
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 4, 20 pages.

https://doi.org/10.62056/ayfhp2fgx
Check for updates

On the Key-Commitment Properties of
Forkcipher-based AEADs

Mostafizar Rahman1, Samir Kundu2 and Takanori Isobe1

1 University of Hyogo, Kobe, Japan
2 Siksha ’O’ Anusandhan (Deemed to be) University, Bhubaneswar, India

Abstract. Forkcipher-based AEADs have emerged as lightweight and efficient cryp-
tographic modes, making them suitable for resource-constrained environments such
as IoT devices and distributed decryption through MPC. These schemes, including
prominent examples like Eevee (Jolteon, Espeon, and Umbreon), PAEF, RPAEF,
and SAEF, leverage the properties of forkciphers to achieve enhanced performance.
However, their security in terms of key commitment, a critical property for certain
applications such as secure cloud services, as highlighted by Albertini et al. (USENIX
2022), has not been comprehensively analyzed until now.
In this work, we analyze the key-commitment properties of forkcipher-based AEADs.
We found that the majority of forkcipher-based AEAD schemes lack key-commitment
properties, primarily due to the distinctive manner in which they process associated
data and plaintext. For two different keys and the same nonce, an adversary can
identify associated data and plaintext blocks that produce identical ciphertext-tags
with a complexity of O(1). Our findings apply to various forkcipher-based AEADs,
including Eevee, PAEF, and SAEF, and naturally extend to less strict frameworks,
such as CMT-1 and CMT-4.
These findings highlight a significant limitation in the robustness of forkcipher-based
AEADs. While these modes are attractive for their lightweight design and efficiency,
their deployment should be restricted in scenarios where explicit robustness or key-
commitment security is required.
Keywords: Key committing · Eevee · Forkcipher · Forkskinny

1 Introduction
Key commitment ensures that a ciphertext C can only be successfully decrypted using the
exact key that was originally used to encrypt the corresponding plaintext. In cryptographic
systems, if it were possible to find a ciphertext that could be decrypted to valid plaintexts
under two different keys, it would violate the key commitment principle. In traditional
terms, it is generally expected that an Authenticated Encryption with Associated Data
(AEAD) scheme should provide confidentiality and integrity for the data. It guarantees
that data remains confidential and unchanged during transmission, ensuring both privacy
and integrity. This is achieved by combining encryption and message authentication codes
(MACs) to protect the data from unauthorized access and tampering.

The necessity of an AEAD scheme being a key-committing one in addition to pro-
viding confidentiality and integrity is studied in [GLR17, DGRW18] in the context of
Facebook message franking [Fac16, Mil17]. In Facebook’s end-to-end encrypted messaging,
reporting abusive messages requires a balance between user privacy and the need to verify
reported content. To address this, Facebook introduced “message franking,” a method to

E-mail: mrahman454@gmail.com (Mostafizar Rahman), samirkundu3@gmail.com (Samir Kundu),
takanori.isobe@ai.u-hyogo.ac.jp (Takanori Isobe)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-10-09 Accepted: 2024-12-03

https://doi.org/10.62056/ayfhp2fgx
https://crossmark.crossref.org/dialog/?doi=10.62056/ayfhp2fgx&domain=pdf&date_stamp=2025-01-11
mailto:mrahman454@gmail.com
mailto:samirkundu3@gmail.com
mailto:takanori.isobe@ai.u-hyogo.ac.jp
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 On the Key-Commitment Properties of Forkcipher-based AEADs

include cryptographic proof in abuse reports to verify the reported message’s authenticity.
In [DGRW18], it is demonstrated to exploit Facebook’s message franking scheme, where a
malicious user can send an inappropriate image to a recipient without the recipient being
able to report it as abuse. This issue arises from the use of a fast but non-committing
authenticated encryption (AE) scheme. In [LGR21], it is shown that due to the use of
non-committing AEADs, attackers can recover user’s password from the Shadowsocks
proxy servers. Attacks are also shown on the password-authenticated key exchange proto-
col OPAQUE [JKX18] when it is implemented using non-committing AEADs [LGR21].
Subsequently, vulnerabilities due to the use of non-committing AEADs also appeared in
different contexts, such as key rotation schemes and envelope encryption, as discussed in a
recent study [ADG+22].

In recent developments, new definitions have emerged that emphasize committing not
just to the key but also to the associated data and nonce [CR22, BH22]. While new schemes
have been proposed [CR22, ADG+22] to adhere to these updated definitions, there remains
uncertainty regarding the implementation of commitment in existing AEAD schemes. The
specific mechanisms through which these existing schemes ensure commitment, particularly
regarding the associated data and nonce, requires further investigations. Clarification on
these aspects is essential for understanding the security guarantees provided by different
AEAD schemes. Recently, committing security analysis is carried out on several existing
AEAD schemes like CCM, GCM, OCB3 [MLGR23], Ascon [NSS23], AEZ [CFI+23], Aegis,
Rocca-S [DFI+24].

In Asiacrypt 2019, the forkcipher primitives and their associated AEAD modes (PAEF,
SAEF, and RPAEF) were introduced [ALP+19]. Following this, many forkcipher schemes
were proposed [KLL20, ABPV21, AW23, DDLM24, Man24]. In ACM CCS 2023, forkcipher-
based AEAD schemes Eevee [BPA+23] was proposed. These schemes are based on the
ForkSkinny forkcipher [ALP+19], offering lightweight and efficient modes designed for
IoT devices and enabling distributed decryption through MPC. These modes, includ-
ing Umbreon, Jolteon, and Espeon, are fully parallelizable in decryption, making them
highly efficient. Umbreon prioritizes security, providing full OAE security that degrades
logarithmically with nonce-misuse. Jolteon focuses on performance, with smaller state
requirements but lower security under nonce-misuse compared to Umbreon. Espeon offers
an intermediate trade-off, providing similar performance to Jolteon but with tweak-size-
dependent security under nonce-misuse. Unlike existing designs, Eevee modes are based
on a single primitive, providing simplicity and improved security against relevant threats.
It is important to emphasize that Eevee was initially proposed with a focus on secure
computation in IoT-to-cloud scenarios. As demonstrated in [ADG+22], AEAD schemes
employed in cloud services should provide key-commitment security. A failure to provide
this security property could enable adversaries to exploit the structural properties of
the scheme, leading to ciphertext and tag forgery attacks. This highlights the need for
higher-level protocols employing AEADs to carefully consider the type of AEAD they use.
If the security of a protocol depends on key-commitment and non-committing AEADs are
employed, it could lead to significant vulnerabilities and potentially compromise the entire
protocol. Our analysis focuses on evaluating the key-commitment properties of Eevee
and identifying any associated risks, ensuring the scheme’s suitability for its intended
applications. Our attacks on the key-committing security of Eevee indicate that Eevee
may not be suitable for general use-cases, although it remains appropriate for scenarios
where commitment is not required. This aligns with the suggestion from [LGR21]- “We
suggest considering a shift towards committing AEAD being the default for general use and
using non-committing AEAD only for applications shown to not require robustness.”

Our Contribution. In Asiacrypt 2019, a new symmetric-key primitive called the
forkcipher and its associated AEAD modes- PAEF, SAEF, and RPAEF were introduced

Mostafizar Rahman, Samir Kundu, Takanori Isobe 3

for lightweight applications [ALP+19]. Later, a forkcipher-based AEAD family named
Eevee was proposed, focusing on cloud service applications. The key-commitment security
of such cloud services, particularly when using AEAD schemes, is crucial, as highlighted
in [ADG+22], which shows that AEAD schemes lacking key-commitment security can lead
to serious vulnerabilities, as demonstrated through attacks on the envelope encryption
scheme used by the AWS encryption SDK. This suggests that even well-designed AEAD
schemes, when employed in cloud services, might be susceptible to attacks if they do
not ensure key-commitment. Given that cloud-based secure computation is one of the
primary application domains for Eevee, it becomes imperative to investigate its potential
weaknesses against key-commitment attacks.

