
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 4, 27 pages.

https://doi.org/10.62056/a3qjmp-3y
Check for updates

XorSHAP: Privacy-Preserving Explainable AI for
Decision Tree Models

Dimitar Jetchev1 and Marius Vuille2

1 Input Output Global (IOG), Lausanne, Switzerland
2 Arcium, Zug, Switzerland

Abstract. Explainable AI (XAI) refers to the development of AI systems and
machine learning models in a way that humans can understand, interpret and trust
the predictions, decisions and outputs of these models. A common approach to
explainability is feature importance, that is, determining which input features of the
model have the most significant impact on the model prediction. Two major techniques
for computing feature importance are LIME (Local Interpretable Model-agnostic
Explanations) and SHAP (SHapley Additive exPlanations). While very generic,
these methods are computationally expensive even when the data is not encrypted.
Applying them in the privacy-preserving setting when part or all of the input data
is private is therefore a major computational challenge. In this paper, we present
XorSHAP - the first practical data-oblivious algorithm for computing SHAP values
for decision tree ensemble models. The algorithm is applicable in various privacy-
preserving settings such as SMPC, FHE and differential privacy. Our algorithm has
complexity O(T M̃D2D), where T is the number of decision trees in the ensemble, D

is the depth of the decision trees and M̃ is the maximum of the number of features M
and 2D (the number of leaf nodes of a tree), and scales to real-world datasets. We
implement the algorithm in the semi-honest Secure Multiparty Computation (SMPC)
setting with full threshold using Inpher’s Manticore framework. Our implementation
simultaneously computes the SHAP values for 100 samples for an ensemble of T = 60
trees of depth D = 4 and M = 100 features in just 7.5 minutes, meaning that
the SHAP values for a single prediction are computed in just 4.5 seconds for the
same decision tree ensemble model. Additionally, it is parallelization-friendly, thus,
enabling future work on massive hardware acceleration with GPUs.
Keywords: Explainable AI · model explainability · gradient boosting decision trees
· SHAP values · secure multiparty computation

1 Introduction
Explainable AI (XAI) refers to the design and development of AI systems and machine
learning methods that allow for human understanding and interpretation of the decisions
and predictions made by these models [Mol22]. It provides insights into how a model
generates its predictions, which features it considers important as well as the reasoning
behind the decisions. The main challenge of explainable AI is thus to create explainable
models without compromising model accuracy.

While explaining the decision may be transparent for simple models such as linear and
logistic regression, the more complex the model becomes, the more difficult it is to explain
its predictions.

There are several approaches to model explainability:

E-mail: dimitar.jetchev@iohk.io (Dimitar Jetchev), marius@arcium.com (Marius Vuille)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-10-08 Accepted: 2024-12-03

https://doi.org/10.62056/a3qjmp-3y
https://crossmark.crossref.org/dialog/?doi=10.62056/a3qjmp-3y&domain=pdf&date_stamp=2025-01-07
mailto:dimitar.jetchev@iohk.io
mailto:marius@arcium.com
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 XorSHAP

• Feature importance: this approach determines the relative importance or contribution
of each feature in the prediction of a model.

• Local explainability: a method that provides explanations for individual predictions,
showing which features had the most significant impact on the specific instance.

• Global explainability: deriving interpretable rules or decision tree models that mimic
complex machine learning models; even if the derived interpretable models can be
very different, their objective is to explain any prediction of the black-box models.

Techniques such as LIME (Local Interpretable Model-agnostic Explanations) [RSG16]
(as well as the official github repository1) and SHAP (SHapley Additive exPlanations) [LL17]
are key for supporting some of the above approaches by generating explanability metrics
at the instance level considering contributions of individual features.

Explainable AI is an important aspect of Trustworthy AI, a broader concept aiming at
developing, building and deploying reliable, ethical, transparent and accountable AI sys-
tems. Trustworthy AI encapsulates various principles and guidelines to address important
objectives such as ethical and responsible AI, transparency, explainability, fairness, bias
mitigation, robustness, data privacy as well as accountability and governance.

The recently voted EU AI Act [Act23] is a regulatory framework proposed by the
European Union (EU) to ensure the proper use of Trustworthy AI. It emphasizes the
importance of providing explanations for AI decisions, especially in high-risk applications
and recognizes that individuals should have the right to understand the logic, significance,
and consequences of automated decisions that affect them. This is particularly relevant in
areas such as finance, healthcare, industrials and legal domains where the impact of AI
decisions can be significant.

In the context of the EU AI Act, techniques like SHAP can help fulfill the requirement
of providing meaningful explanations for AI decisions, enable stakeholders to gain insights
into how specific features influence the model’s predictions and make informed judgments
about the fairness, bias, or potential risks associated with the AI system [EDPS23].

The computation of SHAP values can be rather expensive since it involves computing
predictions with models built on every possible subset of features. This can become
particularly challenging and even infeasible for models with large number of features and
samples. One often uses approximation methods such as Monte Carlo or sampling subsets
of features [LEL18, SK14]. The complexities can become even larger if the input data is
sensitive. This occurs very often in use cases in healthcare, financial technology as well as
manufacturing where the combination of explainability and privacy of the input data is
particularly relevant.

Thus, the problem of designing and implementing efficient and scalable privacy-
preserving algorithms for computing feature importance metrics such as SHAP values is of
primary importance.

1.1 Our contributions
In this paper, we address the above problem by proposing a novel privacy-preserving algo-
rithm, XorSHAP, for computing SHAP values for decision tree ensemble models. Our algo-
rithm is inspired by the TreeSHAP algorithm [LEL18] but relies on several data-independent
(oblivious) operations such as additions, multiplications, divisions, comparisons as well as
sorting permutations.

The algorithm is generic in the sense that it applies to a multitude of privacy-preserving
settings such as Secure Multiparty Computation (SMPC), Fully Homomorphic Encryption
(FHE), Differential Privacy (DP) among others. The only requirement is that the setting

1https://github.com/marcotcr/lime

Dimitar Jetchev, Marius Vuille 3

supports data-oblivous computation of a list of basic functions (primitives) - see the
introduction to Section 3 for details.

Just as in TreeSHAP, the major complexity gain of XorSHAP comes from the fact that,
instead of summing over all subsets of {1, . . . , M} (thus, introducing a factor 2M in the
complexity), one sums over all 2D possible paths in the tree and then over all subsets of
the set of feature indices of the split nodes in the path (a set of size at most D). Here, M
is the number of features and D is the depth of the binary decision trees in the ensemble
model.

Our main contribution is in the way we make that part oblivious, thus, resulting in
complexity that no longer has the large exponential factor 2M where M is the number
of features, thus, resulting in total complexity of O(TM̃D2D), where T is the number
of trees, D is the depth of each binary decision tree in the ensemble model and M̃ =
max(M, 2D).

The efficiency of our privacy-preserving approach uses several key ideas and techniques:
1) efficient oblivious permutations and oblivious sorting algorithms; 2) computing the
conditional proportion of paths Wℓ,S in data-independent manner using the set of distinct
feature indices for a given path (a set of cardinality at most D), a slightly extended set of
cardinality exactly D and a special ordering on the power set of the extended set from
Section 3.2.2. The latter is described precisely in Lemma 8.

We implement our algorithm in the Secure Multiparty Computation (SMPC) setting
using the Manticore framework [BCD+23] in the semi-honest setting. Our particular
implementation is thus applicable to the most generic data distribution setup where input
data comes from two or more private data sources and is either horizontally split among the
owners (i.e., every owner has different samples/rows sharing the same features/columns),
vertically split (every owner has complete set of features for all the samples/rows) or any
combination of the two. The goal is to compute SHAP values for a given decision tree
ensemble model in the MPC setting using the fully stacked dataset and without revealing
private information. Although the private data owners may play the role of the computing
parties in some settings, this is not a strict requirement. In fact, the Manticore framework
supports scenarios where private data owners secret share data among a set of compute
parties that is not necessarily the same as the set of data owners. The currently used
security model is semi-honest, that is, the players execute the exact steps of the algorithm
with full-threshold security meaning that if all players except one decide to collude, the data
of the non-colluding player is still protected. In Section 5, we demonstrate the efficiency
and scalability of our implementation by presenting some preliminary benchmarks.

1.2 Security model
Since XorSHAP is a generic data-independent algorithm, it is suitable for different privacy-
preserving settings such as FHE, SMPC, DP, etc. The security and privacy claims of
a particular implementation are therefore the ones of the underlying privacy-preserving
framework. For instance, in the particular implementation in SMPC described in Section 5,
the security model is inherited from the Manticore framework and not specifically needed
for our construction. Note that other implementations with SMPC may yield different
security models such as active security models or interactive triplet generation.

The security model of our particular SMPC implementation is full-threshold, semi-
honest with trusted dealer or interactive triplet generation in the offline phase [BCD+23].
Here, full-threshold means that security is guaranteed against a collusion of any proper
subset of the computing parties. Semi-honest assumes that the computing parties are
following the protocol and executing their assigned computations correctly; yet, they are
curious in the sense that they may try to learn as much information as possible from the
information they receive during the execution of the protocol. Finally, the generation of
the auxiliary random masking data can be done via a trusted dealer (a party that is not

4 XorSHAP

allowed to collude with any of the computing parties) or via an interactive protocol run by
the computing parties.

Note that the semi-honest security model is sufficient for use cases where parties are
incentivized to perform the SMPC computation correctly. Examples of such use cases
are multiple banks collaborating to detect fraudulent transactions or multiple healthcare
institutions collaborating on medical data for training AI models.

In a typical computation of the SHAP, one only uses the prediction function and the
feature values (for the samples to be explained). XorSHAP protects either the model or the
feature values (or both) and still computes the feature importance metrics, the reason why
we refer to it as privacy-preserving computation of explainability metrics.

It is natural to ask how much information about the private input data is revealed if
one reveals the output SHAP values. In typical privacy-preserving applications, however,
the SHAP values are rarely revealed. Instead, they are obliviously sorted using any
privacy-preserving sorting algorithm and only the features with the highest importance
metrics are revealed (without the values of the actual metrics).

