit privacy (also called function privacy). Roughly
speaking, the ciphertext that is the product of the server computing a function F on
encrypted data should not reveal any information about F except that the ciphertext
decrypts to F (m). To prove circuit privacy, we need to show a simulator that, on input
F (m) and a public key, outputs a fresh encryption of F (m), which is indistinguishable
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from the servers’ computed ciphertext. In particular, the distribution of an evaluated
ciphertext should be close to or the same as the distribution of a fresh encryption.

We can easily see that circuit private FHE gives us semi-honest two-party computation
with optimal communication. Namely, we only need one round of communication. The first
message can be reused, and the communication complexity is independent of the size of the
computation. Furthermore, we can reuse the ciphertexts output from the evaluation process
and keep computing on them. Since circuit private FHE gives us two-party computation,
all applications for two-party computation protocols apply here as well. Among other these
are private set intersection [HFH99, Mea86, CLR17], oblivious pseudorandom functions
[BIP+18, ADDG24] neural network inference [DGBL+16, CdWM+17, LJLA17, JKLS18,
JVC18, BGGJ20, ABSdV19, CDKS19, RSC+19, BGPG20] or analysis on genomic data
[KSK+18, KSK+20, BGPG20]. Recently, Akavia, Gentry, Halevi, and Vald [AGHV22]
showed that circuit private IND-CPA secure homomorphic encryption satisfies a relaxed
notion of CCA2 security. Note that circuit privacy is not always needed. Without
circuit privacy FHE reduces to secure delegation. For example, in (single-server) private
information retrieval we are only interested in protecting the user’s query, but not in the
confidentiality of a potentially large database of the server. On the other hand, we believe
that for neural network inference, as an example, confidentiality of the neural network
is essential. In contrast to PIR, it is difficult to make an argument for compressing the
communication, as current FHE schemes require sending public keys and ciphertexts that
are an order of magnitude larger than the size of deep neural networks.

Despite over a decade of advances in constructing scalable fully homomorphic encryption
schemes [GH11, BV11, BGV12, GHS12, AP13, GSW13, BV14, AP14, HS15, DM15,
CGGI16a, CH18, CGGI20, HS21], and numerous implementations [PAL21, CGGI16b,
CJL+20, Lat22] there are few constructions and implementation that we are aware of
that natively provide circuit privacy.

Current approaches to Circuit Privacy. In this paper, we are interested in fully
homomorphic encryption as in [Gen09b]. Namely, ciphertexts do not grow with the size
of computation, and evaluation results are reusable. A trivial way to re-randomize a
ciphertext is to create a fresh encryption of zero using the public key and add it to the
ciphertext resulting from the computation. Unfortunately, such an approach is insufficient
to provide circuit privacy in current FHE schemes because all secure FHE schemes we
know are based on noisy encryptions. This noise may depend on the computed circuit
and is the main obstacle to overcome when re-randomizing (or sanitizing) a ciphertext to
provide circuit privacy. Below we summarize current approaches.

Noise Flooding: The technique requires adding a fresh ciphertext of zero and a
exponentially larger noise term to the sanitized ciphertext. Unfortunately, in practice, this
additional noise term is substantially large and requires us to choose very big parameters.
We note that it is required to take the noise exponentially larger than the noise in the
sanitized ciphertext due to the smudging lemma [AJL+12]. Hence, if the noise in this
ciphertext is already large due to some previous computation, then the the magnitude of
the additional noise must be chosen accordingly. Nevertheless, the method has found some
applications in leveled homomorphic computation [CLR17] where we do not bootstrap the
ciphertexts and can tolerate larger parameters.

Ducas-Stehlé Washing Machine: Introduced by Ducas and Stehlé [DS16], requires
to run a sequence of re-randomization steps (flooding cycles), each with a smaller noise
flooding error, followed by invocations of a bootstrapping algorithm. The paper only
roughly estimates the number of times re-randomization and bootstrapping must be
invoked. However, as the authors admit, the estimates should be taken with great caution
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and defer a concrete analysis to future work. For example, they suggest running the
FHEW [DM15] bootstrapping algorithm between 8 and 16 times. It is not entirely clear
what security level they are able to achieve and whether the parameter set of the FHEW
algorithm proposed at the time satisfies the given correctness constraints. To the best of
our knowledge, no concrete analysis or implementations have been done so far.

Secure Two-Party Computation: A few works [OPP14, GHV10, CO17] proposed
to use garbled circuit-based techniques to provide circuit privacy. For example, Gentry,
Halevi, Vaikuntanathan [GHV10] give a non-compact homomorphic encryption scheme that
can be thought of as a re-randomizable version of garbled circuits, which can be instantiated
from the DDH assumption. [GHV10] shows how to make the scheme compact, by per-
forming the evaluation over a compact FHE scheme and using the circuit-private scheme
to re-encrypt the ciphertext. Ostrovsky, Paskin-Cherniavsky and Paskin-Cherniavsky
[OPP14], and Chongchitmate and Ostrovsky [CO17] use the same technique as [GHV10]
to build a compact FHE by sanitizing the ciphertext using a non-compact 2PC scheme,
but to achieve malicious security, they prove the well-formedness of the ciphertext using
zero-knowledge proofs.

Rerandomizing Computation: Bourse, del Pino, Minelli and Wee [BdPMW16]
exploits properties of the Gentry, Sahai, Waters (GSW) cryptosystem [GSW13] to build
a circuit private homomorphic encryption scheme. Specifically, when multiplying GSW
ciphertexts, they use a randomized version of gadget decomposition instead of a determinis-
tic one. In [BdPMW16] the authors show that when gadget decomposition is implemented
via Gaussian sampling [MP12, GM18] with appropriate parameters, then we can build
an FHE scheme for circuits in NC1 (circuit of depth logarithmic in the number of inputs).
The results are asymptotic, without concrete parameter proposals nor implementation.

1.1 Our Contributions
We design a randomized FHEW/TFHE-style [DM15, CGGI16a] bootstrapping algorithm
that can sanitize a given ciphertext. In contrast to the Ducas-Stehlé washing machine
method [DS16], which we shortly refer to as DS-WM, we need to run our bootstrapping
algorithm only once. Our results solve an open problem posted in [BdPMW16], in
that we use their randomization concept in an FHEW-style bootstrapping scheme. We
note that porting the ideas from [BdPMW16] to the ring setting is non-trivial since
there is no analogue of the Gaussian leftover hash lemma [AGHS13, AR13, BdPMW16]
for the ring setting. Moreover, we can argue that designing a “leaky” analogue of the
regularity lemmas [Mic02, SS11, LPR13] as in [DSGKS21], may result in practically
inefficient bootstrapping. While we use some techniques from [BdPMW16], the overall
method departs from [BdPMW16]. In this work we show how to bypass the need to
port [BdPMW16] into the ring setting using simple techniques in the right places by
exploiting structural properties of FHEW/TFHE [DM15, CGGI16a] instantiated over the
ring RQ = ZQ[X]/(XN + 1) where N is a power of two. Along the way, we generalize the
technical lemmas from [BdPMW16] to support any modulus Q ∈ N, instead of moduli of
the form Q = Lℓ for some L, ℓ ∈ N.

We compare our method with DS-WM that is the most competitive. While [DS16]
gives a heuristic instantiation based on FHEW [DM15], they left a serious analysis as
an open problem. We resolve the problem and give a tight error analysis, and provide
scripts that automate noise and security estimations of our randomized bootstrapping and
DS-WM. We show that the parameters proposed in [DS16] cannot be circuit private due
to correctness issues. In general, we show that instantiations over a ring of dimension
210, or smaller, cannot give more than 30-bits of statistical security. Note that many
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efficient bootstrapping schemes [DM15, CGGI16a, CGGI20] are instantiated over rings of
dimension 210.

Finally, we give an efficient C++ implementation1 of our bootstrapping algorithms.
To the best of our knowledge, this is the first practical realization of a circuit pri-
vate FHEW/TFHE-style FHE scheme. Our implementation supports number theoretic
transform-based (NTT) and fast Fourier transform-based (FFT) multiplication of ring
elements. Due to our versatile implementation, we can experiment with different moduli
choices that lead to different algorithm variants. In particular, we can instantiate different
Gaussian samplers that are optimized toward a specific choice of modulus. We choose
different parameters targeting the different representations. Nevertheless, we identify some
drawbacks to the FFT-based implementation due to the relatively low precision of the
floating point arithmetic. Our algorithm sanitizes a ciphertext in about 1.3 seconds for
both the NTT and FFT-based implementations when using Karney’s Gaussian sampling
algorithm [Kar16]. When sampling from the rounded continuous Gaussian distribution via
Box-Muller transform [BM58] we can reduce the times to 1.0 and 0.9 seconds for NTT
and FFT, respectively. Furthermore, without increasing the size of the public key, we can
compute standard FHEW/TFHE-style bootstrapping in around 0.14 and 0.27 seconds for
NTT and FFT, respectively. We show that the DS-WM method is between 1.56× to 7.88×
slower than ours, depending on the parameter sets and the implementation of the Gaussian
sampling algorithm. We compared parameters with the same key sizes, non-sanitized
(deterministic) computation time, and correctness level. We also stress that Gaussian
sampling in our method constitutes about 78% and 40% of the entire computation. Our
implementation is linear and does not take advantage of special vector instructions or
parallelism. Based on the speedups when using different Gaussian samplers, we believe that
an optimized implementation could significantly improve the execution times, while we do
not see much room for improvement in DS-WM as it simply repeats the base bootstrapping
algorithm.

Note, that our and [DS16] methods follow the theoretical blueprint from [GHV10]
in that we compute on a non-circuit-private FHE, but run homomorphic decryption
with a circuit-private scheme before returning the ciphertext. The difference is that
[GHV10, OPP14, CO17] run garbled circuits that introduce new assumptions, and rounds
and increase the output size in practice since we need to send wire encodings and oblivious
transfer labels for each gate in the decryption circuit. To the best of our knowledge
[GHV10, OPP14, CO17] was never implemented. In our scheme and [DS16], the output
is an Learning with Errors (LWE) ciphertext, just like in a non-circuit-private FHE.
Finally, note that we can achieve malicious circuit-privacy as in [OPP14, CO17] by proving
well-formedness of the public key and ciphertexts, but efficient realization of such proofs is
currently under extensive research [LNP22, BN20, BCGZ24, Bot24] and out of scope of
this paper.

1.2 Our Techniques
In this section, we first give a high-level overview of FHEW/TFHE-style bootstrapping
and our circuit private version. Then we discuss the technical problems to realize the idea
and our solutions.

FHEW/TFHE-Style Bootstrapping. First, let us recall the symmetric key version
of Regev’s encryption [Reg09]. The encryption algorithm chooses a uniform random vector
a ∈ Zn

q and a secret key s ∈ Zn
q , and computes an encryption of a message m ∈ Zt as

[b, a] ∈ Zn+1
q , where b = ⟨a, s⟩+ m̃ + e (mod q), m̃ = q

t ·m, and e < q
2·t is a small discrete

1Available at at Github https://github.com/FHE-Deck.
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Gaussian noise. For simplicity, we assume that t | q. The decryption algorithm calculates⌊
t
q ·

(
b− ⟨a, s⟩

)⌉
=

⌊
t
q · (

q
t ·m + e)

⌉
= m.

The scheme can also be instantiated over the cyclotomic ring RQ, where R =
Z[X]/(XN + 1) and RQ = R/QR. To encrypt a message m from the ring Rt, the
scheme selects a uniform random a ∈ RQ and a secret key s ∈ RQ and computes the
encrypted message [b, a] where b = a · s + q

t ·m + e, and e is a small error term in RQ with
coefficients from the discrete Gaussian Distribution.

Now let us proceed to the ideas underlying the FHEW-style bootstrapping scheme
introduced by Ducas and Micciancio in [DM15]. We want to re-encrypt an LWE ciphertext
[b, a] ∈ Zn+1

q . Assuming that the LWE modulus is q = 2 · N , the scheme sets up a
homomorphic accumulator acc as an Ring LWE (RLWE) encryption of arot ·Xb ∈ RQ. We
refer to [DM15] on how to choose arot.

Next, the scheme multiplies acc with encryptions of X−a[i]·s[i] ∈ RQ for each i ∈ [1, n].
Finally, the message in the accumulator will be:

arot ·Xb−
∑n

i=1
a[i]·s[i] = arot ·Xk·q+m̃+e = arot ·Xm̃+e mod 2·N ∈ RQ.

The last step is to extract an LWE encryption of the constant term from the rotated
accumulator. Denote this LWE ciphertext as [aout, bout], where b = ⟨aout, s⟩+ mout + eout.

