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Abstract. We present a publicly-detectable watermarking scheme for LMs: the
detection algorithm contains no secret information, and it is executable by anyone.
We embed a publicly-verifiable cryptographic signature into LM output using re-
jection sampling and prove that this produces unforgeable and distortion-free (i.e.,
undetectable without access to the public key) text output. We make use of error-
correction to overcome periods of low entropy, a barrier for all prior watermarking
schemes. We implement our scheme and find that our formal claims are met in
practice.
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1 Introduction
Generative AI (GenAI) technologies, such as language models (LMs) and diffusion models,
have impressive capabilities. These capabilities include in-context learning, code completion,
text-to-image generation, and document and code chat. However, GenAI technologies are
also being used for nefarious purposes (e.g., generating fake tweets, generating attacks,
and harmful prose). To protect against such use cases, a large body of work has focused
on detecting AI-generated content [LUY08; Ber16; GSR19; ZHR+19; MLK+23; GPT23;
HAAL23]. The problem is: given content c, is c generated by a specific GenAI tool, e.g.,
GPT-4 [Ope23], Gemini [Goo24], or Stable Diffusion [RBL+22]? Informally, we want a
“GenAI Turing Test.”

At present, the main approach when trying to detect arbitrary AI-generated text is
to train yet another AI model to perform the detection [ZHR+19; MLK+23; GPT23;
HAAL23]. This method makes a critical assumption: that AI-generated text has embedded
features that are identifiable by AI. The key problem with this assumption is that generative
models are explicitly designed to produce realistic content that is difficult to distinguish
from natural content (generated by a human or nature). As a result, any “black-box”
detection scheme will suffer from high false positive and/or false negative rates as generative
models improve. Available detectors such as GPTZero [GPT23] have no guarantee of
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2 Publicly-Detectable Watermarking for Language Models

correctness—e.g., the authors state outright that detection results from their tool should
not be used to reprimand students.

To circumvent this fundamental issue, a recent line of work [Aar23; KGW+23; CGZ24;
KTHL24] has taken a different approach to detecting AI content. These watermarking
techniques alter the generation process to embed a “signal” in the generated content.
The detection process measures the signal: if the signal is sufficiently strong, the content
was likely watermarked. In particular, the cryptographic approach of Christ, Gunn, and
Zamir [CGZ24] achieves formal notions of completeness (any watermarked text will be
detected), soundness (one cannot watermark a text without knowing the secret), and
distortion-freeness (watermarking does not change the output distribution). Finally, these
watermarking schemes are “keyed” in the sense that the signal is a function of a secret key.
The same key is used to generate and measure the signal.

The aforementioned watermarking approaches have one problem in common: the model
provider and the detector both need to know a shared secret key. This is acceptable in
scenarios where the entity trying to detect the watermark is the same entity generating
the content. For example, an entity that provides a chat API may be able to provide a
detection API as well. However, such a setup has limitations:

1. Lack of privacy: The entity that wants to check the integrity of the content might
not be willing to share it with the detector. For example, someone looking to identify
whether their medical record summary is AI-generated may not want to share the
summary itself.

2. Conflict of interest: The entity providing the detection API might not be trusted
in certain cases. For instance, consider a case where an entity is accused of generating
inappropriate text and is brought to a court of law. It is not reasonable to ask the
same entity to tell whether the text is watermarked.

One solution could be sharing the secret with the world so everyone can run the
detection. However, this raises another important problem: anyone can now embed the
watermark to any content, AI-generated or not. This is unacceptable because it introduces
the possibility of denial-of-service attacks: an attacker can create masses of watermarked
content that is not AI-generated to undermine the dependability of the detector. Consider
the effect on one of the main applications of watermarking: an entity may want to use
the watermark as a signature for their content. Such signatures are useful when (a) the
generated content needs to come with proof of a credible generator, and (b) the entity
needs to refute an accusation about a generated content; i.e., it should not be accountable
for a content without its watermark. This application is rendered impossible in a world
where attacks based on the availability of the secret key can be launched.

In this paper, we aim to solve the aforementioned problems for LLMs that produce
text. We ask:

Is it possible to construct a publicly-detectable watermarking scheme with
cryptographic detectability and distortion-freeness?

We find that the answer is yes: we construct a publicly-detectable scheme that provably
resolves the trust issue—users can cryptographically verify the presence of a watermark.
Further, they have a guarantee that the only entity capable of embedding the watermark
is the model provider, resolving the privacy and conflict of interest issues above. We state
the properties for public detectability below:

1. Cryptographic detectability: To guarantee a user is convinced that a watermark
is detected, the watermarking scheme must achieve cryptographic detectability: false
positives or negatives must never occur in practice.
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2. Weak robustness: It is possible that text obtained from LMs is modified—to
some extent—before publication. The watermark detector should be able to detect a
watermark so long as the cryptographic signature is still embedded in the text. Prior
work in the secret key setting aimed for strong robustness where detection should
be possible even if the LM output has changed substantially but text semantics are
preserved. Strong robustness has since been shown to be impossible in the general
case [ZEF+24] and we focus on ensuring high detectability as a first step.

3. Distortion-freeness: The watermarking scheme should not degrade the quality of
the LM output. No probabilistic polynomial-time (PPT) adversary should be able
to distinguish between watermarked and non-watermarked text without access to
the public key.

4. Model agnosticity: The watermarking scheme should use the model as a black
box, i.e., it should not rely on any specific model weights or configurations.

5. Public-verifiablity: Without access to the model weights or secret material of
the watermarking scheme, the detector should still be able to determine whether a
candidate text is watermarked.

2 Security Model
This section defines what it means for a publicly-detectable watermarking scheme to be
secure. We will eventually prove that our construction satisfies these definitions.

2.1 Preliminaries
Let a ∥ b denote the concatenation of a to b. We use log(·) to take logarithms base 2.
Let ϵ denote an empty list or empty string. Let ai denote the i-th bit of vector a. We
use Python slicing notation throughout: a[−i] refers to the i-th last element of a list and
a[j : k] extracts the elements ai for i ∈ [j, k). We use $← to denote a random sample, e.g.,
r

$← {0, 1}n to sample n random bits. We use an asterisk to denote an arbitrary-length
string of tokens from a set of possible tokens, e.g., S∗ for a given set S.

For the cryptographic primitives in this paper, we use λ for the security parameter.
A negligible function negl(λ) in λ are those functions that decay faster than the inverse
of any polynomials. That is, for all poly(λ), it holds that negl(λ) < 1

poly(λ) for all large
enough λ.

Definition 1 (Auto-regressive Model). An auto-regressive model Model over token vocab-
ulary T is a deterministic algorithm that takes in a prompt ρ ∈ T ∗ and tokens previously
output by the model t ∈ T ∗ and outputs a probability distribution p = Model(ρ, t) over T .

GenModel wraps around Model to implement a generative model as shown in Algorithm 1.
We use Model and GenModel for subsequent definitions and proofs. We use subscript
notation as shorthand for the n input, i.e., GenModeln(ρ) = GenModel(n, ρ).

We rely on a public-key signature scheme with the following properties.

Definition 2 (Public-Key Signature Scheme). A public-key signature scheme S is a tuple
of algorithms S = (Gen, Sign, Verify) where:

• Gen(1λ)→ (sk, pk) outputs a key pair (sk, pk) with respect to the security parameter
λ.

• Signsk(m)→ σ produces a signature σ, given a message m, using the secret signing
key sk. We denote the signature size |σ| by λσ.
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Algorithm 1 GenModel
1: input: n, ρ
2: t← ϵ
3: for i = 1 to n do
4: t← t ∥ LMDecode(Model(ρ, t))
5: output: t

GenModel iteratively generates n tokens. LMDecode is the specific decoding method.
Throughout this paper, we fix LMDecode to multinomial sampling, though any decoding
algorithm that satisfies Assumption 1 would suffice.

• Verifypk(m, σ)→ {true, false} outputs true or false, given a candidate message
m and signature σ, using the public verification key.

Definition 3 (Unforgeability). For every adversary A, we have

Pr
[

Verifypk(m∗, σ∗) = true : (pk, sk)← Gen(1λ)
(m∗, σ∗)← ASignsk(·)(pk)

]
≤ negl(λ).

Here, the adversary gets oracle access to the signing oracle Signsk(·), but m∗ in the final
forgery output (m∗, σ∗) must have never been queried using the signing oracle. As a
signature scheme, we require this property to guarantee it is hard to forge a watermark.

Definition 4 (Hamming Distance). For alphabet Σ and x, y ∈ Σn, define the Hamming
distance between x and y as

Hamming(x, y) := |{i ∈ [n] : xi ̸= yi}|.

Definition 5 (Error-Correcting Code). For an alphabet Σ, an [n, k, d]Σ error-correcting
code is a 2-tuple (Encode, Decode) algorithm where Encode : Σk → Σn is an encoding
algorithm such that for all m, m′ ∈ Σk where m ̸= m′,

Hamming(Encode(m), Encode(m′)) ≥ d

and Decode : Σn → Σk is the decoding algorithm such that, for all messages m ∈ Σk and
erroneous codewords c ∈ Σn, we have

Hamming(Encode(m), c) ≤ γmax =⇒ Decode(c) = m

where γmax ≤ (d− 1)/2 is the maximum number of erroneous symbols that Decode can
correct. We denote the codeword size |c| by λc.

2.2 Assumptions
We assume that any contiguous block of ℓ tokens contains at least α bits of min-entropy,
i.e., no particular sample is more than 2−α likely to happen.1 This assumption allows us
to capture security properties and present our protocol concisely. In addition, ℓ effectively
serves as a parameter to tune the trade-off between robustness and distortion-freeness.
Higher ℓ values lead to more distortion-free text at the cost of robustness and vice versa.

Assumption 1. For any prompt ρ and tokens t, the new tokens t′ ← GenModelℓ(ρ, t) ∈ T ℓ

were sampled from distributions with min-entropy at least α.
1Formally, the min-entropy H∞(D) of a distribution D is defined as − log

(
maxω∈Supp(D) Pr[D = ω]

)
.
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If this assumption is met, distortion-freeness is guaranteed. However, our construction
makes novel use of error-correcting codes (ECC) to weaken the entropy requirement in
practice—our protocol can tolerate a fixed number of periods where the min entropy is
below α. The maximum number of low-entropy periods our scheme can tolerate is exactly
the maximum number of errors that the underlying ECC scheme can correct.

2.3 Entity Interaction
We refer to two distinct entities in our security model:

Model provider The model provider provides the LM service: given a prompt, it
returns the LM output for that prompt and the given LM configuration. An honest model
provider will run the watermarking protocol at text generation time. This entity has
white-box access to the model weights in addition to any secret material specific to the
watermarking protocol, e.g., a secret watermarking key.

User Users generate prompts which are sent to the model provider in exchange for
the model output. Users may test text for the presence of a watermark by running the
detection algorithm on candidate text and an LM provider’s public key. The user should
be convinced that the watermark is present or not, i.e., the detector must provide a “proof
of watermark” that can be verified without model weights or secret material pertaining to
the watermarking protocol.

2.4 Definitions
In this section, we formally define a publicly detectable watermarking scheme, which should
satisfy (a) completeness, (b) soundness, (c) robustness, and (d) distortion-freeness. We
prove our scheme meets these definitions.

Definition 6 (Publicly-Detectable Watermarking Scheme). A (δs, δc, δr, ϵ)-publicly de-
tectable watermarking scheme PDWS for an auto-regressive model Model over token
vocabulary T is a tuple of algorithms PDWS = (Setup, Watermark, Detect) where:

• Setup(1λ)→ (sk, pk) outputs a public key pair (sk, pk) with respect to the security
parameter λ.

• Watermarksk(ρ) $→ t produces response text t ∈ T ∗ given a prompt ρ ∈ T ∗ using
the secret key sk.

• Detectpk(t∗)→ {true, false} outputs true or false given a candidate watermarked
text t∗.

A PDWS scheme is considered secure if the following security definitions are met.

Definition 7 (Completeness). A PDWS is δc-complete if for every prompt ρ and token
sequence t ∈ T ∗ of length |t| ≥ δc, it holds that

Pr
[

Detectpk(t) = false : (sk, pk)← Setup(1λ)
t←Watermarksk(ρ)

]
≤ negl(λ).

δc-completeness ensures that text of sufficient length that was watermarked with the
honest protocol results in non-detection with negligible probability. This definition is an
asymmetric-key analogue of the symmetric-key completeness definition in [CGZ24].
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Definition 8 (Soundness/Unforgeability). A PDWS is δs-sound if any adversary A cannot
generate a watermarked text given the public detection key and any polynomial number
of genuinely-watermarked texts. Formally, the following must be satisfied:

Pr
[

Detectpk(t∗) = true ∧
non_overlappingk(t∗, t1, t2, . . .) = true : (sk, pk)← Setup(1λ)

t∗ ← AWatermarksk(·)(pk)

]
≤ negl(λ).

Here, the adversary is allowed to make a polynomial number of queries to the ora-
cle Watermarksk(·). We use t1, t2, . . . to denote the watermarked text that the adver-
sary receives as output when she queries the model Watermarksk(·). The predicate
non_overlappingδs

(t∗, t1, t2, . . .) outputs true if t∗ does not share a δs-length window
of tokens with any of the genuinely-watermarked texts t1, t2, . . . and outputs false other-
wise.