1.3 Prior art
While initial attempts have been made to address the question of privacy-preserving
explainable AI, this area of research on the intersection of machine learning and data
privacy is relatively nascent and will likely grow with the expanding interest on Trustworthy
and Ethical AI.

Prior work uses differential privacy in XAI and more specifically, in the computation
of SHAP, in order to preserve the privacy of the input data [WAYS22]. This approach
relies on a type of Monte Carlo algorithm known as Layered Shapley Algorithm based on
the diminishing return property. Intuitively, the latter guarantees that small coalitions
provide sufficient information on the utility of a data point and that not much remains to
be gained by examining large coalitions, where the marginal contributions (Section 2.1.1)
is in any way guaranteed to be small. This method is also adapted to the differential
privacy setting. It will be interesting to explore how the Layered Shapley Algorithm can
be adapted to other privacy-preserving techniques (e.g., SMPC using primitives similar to
the ones needed for XorSHAP) whenever accuracy of the result is of importance.

Another important research direction has been in the area of federated machine learning.
In [Wan19], the author proposes a method for computing feature importance via SHAP in
the setting of vertical federated learning with two parties, host and guest, where the host
owns part of the features, the guest owns the remaining features and the host wants to
interpret a specific prediction the model makes. In order for the host to achieve the latter,
the guest à priori needs to send the feature importance for its entire feature space to the
host which may reveal too much information to the host. The idea of [Wan19] is to replace
the feature space with a single unified federated feature, letting the host compute a metric
for its own feature space together with that single federated feature. While this is not
computing exactly the SHAP model explainability metrics, experiments show that it gives
some approximate information matching the feature importance one would get by using
the entire feature space of the guest. While this is an interesting approach, compared to
our algorithm, it applies to very specific rather than generic data distribution settings.

In addition, the recent work [BIS+22] attempts to compute SHAP values for both
horizontally or vertically partitioned data via an explainable data collaboration framework
based on the model-agnostic additive feature attribution algorithm KernelSHAP in the
privacy-preserving distributed machine learning setting. The starting point is that, in
a horizontal federated learning scenario where each party owns part of the samples, a
given party may have a biased view of the samples. Similarly, in a vertical federated
learning scenario, the individual parties have a partial view of the feature space. The first
proposed algorithm, Horizontal DC-SHAP, addresses the challenge with the discrepancies

Dimitar Jetchev, Marius Vuille 5

among the contributing parties by using a sharable anchor dataset to produce consistent
explanation across all collaborators. In the vertical scenario, the authors propose two
different algorithms Vertical DC-SHAP depending on the use case: 1) feature attribution
is requested at a third party for the entire set of features; 2) feature attribution is requested
by one of the users for the partial set of features.

There have been some attempts to compute SHAP values in the secure multiparty
computation setting in the context of data valuation and data marketplaces [TLL+22].
Recall that data valuation refers to the task of fairly compensating data owners for
their contributions in the data marketplace and a suitable profit-sharing and fair scheme
comes from Shapley values and cooperative game theory. The proposed secure multiparty
computation approach relies on active learning, that is, a machine learning algorithm
that is allowed to query the user or an external data source to label data points. While
interesting as a use case and an approach, this method is not quite applicable to capture
the very generic setting where no active learning is assumed.

As far as we are aware, our work is the first attempt to efficiently compute SHAP
values (as feature importance metrics) for decision tree ensemble models in a generic
data-oblivious manner.

1.4 Organization and summary of the paper

The paper is organized as follows: in Section 2 we recall some background on the general
theory of Shapley values from cooperative game theory (see Section 2.1). We then specialize
this theory to the case of binary decision trees in Section 2.2. We also recall some basic
background on Secure Multiparty Computation with additive secret sharing in Section 2.3
as well as the Manticore framework [BCD+23] and its security model.

The main algorithm XorSHAP is presented in Section 3. This section is the heart of the
paper and deserves a higher-level roadmap for better guiding the reader: our starting point
is a formula for the SHAP value in terms of the proportion of paths Wℓ,S (conditional on
a subset S of features) that flow down to leaf node ℓ (Theorem 1). The remaining part of
the algorithm evaluates the right-hand side of this formula in a data oblivious manner. To
achieve this, we encode the different subsets of features associated with the paths ending in
the leaf nodes with their characteristic vectors and use oblivious permutations to sort these.
In order to control the a priori (unknown) Shapley weights, one introduces (see Remark 4)
an auxiliary superset of size exactly D of the set distinct feature indices in a given path (a
set of size at most D) and then we use a special ordering on the power set of that auxiliary
superset (Section 3.2.2) that enables us to recover the cardinality purely from the binary
expansion of the corresponding index in the linear order. The data-oblivious formula for
the Shapley values is then given in Theorem 2. Finally, Section 3.3 discusses the rather
pedantic, but important (in the data oblivious setting) case of zero-cover split nodes. To
facilitate the seemingly heavy mathematical notation, we have included a table of notation
in the appendix.

We complete the paper by proper complexity analysis (presented in Section 4) as well
as implementation and benchmarks on random models and input data (in Section 5).
Finally, in Section 6, we mention various practical implications of XorSHAP on real-world
use cases and describe one of these use cases in more details (a privacy-preserving root
cause analysis for semiconductor manufacturing).

6 XorSHAP

2 Background and Preliminaries
2.1 Background on Shapley values and SHAP
Shapley values are a concept from cooperative game theory originally introduced by Lloyd
Shapley [Sha53] and used to allocate the total contribution or payoff of a group to its
individual members.

2.1.1 Marginal contributions.

Shapley values are formally defined in terms of expected total payoffs of subsets of players
in cooperative game theory, that is, in terms of a function v that assigns to each coalition S
of players the worth v(S) of that coalition. In machine learning, the analogue of players
are model features and the worth function is obtained using the prediction function of a
model as follows: given a subset S of features, a model f with M features as well as a
sample x = (x1, . . . , xM), we define the worth function

fS(x) := E[f(ξ)|ξS = xS], (1)

where the conditional expectation is interpreted as follows: we fix the value for feature j
to xj for all j ∈ S and use random values for the features j /∈ S. In practice, given a
training set of samples, one computes the expectation as the average over these samples.

The conditional expectation fS(x) represents the total value of the coalition S of
players. One uses that to define the marginal contribution of a player i /∈ S simply as
fS∪{i}(x) − fS(x).

2.1.2 Definition of SHAP values.

Given the model f and the sample x = (x1, . . . , xM), for each feature index i = 1, . . . , M ,
we define the SHAP value as

ϕi(x) =
∑

S⊂{1,...,M}\{i}

|S|!(M − 1 − |S|)!
M !

(
fS∪{i}(x) − fS(x)

)
, (2)

that is, the weighted average of all marginal contributions of feature i (the subsets S = ∅
and S = {1, . . . , M}\{i} have the largest weight, whereas subsets of size ⌊(M − 1)/2⌋ and
⌈(M − 1)/2⌉ respectively have the smallest weight). Computing this naïvely is infeasible
as the sum is over an exponential number of subsets and for each subset, one needs to
estimate the model prediction over the entire training set over which we estimate the
expectation.

2.1.3 Computing SHAP values in the generic case

In general (for arbitrary models), an exact computation of SHAP values is often infeasible
as the definition requires summing over exponentially many coalitions of features - in
our case, 2M . In practice, SHAP values are usually approximated by sampling random
coalition of features and summing over the marginal contributions for these subsets.

One way to approximate SHAP values is via Monte–Carlo simulations [SK14]. More
specifically, this approximation method samples random feature coalitions representing
random subsets of features by generating random permutations or random combinations
of features and then computes the marginal contribution of each feature not included in
the coalition, thus computing the chain in prediction when the feature joins the coalition.
It then averages the computed marginal contributions across the sampled coalitions to
provide an approximation for the SHAP value for each feature. This method has a tradeoff
between the number of random coalitions sampled and the accuracy of the SHAP values.

Dimitar Jetchev, Marius Vuille 7

2.2 SHAP values for decision trees
Even if computing SHAP values in the model-agnostic case is quite expensive, specializing
to decision tree models (e.g., random forests, gradient boosted decision trees, etc.) provides
some significant performance advantages which we now explain.

2.2.1 Binary decision trees.

Let M be a fixed positive integer (the number of features). A binary decision tree of
depth D on the feature space RM consists of 2D − 1 inner nodes (referred to as non-leaf
nodes or split nodes) denoted by N , and of 2D outer nodes (referred to as leaf nodes)
denoted by LD (or simply L). Associated with each inner node n ∈ N is a pair (jn, tn) of
a feature index jn ∈ {1, . . . , M} and a threshold tn (a real number), forming the splitting
criteria xjn

< tn. Associated with each leaf node ℓ ∈ L is a weight wℓ (a real number).

xj1 < t1

xj2 < t2 xj3 < t3

w1 w2 w3 w4

Figure 1: Binary decision tree of depth 2.

As described in [DDG+22, §2], given a sample x = (x1, . . . , xM) and a tree Tree, there
is a recursive evaluation function eval(x, Tree) which, for a fixed tree Tree, yields a
piecewise constant function Tree : RM → R. Given a tree ensemble {Tree(1), . . . , Tree(T)},
one defines the prediction on x as

ŷ =
T∑

t=1
Tree(t)(x) ∈ R. (3)

2.2.2 SHAP values for decision trees.

Shapley values are linear in the worth function v (if two coalition games are combined,
then the distributed gains correspond to the sum of the gains derived from the individual
games). Moreover, the prediction of a tree ensemble model is a linear combination of the
evaluation of its trees, see (3). Hence, by linearity of the mathematical expectation, it
suffices to explain how to compute the SHAP values for a single tree.