How to Get Circuit Privacy. Note that the output ciphertext is entirely determined
by the input ciphertext and the evaluation key. One solution is to use the noise flooding
technique [Gen09a]. Essentially, the technique involves adding a fresh ciphertext and some
noise to the output ciphertext. Although this makes the noise in the output ciphertext
uniform in an interval and independent, the magnitude of the noise term is exponential in
the security parameter. This means that a large modulus (over 110 bits) must be chosen
and the dimension must be increased to compensate for the security loss, resulting in a
large evaluation key and reduced efficiency. We give sample estimates for this technique in
Appendix C.

Another solution by Ducas and Stehlé [DS16] is to apply smaller flooding noise and
repeat the bootstrapping process O(λ) times to achieve the desired level of circuit privacy
security. However, this approach has the immediate downside of having to repeat the
expensive bootstrapping operation multiple times. Nevertheless, in this paper we show
new parameters and optimizations of [DS16] applied to FHEW/TFHE-style bootstrapping,
in order to give better insights into the state of the art and a proper comparison with our
method.

Our idea is to re-randomize the blind rotation algorithm so that the distribution of
the extracted LWE ciphertext will already be independent of the input ciphertext. To do
this, we first need to construct a randomized algorithm to multiply RLWE ciphertexts.
Our starting point is the algorithm introduced by Bourse et al. in [BdPMW16], who
showed a randomized product of GSW [GSW13] ciphertexts. It turns out, however, that
there are multiple problems that we need to overcome to apply this high level idea for the
bootstrapping algorithm.

Brief Overview of the Randomized GSW Product. First we define a gadget vector
g = [1, 2, . . . , 2ℓ] and the matrix G = g ⊗ In ∈ Zn×ℓn

Q , where In is the n dimensional
identity matrix. A GSW encryption of a message m ∈ ZQ is given as

C =
[

A
s⊤A + e⊤

]
+ m ·G,

where s ∈ Zn
Q is the secret key, A ∈ Z(n−1)×ℓn

Q is public, and e ∈ Zℓn
Q is a noise vector

whose entries are from the discrete Gaussian distribution.
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Now we are ready to recall the method from [BdPMW16]. Define a randomized gadget
decomposition algorithm X← G−1

rand(a ·G), where a ∈ ZQ and the matrix X ∈ Zℓn×ℓn
Q has

entries from the discrete Gaussian distribution such that G ·X = a ·G. We can use G−1
rand

to multiply the GSW ciphertext C ∈ Zn×ℓn
Q by a and randomize the outcome as follows.

C ·X +
[

0
y⊤

]
=

[
A ·X

s⊤A ·X + e⊤X + y⊤
]

+ m · a ·G,

where y ∈ Zℓn
Q is chosen from the discrete Gaussian distribution. The main idea and

technical contribution in [BdPMW16] is to show that such a product already gives us
a ciphertext that is statistically independent of the input ciphertext. At the heart of
their proof is the core randomization lemma that states that a tuple (A ·X, e⊤X + y⊤)
is statistically indistinguishable from (Ā, ē⊤), where Ā ∈ Z(n−1)×ℓn

Q is from the uniform
distribution and ē ∈ Zℓn

Q is an independent random variable from the discrete Gaussian
distribution with a slightly higher standard deviation, given that X and y have sufficiently
high standard deviations.

The first step to prove the core randomization lemma is to show that A ·X is close
to uniform from the generalized leftover hash lemma [DRS04]. To this end, we need to
analyze the entropy of X given e⊤X + y⊤, and e. To show that e⊤X + y⊤ is close to an
independent discrete Gaussian random variable, [BdPMW16] use an adaptation of the
Gaussian leftover hash lemma [AGHS13, AR13].

In FHEW/TFHE-style bootstrapping, we need to perform external products of ring
LWE ciphertexts. Hence the immediate problem is to translate the randomization technique
into the ring setting. But as we discuss later, such translation may still be impractical.

Problems with Translating [BdPMW16] Into the Ring Setting. At the heart
of FHEW/TFHE-style bootstrapping algorithms is an algorithm called blind rotation
that outputs an RLWE ciphertext c = (a, b) ∈ R2

Q whose constant coefficient of the
encrypted message encodes the decryption of an input ciphertext. We can show that the
ciphertext can be represented as (a⊤x, e⊤x + y) as above but where y ∈ RQ, a, x, e ∈ Rm

Q

and elements in x have coefficients from the discrete Gaussian distribution. Recall that
RQ = ZQ[X]/(XN + 1).

If we want to follow the technique from [BdPMW16], we would need to show that
a = a⊤x is close to uniform given e⊤x + y and e. We may try to define a “leaky” version
of the regularity lemma [LPR13] as in [DSGKS21]. But we argue that even if we would
ignore the security loss due to the leak, the regularity lemma from [LPR13] requires us to
choose a small decomposition basis resulting in high ℓ and, consequently, in relatively slow
(Ring) GSW products. Concretely, we must choose the standard deviation σx of x to
be larger than N ·Q1/ℓ+2/Nℓ to achieve a negligibly small statistical distance. Naturally,
σx cannot be too large to guarantee correctness. Thus, ℓ must be sufficiently high to
minimize Q1/ℓ+2/Nℓ. For example, let us fix σx = N , where N = 211, which is a typical
ring dimension used in practice. In this case, we must choose ℓ such that Q1/ℓ+2/Nℓ < 1.
Typically, Q is a 32- to 54-bit number. This implies that ℓ > 32. The ℓ parameter is critical
as it affects the most time-consuming operation in the bootstrapping scheme. Hence it is
imperative to keep ℓ small in practical implementations. Another problem is that we do
not have a ring analogue of the Gaussian leftover hash lemma.

Our Solution. To bypass these problems, we exploit that in FHEW/TFHE-style schemes,
we extract an LWE ciphertext from c. In particular, observe that (a′, b′) ∈ ZN+1

Q , where
b′ = b[1] ∈ ZQ is b’s constant coefficient, and a′ ∈ ZN

Q is such that a′[1] = a[1] and
a′[i] = a[N − i] for i = 0 . . . N − 2, is a correct LWE ciphertext with respect to the
secret key s′ = s (the coefficient vector of s) encrypting the constant coefficient of c’s
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message. Note that we still cannot claim that a′ is close to uniform, but what we can do
is sample a fresh LWE ciphertext of 0 denoted as (arand, brand), add it to (a′, b′) obtaining
a ciphertext (ā, b̄) of the same message where ā is statistically close to uniform. Note
that if a′ is fixed and arand is from the uniform distribution, then a′ + arand = ā is a
fixed shift of uniformly distributed random variables. Finally, we can show that the
error term of (a′, b′) is already in the form required by the Gaussian leftover hash lemma
[AGHS13, AR13, BdPMW16] (see Lemma 15). To show this, we exploit the specific
structure of the ring RQ = ZQ[X]/(XN + 1) where the product of two ring elements is a
negacyclic convolution of two polynomials. Our analysis applies only to RQ which is used
in FHEW/TFHE-style bootstrapping schemes. To summarize, our construction completely
bypasses the need to adapt [BdPMW16] to the ring setting.

Concurrent Work. Concurrently and independently, Bourse and Izabachène [BI22] gave
a circuit private FHEW/TFHE-style algorithm. However, the techniques and practical
efficiency differ significantly. Roughly speaking, [BI22] build a multiplication algorithm
between RLWE and RGSW ciphertexts that outputs an RLWE ciphertext of the product,
which is statistically close to a “fresh” ciphertext. To randomize the bootstrapping
algorithm, [BI22] needs to publish a sanitization key that consists of ≥ 217 RLWE
ciphertexts alongside the bootstrapping key. Such key requires over 677 MB memory2.
In contrast, our algorithm requires less than 186 or 69 MB (depending on the parameter
set) of additional sanitization key. Furthermore, [BI22] needs to sample a “fresh” RLWE
ciphertext for every external product in the blind rotation step. As reported in [BI22]
sampling a single RLWE ciphertext takes approximately 45 seconds, and they need to
sample 612 to perform a single bootstrapping operation. That gives us 7.6 hours to
perform the sampling. To overcome the timing issue, the authors assume that the RLWE
ciphertexts and Gaussian are precomputed, and the machine has unrestricted memory
and precomputation. However, to make the computation feasible on a laptop they test
the algorithm by reusing a single RLWE ciphertext. Even with the precomputed values,
deterministic bootstrapping takes 3.15 seconds, and sanitization bootstrapping takes
between 21 and 4.68 seconds depending on how many Gaussian samples were precomputed.
In comparison, our deterministic bootstrapping takes 0.14 or 0.27 seconds, sanitization
takes between 0.9 and 1.3 seconds. Most importantly, we do not need any precomputation
for our algorithms to be efficient, and all random variables are generated on-the-fly.

2 Background and Notation
We denote as RQ the ring of polynomials ZQ[X]/(XN + 1) where N is a power of two. We
only use Q and N in the context of the ring RQ. We denote vectors with bold lowercase
letters, e.g., v, and matrices with uppercase letters V. We denote an n dimensional column
vector as [f(., i)]ni=1, where f(., i) defines the i-th coordinate. For brevity, we will also
denote as [n] the vector [i]ni=1, and more generally [i]mi=n the vector [n, . . . , m]. We address
the ith entry of a vector v by v[i]. For matrices we address the ith row and jth column as
A[i, j]. Sometimes we view ring elements a ∈ RQ as vectors of coefficients and we address
the coefficients as vector coordinates. For a random variable x ∈ Z we denote as Var(x)
the variance of x, as stddev(x) its standard deviation and as E(x) the upper bound on
absolute value of the expectation. For a ∈ RQ, we define Var(a), stddev(a) and E(a) to be
the largest variance, standard deviation and absolute value of the expectation respectively
among the coefficients of the polynomial a. By Hw(a) we denote the hamming weight of
the vector a, i.e., the number of of non-zero coordinates of a. We represent numbers in
ZQ as integers in [−Q/2, Q/2).

2Assuming each integer is stored in a byte array. If integers are stored in 64-bit registers, then the key
size grows to ≈ 9000 MB of memory.
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We say that an algorithm is PPT if it is a probabilistic polynomial-time algorithm.
We denote any polynomial as poly(.). We denote as negl(λ) a negligible function in λ ∈ N.
That is, for any positive polynomial poly(.) there exists c ∈ N such that for all λ ≥ c
we have negl(λ) ≤ 1

poly(λ) . Given two distributions X, Y over a finite domain D, their
statistical distance is defined as ∆(X, Y ) = 1

2
∑

v∈D |X(v) − Y (v)|. We say that two
distributions are statistically close if their statistical distance is negligible.

Probability Theory

Lemma 1 (Smudging Lemma [AJL+12]). Let B1 and B2 be two be positive integers and
let e1 ∈ [−B1, B1] be a fixed integer. Let e2 ←$ [−B2, B2] be chosen uniformly at random.
Then the statistical distance between e2 and e2 + e1 is

∆(e2, e2 + e1) = B1/B2.

Lemma 2 (Lemma 2.3 from [DS16]). Let δ ∈ [0, 1] and f : S → S be a randomized
function such that ∆(f(a), f(b)) ≤ δ holds for all a, b ∈ S. Then

∀k ≤ 0,∀a, b ∈ S, ∆(fk(a), fk(b)) ≤ δk,

where fk denotes composing the function f k-times.

Definition 1. The min-entropy of a random variable X is defined as

H∞(X) = − log
(

max
x

Pr[X = x]
)

Furthermore we recall the definition of average min-entropy A given B as

H̃∞(A|B) = − log
(
Eb←B

[
max

a
Pr[A = a|B = b]

])
= − log

(
Eb←B [2−H∞(A|B=b)]

)
.

Lemma 3 (Generalized Leftover Hash Lemma [DRS04, DORS08]). Assume {HX {0, 1}n 7→
{0, 1}ℓ}x∈X is a family of universal hash functions. Then, for any random variables W
and I,

∆
(
(HX(W ), X, I), (Uℓ, X, I)

)
≤ 1

2 ·
√

2ℓ · 2−H̃∞(W |I)

Lemma 4 (Lemma 2.2. in [DRS04, DORS08]). Let A, B and C be random variables.
Then

1. For any δ > 0, the conditional entropy H∞(A|B = b) is at least H̃∞(A|B)− log(1/δ)
with probability at least 1− δ over the choice of b.

2. If B has at most 2λ possible values, then

H̃∞(A|(B, C)) ≥ H̃∞((A, B)|C)− λ ≥ H̃∞(A|C)− λ.

In particular, H̃∞(A|B) ≥ H∞
(
(A, B)

)
− λ ≥ H∞(A)− λ.

