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Abstract. With the rapid development of quantum computers, proofs of quantumness
have recently become an interesting and intriguing research direction. However, in
all current schemes for proofs of quantumness, quantum provers almost invariably
face the risk of being maliciously exploited by classical verifiers. In fact, through
malicious strategies in interaction with quantum provers, classical verifiers could solve
some instances of hard problems that arise from the specific scheme in use. In other
words, malicious verifiers can break some schemes (that quantum provers are not
aware of) through interaction with quantum provers. All this is due to the lack of
formalization that prevents malicious verifiers from extracting useful information in
proofs of quantumness.
To address this issue, we formalize zero-knowledge proofs of quantumness. Intuitively,
the zero-knowledge property necessitates that the information gained by the classical
verifier from interactions with the quantum prover should not surpass what can
be simulated using a simulated classical prover interacting with the same verifier.
As a result, the new zero-knowledge notion can prevent any malicious verifier from
exploiting quantum advantage. Interestingly, we find that the classical zero-knowledge
proof is sufficient to compile some existing proofs of quantumness schemes into zero-
knowledge proofs of quantumness schemes.
Due to some technical reason, it appears to be more general to require zero-knowledge
proof on the verifier side instead of the prover side. Intuitively, this helps to regulate
the verifier’s behavior from malicious to be honest-but-curious. As a result, both
parties will play not only one role in the proofs of quantumness but also the dual
role in the classical zero-knowledge proof.
Specifically, the two principle proofs of quantumness schemes: Shor’s factoring-based
scheme and learning with errors-based scheme in [Brakerski et al, FOCS, 2018], can be
transformed into zero-knowledge proofs of quantumness by requiring an extractable
non-interactive zero-knowledge argument on the verifier side. Notably, the zero-
knowledge proofs of quantumness can be viewed as an enhanced security notion for
proofs of quantumness. To prevent malicious verifiers from exploiting the quantum
device’s capabilities or knowledge, it is advisable to transition existing proofs of
quantumness schemes to this framework whenever feasible.
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2 Zero-Knowledge Proofs of Quantumness

1 Introduction
A cryptographic proofs of quantumness (PoQ) is a scheme that validates a quantum device’s
ability to perform tasks that classical devices cannot handle efficiently. These schemes
enable a quantum prover to convince a classical verifier of its quantum computational
power through specific challenging tasks, such as factoring [Sho94, Reg24], BosonSam-
pling [AA11, BJS11], learning with errors (LWE)-based trapdoor claw-free (TCF) hash func-
tions [BCM+18, BKVV20], computational Bell test [KMCVY22, KLVY23, BGKM+23],
etc.

Recent PoQ schemes primarily address scenarios where the prover may act maliciously,
such as checking whether a classical prover is masquerading as a quantum device and
verifying whether the results produced by the quantum device are indeed correct. In
addition to this, this work considers an important supplementary perspective, focusing on
situations where the classical verifier might act maliciously. To see how a malicious
verifier could behave, we provide a scenario about how the quantum prover could be
maliciously exploited in the PoQ as shown in Figure 1.

In the factoring-based PoQ scheme, a malicious verifier V∗ can simply replace the large
integer number N with their carefully chosen number N∗ (e.g., that can be taken from
an RSA public key). With such substitution, the verifier could easily exploit the prover’s
quantum capabilities to factor N∗ for gaining benefit. Then in the LWE-based PoQ scheme
in [BCM+18], how the verifier can make use of the quantum prover is much less clear.
On one side, assuming the post-quantum hardness of LWE problem, the classical verifier
should not be able to get much more advantage from the quantum prover for solving the
LWE instance. Whereas the transcripts from the quantum prover should contain more
information than that which any classical prover could possess. This actually helps the
verifier to distinguish quantum prover from any macilious classical prover. To conclude,
we can not properly prevent the verifier from obtaining additional information through
the quantum prover beyond being merely convinced of the prover’s quantumness.

Regarding the explicit attack and potential unexpected advantage that the verifier
could gain from the quantum prover, preventing malicious verifiers from extracting useful
information from PoQ is necessary and raises the following question:

Is there a “zero-knowledge” proofs of quantumness that allows a prover to demonstrate
quantum capability without revealing any other useful information?