We now explain how to explicitly compute the conditional expectation for a decision
tree via a recurrence formula. Let Tree be a binary decision tree of depth D on M
features, and let x = (x1, . . . , xM) be a sample of M feature values to be interpreted
(or explained). For a subset S ⊂ {1, . . . , M} of feature indices, consider the conditional
expectation E[Tree(ξ) | ξS = xS] as in (1). It can be computed as

E[Tree(ξ) | ξS = xS] = GS(x; nroot),

where, for a given node n of the tree, GS(x; n) is recursively defined as:

GS(x; n) =


wn if n is a leaf node,

(xjn
< tn) ? GS(x; nleft) : GS(x; nright) else if jn ∈ S,

cnleft
cn

GS (x; nleft) + cnright
cn

GS (x; nright) else.
(4)

8 XorSHAP

Here, cn is the cover of node n, i.e., the number of samples that are visiting node n upon
evaluation. It is computed as the Hamming weight of the instance vector IVn of that node
(the characteristic vector of the subset of samples visiting n).
Remark 1. For now we assume that all covers are positive. In the general case we must
assume the possibility of some covers being zero, and we will explain in Section 3.3 how to
adapt the algorithm.

Given a leaf node ℓ ∈ LD, we use Pℓ = {n
(ℓ)
0 , . . . , n

(ℓ)
D−1} for the (ordered) set of D split

nodes in the path leading from the root n
(ℓ)
0 to leaf ℓ. We also define Jℓ = {j

(ℓ)
0 , . . . , j

(ℓ)
D−1}

to be the (ordered) multi-set of D feature indices for the split nodes in Pℓ. Finally, let Fℓ

be the set of distinct feature indices for the split nodes of the path leading to leaf ℓ (we
thus have |Fℓ| ≤ D).

Definition 1. We call a path Pℓ consistent with respect to the pair (x, S) of a sample and
a feature subset S if for every node n ∈ Pℓ such that jn ∈ S, the child node determined by
the condition xjn

< tn coincides with the node of Pℓ ∪ {ℓ} that succeeds n in the path.
Otherwise, the path is called inconsistent.

In what follows, it is important to distinguish the following metric

Wℓ,S(x) :=


∏

n∈Pℓ

jn /∈S

cnchild
cn

if Pℓ is consistent with (x, S),

0 else.
(5)

Given a subset S and a leaf node ℓ, Wℓ,S computes the proportion of paths (conditional
on xS , the subset S of fixed feature values for S) that flows down to leaf node ℓ. The
conditional expectation is then simply given by

E[Tree(ξ) | ξS = xS] =
∑
ℓ∈L

Wℓ,S(x) · wℓ. (6)

Substituting (6) into the definition (2) of SHAP value yields

ϕi(x) =
∑

S⊂{1,...,M}\{i}

|S|!(M − 1 − |S|)!
M !

∑
ℓ∈L

(
Wℓ,S∪{i}(x) − Wℓ,S(x)

)
· wℓ

=
∑
ℓ∈L

 ∑
S⊂{1,...,M}\{i}

|S|!(M − 1 − |S|)!
M ! (Wℓ,S∪{i}(x) − Wℓ,S(x))

 · wℓ. (7)

2.2.3 KernelSHAP and TreeSHAP

The framework SHAP for interpreting predictions was first introduced in [LL17] and
was based on Shapley values. Since the latter are very expensive to compute, several
approximations have been proposed.

The KernelSHAP method originally described in [LL17, §4] is model agnostic and is
based on approximating SHAP values by sampling subsets of features containing the given
feature and averaging.

In the specific case of decision trees, however, the complexity of KernelSHAP is
O(T 2D+M) where T is the number of trees in the ensemble, D is the tree depth and M is
the total number of features.

An alternative algorithm for computing SHAP values in the case of decision trees is
TreeSHAP [LEL18, LEC+20]. The algorithm has complexity O(T2DD2) and is asymptoti-
cally faster than KernelSHAP since in most practical applications, one assumes that the
number of features M is asymptotically larger than D2. This last assumption holds since

Dimitar Jetchev, Marius Vuille 9

the depth D is often chosen to be a small number (e.g., D < 10), especially in the cases
when the binary decision tree models are computed in the privacy-preserving settings
on sensitive training data. On the other hand, the number of features in any practical
scenario is often large - for instance, for financial forecasting or fraud detection models,
there are hundreds or even thousands of input features.

There are further refinements to the algorithm [Yan22] resulting in FastTreeSHAP v.1
(a 1.5x speedup and the same memory overhead as TreeSHAP) and FastTreeSHAP v.2 (a 3x
speedup with via some preprocessing and a slightly larger memory overhead). Furthermore,
GPUTreeSHAP proposed in [MFH22] provides a more scalable version of TreeSHAP resulting
in a 20x speedup.

2.3 Secure Multiparty Computation
Multiparty computation (MPC) is a method for cryptographic computing allowing several
parties holding private data to evaluate a public function on their aggregate data while
revealing only the output of the function and nothing else. Recent advances in the area
make these protocols practical and suitable for real-world applications such as machine
and statistical learning [BLW08, BCG+18, BCD+23, DPSZ12, EGK+20, Kel20, KOS16,
KPR18, MR18, MZ17, WGC19].

In general, our XorSHAP algorithm is agnostic to underlying MPC method or framework.
The choice of the Manticore MPC framework in our implementation is favorable for
several reasons: 1) it provides access to Boolean arithmetic as well as arithmetic with real
numbers represented using modular integers [BCD+23] or the prior floating-point numbers
framework [BCG+18]; 2) the real number representation of Manticore via modular integers
guarantees information-theoretically security; 3) Manticore provides oblivious sorting and
oblivious permutations functionality. There are, however, other MPC libraries that support
Boolean and real number arithmetic such as SCALE-MAMBA [aM23], SecureML [MZ17],
ABY [PSSY21, MR18] as well as SPDZ-2K [CDE+18]. In Manticore, computations are split
into offline and online phases. The offline phase generates random precomputed data
without accessing the private data and can be performed either interactively by techniques
such as oblivious transfer or by an independent party, different from the compute parties,
known as trusted dealer. In the former case, the MPC protocol is slower but the security
model is stronger. In the latter case, the offline phase is significantly accelerated but in
order to protect the privacy of the input data, the trusted dealer is assumed not to collude
with any of the computing parties. In addition, to ensure security against malicious external
adversaries, all communications between the trusted dealer as well as all communication
between the players during the online phase is end-to-end encrypted.

2.4 Secret sharing of binary decision trees
In the setting that we will apply our algorithm, there are different possibilities for the
decision tree ensemble model. It can be proprietary model for a given party, or it can
already be computed with a privacy-preserving algorithm such as XorBoost [DDG+22] or
any other privacy-preserving algorithm. We refer to [DDG+22, §2.4] for details on how one
can secret share a decision tree model. Note that, depending on the training algorithm,
the column index j can be represented either in arithmetic shares or in Boolean shares.
This is the reason why in the discussions in Section 3, we make no assumption on the
secret sharing method (arithmetic or Boolean) and present a generic arithmetic-to-Boolean
conversion method in Lemma 1.

Note that the actual representation of arithmetic secret shares varies depending on
the SMPC implementation or framework used. For example, for most of the applications
Manticore relies on a particular representation of real numbers with modular integers that

10 XorSHAP

can differ from other schemes such as SPDZ. Our algorithms are agnostic to the particular
instantiation of arithmetic secret sharing.

3 XorSHAP: Privacy-preserving TreeSHAP

In this section, we present the main contribution of this paper – an algorithm, XorSHAP
that is a privacy-preserving variant of the TreeSHAP method [LEL18].

Our main mathematical result that yields our privacy-preserving algorithm is Theorem 2
- a data-independent formula for the SHAP values. Applying that formula in the secure
multiparty computation setting requires the following operations:

• Additions of secret shared numbers (over both R and Z/2Z),

• Multiplications of secret shared numbers (over R and F2),

• Private divisions of secret shared numbers (over R)

• Comparisons of secret shared real numbers,

• Sorting and argsort of secret shared real-valued vectors,

• Applying secret shared sorting permutations.

Unless otherwise stated, all subsequent variables are secret and all operations are data-
independent.

3.1 Preliminaries.
In order to present the algorithm, we use the notations introduced in Section 2.2.2,
particularly, Pℓ, Jℓ and Fℓ. We also introduce some extra notation that is relevant for
data-independent representation of the various structures and hence, for an SMPC-friendly
algorithm.

Given a binary decision tree of depth D, recall that L = LD denotes the set of leaf
nodes of the tree. We assume that sample x is drawn from a dataset with M features. For
a given leaf node ℓ ∈ L, define

• Pℓ: a binary matrix of size M × D whose columns are the binary feature selector
vectors for the split nodes of the path leading to leaf ℓ. Here, a feature with index
1 ≤ j ≤ M is encoded with the binary column vector

bj := (0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
M−j

)t.

Thus, Pℓ = concat(bj : j ∈ Jℓ). The matrix Pℓ is helpful for a secret shared
representation of the set Jℓ.

• Fℓ: the characteristic vector of the set Fℓ, i.e., a binary (column) vector of size M
whose jth entry is 1 if j ∈ Fℓ (i.e., feature j appears as a splitting feature in the
path leading to leaf ℓ) and 0 otherwise.

• oℓ = (o(ℓ)
n : n ∈ Pℓ): a binary (column) vector of size D, where o

(ℓ)
n = 1 if evaluating

node n on the sample x yields the child node that is in the path Pℓ ∪ {ℓ}; otherwise
o

(ℓ)
n = 0. For simplicity, we also write oℓ,d = o

(ℓ)
n

(ℓ)
d

for the dth component of oℓ.

Dimitar Jetchev, Marius Vuille 11

• zℓ = (z(ℓ)
n : n ∈ Pℓ): a (column) vector of real numbers of size D corresponding to

the cover ratios of the nodes in the path Pℓ ∪ {ℓ}; i.e., for node n,

z(ℓ)
n = cnchild

cn
,

where nchild is the successor node of n in Pℓ ∪ {ℓ}. For simplicity, we also write
zℓ,d = z

(ℓ)
n

(ℓ)
d

for the dth component of zℓ. We compute z
(ℓ)
n using the private division

algorithm from [BCD+23].

Lemma 1. We can compute Boolean secret shares for bj for a given arithmetic secret
shared index j ∈ {1, . . . , M} by first applying any arithmetic-to-Boolean conversion to j
and then a one-hot binary decoder circuit to the binary expansion of j (check [DH12, §8.1]
for details).

The lemma below computes the characteristic vector Fℓ in a data independent manner:

Lemma 2. We can obtain Fℓ from Pℓ by OR-ing the columns, i.e., the following equality
holds

Fℓ =
∨

j∈Jℓ

bj .