Lattices. An m-dimensional lattice Λ is a discrete additive subgroup of Rm. For an
integer k < m and a rank matrix B ∈ Rm×k, Λ(B) =

{
Bx : x ∈ Zk

}
is the lattice

generated by the columns of B. We denote Λ⊥q (B) =
{

v ∈ Zm : B⊤v = 0 mod q}.
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Gaussian distribution. For any σ > 0, the spherical Gaussian function with
parameter σ is defined as ρσ(x) = exp

(−π||x||2
σ2

)
, for any x ∈ Rm. Given a lattice Λ ⊆ Rm,

a parameter σ ∈ R and a vector c ∈ Rm the spherical Gaussian distribution with parameter
σ and support Λ + c is defined as

DΛ+c,σ(x) = ρσ(x)
ρσ(Λ + c) ,∀x ∈ Λ + c

where ρσ(Λ + c) denotes
∑

x∈Λ+c ρσ(x).
We write x ←$ DΛ+c,σ do denote that x is sampled from the discrete Gaussian

distribution with support Λ + c and parameter σ. We write y←$ DZN ,σ or y←$ DZn,σ

when sampling the coefficients of y ∈ R or components of y ∈ ZN from DZ,σ. For a
set S we write x ←$ S to denote the uniform distribution over S unless said otherwise.
Throughout the paper we denote Cδ,m =

√
ln(2m(1+1/δ))

π .

Definition 2 (Smoothing Parameter). For a lattice Λ ⊆ Zm and positive real δ > 0, the
smoothing parameter ηδ is the smallest real r > 0 such that ρ1/r(Λ∗ \ {0}) ≤ δ, where
Λ∗ = {x ∈ Rm|x⊤Λ ⊆ Z}.

Lemma 5 ([MR04], Lemma 3.3). Let Λ be any rank-m lattice, and δ ∈ R+. Then

ηδ ≤ λm(Λ) · Cδ,m,

where λm(Λ) is the smallest R such that the ball BR centered in the origin and with
radius R contains m linearly independent vectors of Λ. Remind that we denote Cδ,m =√

ln(2m(1+1/δ))
π .

Lemma 6 (Claim 3.8 in [Reg09]). For any lattice Λ, c ∈ Rn, ϵ > 0 and σ ≥ ηϵ,

ρ(Λ + c) ∈ σn

det(Λ)(1± ϵ)

Lemma 7 (Corollary 2.8 in [GPV08]). Let Λ ⊆ Zm be a lattice, 0 < ϵ < 1, σ > 0. For
any vector c ∈ Rm, if σ ≥ ηϵ(Λ), then we have

ρ(Λ + c) ∈
[1− ϵ

1 + ϵ
, 1

]
· ρσ(Λ)

Learning With Errors. We recall the learning with errors assumption by Regev [Reg05].
Our description is a generalized version due to Brakerski, Gentry, and Vaikuntanathan
[BGV12].

Definition 3 (Generalized Learning With Errors). Let Dsk be a (not necessarily uniform)
distribution over RQ, and σ > 0, n ∈ N and N ∈ N be a power of two, that are chosen
according to a security parameter λ. We define a Generalized Learning With Errors
(GLWE) sample of a message m ∈ RQ with respect to a secret key s ∈ Dn

sk, as

GLWEσ,n,N,Q(s, m) =
[

a⊤
b = a⊤ · s + e

]
+

[
0
m

]
∈ R(n+1)

Q ,

where a ←$ Rn
Q and e ←$ DR,σ. We say that the GLWEσ,n,N,Q-assumption holds if for

any PPT adversary A we have∣∣ Pr[A(GLWEσ,n,N,Q(s, 0)) =]− Pr[A(U (n+1)×1
Q ) =]

∣∣ ≤ negl(λ)

where U (n+1)×1
Q is the uniform distribution over R(n+1)

Q .
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We denote a Learning With Errors (LWE) sample as LWEσ,n,Q(s, m) = GLWEσ,n,1,Q,
which is a special case of a GLWE sample where the ring is Zq[X]. Similarly we denote a
Ring-Learning with Errors (RLWE) sample as RLWEσ(s, m) = GLWEσ,1,N,Q which is the
special case of an GLWE sample with n = 1. For simplicity, we omit to state the modulus
and ring dimension for RLWE samples because we always use RQ = ZQ[X]/(XN +1) where
N is a power of two. For LWE samples, we will be switching between different moduli and
different dimensions; hence we will indicate the current modulus in the notation. Sometimes
we use the notation c ∈ GLWEσ,n,1,Q(s, m) (resp. LWE and RLWE) to indicate that a
vector c is a GLWE (resp. LWE and RLWE) sample of the corresponding parameters
and inputs. Sometimes we leave the inputs unspecified and substitute them with “.”
when it is not necessary to refer to them within the scope of a function. We define the
phase of c = GLWEσ,n,N,Q(s, m), as Phase(c) = [1,−s] · c. We define the error of c as
Error(c) = Phase(c)−m.

Fully Homomorphic Encryption. Below we recall the definition of fully homomorphic
encryption [RAD78, Gen09b].

Definition 4 (Fully Homomorphic Encryption). A fully homomorphic encryption FHE
consists of algorithms (Setup, Enc, Eval, Dec) with the following syntax.

Setup(λ): This PPT algorithm takes as input a security parameter λ and outputs an
evaluation key ek and a secret key sk.

Enc(sk, m): This PPT algorithm takes as input a secret key sk, and a message m, and
returns a ciphertext ct.

Eval(ek, [cti]ni=1, C): Given as input an evaluation key ek, a set of ciphertexts [cti]ni=1, and
a circuit C, this (non-)deterministic algorithm outputs a ciphertext ct.

Dec(sk, ct): Given a secret key sk and a ciphertext ct, this deterministic algorithm outputs
a message m.

Correctness: We say that FHE = (Setup, Enc, Eval, Dec) is correct, if for all security
parameters λ ∈ N, circuits C :Mn 7→ M over the message spaceM of depth poly(λ),
and messages [mi ∈M]ni=1 we have

Pr
[
Dec(sk, ctout) = C([mi]ni=1)

]
= 1− negl(λ),

where (ek, sk)← Setup(λ),
[
Dec(sk, cti) = mi

]n

i=1 and ctout ← Eval(ek, [cti]ni=1, C).

Efficiency: We require that Setup, Enc and Dec run in poly(λ) time, and Eval runs in
poly(λ, |C|) time. Finally, we say that fully homomorphic encryption is compact if
the size of the output of Eval is independent of C. Namely, if |Eval(ek, [cti]ni=1, C)| is
poly(λ, |M|).

Definition 5 (Indistinguishability Under Chosen Plaintext Attack). Let λ ∈ N be a
security parameter and A = (A0, A1) be a PPT adversary. We define the advantage
AdvINDCPA

A,FHE (λ) We say that a FHE scheme is INDCPA-secure if for all PPT adversaries A
the following probability

Pr

 A1(ctb, st) = b:

sk← Setup(λ),
(st, m0, m1)← AO(sk,.)

0 (λ),
b←$ {0, 1},

ctb ← Enc(λ, sk, mb)

 ,

is at most negl(λ), where the oracle O on input a message m outputs ct← Enc(λ, sk, m).
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Circuit Privacy: Let C :Mn 7→ M be a polynomial size circuit. A fully homomorphic
encryption scheme FHE is said to be circuit private if there exists a PPT simulator
for all fixed (ek, sk)← Setup(λ) and for all c1, . . . , cn such that [mi ← Dec(sk, ci)]ni=1
and mout ← C(m1, . . . , mn) and

∆((sk, Sim(ek, mout)), (sk, Eval(ek, c1, . . . , cn, C))) ≤ negl(λ).

Our simulation-based definition of circuit privacy is stronger than [IP07, BdPMW16]
in two aspects. First, our simulator does not require us to know the size of the circuit as
in [IP07]. In fact, our simulator only needs to know the outcome of the circuit and nothing
else. Second, we only assume that the ciphertexts input to the evaluator decrypt to the
messages input to the circuit.

3 Sanitization Bootstrapping
We describe all algorithms necessary to build the sanitization bootstrapping. For algorithms
that are part of the sanitization bootstrapping but are not crucial as for the circuit
privacy analysis in Section 4, we only define the interfaces and state their correctness and
functionality. In Appendix B we give the full specification and correctness proofs of these
algorithms.

Gadgets and Gaussian Sampling. Let us first denote ℓ = ⌈logL Q⌉ for some radix
L ∈ N. In particular we denote Lbr for the blind rotation key defined by Figure 2. We also
use LksK as a decomposition base of the key-switching procedure, the interface of which we
recall in Lemma 13 but defer the full specification of this algorithm to Appendix B.

Let gL,Q = [1, L, . . . , Lℓ−1] be the gadget vector parameterized by L and Q. We use
different decomposition algorithms but refer to all with the same interface. In particular,
we have the decomposition algorithm x = G−1

ver (c, L; σ) ∈ Rℓ that takes as input a ring
element c ∈ RQ, a radix L, and optionally a Gaussian parameter σ, and outputs a low
norm vector x ∈ Rℓ such that c = g⊤L,Q · x ∈ RQ. Note that G−1

ver also takes the modulus
Q implicitly as input. A special case of the above is when G−1

ver takes as input a single
element from ZQ instead of a polynomial from RQ. We use a parameter ver that takes
a value from {simul, det}. If ver = simul then we apply the algorithm from Lemma 8
coefficient wise. In particular, in our implementation we implement two algorithms from
[MP12, GM18]. One for a general Q < Lℓ and one specialized for Q = Lℓ. We recall both
in Appendix A, but in Lemma 8 we refer only to the case with Q < Lℓ since, for the
other case, we found it hard to find efficient parameters (despite the Gaussian sampling
for Q = Lℓ being more efficient). We give more details on the parameters in Section 5.
Note that for ver = simul, we take the additional σx as input. For ver = det, we take
the deterministic decomposition algorithm like binary decomposition but generalized to
any radix L ≥ 2 and apply it coefficient-wise to elements from RQ. We note that for
the det-mode, we may also use randomized algorithms, e.g., the subgaussian sampling
algorithms [GMP19]. We can generalize the gadget vector for some w ∈ N to a matrix
GL,Q,w = gL,Q ⊗ Iw ∈ Zw·ℓ×w

Q . Then the decomposition algorithm takes as input vectors
a ∈ Rw

Q and outputs x ∈ Rw·ℓ
L such that a = x⊤ ·GL,Q,w.

Lemma 8 (Gaussian Sampling [GM18]). There exists a sampling algorithm G−1
simul(a, L, σx)

that on input a ∈ ZQ, L ∈ N and a Gaussian parameter σx, outputs y ∈ Zℓ such that

∆
(
y, x[i] ∈ DΛ⊥

Q
(gL,Q)+G−1

det (a[i],L),σx

)
≤ ℓ · δ,

if σx ≤
√

2L · (2L + 1) · Cδ,ℓ.
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RGSW(s,mG):
Input:
Secret key s ∈ RQ.
Message mG ∈ RQ.

1 : For i ∈ [ℓbr]:

2 : CG[∗, i]← RLWEσG (s,mG · Li−1
br ).

3 : For i ∈ [ℓbr + 1, 2ℓbr]:

4 : CG[∗, i]← RLWEσG (s,−s ·mG · Li−1−ℓbr
br ).

5 : Return CG ∈ R2×2ℓbr
Q .

extProdver(c, CG; σx):
Input:
Ciphertext c ∈ RLWEσ(s,m).
Ciphertext CG ∈ RGSWσG (s,mG).
[If simul] A Gaussian param. σx.

1 : cout ← CG · G−1
ver (c, Lbr; σx).

2 : Return cout ∈ R2
Q

Figure 1: RGSW Encryption and External Product.

Depending on the ver parameter, the distribution of the image of G−1
ver may greatly

differ. In the correctness analysis we denote the noise of G−1
ver ’s output as B(G−1(., L)). For

example, for deterministic base-L decomposition, we take L2, or when the decomposition
returns a discrete Gaussian, we take its variance. We concretize this quantity when
estimating correctness in Section 5.

Ring GSW Encryption. We recall the ring-version of the RGSW cryptosystem
[GSW13] on Figure 1. We also recall the external product [CGGI16a, CGGI20], that mul-
tiplies an RGSW ciphertexts with an RLWE ciphertext. Below we state the functionality
of the external product, but we limit our exposition to the case of binary plaintexts, which
is the relevant case in our application.

Lemma 9 (The External Product). Let c and CG be RLWE and GSW encryptions of m
and mG, respectively, as in Figure 1. If cout ← extProdver(CG, c; σx) and mG ∈ {0, 1} then
cout ∈ RLWEσout(s,mout), where mout = m ·mG and

σout ≤
√

2ℓbr ·N · σ2
br · B(G−1

ver (., Lbr; σx)) + mGσ2.

Mux Gate. Informally, the Mux gate takes as input a control RGSW sample C and
two RLWE samples d and h. The gate outputs an RLWE encoding one of the message
from d or h depending on the bit encoded in C.