The “zero-knowledge” property is to ensure that, at any point, the quantum prover’s
capabilities are not maliciously exploited by the verifier. In other words, the interactive
proof process does not reveal any information beyond the fact that “the prover possesses
quantum capabilities”. We believe that considering the zero-knowledge PoQ (ZKPoQ)
scheme is crucial and has far-reaching implications. In the post-quantum era, the test of
quantumness may serve as the first step for classical users to subscribe to quantum services.
The ZKPoQ can fundamentally ensure that the quantum server’s computational power is
not swindled by classical users during this verification process, thereby safeguarding the
server’s interests.

1.1 Our Contributions
The traditional security model for the proofs of quantumness only concerns the completeness
and soundness, where the latter one requires that no classical prover can successfully run the
protocol and pass the verification. In this work, we introduce the zero-knowledge property
for the proofs of quantumness protocol for the first time. In particular, the zero-knowledge
property is also defined in a classical manner but with respect to quantum capability
instead of particular knowledge. Informally, a proofs of quantumness protocol is said to be
zero-knowledge when the communication between the quantum prover and the classical
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Figure 1: Schematic diagram of a malicious verifier V∗ spoofing to utilize the quantum
capabilities of the quantum prover P in factoring-based quantumness proof scheme.

Figure 2: Illustration of our new zero-knowledge property for proofs of quantumness.

verifier can be perfectly simulated with a polynomial-time probabilistic classical prover
communicated with the same verifier (as shown in Figure 2). Under this zero-knowledge
definition, the verifier can not exploit the quantum advantage of the quantum prover via
their communication anymore, as their communication does not leak more information
than the communication between the same verifier and a (simulated) classical prover.

To demonstrate the rationality of this new notion, we migrate two mainstream PoQ
schemes, factoring-based scheme and LWE-based scheme [BCM+18], to the ones satisfying
zero-knowledge. Informally, we define the PoQ with zero knowledge property as follows.

Definition 1 (Zero-knowledge proofs of quantumness, ZKPoQ). A ZKPoQ scheme satisfies
quantum completeness, classical soundness, and (computational) zero-knowledge properties.

Our first technical contribution (the formal statement is in Section 3) concerns the
zero-knowledge property. We show that certain existing PoQ schemes can be efficiently
transformed into the ones with zero-knowledge property.

Infeasibility of requiring zero-knowledge proofs from prover. Intuitively, one
might think that a quantum prover could directly make use of a zero-knowledge proof to
hide the information from the prover while still making the verification feasible. Indeed,
this approach works well with the factoring-based scheme, where the prover could directly
respond with zero-knowledge proof of factorization (p, q) for N . However, it is not suitable
for other schemes such as the LWE-based PoQ scheme [BCM+18]. In the latter one, the
verifier will challenge the quantum prover to provide the witness to some statement that is
only known by the verifier itself. In this case, it is infeasible to require the prover to provide
a zero-knowledge proof without knowing the explicit statement to prove. In more details,
in the equation test of the PoQ scheme in [BCM+18] (refer to Figure 6 for the description
of the scheme), the prover is asked to provide a witness σ1 = (c, d) ∈ {0, 1} × {0, 1}n to
the statement c = d⊤ · (x0 ⊕ x1) mod 2, where x0 and x1 are two preimages for a same
output y under a post-quantum secure claw-free function. Due to the claw-free property,
even the quantum prover should not be able to obtain both preimages x0 and x1. As a
result, the adversary does not have access to the statement. Therefore, instead of requiring
the prover to provide a zero-knowledge proof, our approach considers ensuring ZKPoQ by
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Figure 3: Diagram of ZKPoQ for factoring-based scheme.

requiring the verifier to provide a zero-knowledge proof to claim that it is not behaving
maliciously.