Remark 2. Note that Fℓ =
∨

j∈Fℓ
bj by definition, however the right-hand side cannot be

computed in a data-independent way since Fℓ is not known.
Finally, we will need to compute the vector oℓ in a data-independent manner. This is

achieved by the following:

Lemma 3. We compute oℓ,d as follows: let (j, t) be the feature index and threshold
associated with node n

(ℓ)
d , and let β = (xj < t) ∈ {0, 1}. Let nchild be the successor node

of n
(ℓ)
d in Pℓ ∪ {ℓ} and let nleft and nright be the left and right children nodes of n

(ℓ)
d

respectively (when looking at the whole tree). Then:

oℓ,d =
{

β if nchild = nleft,

¬β if nchild = nright.

Lemma 4 (Complexity).

• There are 2D−1 binary matrices Pℓ of size M × D, obtained via Lemma 1. The cost
is negligible. The number is 2D−1 since sibling leaves share the same path of split
nodes.

• There are 2D−1 binary matrices Fℓ of size M × 1 (obtained by OR-ing the columns
of Pℓ). The number is 2D−1 since sibling leaves share the same path of split nodes.

• Computing all 2D oℓ’s requires a total of 2D − 1 comparisons of the form tn < xjn .

• Computing all 2D zℓ’s requires one private division between two vectors of size
2D − 1 × 1 (there is a relation between the cover ratio of a left child node and the
cover ratio of its right sibling node, so it suffices to compute the left ratios only).

3.2 XorSHAP.
Let x be a fixed sample. For what follows we will simply write Wℓ,S instead of Wℓ,S(x).
With the notation introduced in Section 3.1 we can express Wℓ,S as:

12 XorSHAP

Lemma 5.
Wℓ,S =

∏
n∈Pℓ
jn∈S

o(ℓ)
n

∏
n∈Pℓ

jn /∈S

z(ℓ)
n .

Proof. Pℓ is consistent with (x, S) if and only if
∏

n∈Pℓ
jn∈S

o
(ℓ)
n = 1. ■

Remark 3. Lemma 5 does not provide a way to obliviously compute Wℓ,S . Instead of the
costly (in a data-independent approach) evaluation of the criteria jn ∈ S (respectively
jn ̸∈ S), our approach is based on a specific linear ordering of the subsets of Fℓ (or even a
slightly larger set), see Lemma 8.

The algorithm XorSHAP is based on the following theorem:

Theorem 1. The SHAP values for a binary decision tree can be computed as follows:

ϕi(x) =
∑
ℓ∈L
i∈Fℓ

 ∑
S⊂Fℓ\{i}

|S|!(|Fℓ| − 1 − |S|)!
|Fℓ|!

· Wℓ,S

 · t
(ℓ)
i · wℓ, (8)

where t
(ℓ)
i =

∏
n∈Pℓ
jn=i

o(ℓ)
n /z(ℓ)

n − 1.

Proof. Since Wℓ,S∪{i} = Wℓ,S whenever i ̸∈ Fℓ, summation in (7) simplifies to

ϕi(x) =
∑
ℓ∈L
i∈Fℓ

 ∑
S⊂{1,...,M}\{i}

|S|!(M − 1 − |S|)!
M ! (Wℓ,S∪{i} − Wℓ,S)

 · wℓ. (9)

Following the proof of [Yan22, Thm. 1], (9) reduces to

ϕi(x) =
∑
ℓ∈L
i∈Fℓ

 ∑
S⊂Fℓ\{i}

|S|!(|Fℓ| − 1 − |S|)!
|Fℓ|!

(Wℓ,S∪{i} − Wℓ,S)

 · wℓ. (10)

Note that

Wℓ,S∪{i} =
∏

n∈Pℓ

jn∈S∪{i}

o(ℓ)
n

∏
n∈Pℓ

jn /∈S∪{i}

z(ℓ)
n

=
∏

n∈Pℓ
jn∈S

o(ℓ)
n

∏
n∈Pℓ

jn /∈S

z(ℓ)
n

∏
n∈Pℓ
jn=i

o(ℓ)
n /z(ℓ)

n

= Wℓ,S ·
∏

n∈Pℓ
jn=i

o(ℓ)
n /z(ℓ)

n

and hence,
Wℓ,S∪{i} − Wℓ,S = Wℓ,S · t

(ℓ)
i ,

which concludes the proof. ■

For implementation aspects it is worth noting that Wℓ,S depends on S but not on i,
while t

(ℓ)
i depends on i but not on S.

Remark 4. The problem with the above version of the theorem in the privacy-preserving
setting is that it is data dependent:

Dimitar Jetchev, Marius Vuille 13

i) The definition of o
(ℓ)
n depends on the value of the predicate; Lemma 3 shows how to

obliviously compute o
(ℓ)
n .

ii) The condition i ∈ Fℓ depends on knowing Fℓ, which we do not. We will therefore
define a vector tℓ of size M with tℓ,i = t

(ℓ)
i if i ∈ Fℓ and tℓ,i = 0 otherwise. Lemma 12

shows how to obliviously compute tℓ. We can then rewrite (8) as

ϕi(x) =
∑
ℓ∈L

 ∑
S⊂Fℓ\{i}

|S|!(|Fℓ| − 1 − |S|)!
|Fℓ|!

· Wℓ,S

 · tℓ,i · wℓ. (11)

Note that if a leaf ℓ is such that i ̸∈ Fℓ, then the inner sum needs to exclude the
summand where S = Fℓ because (|Fℓ|−1−|S|)! is not well-defined. This is addressed
in Section 3.2.4.

iii) To compute the inner sum, one needs to consider a (potentially) larger set Rℓ ⊃ Fℓ

of size D, see Section 3.2.1, and sum over all 2D subsets of Rℓ. We do not know
the set Rℓ, all we know is it contains Fℓ. We will then make use of obliviously
computed characteristic vectors to annihilate the contribution of subsets that violate
the condition S ⊂ Fℓ \ {i} (assuming i ∈ Fℓ - otherwise tℓ,i annihilates the inner
sum altogether, see ii)).

The main contribution of this work is Theorem 2, a data-independent version of
Theorem 1.

3.2.1 Size reduction.

SHAP values are originally defined as sums over subsets of {1, . . . , M} (see Definition 2)
which introduces an overhead of 2M in the complexity of computing them. The main
observation of TreeSHAP, Theorem 1, is that by changing the index of summation in (7)
(i.e., summing over the leaves ℓ ∈ L first), for each leaf ℓ, it suffices to sum only over
the subsets of the set Fℓ (which has size at most D). This essentially yields a plaintext
version of the TreeSHAP algorithm. The challenge of designing a data-independent privacy-
preserving algorithm is that we do not know the exact size of Fℓ. Therefore, the best
we can do in a privacy-preserving setting is to reduce the overhead to 2D for each leaf ℓ
(instead of 2|Fℓ|) by considering a possibly larger subset Rℓ ⊃ Fℓ of {1, . . . , M} (see below
for the exact definitions) of cardinality exactly equal to D (i.e., a cardinality that is data
independent). As D ≪ M in most of the practical applications, this is still a major gain
in complexity.

Our approach is based on sorting permutations and reduces the characteristic vector Fℓ

of Fℓ (a binary vector of size M) to a vector Rℓ of size D that encodes the same information
as Fℓ. Let SM be the set of permutations in M letters and let σFℓ

∈ SM be a permutation
that sorts (in ascending order) the binary vector Fℓ. Note that σFℓ

(Fℓ) ∈ {0, 1}M consists
of M − |Fℓ| 0’s followed by |Fℓ| 1’s. We denote by Rℓ ∈ {0, 1}D the vector formed by the
last D entries of σFℓ

(Fℓ).
We call a valid index any of the |Fℓ| indices in Fℓ (equivalently, the position of the 1

in Fℓ respectively Rℓ it corresponds to). Otherwise, we call an index invalid; there are
D − |Fℓ| invalid indices in Rℓ, and we denote by Iℓ = Rℓ \ Fℓ the set of invalid indices
of Rℓ. Note that the order of the valid indices in Rℓ depends on the choice of σFℓ

and
hence, does not yield useful information about any natural order of the indices in the path
(e.g., the top-to-bottom order of the nodes in the path).

The concept of valid indices will be used to encode the subsets S ⊂ Fℓ in the inner
sum of (8) in a way that does not require knowing Fℓ. One way to get a data-independent
algorithm for computing (8) is to rewrite the inner sum as a sum over all 2D subsets of Rℓ

14 XorSHAP

and make sure the contribution to the sum of any subset containing invalid indices is 0.
We formalize this intuition in Theorem 2 below after introducing the required notions.

Lemma 6 (Complexity). The 2D−1 permutations σFℓ
∈ SM are obtained by sorting

the 2D−1 binary vectors Fℓ. Note that σFℓ
(Fℓ) is a by-product of the sorting algorithm

from [BCD+23], and Rℓ can therefore be computed locally.

3.2.2 Ordering the power set P (Rℓ).

We now introduce a convenient linear ordering on the power set P (Rℓ) of Rℓ that is
induced by the choice of σFℓ

(i.e., is non-canonical) satisfying the following properties:

i) The first subset in the ordering is the entire set Rℓ and the last subset is the empty
set.

ii) The power set P (Fℓ) corresponds to the last 2|Fℓ| subsets whereas the first 2D − 2|Fℓ|

subsets contain invalid indices.

iii) The order of indexing of P (Rℓ) depends on σFℓ
and is therefore non-canonical; yet,

ii) always holds.

iv) The cardinality of a subset S ⊂ Rℓ is recovered explicitly from the binary expansion
of its index in the linear ordering.

Let {τ1, . . . , τD} be the elements of Rℓ with ordering determined by the permuta-
tion σFℓ

. Note that the first D − |Fℓ| indices are invalid and the last |Fℓ| are valid. The
subset corresponding to position s = 1, . . . , 2D in the linear ordering of P (Rℓ) is the one
whose characteristic vector is equal to the binary expansion of 2D − s (msb-to-lsb binary
representation). The cardinality of the subset can thus be obtained as the sum of the bits
of the binary expansion. For instance, if D = 3 then the ordering is the following:

{τ1, τ2, τ3}, {τ1, τ2}, {τ1, τ3}, {τ1}, {τ2, τ3}, {τ2}, {τ3},∅.