We assess here the key committing security of the AEAD modes in Eevee family. We
demonstrate that certain fork-cipher based AEAD schemes do not exhibit key-committing
properties within the rigorous FROB game framework [FOR17]. Our analysis strategy
exploit the processing of the associated data and plaintext. We demonstrate that for
two different keys and the same nonce, as adversary can always find a corresponding
associated data block and plaintext blocks so that two equal ciphertext-tags are generated.
Consider K1, K2 be two keys and N is a nonce. Consider (K1, N , A1, P 1) generates a
ciphertext-tag pair (C,τ) where A1, P 1 are the associated data and plaintext, respectively.
Then using our attack, one can find a block associated data A2 and a plaintext P 2 (where
the size of P 2 and P 1 are equal) such that (K2, N , A2, P 2) generates the same (C,τ).
This allows us to find tag collisions with a complexity of O(1). Moreover, the absence
of such committing properties in the FROB framework implies that these schemes lack
committing properties in less strict frameworks such as CMT-1 and CMT-4. Further,
we demonstrate the applicability of our strategy to the initial forkcipher-based AEAD
modes, PAEF and SAEF, revealing their potential weaknesses against key-committing
attacks. Since the attack on SAEF is similar to the attack on PAEF, only the attack on
PAEF is implemented. Similarly, as the attacks on the three modes of Eevee are similar,
only the attack on Umbreon is implemented (the attacks on SAEF, Jolteon and Espeon
are not implemented due to their similarity with the other implemented attacks). We
note that no claims regarding the key-committing properties of these ciphers have been
made in [ALP+19, BPA+23]. Furthermore, our attacks merely demonstrate that most
of these ciphers lack key-committing properties and do not compromise their claimed
AEAD security. Finally, we discuss the challenges of devising dedicated countermeasures
for these schemes without incurring significant overhead. As a result, we consider the
generic countermeasures that have been proposed previously.

Structure of the paper. The rest of the paper is organized as follows. In Section 2,
along with introducing some notations, discussions on committing authenticated encryption
frameworks and the specification on Eevee and other forkcipher-based AEAD modes are
provided. An overview of the attack strategy is described in Section 3.1. Dedicated attacks
on Eevee and PAEF, SAEF are presented in Section 3.2 and Section 3.3, respectively.
Section 4 discusses about the challenges of devising dedicated countermeasures for these
schemes, considering small overheads. Finally, the concluding remarks are furnished in
Section 5. The attack vectors of the implemented attacks are provided in Appendix A.

2 Preliminaries

First, we introduce some notations that are followed throughout the paper. Next, we delve
into the concepts surrounding committing authenticated frameworks. Finally, we provide
a brief overview of the Eevee family of AEAD modes.

4 On the Key-Commitment Properties of Forkcipher-based AEADs

2.1 Notations

⟨i⟩d : d-bit encoding of a number i

FK,T,s(M) : Encryption of a message M using a forkcipher F with key K

and tweak T . For s = 0, 1 or b, left, right or both ciphertext

blocks are given as output.
F −1

K,T (C) : Decryption of a ciphertext C using a forkcipher F with key K

and tweak T . Only the encrypted message is given as output.

F R
K,T (C) : Outputs the other ciphertext block, when queried using a

ciphertext block C.

|X| : represents the size of vector X in number of bits

X0 · · ·XmX∗
n←− X : Divide a vector X into several vectors, where only X∗ has

a size less than n bits, while X0, . . . , Xm have exactly n bits.

X : Bit-wise complement of the vector X

Trl(X) : Trims the first l bits from the vector X

2.2 Committing Authenticated Encryption (AE) Frameworks
Consider a symmetric encryption scheme Σ with encryption and decryption algorithms
denoted by ΣEnc and ΣDec, respectively, defined as:

ΣEnc : K ×N ×AD × P → C,

and
ΣDec : K ×N ×AD × C → P ∪ {⊥},

where K, N , AD, P, and C represent the key, nonce, associated data, plaintext/message,
and ciphertext spaces, respectively. This scheme is formally referred to as a “nonce-based
authenticated encryption scheme supporting associated data” or an nAE scheme.

A committing authenticated encryption (cAE) scheme ensures that the key, nonce, asso-
ciated data, or message used to create a ciphertext is definitively determined. In this frame-
work, the adversary’s goal is to create a ciphertext that can be derived from two different
sets of keys, nonces, associated data, and messages. Consider Ci ← ΣEnc(Ki, N i, Ai, P i)
where Ki ∈ K, N i ∈ N , Ai ∈ AD, P i ∈ P, and Ci ∈ C for i ∈ 1, 2. The adversary seeks
to find C1 and C2 such that C1 = C2 while (K1, N1, A1, P 1) ̸= (K2, N2, A2, P 2).

Various committing security frameworks have been proposed, such as CMT-1, where
the ciphertext solely commits to the key. In this scenario, the adversary must produce
((K1, N1, A1, P 1), (K2, N2, A2, P 2)) such that K1 ̸= K2 and ΣEnc(K1, N1, A1, P 1) =
ΣEnc(K2, N2, A2, P 2). The CMT-4 framework relaxes these constraints, allowing the
commitment to encompass any input of ΣEnc, not just the key. Here, the adversary can
breach CMT-4 security by constructing a set ((K1, N1, A1, P 1), (K2, N2, A2, P 2)) where
(K1, N1, A1, P 1) ̸= (K2, N2, A2, P 2) and ΣEnc(K1, N1, A1, P 1) = ΣEnc(K2, N2, A2, P 2).
Bellare and Hoang introduced CMT-3 [BH22], which is slightly more restrictive than CMT-
4, replacing the constraint (K1, N1, A1, P 1) ̸= (K2, N2, A2, P 2) with (K1, N1, A1) ̸=
(K2, N2, A2). The FROB game, originally proposed by Farshim, Orlandi, and Rosie and

Mostafizar Rahman, Samir Kundu, Takanori Isobe 5

FROB (A)

1. (C, (K1, N1, A1), (K2, N2, A2)) $← A

2. P 1 ← ΣDec(K1, N1, A1, C)

3. P 2 ← ΣDec(K2, N2, A2, C)

4. If P 1 = ⊥ or P 2 = ⊥ then
Return false

5. If K1 = K2 or N1 ̸= N2 then
Return false

6. Return true

(a) FROB Game

CMT-1(A)

1. (C, (K1, N1, A1), (K2, N2, A2)) $← A

2. P 1 ← ΣDec(K1, N1, A1, C)

3. P 2 ← ΣDec(K2, N2, A2, C)

4. If P 1 = ⊥ or P 2 = ⊥ then
Return false

5. If K1 = K2 then
Return false

6. Return true

(b) CMT-1 Game

CMT-3(A)

1. (C, (K1, N1, A1), (K2, N2, A2)) $← A

2. P 1 ← ΣDec(K1, N1, A1, C)

3. P 2 ← ΣDec(K2, N2, A2, C)

4. If P 1 = ⊥ or P 2 = ⊥ then
Return false

5. If (K1, N1, A1) = (K2, N2, A2)
then Return false

6. Return true

(c) CMT-3 Game

CMT-4(A)

1. (C, (K1, N1, A1), (K2, N2, A2)) $← A

2. P 1 ← ΣDec(K1, N1, A1, C)

3. P 2 ← ΣDec(K2, N2, A2, C)

4. If P 1 = ⊥ or P 2 = ⊥ then
Return false

5. If (K1, N1, A1, P 1) = (K2, N2, A2, P 2)
then Return false

6. Return true

(d) CMT-4 Game

Figure 1: Different Frameworks for Committing Security.

later adapted to the AEAD setting in [ADG+22], imposes an even stricter condition,
requiring N1 = N2 in addition to K1 ≠ K2. It has been shown that CMT-3 security
implies CMT-1, which in turn implies the FROB game. This hierarchy of security notions
demonstrates the increasing challenge for adversaries, with the FROB game presenting the
most formidable obstacle. All the related games are outlined in Fig. 1.