On the unforgeability of our scheme Intuitively, our soundness definition says the
following. If the adversary manages to output a text t∗ that is labeled as watermarked, it
must be the case that she copied a sufficiently long sequence of tokens from the genuinely-
watermarked texts she received from the model (i.e., t1, t2, . . .). This implies that any
attempted forgery of a watermarked message must contain an overwhelming portion of
tokens from genuine watermarked text. We emphasize that this notion of unforgeability is
parametrized (by the overlapping length δs). Intuitively, the larger δs is the more sound
our scheme is. Looking ahead, our main construction is flexible in that, for any desired
overlapping parameter δs, our construction can be adapted to meet the corresponding
soundness guarantee.

Definition 9 (Robustness). A publicly-detectable watermarking scheme is δr-robust if,
for every prompt ρ and security parameter λ,

Pr
[

Detectpk(A(t)) = false : (sk, pk)← Setup(1λ)
t←Watermarksk(ρ)

]
≤ negl(λ)

where the adversary is allowed to transform the input text t however she pleases so long
as a δr-length contiguous sequence of tokens remains. Formally, let t∗ be the adversarially-
modified text (i.e. t∗ ← A(t)). Then, there must exist a δr-length window of tokens in t∗

that exactly matches a δr-length window in t.

Intuitively, the robustness definition claims that as long as a δr-length contiguous
sequence of tokens is preserved, the watermarked is also preserved.

The relationship between δs, δc, and δr We remark that it must be that δs ≤ δc ≤ δr.
Intuitively, the watermarking scheme requires δc tokens to embed a watermark. Any δr

consecutive tokens are guaranteed to contain a segment of δc tokens that embeds the
watermark. Additionally, any adversary who forges an accepting watermarked text must
copy a segment of ≥ δs tokens from the observed watermarked test.

Definition 10 (Distortion-freeness). A PDWS is (computationally) ϵ-distortion-free if,
for all PPT distinguishers D,∣∣∣Pr

[
DModel,GenModel(1λ)→ 1

]
− Pr

(sk,pk)←Setup(1λ)

[
DModel,Watermarksk(1λ)→ 1

]∣∣∣ ≤ ϵ.

This means distortion-freeness ensures that the watermarking algorithm does not noticeably
change the quality of the model output, i.e., without the public detection key, no PPT
machine can distinguish plain LM output from watermarked LM output. Again, this
definition is the public-key analogue of Christ, Gunn, and Zamir [CGZ24]’s undetectability
definition. Moreover, we denote it as distortion-freeness to avoid confusion with public-
detectability.
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3 Protocol
3.1 Technical Overview

ℓm ℓc · λc

t1 · · · tℓm

H1(t), H2(t)

h1, h2

1. Extract
s

c1,1
1,1 · · · s

c1,ℓc

1,ℓc
· · · s

cλc,1
λc,1 · · · s

cλc,ℓc

λc,ℓc

3. Plant

∀i ∈ λc, H3

(
s

ci,1
i,1 · · · s

ci,ℓ

i,ℓ

)
= ci

c← h2 ⊕ Encodeγ(Signsk(h1))
2. Sign, encode, and randomize

Figure 1: Our core gadget. Embedding is a three-step process as designated by (1) through
(3). First (1), ℓm tokens are sampled natively from the LM. These tokens t are hashed
twice with two different hash functions, producing h1 ← H1(t) and h2 ← H2(t). Second
(2), h2 is signed with the secret key sk, error-corrected, and randomized with h1. The final
product is a pseudorandom bitstring c← h2 ⊕ Encodeγ(Signsk(h1)). Lastly (3), each bit
ci the randomized codeword is embedded into the next ℓc tokens by rejection sampling.
That is, the i-th block of ℓc tokens are sampled such that the hash of the block yields the
i-th bit of the randomized codeword, i.e., ∀i ∈ λc, H3

(
s

ci,1
i,1 · · · s

ci,ℓc

i,ℓc

)
= ci where each s is

one token.

We first give an overview of the key ideas in our construction before expanding on
specifics of the scheme in the remainder of this section. Refer to Figure 1 for a visual
representation.

Let t := t1, t2, . . . , tℓ be bit samples from probability distributions p1, p2, . . . , pℓ where
each pi is a probability distribution from an auto-regressive model. Our scheme assumes
that any consecutive ℓ tokens output by the language model contain sufficient entropy
(formally captured by Assumption 1). Hence, we know that

∑ℓ
i=1− ln pi(ti) ≥ α for some

reasonably large α. That is, the ℓ tokens were sampled from distributions with at least
α cumulative bits of entropy. Let t denote the first ℓ tokens sampled from the model
(denote t as the message) and let c ← h2 ⊕ Encodeγ(Signsk(h1)) where h1 ← H1(t) and
h2 ← H2(t).2 We can embed the λc-bit codeword c = c1, c2, . . . , cλc in a contiguous
sequence of tokens from the auto-regressive model as follows: for each of the next ℓ · λc

tokens sampled from the model, ensure that the i-th block of ℓ tokens hashes to the
corresponding i-th bit in c, i.e., H3(ti+1, ti+2, . . . , ti+ℓ) = ci for i ∈ [λc]. After this process,
a complete message-signature pair is embedded into a contiguous sequence of generated
tokens. We remark that without knowledge of the public key, our watermarked output is
(computationally) indistinguishable from the original output: as long as there is sufficient
entropy at generation time, no PPT algorithm can tell if a text completion came from the
watermarking algorithm or the plain algorithm.

To detect the presence of a watermark, the detector needs to recover the message-
signature pair. The detector first recovers the message t by looking at the first ℓ to-
kens. Next, the detector recovers each bit of the signature codeword by computing
ci = H3(ti+1, ti+2, . . . , ti+ℓ) for i ∈ [λc] and let c = (c1, . . . , cλc). It can then decode and
verify the signature by computing Verifypk(H1(t), Decodeγ(H2(t) ⊕ c)) using the public
verification key: if the signature verifies, then the text was watermarked.

2Here, H1, H2, and H3 are cryptographic hash functions with different image lengths, Sign is the
signing algorithm of a digital signature scheme, and Encode is the encoding algorithm of an error-correcting
code (refer to Section 2.1).
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Algorithm 2 Setup
1: input: 1λ

2: r
$← {0, 1}λ

3: sk, pk ← Gen(1λ)
4: output: (sk, r), (pk, r)

Setup is the watermark key generation algorithm. It produces a secret key sk and public
key pk obtained by running Gen, a key generation algorithm for a digital signature scheme.
Additionally, Setup also returns a random string r—this string will seed the hash functions
to ensure distortion-freeness.

Dealing with low entropy sequences As in the private key setting, our protocol needs
to handle sequences with limited entropy. Kaptchuk, Jois, Green, and Rubin [KJGR21]
provide an illustrative example: given the inputs “The largest carnivore of the Cretaceous
period was the Tyrannosaurus,” the next token is almost certainly going to be “Rex.”
Assuming that “Rex” is a whole token and it does not hash to the desired bit, text
generation cannot continue.

We overcome this problem by leveraging standard error correction. Instead of embedding
σ := Signsk(H1(t)) directly, we can instead embed c := Encodeγ(σ) where c is a codeword
of length λc > λσ that allows for correction of up to γ errors. Now, at generation time, we
can tolerate up to γ periods of low entropy—when such a scenario is encountered, we can
plant tokens that do not satisfy the rejection sampling condition. At detection time, we
can correct these planted errors so long as they do not exceed the maximum amount γ.
Lastly, the codeword c is no longer guaranteed to be pseudorandom—this can be addressed
easily by re-randomizing the codeword with a pseudorandom one-time pad H2(t).

We now present an (ℓ, ℓ+ ℓ ·λc, 2(ℓ+ ℓ ·λc), exp(−Ω(α)))-publicly-detectable watermark
in Algorithm 2, Algorithm 3, and Algorithm 6. Prior to watermarking or detection, the
Setup algorithm is used to initialize the secret key (sk, r) and public key (pk, r) where sk
and pk are generated by the native signature key generation algorithm and r is a uniformly
random string. We now describe the watermarking and detection algorithms in detail.

3.2 Private Generation Algorithm
We present our watermarking scheme in Algorithm 3. The core idea is to embed a message
and a corresponding publicly-verifiable signature in the generated text. The message-
signature pair should be extractable during detection. Once extracted, it can be verified
using the public key.

To explain our scheme, we describe how to embed one message-signature pair in LM
output—the construction can be applied repeatedly to generate arbitrarily long LM output
(i.e., Line 4 in Algorithm 3). Refer to Figure 1 for a simplified visual presentation of the
construction.

To perform watermarking, the first step is to sample a fixed number of tokens such that
the entropy used at generation time to produce those tokens is sufficient for watermarking.
This is captured in Line 2 of Algorithm 4. By Assumption 1, we know that ℓ tokens were
sampled from distributions with at least α bits of entropy. Denote these ℓ tokens as the
message t. Once t has been sampled, it is hashed, signed, and error-corrected (Lines 3-4).
Now, any error-correcting codeword is not a pseudorandom string; therefore, directly
embedding a codeword distorts the distribution of the output. However, we can regain
pseudorandomness by using the message hash as a one-time pad to mask the codeword.
Specifically, we encode c := H2(r ∥ t) ⊕ Encode(σ) where H2(r ∥ ·) is a different hash
function than the one used to originally hash the message since H1(r ∥ ·) and H2(r ∥ ·)
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Algorithm 3 Watermark
1: constants: (sk, r), n, ℓ, λc, β, amax, γmax
2: input: ρ
3: t← ϵ
4: while |t|+ (ℓ + ℓ · λc) < n do
5: t← GenerateMessageSignaturePair(ρ, t)
6: if |t| < n then
7: t← t ∥ GenModeln−|t|(ρ, t)
8: output: t

Watermark is the main watermarking algorithm. It generates a text completion for input
prompt ρ consisting of n watermarked tokens.

Algorithm 4 GenerateMessageSignaturePair
1: input: ρ, t
2: t← t ∥ GenModelℓ(ρ, t)
3: σ ← Signsk(H1(r ∥ t[−ℓ :]))
4: c← H2(r ∥ t[−ℓ :])⊕ Encodeγ(σ)
5: m, cprev ← ϵ, ϵ
6: γ ← 0
7: while c ̸= ϵ do
8: c, c← c[0 : β], c[β :]
9: t, m, cprev ← RejectSampleTokens(c, t, m, cprev)

10: output: t

GenerateMessageSignaturePair plants the message-signature pair gadget into ℓ+ℓ ·λc tokens.
First, the ℓ-length message is sampled naively from the underlying model and the error-
corrected signature c is computed. c is then iteratively embedded into ℓ · λc tokens using
rejection sampling.

Algorithm 5 RejectSampleTokens
1: input: c, t, m, cprev
2: a← 0
3: xbest, dbest ← ϵ,∞
4: repeat
5: x← GenModelℓ(ρ, t)
6: a← a + 1
7: d← Hamming(H3(r ∥m ∥ x ∥ cprev), c)
8: if d < dbest then
9: dbest, xbest ← d, x

10: if (a > amax ∧ γ < γmax) then
11: x← xbest
12: γ ← γ + 1
13: break
14: until H3(r ∥m ∥ x ∥ cprev) = c
15: m←m ∥ x
16: t← t ∥ x
17: cprev ← cprev ∥ c
18: output: t, m, cprev

RejectSampleTokens controls the rejection sampling loop. It generates ℓ tokens such that
each contiguous block of ℓ tokens encodes c: one bit of information.
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Algorithm 6 Detect
1: input: (pk, r), n, ℓ, λc, β, γ, t′

2: for i ∈ {0, . . . , n− (ℓ + ℓ · λc)} do
3: t← H1(r ∥ t′[i : i + ℓ])
4: m, c← ϵ, ϵ
5: for j ∈ {0, . . . , λc − 1} do
6: m←m ∥ t′[(i + ℓ + 1) + (j · ℓ) : (i + ℓ + 1) + ((j + 1) · ℓ)]
7: c← c ∥ H3(r ∥m ∥ c)
8: σ ← Decodeγ(H2(r ∥ t′[i : i + ℓ])⊕ c)
9: if Verifypk(t, σ) = true then

10: output: true
11: output: false

Detect is the watermark detection algorithm. Given potentially watermarked text t′, it
exhaustively searches for an embedded message-signature pair that passes authentication.
If one such pair is found, the input text is flagged as watermarked.

map to a different range of bits. Note that r serves as a seed for both H1 and H2—this
ensures that without the public-key (pk, r), the output of the hashes (modeled as public
random oracles) are unpredictable.

Once the pseudorandom signature codeword c is computed, the next step is to embed
it into natural language. The key idea is to embed bits into a block of tokens such that the
block of tokens hashes to the target bit. In particular, the construction embeds β bits into
each ℓ tokens. In Lines 4-14 in Algorithm 5, we sample ℓ more tokens using the native LM
decoder and check if there is a hash collision. In particular, we try amax times to find the
best next ℓ tokens that hash to the next β embedded bits, where optimality is measured
by Hamming distance. Note that the hash depends on all previous inputs to hashes for the
current signature codeword. Once we find the optimal output, we accept the token block
and move on to the next β bits of the signature codeword. Otherwise, reject the tokens
and freshly sample a new block of length ℓ. At the end of the rejection sampling process,
the signature will be embedded in ℓ · λc tokens where λc is the length of the signature
codeword—one message-signature pair is embedded in generated text. This process can be
repeated to embed multiple pairs for added resilience.

