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Abstract. In recent years, there has been a growing interest in low-latency ciphers.
Since the first low-latency block cipher PRINCE was proposed at ASIACRYPT
2012, many low-latency primitives sprung up, such as Midori, MANTIS, QARMA
and SPEEDY. Some ciphers, like SPEEDY and Orthros, introduce bit permutations
to achieve reduced delay. However, this approach poses a challenge in evaluating
the resistance against some cryptanalysis, especially differential and linear attacks.
SPEEDY-7-192, was fully broken by Boura et.al. using differential attack, for example.
In this paper, we manage to propose a novel low-latency block cipher, which guarantees
security against differential and linear attacks. Revisiting the permutation technique
used in Orthros, we investigate the selection of nibble permutations and propose a
method for selecting them systematically rather than relying on random search. Our
new nibble permutation method ensures the existence of impossible differential and
differential trails for up to 8 rounds, while the nibble permutations for both branches of
Orthros may lead to a 9-round impossible differential trail. Furthermore, we introduce
a new approach for constructing low-latency coordinate functions for 4-bit S-boxes,
which involves a more precise delay computation compared to traditional methods
based solely on circuit depth. The new low-latency primitive uLBC we propose, is a
family of 128-bit block ciphers, with three different versions of key length, respectively
128-bit and 256-bit key, as well as a 384-bit tweakey version with variable-length
key. According to the key length, named uLBC-128, uLBC-256 and uLBC-384t. Our
analysis shows that uLBC-128 exhibits lower latency and area requirements compared
to ciphers such as QARMA9-128 and Midori128. On performance, uLBC-128 has
excellent AT performance, the best performance except SPEEDY-6, and even the best
performance in UMC 55nm in our experiments.
Keywords: Block Cipher Design · Low Latency Cipher · Low Latency S-box

1 Introduction
Block cipher is a fundamental cryptographic primitive, which is widely used to provide
confidentiality in software and hardware systems. Designing a block cipher is a complex
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task that requires a carefully balanced strategy considering factors like cryptographic
strength, latency, implementation cost, power, and energy consumption. The choice of
trade-offs depends on the specific application requirements.

Low-latency ciphers have gained significant attention in recent years and offer notable
advantages in high-throughput scenarios, including the Internet of Things (IoT) and
encrypted hardware components of CPUs. In 2012, Borghoff et al. introduced the first low-
latency block cipher named PRINCE [BCG+12], which proposes the α-reflection structure
where the encryption and decryption are similar to the keys K and K ⊕ α, respectively.
The round function of PRINCE resembles the structure of AES, except that it incorporates
4 × 4 almost MDS binary matrices with a branch number of 4, instead of the MDS matrix
in the MixColumns mapping. Subsequently, a series of ciphers were introduced, such as
Midori [BBI+15], MANTIS [BJK+16], QARMA [Ava17] and SPEEDY [LMMR21] etc.

Midori [BBI+15], introduced at ASIACRYPT 2015, is a family of two block ciphers:
Midori64 and Midori128, each with a different block length. Midori128 applies an AES-like
design, with the 8-bit S-boxes as the confusion module and 4 × 4 almost MDS binary
matrices as the diffusion module. The 8-bit S-boxes consist of two 4-bit S-boxes processed
in parallel with bit permutation both in input and output, which can minimize the
path delay in the round-based implementation. There are some cryptanalysis results
that threaten the security of Midori. Guo et al. gave the invariant subspace attack
against the full block cipher Midori64 [GJN+15]. Gérault et al. gave a practical attack
on Midori64 and Midori128 under related key model [GL16]. MANTIS with 64-bit block
length was introduced in CRYPTO 2016 [BJK+16], as a low-latency variant of the SKINNY
family. MANTIS is a tweakable block cipher used for memory encryption, incorporating
a TWEAKEY schedule [JNP14] derived from PRINCE. It also employs the involutory
of Midori’s S-box to optimize for small areas and low circuit depth. QARMA [Ava17]
draws inspiration from PRINCE and MANTIS but employs a three-round Even-Mansour
scheme rather than an FX-construction, which was improved to QARMA V2 with longer
tweaks and improved security bounds [ABD+23]. In SAC 2020, the authors of PRINCE
introduced PRINCE v2 [BEK+21], which improves the security of PRINCE without altering
the number of rounds or rotation operations. Recently, some new low-latency block ciphers
have been proposed. SPEEDY [LMMR21] incorporates CMOS hardware into the cipher
design and applies a high-speed 6-bit S-box implemented using NAND gates. SPEEDY
has a low delay for encryption without any requirements for area and decryption speed.
However, Boura et al. give a differential attack for the full round SPEEDY-7-192, which
breaks the expected security strength [BDBN23]. For some special application, Belkheyar
et al. [BDD+23] designed a 24-bit low-latency tweakable block cipher with a 40-bit tweak,
specifically for a memory safety concept called Cryptographic Capability Computing. In
addition to the block ciphers, Banik et al. introduced a low-latency pseudorandom function
named Orthros [BIL+21], which takes a 128-bit message and a 128-bit key as input and
produces a 128-bit random number as output. Orthros is constructed using two 128-bit
low-latency permutations. To minimize latency, the permutation involves 4-bit S-boxes, bit
permutation, nibble permutation, and 4 × 4 almost MDS (Maximum Distance Separable)
binary matrices.

In the context of the low-latency block cipher, it is necessary to construct S-boxes
that have low-latency. There are many methods for the selection of low-latency S-boxes
[BGLS19, Ras22]. When constructing low-latency S-boxes, designers can use different
metrics to measure the latency of coordinate functions. The most popular metric is depth,
which assesses the path delay of the S-box by considering the sequential performance of the
involved transistors. However, it treats NAND and NOR equally, which needs to be improved,
just as analyzed in [LMMR21].

Our contribution. This paper proposes a new 128-bit block cipher while providing a
strong security argument for its resistance against differential and linear attacks, which
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has the lowest latency among the 128-bit block cipher as far as we know.
Among the low-latency ciphers, SPEEDY applies a low-latency 6-bit S-box, with a

complex diffusion function, which makes it hard to give an accurate estimation of the
probability of differential paths and linear paths. Midori128 and QARMA-128 both employ
a byte-based design similar to AES, which facilitates establishing the lower bound for the
active S-boxes. The round function utilizes a low-latency 8-bit S-box composed of two 4-bit
S-boxes operating in parallel. The diffusion layer utilizes a selective byte permutation and
an almost 4×4 MDS matrix, with a branch number of 4. For the low-latency pseudorandom
function (PRF) Orthros, which adopts a 128-bit permutation, a 32-nibble permutation,
and the above almost MDS binary matrix. The use of bit permutation in the cipher makes
it a challenge to find the upper bound of the optimal differential characteristic. Therefore,
we specifically focus on the 32-nibble permutation for the security proof.

We use the 4-bit S-box, nibble permutation, and the almost 4 × 4 MDS matrix to
construct the block cipher. This transformation has a branch number of 4, allowing an
active nibble to propagate to 27 nibbles at most after three rounds. Therefore, the aim
is to have an active nibble that can diffuse to any of the 32 nibbles (a case commonly
referred to as full diffusion). It is desired to have a round number of at least 4. In this
case, the selection of a nibble permutation resistant to the differential attack is of great
importance. We propose a well-chosen method for the nibble permutation instead of the
random searching of the Orthros which can guarantee both the impossible differential and
differential characteristic to be present 8 rounds at most.

4-bit S-boxes are employed to optimize the circuit’s depth. A new method for con-
structing low-latency coordinate functions is proposed. The proposed method involves
utilizing the logical effort metric to calculate the path delay of logic gates, combining this
with effort delays and parasitic delays to design Boolean functions that achieve minimal
latency while meeting specific cryptographic criteria. Utilizing the appropriate combination
of coordinate functions, a large number of low-latency S-boxes are generated. Then we
perform cryptographic analysis on these S-boxes and select one with the optimal security
characteristics. We hope that our findings will inspire others to design new and efficient
low-latency cryptographic primitives.

Besides, we give an optimal lightweight key schedule, which supports the extension of
tweak block cipher following the TWEAKEY framework [JNP14]. We give a low-latency
version of uLBC-128 and uLBC-256, which are given proof of resistance against differential
and linear attacks. A secure tweakey cipher version with a 384-bit length of tweak and
keys against related-key attacks is presented, which supports variable key lengths from
128-384 bits.

We give the full unrolled hardware implementation for ciphers Midori, QARMA, AES,
etc. Among them, uLBC-128 is the lowest latency among the 128-bit block ciphers with
the same security claim, On performance, uLBC-128 has excellent AT performance, the
best performance except SPEEDY-6, and even the best performance in UMC 55nm in our
experiments. Our implementations are publicly available in https://github.com/Guoxi
aoLiu/uLBC.