This leads to our first technical contribution, which supplements zero-knowledge on
top of two existing PoQ schemes by requiring an extractable proof from the verifier’s side.
To sketch the idea, any classical prover communicated with the verfier, can now extract
necessary secret knowledge from the additional extractable proof from the verifier, which is
sufficient to be used to simulate the communication without any quantum resource. This
properly ensures the zero-knowledge on the prover side for the PoQ scheme. However,
the newly added extractable proof from the verifier causes an issue on the soundness
of the PoQ protocol, as any classical prover can simulate the communication using the
knowledge under the extractable proof without exploiting quantum advantage. To fix
this issue, we further require the extractable proof to be zero-knowledge. The latter
one can be constructed from one-way function and public key encryption [JK25]. As an
interesting result, both zero-knowledge and soundness properties of the aforementioned
ZKPoQ primitive can be satisfied simultaneously. In particular, we provide transformation
from two PoQ schemes to ZKPoQ schemes (refer to Theorems 1 and 2 for the informal
statements of our results).

As shown in Figure 3, the main modification on top of the original scheme is that we
further require the verifier to provide an extractable-NIZK proof of the factorization (p, q)
of the integer N . One might notice that both the prover and the verifier in the proofs of
quantumness scheme will also play the dual role in the additional NIZK proof. In particular,
to argue the soundness of this resulting ZKPoQ scheme, we can rely on the zero-knowledge
property of the extractable-NIZK proof such that any malicious classical prover can not
get any information from this additional proof and should factor the integer N by itself.
Notably, a classically secure NIZK will be sufficient as the ZK property is only required
to hold facing a malicious classical prover for the soundness of proofs of quantumness.
Regarding the zero-knowledge property of this ZKPoQ scheme, the simulator can then
make use of the extractability property of the extractable-NIZK proof to extract the
witness (p, q) from the proof. Therefore, the transcript from the quantum prover can be
simulated perfectly.

Theorem 1 (ZKPoQ for factoring-based scheme). Given an extractable-NIZK proof, the
factoring-based PoQ scheme shown in Figure 3 can be transformed into ZKPoQ one.

Now we can see how this ZKPoQ scheme can be used to avoid the attack scenarios
depicted in Figure 1. As illustrated in Figure 3, according to the extractability of the
extractable-NIZK proof, it would be infeasible for a malicious verifier V∗ to provide a valid
proof without knowing the factorization (p, q), which efficiently regulate the malicious
behavior of the verifier in this scenario.

Next, we move the transformation from the LWE-based scheme in Figure 4 to ZKPoQ
scheme. Again, the principle adjustment is to ask the verifier to submit an extractable-
NIZK proof of the secret of the LWE instance. As before, the soundness of the ZKPoQ
scheme is based on the zero-knowledge property of the extractable-NIZK proof. Notably,
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the zero-knowledge property of our LWE-based ZKPoQ scheme can also be achieved by
the extratability of the extractable-NIZK proof. The main observation is that any classical
prover knowing the secret of the LWE instance (sent from the verifier) can also pass
the verification. Therefore, the simulator can extract the LWE secret and then perfectly
simulate the transcripts from the prover to the verifier. This does not invalidate the
soundness of the scheme, because the verifier is the only one knowing the secret, and
therefore anyone else should follow the scheme to prove quantumness.

Figure 4: Diagram of ZKPoQ for the LWE-based scheme [BCM+18].

Theorem 2 (ZKPoQ for the LWE-based scheme [BCM+18]). Given an extractable-NIZK
proof, the LWE-based scheme in [BCM+18] can be transformed into ZKPoQ one.

Last but not least, we emphasize that using classically secure extractable-NIZK proof
in the aforementioned ZKPoQ schemes is sufficient. Moreover, if we want to apply our
LWE-based ZKPoQ scheme for other purpose such as certifiable randomness from quantum
device [BCM+18] or key leasing [CGJL23], post-quantum secure extractable-NIZK seems to
be necessary. Because in that case, we want to ensure that even the quantum prover could
not gain any extra advantage from the extractable-NIZK proof. As shown in Theorem 4,
there exists a post-quantum secure extractable-NIZK proof based on the LWE assumption.

Difficulty of having a generic transformation for proofs of quantumness to be
zero-knowledge. In this work, we have examinated two examples based on factoring
and LWE, respectively. These two protocols shares the same challenge-response type
of procedure between the prover and verifier. Under this category, there exist more
LWE-based protocols, but additional assumptions are involved. For example, the PoQ
scheme in [BKVV20] requires random oracle and the ones in [KMCVY22, BGKM+23]
further assume Bell’s inequality. Therefore, it is not clear whether the idea of requiring
an extractable-NIZK from the verifier’s side is also applicable to the other LWE-based
protocols. Other than the challenge-response style protocols, there is also non-interactive
PoQ protocol such as the Bosonsampling [AA11, BJS11]. Therefore, though our idea seems
to be quite general, different methods may still be required for other protocols to achieve
zero-knowledge.