Lemma 10 (Homomorphic Mux Gate). The Mux algorithm takes as input C ∈ RGSWσC(s,
mC), d ∈ RLWEσ(s,md) and h ∈ RLWEσ(s,mh), where mC ∈ {0, 1} and md,mh ∈ RQ.
Optionally it also takes a Gaussian parameter σx. In particular, the gate computes
and outputs extProdver(CG, d − h; σx) + h. If cout ← Mux(C, d, h; σx), then cout ∈
RLWEσout(s,mout), where mout = mh for mC = 0 and mout = md for mC = 1, and

σout ≤
√

2ℓbr ·N · σ2
br · B(G−1

ver (., Lbr; σx)) + σ2

Modulus Switching and Sample Extraction. The modulus switching technique
[BV11] allows us to change the modulus of a given ciphertext without the knowledge of
the secret key.

Lemma 11 (Modulus Switching). Let c = LWEσ,n,Q(s, m). The modulus switching
algorithm is defined as ModSwitch(c, q) =

[⌊ q·c[i]
Q

⌉]
. If cout ← ModSwitch(c, q), then cout
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∈ LWEσout,n,q(s, m · q
Q ), where

σout ≤
√( q

Q
· σ

)2 + 1
4 · Hw(s) · Var(s).

Furthermore, the expectation of Error(cout) satisfies

∣∣E(Error(cout))
∣∣ ≤ ∣∣ q

Q
· E(Error(c))

∣∣ + 1
2

(
1 + Hw(s) · |E(s)|

)
Finally, if m = m′ · Q

t , then m · q
Q = m′ · q

t .

Sample extraction, allows extracting an LWE from an RLWE sample that encodes the
constant coefficient of the RLWE sample’s message.

Lemma 12 (Sample Extraction). Let KeyExtract(s) be an algorithm that on input a key
s ∈ RQ outputs its coefficient vector. The sample extraction algorithm LWE-Ext(c) takes
as input c ∈ RLWEσ(s,m) and outputs cout = [a, b] ∈ ZN+1

Q where b = b[1], and for all
i ∈ [N − 1] we set a[i]← −a[N − i + 1] and set a[1]← a[1].

Denote the message encoded in c as m =
∑N

i=1 m[i] ·Xi−1. If s′ ← KeyExtract(s) and
cout ← LWE-Ext(c), then cout ∈ LWEσout,N,Q(s′,m[k]), where σout = σ.

Key Switching. By having a key switching key, the evaluator can map a given LWE
sample to an LWE sample of a different key and dimension. We recall the interface for
key switching and state its functionality by Lemma 13. We recall the full specification in
Appendix B.

Lemma 13 (Key Switching). We define the key-switching key generation procedure
ksK ← KeySwitchSetup(σksK, s, s′), to take as input a noise parameter σksK, and LWE
secret keys s ∈ Zn

Q and s′ ∈ ZN
Q of (possibly) distinct dimensions n, N ∈ N. The key-switch

procedure cout ← KeySwitch(c, ksK) takes as input a LWE ciphertext c ∈ LWEσ,N,Q(s′, m)
and the key-switching key ksK, and outputs a LWE sample cout ∈ LWEσout,n,Q(s, m), where

σout ≤
√

ℓksK ·N · B(G−1
det(., LksK)) · σ2

ksK + σ2.

Randomized Blind Rotation and Sanitization Bootstrapping. In Figure 3 we
show our sanitization bootstrapping. We give the sanitizing blind rotation and its key
generation algorithm in Figure 2. In short the algorithm is given a LWE sample which
phase is m + e (e is the noise term) and outputs a RLWE sample of arot ·Xm+e ∈ RQ.
For any function f that is negacyclic, i.e., satisfies f(x + N mod 2N) = −f(x) mod Q
we choose the rotation polynomial arot such that the constant coefficient of arot ·Xm+e

is set to f(m + e) ∈ ZQ. We stress that the restriction on f is imposed by structural
properties of the ring RQ = ZQ[X]/(XN + 1). In Appendix B we recall a version of the
algorithm that applies a trick from [YXS+21, LMP22], which resolves the negacyclicity
restriction on the functions that we can compute on the input plaintext at the cost of
two blind rotation operations. Namely, we can program the polynomial arot such that
F (m+e) = arot ·Xm+e[1] ∈ ZQ, where F is any function in ZN . Such full domain functional
bootstrapping got recently much attention [KS22, YXS+21, CLOT21, LMP22, Klu22],
as it allows to compute any function on finite fields, conveniently switch from finite field
plaintexts to binary and back, etc.

Lemma 14 (Correctness of Bootstrapping). Let br, c and all other parameters be as in
Figure 3, ksK be generated as described by Lemma 13, where s′ ← KeyExtract(s).
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BRKeyGen(σbr, s, s):

Input:
An error distribution σbr.
A RLWE secret key s ∈ RQ.
A LWE secret key s ∈ Zn

t .

1 : For i ∈ [n]
2 : Set br[i] = RGSWσbr (s, s[i]).
3 : Output br ∈ RGSWσbr (s, .)n.

BlindRotatever(br, arot, c; σx):

Input:
A blind rotation key br = RGSWσbr (s, .)n.
An rotation polynomial arot ∈ RQ.
A ciphertext c ∈ LWEσ,n,2N (s, .).
[If simul] A Gaussian param. σx.

1 : Let c = [a, b] ∈ Zn+1
2N .

2 : Set cacc,0 ← [0, arot ·Xb] ∈ R2
Q

3 : For i ∈ [n]:
4 : cacc,i ← Muxver(br[i],

cacc,i−1 ·X−a[i],

cacc,i−1;
σx).

5 : Output cacc,n ∈ R2
Q.

Figure 2: TFHE-style Blind Rotation and its Setup.

Let arot be such that f(m + e) = arot · Xm+e[1] ∈ RQ, where m + e = Phase(c) and
f : Z2N 7→ ZQ. If cout = Bootstrapver(br, ksK, c, arot), then cout ∈ LWEσout,N,Q

(
s′, f(m+e)

)
,

with σout ≤
√

2n · ℓbr ·N · σ2
br · B

(
G−1

det(., Lbr)
)

if ver = det

σout ≤
√

2n · ℓbr ·N · σ2
br · B

(
G−1

simul(., Lbr; σx)
)

+ h · σ2
R · σ2

rand if ver = simul

Additionally, we have that cin from step 2 on Figure 3 is such that cin = LWEσin,n,2N (s, .),
where

σin ≤
√( q

Q
· σ1

)2 + 1
4 · Hw(s) · Var(s)

with σ1 ≤
√

N · ℓksK · B(G−1
ver (., LksK)) · σ2

ksK + σ2
out.

The full cryptosystem. Below we briefly describe how the complete cryptosystem fits
into Definition 4.

Setup: We choose the modulus Q, a power-of-two dimension N of the ring RQ and LWE
dimension n ∈ N. Then we choose s ∈ RQ for the RLWE key, set s′ ← KeyExtract(s),
and s ∈ {0, 1}n for the LWE key3. Choose the radices Lbr, LksK ∈ N and the
Gaussian parameters σ, σksK, σbr, σR, σrand, σx > 0. Run br ← BRKeyGen(σbr, s,
s), ksK ← KeySwitchSetup(σksK, s, s′), and v ← LWEσR,N,Q(s′, 0)h. Finally, set the
evaluation key ek = (br, ksK, v) and the secret key sk = (s, s′, s).

Encryption: To encrypt a message m′ ∈ Zt we compute c = LWEσ,N,Q(s′, m) ∈ ZN+1
Q ,

where m = Q
t ·m

′ ∈ ZQ. Note that we can also use the vector v to obtain a LWE
sample that is close to a “fresh” one, and then we simply add m.

3Other distributions for the LWE secret key are possible. See [MP21] for an excelent summary.
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Bootstrapver(br, ksK, c, arot, v, σrand, σx):
Input:
A blind rotation key br = RGSWσbr (s, .)n.

A key switch key ksK ∈ LWEσksK,n,Q(s, .)ℓksKN .

Ciphertext c = LWEσ,n,q(s′, .) ∈ ZN+1
Q , where s′ = KeyExtract(s).

A rotation polynomial arot ∈ RQ.

A vector v = LWEσR,N,Q(s′, 0)h.
[If simul] Gaussian parameters σrand, σx.
1 : Run cksK ← KeySwitch(c, ksK) ∈ Zn+1

Q .

2 : Run cin ← ModSwitch(cksK, 2N) ∈ Zn+1
2N .

3 : Run cacc ← BlindRotatever(br, arot, cin, σx).
4 : Run cext ← LWE-Ext(cacc).
5 : If ver = simul:
6 : Choose r←$ DZh,σrand

and y ←$ DZ,σx .

7 : Set crand ← v⊤ · r.
8 : Set cout ← cext + crand + y.
9 : Otherwise set cout ← cext.

10 : Return cout ∈ ZN+1
Q .

Figure 3: Bootstrapping.

Eval: We can represent homomorphic computation as a circuit with gates of the form
f(b+

∑k
i=1 xi ·ai ∈ Zt1) ∈ Zt2 where the ai’s and b are scalars known by the evaluator

and the xi’s are the encrypted plaintexts. We compute the affine function using the
additive homomorphism of the LWE samples, and the function f : Zt1 7→ Zt2 by
applying the bootstrapping algorithm from Figure 3. We compute all gates with
ver = det except for the output gates, where we run the sanitization bootstrap
with ver = simul. Crucially, the evaluator should finish the computation with a
sanitization bootstrap to achieve circuit privacy.

Decryption: Do decrypt a LWE sample cout = [aout, bout] we run Phase(cout) = c⊤out[1,

−s] = b − a⊤outs = Q
t m′out + e ∈ Zt, and round the result

⌈
t
Q

(
Q
t m′out + e

)⌋
= m′out if

|e| ≤ Q
2t .

4 Analysis of Circuit Privacy
This section contains our core analytical contribution. First, in Section 4.1, we state a few
technical lemmas needed for the circuit-privacy analysis in Section 4.2.

4.1 Generalized (Gaussian) Leftover Hash Lemma
Below we give our fixed and generalized version of the Gaussian Leftover hash lemma from
[BdPMW16].

Lemma 15 (Gaussian Leftover Hash Lemma (Generalized Lemma 3.6 from [BdPMW16])).
Let δ, σx > 0. Let L = {v ∈ Λ̂ : ê⊤ · v = 0}, where ê = [e, 1] ∈ Zm+1 is fixed,
Λ̂ = Λ̂⊥Q(GL,Q,w)×Z, m = w ·ℓ and Lℓ ≤ Q. Let qL,Q = [qi]ℓi=1 be the base-L decomposition
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of Q for Q < Lℓ, and qL,Q = [0, L] for Q = Lℓ. For any e ∈ Zm and c ∈ Rm, if the
Gaussian parameter σx satisfies

σx ≥
√

1 + ||ê||∞ ·max
(
||qL,Q||,

√
L2 + 1

)
· Cδ,m, then

∆(e⊤x + y, e′) < 2δ,

where x ←$ DΛ⊥
Q

(GL,Q,w)+c,σx , y ←$ DZ,σx , e′ ←$ DZ,σx·
√

1+||e||2 , and m = w · ℓ with
ℓ ∈ N. Note that the distribution of e′ is independent of the coset c, and if e←$ DZ,σbr ,
then e′ ←$ DZ,σx·

√
1+mσ2

br
.

The proof of the lemma follows from a technical lemma (Corollary 2.8 in [GPV08]),
and a lemma (Lemma 3.7 in [BdPMW16]) that bounds the smoothing parameter ηδ for
the lattice L = {v ∈ Λ̂ : ê⊤ ·v = 0}, where ê = [e, 1] ∈ Zm+1. In [BdPMW16], the authors
prove the lemma for a modulus Q that is a power of two. We generalize the lemma to
modulus of form Q ≤ Lℓ.

Proof. Let ĉ = [c, 0] ∈ Zm+1 and Λ̂ = Λ⊥Q(GL,Q,w)× Z. We want to show that

∆
(
ê⊤DΛ̂+ĉ,σx

,DZ,||ê||σx

)
≤ 2δ.

The support of ê⊤DΛ̂+ĉ is ê⊤Λ̂ + ê⊤ĉ = e⊤Λ⊥Q(GL,Q,w) + Z + e⊤c = Z. Fix some
z ∈ Z. The probability mass assigned to z by ê⊤DΛ̂+ĉ,σx

is proportional to ρσx(Lz), where

Lz =
{

v ∈ Λ̂ + ĉ : ê⊤v = z
}

.

We define the lattice L = {v ∈ Λ̂ : ê⊤v = 0}; note that Lz = L+ wz for any wz ∈ Lz.
Let uz = z

||ê||2σx
ê. Then uz is clearly proportional to ê. Observe that uz is orthogonal

to σ−1
x Lz − uz. Indeed for any t ∈ σ−1

x Lz we have ê⊤(t − uz) = 0. From this we have
ρ(t) = ρ(uz) · ρ(t− uz), and by summing for t ∈ σ−1

x Lz:

ρ(σ−1
x Lz) = ρ(uz) · ρ(σ−1

x Lz − uz).