2.3 Forkcipher and Associated AEAD Modes
Here, we discuss about the forkcipher-based AEAD modes. First of all, we provide a brief
description of forkcipher primitive. Then, we briefly describe PAEF, SAEF, RPAEF and
Eevee.

2.3.1 Forkcipher

The notion of forkcipher was introduced by Andreeva, Reyhanitabar, Varici and Vizár [ARVV18]
which is tweakable symmetric-key primitive with a fixed input length and an expanding
fixed output length. It takes as input an n-bit message M , a public tweak T , and a

6 On the Key-Commitment Properties of Forkcipher-based AEADs

secret key K, and produces two n-bit ciphertexts C0 and C1. The message M can be
reconstructed from either C0 or C1. Moreover, one ciphertext block can be reconstructed
from the other. The encryption algorithm of a forkcipher can be formally defined as
F : {0, 1}k × {0, 1}t × {0, 1}n × {0, 1, b} → {0, 1}n ∪ {{0, 1}n × {0, 1}n}, where k, n, and t
represent the key size, block size, and tweak size of F , respectively. Additionally, there is
a selector s that determines the type of output. If s = 0 or s = 1, the output is C0 or C1,
respectively. If s = b, both C0 and C1 are output. Fig. 2 illustrates the encryption of a
message using a forkcipher.

Figure 2: Encryption of a message M using a Forkcipher F with key K and tweak T .

Figure 3: Encryption using ForkCipher. The ciphertext C0||C1 is computed using the
plaintext M and key-tweak pair K||T . Here, R, TKS and BC denote the round function,
tweak-key scheduling function and branch-constant, respectively. The total number of
rounds before and after the forking is denoted by rinit and rfinal, respectively.

An instantiation of the forkcipher is ForkSkinny [ALP+19] which is based on tweakable
block cipher Skinny [BJK+16]. Fig. 3 illustrates the generic encryption process of a
ForkSkinny. The round function R of ForkSkinny follows the design specification of the
Skinny and is described as

R = Mixcolumn ◦Addconstant ◦Addroundtweakey ◦ Shiftrow ◦ Subcell

where each of these operations (apart from the Addconstant) along with the tweakey
schedule (TKS) are identical to the ones defined for Skinny. The only difference is in
the Addconstant operation where 7-bit constants are used (in Skinny, 6-bit constants are
used). In the context of the current work, the details pertaining to the constants and TKS
are omitted. Several variants of ForkSkinny are proposed which are listed in Table 1.

Mostafizar Rahman, Samir Kundu, Takanori Isobe 7

Figure 4: Associated Data Processing in Umbreon, Jolteon and Espeon. The function
pad10 adds padding bits to the last incomplete block. Note that, d = t− |N | − 2 where t
is the tweak size of the underlying forkcipher primitive.

Table 1: Variants of ForkSkinny

Primitive
Block

size

Tweak

size

Key

Size
rinit rfinal

ForkSkinny-64-192 64 64 128 17 23

ForkSkinny-128-192 128 64 128 21 27

ForkSkinny-128-256 128 128 128 21 27

ForkSkinny-128-288 128 160 128 25 31

ForkSkinny-128-384 128 256 128 25 31

2.3.2 Description of PAEF, SAEF and RPAEF

PAEF (Parallel AEAD from a Forkcipher), SAEF (Sequential AEAD from a Forkcipher)
and RPAEF (Reduced Parallel AEAD from a Forkcipher) were proposed in Asiacrypt
2019 [ALP+19]. PAEF provides optimal security in the nonce-respecting model and
supports full parallelism, SAEF operates in a sequential manner, offering birthday-bound
security and enabling low-overhead implementations, whereas RPAEF extends the PAEF
by using both forkcipher output blocks only during the final call, enhancing efficiency for
longer messages.

For PAEF, SAEF and RPAEF, associated data and message are partitioned into
blocks of n bits where each block is processed with one call to the underlying forkcipher
primitive F . In the case of PAEF, the tweak of F is composed of (i) ν bits of nonce where
0 < ν ≤ t− 4, (ii) a three bit flag f0||f1||f2 and (iii) (t− ν − 3) bit encoding of the block
index (the encoding is maintained separately for associated data and message blocks).
f0 = 1 if a message block is being processed, f1 = 1, if the last processed block (either
message or associated data) is incomplete and f2 = 1 for the last block of both message
and associated data. RPAEF is a derivative of PAEF that mostly depends on the left
output block of the underlying forkcipher. The tweaks for the underlying forkcipher calls
are generated in the same way as PAEF, the only difference being the size of tweaks is
increased by padding 0’s. The processing of message and the generation of tags for SAEF,
PAEF, RPAEF are outlined in Algorithm 1, Algorithm 2 and Algorithm 3, respectively.

8 On the Key-Commitment Properties of Forkcipher-based AEADs

Figure 5: Processing of message and generation of tag in the Eevee family of AEAD
modes. If the last message block is complete, then N ||⟨1⟩d+1||1, Trt−2(Cm||Cm−1)||11 and
N ||⟨1⟩d+1||1 is used as a tweak for Jolteon, Espeon and Umbreon, respectively, instead of
the ones shown in the figure. Note that, |M∗| = l and d = t− |N | − 2 where t is the tweak
size of the underlying forkcipher primitive. In the case of Espeon, C0 = N ||0n−|N |.

Algorithm 1: Encryption Algorithm of SAEF

Input: A key K, nonce N associated data A and
message M

Output: A ciphertext C and a tag τ

1 A1A2 · · ·AaA∗
n←− A

2 M1M2 · · ·MaM∗
n←−M

3 noM ← 0
4 if |M | = 0 then
5 noM ← 1
6 ∆← 0n; T ← N ||0t−4−ν ||1
7 for i = 1 to a do
8 T ← T ||000
9 ∆← F T,0

K (Ai ⊕∆)
10 T ← 0t−3

11 if |A∗| = n then
12 T ← T ||noM ||10
13 ∆← F T,0

K (A∗ ⊕∆)
14 T ← 0t−3

15 else if |A∗| > 0 or |M | = 0 then
16 T ← T ||noM ||11
17 ∆← F T,0

K ((A∗||10∗)⊕∆)
18 T ← 0t−3

19 for i = 1 to m do
20 T ← T ||001
21 Ci, ∆← F T,b

K (Mi ⊕∆)⊕ (∆, 0n)
22 T ← 0t−3

23 if |M∗| = n then
24 T ← T ||100
25 else if |M∗| > 0 then
26 T ← T ||101
27 else
28 return ∆

29 C∗, T ← F T,b
K (pad10(M∗))⊕ (∆, 0n)

30 C = C1|| · · · ||Cm||C∗
31 τ = T r|M∗|(T)
32 return C||τ ;

2.3.3 Description of Eevee

Eevee is a provably secure family of lightweight authenticated encryption with associated
data (AEAD) modes proposed for IoT-to-cloud secure computation [BPA+23]. Three
forkcipher-based AEAD modes- Umbreon, Jolteon and Espeon constitute the Eevee family.