1.2 Related works
Proofs of quantumness (PoQ) represent a milestone for the field of quantum computation,
serving as a classically-verifiable demonstration of non-classical behavior from a single
quantum device. To date, there are three mainstream approaches for demonstrating proofs
of quantumness:

1. Factoring-Based PoQ: This approach leverages the well-known computational
hardness of factoring large integers, a task presumed to be intractable for classical
computers but efficiently solvable by quantum computers using algorithms such as
Shor’s algorithm [Sho94]. The quantum demonstration involves producing factors of
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large composite numbers, which can be verified classically. However, implementing
factoring-based PoQ requires fault-tolerant scalable quantum computer, which is
unimplementable on short-term NISQ devices.

2. Sampling-Based PoQ: This approach is based on the classical hardness of sam-
pling problems, such as boson sampling [AA11, MLA+22] or random circuit sam-
pling [AAB+19, WBC+21]. Although these methods can be implemented with NISQ
hardware, they are not efficiently verifiable since the classical verification of these
methods typically demands exponential time.

3. LWE-Based PoQ: Another PoQ approach introduced by Brkerski et al. [BCM+18],
utilizes the quantum hardness of the Learning With Errors (LWE) problem to
execute a cryptographic interactive protocol between a polynomial-time classical
verifier and an ostensibly quantum polynomial-time prover. Wherein, the verifier
presents challenges to the prover and checks the correctness of the prover’s responses.
A crucial aspect of this method is that an effective quantum strategy should enable
the prover to accurately respond to the verifier’s challenges with a high likelihood of
success, while any effective classical strategy would only achieve a low probability of
success, assuming the hardness of LWE assumption. In terms of implementation,
the LWE-based PoQ appears to require significantly fewer resources compared to
the Factoring-based PoQ, yet it still demands more than the Sampling-based PoQ.
Regarding verification, both LWE-based and Factoring-based PoQ can be efficiently
verified classically, unlike Sampling-based PoQ, which does not allow for such efficient
classical verification.
Following on the breakthrough work of [BCM+18], numerous studies such as [BKVV20,
ACGH20, KMCVY22, KLVY23, AMMW24, BGKM+23] have developed progres-
sively more efficient proofs of quantumness. The goal of these efforts is to simplify
these tests so that they can be implemented on current NISQ quantum devices.

The above PoQ protocols, along with follow-up works, have not addressed scenarios that
involve malicious verifiers, an area yet to be explored in the current research. This paper
introduces zero-knowledge proofs of quantumness, presenting them as an advanced security
concept for proofs of quantumness. Given that sampling-based PoQ schemes do not align
with the cryptographic interactive protocol framework and lack the capability for efficient
classical verification, our work specifically focuses the formalization of zero-knowledge
proofs on classically verifiable PoQ protocols, with particular emphasis on those based on
factoring and LWE.

1.3 Open Problems
Although our results naturally transform PoQ into ZKPoQ using extractable-NIZK, there
remain many intriguing open problems regarding the general transformation of PoQ into
ZKPoQ. Here, we mention some of them.

• Is it possible to provide a more general transformation framework that formalizes
the required characteristics of the PoQ? In our current work, we have demonstrated
that both the factoring-based PoQ and LWE-based PoQ protocols can be directly
upgraded to ZKPoQ using extractable-NIZK techniques. However, for sampling-
based PoQ schemes, they do not align with the cryptographic interactive protocol
framework and lack the capability for efficient classical verification, which makes such
a general transformation challenging. This remains an open problem, and we will
consider exploring this direction in future work. Additionally, for other LWE-based
PoQ protocols such as those presented in [BKVV20, ACGH20, KMCVY22, KLVY23,
AMMW24, BGKM+23], we note that these protocols often rely on different heuristic



Duong Hieu Phan, Weiqiang Wen, Xingyu Yan, Jinwei Zheng 7

assumptions. Therefore, it is not trivial to apply our approach to these schemes.
However, these protocols closely resemble the one we considered, making it interesting
to explore potential common characteristics that satisfy the transformation. This
would be another future research direction.