2 Descriptions of Block Cipher uLBC

The uLBC is a low-latency block cipher built upon Substitution Permutation Networks
(SPN) and includes proven security against differential and linear attacks. This section
begins with an overview of uLBC and then introduces its encryption and decryption
algorithms, followed by a description of the key schedule algorithms.

https://github.com/GuoxiaoLiu/uLBC
https://github.com/GuoxiaoLiu/uLBC
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2.1 Overview

The uLBC block cipher operates with 128-bit blocks and supports key lengths of either 128
or 256 bits. Additionally, a tweakable variant with a 384-bit tweakey is available. These
versions are designated as uLBC-128, uLBC-256, and uLBC-384t, respectively.

In the realm of block cipher security, particularly for applications requiring low latency,
we emphasize SK-security, which ensures protection in a single-key setting where an attacker
can access the encryption and decryption oracles under an unknown key. SK-security
is a critical feature for practical security applications. Several low-latency ciphers, such
as Midori, QARMA, PRINCE, and SPEEDY, maintain SK-security, which enables us to
optimize uLBC for high-performance, SK-secure configurations. In such configurations,
uLBC-128 and uLBC-256 provide 128-bit and 256-bit security, respectively, in a single-key
setting. Furthermore, uLBC-384t functions as a tweakable block cipher with a 384-bit
tweakey, composed of a secret key and a public tweak. The combined length of the key and
tweak can vary up to 384 bits, with a minimum key length of 128 bits. uLBC-384t offers
RK-security, which ensures robust protection in both single-key and related-key settings.
In a related-key scenario, the attacker can access encryption and decryption oracles under
multiple unknown keys that have known relationships. uLBC-384t provides (384 − t)-bit
security against related-key attacks, where t represents the number of bits in the tweak,
constrained by 0 ≤ t < 256. Key parameters for each version are detailed in Table 1.

Table 1: The parameters of uLBC family.
Version Block size Key size Tweakey size Round
uLBC-128 128 bits 128 bits - 18
uLBC-256 128 bits 256 bits - 22
uLBC-384t 128 bits - 384 bits 30

The uLBC computation follows a big-endian format. The 128-bit block b0, . . . , b127 is
divided into 32 nibbles, s00 = b0b1b2b3, s01 = b4b5b6b7, ..., s31 = b124b125b126b127. The
nibble is the basic unit referred to as a cell. The block includes 32 cells organized in a 4
by 8 matrix, as illustrated in the following.


s00 s04 s08 s12 s16 s20 s24 s28
s01 s05 s09 s13 s17 s21 s25 s29
s02 s06 s10 s14 s18 s22 s26 s30
s03 s07 s11 s15 s19 s23 s27 s31

 .

2.2 Encryption

The block cipher uLBC is based on the SPN structure. First, the plaintext state P is
exclusive-ored with the whitening key RK0, resulting in an intermediate state. This state
then undergoes N rounds of a defined round function sequence, followed by N rounds of
round functions. The round function includes S-box substitution (SubNib), constant
addition (AddConst), cell permutation (PosPerm), column mixing (MixColumn), and
round key addition (AddRK) operations. The round function is illustrated in Figure 1
and the encryption is given in Algorithm 1. The RK1, RK2, . . . , RKN are round keys
generated by the key schedule algorithm. The final output is the ciphertext C. We provide
test vectors of all versions of uLBC in Appendix A.
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Figure 1: The round function of uLBC.

Algorithm 1 The Encryption of uLBC.
Input: plaintext: P , round key: RK0, . . . , RKN

Output: ciphertext: C
X0 = P ⊕ RK0 ▷ XORed with the whitening key
for i = 0 to N − 2 do ▷ This is the r-th round (r = i + 1)

Yi = SubNib(Xi)
Zi = AddConst(Yi)
Ui = PosPerm(Zi)
Wi = MixColumn(Ui)
Xi+1 = Wi ⊕ RKi+1 ▷ Round key addition

end for
YN−1 = SubNib(Xi) ▷ The last round
XN = YN−1 ⊕ RKN

C = XN

SubNib. Substitution referred to as S-box is the only nonlinear operation based on
nibbles, which divides 128-bit state X into 32 nibbles X = {x0, x1, . . . , x31}. These nibbles
are substituted for other nibble values according to the table S-box, and the output state
is obtained Y , where Y = SubNib(X) = {S(x0), S(x1), . . . , S(x31)}. The S-box is shown
in Table 2.

Table 2: The (low-latency) S-box S.
Input 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

Output 0x8 0x0 0x1 0x5 0xc 0x7 0x4 0x6 0x2 0xa 0x3 0xd 0xe 0xf 0xb 0x9

AddConst. The first two columns are XORed with a 32-bit constant c = {c0, c1, c2,
c3, c4, c5, c6, c7}. (c0, c1) is constructed based on 6-bit LFSR, and the feedback polynomial is
(a0, a1, a2, a3, a4, a5) → (a5 ⊕ a4 ⊕ 1, a0, a1, a2, a3, a4). The round constants corresponding
to (c0, c1) are shown in Table 3. For uLBC-128, (c2, c3, c4, c5) = 0xc5c5, uLBC-256,
(c2, c3, c4, c5) = 0x3c3c, uLBC-384t, (c2, c3, c4, c5) = 0x5a5a. It is used to distinguish the
algorithm versions corresponding to different versions. The round constant corresponding
to (c6, c7) consists of the decimal part of π, as shown in Table 4. Z = AddConst(Y ),
where zi = yi ⊕ ci, i = 0, . . . , 7, and zi = yi, i = 8, . . . , 31.

Table 3: The first two nibbles of round constant addition.
Round 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(c0, c1) 0x80 0xc0 0xe0 0xf0 0xf8 0x7c 0xbc 0xdc 0xec 0xf4 0x78 0x3c 0x9c 0xcc 0xe4 0x70
Round 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
(c0, c1) 0xb8 0x5c 0xac 0xd4 0x68 0x34 0x18 0xc0 0x84 0x40 0xa0 0xd0 0xe8 0x74 0x38 0x1c
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Table 4: The last two bytes of round constant addition.
Round 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(c6, c7) 0xa0 0xac 0x93 0x29 0xac 0x4b 0xc9 0x91 0xc2 0x31 0x32 0x19 0xc1 0x93 0xca 0x81
Round 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
(c6, c7) 0x44 0x20 0xcb 0x8b 0x49 0xcc 0x9b 0xa8 0x82 0xc1 0x04 0xba 0x4a 0x22 0xc9 0x18

PosPerm. A cell-wise permutation PS is applied to the state. U = PosPerm(Z) =
{u0, u1, . . . , u31}, where ui = zPS(i), i = 0, 1, . . . , 31. The permutation Ps is shown in
Table 5.

Table 5: The cell permutation PS .
Input x

→

Output PS(x)
0 4 8 12 16 20 24 28 0 4 8 12 20 16 28 24
1 5 9 13 17 21 25 29 25 1 29 9 5 13 17 21
2 6 10 14 18 22 26 30 18 30 22 26 10 2 6 14
3 7 11 15 19 23 27 31 15 19 7 23 31 27 3 11

MixColumn. Multiply each column of the intermediate state matrix with a 4 × 4 binary
matrix M , and the matrix M is shown below:

M =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 ,

where the matrix M−1 = M . W = {w0, w1, . . . , w31} = MixColumn(U), that is:
w4j

w4j+1
w4j+2
w4j+3

 = M


u4j

u4j+1
u4j+2
u4j+3

 , j = 0, 1, . . . , 7.

If the cells are not all equal to 0 for the input {u4j , u4j+1, u4j+2, u4j+3}, there are at least
four non-zero cells among the input and output cells. Hence, the branch number is 4.
AddRK. The state W after the column mixing operation and the round key RKr

(r = 1, 2, ..., N) are bitwise exclusive-ored to obtain the output state.

2.3 Decryption
The decryption algorithm is the inverse operation of the encryption algorithm, involving
the execution of N -round iterative operations. These operations include the addition of the
round key, the inverse of column mixing (MixColumn−1), the inverse of cell permutation
(PosPerm−1), and the inverse of the S-box substitute (SubNib−1). The decryption ends
with an exclusive OR operation with the key RK0, producing the plaintext. The pseudocode
for the decryption algorithm is presented in Algorithm 2.
AddRK. During decryption, the initial state XN is ciphertext C. In the decryption
process of the r-th round (r = 1, 2, ..., N), the state XN−r+1 and the round key RKN−r+1
are exclusive-ored, and the last state X0 and key RK0 are exclusive-ored to obtain the
output plaintext P .
MixColumn−1 Same as MixColumn, because of M−1 = M , multiply each column of
the intermediate state matrix with the 4 × 4 binary matrix M .
PosPerm−1 In the state of 32 nibbles, cell permutation is performed. The cell permuta-
tion position of these 32 units is in Table 6.
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Algorithm 2 The Decryption of uLBC.
Input: ciphertext: C, round key: RK0, . . . , RKN

Output: plaintext: P
XN = C
YN−1 = XN ⊕ RKN ▷ The first round
XN−1 = SubNib−1(YN−1)
for i = N − 2 to 0 do ▷ This is the r-th round (r = N − i)

Wi = Xi+1 ⊕ RKi+1 ▷ Round key addition
Ui = MixColumn−1(Wi)
Zi = PosPerm−1(Ui)
Yi = AddConst(Zi)
Xi = SubNib−1(Yi)

end for
P = X0 ⊕ RK0 ▷ XORed with the whitening key

Table 6: The cell permutation P −1
S .