AEAD Modes Jolteon, Umbreon and Espeon. The three AEAD modes, first of
all, processes the associated data (AD) A. A is sub-divided into blocks of n bits and

Mostafizar Rahman, Samir Kundu, Takanori Isobe 9

Algorithm 2: Encryption algo-
rithm of PAEF

Input: Key K, nonce N , associated
data A, message M

Output: Ciphertext C and tag τ

1 A1A2 · · ·AaA∗
n←− A

2 M1M2 · · ·MaM∗
n←−M

3 S ← 0n; c← (t− ν − 3)
4 for i = 1 to a do
5 T ← N ||000||⟨i⟩c
6 S ← S ⊕ F T,0

K (Ai)
7 if |A∗| = n then
8 T ← N ||001||⟨a + 1⟩c
9 S ← S ⊕ F T,0

K (A∗)
10 else if |A∗| > 0 or |M | = 0 then
11 T ← N ||011||⟨a + 1⟩c
12 S ← S ⊕ F T,0

K (A∗||0)
13 for i = 1 to m do
14 N ||000||⟨i⟩c
15 Ci, S′ ← F T,b

K (Mi)
16 S ← S ⊕ S′

17 if |M∗| = n then
18 T ← N ||101||⟨m + 1⟩c
19 else if |M∗| > 0 then
20 T ← N ||011||⟨a + 1⟩c
21 else
22 return S

23 C∗, T ← F T,b
K (pad10(M∗))

24 C∗ ← C∗ ⊕ S
25 C = C1|| · · · ||Cm||C∗
26 τ = T r|M∗|(T)
27 return C||τ ;

Algorithm 3: Encryption algo-
rithm of RPAEF

Input: Key K, nonce N , associated
data A, message M

Output: Ciphertext C and tag τ

1 A1A2 · · ·AaA∗
n←− A

2 M1M2 · · ·MaM∗
n←−M

3 S ← 0n; c← (t− ν − 3)
4 for i = 1 to a do
5 T ← N ||000||⟨i⟩c||0n

6 S ← S ⊕ F T,0
K (Ai)

7 if |A∗| = n then
8 T ← N ||001||⟨a + 1⟩c||0n

9 S ← S ⊕ F T,0
K (A∗)

10 else if |A∗| > 0 or |M | = 0 then
11 T ← N ||011||⟨a + 1⟩c||0n

12 S ← S ⊕ F T,0
K (A∗||0)

13 for i = 1 to m do
14 N ||000||⟨i⟩c||0n

15 Ci ← F T,0
K (Mi)

16 S ← S ⊕Mi

17 if |M∗| = n then
18 T ← N ||101||⟨m + 1⟩c||S
19 else if |M∗| > 0 then
20 T ← N ||011||⟨a + 1⟩c||S
21 else
22 return S

23 C∗, T ← F T,b
K (pad10(M∗))

24 C = C1|| · · · ||Cm||C∗
25 τ = T r|M∗|(T)
26 return C||τ ;

Figure 6: Encryption Algorithms for PAEF (left) and RPAEF (right)

the last incomplete block is padded with 10∗. The AD processing part of all the three
modes are similar and is illustrated in Fig. 4. Note that, if no padding bits are required
(i. e. the last block of A is complete), then in the processing of the last associated data
block N ||⟨2 + noM⟩d||00 is used as a tweak instead of N ||⟨noM⟩d||00. Subsequently, the
processing of message and the generation of tags for the three AEAD modes are depicted
in Fig. 5.

In the encryption process, both Jolteon and Espeon optimize performance by utilizing
only one branch of the forkcipher up to the final processed message block. Jolteon
further enhances performance by allowing parallelization of forkcipher evaluations during
encryption, albeit with a trade-off of reduced security. Conversely, Umbreon and Espeon
operate sequentially and utilize either both branches of the forkcipher throughout (Umbreon)
or longer tweaks (Espeon), which provides additional security benefits. In the context of
the current work, details pertaining to the decryption are omitted.

3 Analyzing Key-commitment Weaknesses
Now, we discuss about the specific weaknesses against key-commitment of some forkcipher-
based AEAD modes. First, we give a brief overview of the strategy which is used to mount

10 On the Key-Commitment Properties of Forkcipher-based AEADs

Figure 7: Generalized view corresponding to the processing of associated data and message

key-committing attacks. Then, the specific attacks on the three AEAD modes of Eevee
are discussed. Finally, we also show the application of the devised strategy on PAEF and
SAEF.

3.1 Overview of the Strategy
Here, first, we provide a generalized view of the processing of the nonce, associated data,
and message along with the secret key. We refer the readers to Fig. 7 for this generalized
view. Initially, consider an initial state SI which is essentially the zero state. Now, due to
the processing of associated data using the nonce and key, which can be represented as
some transformation UK,N,A, the intermediate state Sµ is generated. Thereafter, processing
the message using the nonce and the secret key, the final state Sf is reached, which is
essentially the ciphertext-tag pair.

In this analysis, we focus on attacking the FROB security of AEADs in the Eevee
family. Our goal is to produce the same ciphertext-tag pair using (K1, N1, A1, M1) and
(K2, N2, A2, M2), where K1 ̸= K2 and N1 = N2. Here, K1 and K2 are the keys, N1 and
N2 are the nonces, A1 and A2 are associated data, and M1 and M2 are the messages.
Given that (K1, N1, A1, M1) produces C||τ , where C and τ are the ciphertext and tag,
respectively, we aim to find a (K2, A2, M2) such that (K2, N1, A2, M2) produces the same
C||τ .

To achieve this, we first choose a K2 such that K1 ≠ K2. Then, we fix the ciphertext
as C and the tag as τ , and attempt to find a message M2 using the key K2 and the
nonce N1. However, due to the nature of the AEAD algorithm, the intermediate states
Sµ1 and Sµ2 will not be equal. Here, Sµ1 and Sµ2 represent the intermediate states when
(K1, N1, A1, M1) and (K2, N2, A2, M2) are used as inputs, respectively. To reach the
initial state SI , we must find a suitable A2 that allows us to transition from µ2 to SI . In
the following attacks, it is considered that the underlying forkcipher primitives encrypt a
n-bit message and produce 2n-bit ciphertext. Referring to Fig. 3, it is important to note
that due to the forkcipher’s reliance on an invertible round function R, knowledge of either
M , Cl, or Cr, along with the key and tweak, is sufficient to determine the other two.

Comparison with generic attack. In the current context, an attack is considered
valid if its complexity is lower than the generic attack complexity, which, for these schemes,
depends solely on the tag length. Successfully forging a valid tag is enough to compromise
the key-committing security, as it renders the detection of an incorrect key impossible.
For an AEAD scheme with a t-bit tag, the data complexity of a generic attack is 2t/2.
Therefore, any attack that recovers a valid (K2, A2, M2) with a data complexity lower
than 2t/2 can be considered valid.

3.2 Key-commiting Attacks on Jolteon, Espeon and Umbreon
Here, we give details of finding the same tag and ciphertext using two different sets of keys,
nonces, associated data and plaintext. As stated earlier, consider that (K1, N1, A1, M1)
generates C||τ . Initially, assume that only one block of message is encrypted, i. e. |M1| = n.
Now, we will show the procedure to find a (K2, A2, M2) such that (K2, N1, A2, M2)
generates the same C||τ .

Mostafizar Rahman, Samir Kundu, Takanori Isobe 11

3.2.1 Finding (K2, A2, M2) for Jolteon.

We refer the readers to Fig. 8 for the attack on Jolteon. Fix the permutation for key K2

and tweak N ||⟨0⟩d+1||1. Now, using the notion of reconstruction query and decryption
(where τ is used as the query) C

′and M
′ can be determined, respectively. Compute M2

by taking XOR of C
′ and C i. e. M2 = C

′ ⊕ C.

Figure 8: Key Committing Attack on Jolteon with 128-bit Message

To find A2, we need to compute the intermediate state Sµ2 as M2 ⊕M
′ . Now, Sµ2

is decrypted using the permutation constructed from key K2 and the tweak N ||⟨5⟩d||1.
Thus, A2 can be recovered. As it is evident, the attack can be mounted deterministically.