E.g., for s = 2, the binary expansion of 8 − 2 is 110 and hence the 2nd subset in the
ordering is {τ1, τ2}. Note that this ordering is agnostic to the presence of invalid indices
(which is secret information).

3.2.3 Computing Wℓ,S.

Let Oℓ ∈ {0, 1}D be the binary vector given by

Oℓ,d =


∏

n∈Pℓ
jn=τd

o
(ℓ)
n if τd is a valid index,

1 otherwise.

and let Zℓ ∈ [0, 1]D be the vector given by

Zℓ,d =


∏

n∈Pℓ
jn=τd

z
(ℓ)
n if τd is a valid index,

1 otherwise.

Lemma 7. We obliviously compute Oℓ and Zℓ as:

Oℓ = πD ◦ σFℓ

(
D∏

k=1

(
oℓ,k−1 · P

(k)
ℓ + (1 − P

(k)
ℓ)

))

Dimitar Jetchev, Marius Vuille 15

and

Zℓ = πD ◦ σFℓ

(
D∏

k=1

(
zℓ,k−1 · P

(k)
ℓ + (1 − P

(k)
ℓ)

))
,

respectively, where P
(k)
ℓ is the kth column of Pℓ and πD : RM → RD is the projection onto

the last D coordinates.

Proof. Let τd be a valid index, that is, Td := {1 ≤ k ≤ D : j
n

(ℓ)
k−1

= τd} is non-empty.

Moreover, for all k ∈ Td we have P
(k)
ℓ = bτd

(the only non-zero entry is at position τd), and
for all k ∈ {1, . . . , D} \ Td the τdth entry of P

(k)
ℓ , which we denote by P

(k)
ℓ,τd

, is 0. Hence,∏
n∈Pℓ
jn=τd

o(ℓ)
n =

∏
k∈Td

oℓ,k−1

=
D∏

k=1

(
oℓ,k−1 · P

(k)
ℓ,τd

+ (1 − P
(k)
ℓ,τd

)
)

,

and πD ◦ σFℓ
sends the τdth entry of a vector of size M to the dth entry of a vector of

size D.
For an invalid index τd one observes that P

(k)
ℓ,τd

= 0 for all k = 1, . . . , D and hence,

D∏
k=1

(
oℓ,k−1 · P

(k)
ℓ,τd

+ (1 − P
(k)
ℓ,τd

)
)

= 1,

which concludes the proof for Oℓ. The proof for Zℓ is identical. ■

Remark 5. The (plaintext) definition (5) of Wℓ,S applies to subsets S ⊂ Fℓ. We can
naturally extend this definition to S ⊂ Rℓ by setting Wℓ,S := Wℓ,S∩Fℓ

and note that
Lemma 5 still holds.

Let W
P (Rℓ)
ℓ ∈ [0, 1]2D be the vector whose Sth entry is Wℓ,S (when indexing the power

set P (Rℓ) by the subsets of Rℓ as described in Section 3.2.2).

Lemma 8. We obliviously compute W
P (Rℓ)
ℓ as:

W
P (Rℓ)
ℓ =

D∏
d=1

concatd(Oℓ,d, Zℓ,d),

where concatd(a, b) = (a, . . . , a︸ ︷︷ ︸
2D−d

, b, . . . , b︸ ︷︷ ︸
2D−d

, . . . , a, . . . , a︸ ︷︷ ︸
2D−d

, b, . . . , b︸ ︷︷ ︸
2D−d

) ∈ R2D .

Proof. According to Lemma 5 and Remark 5, for any subset S ⊂ Rℓ,

Wℓ,S =
∏

n∈Pℓ
jn∈S

o(ℓ)
n

∏
n∈Pℓ

jn /∈S

z(ℓ)
n .

Fix a subset S ⊂ Rℓ with corresponding position 1 ≤ s ≤ 2D, and let bD−1 · · · b0 be the
binary expansion of 2D − s. Recall that τ1 ∈ S ⇔ bD−1 = 1, τ2 ∈ S ⇔ bD−2 = 1, etc.
Since Oℓ,d =

∏
n∈Pℓ
jn=τd

o
(ℓ)
n and Zℓ,d =

∏
n∈Pℓ
jn=τd

z
(ℓ)
n if τd is a valid index (and Oℓ,d = Zℓ,d = 1

if τd is an invalid index), one deduces that

Wℓ,S =
D∏

d=1
(bD−d ? Oℓ,d : Zℓ,d).

16 XorSHAP

Moreover, the sth entry of concatd(a, b) equals a if and only if (2D − s) / 2D−d is odd
(Euclidean division) if and only if bD−d = 1, which concludes the proof. ■

Lemma 9 (Complexity).

• There are 2D binary vectors Oℓ of size D × 1, obtained via Lemma 7, requiring D
ANDs between a bit and a binary vector of size M × 1, D − 1 ANDs between binary
vectors of size M × 1 and one call to σFℓ

each.

• There are 2D vectors Zℓ of size D × 1, obtained via Lemma 7, requiring D multipli-
cations between a scalar and a binary vector of size M × 1, D − 1 multiplications
between vectors of size M × 1 and one call to σFℓ

each.

• There are 2D vectors W
P (Rℓ)
ℓ of size 2D × 1, obtained via Lemma 8, requiring D − 1

multiplications between vectors of size 2D × 1 each.

3.2.4 Computing Shapley weights.

To filter subsets that contain valid indices only, we need to make the following definition:

Definition 2. Let S ⊂ Rℓ. The Shapley weight of S with respect to Fℓ is

CS =
{

|S|!(|Fℓ|−1−|S|)!
|Fℓ|! if S ⊊ Fℓ

0 otherwise.

Remark 6. The reason why we exclude S = Fℓ is the inner summation of (11). If i ∈ Fℓ

then S ⊂ Fℓ \ {i} implies S ⊊ Fℓ, and if i ̸∈ Fℓ then the case S = Fℓ would yield factorial
of a negative number.

Since Fℓ and |Fℓ| are not known a priori, we first compute a larger public matrix C
of size 2D × D whose dth column C(d) is the vector of the 2D Shapley weights (one for
each subset S ⊂ Rℓ) for the case |Fℓ| = d. In a second step we compute δ|Fℓ|, the secret
characteristic vector of |Fℓ|, and obliviously select the correct column of C.

We compute the sth entry C
(d)
s of the dth column of C as

C(d)
s =

{ |S|!(d−1−|S|)!
d! if s > 2D − 2d + 1
0 otherwise,

for all d = 1, . . . , D and all s = 1, . . . , 2D, where the cardinality of the corresponding
subset S at position s is given by property iv) from Section 3.2.2. Note that the matrix C
is pre-computed (it is the same for all i ∈ {1, . . . , M} and for all ℓ ∈ L).

We are now interested in obliviously computing the secret-shared, one-hot encoding
(indicator) vector δ|Fℓ| of the secret cardinality |Fℓ|, that is, the binary vector of size D
that has a single 1 at the |Fℓ|th position. This is done via the following simple lemma:

Lemma 10. If Rℓ,d denotes the dth entry of the vector Rℓ = (0, . . . , 0︸ ︷︷ ︸
D−|Fℓ|

, 1, . . . , 1︸ ︷︷ ︸
|Fℓ|

) then

δ|Fℓ| = (Rℓ,D ⊕ Rℓ,D−1, . . . , Rℓ,2 ⊕ Rℓ,1, Rℓ,1)t ∈ {0, 1}D.

Since we have Rℓ available in secret shares, the above lemma yields secret shares
for δ|Fℓ|. Finally, we compute C(|Fℓ|), the |Fℓ|th column of C, as

C(|Fℓ|) =
D∑

d=1
δ|Fℓ|,d · C(d) ∈ [0, 1]2

D

. (12)

Dimitar Jetchev, Marius Vuille 17

Lemma 11 (Complexity).

• C is a publicly computed matrix of size 2D × D.

• There are 2D binary vectors δ|Fℓ| of size D × 1, obtained via Lemma 10, which can
be computed locally from the binary vector Rℓ.

• There are 2D vectors C(|Fℓ|) of size 2D × 1, which are computed locally as the matrix
multiplication between the public matrix C and the secret vector δ|Fℓ|.

3.2.5 Computing tℓ.

Let tℓ ∈ [−1, N − 1]M be the vector with ith entry given by

tℓ,i =


∏

n∈Pℓ
jn=i

o
(ℓ)
n /z

(ℓ)
n − 1 if i ∈ Fℓ

0 otherwise,

where N is the number of samples the tree model was trained with.

Lemma 12. We obliviously compute tℓ as:

tℓ =
D∏

k=1

(
oℓ,k−1 · z−1

ℓ,k−1 · P
(k)
ℓ + (1 − P

(k)
ℓ)

)
− 1,

where P
(k)
ℓ is the kth column of Pℓ.

Proof. For all i = 1, . . . , M , let Ti := {1 ≤ k ≤ D : j
n

(ℓ)
k−1

= i}. For all k ∈ Ti we have

P
(k)
ℓ = bi (the only non-zero entry is at position i), and for all k ∈ {1, . . . , D} \ Ti the ith

entry of P
(k)
ℓ , which we denote by P

(k)
ℓ,i , is 0. Hence, if i ∈ Fℓ then

∏
n∈Pℓ
jn=i

o(ℓ)
n /z(ℓ)

n − 1 =
∏

k∈Ti

oℓ,k−1 · z−1
ℓ,k−1 − 1

=
D∏

k=1

(
oℓ,k−1 · z−1

ℓ,k−1 · P
(k)
ℓ,i + (1 − P

(k)
ℓ,i)

)
− 1.

And if i ̸∈ Fℓ then Ti = ∅ and hence,

D∏
k=1

(
oℓ,k−1 · z−1

ℓ,k−1 · P
(k)
ℓ,i + (1 − P

(k)
ℓ,i)

)
− 1 =

D∏
k=1

1 − 1 = 0.