Input x

→

Output P −1
S (x)

0 4 8 12 16 20 24 28 0 4 8 12 20 16 28 24
1 5 9 13 17 21 25 29 5 17 13 21 25 29 1 9
2 6 10 14 18 22 26 30 22 26 18 30 2 10 14 6
3 7 11 15 19 23 27 31 27 11 31 3 7 15 23 19

AddConst The first two columns of the state and 32-bit constant c = {c0, c1, c2, c3,
c4, c5, c6, c7} are XORed, and the constant value is in the opposite order to the encryption.
SubNib−1 The S-box substitution inversion is also a non-linear operation performed on
nibbles. The 32 nibbles are substituted one by one through the inverse S-box table to
obtain the output state X = SubNib−1(Y ).

2.4 Key Schedule
The key scheduling algorithm incorporates cell permutation to reduce area and improve
efficiency. The key schedule of uLBC-256 exhibits slightly greater complexity compared
to that of uLBC-128. We use the functions f1 and f2 for the nibble, which are based on
LFSR construction with a cycle of 15.

For uLBC-128, the key length equals the block length. Its key schedule algorithm
uses the function F and key K to generate round keys RKi, i = 0, 1, ..., N , that is,
RK0 = K, RKi = F (RKi−1), i = 1, . . . , N..

The function F is a cell permutation. The 128-bit state is divided into 32 nibbles
(4-bit cells). The nibble-based matrix has four rows and eight columns. The permutation
of the cell position is shown in Table 7. The input and output of F function are X =
{x0, x1, . . . , x31} and Y = {y0, y1, . . . , y31} respectively.

The pseudocode of the round function Y = F (X) is yi = xPK [i], i = 0, 1, . . . , 31.

Table 7: cell permutation table PK .
Input i

→

Output PK [i]
0 4 8 12 16 20 24 28 8 9 20 18 4 10 21 27
1 5 9 13 17 21 25 29 24 31 19 2 15 29 16 13
2 6 10 14 18 22 26 30 28 14 26 6 11 12 7 22
3 7 11 15 19 23 27 31 23 17 5 30 25 3 0 1

For uLBC-256, the key length is twice the block length. The key scheduling algorithm
initially divides the 2n-bit master key K into two n-bit round keys K = K0||K1. Subse-
quently, it employs the F function and the f1 function to generate the round keys. The
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f1 function involves nibble transformation, while the F function remains consistent with
uLBC-128. Specifically, RK0 = K0 ⊕ K1, RKi = F i(K0 ⊕ f i

1(K1)), i = 1, . . . , N − 1. f1
is constructed on the basis of a 4-bit LFSR with a feedback polynomial (a0, a1, a2, a3) →
(a0 ⊕ a3, a0, a1, a2). The corresponding inputs and outputs are detailed in Table 8.

Table 8: Nibble substitution table for f1.
Input 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

Output 0x0 0x8 0x1 0x9 0x2 0xa 0x3 0xb 0xc 0x4 0xd 0x5 0xe 0x6 0xf 0x7

For uLBC-384t, we regard the key and tweak as a unified tweakey, following the
TWEAKEY(STK) construction in [JNP14]. The length of key and tweak can be flexibly
chosen, but the length of key must be at least as large as the block size, i.e., 128-bit. The
tweakey schedule also first divides the 3n (z = 3 as [JNP14]) length tweakey TK into three
n-bit round tweakeys, as TK = TK0||TK1||TK2. Subsequently, the F function is applied
as a cell permutation, similar to uLBC-128 in each round of key schedule, and the f1 and
f2 functions are utilized for the cell transformations. The specifics are detailed below:

RK0 = TK0 ⊕ TK1, RKi = F i(TK0 ⊕ f i
1(TK1) ⊕ f i

2(TK2)), i = 1, . . . , N − 1.

The f1 and f2 functions are based on lightweight 4-bit LFSR, which should be carefully
chosen to ensure security in related-key (related-tweak) models. As stated in [QDW+22],
applying the LFSR to a nibble is equivalent to multiply the nibble by a 4×4 binary matrix.
When f1 is corresponding to L, we choose the binary matrix of f2 as L−1, where

L =


1 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 , L−1 =


0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

 .

So the f1 and f2 functions satisfy the subtweakey difference cancellation property to STK
construction: for a given cell position, z − 1 cancellations can only happen every 15 rounds,
which can be proved as [QDW+22]. The feedback polynomial of f2 is (a0, a1, a2, a3) →
(a1, a2, a3, a0 ⊕ a1), and the corresponding inputs and outputs of f2 are given in Table 9.

Table 9: Nibble substitution table for f2.
Input 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

Output 0x0 0x2 0x4 0x6 0x9 0xb 0xd 0xf 0x1 0x3 0x5 0x7 0x8 0xa 0xc 0xe

3 Design Decisions
3.1 Main Ideas and Strategies of Design
This paper aims to design a family of low-latency block ciphers while providing strong
security arguments. AES is the most widely deployed block cipher, known for its bytes-
based design framework with high throughput and strong security. AES, with a strong
diffusion layer comprising ShiftRows and MixColumns, has been proven resistant to
various attacks such as differential, impossible differential, and linear attacks. In AES,
the MixColumns operation employs an MDS matrix with a branch number of 5. To meet
minimal area and energy requirements, the block cipher Midori128 utilizes an AES-like
design. It incorporates a low-latency 8-bit S-box composed of two 4-bit S-boxes. Instead of
using ShiftRows, it utilizes a byte permutation, and it replaces the original MDS matrix of
AES with an almost MDS matrix having a branch number of 4. To obtain low-latency, the
PRF of Orthros XORs two 128-bit outputs of permutations, each permutation employing



G. Liu et al. 9

bit permutation and nibble permutations, along with a 4 × 4 almost MDS matrix, to
facilitate strong diffusion. However, Orthros is solely used as a pseudo-random function.
The cipher employs bit permutation, making it challenging to estimate the lower bound of
the active S-box count to derive the security arguments.

In the context of proving the security of a low-latency block cipher, we focus on
components such as 4-bit S-boxes (or 8-bit S-boxes), 32-nibble permutations (or 16-byte
permutations), and low-latency MDS matrices (or almost MDS matrices). Among these
options, we identify a round function with a 4-bit S-box as the confusion function, a nibble
permutation, and an almost MDS matrix as the diffusion function. This combination
achieves low latency and low area, making it suitable for efficient hardware implementa-
tions. The choice of a 4-bit S-box is friendly for AVX instructions to enhance software
implementations using parallel modes, such as CTR and GCM.

The selection of nibble permutation in the diffusion function has been optimized within
the bounds of the number of active S-boxes and the length of an impossible differential.
We carefully choose the nibble permutation to enhance the bounds on the number of active
S-boxes. While several design elements are inspired by existing ciphers, we introduce new
methods aimed at achieving low-latency and lightweight performance.

Furthermore, we apply 4-bit S-boxes to optimize the depth of the circuit. A new method
for constructing low-latency coordinate functions is proposed, which is more consistent
with the implementation. Using a proper combination of coordinate functions, a large
number of low-latency S-boxes are constructed.

Based on the above research, we propose a 128-bit block cipher that supports both 128-
bit and 256-bit keys. For lightweight design, we apply a linear key schedule based on nibble
permutation for 128-bit keys. This schedule effectively generates key diffusion, providing
resistance against related-key attacks and weak-key attacks. The nibble permutation
is employed to extend the TWEAKEY frame of SKINNY[BJK+16] for the 256-bit key
configuration. The Tweakey frame can support longer tweaks and keys. Therefore, we
present a tweakable block cipher with 384-bit tweakey. The combined length of the key
and tweak is flexible at 384 bits, yet the key must be at least 128 bits. The Tweakey
framework treats the key and tweak interchangeably. Hence, it is necessary to provide
related-key attack resistance in Tweakey versions.