Extending to Messages of Arbitrary Length. Consider the scenario when C =
C1|| · · · ||Cm||C∗ where C1, · · · , Cm are n-bit blocks and C∗ contains arbitrary number of
bits between 1 to n. Thus M1 = M1

1 || · · · ||M1
m||M1

∗ and we need to find a M2 such that
|M2| = |M1|.

Figure 9: Key Committing Attack on Jolteon with Arbitrary Message Size

We refer the readers to Fig. 9 for the illustration of the attack. The last block
M2

∗ can be recovered in the similar way as done in the previous case (attack for n-bit
ciphertext). However, as the last block can be incomplete, we need to find M2

∗ such that
|M2

∗ | = |C∗|. Let C ′ = F R
K2,N ||⟨0⟩d+1||1(τ)=c′

0c′
1 · · · c′

n where each c′
i ∈ {0, 1} (for 0 ≤ i ≤ n).

Consider |C∗| = l and C∗ = c∗
0c∗

1 · · · c∗
l−1 where each c∗

i ∈ {0, 1} (for 0 ≤ i ≤ l − 1).
Then a Cl∗ is constructed such that Cl∗ = c∗

0c∗
1 · · · c∗

l−1c′
lc

′
l+1 · · · c′

n. This ensures that
|M2

∗ | = |M1
∗ |. The subsequent n-bit message blocks M2

1 , · · · , M2
m can be computed as M2

i =
F −1

K2,N ||⟨i+1⟩d+1||1(Ci). The intermediate state Sµ2 =
m⊕

i=1
(Ci ⊕M2

i) ⊕ (pad10(M2
∗) ⊕M ′)

12 On the Key-Commitment Properties of Forkcipher-based AEADs

where M ′ = F −1
K2,N ||⟨0⟩d+1||1(τ). Then A2 is computed as A2 = F −1

K2,N ||⟨5⟩d||00(Sµ2). This
new set (K2, N, A2, M2) generates exactly the same ciphertext as (K1, N, A1, M1). The
attack strategy is outlined in Algorithm 4.

Algorithm 4: Key Committing Attack on Jolteon
Input: A key K1, nonce N and ciphertext-tag pair C||τ
Output: A key K2, associated data A2, message M2 such that (K2, N , A2, M2) generates the

same C||τ
1 C1C2 · · ·CmC∗

n←− C

2 K2 $← {0, 1}κ where κ = |K1|
3 C′ ← F R

K2,N||⟨0⟩d+1||1(τ)

4 M ′ ← F −1
K2,N||⟨0⟩d+1||1(τ)

5 c′
0c′

1 · · · c
′
n

1←− C′

6 c∗
0c∗

1 · · · c
∗
l−1

1←− C∗ where |C∗| = l

7 Cl∗ ← c∗
0c∗

1 · · · c
∗
l−1c′

l
c′

l+1 · · · c
′
n

8 for i = 1 to m do
9 M2

i ← F −1
K2,N||⟨i+1⟩d+1||1(Ci)

10 M2
∗ ← T rl(C′ ⊕ Cl∗ ⊕M ′)

11 Sµ2 ←
m⊕

i=1
(Ci ⊕Mi)⊕ (C′ ⊕ Cl∗ ⊕M ′)

12 A2 ← F −1
K2,N||⟨5⟩d||00(Sµ2)

13 return K2, A2 and M2;

3.2.2 Finding (K2, A2, M2) for Espeon and Umbreon.

By following the similar strategy as the one for Jolteon, K2, A2 and M2 can be recovered
for both Espeon and Umbreon. We refer the readers to Fig. 10 and Fig. 11 for the attack
on Espeon and Umbreon, respectively.

Let, C = C1|| · · · ||Cm||C∗ where |C1| = · · · = |Cm| = n and 1 ≤ |C∗| ≤ n. For
Espeon, we compute C ′ = F R

K2,T rimt−2(Cm||Cm−1)||10(τ) whereas for Umbreon C ′ =
F R

K2,N ||⟨0⟩d+1||1(τ). Consider C ′ = c′
0 · · · c′

n−1 and C∗ = c∗
0 · · · c∗

l−1. We construct Cl∗

as c∗
0 · · · c∗

l−1c′
lc

′
l+1 · · · c′

n−1.
For Espeon, each M2

i (for 2 ≤ i ≤ m) can be independently computed from Ci, Ci−1

and Ci−2. The n-bit M2
1 =

m⊕
i=2

M2
i ⊕ (Cl∗ ⊕C ′⊕M ′) where M ′ = F −1

K2,N ||⟨0⟩d+1||1(τ). The

intermediate state Sµ2 = M2
1 ⊕ F −1

K2,N ||⟨4⟩d||00(C1).

Figure 10: Key Committing Attack on Espeon

Mostafizar Rahman, Samir Kundu, Takanori Isobe 13

Algorithm 5: Key Committing Attack on Espeon
Input: A key K1, nonce N and ciphertext-tag pair C||τ
Output: A key K2, associated data A2, message M2 such that (K2, N , A2, M2) generates the

same C||τ
1 C1C2 · · ·CmC∗

n←− C

2 K2 $← {0, 1}κ where κ = |K1| and K2 ̸= K1

3 C′ ← F R
K2,T rimt−2(Cm||Cm−1)||10(τ)

4 M ′ ← F −1
K2,T rimt−2(Cm||Cm−1)||10(τ)

5 c′
0c′

1 · · · c
′
n

1←− C′

6 c∗
0c∗

1 · · · c
∗
l−1

1←− C∗ where |C∗| = l

7 Cl∗ ← c∗
0c∗

1 · · · c
∗
l−1c′

l
c′

l+1 · · · c
′
n

8 C0 ← N ||0n−|N|

9 for i = 2 to m do
10 M2

i ← F −1
K2,T rimt−2(Ci||Ci−1)||01(Ci)

11 M2
1 ←

m⊕
i=2

M2
i ⊕ (C′ ⊕ Cl∗ ⊕M ′)

12 M2
∗ ← T rl(C′ ⊕ Cl∗ ⊕M ′)

13 Sµ2 ←M2
i ⊕ F −1

K2,N||⟨4⟩d||00(C1)

14 A2 ← F −1
K2,N||⟨5⟩d||00(Sµ2)

15 return K2, A2 and M2;

Figure 11: Key Committing Attack on Umbreon

In the case Umbreon, the M2
i ’s can not be computed independently. First, Di and Bi (for

1 ≤ i ≤ m) are computed where Di = F R
K2,N ||⟨i+1⟩d+1||1(Ci) and Bi = F −1

K2,N ||⟨i+1⟩d+1||1(Ci).
Then, the values of M2

2 , M2
3 , · · · , M2

m can be fixed by taking the XOR of corresponding
Di−1’s and Bi. The intermediate state Sµ2 =

m⊕
i=1

Di ⊕ Cl∗ ⊕ C ′ ⊕ M ′ where M ′ =

F −1
K2,N ||⟨0⟩d+1||1(τ).

For recovering A2, the strategy similar to the one used for Jolteon is followed. Primarily,
finding a n-bit A2 is sufficient for mounting the attack. Thus the value of A2 is determined
by decrypting Sµ2 using the key K2 and the tweak N ||⟨5⟩d||00. The attack on Espeon and
Umbreon are outlined in Algorithm 5 and Algorithm 6, respectively.

3.3 Key-committing Attacks on PAEF, and SAEF
Here, we discuss about the committing attacks on the forkcipher-based AEADs, PAEF
and SAEF. We refer the readers to Fig. 12 for an overview of the analysis. We briefly
describe the analysis on PAEF.