Observe that we have σ−1
x Lz − uz = σ−1

x (L − c′) for some c′ in the vector span of the
lattice L (because Lz − σ−1

x uz = L+ wz − σxuz and ê⊤(wz − σxuz) = 0). Then using4

Lemma 7 and Lemma 16 that bounds σx as in the theorem statement, we obtain

ρ(σ−1
x Lz) = ρ(uz) · ρσx(L − c′)

∈
[1− δ

1 + δ
, 1

]
· ρσx(L) · ρ(uz)

∈
[1− δ

1 + δ
, 1

]
· ρσx(L) · ρ

( z

||ê||2σx
ê
)

∈
[1− δ

1 + δ
, 1

]
· ρσx(L) · ρ||ê||σx .

This implies that the statistical distance between ê⊤DΛ̂+ĉ,σx
and DZ,||ĉ||σx is at most

1− 1−δ
1+δ ≤ 2δ.

Below we state our generalized version of Lemma 3.7 from [BdPMW16].
4This is the place where our proof differs from [BdPMW16]. Namely, we use our Lemma 16 to give a

different bound on σx.
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Lemma 16 (Generalized Lemma 3.7 from [BdPMW16]). Let δ > 0. Let L = {v =
Λ̂ : ê⊤ · v = 0}, where ê = [e, 1] ∈ Zm+1 is fixed, Λ̂ = Λ̂⊥Q(GL,Q,w) × Z, m = w · ℓ and
Lℓ ≤ Q. Furthermore, let qL,Q = [qi]ℓi=1 be the base-L decomposition of Q for Q < Lℓ, and
qL,Q = [0, L] for Q = Lℓ. Then we have

ηδ ≥
√

1 + ||ê||∞ ·max
(
||qL,Q||,

√
L2 + 1

)
· Cδ,m.

Proof. We use Lemma 5 to bound the smoothing parameter of L. Since Λ̂ = Λ̂⊥Q(G⊤L,Q,w)×Z
is of dimension m + 1 and L is a sub-lattice of Λ̂ made of the vectors that are orthogonal
to e, we have that L is of dimension m. We thus exhibit m independent short vectors of L
to obtain an upper bound on λm(L). We first define the matrix

B̄ =



L q1
−1 L q2

−1 . . . ...
. . . L qℓ−1

−1 qℓ

 ∈ Zℓ×ℓ,

where qL,Q = [qi]ℓi=1 is the base-L decomposition of the modulus Q if Q < Lℓ, and qℓ = L
and qi = 0 for i < ℓ if Q = Lℓ. Note that B̄ is a basis for the lattice Λ⊥Q(gL,Q). The lattice
Λ̂ is then generated by the columns of the matrix:

B = [b1| . . . |bm+1] =
[
Iw ⊗ B̄ 0

0⊤ 1

]
∈ Z(m+1)×(m+1)

For k ≤ m let uk = bk − bm+1 · ê⊤ · bk. Since ê⊤ · bm+1 = 1 we directly have
e⊤ · uk = 0 and thus uk ∈ L. The vectors u1, . . . , um are linearly independent since
span(u1, . . . , um, bm+1) = span(b1, . . . , bm, bm+1) = Rm+1 (which comes from the fact
that B is a basis of an (m + 1)-dimensional lattice).

We now bound the norm of uk. Note that bm+1 · ê⊤ ≤ ||ê||∞, because bm+1 = [0, 1].
Then we have

||uk|| = ||bk − bm+1 · ê⊤ · bk||
≤ ||bk + ||ê||∞ · bk||
= ||(1 + ||ê||∞)bk||

=
√

1 + ||ê||∞ · ||bk||.

What is left to do is to bound the norm of bk. Note that for k < m + 1 the vector bk

has L in its kth position, −1 in position k + 1, and 0 in all other positions. Furthermore,
the vectors bk for k = 0 mod logL(Q) contain the vector qL,Q and are zero at all other
positions. Hence, we can bound the norm by ||bk|| ≤ max

(
||qL,Q||,

√
L2 + 1

)
. In particular,

for Lℓ+1 = Q the norm of bk is bounded by
√

L2 + 1, while for Lℓ+1 > Q the bound depends
on the decomposition of Q.

To summarize we obtain

λm(L) ≤ max
k≤m
||uk|| ≤

√
1 + ||ê||∞ ·max

(
||qL,Q||,

√
L2 + 1

)
.

Below we give our version of the leftover hash lemma, which is an instantiation of the
lemma from [DRS04, DORS08].



18 Circuit Privacy of FHEW/TFHE-Style FHE Schemes in Practice

Lemma 17 (Leftover Hash Lemma). Let ϵ > 0 and Q be a odd prime. For any e ∈ Zm
Q

and C ∈ Rm, if σrand ≥ Cϵ,m then

∆
(
(Ar, A, e⊤r), (u, A, e⊤r)

)
≤ 1

2

√
2(n+1) log(Q)

2log(1−ϵ)+m log(σrand)

where r←$ DZm+c,σrand , A←$ Zn×m
Q and u←$ Zn

Q.

In the proof we utilize the Generalized Leftover Hash lemma [DRS04, DORS08] but
calculate the min-entropy of r|e⊤r.

Proof. From Lemma 3 we have that

∆
(
(Ar, A, e⊤r), (u, A, e⊤r)

)
≤ 1

2

√
2n log(Q) · 2−H̃∞(r|e⊤r),

and from Lemma 4 we have that
1
2

√
2n log(Q) · 2−H̃∞(r|e⊤r) ≤ 1

2
√

2(n+1) log(Q) · 2−H∞(r)

because H̃∞(r|e⊤r) ≥ H∞(r)− log(Q) since e⊤r takes values in ZQ (see Lemma 4).
What is left is to analyse the min entropy H∞(r). Note that for any x ∈ Zm we have

that ρσrand(x) ≤ ρσrand(0) = 1. Furthermore, from Lemma 6 we have that ρσrand(Zm + c) ≥
(1− ϵ) σm

rand
det(Zm) , where ϵ > 0 and and assuming that σm

rand ≥ ηϵ(Zm). From the fact that Im

is the basis of Zm we have that det(Zm) = det(Im) = 1, and from Lemma 5 we have that
ηϵ(Zm) ≤ Cϵ,m.

Putting the above together we have that for all x ∈ Zm

DZm+c,σrand(x) ≤ ρσrand(x)
ρσrand(Zm + c) ≤

1
ρσrand(Zm + c) ≤

1
(1− ϵ) · σm

rand

Then from Definition 1 we have

H∞(r) ≥ − log
(

1
(1− ϵ) · σm

rand

)
= log(1− ϵ) + m log(σrand).

4.2 Distribution of Our Randomized Bootstrapping and Circuit
Privacy

Below we state and prove the core theorem on the distribution of bootstrapped ciphertexts.
Circuit privacy, that we prove at the end of this section, follows nearly immediately from
the theorem below.

Theorem 1 (Distribution of the Bootstrap). Let br be the blind rotation key, arot ∈ RQ

a rotation polynomial, and c ∈ LWEσ(s, m) a LWE sample as defined in the Bootstrap
algorithm in Figure 2. Assume that arot is such that f(m) = (arot ·XPhase(cin))[1] where cin
is the LWE sample obtained at Step 2 of the Bootstrap algorithm. Let cout be the LWE
sample returned by the Bootstrap algorithm for ver = simul and Gaussian parameters σrand
and σx where the Gaussian sampling algorithm G−1

simul is as in Lemma 8. Assume that
σrand ≥ Cϵ,h and

σx ≥
√

1 + Bbr ·max
(
||qLbr,Q||,

√
L2

br + 1
)
· Cδ,2·n·N ·ℓbr ,
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where Bbr is a bound on the infinity norm of the noise terms in the blind rotation key br.
Then we have

∆(cout, cfresh) ≤ max
(

2δ,
1
2

√
2(N+1) log(Q)

2log(1−ϵ)+h log(σrand)

)
,

where cfresh = [afresh, bfresh], bfresh = ⟨afresh, s′⟩+ f(m) + erand + eout, eout ←$ DZ,σx·
√

1+||e||,
erand ←$ ẽ⊤ · r, r←$ DZh,σrand and where e ∈ Z2·n·N ·ℓbr is the vector of error coefficients in
the blind rotation key, and ẽ ∈ Zh are the error terms in the vector of LWE samples v.

Proof. The proof consists of two parts. First we analyze the LWE sample that is extracted
after blind rotation. In particular, we give a concise representation of the final noise
term. Furthermore, we show that each noise coefficient and decomposition term of the
randomized decomposition appears only once in the final noise term. The second part of
the proof consists of a hybrid argument, where we argue step-by-step that the distribution
of the extracted and “masked” LWE sample is statistically close to a “freshly” sampled
LWE sample of the same message.

Below we give the first part of the proof. But to further tame complexity we split this
part in three more sub-parts. First we analyze a single external product, then a single
MUX gate and we finalize this part with blind rotation and extraction.

Single External Product. First let us remind that for j ∈ [ℓbr] we have

CG[∗, j] = RLWEσ(s,mG · Lj−1
br ) and

CG[∗, j + ℓbr] = RLWEσ(s,−s ·mG · Lj−1
br ).

Denote CG = [aj , bj ]2ℓbr
j=1, and d = [ad, bd] where bd = ad ·s+ed+md. We analyze the sample

cprod ← extProdsimul(CG, d). Then in Steps 1 and 2 of the extProdsimul algorithm we compute
cprod = CG · G−1

simul(d, Lbr) = [aprod, bprod]. Let us denote the vector [xj ]2ℓbr
j=1 = G−1

simul(d, Lbr).
We can write

aprod =
2ℓbr∑
j=1

aj · xj .

Furthermore, we can write

bprod = aprod · s + mG · ed + ê + mG ·mg, (1)

where ê =
∑2ℓbr

j=1 ej · xj . Equation 1 holds because we have

2ℓbr∑
j=1

bj · xj = aprod · s +
ℓbr∑

j=1
(ej + mG · Lj−1) · xj +

ℓbr∑
j=1

(ej+ℓbr − s ·mG · Lj−1) · xj+ℓbr

= aprod · s +
2ℓbr∑
j=1

xj · ej + mG ·
( ℓbr∑

j=1
xj · Lj−1 − s ·

2ℓbr∑
j=ℓbr+1

xj · Lj−1−ℓbr
)

and in particular from the properties of the Gaussian sampling algorithm (Lemma 8) we
have that

mG ·
( ℓbr∑

j=1
xj · Lj−1 − s ·

2ℓbr∑
j=ℓbr+1

xj · Lj−1−ℓbr
)

= mG(bd − ad · s) = mG(ed + md).
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Single MUX Gate. Let us analyze a single execution of the MUX gate cout ←
Mux(CG, d, h), where CG and d are RGSW and RLWE samples as above, and h ∈
RLWEσ(s,mh) = [ah, bh]. Since cout ← extProdsimul(CG, d − h) + h, we can write cout =
[aprod, bprod] + [ah, bh]. Remind that the message encoded in CG is a single bit mG ∈ {0, 1}.
That is, we are only interested in the special case where the RGSW message is a single bit.
We have two cases:

• The case with mG = 0. In this case we can write bprod = aprod ·s+e. In other words, the
error from d−h cancels out. And we have that bout = bprod +bh = aout ·s+e+mh +eh.

• The case with mG = 1. In this case we can write bprod = aprod ·s+e+md−mh +ed−eh.
And we have that bout = bprod + bh = aout · s + md + e + ed.

Finally, note that in blind rotation we have d = h ·X l ∈ R2
Q for some l ∈ Z2N . That

is, the two ring LWE samples are negacyclic rotations of one another. This means that
ed = eh ·X l ∈ RQ.

Blind Rotation and Extraction. First we set the accumulator to cacc,0 = [0, arot ·
Xb]. Note that the first accumulator is special because its noise term is zero. Let us
denote the error term that is added in the ith iteration of the blind rotation loop by êi.
Particularly, this noise term is êi =

∑2ℓbr
j=1 ei,j · xi,j , where ei,j is the noise term of the blind

rotation keys, xi,j is the component from the randomized decomposition algorithm. At the
ith iteration we run a homomorphic MUX gate that multiplies the input RLWE sample’s
noise and message by X−a[i]·s[i], and adds a new noise term êi. Remind that the noise
term of cacc,0 is zero, thus at iteration i = 1, the resulting RLWE sample cacc,1 has noise
term ê1. Then cacc,1 has noise term ê1 ·X−a[2]·s[2] + ê2. Finally after n iterations we have

Error(cacc) = Error(cacc,n) =
n∑

i=1
êi ·X

∑n

j=i+1
−a[j]·s[j] (2)

and the message is arot ·XPhase(c).
Let us denote cacc = [aacc, bacc] and the extracted LWE sample cext = [aext, bext].