• Can interactive solutions in the plain model replace NIZKs in both ZKPoQ construc-
tions, thereby eliminating the need for the CRS model? In our current construction,
we chose to use post-quantum NIZK to minimize interaction between parties, but
this comes at the cost of relying on a CRS. In order to remove the CRS and
work in the plain model, one can instead resort to the interactive zero-knowledge
proofs [GMW86, BG92]. We will consider it as future work to formally explore the
feasibility of this replacement.

2 Preliminaries
2.1 Notation
We use the acronyms PPT and QPT for probabilistic polynomial time and quantum
polynomial time respectively. For a classical probabilistic algorithm A, we write A(x; r) to
denote running A on input x, with input randomness r. For a finite set S, we use x

$←− S
to denote uniform sampling of x from the set S. We denote [n] = {1, 2, · · · , n}. For clarity,
unless otherwise stated, the terms “Verifier (V)” and “Prover (P)” refer specifically to
their roles in the PoQ scheme.

Conceptually, trapdoor claw-free functions (TCF) consist of a pair of injective func-
tions {fk,0, fk,1}k that share the same image. With access to a secret trapdoor td, it
becomes easy to determine the two preimages x0 and x1 of the same image y, such
that f0(x0) = f1(x1) = y. However, it is computationally difficult to invert {fk,0, fk,1}k

without the trapdoor td. Such a pair of (x0, x1) is known as a claw, hence the name
is claw-free. In the LWE-based scheme [BCM+18], they use the Noisy TCF (NTCF)
informally described by f ′k,b(x) = Ax + e′+ b · (As + e) for b ∈ {0, 1} and k = (A, As + e).
In the following, we recall the definition of NTCF as well as its realization under LWE.

Definition 2 (NTCF family, [BCM+18]). Let λ be a security parameter. Let X and Y
be finite sets. Let KF be a finite set of keys. A family of functions

F =
{

fk,b : X → DY
}

k∈KF ,b∈{0,1}

is called a noisy trapdoor claw-free (NTCF) family if the following conditions hold:

1. Efficient Function Generation. There exists an efficient probabilistic algorithm
GenF which generates a key k ∈ KF together with a trapdoor tk:

(k, tk)← GenF (1λ) .

2. Trapdoor Injective Pair.

(a) Trapdoor : There exists an efficient deterministic algorithm InvF such that with
overwhelming probability over the choice of (k, tk)← GenF (1λ), the following
holds:

for all b ∈ {0, 1}, x ∈ X and y ∈ Supp(fk,b(x)), InvF (tk, b, y) = x.

(b) Injective pair : For all keys k ∈ KF , there exists a perfect matching Rk ⊆ X ×X
such that fk,0(x0) = fk,1(x1) if and only if (x0, x1) ∈ Rk.
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3. Efficient Range Superposition. For all keys k ∈ KF and b ∈ {0, 1} there exists a
function f ′k,b : X → DY such that the following hold.

(a) For all (x0, x1) ∈ Rk and y ∈ Supp(f ′k,b(xb)), InvF (tk, b, y) = xb and InvF (tk, b⊕
1, y) = xb⊕1.

(b) There exists an efficient deterministic procedure ChkF that, on input k, b ∈
{0, 1}, x ∈ X and y ∈ Y, returns 1 if y ∈ Supp(f ′k,b(x)) and 0 otherwise. Note
that ChkF is not provided the trapdoor tk.

(c) For every k and b ∈ {0, 1},

Ex←X
[

H2(fk,b(x), f ′k,b(x))
]
≤ µ(λ) .

for some negligible function µ. Here H2 is the Hellinger distance. Moreover,
there exists an efficient procedure SampF that on input k and b ∈ {0, 1}
prepares the state

1√
|X |

∑
x∈X ,y∈Y

√
(f ′k,b(x))(y) |x⟩ |y⟩ .

4. Adaptive Hardcore Bit. For all keys k ∈ KF the following conditions hold, for
some integer w that is a polynomially bounded function of λ.