3.3 Public Detection Algorithm
To detect if a watermark is present in candidate text, it suffices to extract one message-
signature pair and verify it using the public key. In Line 2 in Algorithm 6, we iterate over
all potential token blocks of length ℓ (adjusting by λc = λσ

β to account for the signature
codeword length). Once the message t is assigned, the signature is iteratively reconstructed
in Lines 5-8. Notably, since we employ an error-correcting code to handle the cases where
the entropy is low to embed bits, we must invoke the error-correction algorithm to correctly
decode the signature embedded in the (potentially) erroneous codeword. This is exactly
what Line 8 does. If the signature verifies, we know with overwhelming probability the
text was watermarked (See Lemma 2). Otherwise, move on to the next candidate block
and try again. If no message-signature pair is verified, we conclude that the text was not
watermarked (See Lemma 3)

3.4 Formal Guarantees of Our Construction
We will prove the following theorem:
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Theorem 1. The scheme PDWS defined in Algorithms 2, 3 and 6 is an (ℓ, ℓ + ℓ ·λc, 2(ℓ +
ℓ · λc), exp(−Ω(α)))-publicly-detectable watermark.

Proof of Theorem 1 follows immediately from the proof of Lemmas 1 to 4. Before
proving each lemma below, we briefly discuss our model. Our construction uses random
oracle O to model a cryptographic hash function H. A random oracle is a random
function drawn uniformly randomly from the set of all possible functions (over specific
input and output domains). Random oracle models are commonly used in cryptographic
construction [BR93]. Constructions that are provably secure in the random oracle model
are heuristically assumed to be also secure when one instantiates the random oracle O
with a cryptographic hash function H. We use O and H interchangeably in the proof.

Assume that each block of ℓ tokens has at least α bits of entropy. We model the
cryptographic hash H(·) as a random oracle, denoted O(·). Without loss of generality,
the proof is written for the case of β = 1, i.e., we embed one bit into each ℓ tokens. It
generalizes to any β.

Lemma 1 (Distortion-freeness). Let H2 and H3 be random oracles. PDWS is a compu-
tationally distortion-free publicly-detectable watermarking scheme assuming every ℓ tokens
generated by the LM contains α bits of entropy.

Proof. Our proof relies on the following claim.

Claim (Balanced Partition). Let D be any distribution with min-entropy ≥ α. It holds
that

Pr
H3

[∣∣∣Pr
D

[H3(D) = 1]− 1/2
∣∣∣ ≥ 1

2 ·
√

α · 2−α/2
]
≤ 2 · 2−α.

That is, a randomly sampled hash function H3 will result in a balanced bi-partition H−1
3 (0)

and H−1
3 (1) on the support of D with overwhelming probability.

Proof of Claim 3.4. Since D contains at least α bits of min-entropy, the support of D
contains at least 2α elements; let us denote them by x1, . . . , xu, where u ≥ 2α. Let Xi be
the random variable defined as

Xi =
{

Pr [D = xi] when H3(xi) = 1
0 when H3(xi) = 0

.

Clearly, Pr
D

[H3(D) = 1] =
∑u

i=1 Xi. Observe that Xi are independent random variables
satisfying 0 ≤ Xi ≤ 2−α. By the Hoeffiding inequality (Theorem 2), we have

Pr
H3

[∣∣∣Pr
D

[H3(D) = 1]− 1/2
∣∣∣ ≥ 1

2 ·
√

α · 2−α/2
]
≤ 2 · 2−

α·2−α

2−α = 2 · 2−α.

Here, we use the fact that
∑

i(bi − ai)2 =
∑

i b2
i ≤ (maxi bi) ·

∑
i bi = maxi bi ≤ 2−α. This

completes the proof.

Now we proceed to prove our theorem. The only difference between our sampling
algorithm and the original sampling algorithm is the following: The original sampling
algorithm (i.e., multinomial sampling) samples the next ℓ tokens directly from some
distribution D. Our sampling algorithm first samples a bit b and then samples the next
batch of ℓ tokens according to D, but conditioned on that its hash is consistent with b. We
just need to prove that these two sampling processes are computationally indistinguishable.

By the randomness of the output of the random oracle H2, each embedded bit b is
computationally indistinguishable from a truly random bit. Therefore, it suffices to prove
that D is close to first sampling a truly random bit b and then sampling from D conditioned
on the hash being b.
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Observe that, if H−1
3 (0) and H−1

3 (1) gives a perfect balanced partition on the support
of D (i.e., the probability of the hash of a sample from D is perfectly uniformly random),
then these two ways of sampling from D is identical. Now, our Claim 3.4 states that, for
every ℓ tokens that the LM outputs, as long as it contains α bits of entropy, a randomly
sampled hash function H3 will not give a well-balanced partition with exponentially small
probability. Suppose the LM outputs a total of m sets of ℓ tokens. By a simple union
bound over all such sets, a randomly sampled hash function H3 will give a well-balanced
partition on all these m distributions with probability 1−m · exp(−Ω(α)). Conditioned
on that hash function gives a well-balanced distribution on all these m distributions, the
distribution that our sampling process gives and the distribution that the original LM
outputs are indeed exp(−Ω(α))-close by our Claim 3.4.

This completes the proof that our sampling process is computationally indistinguishable
from the original sampling process; hence, our scheme is computationally ϵ-distortion-free,
where ϵ = exp(−Ω(α)).

Lemma 2 (Completeness). PDWS is a (ℓ + ℓ · λc)-complete publicly detectable water-
marking scheme.
Proof. For any long enough output t, it is easy to see that if the watermarking scheme
successfully embeds in a message/signature pair, the detection algorithm will mark the
text as “watermarked”. The only possibility that the watermarking fails is if the rejection
sampling algorithm fails to find the next batch of tokens whose hash is consistent with the
target bit.

For any ℓ consecutive tokens that contain α bits of entropy, by our analysis of the
distortion-freeness, each sampling of the next batch of tokens will have a uniformly random
hash bit. Consequently, each sampling attempt will succeed in finding a consistent hash
with probability 1/2. After λc attempts, our rejection sampling will find the next batch of
tokens with probability 1− 2−λc .

Additionally, if there exists a few ℓ consecutive tokens that does not contain enough
entropy, our watermarking scheme can also handle these by error correction. Namely, our
embedding algorithm will stop trying to embed the given bit at those locations and simply
embed an arbitrary bit. As long as the number of such occurrences is fewer than γmax the
maximum number of errors that we can error-correct, the detection algorithm will still be
able to recover the signature and output successful detection. This brings the final success
probability to 1− 2−(λc+γmax).

Lemma 3 (Soundness). PDWS is an ℓ-sound publicly-detectable watermarking scheme.
Proof. The soundness of our watermarking scheme is based on the unforgeability of
the signature scheme—if there exists a PPT adversary that can find a text labeled as
watermarked, it must mean that this watermarked text has a valid message/signature pair
embedded inside. Then, one may extract this pair, which constitutes a forgery attack
against the underlying signature scheme.

More formally, given an adversary A that breaks the ℓ-soundness of our watermarking
scheme, we will reduce it to an adversary A′ that breaks the unforgeability of the underlying
signature scheme. A′ simulates LLM watermarking oracle with A from the watermarking
soundness game. A′ will rely on the external signing oracle to obtain new signatures. In
the end, with a non-negligible probability, A will break the ℓ-soundness. This has two
implications. First, A outputs a watermarked text and, by definition, the watermarking
detector successfully extracts a valid (msg, sig) pair from the forgery. Second, any ℓ-
substring of A’s output is not a substring of any of the watermarked texts that she received
per her query. Since msg is always an output of a random oracle on ℓ consecutive tokens,
this means (w.h.p.) that the msg from (msg, sig) pair extracted must be a new message
that has not appeared in any of A′’s oracle queries. This breaks the unforgeability of the
underlying signature scheme.
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Lemma 4 (Robustness). PDWS is an 2(ℓ+ ℓ ·λc)-robust publicly detectable watermarking
scheme.

Proof. The robustness of our scheme is rather easy to see. Let t be the output of the
LM. If the adversary’s output A(t) contains 2δ consecutive tokens from the original t, it
must mean that there is a δ consecutive tokens, which embeds a message/signature pair,
is preserved in A(t). The detection algorithm will recover this consecutive sequence by an
exhaustive search, resulting in a successful detection output.

4 Empirical Evaluation
We implement both our publicly-detectable protocol and Christ, Gunn, and Zamir
[CGZ24]’s privately-detectable protocol—the only schemes with both cryptographic de-
tectability and distortion-freeness at the time of writing. Our full source code is available
at: https://github.com/jfairoze/publicly-detectable-watermark. We focus our
evaluation on assessing whether distortion-freeness is met in practice. In particular, we
need to verify that Assumption 1 on min-entropy is realistic. Note that our other formal
properties, detectability and weak robustness, are immediate from our construction: de-
tectability is inherited from the underlying signature scheme (BLS signatures [BLS01]), and
weak robustness follows from the fact that the adversary does can only destroy all-but-one
message-signature pairs, meaning that at least one message-signature pair is extractable at
detection time. We additionally evaluate real-world performance under varying conditions.
Concretely, we (a) present a range of generation examples for varying parameters in our
protocol alongside examples from the other protocols, (b) quantify the distortion-freeness of
the text completions using GPT-4 Turbo as a judge, (c) measure generation times against
baseline (plain generation without any watermarking) and detection times for Christ,
Gunn, and Zamir [CGZ24] and our protocol, and (d) compare generation times for varying
parameters in our protocol.

Hereafter, we will refer to the four generation algorithms using the following aliases:

1. plain. Standard text decoding.

2. plain with bits. Standard text decoding but with the arbitrary-to-binary vocabulary
reduction of Christ, Gunn, and Zamir [CGZ24] applied.

3. symmetric. The base (non-substring complete) version of the Christ, Gunn, and
Zamir [CGZ24] private key watermarking protocol.

4. asymmetric. Our public key watermarking protocol. We vary our protocol over
three parameters: signature segment length ℓ, bit size β, and planted error limit γ.

Following prior watermarking evaluations, we use samples from the news-like subset
of the C4 dateset [RSR+20] as prompts. We implement our publicly detectable protocol
and the base (non-substring-complete) version of the Christ, Gunn, and Zamir [CGZ24]
symmetric protocol. For asymmetric, cryptographic keys are sampled fresh for each
parameter configuration, and we embed a single message-signature pair into the generated
text. For symmetric, the key is fixed throughout. Our implementation is written in
Python 3 with PyTorch [PGM+19] and wraps around the Hugging Face transformers
interface for transformer models [Fac23]. We focus on the openly available Mistral 7B
model [JSM+23] for quality analysis. We additionally provide examples from the semi-open
Llama 2 [TMS+23] 70B and 13B models in Table 2 and Table 3, respectively. We use
the 2.7B parameter OPT model [ZRG+22] for runtime analysis. Refer to Section C for
extensive completion examples.

Benchmarking procedure. The benchmarking script selects a fixed number of
prompts at random from the C4 dataset, skipping prompts that mention specific products.

https://github.com/jfairoze/publicly-detectable-watermark
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We run asymmetric first, then use the number of tokens from the execution in the subsequent
algorithms. This ensures that all algorithms produce the same number of tokens. We force
generation length to be as long as needed to encode the signature, i.e., we explicitly block
the model from outputting the stop token before the signature is embedded.

Embedding in characters instead of tokens. Note that throughout the paper we
have discussed embedding the signature in tokens for simplicity and alignment with prior
work. However, in our implementation, we plant the watermark directly on plain text
rather than tokens to avoid inconsistencies in encoding then decoding (or vice versa) using
any given tokenizer: tokenizers do not guarantee that encoding the same string twice will
output the same tokens. Thus, the ℓ = 16 and 32 in our subsequent discussion and figures
will denote characters, not tokens.

Concrete parameters. When ℓ = 32 and β = 2, our gadget was embedded in
≈ 2, 000 tokens during the experiment. When ℓ = 16 and β = 1 or 2, the gadget
was embedded in ≈ 1, 000 tokens. For either case, λ = 328 or 360 bits of data were
embedded depending on if γ = 0 or 2. Consequently, this implies that we instantiate
(ℓ, ℓ + ℓ · λc, 2(ℓ + ℓ · λc), exp(−Ω(α)))-publicly-detectable watermarks for ℓ ∈ {16, 32} and
λc ∈ {328, 360}.

Table 1: Example completions from Mistral 7B [JSM+23]. For the Christ, Gunn, and
Zamir [CGZ24] scheme, we set security parameter λ = 16. For our scheme, we set signature
segment length ℓ = 16, bit size b = 2, and maximum number of planted errors γ = 2.
Completions are truncated to the first 200 characters. See Table 5 for more completions
under the same conditions.