■

Lemma 13 (Complexity).

• Computing all inverse cover ratios 1/z
(ℓ)
n in Lemma 12 requires two private divisions

between vectors of size 2D − 1 × 1 (unlike for the computation of zℓ, there is no
easily computable relation between the inverse cover ratio of a left child node and the
inverse cover ratio of its right sibling node).

• There are 2D vectors tℓ of size M × 1, obtained via Lemma 12, requiring D multipli-
cations between two scalars, D multiplications between a scalar and a binary vector
of size M × 1 and D − 1 multiplications between vectors of size M × 1 each.

18 XorSHAP

3.2.6 Putting everything together.

For i ∈ {1, . . . , M}, let I(i)
ℓ ∈ {0, 1}2D be the indicator vector of {S ⊂ Rℓ : i ̸∈ S}, i.e.,

I(i)
ℓ,s = 1 if and only if i ̸∈ S, where S ⊂ Rℓ is the subset corresponding to position s.

Lemma 14. We have

I(i)
ℓ = ¬

(
D⊕
d

concatd(η(i)
ℓ,d, 0)

)
,

where η
(i)
ℓ = πD ◦ σFℓ

(0, . . . , 0︸ ︷︷ ︸
i−1

, Fℓ,i, 0, . . . , 0︸ ︷︷ ︸
M−i

)

 ∈ {0, 1}D.

Theorem 2. We obliviously compute ϕi(x) as follows:

ϕi(x) =
∑
ℓ∈L

 2D∑
s=1

I(i)
ℓ,s · C(|Fℓ|)

s · W
P (Rℓ)
ℓ,s

 · tℓ,i · wℓ. (13)

Proof. We want to show that (13) computes (8). For all leaves ℓ ∈ L we have tℓ,i = 0
whenever i ∈ {1, . . . , M} \ Fℓ and hence, (8) reduces to

∑
ℓ∈L

 ∑
S⊂Fℓ\{i}

|S|!(|Fℓ| − 1 − |S|)!
|Fℓ|!

· Wℓ,S

 · tℓ,i · wℓ.

Regarding the inner sum, for each leaf ℓ ∈ L, the subsets S ⊊ Fℓ correspond to the
positions s = 2D − 2|Fℓ| + 2, . . . , 2D with respect to the ordering defined in Section 3.2.2.
Moreover, C

(|Fℓ|)
s = 0 for s = 1, . . . , 2D − 2|Fℓ| + 1 and C

(|Fℓ|)
s = |S|!(|Fℓ|−1−|S|)!

|Fℓ|! for
s = 2D − 2|Fℓ| + 2, . . . , 2D. Note that the Shapley weight depends on the cardinality
of S only, which by iv) of Section 3.2.2 is uniquely determined by the position s in the
ordering (and not the ordering itself). Since W

P (Rℓ)
ℓ is ordered in a way that respects iv)

of Section 3.2.2, for each subset S ⊊ Fℓ the quantity Wℓ,S is multiplied with the right
Shapley weight |S|!(|Fℓ|−1−|S|)!

|Fℓ|! .
Finally, the characteristic vector I(i)

ℓ annihilates the contribution of all subsets S that
contain i, which concludes the proof. ■

Lemma 15 (Complexity).

• Computing the M2D−1 binary vectors η
(i)
ℓ and I

(i)
ℓ respectively from Lemma 14

requires M2D−1 permutations of binary vectors of size M × 1, all other computations
can be performed locally.

• Computing ϕi(x) from Theorem 2: the inner sum requires 2D ·2 scalar multiplications,
hence ϕi(x) is computed with a total of 2D(2D+1 + 2) scalar multiplications.

3.3 XorSHAP for the 0-cover case.
As pointed out in Remark 1, the definition of Wℓ,S(x), see (5), is only valid if all split
nodes n have positive cover (i.e., cn > 0). In a plaintext training algorithm, any split node
with 0-cover will be removed during pruning. This, however, modifies the tree structure.
A full binary tree of depth D is a tree with 2D − 1 split nodes and 2D leaf nodes. In order
for XorSHAP to work correctly in the presence of 0-cover nodes, the full binary trees of
the model are supposed to be pruned during training in a way that preserves the tree
structure.

Dimitar Jetchev, Marius Vuille 19

By pruning a node of a decision tree we mean the process of replacing the subtree
rooted at that node by a leaf node with some specified weight.

Definition 3. Let Pruning be any plaintext pruning algorithm. Its tree structure-
preserving counterpart PruningFBT is the following algorithm: suppose that Pruning
replaces the subtree rooted at a node n by a single leaf node with some weight w; then,
PruningFBT is the algorithm that keeps the binary subtree rooted at n and only replaces
all leaf weights of that subtree by w.

A pruned full binary tree by a PruningFBT is thus still a full binary tree, however, as
soon as a sample evaluates through a split node n that got pruned the predicted value no
longer depends on the taken sub-path starting from n. While evaluating a FBT-pruned full
binary tree Tree that contains 0-cover nodes is straightforward, computing the conditional
expectation E[Tree(ξ) | ξS = xS] is not.

Let Tree be a pruned full binary tree (it may contain 0-cover nodes). We define G′
S(x; n),

a generalization of GS(x; n), see (4), as

G′
S(x; n) =



wn if n is a leaf node,

G′
S(x; nright) else if cnleft = 0,

G′
S(x; nleft) else if cnright = 0,

(xjn < tn) ? G′
S(x; nleft) : G′

S(x; nright) else if jn ∈ S,
cnleft

cn
G′

S (x; nleft) + cnright
cn

G′
S (x; nright) else.

(14)

Lemma 16. Let Tree be a full binary tree containing 0-cover nodes and let Pruning be
a plaintext pruning algorithm, with PruningFBT its tree structure preserving counterpart.
If G′

S(x; nroot) is computed with PruningFBT(Tree) then

E[Pruning(Tree)(ξ) | ξS = xS] = G′
S(x; nroot).

Proof. Suppose that sample x evaluates through a split node n with non-zero cover,
however a child node of n has zero cover. Without loss of generality assume that cnleft = 0.
Since Pruning replaces n by a leaf node (say with weight w), all leaf nodes of the full
subtree of PruningFBT(Tree) with root n will have weight w. A simple induction then
shows that G′

S(x; nright) = w. ■

We can extend Definition 1 to a notion of consistency between a path Pℓ and a
pair (x, S) of a sample and a feature subset to the case where a full binary tree contains
0-cover nodes.

Definition 4. We call a path Pℓ consistent with respect to the pair (x, S) if every node
in Pℓ ∪ {ℓ} has non-zero cover and if for every node n ∈ Pℓ such that jn ∈ S, either the
child node determined by the condition xjn

< tn coincides with the node of Pℓ ∪ {ℓ} that
succeeds n in the path or the child node determined by the condition ¬(xjn

< tn) has zero
cover. Otherwise, the path is called inconsistent.

The quantity Wℓ,S , see (5), can naturally be extended to the case of full binary trees
containing 0-cover nodes, with the notion of consistency introduced in Definition 4.

It remains to show how to obliviously evaluate G′
S(x; n) for a pruned oblivious (i.e., full

binary) tree Tree. Note that only the weights of leaves whose path is consistent with (x, S)
contribute to G′

S(x; n). Unlike eval(x, Tree), which can be obliviously computed from
the secret bits β = (xj < t), see [DDG+22], one needs to consider more than the bits β to
evaluate G′

S(x; n). Recall that for the evaluation of GS(x; n), one computes oℓ from the
bits β only, see Lemma 3.

Given a leaf node ℓ ∈ L, let Pℓ be the path of split nodes leading to ℓ. We define
õℓ = (õ(ℓ)

n : n ∈ Pℓ), similar to oℓ, where õ
(ℓ)
n = 1 if the successor node nchild of n in Pℓ ∪{ℓ}

20 XorSHAP

has non-zero cover and either evaluating node n on the sample x yields nchild or the sibling
node of nchild (when looking at the whole tree) has zero cover; otherwise õ

(ℓ)
n = 0.

Lemma 17.
Wℓ,S(x) =

∏
n∈Pℓ
jn∈S

õ(ℓ)
n

∏
n∈Pℓ

jn /∈S

z(ℓ)
n . (15)

Proof. If Pℓ ∪ {ℓ} contains a 0-cover node then the path is inconsistent with (x, S). In
this case, let n be the unique node in the path with non-zero cover and whose successor
node nchild has zero cover (a child of a 0-cover node has zero cover, so n is unique in the
path). If jn ∈ S then õ

(ℓ)
n = 0, else z

(ℓ)
n = cnchild

cn
= 0.

If Pℓ ∪ {ℓ} does not contain any 0-cover node then Pℓ is consistent with (x, S) if and
only if

∏
n∈Pℓ
jn∈S

õ
(ℓ)
n = 1. ■

Note that for any 0-cover split node n the ratio z
(ℓ)
n is not well-defined. A data-oblivious

division algorithm is expected to return arbitrary output if the denominator is 0 and hence,
the presence of 0-cover split nodes in the path does not invalidate Lemma 17.

It remains to show how to obliviously compute õℓ. One then applies Lemma 7 and
Lemma 8 with õℓ to obliviously compute ϕi(x) as in Theorem 2. Fix an index d. As in
Lemma 3, let (j, t) be the feature index and threshold associated with node n

(ℓ)
d , and let

β = (xj < t) ∈ {0, 1}. Let nleft and nright be the left and right children nodes of n
(ℓ)
d

respectively (when looking at the whole tree). Consider the following bits

γleft = ((cnleft == 0) ? 0 : ((cnright == 0) ? 1 : β))

and
γright = ¬γleft ⊕ (cnleft == 0) ∧ (cnright == 0),

which can be computed obliviously.

Lemma 18.

õℓ,d =
{

γleft if nchild = nleft

γright if nchild = nright

Proof. We have:

• if cnleft > 0 and cnright > 0 then γleft = β and γright = ¬β,

• if cnleft > 0 and cnright = 0 then γleft = 1 and γright = 0,

• if cnleft = 0 and cnright > 0 then γleft = 0 and γright = 1,

• if cnleft = 0 and cnright = 0 then γleft = 0 and γright = 0.