3.2 The Design of Round Function

We employ a 128-bit block size, which is a commonly used size to optimize encryption and
decryption efficiency. Our cipher utilizes the Substitution-Permutation Network (SPN)
structure, with the round function consisting of both a confusion layer and a diffusion
layer. In this section, we focus on selecting the appropriate components. The 4-bit S-boxes
are widely used in low-latency ciphers such as Midori, QARMA, MINTIS, etc.

Here, We take 4-bit S-boxes as the basic cell to design a 128-bit block cipher, which
means that the 128-bit block is divided into 32 4-bit S-boxes. In addition, a linear layer is
constructed for the 32 nibbles, which are represented by a 4 × 8 matrix. Here, the nibble
permutation plays an important role in determining the number of active S-boxes. Here,
we use a reliable nibble permutation PosPerm to compare the differential diffusion of
the MDS matrix and the almost MDS matrix. For the diffusion layer, we compare the
efficiency of the following two cases:

Case I We use nibble permutation (PosPerm) and almost MDS matrix M , which is
shown in Subsection 2.2.

Case II We use nibble permutation (PosPerm) and the low-latency MDS matrix M4.
The modular polynomial is x4 + x + 1, with values 0x13. This MDS is given in the [LS16].
There are 4 XOR operations for each output bit.
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M4 =


1 1 4 9
1 4 9 1
4 9 1 1
9 1 1 4

 ,

For cryptanalysis, the number of 4-bit active S-boxes is the main criterion for evaluation
against differential and linear attacks. We analyze the minimized number of active S-
boxes in cryptanalysis and the rounds of the full diffusion, which are listed in Table 10.
Midori128 incorporates a low-latency 8-bit S-box composed of two 4-bit S-boxes which
are the basic units. It has 41 active S-boxes for 9-round differential characteristics, 62
active S-boxes for 12-round differential characteristics, and 67 active S-boxes for 13-round
differential characteristics. However, there are 68 active S-boxes for 9-round differential
characteristics in Case I and 74 active S-boxes for 9-round differential characteristics in
Case II, both more than 64 active S-boxes. Hence, there are at most 8-round differential
characteristics for the two cases. It is evident that the latter two have stronger diffusion
to resist differential attacks.

Now we consider the low latency of the hardware implementation. The diffusion
layer has the same XOR computation for Midori128 and Case I. Here we compare the
implementation for Case I and Case II. There are 4-round full diffusion for Case I
and 3-round full diffusion for Case II. We compare the latency for 18-round Case I and
16-round Case II, and the first case has a little advantage over the second case. Hence, we
use the round function of Case I. Subsequently, we introduce the design of the diffusion
layer and the low-latency S-boxes to improve the throughput.

Table 10: The number of active S-boxes of differential for the 32-nibble block.
linear layer round number rounds

of full diffusion 1 2 3 4 5 6 7 8 9
Midori128 3 1 4 7 16 23 30 35 38 41

Case I 4 1 4 7 16 25 40 52 60 68
Case II 3 1 5 9 25 41 55 58 62 74

3.3 The Design of Diffusion Layer
We use Case I as the round function, which is composed of a nibble permutation and a
4 × 4 almost MDS binary matrices. The almost MDS binary matrices have been used in
the design of PRINCE, Midori, MANTIS, Orthros, etc. However, the 4 × 4 almost MDS
binary matrices have a branch number of 4 less than the MDS matrices, resulting in slow
diffusion. Banik et al. utilize bit and nibble permutations in a hybrid manner to improve
the diffusion speed and to increase active S-boxes in each round [BIL+21]. However, the
bit permutation is not suitable for software implementation, which usually makes the
implementation speed slow. Besides, the search space for bit permutation is too large to
give accurate estimates of the active S-box number in the differential or linear path. Here,
we applied the nibble permutation. There are 32! ≈ 2117 permutations for 32 nibbles. It is
impossible to traverse. Banik et al. give some analysis to select good nibble permutation,
such as Condition 1.

Condition 1 (Condition 3 [BIL+21]). For each column (u4i, u4i+1, u4i+2, u4i+3) in the
4 × 8 array, after applying the nibble permutation, they will be mapped to four nibble-cells
in different columns.

Banik et al. randomly choose 7,000 nibble permutations satisfying condition 1, and
then compute the lower bound of the number of active S-boxes after 5, 6, 7, and 8 rounds
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for these nibble permutations with the MILP model. Among them, they find three nibble
permutations that can achieve 60 active S-boxes over 8 rounds.

The MILP model is a time-consuming operation. Here we give some more conditions
to find a good nibble permutation efficiently.

Condition 2. For each column (u4i, u4i+1, u4i+2, u4i+3) in the 4 × 8 array, after applying
the nibble permutation twice, they will be mapped to four nibble-cells in different columns.

This condition is used to optimize the bound of active boxes in the differential path.

Condition 3. For each active input of the S box in the first round, it will generate 9
active S-box after two rounds, which will be mapped to all 8 columns after the PosPerm.

In the case of an active box transformation, 1 → 3 → 9 → (18 ∼ 27) → 32. Hence, the
4-round diffusion needs to be taken into account. We give the following conditions.

Condition 4. For each active S-box input in the first round, it will propagate the difference
to all cells in the fourth round, i.e., there are at least 2 active S-box in each column before
MixColumn in the fourth round.

The Condition 4 is used to ensure the full diffusion, which is used to limit the length
of an impossible differential. For the selection of the nibble permutation, we specifically
limit impossible differential distinguishers to a maximum of 8 rounds.

Because MixColumn can mix the column, we independently choose the row permuta-
tion for each row satisfying all the above conditions. There are exactly 8! = 40320 row
permutations. We searched all these cases, and there are about 695520 permutations
inconsistent with all 4 conditions. Then we search the differential path by estimating
the active S-boxes for 6 to 9 rounds. We found that when the number of active S-boxes
is 40 for 6-round uLBC with a selected nibble permutation, it is hard to find a 9-round
differential with high probability. The permutation found is row-independent, therefore,
we can implement the round function with the AVX instructions efficiently.

Table 11 shows a comparison of the lower bound of the number of active S-boxes for
Midori128, Branch1 and Branch2 of Orthros, and uLBC-128. Compared with Branch1/2
of Orthros, our nibble permutations guarantee a much larger number of active S-boxes
for 6 rounds and 7 rounds. Our nibble permutation causes a stronger diffusion at the
same time, which leads to an 8-round impossible differential. However, we find many
9-round impossible differentials for Branch1/2 of Orthros, respectively, seen in Table 12
and Table 13, where ‘*’ means the none zero difference nibble, ‘0’ means the zero difference
nibble, ‘?’ means the nibble difference is unknown, and a ̸= 0.

Table 11: Comparison of lower bounds of the number of active S-boxes.
number of active S-box rounds of IMP

rounds 4 5 6 7 8 9
Midori128 [BBI+15] 16 20 30 35 38 41 7 [TAY17]

Orthros Branch1 [BDD+23] 16 25 36 50 60 67+ 9 (Table 12)
Orthros Branch2 [BDD+23] 16 25 36 51 60 67+ 9 (Table 13)

Our nibble permutation 16 25 40 52 60 68 8 (Table 18)



12 Ultra Low-Latency Block Cipher uLBC

Table 12: An impossible differential trail of Branch1.
Position State

∆f 0000000000000000000000000*000000
Round 1 000000000000*0**0000000000000000
Round 2 00000000***000000***00000000**0*
Round 3 0***0000*0*****0?**?*0**?**?***0
Round 4 ????????***0?????????????*?*????
Round 4 ????*??????*???????*?????*???*??
Round 5 ?*0***0?****0**000?*0*?***00****
Round 6 0*0000*000*00**0*0000*0*000*0000
Round 7 00*0*0000*0000000000000000000000
Round 8 0000000000000000000000000*000000

∆r 000000000000a0aa0000000000000000

Table 13: An impossible differential trail of Branch2.
Position State

∆f 00000000000000*00000000000000000
Round1 00000000000000000***000000000000
Round2 0000**0***0*0000*0**000000000000
Round3 ??**0000?**?0000*0**?**?***00***
Round4 ???*?????????*?*????????***0????
Round4 ???????????????*?????*?????*?*??
Round5 0**?*00**0*?0??0**0*?*?0*0*0***0
Round6 *0*00*000000*0000**0000*0000**00
Round7 0000000*000*0*000000000000000000
Round8 *0000000000000000000000000000000

∆r 000000000000000000000000aa0a0000

3.4 The Design of 4-bit S-boxes
The 4-bit S-box is widely used in symmetric primitives due to its favorable cryptographic
properties, compact area footprint, low latency, and relatively low cost for increasing
side-channel protection. The block cipher uLBC also employs a 4-bit S-box, which exhibits
very low latency and incorporates various security features such as differential probability,
linear bias advantage, algebraic degree, fixed points, and more. Here are the security
indicators of the S-box used in the uLBC algorithm: 1) The maximum difference probability
is 2−2. 2) The maximum linear approximation probability is 2−2. 3) The highest algebraic
degree of the S-box (and the inverse) is 3. 4) The S-box is a permutation without any
fixed points.