# Prompt Plain (tokens) Plain (bits) Christ et al. This work
1 Windthorst pulled off

a sweep of Collinsville
Tuesday, while Archer
City and Holliday
were unable to ad-
vance.\nCHICO — With
a chance to square off
against the defending
champs later this week,
No. 7 Windthorst took
care of business Tuesday
night.\nThe Trojanettes

defeated Collinsville 25-
16, 25-18, 23-25, 25-21 to
secure an area title and
punched their ticket to
the Region I-2A quarter-
finals with a trip to the
controversial West Texas
town of Iredell on the li

, seeded second, swept
Collinsville in three
games to set up a
quarterfinal date with
top-seeded Trent.
Windthorst defeated
Collinsville 25-16, 25-17
and 25-20.\nAssumption
squeaked past Brock,
22-25,

swept Collinsville to ad-
vance to the area round
of the postseason and
face Olney. They’re
hoping to turn the ta-
bles on the Ladycats
for whom they lost in
the second round a year
ago.\n“They beat us la

traveled to No. 10
Collinsville and swept
the Lady Collie Cardi-
nals in game one, set-
ting up a chance to
take on Amarillo River
Road later this week in
a highly-anticipated Re-
gion I-2A area round
rema

2 Eight Sussex skiers will
take to the slopes to
battle it out for the
honour of being crowned
National Champion
at the English Alpine
Ski Championships
which start this week-
end.\nBurgess Hill
sisters, 18-year-old Sam
and 16-year-old Helen
Todd-Saunders and
Crawley

/Fernhill Heath duo,
Martin Mellon and
Oliver James will don
national kit to compete
in Giant Slalom (GS)
and Slalom (SL) events
in Yongpyong, South
Korea.\nPerformances in
14 events will be ranked
to

’s Amy Mertens, just 13,
will go head-to-head with
some of the country’s
best racers at the wide
variety of disciplines on
offer.\nWith almost 20
races in multiple disci-
plines it is the most di-
verse s

’s Callum Adams (18),
Ross Guest (25) and Max
Green (17) all make up
the squad for the cham-
pionships.\nWorthing’s
Danny Williams (17),
Syd Wilson (16) and
East Grinstead’s Naomi
Wilkinson (21) also re

’s Amy Crocket will
all compete in the Se-
nior National Champi-
onships, racing at the
Trois Vallees ski resort in
the French Alps, along
with Booker’s Mollie Dar-
ling and Dylan Jetsun;
Rye’s William Phil

4.1 Text Completion Examples

We show how text completions vary over six benchmarking runs with different generation
parameters. We primarily use the Mistral 7B model due to its high quality output for its
size class. We display a couple text completions for each algorithm in Table 1. See Table 4
through Table 9 in Section C for the full collection of text completions—each table shows
one text completion per generation algorithm for 5 distinct prompts. We additionally
include a few completion examples from larger models (Llama 2 70B and 13B) in Table 2
and Table 3. In the next section, we discuss the quality of these examples.
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Figure 2: Aggregated text quality score assignments from GPT-4 Turbo for each generation
algorithm configuration over the Mistral 7B model [JSM+23]. For asymmetric, the configu-
rations from left to right represent the most compact (lowest quality) to least compact
(highest quality) parameters. Each bar is the aggregation of GPT-4 Turbo-assigned quality
scores for 250 distinct prompt completions. The error bars show the 95% interval data
spread. Observe that no protocol clearly outperforms the others: the mean score falls
between 27 and 40 for all protocols, and each one exhibits large quality spreads. Note
that even the baseline decoder, plain, follows this pattern. This suggests the watermarking
protocols are indeed distortion-free.

4.2 Zero-Shot Quality Measurements with GPT-4 Turbo
Following many works in the NLP literature (e.g., [CWJ+23; PSF+23], we automatically
assign a quality score to each text completion using an established LM. We do not use
model perplexity as it is known to assign arbitrary scores in some cases—for example, it
can favor repetitive text [HBD+19; WKR+19; PSF+23]. In particular, we use zero-shot
prompting of GPT-4 Turbo [Ope23]. For each batch of four generations (one from each
algorithm), our prompt template asks the model to: (a) rate the text completion by giving
it a score from 0 (worst) to 100 (best), and (b) give reasoning for the assigned score in list
form.

In theory, all the algorithms should be computationally distortion-free if their underlying
assumptions are satisfied. Recall distorion-free means no PPT algorithm can distinguish
between watermarked and non-watermarked text. We see in Figure 2 that GPT-4 Turbo-
assigned scores have similar means and high variance—there is no statistically-significant
signal that any particular generation algorithm outperforms the others. This provides
evidence toward real-world distortion-freeness.

On embedding compactness. One of the main limitations of our protocol is that it
takes a relatively large number of characters (tokens) to embed the message-signature pair
(greater than 1,000 tokens for our most compact parameter configuration where ℓ = 16,
β = 2). Our GPT-4 Turbo quality scores are comparable to the plain baseline even for the
most compact parameters, suggesting that we can encode more information in even less
tokens at the cost of increased runtime. That is, we can decrease ℓ (holding β constant) or
increase β (holding ℓ constant).

4.3 Generation and Detection Runtimes
In this section, we discuss the generation and detection runtimes shown in Figure 3.

Text generation. plain generation without any watermarking or bit reduction is,
as expected, the fastest—we use this setting as our control against which we compare
the performance of the watermarking schemes. plain with bits and symmetric are closely



16 Publicly-Detectable Watermarking for Language Models

Figure 3: Generation and detection runtimes for each generation algorithm over the Mistral
7B model [JSM+23]. Five distinct generations were aggregated for each of the 10 random
prompts from the news-like portion of the C4 dataset [RSR+20]. The error bars show the
95% interval data spread. On average, the fastest to slowest generation runtimes were
for: plain (expected as this is the baseline), asymmetric, then symmetric and plain with bits
(the latter two are about equal with the dominant cost being the reduction to a binary
vocabulary). For detection, asymmetric runs much faster than symmetric which is expected
given they run in linear vs. quadratic time, respectively, in the number of tokens n.

correlated, implying that the dominating cost of Christ, Gunn, and Zamir [CGZ24]’s
watermarking scheme is the arbitrary-to-binary vocabulary reduction. The asymmetric
scheme ran approximately twice as fast on each prompt for the parameters we used in this
experiment. We note that both watermarking methods are implemented without advanced
optimization; therefore, the concrete time measurements should be interpreted relative
to the plain baseline. In particular, the asymmetric protocol’s rejection sampling loop is
parallelizable—this would drastically improve generation times (see Section B.3).

Watermark detection. We see asymmetric detection runs significantly faster than
symmetric detection. asymmetric consistently runs near 0.01s and symmetric varies between
10 and 10,000s for Mistral 7B. This aligns with performance expectations. Detecting an
asymmetric watermark takes constant time in our implementation because we know the
starting index of the signature. Note that in extensions of this implementation where the
location of the signature in the text is unknown, detecting an asymmetric watermark would
take linear time in the generated text length n using a sliding window (see Section B.1).
On the other hand, detecting a symmetric watermark runs in quadratic time based on the
generated text length n [CGZ24].

4.4 Asymmetric Parameters Optimized for Runtime

Expected generation time is proportional to the average number of characters needed to
encode the watermark: Eλ(ℓ, β) = 2β · λ

β · ℓ, where 2β is the expected number of attempts
to pass the rejection sampling, λ

β the number of signature segments required, and ℓ is
the number of characters per signature segment. Holding all else constant, observe that
(a) higher ℓ means more entropic flexibility but increases runtime by a linear factor, and
(b) higher β also means more entropic flexibility but increases runtime by a factor of 2β

β .
We see in Figure 4 that the empirical results line up with the expectations above

when comparing the runtimes across differing parameters. Runtimes for ℓ = 16, β = 1
and ℓ = 16, β = 2 are close to each other and approximately double the runtimes for
ℓ = 32, β = 2.
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Figure 4: Generation runtimes for each variant of our protocol over the OPT-2.7B
model [ZRG+22]. Generation runtimes for different parameter instantiations of our
protocol. 5 completions were generated for each of the 10 random prompts from the news-
like portion of the C4 dataset [RSR+20]. ℓ denotes the signature segment length, β denotes
the bit size, and γ denotes the maximum number of planted errors. The error bars show
the 95% interval data spread. Comparing non-error-corrected (γ = 0) vs. error-corrected
(γ = 2) runtimes for prompts with high variance (prompts 4, 5, 6, 8, and 9 for parameters
ℓ = 32, β = 2 and ℓ = 16, β = 2), we can see a clear reduction in the variance and mean
runtime when error correction is applied to overcome low entropy periods. Note that we
expect to sample Eλ(ℓ, β) = 2β · λ

β · ℓ characters to embed the signature codeword. Thus,
in expectation, Eλ(16, 1) = Eλ(16, 2) < Eλ(32, 2) where λ = 328 or 360 depending on if
γ = 0 or 2. Our empirical runtimes align with this.

4.5 The Effect of Error-Correction
Figure 4 presents the generation time performance of our publicly-detectable protocol for
six different parameter settings. We see that across the board, allowing the algorithm to
plant up to γ = 2 errors resolves high runtime spread. Generations that took a relatively
long time got stuck in the rejection sampling loop trying to find a hash collision. The
version of our protocol that plants errors was designed to allow the algorithm to break
out of this loop by settling for the closest hash (as measured by Hamming distance to
the target bit sequence). In particular, we see significant reductions in runtime spread for
prompts 4, 5, 6, 8, and 9.

5 Related Work

5.1 Text Distinguishers
We discuss key approaches for detecting AI-generated text without introducing any changes
to text generation. See [JAL20] for a comprehensive survey.

Early approaches to detecting AI-generated text revolve around looking for features
of AI-generated text that are not present in human-generated text—if you can or cannot
identify such features, you can conclude the text was or was not AI-generated. Examples of
features include relative entropy scoring [LUY08], perplexity [Ber16], and other statistical
signals [GSR19]. We refer the reader to [Ber16] for a survey.

Another common method is to train another model to automatically identify distin-
guishing features. Research of this nature [ZHR+19; MLK+23; GPT23; HAAL23] uses
deep learning as a binary classifier.

The problem with this idea is that it relies on AI-generated text being fundamentally



18 Publicly-Detectable Watermarking for Language Models

different from human-generated text. This reliance is at odds with the core goal of LMs:
to produce human-like text. As models get better, statistical features of AI-generated text
will decay. In particular, GPT-4 [Ope23] and other cutting edge models are quickly closing
this gap. Chakraborty, Bedi, Zhu, An, Manocha, and Huang [CBZ+23] formally show that
as AI-generated text approaches human quality, text distinguishers demand longer text
samples.

Beyond relying on an diminishing assumption, text distinguishers lack formal guarantees—
the detector’s correctness is only empirically validated, so any validation performed is only
relevant to the exact model, its configuration, and prompting context during experimenta-
tion.

Other work has shown that it is possible to train models to transform text such that it
fools text distinguishers [KSK+23; SKB+23].

5.2 Watermarking Schemes
There is a recent line of work using ML to perform watermarking [AF21; QZL+23; YAJK23;
MTDZ24; LPH+23]. Notably, Liu, Pan, Hu, Li, Wen, King, and Yu [LPH+23] address the
same problem as this paper: their approach is to train two models—one for embedding
a signal and one for detecting it. This is analogous to using asymmetric keys. Crucially,
all schemes in this category are entirely empirical and have no formal guarantees such as
correctness, soundness, or distortion-freeness.

Recently, Kirchenbauer, Geiping, Wen, Katz, Miers, and Goldstein [KGW+23] gave the
first watermarking scheme with formal guarantees. They showed that when model entropy
is high, a watermark can be planted by hashing previous tokens to embed a watermark
signal in the next token. Crucially, hashing tokens to zero or one effectively assigns a binary
label to potential next tokens. By ensuring that only tokens with label “zero” appear in
generated text, the watermark can be detected after text generation by recomputing the
hash. Kirchenbauer, Geiping, Wen, Katz, Miers, and Goldstein [KGW+23] bound the
distortions introduced by the watermark by measuring perplexity: the difference between
the distribution produced by the plain model and the one produced by the model with
watermarking.

The Gumbel softmax scheme of Aaronson [Aar23] is another approach to LM water-
marking. The scheme uses exponential minimum sampling to sample from the model using
randomness based on previous tokens (via hashing). This scheme is distortion-free so long
as no two output texts that share a common substring are public [CGZ24]. This is unlikely
for a widely-used LM.

Kuditipudi, Thickstun, Hashimoto, and Liang [KTHL24] design a family of watermark-
ing schemes that aim to maximize robustness. The main idea of their scheme is to use a key
that is as large as the generated text output—this permits statistical distortion-freeness
as opposed to the cryptographic distortion-freeness of this paper and Christ, Gunn, and
Zamir [CGZ24] at the cost of computation that scales with the generated text output.
The long key is then “aligned” with the generated text by computing an alignment cost—
this alignment cost can be (re)computed at detection time with the detection key and
the generated text. Text that has been watermarked will be statistically likely to have
low alignment cost at detection time. Their scheme has the desirable property that the
alignment cost is a measure of edit distance and thus a watermark may persist even if text
is inserted or deleted from the original watermarked text. Their scheme is not provably
complete or sound.

We remark that prior watermarking schemes differ in trade-offs when token length
increases (or decreases). Schemes in the private key setting ([KGW+23; CGZ24; KTHL24])
gain stronger soundness as token length increases and vice versa. In this work, strong
soundness is achieved so long as there are sufficiently many tokens to embed our message-
signature gadget, i.e., there is a sharp threshold. This is because soundness in our scheme
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stems from unforgeability of the signature, rather than strength of an embedded statistical
signal.

Piet, Sitawarin, Fang, Mu, and Wagner [PSF+23] systematically analyze watermarking
schemes in the secret key setting. Their study focuses on assessing generation quality and
robustness to minor edits for practical protocol parameters. They state that the Kirchen-
bauer, Geiping, Wen, Katz, Miers, and Goldstein [KGW+23] scheme produces the best
watermark even though the protocol is distortion inducing. Furthermore, they conclude
that distortion-freeness is too strong a property for practice. This conclusion was drawn
from quality assessment performed by the chat version of Llama 2 7B [TMS+23]. We
remark that Llama 2 7B’s quality assessment likely does not generalize—higher fidelity
models may reveal weaknesses in distortion-inducing watermarking schemes. In contrast,
no (probabilistic, polynomial time) algorithm can distinguish between non-watermarked
text and distortion-free watermarked text so long as protocol assumptions hold.