■

4 Complexity Analysis
For analyzing the complexity of XorSHAP, consider a model consisting of a single tree.
For an arbitrary tree ensemble model, one can simply multiply the complexity by the
number T of decision trees in the ensemble.

Below, we list the complexities of the computations needed in the different sections of
Section 3.

Dimitar Jetchev, Marius Vuille 21

§3.1 By Lemma 4, the cost is dominated by the computation of the zℓ’s, which amounts
to one private division between two vectors of size 2D − 1 × 1.

§3.2.1 By Lemma 6, the cost is dominated by the computation of the σFℓ
’s, which amounts

to the sorting of 2D−1 binary vectors of size M .

§3.2.3 By Lemma 9, the cost is dominated by the computation of the Zℓ’s, which amounts
to 2D times D−1 multiplications between vectors of size M ×1, or by the computation
of the W

P (Rℓ)
ℓ ’s, which amounts to 2D times D − 1 multiplications between vectors

of size 2D × 1.

§3.2.4 By Lemma 11, all computations happen locally.

§3.2.5 By Lemma 13, the cost is dominated by the computation of the tℓ’s, which amounts
to 2D times D − 1 multiplications between vectors of size M × 1.

§3.2.6 By Lemma 15, the cost is dominated by the computation of ϕi(x), which amounts
to 2D(2D+1 + 2) scalar multiplications.

Comparison of the above-listed complexities shows that the bottlenecks are:

• Computing all Zℓ’s from Section 3.2.3 is O(MD2D),

• Computing all W
P (Rℓ)
ℓ ’s from Section 3.2.3 is O(D22D),

• Computing all tℓ’s from Section 3.2.5 is O(MD2D),

• Computing ϕi(x) from Section 3.2.6 is O(22D+1).

Hence, if M̃ = max(M, 2D), then XorSHAP runs in

O(TM̃D2D)

multiplications, where T is the number of trees.
In contrast to TreeSHAP (see Section 2.2.3), whose complexity is O(T2DD2) (i.e., only

depends on the depth D and not on the number of features M), XorSHAP’s runtime is linear
in M . This is the price we pay for having a data oblivious algorithm since feature subsets
are represented by characteristic vectors of size M (though we avoid having overhead 2M

by reducing the representation of feature subsets to characteristic vectors of size D, see
Section 3.2.1).

5 Implementation and Benchmarks
To demonstrate the scalability of XorSHAP we implemented the algorithm on the Manticore
framework [BCD+23] and ran benchmarks for various input dimensions and model param-
eters. In our experiments, we are only interested in the runtime/resources (though we
check correctness vs standard implementations). For this purpose, the trees are randomly
generated full binary trees of depth D, that is, for each split node of each tree we generate
a random feature index j ∈ {1, . . . , M} and a random threshold t ∈ R, and for each leaf
node we generate a random weight w ∈ R and a random cover c ≥ 0 (the sum of the covers
of all leaf nodes was fixed to 10’000). The test dataset is a randomly generated dataset of
desired dimensions.

We reiterate that the sole purpose of the presented benchmarks (run with the random
input models and data) was to provide practical complexity estimates. As described in
Section 6, we have already used XorSHAP in real-world settings, models and input data
and with meaningful implications of privacy-preserving model explainability.

22 XorSHAP

The offline phase (generation of random precomputed data) is performed by the trusted
dealer. The benchmarks were run in a 2-party scenario with input data already provided
in secret shares across the two parties (i.e., simulating any kind of partition). We vary the
number of trees T , the tree depth D, the number of features M as well as the number of
testing samples (simultaneous computation of the SHAP values). The benchmarks include
offline and online phase and were run on an Intel Xeon E5-2666 v3 @ 2.90GHz CPU
with 32GB RAM. Over all runs, the L∞-distance between the SHAP values computed in
MPC and the baseline plaintext computation with the classical SHAP implementation2 is
around 10−13.

In Table 1 and Table 2, we provide benchmarks (offline/online runtime and number of
outgoing connections) and (network transfer per party and memory overhead) respectively,
across different values of T for simultaneous computations of 20 samples/predictions, for
M = 20 features and binary trees of depth D = 6. Similarly, in Table 3 and Table 4, we
provide the same type of data for varying number of features M .

Figure 2 shows the total runtime for varying number of trees and tree depth, and
varying number of features and simultaneously evaluated samples respectively. The time
on the y-axis consists of the offline compute time plus the online compute time plus
and estimate of the network transfer time. The latter is computed by using the network
transfer (offline triplet size and online network size), number of outgoing connections,
the throughput and the latency of the network. The estimation uses a network whose
throughput is 120Mbps and whose latency is 0.3ms.

Table 1: #samples = 20, M = 20, D = 6
T offline compute time (in s) online compute time (in s) number of outgoing connections

100 97 95 334
80 75 74 334
60 57 55 334
40 37 36 334
20 17 14 334

Table 2: #samples = 20, M = 20, D = 6
T network transfer (in MB, per party, offline + online) memory offline (in MB) memory online (in MB)

100 5329 3867 11679
80 4263 3112 9379
60 3196 2346 7056
40 2131 1572 4744
20 1065 806 2430

Table 3: D = 4, T = 60, #samples = 100
M offline compute time (in s) online compute time (in s) number of outgoing connections

100 64 60 399
80 50 49 379
60 38 38 356
40 26 25 336
20 15 14 313

6 Privacy Implications in real-world use cases
While our benchmarks presented in the previous section were computed on random input
data, our algorithm has already been applied to many real-world use cases in financial

2See https://shap.readthedocs.io/en/latest/ as well as the function
shap.TreeExplainer.shap_values(x).

Dimitar Jetchev, Marius Vuille 23

Table 4: D = 4, T = 60, #samples = 100
M network transfer (in MB, per party, offline + online) memory offline (in MB) memory online (in MB)

100 4606 2834 5836
80 3751 2277 4691
60 2897 1739 3554
40 2043 1191 2444
20 1189 632 1295

Figure 2: Left: varying number of trees and tree depth. Right: varying number of
features and simultaneously evaluated samples.

technologies, healthcare as well as predictive maintenance where the input data and the
model are sensitive and need to be protected.

We now summarize one important application in root-cause analysis and yield opti-
mization in the semiconductor fabrication process of microchips - a process that includes
two major parties, the Fabs (fabrication plants that manufacture semiconductor products
either for other companies or for themselves) and the SMEs (Semiconductor Manufacturing
Equipment companies that produce advanced and highly specialized equipment for the
manufacturing process). The input data consists of sensor readings from the manufacturing
equipment (accessible to the SMEs) and labels (typically assigned by the Fabs). One uses
supervised machine learning models, very often tree ensemble models, to predict the labels
from the sensor readings data. Model explainability is crucial to identify the input features
(sensor readings) that affects a predicted defect of a wafer.

From a privacy perspective, the Fabs and the SMEs are not willing to share their data
with each other due to sensitivity - Fabs are interested to protect their manufacturing
pipelines whereas SMEs are reluctant to give their sensor readings to the Fabs due to IP
concerns.

As there are multiple sensor readings in the prediction model, a lot of these are
irrelevant for explaining the predicted defect. Note that XorSHAP enables privacy-preserving
computation of SHAP values (as explainability metrics) to better identify the relevant
sensor readings and therefore, the root cause of the defect. We refer the interested reader
to [JSTV23] for more details on this and other use cases.

Note that the above real-world use cases are already within reach of the current
implementation where XorSHAP already supports decision tree ensemble models with
hundreds of trees (of reasonable depth D ≥ 10) as well as hundreds of features M
(reflecting the complexity of the manufacturing process in terms of sensor readings).

24 XorSHAP

7 Conclusion
The proposed XorSHAP is one of the first attempt to compute SHAP values in an efficient
and scalable fashion for decision tree ensemble models in a generic data-oblivious manner,
thus, making it applicable to various privacy-preserving settings such as SMPC, FHE as
well as differential privacy (DP) as well as to a multitude of choices on the underlying
threat models and security assumptions. On a decision tree ensemble model with T binary
decision trees, with M features in depth D, our algorithm has a run-time O(TM̃D2D)
where M̃ = max(M, 2D), thus, being linear in the number of features.

We implemented XorSHAP using the Manticore framework for Secure Multiparty
Computation (SMPC) with additive secret sharing using modular real secret shares and
Boolean secret shares. The security model of our implementation, semi-honest with full-
threshold and trusted dealer in the offline phase is well-adapted to a lot of the practical
use cases. The implementation scales to real-world datasets (e.g., computing SHAP values
for models with hundreds of trees, each with hundreds of features) and is already part of
Inpher XOR Platform for privacy-preserving computations addressing relevant real-world
use cases as described in Section 6.

Finally, the parallelization-friendly nature of our method opens another future research
direction on massively scaling the computation using hardware acceleration with GPUs.
One specific line of research along these lines is finding privacy-preserving variants of
GPUTreeSHAP proposed in [MFH22].

References
[Act23] EU AI Act. European Union Artificial Intelligence Act.

https://artificialintelligenceact.eu/, 2023.

[aM23] Scale and Mamba. Scale and mamba. https://github.com/KULeuven-COS
IC/SCALE-MAMBA, 2023.

[BCD+23] M. Georgieva Belorgey, S. Carpov, K. Deforth, D. Jetchev, A. Sae-Tang,
M. Vuille, N. Gama, J. Katz, I. Leontiadis, and M. Mohammadi. Manticore:
A framework for efficient multiparty computation supporting real number and
boolean arithmetic. J. Cryptol., 36(3):31, 2023. doi:10.1007/s00145-023-0
9464-4.

[BCG+18] Christina Boura, Ilaria Chillotti, Nicolas Gama, Dimitar Jetchev, Stanislav
Peceny, and Alexander Petric. High-precision privacy-preserving real-valued
function evaluation. In Financial Cryptography and Data Security, pages 183–
202, Berlin, Heidelberg, 2018. Springer Berlin Heidelberg. doi:10.1007/97
8-3-662-58387-6_10.