14 On the Key-Commitment Properties of Forkcipher-based AEADs

Algorithm 6: Key Committing Attack on Umbreon
Input: A key K1, nonce N and ciphertext-tag pair C||τ
Output: A key K2, associated data A2, message M2 such that (K2, N , A2, M2) generates the

same C||τ
1 C1C2 · · ·CmC∗

n←− C

2 K2 $← {0, 1}κ where κ = |K1| and K2 ̸= K1

3 C′ ← F R
K2,N||⟨0⟩d+1||1(τ)

4 M ′ ← F −1
K2,N||⟨0⟩d+1||1(τ)

5 c′
0c′

1 · · · c
′
n

1←− C′

6 c∗
0c∗

1 · · · c
∗
l−1

1←− C∗ where |C∗| = l

7 Cl∗ ← c∗
0c∗

1 · · · c
∗
l−1c′

l
c′

l+1 · · · c
′
n

8 for i = 1 to m do
9 Bi ← F −1

K2,N||⟨i+1⟩d+1||1(Ci)

10 Di ← F R
K2,N||⟨i+1⟩d+1||1(Ci)

11 for i = 2 to m do
12 M2

i ← Di−1 ⊕Bi

13 M2
∗ ← T rl(C′ ⊕ Cl∗ ⊕M ′)

14 Sµ2 ←
m⊕

i=1
Di ⊕ (C′ ⊕ Cl∗ ⊕M ′)

15 M2
1 ← Sµ2 ⊕B1

16 A2 ← F −1
K2,N||⟨5⟩d||00(Sµ2)

17 return K2, A2 and M2;

Suppose that a ciphertext-tag pair C||τ is obtained by querying the PAEF oracle
(K1, N, A1, M1) where K1, N , A1 and M1 are the key, nonce, associated data and
message, respectively and C = C1|| · · · ||Cm||C∗. Now, we need to determine a key K2,
associated data A2 and message M2 such that when (K2, N, A2, M2) is queried the same
ciphertext-tag C||τ is generated.

First, we use τ to make a reconstruction query using the key K2 to obtain C ′ and M2
∗ .

Similarly, each Ci (1 ≤ i ≤ m) is used to make a reconstruction query to obtain M2
i and

Di.
⊕m

i=1 Di ⊕ C ′ ⊕ C∗ is used to obtain the respective A2. In a similar way, we can find
a set (K2, N, A2, M2) for SAEF also. However, unlike PAEF in which each M2

i can be
recovered in parallel, in the case SAEF each block of message are recovered in a sequential
manner. The attack algorithms for PAEF and SAEF are outlined in Algorithm 7 and
Algorithm 8, respectively. As evident from the algorithms, the attacks can be mounted in
O(1) complexity.

Figure 12: Key Committing Attack on PAEF and SAEF

Note that using a similar strategy, key-committing attacks cannot be mounted on
RPAEF. We refer the readers to Step 16 in Algorithm 3. In RPAEF, each message block
Mi (1 ≤ i ≤ m) is XORed with S before this S is introduced into the tweak T . This tweak
is then used to encrypt the final complete/incomplete message block M∗. Consequently, in

Mostafizar Rahman, Samir Kundu, Takanori Isobe 15

Algorithm 7: Key Committing
Attack on PAEF

Input: A key K1, nonce N and
ciphertext-tag pair C||τ

Output: A key K2, associated data
A2, message M2 such that
(K2, N , A2, M2) generates
the same C||τ

1 C1C2 · · ·CmC∗
n←− C

2 K2 $← {0, 1}κ where κ = |K1| and
K2 ̸= K1

3 C′ ← F R
K2,N||101||(m+1)(τ)

4 M ′ ← F −1
K2,N||101||(m+1)(τ)

5 c′
0c′

1 · · · c
′
n

1←− C′

6 c∗
0c∗

1 · · · c
∗
l−1

1←− C∗ where |C∗| = l

7 Cl∗ ← c∗
0c∗

1 · · · c
∗
l−1c′

lc
′
l+1 · · · c

′
n

8 for i = 1 to m do
9 M2

i ← F −1
K2,N||100||⟨i⟩(Ci)

10 Di ← F R
K2,N||100||⟨i⟩(Ci)

11 Sµ2 ←
⊕m

i=1 Di ⊕ C′ ⊕ Cl∗

12 A2 ← F −1
K2,N||000||⟨1⟩(Sµ2)

13 return K2, A2 and M2;

Algorithm 8: Key Committing
Attack on SAEF

Input: A key K1, nonce N and
ciphertext-tag pair C||τ

Output: A key K2, associated data
A2, message M2 such that
(K2, N , A2, M2) generates
the same C||τ

1 C1C2 · · ·CmC∗
n←− C

2 K2 $← {0, 1}κ where κ = |K1| and
K2 ̸= K1

3 C′ ← F R
K2,0t−3||100(τ)

4 M ′ ← F −1
K2,0t−3||100(τ)

5 c′
0c′

1 · · · c
′
n

1←− C′

6 c∗
0c∗

1 · · · c
∗
l−1

1←− C∗ where |C∗| = l

7 Cl∗ ← c∗
0c∗

1 · · · c
∗
l−1c′

l
c′

l+1 · · · c
′
n

8 Dm = C′ ⊕ C∗
9 M∗ = Dm ⊕M ′

10 for i = m to 1 do
11 Bi ← F −1

K2,0t−3||001(Ci)
12 Ei ← F R

K2,0t−3||001(Ci)
13 Di−1 = Ei ⊕ Ci

14 Mi = Di−1 ⊕Bi

15 A2 ← F −1
K2,0t−3||0||10(Sµ2) //Sµ2 = D0

16 return K2, A2 and M2;

Figure 13: Key Committing Attack on PAEF (left) and SAEF (right)

a key-committing setting, when attempting to find the same tag and ciphertext using a
different key, a collision on C∗ is required. This effectively raises the attack complexity to
that of a generic forgery attack.

4 Countermeasures and Discussions
To transform these AEAD schemes into commitment-secure AEAD, one straightforward
approach is to apply an existing algorithm such as CTX [CR22] or CTY [BH24], as none
of these AEAD schemes currently have tag-dependent encryption or decryption algorithms.
For such a transformation, we would need an additional universal hash function.
However, when attempting a dedicated approach to make these AEAD schemes commitment-
secure (CMT-secure), several challenges arise. Since the adversary has access to ideal cipher
queries, they can exploit this access to compute the AEAD construction by combining

.

Figure 14: Primitive calls on Forkcipher, where (Mij , Ti) are the message tag pairs and
Cij are the ciphertexts for i ∈ {1, 2, 3} and j ∈ {1, 2}

16 On the Key-Commitment Properties of Forkcipher-based AEADs

several ideal cipher queries. Specifically, an adversary making O(p) ideal cipher queries
can generate O(pl) construction queries, where l is the maximum message length. For
example, as shown in Fig. 14, adversary makes Mij as primitive query with tweak Ti for
i ∈ {1, 2, 3} and j ∈ {1, 2}. So, there are such 6 many primitive queries. But using these
he can construct 23 = 8 many construction queries as M1i∥M2j∥M3k for i, j, k ∈ {1, 2}.
So, if the number of primitive queries increases linearly, the number of construction queries
from these primitive queries increases exponentially.

In these forkcipher based AEAD, the computation of each associated data block is
performed independently of the others. This independence, while contributing to efficiency
and parallelism, creates a vulnerability that adversaries can exploit. Specifically, the
adversary can manipulate the associated data to achieve any desired intermediate state
IK,N,A (corresponding to Fig. 4). Even if we add some checksum or include the right
output of the forkcipher in the associated data processing, it will not prevent this issue.
The adversary can still produce associated data for every 2n value of IK,N,A with only
O(n) queries.

Also, in the message processing part, in all these schemes, the computation of each block
is independent of other messages or associated data blocks. In a forkcipher, message can be
reconstructed from either of the ciphertexts and one ciphertext block can be reconstructed
from the other. Using these properties of the forkcipher and by making inverse calls to
the forkcipher the adversary can easily find primitive queries for any desired ciphertext,
except for the last block. For the last ciphertext block, the adversary can always choose a
suitable message block to obtain the desired ciphertext.