3.4.1 Logic Gates and Their Latency

To evaluate the latency of the coordinate functions, the most popular metric is depth,
which assesses the path delay of the S-box by considering the sequential performance
of the logic gates involved [BBI+15, BGLS19, Ras22]. Leander et al. highlighted the
limitations of the depth metric by analyzing the latency of logic gates by calculating the
Fan-in-to-Latency Ratio (FLR) for each gate and observing that NAND and OAI gates get
the highest FLR scores among all logic cells tested [LMMR21].

When building 4-bit S-boxes, we found that NAND does have the lowest latency but
some logic gates also perform well in terms of latency, which is ignored in [LMMR21]. The
traditional depth metric is based on the number of logic gates to sequentially proceed in
the operation and only considers gates with fan-in of no more than 2.

In this paper, we introduce logical effort as the metric instead of depth and give logical
efforts for some general logic gates. The logical effort method, introduced by Sutherland
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et al. [SSH99], offers a technique to design MOS circuits to achieve high speeds. This
approach simplifies MOS circuits as networks of resistance and capacitance for circuit
analysis. The delay of a logic gate d is the summation of the parasitic delay p and the
effort delay f , defined as d = f + p. The effort delay f is the product of the logical effort
g and the electrical effort h, given by f = gh. The electrical effort h characterizes the
cost of driving capacitive loads, commonly referred to as fanout by many CMOS designers.
For simplicity, we assume it is fixed to 1 in the subsequent discussion. Logical effort g
describes the computational cost attributable to the circuit topology. The logical effort of
the inverter is defined as 1 delay unit, thus all logical efforts are gauged relative to the
delay of a basic inverter. Since the logical effort of a gate can be computed by assessing
how much additional input capacitance a gate presents to deliver the same output current
as an inverter, the logical efforts of other gates are derived based on the ratio of input
capacitances. The parasitic delay p of a logic gate is predetermined, with the primary
contribution being the capacitance of the source/drain regions of the transistors that drive
the gate output. The parasitic delay is a multiple of the parasitic delay of the inverter,
which is conventionally set to 1 delay unit. Table 14 presents assumed values of the logical
effort and the parasitic delay for various gates. This table was simplified based on [SSH99].
As [SSH99] is used mainly for circuit design, it takes into account various factors more
carefully, such as the influence of fanouts, etc. Therefore, simplification is reasonable.

Table 14: Values of delay factors for some logical gates.
Gate Fan-in Logical effort (g) Parasitic delay (p)
INV 1 1.0 1.0

NAND2 2 1.33 2.0
NOR2 2 1.67 2.0
NAND3 3 1.67 3.0
NOR3 3 2.33 3.0
OAI21 3 2.0 3.0
AOI21 3 2.0 3.0
NAND4 4 2.0 4.0
NOR4 4 3.0 4.0
OAI22 4 2.0 4.0
AOI22 4 2.0 4.0

In logic networks, the path logical effort G is the product of the logical effort of each
logic gate along the path, defined as G =

∏
gi. Further, the path effort F is computed

as the product of G and H, i.e., F = G · H. Here, H =
∏

hi represents the effort of the
individual stages along the path. In practice, it is often possible to expand the circuit
and utilize additional area to decrease the number of fan-ins and fan-outs, resulting in
H = 1. Consequently, the path effort simplifies to F = G, as the individual stage efforts
cancel out. The path parasitic latency denoted as P , is defined as the sum of the parasitic
latencies P =

∑
pi. For an N -stage logic network, the path delay can be computed by

D = N · F
1
N + P. (1)

The path delay of Boolean functions is the maximum path delay of each input wire. We
give an example to show how to compute the path delay.

Example 1. The path delay of a 3-bit S-box. The S-box is

y1 = INV(NAND2(NAND2(x1, x2), NAND2(x1, x3))),

y2 = NAND2(NAND2(x2, x1), NAND2(x2, x1)),

y3 = NAND2(NAND2(x3, x1), NAND2(x3, x2)).
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For a 3-bit S-box, there are 3 input values (i.e., x1, x2, and x3) and 12 input wires. We
number them in sequence from 1 to 12, where the delays of index 1, 2, and 4 are the same,
the delays of index 5, 6, 8, 9, 10, and 12 are the same, and the delays of index 7 and 11
are the same. Thus we can obtain

D1,2,4 = 3 · (1 · 1.33 · 1.33)1/3 + (1 + 2 + 2) = 8.63,

D3 = 4 · (1 · 1.33 · 1.33 · 1)1/4 + (1 + 2 + 2 + 1) = 10.61,

D5,6,8,9,10,12 = 2 · (1.33 · 1.33)1/2 + (2 + 2) = 6.66,

D7,11 = 3 · (1.33 · 1.33 · 1)1/3 + (2 + 2 + 1) = 8.63.

Thus the path delay of this S-box is the maximum path delay among all Boolean
functions, i.e., D = D3 = 10.61.

3.4.2 S-box Searching

Using the path delay, the first step is to find several coordinate functions for 4-bit S-boxes
with low latency. We select some common logic gates, as shown in Table 14, and construct
Boolean functions based on the delays of all the logic gates along the path of the Boolean
function. Table 14 lists values of delay factors for all the logic gates we selected. According
to equation (1), the delay of a Boolean function D is derived as D = N · F

1
N + P.

In our search, to address the challenge of path delays, we iterate based on the depths
of logic gates. We assign weights to the depths of different gates, assuming that the depths
of INV, NAND2/NOR2, NAND3/NOR3/OAI21/AOI21, and NAND4/NOR4/OAI22/AOI22 gates are
weighted as 0.5, 1, 2 and 2, respectively. The BUF gate y = x0, y = x1, y = x2, y = x3,
and the INV gate y = ¬x0, y = ¬x1, y = ¬x2, y = ¬x3, are set to have factors:

Depth Path logical effort Path parasitic delay
BUF 0 1.0 0
INV 0.5 1.0 1.0

When searching Boolean functions whose depths are s, we apply INV, NAND2/NOR2,
NAND3/NOR3/OAI21/AOI21, and NAND4/NOR4/OAI22/AOI22 to the Boolean functions with
depth s − 0.5, s − 1, s − 2 and s − 2 respectively, and check whether the Boolean functions
satisfy our requirements: 1) The path delay is no more than 10. 2) The depth is no more
than 4.5. 3) The output is 0-1 balanced. 4) The function expression contains all 4 bits. 5)
The algebraic degree is greater than 1. There is no special reason for the first and second
conditions since some Boolean functions can already be found within these parameters.
We can also set them based on the path delay of some known S-boxes, such as the SPEEDY
S-box [LMMR21]. After that, we use these Boolean functions to construct 4-bit S-boxes
by the method of [Ras22]. Note that to reduce the search space, we require that the
coordinate functions of the S-box be sorted by truth table during the search. Our selected
S-boxes are listed below:

Table 15: The structure of our low-latency S-box. Si denotes the ith coordinate functions.
Function Structure Delay D

S0 NAND2(NAND3(INV(x0), INV(x2), INV(x3)), OAI21(x1, x3, x0)) 9.8
S1 NAND2(NAND3(INV(x0), x1, x3), OAI21(INV(x2), INV(x3), x0)) 10.1
S2 NAND2(NAND3(INV(x2), x3, x1), OAI21(x0, INV(x1), x2)) 10.1
S3 NAND2(NAND3(INV(x1), x3, x2), OAI21(INV(x0), INV(x2), x1)) 10.1

We find a few S-Boxes that fit the conditions and come up with the one that performs
best in Table 15. The DDT and LAT of the S-box S we used are shown in Figure 2.



G. Liu et al. 15

Table 16 lists the depths, delays, and practical latency of S-boxes in some low-latency
block ciphers. Our metric uses finer granularity than depth, for example, the S-boxes with
depth 3.5 in Table 16 are further divided into two categories D = 10 and D = 11, and
the S-boxes with depth 4 are further divided into categories D = 12 and D = 13. We
observed that the latency of the S-boxes is basically in line with our estimates. Generally,
S-boxes with high D values take an advantage in latency, while there are a few exceptions,
such as Midori-Sb1, which has lower latency than those S-boxes with D = 11. Besides, in
the experiments, the S-box of QARMA-σ2 has lower latency than the inverse operation
(QARMA-σ2_Inv), but the depth value of QARMA-σ2 is greater than that of QARMA-
σ2_Inv and did not match the measured values. When using our metric, both S-boxes
have the same D values, which is at least consistent with the experimental results of 45nm.