[BIS+22] A. Bogdanova, A. Imakura, T. Sakurai, T. Fujii, T. Sakamoto, and H. Abe.
Achieving transparency in distributed machine learning with explainable data
collaboration. CoRR, abs/2212.03373, 2022. arXiv:2212.03373, doi:10.485
50/arXiv.2212.03373.

[BLW08] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast
privacy-preserving computations. In European Symposium on Research in
Computer Security, pages 192–206. Springer, 2008. doi:10.1007/978-3-540
-88313-5_13.

[CDE+18] R. Cramer, I. Damgård, D. Escudero, P. Scholl, and C. Xing. SPDZ2k : Efficient
mpc mod 2k for dishonest majority. In Advances in Cryptology – CRYPTO
2018, pages 769–798, 2018. doi:10.1007/978-3-319-96881-0_26.

https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://doi.org/10.1007/s00145-023-09464-4
https://doi.org/10.1007/s00145-023-09464-4
https://doi.org/10.1007/978-3-662-58387-6_10
https://doi.org/10.1007/978-3-662-58387-6_10
https://arxiv.org/abs/2212.03373
https://doi.org/10.48550/arXiv.2212.03373
https://doi.org/10.48550/arXiv.2212.03373
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-319-96881-0_26

Dimitar Jetchev, Marius Vuille 25

[DDG+22] K. Deforth, M. Desgroseilliers, N. Gama, M. Georgieva, D. Jetchev, and
M. Vuille. XORBoost: Tree boosting in the multiparty computation setting.
Proc. Priv. Enhancing Technol., 2022(4):66–85, 2022. doi:10.56553/popet
s-2022-0099.

[DH12] W.J. Dally and R.C. Harting. Digital Design: A Systems Approach. Cambridge
University Press, 2012. URL: https://books.google.ch/books?id=WLoHO
G0MhbIC.

[DPSZ12] I. Damgård, V. Pastro, N. Smart, and S. Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Annual Cryptology Conference,
pages 643–662. Springer, 2012. doi:10.1007/978-3-642-32009-5_38.

[EDPS23] European Data Protection Supervisor. EDPS TechDispatch on Explainable AI.
www.edps.europa.eu/system/files/2023-11/23-11-16_techdispatch_xai_en.pdf,
2023.

[EGK+20] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl. Improved
primitives for MPC over mixed arithmetic-binary circuits. In 40th Annual
International Cryptology Conference, CRYPTO, volume 12171 of Lecture Notes
in Computer Science, pages 823–852, 2020. doi:10.1007/978-3-030-56880
-1_29.

[JSTV23] D. Jetchev, A. Sae-Tang, and M. Vuille. Balancing pri-
vacy and explainable ai in semiconductor manufacturing.
https://inpher.io/blog/xai-semiconductor-manufacturing/, 2023.

[Kel20] M. Keller. MP-SPDZ: A versatile framework for multi-party computation. In
CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communications
Security, pages 1575–1590, 2020. doi:10.1145/3372297.3417872.

[KOS16] M. Keller, E. Orsini, and P. Scholl. Mascot: faster malicious arithmetic secure
computation with oblivious transfer. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 830–842, 2016.
doi:10.1145/2976749.2978357.

[KPR18] M. Keller, V. Pastro, and D. Rotaru. Overdrive: Making SPDZ great again.
In EUROCRYPT 2018, volume 10822 of Lecture Notes in Computer Science,
pages 158–189, 2018. doi:10.1007/978-3-319-78372-7_6.

[LEC+20] S. Lundberg, G. Erion, H. Chen, A. DeGrave, J. Prutkin, B. Nair, R. Katz,
J. Himmelfarb, N. Bansal, and S.-I. Lee. From local explanations to global
understanding with explainable AI for trees. Nat. Mach. Intell., 2(1):56–67,
2020. doi:10.1038/s42256-019-0138-9.

[LEL18] S.. Lundberg, G. Erion, and S. Lee. Consistent individualized feature attribution
for tree ensembles. CoRR, abs/1802.03888, 2018.

[LL17] S. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions.
In Advances in Neural Information Processing Systems, pages 4765–4774, 2017.

[MFH22] Rory Mitchell, Eibe Frank, and Geoffrey Holmes. Gputreeshap: massively
parallel exact calculation of shap scores for tree ensembles. PeerJ Computer
Science, 8:e880, 04 2022. doi:10.7717/peerj-cs.880.

[Mol22] C. Molnar. Interpretable Machine Learning. 2 edition, 2022. URL: https:
//christophm.github.io/interpretable-ml-book.

https://doi.org/10.56553/popets-2022-0099
https://doi.org/10.56553/popets-2022-0099
https://books.google.ch/books?id=WLoHOG0MhbIC
https://books.google.ch/books?id=WLoHOG0MhbIC
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-030-56880-1_29
https://doi.org/10.1007/978-3-030-56880-1_29
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.7717/peerj-cs.880
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book

26 XorSHAP

[MR18] P. Mohassel and P. Rindal. Aby3: A mixed protocol framework for machine
learning. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng
Wang, editors, Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018, pages 35–52. ACM, 2018. doi:10.1145/3243734.3243760.

[MZ17] P. Mohassel and Y. Zhang. SecureML: A system for scalable privacy-preserving
machine learning. In 2017 IEEE Symposium on Security and Privacy, SP 2017,
San Jose, CA, USA, May 22-26, 2017, pages 19–38. IEEE Computer Society,
2017. doi:10.1109/SP.2017.12.

[PSSY21] A. Patra, T. Schneider, A. Suresh, and H. Yalame. Aby2. 0: Improved mixed-
protocol secure two-party computation. In 30th USENIX Security Symposium,
2021.

[RSG16] M. Túlio Ribeiro, S. Singh, and C. Guestrin. "why should I trust you?":
Explaining the predictions of any classifier. In Proceedings of the Demonstrations
Session, NAACL HLT 2016, The 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, San Diego California, USA, June 12-17, 2016, pages 97–101. The
Association for Computational Linguistics, 2016. doi:10.18653/v1/N16-3020.

[Sha53] L. Shapley. A value for n-person games. Contributions to the Theory of Games,
2(28):307–317, 1953. doi:10.1515/9781400881970-018.

[SK14] E. Strumbelj and I. Kononenko. Explaining prediction models and individual
predictions with feature contributions. Knowl. Inf. Syst., 41(3):647–665, 2014.
doi:10.1007/s10115-013-0679-x.

[TLL+22] Z. Tian, J. Liu, J. Li, X. Cao, R. Jia, and K. Ren. Private data valuation
and fair payment in data marketplaces. CoRR, abs/2210.08723, 2022. arXiv:
2210.08723, doi:10.48550/arXiv.2210.08723.

[Wan19] Guan Wang. Interpret federated learning with shapley values, 05 2019. doi:
10.48550/arXiv.1905.04519.

[WAYS22] Lauren Watson, Rayna Andreeva, Hao-Tsung Yang, and Rik Sarkar. Differen-
tially private shapley values for data evaluation, 06 2022. doi:10.48550/arX
iv.2206.00511.

[WGC19] S. Wagh, D. Gupta, and N. Chandran. SecureNN: 3-party secure computation
for neural network training. Proceedings on Privacy Enhancing Technologies,
2019(3):26–49, 2019. doi:10.2478/popets-2019-0035.

[Yan22] Jilei Yang. Fast treeshap: Accelerating shap value computation for trees, 2022.
arXiv:2109.09847, doi:10.48550/arXiv.2109.09847.

https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.18653/v1/N16-3020
https://doi.org/10.1515/9781400881970-018
https://doi.org/10.1007/s10115-013-0679-x
https://arxiv.org/abs/2210.08723
https://arxiv.org/abs/2210.08723
https://doi.org/10.48550/arXiv.2210.08723
https://doi.org/10.48550/arXiv.1905.04519
https://doi.org/10.48550/arXiv.1905.04519
https://doi.org/10.48550/arXiv.2206.00511
https://doi.org/10.48550/arXiv.2206.00511
https://doi.org/10.2478/popets-2019-0035
https://arxiv.org/abs/2109.09847
https://doi.org/10.48550/arXiv.2109.09847

Dimitar Jetchev, Marius Vuille 27

A Table of Notations

Table 5: Mathematical notation related to XorSHAP
Notation specific to SHAP and TreeSHAP:
fS(x) worth function for sample x and subset S (§2.1)
ϕi(x) Shapley value for sample x and feature i (§2.1)
Pℓ path leading to leaf ℓ (§2.2)
Jℓ multiset of the feature indices for split nodes in Pℓ (§2.2)
Fℓ distinct feature indices for split nodes in Pℓ

(size at most D)
cn cover of node n in a tree (§2.2)
Wℓ,S(x) proportion of paths that flow down to leaf node ℓ (§2.2)

Notation specific to the XorSHAP data-independent algorithm:
Pℓ D × M binary matrix of feature selector vectors

for the path Pℓ (§3.1)
Fℓ characteristic vector of Fℓ (of size M)
σFℓ

oblivious sorting permutation for Fℓ (§3.2)
Rℓ superset of Fℓ of the last D indices after applying σFℓ

(§3.2)
Rℓ characteristic vector of Rℓ (of size D)
bj feature selector vector for feature j
oℓ binary vector of size D (§3.1)
zℓ column vector of size D with cover ratios (§3.1)
tℓ vector of size M used to compute Shapley values (§3.2)
CS Shapley weight (§3.2.4)

Other notation used in the document:
b ? x : y Ternary conditional operator (ternary if),

obliviously computed as b ? x : y = y + b · (x − y)
n a node of a binary decision tree
nleft the left child of a split node n
nright the right child of a split node n
ℓ a leaf node of a binary decision tree
wℓ the weight of a leaf node of a binary decision tree

	Introduction
	Our contributions
	Security model
	Prior art
	Organization and summary of the paper

	Background and Preliminaries
	Background on Shapley values and SHAP
	SHAP values for decision trees
	Secure Multiparty Computation
	Secret sharing of binary decision trees

	XorSHAP: Privacy-preserving TreeSHAP
	Preliminaries.
	XorSHAP.
	XorSHAP for the 0-cover case.

	Complexity Analysis
	Implementation and Benchmarks
	Privacy Implications in real-world use cases
	Conclusion
	References
	Table of Notations