Therefore, it is difficult to transform these schemes in to commitment-secure AEAD
introducing significant overheads which includes extra calls to either a hash function or a
pseudo-random function. The generic countermeasures based on hash functions [CR22]
or pseudo-random functions [ADG+22, BH22] can be employed to make these schemes
key-committing. For example, in [CR22], a key K, nonce N , associated data A, and a
message M are first encrypted using an AEAD scheme to generate a ciphertext-tag pair
C∥T . Then, a hash function is applied to K, N , A, and T to generate T ∗. Finally, C∥T ∗ is
communicated instead of C∥T . This scheme is proven to be a committing one; however, it
requires an additional call to a hash function. Similarly, other schemes in [ADG+22, BH22]
require additional calls to pseudo-random functions.

5 Conclusion
Our investigation into the key-committing security of forkcipher-based AEAD modes has
revealed significant vulnerabilities. By demonstrating a key-committing attack within the
FROB game framework, we have shown that an adversary can exploit the processing of
associated data and plaintext to generate tag collisions with a complexity of O(1). This
attack is effective even in less strict frameworks such as CMT-1 and CMT-4, highlighting
the importance of ensuring robustness in AEAD schemes. Based on our findings, it is
recommended that unless explicit robustness is required, the use of such forkcipher-based
AEAD modes should be carefully evaluated.

Acknowledgments
The authors are thankful to the anonymous reviewers of IACR CiC for their valuable
comments and suggestions. Mostafizar and Samir would like to thank Sougata Mandal for
his valuable suggestions regarding the Section 4 of the paper. The results are obtained from
the commissioned research (JPJ012368C05801) by the National Institute of Information
and Communications Technology (NICT), Japan. This work is also supported by JST

Mostafizar Rahman, Samir Kundu, Takanori Isobe 17

AIP Acceleration Research JPMJCR24U1 Japan and JSPS KAKENHI Grant Number
JP24H00696.

References
[ABPV21] Elena Andreeva, Amit Singh Bhati, Bart Preneel, and Damian Vizár. 1, 2, 3,

fork: Counter mode variants based on a generalized forkcipher. IACR Trans.
Symmetric Cryptol., 2021(3):1–35, 2021. doi:10.46586/TOSC.V2021.I3.1-3
5.

[ADG+22] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx, and
Sophie Schmieg. How to Abuse and Fix Authenticated Encryption Without
Key Commitment. In Kevin R. B. Butler and Kurt Thomas, editors, 31st
USENIX Security Symposium, USENIX Security 2022, Boston, MA, USA,
August 10-12, 2022, pages 3291–3308. USENIX Association, 2022.

[ALP+19] Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar,
Arnab Roy, and Damian Vizár. Forkcipher: A new primitive for authenticated
encryption of very short messages. In Advances in Cryptology - ASIACRYPT
2019 - 25th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings,
Part II, volume 11922 of Lecture Notes in Computer Science, pages 153–182.
Springer, 2019. doi:10.1007/978-3-030-34621-8_6.

[ARVV18] Elena Andreeva, Reza Reyhanitabar, Kerem Varici, and Damian Vizár. Forking
a blockcipher for authenticated encryption of very short messages. IACR
Cryptol. ePrint Arch., page 916, 2018. URL: https://eprint.iacr.org/20
18/916.

[AW23] Elena Andreeva and Andreas Weninger. A forkcipher-based pseudo-random
number generator. In Mehdi Tibouchi and Xiaofeng Wang, editors, Applied
Cryptography and Network Security - 21st International Conference, ACNS
2023, Kyoto, Japan, June 19-22, 2023, Proceedings, Part II, volume 13906
of Lecture Notes in Computer Science, pages 3–31. Springer, 2023. doi:
10.1007/978-3-031-33491-7_1.

[BH22] Mihir Bellare and Viet Tung Hoang. Efficient Schemes for Committing Au-
thenticated Encryption. In Orr Dunkelman and Stefan Dziembowski, edi-
tors, Advances in Cryptology - EUROCRYPT 2022 - 41st Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Trondheim, Norway, May 30 - June 3, 2022, Proceedings, Part II, volume
13276 of Lecture Notes in Computer Science, pages 845–875. Springer, 2022.
doi:10.1007/978-3-031-07085-3_29.

[BH24] Mihir Bellare and Viet Tung Hoang. Succinctly-committing authenticated
encryption. In Leonid Reyzin and Douglas Stebila, editors, Advances in
Cryptology - CRYPTO 2024 - 44th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2024, Proceedings, Part IV, volume
14923 of Lecture Notes in Computer Science, pages 305–339. Springer, 2024.
doi:10.1007/978-3-031-68385-5_10.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology -

https://doi.org/10.46586/TOSC.V2021.I3.1-35
https://doi.org/10.46586/TOSC.V2021.I3.1-35
https://doi.org/10.1007/978-3-030-34621-8_6
https://eprint.iacr.org/2018/916
https://eprint.iacr.org/2018/916
https://doi.org/10.1007/978-3-031-33491-7_1
https://doi.org/10.1007/978-3-031-33491-7_1
https://doi.org/10.1007/978-3-031-07085-3_29
https://doi.org/10.1007/978-3-031-68385-5_10

18 On the Key-Commitment Properties of Forkcipher-based AEADs

CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, volume 9815
of Lecture Notes in Computer Science, pages 123–153. Springer, 2016. doi:
10.1007/978-3-662-53008-5_5.

[BPA+23] Amit Singh Bhati, Erik Pohle, Aysajan Abidin, Elena Andreeva, and Bart
Preneel. Let’s go eevee! A friendly and suitable family of AEAD modes for
iot-to-cloud secure computation. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2023, Copen-
hagen, Denmark, November 26-30, 2023, pages 2546–2560. ACM, 2023.
doi:10.1145/3576915.3623091.

[CFI+23] Yu Long Chen, Antonio Flórez-Gutiérrez, Akiko Inoue, Ryoma Ito, Tetsu Iwata,
Kazuhiko Minematsu, Nicky Mouha, Yusuke Naito, Ferdinand Sibleyras, and
Yosuke Todo. Key committing security of AEZ and more. IACR Trans.
Symmetric Cryptol., 2023(4):452–488, 2023. URL: https://doi.org/10.465
86/tosc.v2023.i4.452-488, doi:10.46586/TOSC.V2023.I4.452-488.

[CR22] John Chan and Phillip Rogaway. On Committing Authenticated-Encryption.
In Vijayalakshmi Atluri, Roberto Di Pietro, Christian Damsgaard Jensen,
and Weizhi Meng, editors, Computer Security - ESORICS 2022 - 27th Eu-
ropean Symposium on Research in Computer Security, Copenhagen, Den-
mark, September 26-30, 2022, Proceedings, Part II, volume 13555 of Lec-
ture Notes in Computer Science, pages 275–294. Springer, 2022. doi:
10.1007/978-3-031-17146-8_14.

[DDLM24] Nilanjan Datta, Avijit Dutta, Eik List, and Sougata Mandal. FEDT: forkcipher-
based leakage-resilient beyond-birthday-secure AE. IACR Commun. Cryptol.,
1(2):21, 2024. URL: https://doi.org/10.62056/akgyl86bm, doi:10.62056
/AKGYL86BM.

[DFI+24] Patrick Derbez, Pierre-Alain Fouque, Takanori Isobe, Mostafizar Rahman,
and André Schrottenloher. Key committing attacks against aes-based AEAD
schemes. IACR Trans. Symmetric Cryptol., 2024(1):135–157, 2024. URL:
https://doi.org/10.46586/tosc.v2024.i1.135-157, doi:10.46586/TOS
C.V2024.I1.135-157.

[DGRW18] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage.
Fast Message Franking: From Invisible Salamanders to Encryptment. In
Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology
- CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I, volume 10991
of Lecture Notes in Computer Science, pages 155–186. Springer, 2018. doi:
10.1007/978-3-319-96884-1_6.