Zhang, Edelman, Francati, Venturi, Ateniese, and Barak [ZEF+24] formally proved
that “strong” robustness is impossible in watermarking schemes. The further demonstrated
that their attack works in practice against a range of secret-key watermarking schemes
(including the Kuditipudi, Thickstun, Hashimoto, and Liang [KTHL24] scheme). That is,
it is possible to remove watermarks with low computational effort whilst preserving text
quality. Our scheme comes under their “weak watermarking scheme” definition and thus
their impossibility result does not apply.

Qu, Yin, He, Zou, Tao, Jia, and Zhang [QYH+24] developed a watermarking scheme
for LLMs that also makes use of ECC. They use ECC to gain robustness: this is distinct
from this work, which uses ECC to overcome low entropy periods when generating text.

5.3 Linguistic Steganography
The main goal of linguistic steganography is to embed a hidden message in natural language
text. A steganographic protocol provides formal security if an adversary cannot determine
whether a message is from the original distribution or the distorted distribution that embeds
a hidden message [HLV02]. The key difference in this setting compared to watermarking
is that distortions to the distribution are permitted so long as some notion of semantic
similarity is preserved. Furthermore, there are critical differences in the problem model
between linguistic steganography and LM watermarking. In LM watermarking, prompts
are adversarially chosen and the watermarking protocol should be agnostic to the plain text
distribution. The focus of linguistic steganography is to achieve undetectability. In LM
watermarking, undetectability is not important—what is important is that the text is of
similar (ideally, the same) quality as unwatermarked text, i.e., it should be distortion-free.
That is, watermarked text should still be usable for the same downstream tasks for which
unwatermarked text is useful.

We note that prior work has applied public-key cryptography to the watermarking
problem. They commonly work by hiding cryptographic objects (i.e., a signature or
encryption) within an image or text. While our work uses a similar approach, prior
uses of public-key cryptography for watermarking [WM01; SC05] were motivated by
applications to copyright protection and crucially embed the watermark to existing content,
as opposed to the generation-time watermark of this work. Prior steganographic work has
also made use of rejection sampling. Cachin [Cac98]’s protocol uses rejection sampling
to sample stegotexts that “look like” covertexts where each stegotext embeds one bit
of information. Hopper, Langford, and Von Ahn [HLV02] gave a complexity-theoretic
treatment of steganography and used rejection sampling to sample from an oracle to meet a
specific target, i.e., sample c←M until a condition F (c) = x is satisfied where x is a target.
In contrast, this paper applies rejection sampling for the special case of embedding bits
in generated content. Beyond steganography, rejection sampling also appears broadly in
other cryptography subfields such as post quantum-secure encryption [ZWQ21; GHJ+22].
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6 Conclusion
In this paper, we construct an LM watermarking scheme that is simultaneously publicly-
detectable and unforgeable. We conclude with a summary of our scheme’s limitations and
potential avenues for future work.

Limitations and future work The main barriers for general use of our protocol are
(1) embedding compactness: it takes many tokens to embed a whole digital signature,
and (2) robustness: removing the watermark is easy for an unrestricted adversary to
destroy. Resolving either of these issues is nontrivial and weaker settings suffer from
similar issues, e.g., the secret-key setting. However, for specific use-cases where generation
output is long-form and robustness is not a concern, our watermark can be readily applied.
We believe there is considerable space for future work to build toward more practical
public watermarks with strong formal properties. In a recent paper, [GM24] constructed
a watermarking scheme in the public setting that is edit-distance robust—future work
could seek to bring down the concrete complexity of an edit-distance robust watermark or
develop new techniques that permit other notions of robustness. In particular, it would be
interesting to uncover the theoretical limitations of what properties a publicly-detectable
watermark could hope to achieve.
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A Additional Preliminary
Our proof relies on the following standard concentration bound, known as Hoeffiding
inequality.

Theorem 2 ([Hoe94]). Let X1, . . . , Xn be independent random variables such that ai ≤
Xi ≤ bi for all i. Let Sn =

∑n
i=1 Xi. For any t > 0, it holds that

Pr [|Sn − E [Sn]| ≥ t · E [Sn]] ≤ 2 · e
− 2t2∑n

i=1
(bi−ai)2

.

B Extra Discussion
B.1 Minor Protocol Discussion
There are a number of extensions one can add to the protocol to make well-defined
improvements with no significant cost.

t1 c1

↓ t2 ← c1[−ℓ :]
t2 c2

↓ t3 ← c2[−ℓ :]
t3 c3

· · · · · ·

Figure 5: Tiling structure to compress multiple message-signature pairs. This is possible
because the signature codeword itself is pseudorandom.

Embedding multiple watermarked blocks Figure 1 above embeds one signature in a
fixed number of output bits. To extend this scheme to support arbitrarily large output, we
can tile the block structure defined above sequentially until the desired length is reached.

When n is large enough to permit multiple message-signature pairs, we can leverage
the pseudorandomness of the masked signature codeword to use significantly fewer tokens.
Specifically, to embed k message-signature segments, we only need k · (ℓ + ℓ ·λc)− (k−1) · ℓ
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tokens given λc ≥ ℓ. Note that in practice, λσ = 328 ≤ λc bits (inherited from BLS
signatures [BLS01]) and ℓ ≃ 16 characters. The idea is to use the last ℓ bits of the
signature from the previous message-signature pair as the message for the next segment.
This preserves full distortion-freeness since the signature codeword is re-randomized with
a pseudorandom mask. See Figure 5 for a visual depiction of this process.

Tuning the robustness vs. distortion-freeness trade-off We assume that each
block of ℓ tokens has sufficient entropy (as defined by the parameter α) to ensure our
formal notion of distortion-freeness is met. However, in practice, one can set ℓ to a
concrete value (e.g., determined empirically for a specific model and hyperparameters) to
tweak robustness—ℓ should be set as low as possible such that the text quality remains
similar3 to non-watermarked text in order to get more robustness. When ℓ is low, each
message-signature segment requires fewer total tokens, meaning more segments can be
embedded in n tokens. So long as one message-signature pair remains after text edits, the
watermark is detectable.

Chaining embedded bits The plain gadget depicted in Figure 1 embeds one bit of
the signature into a block of ℓ tokens. Observe that the scheme is susceptible to the
following attack. If an adversary knows that a specific portion of text corresponds to
a message-signature pair, she can construct a different message that still verifies. By
definition of the random oracle, any freshly sampled token has 1/2 probability of hashing
to 0 or 1. The adversary replaces a codeword c ∈ T ℓ·λc with a new message c′ ∈ T ℓ·λc by
changing ℓ tokens at a time and checking that the new block still hashes to the same value
as the old block. If the hash is inconsistent, sample a new block of ℓ tokens and try again.
This process can be repeated for all λc bits of the signature codeword. In addition, since
the blocks are independent, the adversary can replace each block with adversarial text in
a modular fashion.

We make this attack more difficult by introducing dependencies across adjacent blocks.
For each i ∈ λc success condition for rejection hashing changes from

H
(

s
ci,1
i,1 · · · s

ci,ℓ

i,ℓ

)
= ci

to

H

 i⊕
j=1

s
cj,1
j,1 · · · s

cj,ℓ

j,ℓ

 = ci

where
⊕i

j=1 vj stands for concatenation as
⊕i

j=1 vj := v1 ∥ v2 ∥ . . . ∥ vi. Now, for the
adversary to perform the same signature replacement attack, she can no longer change
each ℓ-length token block independently.

Dynamic entropy Through this paper, we assume that there is sufficient entropy in
every ℓ tokens sampled from the LM in order to simplify presentation and analysis. We
can relax this assumption in the real world—rather than setting a global length ℓ that
is expected to be of sufficient entropy, we can empirically measure how much entropy is
available from the LM at generation time. This idea originates from Christ, Gunn, and
Zamir [CGZ24] where they use it to transform their private-key scheme into a substring-
complete version, i.e., a version that embeds independent detectable segments to gain
robustness. We can employ the core idea in the asymmetric setting as follows:

Given a distribution p← Model(·, ·), one can measure the entropy of sampling token t
from p as − log(p(t)). Thus, each time a new token is sampled, the generation algorithm can

3Our Theorem 1 proves that this similarity is closely related to how much entropy each ℓ tokens carry.
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keep track of how much collective entropy has been seen up to that point, i.e., cumulative
entropy can be measured as

∑j
i=1− log(pi(ti)) for a contiguous block of j tokens—this

sum can be updated incrementally as more tokens are sampled. To use this optimization,
the generation algorithm simply waits for sufficiently many token samples such that the
cumulative entropy sum is large enough. Once the threshold is reached, all sampled tokens
are taken as the message, and the protocol proceeds as before4. At detection time, the
message is no longer of fixed size, so it no longer suffices to iterate all windows of fixed
length in the text. Thus, the detector will incur quadratic performance costs by searching
over all possible message strings from the input text.

B.2 Outsourcing Watermarking Itself
One of the main benefits of a publicly detectable watermarking scheme is that the watermark
detector is outsourceable—the entity providing a “detection service” is different from the
one providing the model. Besides outsourcing detection, we remark that our protocol also
naturally supports outsourcing the watermarking process itself, i.e., an external entity can
embed a publicly detectable watermark in text generated by a private model. In contrast
with all known prior watermarking schemes, our protocol does not necessarily need to
know the distribution from which to sample each token—it suffices to obtain a list of
“next best tokens” given by the prompt and prior generated tokens. This means that our
watermarking scheme can operate over API access to private LMs.

Assume that an LM provider supports an API that returns the top ℓ next tokens for
a given prompt. The watermarking process itself can be outsourced by replacing direct
model calls with API calls. This has the downside of requiring linearly many requests in
the output length—we acknowledge that this is likely a preventative expense for many use
cases.5

B.3 Performance Optimizations
The main computational bottleneck in our scheme is rejection sampling. There are
two straightforward optimizations to this process that would greatly improve concrete
performance. First, rejection sampling naturally lends itself to parallelism. Instead of
sequentially searching for a signature collision (on the CPU), this process can be performed
in parallel on the GPU to take advantage of (a) faster inference and (b) faster hashing.
Second, consider the case where ℓ = 1 for simplicity. Whenever a token is rejected (i.e.,
the token hash did not match the signature hash), this information can be used to modify
model logits to prevent sampling the same token repeatedly. This has a large impact on
the expected running time of rejection sampling since if the token was sampled, it is likely
to be sampled again. Preventing this situation drastically improves the time needed to find
a matching token. This idea can be generalized to ℓ > 1, however, care would be necessary
to ensure that only the specific token sequence becomes improbable after each rejection.

B.4 Embedding Codewords for Robustness
In contrast to prior watermarking schemes [KGW+23; CGZ24; KTHL24], our framework
of embedding extractable bits into the generated text readily allows for further improvement
in robustness.

Instead of embedding a message-signature pair (which contains no redundancy) into the
generated text, one may embed an “error-corrected encoding” of the message and signature

4Note that this optimization can only apply to the message portion of the embedding—applying it to
the signature component would result in an exponential blowup of the detector’s runtime.

5At the time of writing, OpenAI charges US$0.03 per 1000 input tokens and US$0.06 per 1000 output
tokens for GPT-4 API access with 8k token context.
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into the generated text. Given an input text, the detection algorithm will first extract the
potentially-erroneous codeword from the text and then apply error correction to recover
the original message-signature pair. Apparently, the robustness of this new watermarking
scheme will inherit the robustness of the error-correction scheme. For instance, if the
error-correcting algorithm allows for 10% of errors, our watermarking scheme will be
resilient to 10% of word replacements.

We emphasize that the robustness guarantee provided in this scheme can be formally
proven, unlike the strong robustness claims of non-cryptographic watermarks, which are
based on experimental validation and heuristics.

One potential barrier to this proposed scheme is efficiency. The efficiency of the scheme
depends on the efficiency of the error-correcting encoding. Normally, in the context of text
editing, one aims for resilience against insertions and deletions. However, existing state-of-
the-art error-correcting codes against insertions and deletions [GW17] have worse efficiency
compared to their counterparts for Hamming error correction. However, we emphasize
that our framework is modular. Any improvement in the construction of error-correcting
codes will directly give improvement to the efficiency of this proposed scheme.

C Completion Examples
Our evaluation primarily involved the Mistral 7B [JSM+23] completions discussed above,
we ran the following benchmarks on the larger Llama 2 13B and 70B models [TMS+23] on
a smaller scale. All model inference was performed with full precision—no quantization
was employed. Evaluation was computed using NVIDIA A100 GPUs with 40GB VRAM
(from 1 to 8 in parallel depending on the model size) for all benchmarks except those
involving OPT 2.7B, which ran on a single NVIDIA RTX 3090 Ti GPU.

Table 2: Example completions from Llama 2 70B [TMS+23]. For the Christ, Gunn, and
Zamir [CGZ24] scheme, we set security parameter λ = 16. For our scheme, we set signature
segment length ℓ = 16, bit size b = 1, and maximum number of planted errors γ = 2.
Completions are truncated to the first 200 characters.