Table 16: Properties of some low latency S-boxes.
S-box Depth D Latency

15nm(ps) 45nm(ns)
Orthros 3.5 10 8.86985 0.12642

Orthros_Inv 4 13 13.31488 0.19144
Midori-Sb0 3.5 10 9.78337 0.11200
Midori-Sb1 4 12 9.04462 0.12365
QARMA-σ0 3.5 11 8.84451 0.11233
QARMA-σ1 4 12 11.82724 0.14175
QARMA-σ2 4.5 13 14.85347 0.17133

QARMA-σ2_Inv 4 13 12.48697 0.17870
Our S-box 3.5 10 8.01972 0.12702

Our S-box_Inv 4 11 14.13926 0.14475

3.5 The Design of Key Schedule and Constants
Block cipher uLBC supports a 128-bit block, and the key length supports 128 bits and 256
bits. We also design a version of the 128-bit block and 384-bit tweakey. Although a little
complex key schedule does not increase encryption latency, we apply a simple key schedule
by nibble permutation for the 128-bit key to reduce the cost of implementation.

For a 256-bit key, we make use of the nibble permutation to extend the Tweakey frame
of SKINNY [JNP14] with tweaked size of twice the block length. The 256-bit key is divided
into two equal parts. The nibble permutation F is used for the two parts independently. A
cell transformation function f1 is used in each nibble of the second part for each round. f1
is constructed by a 4-bit LFSR with a period of 15. Hence, the masterkey can be computed
by any two consecutive round subkeys. For the 384-bit tweakey, the key schedule is similar
to the 256-bit key. The only difference is the 384-bit tweakey is divided into three parts,
and the cell transformation functions f1 and f2 are used in each nibble of the last two parts
for each round. The f1 and f2 functions adhere to the subtweakey difference cancellation
property to STK construction given in [QDW+22]. And, the masterkey can be computed
by any three consecutive round subkeys.

For the nibble permutation F in uLBC-128, uLBC-256, and uLBC-384t, we choose the
same nibble permutation to reduce implementation costs. Hence, we add some conditions
on the nibble permutation in the key schedule to remove some iteration paths in the
related-key setting to sieve good nibble permutation in the following. (1) After the nibble
permutation, the contents of a column in the key schedule are moved to four different
columns. (2) The same column, after the key nibble permutationn F , is positioned in a
different column than after PosPerm permutation in the round function. (3) There are
at least four active boxes for the 4-round related-key differential for uLBC-384. Then we
check the nibble permutation by the number of active S-boxes in the related-key setting.
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Many lightweight block ciphers apply a simple key schedule where round keys only
differ by the addition of a round-specific constant, which is vulnerable to invariant subspace
attacks. Beierle et al. [BCLR17] analyzed the resistance of some ciphers against invariant
attacks and gave a method to find round constants that guarantee the resistance to all
types of invariant attacks. Following that, we choose the round constants. There are three
parts: one is used to distinguish four versions of uLBC; another part is constructed by the
LFSR with a period of 63 to resist the invariant attacks; the last part is used as random
numbers.

4 Security Analysis
This section provides cryptanalysis of the block cipher uLBC, including various attack
techniques such as differential attack, boomerang attack, linear analysis, impossible
differential analysis, integral analysis, and related-key analysis. The summary of the
analysis results is shown in Table 19.

4.1 Differential/Linear Cryptanalysis
4.1.1 Basic Properties and Nibble-Level Bounds

The differential distribution table (DDT) and linear approximation table (LAT) of the
S-box are shown in Figure 2. As we can see, the highest differential/linear probability for
each S-box is 2−2.
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Figure 2: Differential/Linear properties of the S-Box S.

To argue for the resistance of uLBC against differential and linear attacks, we computed
lower bounds on the minimal number of active S-boxes. Based on bit-level differential
propagation, we consider all possible differential characters of S-box and build an SAT
automatic search model for solving the minimum S-boxes. We get the results for uLBC-128
with 1-9 rounds, the results are shown in Table 17. Because of the equivalence between
differential and linear trails, the result for the linear attack is the same. For verification,
we present our differential trails with 3 to 7 rounds in Table 22, Appendix B.

Table 17: Estimation of the number of active S-boxes.
Round 1 2 3 4 5 6 7 8 9

Number 1 4 7 16 25 40 52 60 68

We prove that the minimum number of active S-boxes in 9-round uLBC-128 is at least
68, and the maximum differential characteristics probability will not be higher than 2−136.
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Meanwhile, we consider the probability of clustering of differential trails. We search for
clusterings with our SAT automatic search tools, the searching phase is carried out in two
steps. First, we search for the differential trail with the maximum probability. Then, we
fix the input and output differentials equal to the trail, and add constraints to ensure that
the probability is greater than 2−10 times of the maximum probability, while searching for
all eligible trails. We continue this process until we have an adequate number of trails in
the clustering. Finally, we evaluate the actual probability of the input-output differential
characteristics. The clustering with the highest probability for 8-round uLBC-128 is about
2113.1, and 2128.6 for 9-round. Therefore, it is expected that the algorithm does not have
an effective differential trail of 9 rounds, and 4 rounds of the algorithm can spread to
all active boxes. Therefore, the differential (or linear) attack potentially can analyze 16
rounds of uLBC-128 at most.

4.1.2 Key Recovery

The 8-round distinguisher shown in Table 22 leads to 24 active S-boxes at one round
before, and 28 active S-boxes at the round after, such that, only 1-round extension can be
appended to before and after the differential/linear distinguisher to launch a valid attack
for 128-bit version uLBC-128. The round of attack is bounded by 10 rounds, and although
some techniques can be used to extend the attack by one or two rounds, there is still
8-round redundancy to protect the security.

And for 256-bit key version uLBC-256, two rounds can be appended before and after
the 8-round distinguisher (after two-round propagation in forward/backward direction, the
s-boxes are all active in the state), the expected number of attack rounds is 2 + 8 + 2 = 12.

Even in the ideal case, there is a valid 8-round differential/linear distinguisher with
only one active nibble at the beginning and one active nibble in the output state, the full
diffusion will occur through four rounds before and after the distinguisher, for uLBC-128,
the upper bound of the number of round we possible attack is 4+8+4 = 16. For uLBC-256,
one more round could be padded at the beginning and the end, the attack round is bounded
by 5 + 8 + 5 = 18. And for uLBC-384-t, we possibly attack at most 6 + 8 + 6 = 20 rounds.
There are also more than two rounds redundancy.

4.1.3 Differential-Linear Cryptanalysis

Differential-linear cryptanalysis [LH94] is a cryptanalytic method that combines aspects of
differential cryptanalysis and linear cryptanalysis to analyze block ciphers. The method
divides the cipher E into two parts, E = E1 ◦ E0, where there exists a strong truncated
differential for the first part E0 with probability p = Pr[α E0→ β] and there exists a strongly
biased linear approximation with bias ϵ for the second part E1, such that Pr[Γ0

E1→ Γ1] =
1/2 + ϵ. The bias of differential-linear distinguisher is ϵα,Γ1 = Pr[Γ1 · (E(x ⊕ α) ⊕ E(x)) =
0] − 1/2 = 4pϵ2, where Pr[Γ0 · β = 0] = 1. The differential-linear distinguisher is
effective, when ϵα,Γ1 > 2−n/2 for n-bit block size. Based on the number of active S-boxes
for differential and linear analysis as discussed in Section 4.1.1, the differential-linear
distinguisher can apply to a maximum of 8 rounds. Since the full diffusion will occur
through four rounds, for uLBC-128, the upper bound of the number of rounds we may
attack is 4 + 8 + 4 = 16 at most.

4.2 Boomerang-type Attacks
The boomerang-type attacks treats a block cipher E as the composition of two sub-
ciphers E0 and E1, where have two differentials α

E0→ β and γ
E1→ δ with probabilities p

and q respectively. Then the probability of a boomerang distinguisher is estimated by
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Pr[E−1(E(x) ⊕ δ) ⊕ E−1(E(x ⊕ α) ⊕ δ) = α] = p2q2. The probability of p = Pr[α E0→ β]
and q = Pr[γ E1→ δ] is mainly bouned by the active S-boxes in the differential. According to
Table 17, we estimate the longest boomerang-type distinguisher will not exceed 8-rounds
(3 + 1 + 4). In fact, we test the boomerang probability with the sandwich attack [DKS10]
which introduces a sub-cipher Em in the middle, utilizing our 4-round differentials with
the minimal number of active S-boxes, and found there is no boomerang distinguisher with
(4+1+4)-form can return in a valid probability. Since the full diffusion will occur through
four rounds, for uLBC-128, the upper bound of the number of rounds we possibly attack is
4 + 8 + 4 = 16 at most.

4.3 Impossible Differential Attack

Impossible differential attack [BBS99] finds two internal state differences ∆f , ∆r such that
∆f will never propagated to ∆r.