[Fac16] Facebook. Messenger Secret Conversations technical whitepaper.
https://fbnewsroomus.files.wordpress, 2016.

[FOR17] Pooya Farshim, Claudio Orlandi, and Razvan Rosie. Security of Symmetric
Primitives under Incorrect Usage of Keys. IACR Trans. Symmetric Cryptol.,
2017(1):449–473, 2017. doi:10.13154/tosc.v2017.i1.449-473.

[GLR17] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message Franking via Com-
mitting Authenticated Encryption. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology - CRYPTO 2017 - 37th Annual International

https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1145/3576915.3623091
https://doi.org/10.46586/tosc.v2023.i4.452-488
https://doi.org/10.46586/tosc.v2023.i4.452-488
https://doi.org/10.46586/TOSC.V2023.I4.452-488
https://doi.org/10.1007/978-3-031-17146-8_14
https://doi.org/10.1007/978-3-031-17146-8_14
https://doi.org/10.62056/akgyl86bm
https://doi.org/10.62056/AKGYL86BM
https://doi.org/10.62056/AKGYL86BM
https://doi.org/10.46586/tosc.v2024.i1.135-157
https://doi.org/10.46586/TOSC.V2024.I1.135-157
https://doi.org/10.46586/TOSC.V2024.I1.135-157
https://doi.org/10.1007/978-3-319-96884-1_6
https://doi.org/10.1007/978-3-319-96884-1_6
https://doi.org/10.13154/tosc.v2017.i1.449-473

Mostafizar Rahman, Samir Kundu, Takanori Isobe 19

Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Pro-
ceedings, Part III, volume 10403 of Lecture Notes in Computer Science, pages
66–97. Springer, 2017. doi:10.1007/978-3-319-63697-9_3.

[JKX18] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: an asymmetric
PAKE protocol secure against pre-computation attacks. In Jesper Buus Nielsen
and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018
- 37th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,
Part III, volume 10822 of Lecture Notes in Computer Science, pages 456–486.
Springer, 2018. doi:10.1007/978-3-319-78372-7_15.

[KLL20] Hwigyeom Kim, Yeongmin Lee, and Jooyoung Lee. Forking tweakable even-
mansour ciphers. IACR Trans. Symmetric Cryptol., 2020(4):71–87, 2020. URL:
https://doi.org/10.46586/tosc.v2020.i4.71-87, doi:10.46586/TOSC.
V2020.I4.71-87.

[LGR21] Julia Len, Paul Grubbs, and Thomas Ristenpart. Partitioning Oracle Attacks.
In Michael Bailey and Rachel Greenstadt, editors, 30th USENIX Security
Symposium, USENIX Security 2021, August 11-13, 2021, pages 195–212.
USENIX Association, 2021.

[Man24] Sougata Mandal. Tweakable forkcipher from ideal block cipher. IACR Commun.
Cryptol., 1(3):42, 2024. doi:10.62056/AEY4FBN2HD.

[Mil17] Jon Millican. Challenges of E2E Encryption in Facebook Messenger. Real
World Cryptography conference, 2017.

[MLGR23] Sanketh Menda, Julia Len, Paul Grubbs, and Thomas Ristenpart. Context
Discovery and Commitment Attacks - How to Break CCM, EAX, SIV, and
More. In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology -
EUROCRYPT 2023 - 42nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023,
Proceedings, Part IV, volume 14007 of Lecture Notes in Computer Science,
pages 379–407. Springer, 2023. doi:10.1007/978-3-031-30634-1_13.

[NSS23] Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Committing security of
ascon: Cryptanalysis on primitive and proof on mode. IACR Trans. Symmetric
Cryptol., 2023(4):420–451, 2023. URL: https://doi.org/10.46586/tosc.v2
023.i4.420-451, doi:10.46586/TOSC.V2023.I4.420-451.

https://doi.org/10.1007/978-3-319-63697-9_3
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.46586/tosc.v2020.i4.71-87
https://doi.org/10.46586/TOSC.V2020.I4.71-87
https://doi.org/10.46586/TOSC.V2020.I4.71-87
https://doi.org/10.62056/AEY4FBN2HD
https://doi.org/10.1007/978-3-031-30634-1_13
https://doi.org/10.46586/tosc.v2023.i4.420-451
https://doi.org/10.46586/tosc.v2023.i4.420-451
https://doi.org/10.46586/TOSC.V2023.I4.420-451

20 On the Key-Commitment Properties of Forkcipher-based AEADs

A Experimental Verification and Attack Vectors
We have experimentally verified the proposed attacks. In the attack vectors, C and τ are
the ciphertext and tag, respectively. K1, K2 are the two secret keys, N is the nonce, A1, A2

are two associated data and M1, M2 are two messages. We provide here the C, τ , K1, K2,
N , A1, A2, M1 and M2 such that ΣEnc(K1, N1, A1, P 1) = ΣEnc(K2, N2, A2, P 2) = C||τ .

We provide here the attack vectors corresponding to PAEF and Umbreon. The
verification codes are available online 1 (codes in https://github.com/byt3bit/for
kae/tree/master/software/ref/paefforkskinnyb128t192n48v1/ref are reused and
modified). In the vectors provided, the leftmost bit is the least significant bit (LSB).
Consider a 16-bit string b0 · · · b15 where b0 is the LSB and b15 is the most significant bit
(MSB). Using the vectors, the above string is denoted as [b0 · · · b7 b8 · · · b15]. We have
used hexadecimal numbers to denote each 8-bit number.

A.1 Attack Vector for PAEF

C= [0x10 0x94 0x39 0x03 0x80 0xF8 0xCB 0xBC]
τ= [0xC1 0x67 0x19 0xE5 0x6A 0x96 0x14 0x01]

K1= [0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07
0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F]

N= [0x00 0x01 0x02 0x03 0x04 0x05]
A1= [0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07]
M1= [0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07]

K2= [0x01 0x11 0x12 0x13 0x14 0x15 0x16 0x17
0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F]

A2= [0x41 0xC0 0xCF 0x33 0x4D 0xA8 0x06 0xD2]
M2= [0xF6 0x58 0xEF 0x48 0x72 0xC9 0xB4 0xEE]

A.2 Attack Vector for Umbreon

C= [0x75 0x28 0xC8 0xC4 0xE7 0xD8 0x52 0x6A]
τ= [0x5A 0x3A 0x4A 0x3C 0x52 0x05 0xEE 0xBF]

K1= [0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07
0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F]

N= [0x00 0x01 0x02 0x03 0x04 0x05]
A1= [0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07]
M1= [0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00]

K2= [0x01 0x11 0x12 0x13 0x14 0x15 0x16 0x17
0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F]

A2= [0xC9 0x4B 0x01 0x6C 0xBD 0xAC 0xC5 0x76]
M2= [0x96 0x55 0x2A 0xFD 0x5C 0x84 0xA9 0xF7]

1https://github.com/mrahman454/ForkAE_CiC_2024_4

https://github.com/byt3bit/forkae/tree/master/software/ref/paefforkskinnyb128t192n48v1/ref
https://github.com/byt3bit/forkae/tree/master/software/ref/paefforkskinnyb128t192n48v1/ref
https://github.com/mrahman454/ForkAE_CiC_2024_4

	Introduction
	Preliminaries
	Notations
	Committing Authenticated Encryption (AE) Frameworks
	Forkcipher and Associated AEAD Modes

	Analyzing Key-commitment Weaknesses
	Overview of the Strategy
	Key-commiting Attacks on Jolteon, Espeon and Umbreon
	Key-committing Attacks on PAEF, and SAEF

	Countermeasures and Discussions
	Conclusion
	References
	Experimental Verification and Attack Vectors
	Attack Vector for PAEF
	Attack Vector for Umbreon