# Prompt Plain (tokens) Plain (bits) Christ et al. This work
1 Windthorst pulled off

a sweep of Collinsville
Tuesday, while Archer
City and Holliday
were unable to ad-
vance.\nCHICO — With
a chance to square off
against the defending
champs later this week,
No. 7 Windthorst took
care of business Tuesday
night.\nThe Trojanettes

held off a pesky Chico
squad en route to a 64-48
victory in the Region II-
2A girls basketball semi-
finals.\nNow they’ll get
a rematch with No. 1
Cooper in the region ti-
tle game.\nWindthorst is
medal-bo

swept No. 21 Collinsville
25-19, 25-19, 25-19
to win their Class
2A Region II quarter-
final at Chico High
School.\nWindthorst
(26-9) advances to region
semifinals that will be
held in Dangerfield Frida

won behind 19 kills from
Audrey Lopez to take
Game 1, 25-14, 25-17, 25-
21, over Collinsville in
the Region II-2A quarter-
final match, setting up
a semifinal tilt against
Crawford for Friday af-
ternoon i

unleashed some offense
and fended off a Bearcats’
comeback attempt to fin-
ish off a 67-58 win and
sweep of Collinsville in
the Class 2A girls area
playoffs.\n"I’d like to see
us play with that type of

2 Eight Sussex skiers will
take to the slopes to
battle it out for the
honour of being crowned
National Champion
at the English Alpine
Ski Championships
which start this week-
end.\nBurgess Hill
sisters, 18-year-old Sam
and 16-year-old Helen
Todd-Saunders and
Crawley

’s Olivia Gillespie, 17,
will race in the girls’
events at at Whaka-
papa Ski Area in New
Zealand.\nThe boys com-
peting for the honour
of becoming National
Champions are 19-year-
old Ivan Ukri, of Coldean

’s Nicholas Moynihan, 21,
are part of the 11-strong
Team Evil who head to
Bormio, Italy, tomorrow
(Tuesday) for a week’s
training ahead of the
championships. The trio
will be joined by three
other Loo

-based Sol Buchler (17)
are travelling out to
Montalbert, France
for the Championships
which run from March
21st to March 24th due
to lack of snow condi-
tions in the UK.\nSam
Todd-Saunders. Pic by
Acti

’s Trevor McColgan
have all previously
won national titles
and will be looking to
continue their winning
ways.\nHowever, they
will be up against a
strong field of competi-
tors, before one girl and
one
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Table 3: Example completions from Llama 2 13B [TMS+23]. For the Christ, Gunn, and
Zamir [CGZ24] scheme, we set security parameter λ = 16. For our scheme, we set signature
segment length ℓ = 16, bit size b = 1, and maximum number of planted errors γ = 2.
Completions are truncated to the first 200 characters.

# Prompt Plain (tokens) Plain (bits) Christ et al. This work
1 Windthorst pulled off

a sweep of Collinsville
Tuesday, while Archer
City and Holliday
were unable to ad-
vance.\nCHICO — With
a chance to square off
against the defending
champs later this week,
No. 7 Windthorst took
care of business Tuesday
night.\nThe Trojanettes

downed No. 10
Collinsville 75-27 in
a Class (1A) bi-district
basketball playoff game
Tuesday as part of
a quadruple-combo
event at Chico High
School.\nWindthorst
(22-8) jumped out to an
11-4 lead afte

(19-7-2) defeated
Collinsville, 6-3, in the
Region I-1A semifinals
at Lion Field. They
will face Honey Grove,
27-4, in the regional
final at Noon Friday in
Stephenville.\nNo. 5
Honey Grove defeated
Va

beat the Class 2A Region
I power Collinsville 4-2
Tuesday at the Big Coun-
try Soccer Complex.\nIt
was one of four games
in the opening round of
the Region I-2A tourna-
ment, with just three
wins enough t

stayed on course for
another appearance
in Friday’s Class 1A
state championship,
pulling off a 3-1 sweep of
Collinsville to advance
to the state tournament
semifinals.\n“I think the
main thing that h

2 Eight Sussex skiers will
take to the slopes to
battle it out for the
honour of being crowned
National Champion
at the English Alpine
Ski Championships
which start this week-
end.\nBurgess Hill
sisters, 18-year-old Sam
and 16-year-old Helen
Todd-Saunders and
Crawley

siblings, 18-year-old
Ollie O’Sullivan and
14-year-old Jack, are
among those earmarked
to shine in the event
based at Essex Snows-
ports.\nTheir handler,
Alton snow sports coach,
Liz Baird said: “It’s a

’s Amy Conroy (pic-
tured), 18, will represent
Sussex against some of
the fastest alpine racing
female representatives
in the country.\nJohn
Gardner, father of 19-
year-old Eliza and Tom,
both pictured,

’s 14-year-old Helen
Cullen all enjoy sup-
porting each other at
competitions and train-
ing.\nBoth Cullen and
Todd-Saunders looked
on in admiration as Sam
won the Salomon super-g
last season snatching vi

brothers Harry Roylance,
16, and Charlie Roylance,
13 of Oxted’s College
Sevenoaks have all been
selected to head off to the
slopes of Austria for the
competition.\nThe event
includes a full programm
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Table 4: Example completions from Mistral 7B [JSM+23]. For the Christ, Gunn, and
Zamir [CGZ24] scheme, we set security parameter λ = 16. For our scheme, we set signature
segment length ℓ = 16, bit size b = 2, and maximum number of planted errors γ = 0.
Completions are truncated to the first 200 characters.

# Prompt Plain (tokens) Plain (bits) Christ et al. This work
1 Windthorst pulled off

a sweep of Collinsville
Tuesday, while Archer
City and Holliday
were unable to ad-
vance.\nCHICO — With
a chance to square off
against the defending
champs later this week,
No. 7 Windthorst took
care of business Tuesday
night.\nThe Trojanettes

beat Collinsville, 6-1, 7-0,
to secure a season sweep
of the former Division I
champs and advance to
the Region II-1A quarter-
finals later this week.\n“I
thought, going into this
tournament, one of the

knocked off Collinsville
in two five-set matches
to win a Class 1A bi-
district volleyball play-
off series.\nWindthorst is
scheduled to visit fourth-
ranked Mark, a fellow
District 8-2A squad, Fri-
day at

opened play Tuesday in
the Class A Region I
1A regional quarterfi-
nals with a tough 25-
20, 25-20, 25-22 sweep of
Collinsville.\n
Unfortunately for the
Trojans and No. 13
Archer City, Westbrook
beat the

pulled off a sweep
at Lamar Nice Field
as they handled No.
17 Collinsville in the
Area Championship,
winning 10-0 in five
innings and 5-1 in a very
tightly contested second
game.\nWindthorst will
fac

2 Eight Sussex skiers will
take to the slopes to
battle it out for the
honour of being crowned
National Champion
at the English Alpine
Ski Championships
which start this week-
end.\nBurgess Hill
sisters, 18-year-old Sam
and 16-year-old Helen
Todd-Saunders and
Crawley

gymnast Paige McKenzie
will represent England at
girls combined category
whilst Crawley siblings
Philippa and James
Horton will compete
in the boys hopefuls
event.\nSteyning pair
Phoebe Pratten and La

students, 20-year-old Al-
ice Reidy, 18-year-old Fe-
lix Rogers, 16-year-old
Tom Eagleson and 15-
year-old Patrick Lane, all
racers for the Brighton
Snozone Academy, will
all be looking to grab the
title.

skier, 14-year-old Joe
Roberts will be com-
peting in the event in
Meribel, France, from
5th March.\nThe rest
of the team is made
up of Alexandra Leff
(Worthing), Jack Hatton,
Phoebe Smith (Both 18,
Has

Girls’ School’s 17-year-
old Lucy Finlayson, who
is also the under-21
British Slalom Cham-
pion, will go head to head
with some of the best
skiers in the country in
a series of races taking
place on Ste

3 It’s 14 degrees and
snowing. But at one of
Moscow’s new cooper-
ative clothing markets,
business is booming.
Muffled against the cold,
vendors shout promo-
tions for their paltry
offerings while others
mingle more discreetly
with the crowd, hawking
French perfume

, jewelry, and other just-
arrived wares, all at a
price.\n\n"Get a look at
these earrings!" shouts
one such trader, whip-
ping in a customer with
his pendulum-like swings
of his color-plastic ear-
rings.\

and Italian ear-
rings.\n\nIt’s not all as
innocent as it sounds.
All of the clothing are
stolen from retailers
and vendors have to be
careful because many of
them are not only police
but private detect

and Jean-Paul Gaultier
sweaters under the
table.\n\nThe business
may be illicit, but the
scene is all too familiar
in Eastern Europe’s
newest attempt at capi-
talism: the Communist
free market.\n\n“I m

, Chinese sneakers and
Swedish sweaters. With
cash prizes up for grabs
for the best deals, this is
Russian capitalism at its
most jaded. "We only go
to places like that now,"
a university vice-chancel

4 Now Finally Taking
Shape: A World With
Ever Less Decently-Paid
Work for Most. But
Must This Be a Prob-
lem?\nFor centuries,
experts/futurists have
predicted that machines
would someday make
workers obsolete. And
now it’s finally happen-
ing, sporadically, here
and

there. But is this any-
thing to worry about? Is
this a problem? The root
of these hard-fought dis-
agreements about it is
the unspoken assumption
that (at least) the work-
ing class is supposed to
comprise

there,\nBut let’s be hon-
est here – pre-retirees
who know there’s little
hope that they’ll be able
to fill large gaps in the
decades remaining before
& after retirement – they
don’t know what to do f

there, little by little.
And while it isn’t much
of a shock to most of
us to hear that sophisti-
cated algorithms and ma-
chines are better than us
at many types of fairly
routine work (or that
sexy/futur

there–the interesting
structural aspect is that
the service sector (low-
tech), not the high-tech
sector is leading the
charge.\nAs I outlined in
the first installment, the
jobless-growth paradox
is

5 In our “always on” cul-
ture, the office mantra
is: work late, stay
connected. The problem
is that working harder
and longer doesn’t nec-
essarily make you more
productive. Research
shows that getting
away—especially on a
journey that engages
your mind and body,

not just your eyes—is es-
sential to achieve power-
ful rebooting and offer
deep drives toward your
own life goals.\n\nYou
will need a “model of
journeying,” wholly em-
bracing the unfolding hol-
iday experie

slows you down,
and helps you re-
set—revitalizes and
energizes.\n\n>Get out
of your rut – find the
ultimate Wilderness
Lodge Villa Package,
and escape to par-
adise.\n\nWalt Disney
World Resort vacation

maybe even encourages
you to step outside
your comfort zone—can
spur productivity, cre-
ative thinking, and
innovation.\n\nBy
Leo Babauta of Zen
Habits\n\n“Be here
now.” This isn’t a sen-
tence that needs

and forces you to un-
plug—can encourage
your productivity when
you get back.\n\nIn
fact, nothing nurtures
the drive to excel more
than seeing your passion
played out in a different
context—say, by exp
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Table 5: Example completions from Mistral 7B [JSM+23]. For the Christ, Gunn, and
Zamir [CGZ24] scheme, we set security parameter λ = 16. For our scheme, we set signature
segment length ℓ = 16, bit size b = 2, and maximum number of planted errors γ = 2.
Completions are truncated to the first 200 characters.

# Prompt Plain (tokens) Plain (bits) Christ et al. This work
1 Windthorst pulled off

a sweep of Collinsville
Tuesday, while Archer
City and Holliday
were unable to ad-
vance.\nCHICO — With
a chance to square off
against the defending
champs later this week,
No. 7 Windthorst took
care of business Tuesday
night.\nThe Trojanettes

defeated Collinsville 25-
16, 25-18, 23-25, 25-21 to
secure an area title and
punched their ticket to
the Region I-2A quarter-
finals with a trip to the
controversial West Texas
town of Iredell on the li

, seeded second, swept
Collinsville in three
games to set up a
quarterfinal date with
top-seeded Trent.
Windthorst defeated
Collinsville 25-16, 25-17
and 25-20.\nAssumption
squeaked past Brock,
22-25,

swept Collinsville to ad-
vance to the area round
of the postseason and
face Olney. They’re
hoping to turn the ta-
bles on the Ladycats
for whom they lost in
the second round a year
ago.\n“They beat us la

traveled to No. 10
Collinsville and swept
the Lady Collie Cardi-
nals in game one, set-
ting up a chance to
take on Amarillo River
Road later this week in
a highly-anticipated Re-
gion I-2A area round
rema

2 Eight Sussex skiers will
take to the slopes to
battle it out for the
honour of being crowned
National Champion
at the English Alpine
Ski Championships
which start this week-
end.\nBurgess Hill
sisters, 18-year-old Sam
and 16-year-old Helen
Todd-Saunders and
Crawley

/Fernhill Heath duo,
Martin Mellon and
Oliver James will don
national kit to compete
in Giant Slalom (GS)
and Slalom (SL) events
in Yongpyong, South
Korea.\nPerformances in
14 events will be ranked
to

’s Amy Mertens, just 13,
will go head-to-head with
some of the country’s
best racers at the wide
variety of disciplines on
offer.\nWith almost 20
races in multiple disci-
plines it is the most di-
verse s

’s Callum Adams (18),
Ross Guest (25) and Max
Green (17) all make up
the squad for the cham-
pionships.\nWorthing’s
Danny Williams (17),
Syd Wilson (16) and
East Grinstead’s Naomi
Wilkinson (21) also re

’s Amy Crocket will
all compete in the Se-
nior National Champi-
onships, racing at the
Trois Vallees ski resort in
the French Alps, along
with Booker’s Mollie Dar-
ling and Dylan Jetsun;
Rye’s William Phil