Note that aext ∈ ZN
Q and bext = bacc[1] = ⟨aacc, s′⟩ + arot · XPhase(c)[1] + (

∑n
i=1 êi ·

X

∑n

j=i+1
−a[j]·s[j])[1]. In particular, note that

Error(cext) =
( n∑

i=1
êi ·X

∑n

j=i+1
−a[j]·s[j])[1]

=
n∑

i=1

2ℓbr∑
j=1

(
ei,j ·X

∑n

j=i+1
−a[j]·s[j] · xi,j

)
[1]

=
n∑

i=1

2ℓbr∑
j=1

N∑
k=1

ei,j [k] · xi,j [k]

where ei,j is a vector of discrete Gaussian random variables centered at zero of parameter
σbr. Note that in the ring RQ and assuming the coefficients of ei,j are centered at zero, we
have that ei,j ·X

∑n

j=i+1
−a[j]·s[j] = e′i,j rotates the coefficients of ei,j negacyclicly, meaning

that e′i,j has the same distribution as ei,j . Similarly, we have that the constant coefficient
of e′i,j · xi,j in RQ is (e′i,j · xi,j)[1] = xi,j [1] · e′i,j [1] +

∑N
k=2−e′i,j [N − k + 1] · xi,j [k]. Hence

we can write ei,j [k] = −e′i,j [N − k + 1] for k ∈ [2, N ] and ei,j [1] = e′i,j [1]. Therefore ei,j [k]
is from the discrete Gaussian distribution of the same parameter as ei,j given that the
distribution of the coefficients are centered at zero.
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Distribution of the Extracted LWE Sample. Now we are ready to argue that
the cout = cext + r⊤ · v + y sample is statistically close to a LWE sample of the same
message that is independent of the input ciphertext. The proof is due to the following
hybrid argument.
Hybrid 0. In this hybrid the sample is as in the original scheme. Specifically, we have
cout ← cext + crand + y, where crand ← v⊤ · r with r ←$ DZh,σrand , y ←$ DZ,σx and v is a
vector of size h of LWE samples of zero with noise parameter σR.
Hybrid 1. As Hybrid 0, but we set the message in cout to f(m) instead of arot ·XPhase(c)[1].
Assuming that Error(c) ≤ N

t and arot is such that f(m) = arot ·XPhase(c)[1] this change is
only syntactical by correctness of the bootstrapping algorithm.
Hybrid 2. This hybrid is as Hybrid 1, but instead of computing crand ← r⊤ · v =
[arand, brand], we take crand = [arand, brand] to be a fresh LWE encryption of zero. In particular,
we take arand ←$ ZN

Q from the uniform distribution and take brand = ⟨arand, s′⟩+ erand where
erand ←$ ẽ⊤ · r with r←$ DZh,σrand and where ẽ denotes the errors of the LWE samples in
v.

Claim. Given that σrand ≥ Cϵ,h the statistical distance between Hybrid 2 and Hybrid 1 is
at most

1
2

√
2(N+1) log(Q)

2log(1−ϵ)+h log(σrand)

for some ϵ > 0.

Proof. Denote v = [av,i, bv,i]hi=1 where bv,i = ⟨av,i, s′⟩ + ev,i. Let b̃ = [bv,i]hi=1 and
ẽ = [ev,i]hi=1. We can write Ã = [av,1, . . . , av,h] ∈ ZN×h

Q , arand ← Ã ·r and brand ← b̃⊤ ·r =
⟨arand, s′⟩+ ẽ⊤ · r.

Now it is easy to see that the rest of the proof follows directly by applying Lemma 17.
Note that the notation in Lemma 17 is mostly already in place, except that we set the m
from the lemma to h and the n from the lemma to N . Furthermore, the matrix A from
the lemma is the matrix Ã in this hybrid and the error e from the lemma is the error ẽ in
this hybrid. Note that Lemma 17 requires Q to be an odd prime. In Remark 1 we discuss
how we handle a non-prime Q. Finally, the uniform vector u from the lemma corresponds
to arand.

Hybrid 3. This hybrid is as Hybrid 2, except that we choose aout from the uniform
distribution. Note that both hybrids are in fact identical as from Hybrid 1, we have that
arand is sampled from the uniform distribution over ZN

Q , and we have aout = aext+arand ∈ ZN
Q .

This hybrid is only a syntactic change.
Hybrid 4. This hybrid is as Hybrid 3 except that we compute bout = ⟨aout, s⟩+ f(m) +
erand + eout, where eout ←$ DZ,σx·

√
1+||e||. In particular, the noise term is independent from

the ciphertext c and the blind rotation key br.

Claim. Given that

σx ≥
√

1 + Bbr ·max
(
||qLbr,Q||,

√
L2

br + 1
)
· Cδ,2·n·N ·ℓbr

the statistical distance between Hybrid 3 and Hybrid 4 is at most 2δ for some δ > 0. The
notation in Lemma 15 is mostly already in place, except we set m = 2 · n · N · ℓbr and
L = Lbr.

Proof. Note that we have

Error(cext) =
n∑

i=1

2ℓbr∑
j=1

N∑
k=1

ei,j [k] · xi,j [k] =
n∑

i=1

N∑
k=1

2ℓbr∑
j=1

ei,j [k] · xi,j [k].
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We will group the terms ei,j [k] · xi,j [k] into vectors by the j iterator. We write êi,k =[
ei,j [k]

]2ℓbr

j=1 and x̂i,k =
[
xi,j [k]

]2ℓbr

j=1. Note that x̂i,k ∈ DΛ⊥
Q

(GLbr,2)+G−1
det (cacc,i[k]),σx

. In other
words x̂i,k is the Gaussian sampling of the kth coefficient (where k ∈ [2ℓbr], meaning that
we take the concatenation of the two polynomials in the accumulator cacc,i) in the ith
iteration of the blind rotation algorithm. Now we can write

Error(cout) = erand + Error(cext) + y = erand + y +
n∑

i=1

N∑
k=1

êi,k
⊤ · x̂i,k.

We can further represent Error(cext) as a product x⊤ · e of two vectors e = [êi,k
⊤]n,N

i=1,k=1
and x = [x̂i,k]n,N

i=1,k=1. Note that

x ∈ DΛ⊥
Q

(GLbr,Q,2·n·N )+G−1
det ([cacc,i[k]]n,N

i=1,k=1),σx

since it is just a concatenation of n ·N vectors from DΛ⊥
Q

(GLbr,2)+G−1
det (cacc,i[k]),σx

. Finally,
note that aout and the message are independent of Error(cext). Therefore we can apply
Lemma 15 to x⊤ · e + y with m = 2 · n ·N · ℓbr and L = Lbr.

Finally, we have that cout is distributed as in the theorem statement, and is in particular
independent of the input ciphertext c and bootstrapping key br.

Proof of Circuit Privacy. Recall that according to Definition 4, to prove circuit
privacy we have to show a simulator that, on input ek and mout = C(m1, . . . , mn) outputs
a ciphertexts of mout that is distributed as an output of the Eval algorithm when evaluating
C on encryptions of m1, . . . , mn. We build such simulator by sampling an encryption of
zero, bootstrapping in simul mode and adding mout to the resulting ciphertext. Circuit
privacy then follows from Theorem 1.

Theorem 2. Let (ek, sk) ← Setup(λ). Let C be a polynomial size circuit and ctout ←
Eval(ek, [cti]ni=1, C), where cti ← Dec(sk, mi) and Eval is as described in Section 3, where
the bootstrapping algorithm for the output gate is set to ver = simul. If the parameters of the
FHE scheme are chosen such that ∆(cout, cfresh) ≤ negl(λ), where cfresh is as in Theorem 1,
then the evaluation process is circuit private.

Proof. To show circuit privacy, we need to show a simulator Sim that gets as input ek and
mout. The proof follows nearly immediately from Theorem 1. Denote as cout the ciphertext
returned by Eval. Recall that cout is distributed as given by Lemma 1, because Eval ends
with an invocation of Bootstrap in simulation mode. Set c = 0 and arot = 0. The simulator
runs and outputs

cfresh ← Bootstrapsimul(br, ksK, c, arot, v, σrand, σx) + [0, mout].

Denote cfresh = [afresh, bfresh]. From Lemma 1 we have that cout is distributed as in Eval.
Namely, afresh is statistically close to uniform, bfresh = ⟨afresh, s′⟩+ mout + erand + eout with
erand + eout distributed as in Lemma 1. Hence the cfresh is statistically close to cout, and in
particular independent from the circuit C.

5 Parameters, Implementation, and Experiments
In this section, we discuss our parameter choices, implementation, and experiments for our
method as well as for the washing machine method by Ducas and Stehlé [DS16]. Remind
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Table 1: Parameter Sets. We list base-two logarithms of the parameters. Recall that Q
denotes the coefficient modulus, LBk is the decomposition basis of the RLWE samples in
the bootstrapping key, σKsk is the standard deviation for the key switching key, σrand is
the standard deviation and h is the size of the LWE vector used for generating fresh LWE
samples, and σx is the standard deviation for the randomized blind rotation. For all sets
we set n = 912, N = 211, LKsk = 27 and σbr = 3.2. Note that the column LBk-simul gives
the decomposition base for ver = simul and LBk-det for ver = det. The column Ux refers to
the uniform distribution interval for the noise flooding in DS-WM. The column ∆ refers
to the statistical distance from a random ciphertext after a single bootstrapping operation.
Consequently, for DS-WM-Int and DS-WM-Double, we have to run the bootstrapping 5
and 12 times, respectively.

Alg.
Param.

Q
simul det

σKsk σx Ux σrand h ∆
LBk, ℓBk LBk, ℓBk

Ours-Int 48 8, 6 24, 2 26 17.7 12.8 - 12.3 80
DS-WM-Int 48 8, 6 24, 2 26 - 41.2 12.3 12.8 16
Ours-Double 36 4, 9 12, 3 14 8.9 - - 11.7 80

DS-WM-Double 36 4, 9 12, 3 14 - 30.8 21.9 11.7 6.6

that Ducas and Stehlé [DS16] left finding correct parameters as an open problem. In this
section, we address this problem and rule out the possibility of instantiating FHEW/TFHE
negligible statistical security over low-degree rings that are often used for efficiency. We give
a comparison of both methods when parameters are targeted towards an implementation
over integers modulo an NTT-friendly prime number and over integers modulo a power of
two represented as double-precision floating point numbers.
Remark 1. In the case of a power of two modulus Q, we slightly modify the scheme and
choose the LWE samples with respect to a prime modulus that is slightly larger than Q.
Then, after Step 8 of Algorithm 3 we switch the modulus to Q. This change is made
because the leftover hash lemma (Lemma 17) requires a universal hash function, which is
satisfied if the modulus is prime but not when the modulus is a power of two.

5.1 Parameters.
We choose our parameter sets to target 128-bit security for the (R)LWE samples and
80-bits statistical security when running the bootstrapping in simul mode. Remind that,
in contrast to computational security, the advantage in breaking a property for statistical
security does not increase with advances in high-performance computing. Since we measure
the distance between samples, the ability to distinguish two distributions depends on the
number of samples given. The parameters are listed in Table 1. We estimate the (R)LWE
security using the latest commit of the LWE estimator [APS15]. We wrote a python script
that we published alongside our source code to estimate the statistical security. We choose
similar parameters to make a good comparison between our method and the Ducas-Stehlé
washing machine method [DS16] that we refer to as DS-WM. For completeness we recall
the relevant lemmas from [DS16] that we used for our estimations in Appendix A. For
all parameters we chose the same ring dimension N = 211. The strategy is to choose the
highest modulus such that: (1) the RLWE problem remains 128-bit secure according to the
LWE estimator [APS15], (2) the modulus is below 50-bits for Ours-Int and DS-WM-Int
to allow for faster multiplication of ring elements, and (3) computing convolutions does
not introduce significant numerical errors (see Appendix B for estimations). Furthermore,
we choose the LWE parameters for the key switching key and the masking key v, the
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same for all solutions. Then we choose the decomposition bases. We chose the highest
decomposition base that: (1) gives us required correctness, (2) maximizes LBk-simul, (3)
LBk-det = LBk-simulk for some k ≥ 1 for deterministic gadget decomposition gives us
the required correctness as well. The last condition allows us to significantly optimize
computation since deterministic mode requires roughly k× fewer ring multiplications.
Finally, we compute the noise parameters for the Gaussian sampling and noise flooding
given the desired security level and all other parameters.