The full diffusion will occur through four rounds of uLBC, so we can construct 8-round
impossible differential trails. In Table 18, we show an 8-round impossible differential. The
zero-correlation trail of the cipher is the same as the impossible differential trail. It can
construct 8 rounds of zero-correlation trails. Therefore, 16 rounds are analyzed at most
for uLBC-128.

Table 18: An impossible differential trail of uLBC.
Position State

∆f *0000000000000000000000000000000
Round 1 0***0000000000000000000000000000
Round 2 0000*0**000000000000**0****00000
Round 3 *0**0******0??**0***0000**0***??
Round 4 ??????*?????*???????????????*?*?
Round 4 ****?00***0*0*?00**?0?*******0*0
Round 5 000*0**00*00*0000000*00000*0*00*
Round 6 000000000000000*00*000000*000000
Round 7 *0000000000000000000000000000000

∆r 0aaa0000000000000000000000000000

4.4 Meet-in-the-Middle Attack

Partial-matching [AS08] cannot work if the number of rounds reaches full diffusion rounds
in each of the forward and backward directions. The 4-round full diffusion property with
our low-latency S-boxes and diffusion layer enables us to claim that any inserted key bit of
K non-linearly affects all bits of the state after 4-round propagation in the forward or the
backward directions for uLBC.

Thus, partial-matching can work for at most (4 − 1) + (4 − 1) + 1 = 7 rounds. The
condition for the initial structure (IS) [SA09], also called independent biclique [BKR11], is
that key differential trails in the forward direction and those in the backward direction do
not share active non-linear components. For uLBC-128, since any key differential affects
all 32 S-boxes after at least 4 rounds in the forward and backward directions, there is no
such differential that shares active S-boxes in more than 4 rounds. Thus, the number of
rounds used for IS is bounded by 4. Assuming that the splice-and-cut technique allows
an attacker to add 4 extra rounds in the worst case, at most 15-round (4 + 4 + 7) MitM
attack may be feasible. Because a whitening key is added at the end of the encryption, we
consider it is difficult to launch a 15-round attack on uLBC-128.
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4.5 Integral Attack
Integral attack [DKR97] prepares a set of plaintexts so that particular cells can contain
all the values in the set and the other cells are fixed to a constant value. We search
for the optimal integral distinguisher based on the division property [XZBL16, HWW20].
Modelling the division property by Mixed-Integer-Linear-Programming (MILP) we get a
10-round integral distinguisher for uLBC-128 with 127 active bits at input:

C1|A31|A32|A32|A32,

↓ 10r

B4|U28|U32|U32|U32,

where A denotes all values in the cell appear exactly the same number, B denotes the
sum of all values in the multiset is 0, C denotes the value of the bit is fixed through
the multiset and U denotes no particular property exists. With this 10-round integral
distinguisher, we can launch an attack with 4 rounds of key-filter at the end and one round
adding to beginning with statistical method. Therefore, we can attack at most 15 rounds
of uLBC-128.

We focus on differential-like and linear-like cryptanalysis and give differential cryptanal-
ysis, boomerang attack, linear cryptanalysis, impossible differential cryptanalysis, integral
cryptanalysis, and related-key cryptanalysis of uLBC algorithm and results are in Table 19.
The round function of the uLBC-256 is similar to uLBC-128, but the difference is the key
schedule. Therefore, the uLBC-256 focuses on the impact of key length change in the
key recovery process and related key attacks. For all versions of uLBC, sufficient security
redundancy is reserved.

Table 19: Summary of analysis results of uLBC

Cryptanalysis methods Round of Estimated analysis round (Upper bound)
distinguisher uLBC-128 uLBC-256 uLBC-384t

Differential attack 8 16 18 20
Linear attack 8 16 18 20

Differential-linear attack 8 16 18 20
Boomerang attack 8 16 18 20

Impossible differential attack 8 16 18 20
Zero correlation attack 8 16 18 20

Meet-in-the-middle attack 7 15 17 19
Integral attack 10 14 16 17

4.6 Related-key (Related-tweak) cryptanalysis of uLBC-384t
Under the related-key scenario, we introduce an MILP model to search for the minimized
number of active S-boxes, the lower bound of active S-boxes for each round is shown in
Table 20. For related-tweak scenarios, the attacker has the weaker ability, and the number
of rounds of attack will not exceed that under the related-key scenario. With the results,
we are able to prove strong bounds against related-tweak linear and differential attacks.
In particular, no related tweak linear or differential distinguisher based on a characteristic
is possible for 14-round uLBC-384t, which already exceeds 64 active S-boxes.

And, for the related-tweak boomerang distinguisher or differential-linear distinguisher,
we can construct at most a 6 + 1 + 6 = 13-round distinguisher, which has 6-round upper
part and 6-round lower part, and 1-round middle part without intersection of S-boxes.
The probability is at least 2−104, the 14-round distinguisher also has probability lower
than 2−128.
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According to the length of the related-key distinguisher, at most 6 + 13 + 6 = 25 round
attack can be launched when the length of the key is 384-bit.

Table 20: Estimation of the number of active S-boxes for uLBC-384t under related-tweak
Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14

# of active S-boxes 0 0 1 4 8 13 23 32 35 39 44 51 60 >64

5 Implementation
Since our target construction is a low-latency block cipher, thus we want to minimize the
latency of our block cipher, uLBC-128 is fully unrolled (that optimizes the signal delay
from the input to output ports) and has its latency measured as a combinatorial circuit.
For comparison, the latency of other ciphers with no less than 128 bits of security and
block size are also included, namely QARMA9-128, QARMA11-128, Midori-128, SPEEDY-6,
and AES-128. The S-box of QARMA9-128 and QARMA11-128 is the best low-latency σ0 in
Table 16. As we can see in Table 21, uLBC-128 has the best area performance among all
the ciphers and the minimum delay among the 128-bit block ciphers. We also give the
decryption uLBC-DEC-128. Compared to uLBC-128, uLBC-DEC-128 has a slightly higher
delay and a much larger area in the latency optimized implementation. In this section,
we discuss the result of uLBC-128, and the implementation result of uLBC family in full
unrolled mode, as shown Table 23 in Appendix C. Notably, the latency of uLBC-256 has
lower latency than QARMA11-128. We also compared the round functions of uLBC-384t
and SKINNY-128-384 in Table 24. The throughput of uLBC-384t is about twice that of
SKINNY-128-384. Except for UMC55nm, the latency of uLBC-384t is lower than that of
SKINNY-128-384 and AT1 performs better.

The delay and area of the ciphers are measured with Synopsys Design Compiler S-
2021.06-SP3 and 2 open process libraries (Nangate 15nm and Nangate 45nm) and 2
commercial process libraries (TSMC 28nm and UMC 55nm). We follow the evaluation
framework outlined in [BIL+21, ABD+23], using the set_max_delay/set_max_area in-
structions to reduce the delay/area. Thus, we give two results, one is the area optimized
implementation and the other is the latency optimized implementation.

It can be seen that for both libraries, uLBC-128 has the second shortest latency (the
fastest is SPEEDY-6), and the smallest area. However, since SPEEDY-7-192 is fully broken
by Boura et al. [BDBN23], we believe its advantage in performance should be treated
with caution. Compared with Midori-128, uLBC-128 has a delay of 11%∼15% shorter and
uLBC-128 has excellent AT performance, the best performance except SPEEDY-6, and
even the best performance in UMC55nm.

6 Conclusion
In this paper, we propose a new low-latency 128-bit block cipher, called uLBC-128, which
offers a reduced implementation cost. Our experimental results consistently demonstrate
that uLBC-128 exhibits lower latency and requires less area compared to QARMA9-128,
Midori128, and AES-128. Furthermore, uLBC-128 presents a higher throughput-to-area
ratio when compared to these three ciphers. While the SPEEDY-6 cipher offers the lowest
latency among the tested ciphers, its security arguments fall short, particularly when
considering that Boura et al. have successfully broken the full round of SPEEDY-7-192.
This raises concerns about the security of the 7-round SPEEDY. Thus, it is crucial to

1AT denotes area-time product, which we set to AT = area(GE) · Delay(ns)/10000.
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Table 21: Area and latency optimized cipher performance. AT denotes area-time product,
which we set to AT = area(GE) · Delay(ns).