3 It’s 14 degrees and
snowing. But at one of
Moscow’s new cooper-
ative clothing markets,
business is booming.
Muffled against the cold,
vendors shout promo-
tions for their paltry
offerings while others
mingle more discreetly
with the crowd, hawking
French perfume

and warm Palestinian
wraps. – Peggy Randall,
Moscow resident MILAN
- The past 20 years of Ital-
ian history have come vi-
olently to life as I began
reading Turino: la storia
nel presente ("Turin: His-
tor

.\n\nSome sellers have
finally located a rare
commodity: bras for
small women, as well
as perfume. (One fra-
grance is dubbed "Hap-
piness.")\n\nThe market
in Beschastovo, north-
east Moscow, is the latest

, Greek olive oil, Italian
cognac.\n\nThis hush-
hush fare all has one
thing in common: It is
on sale outside the offi-
cial government quota for
foreign-currency imports.
It is on the black mar-
ket.\n\nH

and Japanese ski suits -
both sold in rubles at lo-
cal markets only a few
years ago.\n\nClothing
experienced a boom in
summer 1990, when new
supplies arrived in retail
markets priced in hard
currency

4 Now Finally Taking
Shape: A World With
Ever Less Decently-Paid
Work for Most. But
Must This Be a Prob-
lem?\nFor centuries,
experts/futurists have
predicted that machines
would someday make
workers obsolete. And
now it’s finally happen-
ing, sporadically, here
and

there–perhaps five per-
cent of workers at any
given time–and it’s con-
tributing to the un-
employment and social
breakdown that’s getting
increasing media atten-
tion. But do we have a
reason to think thi

there. But many people
don’t want to admit
that it is happening.
First Software, Next
Robots.\n\nBut the
soon-to-be-likely reality
is that many jobs will
be automated and many
people will be happier a

there. Is this a disas-
ter to be avoided–or wel-
comed?\n\n#367 #use-
Canada As Canada un-
covers 88 secret RCAF
bases that housed 15,973
MIAs. Fact— all of them
captives of the Secret Oc-
cupation Governm

there in this major
trend: The Destruction
of Work/Jobs. Though
machines might take
jobs/work away, what if
these inventions are not
"the end", but the hinge,
the pivot of a new era?
A period of less

5 In our “always on” cul-
ture, the office mantra
is: work late, stay
connected. The problem
is that working harder
and longer doesn’t nec-
essarily make you more
productive. Research
shows that getting
away—especially on a
journey that engages
your mind and body,

experiences new people
and cultures, and cap-
tures inspiring sights,
sounds and smells, reju-
venates you, making you
more productive and cre-
ative when you return.
Around the world, travel
planners and h

perhaps in creating new
curiosities–can be the key
to productivity. One of
the ways to do that is to
go immersed into a New
Place.\n\nWith offices in
Hong Kong, New York
and San Francisco, Sig-
nature J

and takes you far away
from your daily sched-
ule—achieves a greater
reset than going on
vacation.\n\nGlobe-
trotting can positively
impact creativity as well.
Divergent thinking is an
essential part of

and promotes creative
connections—delivers
what McKinsey Co.
CEO Doonan Stewart
calls “the invaluable
renewal to our psyche
and brains.”\n\n###
Section 5: Customer
Research\n\nBeen with
my current cu
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Table 6: Example completions from Mistral 7B [JSM+23]. For the Christ, Gunn, and
Zamir [CGZ24] scheme, we set security parameter λ = 16. For our scheme, we set signature
segment length ℓ = 16, bit size b = 1, and maximum number of planted errors γ = 0.
Completions are truncated to the first 200 characters.

# Prompt Plain (tokens) Plain (bits) Christ et al. This work
1 Windthorst pulled off

a sweep of Collinsville
Tuesday, while Archer
City and Holliday
were unable to ad-
vance.\nCHICO — With
a chance to square off
against the defending
champs later this week,
No. 7 Windthorst took
care of business Tuesday
night.\nThe Trojanettes

advanced to the Region
I-2A final by sweeping
Collinsville, 25-12, 25-
11, 25-13, at Chico High
School. The win sets up
a four-match all-Vernon
District series against No.
2 Brock that will decide
who

rolled to a 35-11 victory
over Collinsville in the
area round of the play-
offs, setting up a date
with No. 3 Parsons
in the regional quarter-
finals at 7 p.m. Friday
in Archer City.\nThat is
when postsea

pulled off a sweep of
Collinsville, 25-18, 25-13,
25-22 to move into Thurs-
day’s Region I-2A final
against Post (24-15), the
defending Region I-2A
champion.\nThe winner
faces the Region II-2A
winner on

took a large halftime lead
and were never really
threatened in a 58-46 vic-
tory at Collinsville in
the title game at Freer’s
Hall.\nWindthorst will
travel to Bellmead this
weekend to take on Dis-
trict

2 Eight Sussex skiers will
take to the slopes to
battle it out for the
honour of being crowned
National Champion
at the English Alpine
Ski Championships
which start this week-
end.\nBurgess Hill
sisters, 18-year-old Sam
and 16-year-old Helen
Todd-Saunders and
Crawley

dynamo, 17-year-old
Hamish Lovegrove will
compete against 214
other skiers in Busillats
to be crowned National
Champion.\nBritish
development squad
member, Isaac Brown
and 15-year-old Amber
Pyrah, fro

teenager Bradley Leech
have made it through
to finals in Bansko, Bul-
garia.\nThe trio, who
represent Mid Sussex Ski
Racing Club, are among
119 university students
and amateurs taking part
in events tha

’s 18-year-old Henry
Rees, will compete in
the giant slalom on the
Da Jaunne slope at the
Chaudanne in Les Arcs,
whilst 14-year-old Sol
Steed (Chichester) will
compete in Downhill 1
and Yusuf Sardar S

team-mates, 16-year-old
Jimmy Simpkin and 17-
year-old Maria Brooks-
bank lead the way in
the teenage categories,
but they face competi-
tion from many of the
country’s best racers over
the four day event

3 It’s 14 degrees and
snowing. But at one of
Moscow’s new cooper-
ative clothing markets,
business is booming.
Muffled against the cold,
vendors shout promo-
tions for their paltry
offerings while others
mingle more discreetly
with the crowd, hawking
French perfume

and Italian shoes they
bought in Paris. Each
takes the risk of negotia-
tion as the market’s sec-
ondary vendors only ac-
cept rubles for merchan-
dise that is against the
law to sell. Little returns
to these

and women’s lin-
gerie.\n\nOn a market
wall, multi-colored tex-
tured bags emblazoned
with the trademark of a
young designer line the
length of a refrigerator.
A vendor tells me that a
woman sold 30 of th

and knockoff designer
clothes. They have
been lured here by bet-
ter money.\n\nThursday
should be a holiday for
the people of Caucasus,
Georgia’s breakaway re-
public of Abkhazia, Abk-
hazia has a war-damag

and Japanese crys-
tal.\n\nRussian Presi-
dent Boris N. Yeltsin’s
effort this year to reshuf-
fle the Kremlin and
the government and to
draft the nation’s new
national budget have led
to a blistering shake

4 Now Finally Taking
Shape: A World With
Ever Less Decently-Paid
Work for Most. But
Must This Be a Prob-
lem?\nFor centuries,
experts/futurists have
predicted that machines
would someday make
workers obsolete. And
now it’s finally happen-
ing, sporadically, here
and

there–and in splurgy
1st-world nations like
Canada, it’s getting
harder and harder to get
a job and if you’re lucky
enough to get one, the
pay is lousy.\n- Robots
Start Stealing Jobs From
Immigrants

there. Politicians and
the media repeatedly
show hosts and stu-
dio personnel working
on futuristic-looking self-
driving cars that need no
human driver, and other
vehicles taking us short
distances in d

there. So while some
still cry ’it can’t hap-
pen’ or ’but it will cre-
ate so much wealth for
everyone’/’shouldn’t we
try to extend the bene-
fits of computers/i-tech
to as many people world-
wide as possibl

there. But is
this really a prob-
lem?\n\nEconomics/class/
globalization:\nThe Role
of the US Border Patrol
in the Racial Inequal-
ity Plaguing the San
Diego Region. Black
and Latino areas have
significan

5 In our “always on” cul-
ture, the office mantra
is: work late, stay
connected. The problem
is that working harder
and longer doesn’t nec-
essarily make you more
productive. Research
shows that getting
away—especially on a
journey that engages
your mind and body,

with long-term health
benefits and a chance
to nurture your creativ-
ity—can boost produc-
tivity and enhance your
career. Nearly three out
of four (74%) of workers
believe spending time on
vacation insid

and has a clear achieve-
ment in sight—helps
us attain productivity,
greater mental clarity,
and a renewed sense
of self.\n\nMore than
a vacation, expedition
experiences provide a
way for your employees

improves your memory,
boosts creativity, and fos-
ters innovation. Whether
traveling is for busi-
ness or leisure, there
are ways to incorpo-
rate fitness and mind-
fulness into your time
away.\n\n# Why Fitne

like with a ski trip—can
help us better under-
stand who we are and
where we want to go
next.\n\nHere at the As-
pen Journalism Podcast,
we can’t emphasize the
necessity of unplugging
enough. Whether you
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Table 7: Example completions from Mistral 7B [JSM+23]. For the Christ, Gunn, and
Zamir [CGZ24] scheme, we set security parameter λ = 16. For our scheme, we set signature
segment length ℓ = 16, bit size b = 1, and maximum number of planted errors γ = 2.
Completions are truncated to the first 200 characters.

# Prompt Plain (tokens) Plain (bits) Christ et al. This work
1 Windthorst pulled off

a sweep of Collinsville
Tuesday, while Archer
City and Holliday
were unable to ad-
vance.\nCHICO — With
a chance to square off
against the defending
champs later this week,
No. 7 Windthorst took
care of business Tuesday
night.\nThe Trojanettes

swept past Collinsville
25-20, 25-17, 25-20
in the Region I-2A
second-round playoff
match at Chico High
School. Windthorst
(32-16) earned the 25-
point victory with two
buzzer-beating kills that
fell s

swept Collinsville in the
Region II-A quarterfi-
nals, beating the Lady Li-
ons, 25-15, 25-21, 25-23.
After two straight must-
win, Region II-B semifi-
nal matches, Archer City
and Holliday were both
ousted

defeated Collinsville 58-
57 in Game 1 of the Class
2A Regional I final dou-
bleheader at Chico on
Tuesday and swept the
pivotal series with a 56-
45 win in Game 2.\nIt
was a hilariously close fin-
ish to t

swept Collinsville 25-13
and 25-15 on Tuesday,
advancing to a rematch
with No. 2 Divine
Child Academy.\n\nThe
two teams met in group
play last week at the
Windthorst tournament,
with DCA winning both

2 Eight Sussex skiers will
take to the slopes to
battle it out for the
honour of being crowned
National Champion
at the English Alpine
Ski Championships
which start this week-
end.\nBurgess Hill
sisters, 18-year-old Sam
and 16-year-old Helen
Todd-Saunders and
Crawley

’s 17-year-old Freddie
Nairn head to Alta Ba-
dia, Italy along with
former Welsh interna-
tional Mackenzie Hughes,
22, London Welsh Hilary
Grant, 14, London skiing
superstar Grace Coombs,
aged 22, and Max

’s Anugreen Sefi are
all set to compete as
part of a 100 strong
English team which
will be aiming for
glory at Pralognan-la-
Vanoise.\nSnow-lovers
started their journey to
the French resort of the
way

’s Sophie Smith are all
in the GS Ladies’ Under
19s while Guin Bacon,
from Eastbourne, races
in the GS Women’s Un-
der 21s.\nThe final En-
glish ladies and men’s
squads for the upcoming
FIS World Junior C

’s girls’ team will spear-
head the Brighton &
Hove City Ski Team
(BHCST) hopes, with
the cross country team
also likely to figure
prominently.\nSam, a
former pupil at Burgess
Hill School for Girls who

3 It’s 14 degrees and
snowing. But at one of
Moscow’s new cooper-
ative clothing markets,
business is booming.
Muffled against the cold,
vendors shout promo-
tions for their paltry
offerings while others
mingle more discreetly
with the crowd, hawking
French perfume

, unregistered guns of
various awkward calibers
or pills which might
be anything from cran-
berry antioxidants to Vi-
agra.\n\nAfter the So-
viet Union collapsed in
1991, the Soviet economy
slipped into a d

and luxury watches
at discount
prices.\n\nWelcome
to the well-heeled world
of "gray" market, which
both provides much
needed relief for Russia’s
overtaxed consumer
sector and spotlights
major ineffici

and knockoff handbags
to the agog shoppers. Of-
ficial statistics show that
half of all Russians now
live chronically on the
brink of poverty–with an
income well below the
minimum clothing needs
for th

and German refrigera-
tors.\n\nDespite an all-
out advertising storm,
which covered apartment
walls with huge lecture
posters proclaiming pro-
ductivity and dignity
through hard work, nu-
merous Soviet trad

4 Now Finally Taking
Shape: A World With
Ever Less Decently-Paid
Work for Most. But
Must This Be a Prob-
lem?\nFor centuries,
experts/futurists have
predicted that machines
would someday make
workers obsolete. And
now it’s finally happen-
ing, sporadically, here
and

there, largely because of
the Internet. And here
at Atrios, a group of
somewhat leftish Amer-
icans have welcomed
this development. But
why?\n\nFor a long
time these pundits have
worried that, either in

there, as it always will
increasingly - except,
unfortunately, the ex-
perts/futurists didn’t
think to anticipate
that machines would
also be the solution to
their forecasted prob-
lem.\n\nUnfortunately,

there, and many ob-
servers fear that the eco-
nomic future is bleak.
We are already seeing
this with automation
(i.e., robots) replacing
workers in retail jobs,
warehousing jobs, manu-
facturing jobs in pl

there, and that
means more job
losses/underpay/zero-
hour-or-part-time work
for most. It doesn’t ex-
actly feel like a triumph.
So at least some experts
worry that white collar
knowledge jobs are also
c

5 In our “always on” cul-
ture, the office mantra
is: work late, stay
connected. The problem
is that working harder
and longer doesn’t nec-
essarily make you more
productive. Research
shows that getting
away—especially on a
journey that engages
your mind and body,

and encourages a more
expansive thinking—is
enormously invigorating.
These are the kinds
of journeys JTB Spe-
cial Interest Groups of-
fer.\n\n### We Have
Fun:\n\nWe offer numer-
ous ways to connect with
fe

not just your
brain—increases in-
novation and creativity,
which leads to better per-
formance when workers
return, according to stud-
ies cited by the World
Travel and Tourism
Council.\n\nEscapes
that comb

and provides ample
time to think—fuels
your brain to solve
complicated problems.
So, while productivity
may not look productive,
your brain will be work-
ing overtime during your
downtime.\n\nFind a
Gea

such as a bicycle
tour—can improve your
performance when you
return.\n\nCycling
opens up your imagina-
tion by focusing your
attention on one of the
most fundamental hu-
man activities—moving.
With no ga
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Table 8: Example completions from Mistral 7B [JSM+23]. For the Christ, Gunn, and
Zamir [CGZ24] scheme, we set security parameter λ = 16. For our scheme, we set signature
segment length ℓ = 32, bit size b = 2, and maximum number of planted errors γ = 0.
Completions are truncated to the first 200 characters.