As we can read from Table 1, we managed to find parameters where Ours-Int method
needs 7 = ℓbr + 1 ring multiplications per gadget multiplication in simul mode, whereas
DS-WM-Int requires 11 = ℓbr + 1. We stress that the noise flooding method is already
incorrect for a decomposition base Lbr = 26 meaning that this is the best base choice for
performance. Nevertheless, for the flooding set, we can use a similar decomposition basis
in det mode as in our set resulting in the same efficiency for deterministic bootstrapping.
This parameter choice allows us to compare both methods better as we can now focus
solely on discussing the differences between the sets in simul mode. For the det mode
efficiency of the sets is the same and correctness is very similar. In the case, where
the modulus is a power of Lbr and implementation uses double precision floating point
arithmetic to compute polynomial multiplication, we need a much lower modulus, and
decomposition bases. In this case we found sets where all decomposition parameters are
the same for our method on for DS-WM. In Table 2, we list the probabilities of having an
error while bootstrapping. The errors are given as base-two logarithms for readability. As
we may see, our method has a different characteristic when it comes to correctness than
the DS-WM. First observe that correctness of cin is lower than correctness of cout. This
is due to the modulus switching to a much smaller modulus 2N and the rounding error.
Then note that when increasing the message space, our method is still correct for cout,
while DS-WM’s correctness collapses already at t = 5. This is the consequence of needing
to run the bootstrapping step numerous times to sanitize a ciphertext. However, since
our method requires only a single bootstrapping invocation, we can output ciphertexts of
larger precision. Finally, we describe correctness issues when instantiating the system over
over degree N = 210 rings in Appendix C.

5.2 Implementation and Performance.
We implemented the schemes in C++11 and tested it on a machine with 11th Gen Intel(R)
Core(TM) i7-11850H 2.50GHz processor that supports AVX2 and AVX-512 instructions.
The timing results and the size of the evaluation keys for the bootstrapping algorithms are
given in Figure 3. To implement negacyclic convolutions for Ours-Int and DS-WM-Int, we
used the Intel Hexl library [BKS+21]. The library gives a high-performance implementation
of Number Theoretic Transforms optimized for the ring ZQ[X]/(XN + 1) and takes full
advantage of Intel AVX instructions. To compute the negacyclic convolutions for Ours-
Double and DS-WM-Double we use the FFTW library [FJ21] that implements fast Fourier
transforms on IEEE-754 double precision floating point arithmetic. For the Gaussian
sampling algorithm, we implemented two methods. For the case where the modulus is a
power of LBk we implement the simple and very efficient Gaussian sampler from [MP12].
For general moduli, which is the case for Our-Int and DM-WM-Int, we implement a
version of the method by Genise and Micciancio [GM18, CDCG+18]. Both samplers
are instantiated with either the Karney method [Kar16] to sample for the exact discrete
Gaussian distribution, or (somewhat heuristically) we use the Box-Muller transform [BM58]
with rounding to the closest integer. The implementation using the Box-Muller transform
serves mostly for comparison and to showcase potential speedups. Our proofs require a
discrete Gaussian sampler for simplicity. Nevertheless, we note that in some cases, proofs
can be generalized [HLS18] to support rounded continuous Gaussian distributions while
preserving security. We leave such generalizations as future work.
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Table 2: Correctness Estimates. We give the probability of failure to correctly decrypt
cout and cin for a given message space t. We give the correctness estimates as base-two
logarithm. We mark failure probabilities below 2−80 with green, and above that threshold
with red.

Ours-Int
t det simul

cout cin cout cin
4 −771 −239 −494 −154
5 −495 −99 −317 −64
6 −345 −40 −221 −26

...
10 −126 0.90 −82 0.82
11 −105 0.99 −68 0.97

Ducas-Stehlé: DS-WM-Int
t det simul

cout cin cout cin
4 −771 −239 −198 −198
5 −495 −99 −69 −69
6 −345 −40 −20 −20

...
10 −126 0 0 0
11 −105 0 0 0

Ours-Double
t det simul

cout cin cout cin
4 −841 −260 −307 −96
5 −540 −108 −198 −41
6 −376 −43 −138 −17

...
10 −137 0 −51 0
11 −114 0 −41 0

Ducas-Stehlé: DS-WM-Double
t det simul

cout cin cout cin
4 −841 −260 −96 −96
5 −613 −108 −38 −38
6 −376 −43 −14 −14

...
10 −137 0 0 0
11 −114 0 0 0

Table 3: Performance. The BL and KS columns give the blind rotation and key switching
timings. The suffix “-C” in the parameter sets stands for using rounded continuous
Gaussian sampling. In the “Total” column we give the over time to run a bootstrapping
operation. The G−1

simul column represents the proportion of the Gaussian sampling in the
total computation. Remind that in the DS-WM, we must run bootstrapping several times.
The Ksk, Bk, and v columns give sizes of the respective public keys.

Total [s] BL [s] G−1
simul Ksk [MB] Bk [MB] v [MB]det simul det simul

Ours-Int
0.14

1.36
0.14

1.36 79%
79 134 186Ours-Int-C 1.01 1.01 72%

DS-WM-Int 2.03 0.39 −
Ours-Double

0.27
1.33

0.27
1.33 59%

56 168 69Ours-Double-C 0.91 0.91 40%
DS-WM–Double 7.10 0.59 −
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As we can see from Table 3, our method is faster when compared to both DS-WM
methods. In particular, Ours-Int is roughly 1.56× faster than DS-WM-Int (2.03× for
rounded Box-Muller). Then, Our-Double is about 5.46× faster than its DS-WM-Double
analog (7.1× for rounded Box-Muller). The “Double" parameters are slower than the
“Int" parameters in det mode. The reason for this is that the “Double" parameters require
computing more negacyclic convolutions than the “Int" parameters due to their different
modulus and decomposition factors. It’s important to note that all parameter sets should
achieve similar correctness levels. Therefore, for the “Double" parameter sets, which are
intended to be implemented using IEEE-754 double precision floating point format, we
are constrained by the precision of the arithmetic. When estimating the key size, we list
two methods. One assumes storing integers or (discretized) floating point numbers in an
array of 8-bit bytes. This could potentially give an edge to the “Double" parameter sets
since these sets use a smaller modulus. However, these sets still require larger key material
because we need to store mode ring elements. Although the byte array representation
can be used when transmitting a key, when computing the bootstrapping operation, the
integers or floats are stored in random access memory in 64-bit registers, regardless of
whether the modulus is a 48-bit or 36-bit number. In any case the Our-Int parameter set
outperforms all other sets. The size of a ciphertext is the same for every parameter set.
Note that in all sets we can send the first ciphertexts with a modulus equal to 2 ·N = 212,
and all sets have the same LWE dimension n = 912. Consequently, the ciphertexts will
take approximately 0.46 [MB]. Finally, note that in the case of Our-Int, sanitization is
roughly 9× slower (7× for rounded Box-Muller) than deterministic computation. For Our-
Double, sanitization is only 4.8× slower (3.3× for rounded Box-Muller) than deterministic
computation. Partially, the reason for this is that the sanitization algorithms have smaller
decomposition bases, but a notable portion of the computation is spent on computing
Gaussian sampling. For Gaussian sampling, in the special case where the modulus is a
power of the decomposition basis, as is the case in Our-Double, approximately half of
the computation is spent on sampling Gaussians. In the general case, such as Our-Int,
where the modulus is an NTT-friendly prime number, Gaussian sampling constitutes
approximately 78% of the entire computation. We stress that the Gaussian sampling
step is a straightforward implementation of the method from [GM18, CDCG+18]. There
is still much room for improvement in the implementation. In particular, an optimized
implementation could take advantage of AVX vector processor extensions to parallelize
parts or even the entire sampling algorithm. We do not see much room for improvement
in the washing machine method because its only difference from a deterministic bootstrap
is the choice of uniform flooding noise.

6 Conclusions and Open Problems

We showed that it is practically feasible to build an efficient FHE scheme with circuit
privacy, that outperforms the Ducas-Stehlé washing machine method [DS16]. We believe
that an optimized implementation and using faster discrete Gaussian sampling algorithms
[MW17, DFW22] instead of Karney [Kar16] may further improve the performance. An
interesting problem is to analyze whether we can use randomized gadget decomposition
that has output from other distributions and discrete Gaussian. In particular, it may be
worth exploring the use of more efficient subgaussian samplers [GMP19, ZY22, JLP21] in
place of the Gaussian sampling algorithms [GM18, CDCG+18].
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G−1
simul(a, L, σx):

Input:

Integers a ∈ ZQ and L s.t. Q = Lℓ where ℓ ∈ N.
A Gaussian parameter σx.

1 : For each j ∈ [0, ℓ− 1]:
2 : x[j] = DLZ+a,σx .
3 : a← (a− x[i][j])/L.
4 : Output x.

Figure 4: Gaussian Sampling Algorithm [MP12].
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A Additional Preliminaries
In this section we recall some useful lemmas and definitions.

A.1 Gaussian Sampling Algorithms
We recall the Gaussian sampling algorithm form [GM18] on Figure 5. For completeness,
we also recall the Gaussian sampling algorithm from [MP12] on Figure 4 that is specialized
for modulus in the form Q = Lℓ. We recall only the specification for sampling given a
one-dimensional integer target. Remind that we use the sampling algorithm separately on
every coefficient when given as input a polynomial.

Note that for the special case modulus, the standard deviation can be bounded by
L · Cϵ,ℓ which is much smaller than for the general case of Q < Lℓ. Our correctness
estimation scripts take all the decomposition algorithms into account. In practice, however,
a modulus of the form Q = Lℓ forces us to implement negacyclic convolution of polynomials
with fast Fourier transforms on floating point arithmetic. As discussed in Section 5, we
found it infeasible to instantiate the scheme such that no numerical errors are induced by
ring multiplications.
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The algorithm on Figure 5 takes additionally the following precomputed vectors as
input. The vector l is such that l[1]2 = L(1 + 1/ℓ) and l[i]2 = L(1 + 1/(ℓ− 1)). The vector
h is such that h[1] = 0 and h[i + 1]2 = L(1 + 1/(ℓ− 1)) for i ∈ [2, ℓ]. Finally, we assume
that any vector at index 0 and ℓ + 1 is set to zero. For more details on the correctness
of the Gaussian sampling algorithm for any Q < Lℓ we refer to [GM18]. furthermore, we
refer to [MP12] for the analysis of the Gaussian sampling algorithm on Figure 4 for the
special case Q = Lℓ.

Instantiation over degree N = 210 Rings. Numerous works like [DM15, CGGI16a,
CGGI20] choose parameters for the ring ZQ[X]/(XN + 1) setting the degree to N = 210.
The obvious benefit is that the timings are fast. What is important is that when assessing
correctness, these works often report only on the correctness cout and ignore the correctness
of cin. Notably, Ducas and Stehlé [DS16] propose to instantiate their washing machine
method on a parameter set from the Ducas, and Micciancio’s FHEW bootstrapping [DM15],
albeit they note that their instantiation is heuristic and leave a serious analysis as an
open problem. We investigated the possibility of choosing a parameter set for the rings
of dimension N = 210, and, unfortunately, we found it to be infeasible. We chose 32 bit
modulus and set all decomposition bases to 2 (smallest and least efficient possible) to
maximize correctness. We set n = 810, and the LWE standard deviations to 3.2, which
gives us a low-security level of only 84 bits according to the LWE estimator [APS15].
Our estimates show that the correctness of cin was around the 2−33 level already for
deterministic computation. We noticed that increasing the modulus Q, and hence dropping
LWE security below 80 bits, does not change the correctness level. The reason for this
is the rounding error when modulus switching from Q to 2N . In other words, the ring
degree is already so small that ciphertexts modulo 2N cannot accommodate the rounding
error within the interval N/t. Note that we use binary keys here, which is even more
beneficial for correctness than if we would use ternary or Gaussian distributed keys as in
FHEW-style schemes [DM15]. To conclude, our analysis shows that the parameter choice
in [DS16] for DS-WM cannot give circuit privacy is better than 30-bits, and we need to
instantiate the method with a larger ring. Furthermore, we also rule out the possibility of
running parameters from [CGGI16a, CGGI20] in simulation mode due to the small ring
degree with statistical security larger than 30-bits.

B Error Analysis and Missing Algorithms
In this section we give the noise analysis and correctness proofs.

Proof. (External Product, Lemma 9). Denote x = G−1
ver (c, Lbr) and c = [a, b]. Then we

compute

CG · x =
ℓbr∑

i=1
RLWEσG

(s,mG · Li−1
br ) · x[i]

+
2ℓbr∑

i=ℓbr+1
RLWEσ(s,−s ·mG · Li−1

br ) · x[i]

=RLWEσ(s,mG · b) + RLWEσ(s,−s ·mG · a)
=RLWEσ1(s,mG · (m + e)) = RLWEσout(s,mG ·m)).

The following σ2
1 ≤ 2ℓbr ·N · σ2

G · B(G−1
ver (., Lbr)) holds because we compute the multisum∑2ℓbr

i=1 ·ei · x[i] where ei is the error of the ith RLWE sample in CG. Note that each
coefficient of ei · x[i] in the ring RQ is a negacyclic convolution of the coefficients in ei
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G−1
simul(a, L, σx):

Input:

Integers a ∈ RQ and L s.t. Q < Lℓ, and a Gaussian parameter σx.
1 : Set q← G−1

det (Q, L) and u← G−1
det (a, L).