Platform Cipher
Area Optimized Latency Optimized

Area Delay AT Area Delay AT
µm2 GE ns µm2 GE ns

NanGate
15nm

AES 24333 123764 1.292 16.0×104 32637 166000 0.785 13.0×104

Midori128 5114 26011 0.889 2.3×104 6839 34783 0.627 2.2×104

QARMA9-128 6237 31723 0.950 3.0×104 9082 46193 0.650 3.0×104

QARMA11-128 7503 38162 1.170 4.5×104 10710 54475 0.780 4.2×104

SPEEDY-6 5666 28819 0.589 1.7×104 7576 38532 0.370 1.4×104

uLBC-128 4349 22120 0.740 1.6×104 5742 29204 0.551 1.6×104

uLBC-DEC-128 5086 25869 0.833 2.2×104 7170 36468 0.592 2.2×104

TSMC
28nm

AES 55702 110520 3.13 34.6×104 103337 205033 1.57 32.2×104

Midori128 12936 25667 2.43 6.2×104 34522 68496 1.22 8.4×104

QARMA9-128 15358 30472 2.37 7.2×104 42191 83713 1.29 10.8×104

QARMA11-128 18304 36318 2.83 10.3×104 48495 96220 1.57 15.1×104

SPEEDY-6 13938 27655 1.33 3.7×104 26616 52809 0.71 3.7×104

uLBC-128 10933 21693 1.98 4.3×104 24897 49399 1.09 5.4×104

uLBC-DEC-128 13052 25897 2.19 5.7×104 44003 87310 1.14 10.0×104

NanGate
45nm

AES 91710 114925 14.38 165.3×104 120052 150441 8.12 122.2×104

Midori128 18907 23693 9.06 21.5×104 24646 30885 6.73 20.8×104

QARMA9-128 22929 28733 10.37 29.8×104 33803 42360 6.87 29.1×104

QARMA11-128 27510 34474 12.54 43.2×104 40297 50497 8.27 41.8×104

SPEEDY-6 21079 26415 5.89 15.6×104 27441 34387 3.98 13.7×104

uLBC-128 15955 19994 7.63 15.3×104 19922 24964 5.74 14.3×104

uLBC-DEC-128 18550 23246 8.47 19.7×104 25579 32054 6.32 20.3×104

UMC
55nm

AES 123037 109854 14.21 156.1×104 294367 262828 3.74 98.3×104

Midori128 26645 23790 7.24 17.2×104 111906 99916 2.83 28.3×104

QARMA9-128 29173 26047 7.45 28.2×104 114481 102215 2.59 38.0×104

QARMA11-128 34831 31099 9.06 28.2×104 137188 122489 3.10 26.5×104

SPEEDY-6 28859 25767 6.68 13.2×104 108594 96959 1.56 15.1×104

uLBC-128 22545 20130 5.60 11.3×104 78362 69966 2.23 15.6×104

uLBC-DEC-128 25251 31643 7.34 23.2×104 112811 141369 2.34 33.1×104

provide evidence of the security of our newly designed cipher. The uLBC block cipher
offers robust security arguments against differential and linear attacks.

In terms of future directions, it would be interesting to extend our design by applying
the new methods for low-latency 4-bit S-boxes to larger S-boxes, such as those with 5-8
bits. Additionally, exploring the efficient implementation of the cipher using instruction set
architecture such as SIMD and AVX2 for software performance and side-channel security
would also be valuable areas to investigate.
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2.
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Key : 2f5a39f6 5ef0d47b 4c2ae6b5 21fb0a08
Ciphertext : 5384bf47 150a1f05 059c1e70 4894ca21

A.2 uLBC-256

1.

Plaintext : 00000000 00000000 00000000 00000000
Key : 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000
Ciphertext : fb0be725 0cfd59a9 d2712fb1 899ff396

2.

Plaintext : 2d643085 0cad830b 53764dad 7be5c3a9
Key : 2990cbcb 613391be 00a582cd 722e610f

42e65a59 2135ab5f 4a85fb01 222224e0
Ciphertext : b6cfa6a5 90dba5ea a5a7004e 5a8339f4
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A.3 uLBC-384t

1.

Plaintext : 00000000 00000000 00000000 00000000
Key : 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

Ciphertext : 64adeb02 32294d9c 1e268365 764e674a

2.

Plaintext : 2d7d941a 0f864e4b 3a7e25e3 2fe97815
Key : 08cac346 37da2d2c 54cbc059 0cc13e8d

62f1a185 65a35582 4642fdef 582d79f2
11a12c18 6c55e4b2 7b1999ae 4db8ada5

Ciphertext : 6bfe00ba 63397825 379e397e fa11d15a

B Differential trails with minimize number of active
sboxes for uLBC-128

Table 22 shows the differential trails with the minimum number of active S-boxes for
uLBC-128 with 3 to 7 Rounds.
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Table 22: Differential trails with the minimized number of active S-boxes.
# of Round Position State

3r

∆in 000000000c0020000000000000900000
Round 1 00000000000000060000000000000000
Round 2 22200000000000000000000000000000

∆out 06661011000000000000550500000000

4r

∆in 00020000000000000200000000002000
Round 1 00000000000000000000000000900000
Round 2 00000000000066060000000000000000
Round 3 ccc00000000009990000202200000000

∆out 3ffc6066110111100555563500006606

5r

∆in 00040010120020000100004200000400
Round 1 00000000000400100000000040000000
Round 2 00000000000000000000000000000800
Round 3 00000000202200000000000000000000
Round 4 00000000088800001101000000001110

∆out 0000aa82404480882202088881992220

6r

∆in 00000000000000000800000100108000
Round 1 00000000000000110000000022000000
Round 2 08080000000000000000000000001010
Round 3 00000880000000000000000020020000
Round 4 00000000000000002022111022020888
Round 5 01100088088000002002800800001100

∆out 00009198323102028080891926460000

7r

∆in 00000000000000000100000200102000
Round 1 00000000000000110000000011000000
Round 2 01010000000000000000000000001010
Round 3 00000220000000000000000020020000
Round 4 00000000000000001011111011010111
Round 5 01100088011000001001400400008800
Round 6 00000101020204044040808020200000

∆out 00880000008801108800440000001001

8r

∆in 10000001800000000020008002000000
Round 1 00010000020000000000000000000000
Round 2 00000000000080880000000011100000
Round 3 08080000000020200000000000002313
Round 4 00000220101101111110000080081101
Round 5 00110000110000001000008000010200
Round 6 00000000000810110000010044400000
Round 7 08080000000080800000000000004c00

∆out 0000808860660222000000008cc42202

C Implementation of uLBC Family

Table 23 shows the implementation of uLBC family. Table 24 shows the implementation of
round function of uLBC-384t and SKINNY-128-384.
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Table 23: Area and Latency Optimized Cipher Performance of uLBC family. AT denotes
area-time product, which we set to AT = area(GE) · Delay(ns).

Platform Cipher
Area Optimized Latency Optimized

Area Delay AT Area Delay AT
µm2 GE ns µm2 GE ns

NanGate
15nm

uLBC-128 4349 22120 0.740 1.6×104 5742 29204 0.551 1.6×104

uLBC-256 6146 31262 0.964 3.0×104 8052 40953 0.681 2.8×104

uLBC-384t 8863 45078 1.302 5.9×104 11527 58628 0.927 5.4×104

TSMC
28nm

uLBC-128 10933 21693 1.98 4.3×104 24897 49399 1.09 5.4×104

uLBC-256 15913 31574 2.32 7.3×104 36150 71726 1.34 9.6×104

uLBC-384t 22961 45558 3.16 14.4×104 47189 93628 1.84 17.2×104

NanGate
45nm

uLBC-128 15955 19994 7.63 15.3×104 19922 24964 5.74 14.3×104

uLBC-256 22704 28451 9.83 28.0×104 28165 35295 7.15 25.2×104

uLBC-384t 32833 41144 13.3 54.7×104 39983 50104 9.62 48.2×104

UMC
55nm

uLBC-128 22545 20130 5.60 11.3×104 78362 69966 2.23 15.6×104

uLBC-256 31609 28223 7.30 20.6×104 105104 93843 2.77 26.0×104

uLBC-384t 45611 40724 10.17 41.4×104 146099 130446 3.79 49.4×104

Table 24: Area and Latency Optimized Cipher Performance of the round function of
uLBC-384t and SKINNY-128-384. AT denotes area-time product, which we set to AT =
area(GE) · Delay(ns) · (Rounds +1).

Platform Cipher Rounds
Latency Optimized

Area Delay Throughput AT
µm2 GE ns Mb/s

NanGate
15nm

uLBC-384t 30 1923 9780 0.057 68866 1.7×104

SKINNY-128-384 56 1297 6598 0.064 33296 2.4×104

TSMC
28nm

uLBC-384t 30 5446 10806 0.11 35798 3.7×104

SKINNY-128-384 56 5790 11489 0.12 17847 7.9×104

NanGate
45nm

uLBC-384t 30 7266 9105 0.55 7160 15.6×104

SKINNY-128-384 56 4583 5743 0.71 3016 23.2×104

UMC
55nm

uLBC-384t 30 14357 12819 0.31 12702 12.3×104

SKINNY-128-384 56 8219 7339 0.28 7649 11.7×104
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