# Prompt Plain (tokens) Plain (bits) Christ et al. This work
1 Windthorst pulled off

a sweep of Collinsville
Tuesday, while Archer
City and Holliday
were unable to ad-
vance.\nCHICO — With
a chance to square off
against the defending
champs later this week,
No. 7 Windthorst took
care of business Tuesday
night.\nThe Trojanettes

crushed No. 27
Collinsville in a sweep
at Mineral Wells High
School, 25-10, 25-18,
25-22. However, contro-
versy preceded the final
scores.\nAfter the first
game, the Collinsville
coach took umbrage wit

beat up on Angelina
County’s Collinsville,
25-10, 25-15, at Pike
Provident Bank Gym as
the only Nolan County
School District No.
12 team still alive in
the Region I-2A tour-
ney.\nMPVP MARLI
HOUSER spen

swept Holliday in two
games, winning by the
scores of 25-9, 25-12 to
move on to Thursday’s
regional semifinal game
in China Spring against
the winner of Brookshire
Royal and Waxahachie
Life Christian.

swept the Collinsville
Lady Lions 25-15, 25-16,
25-16 in the Region II-2A
playoffs to advance to the
area round. Windthorst
was the only team in Dis-
trict 9-2A to beat de-
fending state champion
Friona

2 Eight Sussex skiers will
take to the slopes to
battle it out for the
honour of being crowned
National Champion
at the English Alpine
Ski Championships
which start this week-
end.\nBurgess Hill
sisters, 18-year-old Sam
and 16-year-old Helen
Todd-Saunders and
Crawley

’-based Louise D’Arcy,
will be among the
youngest in a field com-
prised of some of the best
junior slalom skiers from
across the UK.\n\nThe
Championships take
place over four days at
the Les 2 Alpes ski

’s Karl Holland (17) will
compete over a six day
period in Tignes, France,
braving the ‘weapons of
mass destruction’ that
France has become fa-
mous for.\nLaura Rees
(20 – Poole), Alabaster
Jones (17 –

sisters Ella and Imogen
Kowal are joined by 15
year-olds Sophie Gwarun-
ski from Burgess Hill
and Chichester’s Lizzie
Kuzmenko and for-times
National Champion Re-
becca Burns, who is 17
and from Lewes.\nF

’s Nancy Webb, 13, Rudi
Hudman, 15, Jack Auger,
16 and Ben Harsant, 20
and 19-year-old Harro-
gate skier Lucy Try, will
compete in England’s
largest ski race of the sea-
son which starts at the
Alpe d’Hue

3 It’s 14 degrees and
snowing. But at one of
Moscow’s new cooper-
ative clothing markets,
business is booming.
Muffled against the cold,
vendors shout promo-
tions for their paltry
offerings while others
mingle more discreetly
with the crowd, hawking
French perfume

and expensive cosmet-
ics.\n\nThey defy the
law. underneath the ta-
ble trade is illegal, but
the bearded young man
swiftly managing the ex-
otic goods, Darwin, has
nothing to fear. He’s a
policeman.\n\nDar

and fake Rolex watches
rather than the cheap
fleeces and caps that
dominate the mar-
ket.\n\nOn a clear day,
when the snow lies
slushy on the sidewalk,
patrolling cops evict the
successful and respected

packaged in Russian
boxes.\n\n## Sur-
vivors Of Morocco Gas
Plane Crash Feted In
Paris\n\nDecember 03,
2012\nhttp://www.
huffingtonpost.com/
2012/11/30/morocco-
gas-plane-
crash_n_2212279
.html\n\nParis, Fra

, Italian pens and En-
glish socks. On the fringe
of this human maze three
young women show off
a collection of sherry-
brown cotton skirts, dot-
ted with small medal-
lions. Ostentatiously,
they all have "b

4 Now Finally Taking
Shape: A World With
Ever Less Decently-Paid
Work for Most. But
Must This Be a Prob-
lem?\nFor centuries,
experts/futurists have
predicted that machines
would someday make
workers obsolete. And
now it’s finally happen-
ing, sporadically, here
and

there, in small bites,
and unpredictably. But
it’s truly hard to even
imagine what this will
mean for our future, bar-
ring unexpected large-
scale changes in attitudes
about the nature of work
and in ou

there, in certain fields.
As noted elsewhere many
times over the years
here, we’re seeing this
mostly already in high-
margin/sexy fields first
(as in finance, movie in-
dustry, design) and con-
tinuing to

there, as an increasing
percentage of workers are
losing their jobs to ma-
chines, and to corporate
greed.\n\nIs this really
a problem? TaskRab-
bit CEO says not, that
there’s no class war, and
he’s hopin

there, but still mostly in
traditional manufactur-
ing. (’You Build It, We
Just Take the Money’:
Afraid of your resumÁ©?
Apply at McDonald’s!: Is
work becoming a dying
institution? Who actu-
ally works t

5 In our “always on” cul-
ture, the office mantra
is: work late, stay
connected. The problem
is that working harder
and longer doesn’t nec-
essarily make you more
productive. Research
shows that getting
away—especially on a
journey that engages
your mind and body,

such as a Disney vaca-
tion— can actually re-
lieve the symptoms of
stress.\n\nWhat better
place to reconnect with
your “inner you” than
the peace, pampering
and productivity of a
Walt Disney World® va-
cat

one that unplugs you
from your daily rou-
tine—can bring real ben-
efits that last long after
crusty sandals have been
discarded.\n\n“Travel is
about having a differ-
ent experience,” says Dr.
John Pencavel

challenges you to push
beyond your comfort
zone—can help you re-
cover from burnout and
make you a more effec-
tive, productive worker.
Work breaks are increas-
ingly popular, giving peo-
ple an opportunity t

and provides a change
of scenery—can leave
you more energized and
better able to focus when
you return.\n\n###
Passages Anamcara Mini
Retreat\n\nThese five-
hour luxurious retreats
offer an exquisite
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Table 9: Example completions from Mistral 7B [JSM+23]. For the Christ, Gunn, and
Zamir [CGZ24] scheme, we set security parameter λ = 16. For our scheme, we set signature
segment length ℓ = 32, bit size b = 2, and maximum number of planted errors γ = 2.
Completions are truncated to the first 200 characters.

# Prompt Plain (tokens) Plain (bits) Christ et al. This work
1 Windthorst pulled off

a sweep of Collinsville
Tuesday, while Archer
City and Holliday
were unable to ad-
vance.\nCHICO — With
a chance to square off
against the defending
champs later this week,
No. 7 Windthorst took
care of business Tuesday
night.\nThe Trojanettes

clipped the No. 25 Lady
Panthers of Collinsville
in three sets, but in quite
a display. The Girls fin-
ished the night 25-17, 25-
11 and 25-8.\nWas the
display impressive? Well,
let’s just say it was the

made quick work of
Chico, sweeping the
Wildcats easily in the
opening round of the
Chico district tourna-
ment.\nIn the Class
A championship today
at Chico High School,
Windy will face Petrolia,
who ups

swept their Class 1A
Region II Area rival
Collinsville, 25-16, 25-
11, 25-19 to advance to
the regional quarterfinals
and pull a step closer to a
rematch with defending
state champion and area
foe Chil

, victorious over
Collinsville 3-0, will
play No. 2 MLK in the
Region I-3A volleyball
semifinals at 12:30 p.m.
Friday in Austin.\nThe
Lady Saints were up-
ended 3-1 by Wellington
in Tuesday’s remaining

2 Eight Sussex skiers will
take to the slopes to
battle it out for the
honour of being crowned
National Champion
at the English Alpine
Ski Championships
which start this week-
end.\nBurgess Hill
sisters, 18-year-old Sam
and 16-year-old Helen
Todd-Saunders and
Crawley

’s 20-year-old rower
turned skier Cameron
Bourke, are all deter-
mined to do the club
proud.\nThe Nationals
are a sell-out event
attracting athletes from
all over the country and
sees around 400 competi

twins, 18-year-old sisters,
Ellie and Rachael Bell
are all racing at the En-
glish Alpine Ski Cham-
pionships over the next
two weeks hoping to take
home two crystal ski tro-
phies to represent South-
ern and

’s Jake Moffat (17) have
all been selected to
compete in the oppen-
ing races to decide the
top five challenged for
2014.\nThe squads se-
lected to join the three
young slalom and giant
slalom skiers are:

downhill skier Francesca
Poulton will compete
with the national team
in the Under 21 cat-
egories.\nNigel Thomp-
son, coach of Birchwood
Ski Club in Brighton
which develops skiers,
said: “We are really p

3 It’s 14 degrees and
snowing. But at one of
Moscow’s new cooper-
ative clothing markets,
business is booming.
Muffled against the cold,
vendors shout promo-
tions for their paltry
offerings while others
mingle more discreetly
with the crowd, hawking
French perfume

(1,500 rubles a bottle),
stolen army uniforms
(50 rubles) and Chinese-
made T-shirts topped
with knock-off de-
signer logos (4 rubles
each).\n\n"It’s good
business," says Elena
Gumerova, who runs the
sta

or fake designer jeans.
In a tent filled with
suitcases piled with
handbags, watches and
bottles of perfume,
Russian, Chinese and
East European women
buy.\n\nMany of the
items are fake. Even this
most

, Japanese designer suits
and the finest Hungar-
ian chocolates. (This
is typically a big week
for Moscow retailers, as
Russian women usually
wait until the December
7th Day of Reconciliation
and the Ne

and jeans. "GreatBart
knows his stuff–the thun-
der roll will be the gui-
tar hook. And the cho-
rus turns it into one great
one-word question. -
RoatMarked I’ll. But the
cold snap is threatening
to pierc

4 Now Finally Taking
Shape: A World With
Ever Less Decently-Paid
Work for Most. But
Must This Be a Prob-
lem?\nFor centuries,
experts/futurists have
predicted that machines
would someday make
workers obsolete. And
now it’s finally happen-
ing, sporadically, here
and

there, and particularly in
developed nations. Yes-
terday Switzerland be-
came the first employer
of an army of robots
(geolocated in the na-
tion’s food courts and
brick-and-mortar retail
outlets), the fir

there, and the general
public is not yet at
all ready to cope with
it. Humans are be-
ing pushed out of ever
more work. Africans too
have already found their
minds and fists no match
for automated produ

there in earnest, and
more often in job ca-
sualization and gigifi-
cation.\nHere in North
America and western Eu-
rope we’re seeing tens of
millions of jobs just van-
ish or be photographed
or programmed or

there. But what does
this say about progress–
and the ability of most
to keep from falling
permanently into the
ranks of the unem-
ployed and marginally-
employed?\nSky-High
Marginal Taxes Are
Pushed by

5 In our “always on” cul-
ture, the office mantra
is: work late, stay
connected. The problem
is that working harder
and longer doesn’t nec-
essarily make you more
productive. Research
shows that getting
away—especially on a
journey that engages
your mind and body,

helps to sharpen focus,
relax and reset. Outside
the hotel lobby and chain
restaurants, the water-
front and hiking trails of
this historic city invite
connection and encour-
age a fresh perspective.
Here

enhances your creativity,
and revitalizes your
energy—puts you on the
path toward sustained
success.\n\nVirgin’s
Branson Group is
offering leadership devel-
opment trips to exotic
locations that break o

whether it’s a retreat in
the desert or a weekend
on the water —creates a
personal and professional
recharge.\n\nHow? You
pause and get perspec-
tive on where you’re at,
where you’re going, and
what mat

like a climbing trip—can
spur your creativity,
stoke your innovation,
and make you feel
productive and fulfilled.
By taking the trip, you
recharge emotionally,
physically, and even
cognitively. Yes,
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