2 : σ = σx/(L + 1).
3 : p← Perturb(σ, σx).
4 : For each i ∈ [ℓ]
5 : c[i]← (c[i− 1]− u[i]− p[i])/L.
6 : z← SampleD(σ, c, σx).
7 : For each i ∈ [ℓ− 1]
8 : t[i]← L · z[i]− z[i− 1] + q[i] · z[ℓ− i] + u[i].
9 : t[ℓ]← q[ℓ] · z[ℓ]− z[ℓ− 1] + u[ℓ].

10 : Return t.

SampleD(σ, c, σx):
Input:

Gaussian parameters σ and σx, and a vector c ∈ Rℓ.
1 : z[ℓ]← ⌊−c[ℓ]/d[ℓ]⌋.
2 : z[ℓ]← z[ℓ] + SampleZt(σ/d[ℓ], ⌊−c[ℓ]/d[ℓ]⌋[0,1), σx).
3 : c← c− z[ℓ] · d.
4 : For all i ∈ [ℓ− 1].
5 : z[i]← ⌊−c[i]⌋+ SampleZt(σ, ⌊−c[i]⌉[0,1), σx).
6 : Return z.

Perturb(σ, σx):
Input:
A Gaussian parameters σ and σx.
1 : β ← 0.
2 : For i in [ℓ]:
3 : c← β/l[i] and σ[i]← σ/l[i]
4 : z← ⌊c[i]⌋+ SampleZt(σ[i], ⌊c[i]⌉[0,1), σx).
5 : β ← −z[i]h[i].
6 : p[1]← (2L + 1)z[1] + Lz[1].
7 : For i in [2, ℓ]:
8 : p← L(z[i− 1] + 2z[i] + [i + 1]).
9 : Return p.

Figure 5: Gaussian Sampling Algorithm [GM18] for Q < Lℓ. We denote ⌊c⌉[0,1) = c− ⌊c⌋.
The algorithm SampleZt(σ, c, σmax) is any Gaussian sampling algorithm that samples over
Z ∪ [c− t · σmax, c + t · σmax] with mean c. We assume
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and x[i]. Finally, σ2
out ≤ σ2 + mG · σ2

1 holds because, mG · e is 0 or e depending on the bit
mG.

Proof. (Mux Gate, Lemma 10). Note that the RGSW sample C encodes a bit mc ∈ {0, 1}.
As in the proof of Lemma 9 we have cout = RLWEσ1(s, mc · (md−mh + ed− ed) + h. Hence,
for mC = 0, we get

cout = RLWEσ1(s, mh + eh) = RLWEσout(s, mh),

and for mC = 1, we get

cout = RLWEσ1(s, md + eg) = RLWEσout(s, md).

In either case, we have that σ2
out ≤ 2ℓbr · N · σ2

G · Var(G−1
ver (., Lbr)) + σ2, because as we

assumed the noise parameter for d and h is the same.

Proof. (Modulus Switching, Lemma 11). Denote c = (b, a), where b = a⊤ · s + m + e ∈ ZQ

where e has variance σ2. Then we have the following:

Phase(⌊ q

Q
· c⌉) = ⌊ q

Q
· b⌉ − ⌊ q

Q
· a⊤⌉ · s = q

Q
· b + r − q

Q
· a⊤ · s + r⊤ · s

= q

Q
·m + q

Q
· e + r + r⊤ · s

where r ∈ R and r ∈ Rn are in [− 1
2 , 1

2 ]. Then we have

σ2
out = Var( q

Q
· e + r + r⊤ · s) = Var( q

Q
· e) + Var(r⊤ · s))

= q2

Q2 · σ
2 +

n∑
i=1

Var(r[i] · s[i]) ≤ q2

Q2 · σ
2 + 1

4 · Hw(s) · Var(s).

The expectation of the output noise satisfies

| q
Q
· E(Error(c)) + E( q

Q
· e + r + r⊤ · s)|

= | q
Q
· E(Error(c))|+ |E(r + r⊤ · s)|

= | q
Q
· E(Error(c))|+ |E(r) +

n∑
i=1

E(r · s)|

≤ | q
Q
· E(Error(c))|+ 1/2 + 1/2 · Hw(s) · |E(s)|

given that the expectation of e is 0.

Proof. (Sample Extraction, Lemma 12). Denote s = s ∈ ZN
Q and b = b[1] ∈ ZQ. Denote

b = a·s+m+e ∈ RQ, m =
∑N

i=1 m[i]·Xi−1 and e =
∑N

i=1 e[i]·Xi−1 then it is easy to see, that
b = (a ·s)[1]+m[1]+e[1]. Furthermore, denote a =

∑N
i=1 a[i] ·Xi−1 and s =

∑N
i=1 s[i] ·Xi−1.

Denote s · a = (
∑N

i=1 a[i] ·Xi−1) · (
∑N

i=1 s[i] ·Xi−1). By expanding the product we have
that the constant coefficient is given by (s · a)[1] = s[1] · a[1]−

∑N
i=2 s[i] · a[N − i + 2].

If we set s = s and a such that a[1] = a[1] and a[i] = −a[i] for i = 2 . . . N , then (b, a)
is a valid LWE sample with respect to s.
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KeySwitchSetup(σksK, s, s′):
Input:
A bound σksK ∈ N.

Secret keys s ∈ Zn
Q, and s′ ∈ ZN

Q .

1 : For i ∈ [N ], j ∈ [ℓksK]

2 : Set ksK[ℓksK(i− 1) + j]← LWEσksK,n,Q(s, s′[i] · Lj−1
ksK ).

3 : Output ksK ∈ LWEσksK,n,Q(s′, .)NℓksK .

KeySwitch(c, ksK):
Input: A LWE ciphertext c = [b, a] ∈ LWEσ,N,Q(s′, m)

A key switching key ksK ∈ LWEσksK,n,Q(s, .)NℓksK .

1 : Compute x← G−1
det (a, LksK) ∈ ZN

LksK ℓksK.

2 : Output cout ← [b, 0]− x⊤ · ksK ∈ Zn+1
Q .

Figure 6: Key switching algorithm and its setup.

Proof. (Key Switching, Lemma 13). Let us first note that for all i ∈ [n] we have

x⊤ · ksK =
N∑

i=1

ℓksK∑
j=1

x[ℓksK(i− 1) + j] · ksK[ℓksK(i− 1) + j]

= LWEσ1,n,Q(s,

N∑
i=1

a[i] · s′[i])

where

σ2
1 ≤

ℓksK∑
i=1

N · B(G−1
det(., LksK)) · σ2

ksK ≤ N · ℓksK · B(G−1
det(., LksK)) · σ2

ksK.

The bound follows from the fact that we have a multisum of scalars in x and LWE samples
from the key switching key.

Let us denote b = a⊤ · s′ + m + e and x⊤ · ksK = [b̂, â] where b̂ = â⊤s + a⊤ · s′ + ê then

cout = [b, 0]− x⊤ · ksK = [b− b̂,−â] = [−â⊤s + m + e− ê,−â]

Hence, cout is a valid LWE sample of m with respect to key s and

σ2
out ≤ N · ℓksK · B(G−1

det(., LksK)) · σ2
ksK + σ2.

Proof. (Bootstrapping, Lemma 14). The correctness of blind rotation follows from two
observations. First, is that multiplying a RLWE sample with Xk for some k ∈ ZN does
not change the parameter of its noise, because the error polynomial is only rotated, and
we change the sign of some of the coefficients. Second, we run n times the homomorphic
CMux gate, thus the variance of the output noise follows from Lemma 10. Finally,
note that each iteration rotates the message by X−a[i]·s[i]. Denote c = [a, b], where
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Table 4: The standard deviation of the numerical errors when multiplying degree N = 211

polynomials. One polynomial has coefficient modulus Q, and the other one has coefficient
modulus B. We choose both polynomials uniformly at random. We denote by “-” when
the log2(Q) + log( B) + log +2(N) ≥ 64, in which case we exceed 64 bits and end up with
random-looking polynomials.

log2(B)
log2(Q) 32 34 36 38 40 42 44 46

4 0 0 0 0.5 1.14 5.5. 17.3 77.7
6 0 0 0.23 1.25 4.1 24.1 72.4 325.9
8 0 0.5 1.9 4.2 17.5 108.1 263.3 -
10 0.6 1.4 4.1 19.1 74.7 290.2 - -
12 1.3 3.9 19.0 78.1 326 - - -
14 4.6 17.8 68.2 505.7 - - - -
16 15.8 87.8 282.2 - - - - -
18 78.2 490.9 - - - - - -

b = a⊤s + m + e ∈ Z2N . After n iterations we obtain arot ·Xb−a⊤s = arot ·Xm+e. What
follows is (arot ·Xm+e)[1] = f(m + e) ∈ ZQ from the assumption on arot.

Correctness of bootstrapping trivially follows from the correctness of the underlying
algorithms. In particular, the noise parameter of the cin ciphertext follows from the fact
that we run the key switching procedure on c and then switch the modulus to 2N . Finally,
the noise parameter of cout follows from the correctness of blind rotation, Lemma 13,
Lemma 12 and Lemma 11. Finally, if ver = simul, then we additionally compute a linear
combination of of LWE samples of zero from the vector v. Hence the additional part
h · σ2

R · σ2
rand of the noise follows from linear homomorphism of LWE samples and the fact

that all error terms are uncorrelated.

Numerical Error. Finally, let us address the issue of numerical errors when performing
ring operations. In particular, we focus on computing products of ring elements (or
negacyclic convolutions of polynomials for our ring choice). We measured the numerical
error when computing products of ring elements with the fftw library [FJ21]. The result
is depicted in Table 4. Based on this table, we ruled out choosing certain moduli and
decomposition bases while preserving correctness.

Note that Table 4 gives only the error of polynomial multiplication. Note that the
impact on the ciphertext error of an external product is much higher and dependent on
the secret norm of the secret key. Let (a, b) by a RLWE ciphertext such that b− a · s = e,
where e is small. Denote

(a′, b′) = (Mul(a, c), Mul(c, b)) = (a · c + r2, b · c + r1),

where r1 and r2 is the numerical error introduce by the multiplication algorithm Mul.
Then we can see that the phase b′ − a′ · s = e− r2 · s + r1. We obtain an additional error
which infinity norm is

||r2 · s + r1|| ≤ NB(Q, c) · (||s||∞ + 1),

where ||r1||∞, ||r1||∞ < B(Q, c) and B(Q, c) being an error function determined by the
modulus Q and the polynomial c. If the external product is implemented using such
errorenous multiplication algorithm then we need to add 2ℓbr ·N ·B(Q, c) · (||s||∞ + 1) to
the variance σ1 assuming that the error function B(Q, c) is modeled by a discrete Gaussian.
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Consequently we need to update the bound on σout on the cout error of the bootstrapping
algorithm as follows. For ver = det we have√

2n · ℓbr ·N · (σ2
br · B(G−1

det(., Lbr)) + B(Q, c) · (||s||∞ + 1)),

and for ver = simul we have√
2n · ℓbr ·N · (σ2

br · B(G−1
simul(., Lbr; σx)) + ·B(Q, c) · (||s||∞ + 1)) + h · σ2

R · σ2
rand.

C Discussion on the Noise Flooding Technique
Here we give a rough parameter estimate for TFHE using noise flooding. We use our
estimator for the DS-WM method setting the number of washing cycles to 1. In fact
the noise flooding method is a special case of the DS-WM method. In fact we will start
by modifying the DS-WM-Int parameter set. Let’s set the modulus to 2110 and ring
to 212. Note that the ring is bigger that the rings that we used, but security is below
128-bit, according to the FHE-Standard [ACC+18]! So the parameter set doesn’t satisfy
out conditions, but let’s make it easier. The blind rotation error is already above B = 26
bits, so we need at least B ∗ 280 = 2106 bits of flooding noise according to the smudging
lemma (Lemma 1). A 110-bits modulus should be large enough to accommodate the
message. All other parameters (the decomposition base etc.) stay the same so that we
don’t need to increase the modulus anymore. Then we need (14 + 1) · 2 convolutions per
external product (912 · 30 = 27360 total in a larger ring), a masking key of size 3977 MB
(in comparison to 186 MB), a 1464 MB bootstrapping key (we have 134 MB), and 837 MB
Key switching key (we have 79 MB). Quadruple precision FFT or Intel Hexl don’t handle
such big numbers. But we can use the RNS representation at the cost of roughly 2times
more convolutions. In total, we get 27360 · 2 = 54720 convolutions, in comparison to 12768
convolutions in Our-Int parameter set. To summarize, naive flooding has 4.28 times more
convolutions with a ring that is twice as large and requires 6278 MB of key material in
comparison to our 399 MB. Remind that this parameter set doesn’t give 128-bit security,
but is close to. To satisfy our security constraint we would actually need to take a 213

dimension ring! Note that the number of convolutions is just an indication of how much
slower an implementation can be in best case. To implement RNS there is much more
effort necessary, that is going to slow down computation due to composition, memory
access, cache related issue etc.
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