(a) For all b ∈ {0, 1} and x ∈ X , there exists a set Gk,b,x ⊆ {0, 1}w such that
Prd←U{0,1}w [d /∈ Gk,b,x] is negligible, and moreover there exists an efficient
algorithm that checks for membership in Gk,b,x given k, b, x and the trapdoor
tk.

(b) There is an efficiently computable injection J : X → {0, 1}w, such that J can
be inverted efficiently on its range, and such that the following holds. If

Hk =
{

(b, xb, d, d · (J (x0)⊕ J (x1))) | b ∈ {0, 1}, (x0, x1) ∈ Rk,

d ∈ Gk,0,x0 ∩Gk,1,x1

}
,

Hk = {(b, xb, d, c) | (b, x, d, c⊕ 1) ∈ Hk

}
,

then for any quantum polynomial-time procedure A there exists a negligible
function negl(·) such that∣∣∣∣ Pr

(k,tk)←GENF (1λ)
[A(k) ∈ Hk]− Pr

(k,tk)←GENF (1λ)
[A(k) ∈ Hk]

∣∣∣∣ ≤ negl(λ).

Lemma 1 ([BCM+18, Theorem 4.1]). Assuming the quantum hardness of LWE, there
exists an LWE-based NTCF family with an adaptive hardcore bit property.

Here, we recall an inverting algorithm with trapdoor in [MP13], which is used in the
LWE-based PoQ scheme [BCM+18].

Theorem 3 ([MP13, Theorem 5.1]). There is an efficient algorithm GenTrap that, on
input 1n, q, m = Ω(n log q), outputs a matrix A distributed statistically close to uniformly
on Zn×m

q , and a O(m)-good lattice trapdoor td for A. Moreover, there is an efficient
algorithm Invert that, on input A, td and sA + e where ∥e∥ ≤ q/(CT

√
n log q) and CT

is a universal constant, returns s and e with overwhelming probability over (A, td) ←
GenTrap(1n, 1m, q).
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2.2 Extractable-NIZK for NP in the CRS Model
Notice that, in the following definition from [JK25], we additionally consider a weaker
notion of extractability, where the adversary is not allowed to query any simulated proof
under the targeted CRS. We will denote the model simply by extractable-NIZK, where
the simulation-extractability is replaced by extractability. It is easy to see that the
simulation-extractable NIZK implies the extractable-NIZK. The latter one is sufficient for
our purpose.

Definition 3 (Post-quantum (simulation-)extractable NIZK for NP in CRS Model [JK25]).
Let NP relation R with corresponding language L be given such that they can be indexed
by a security parameter λ ∈ N.

Π = (Setup, P, V) is a post-quantum (quantum) non-interactive simulation-extractable
zero-knowledge argument for NP in the CRS model if it has the following syntax and
properties.
Syntax: The input 1λ is left out when it is clear from context.

• crs ← Setup(1λ): The probabilistic polynomial-size algorithm Setup on input 1λ

outputs a common reference string crs.

• π ← P(1λ, crs, x, w): The probabilistic (quantum) polynomial-size algorithm P on
input a common reference string crs and instance and witness pair (x, w) ∈ Rλ,
outputs a proof π.

• V(1λ, crs, x, π) ∈ {0, 1}: The probabilistic (quantum) polynomial-size algorithm V
on input a common reference string crs, an instance x, and a proof π outputs 1 iff π
is a valid proof for x.

Properties: A post-quantum simulation-extractable NIZK is secure if the following
properties hold:

• Perfect Completeness. For every λ ∈ N and every (x, w) ∈ Rλ,

Pr
crs←Setup(1λ)
π←P(crs,x,w)

[V(crs, x, π) = 1] = 1.

• Adaptive Multi-Theorem Computational Zero-Knowledge. There exists a
probabilistic (quantum) polynomial-size algorithm Sim = (Sim0, Sim1)
and a negligible function negl(·) such that for every polynomial-size quantum algo-
rithm A, and every sufficiently large λ ∈ N,

advzk =
∣∣∣∣ Pr
crs←Setup(1λ)

[AP(crs,·,·)(crs) = 1] − Pr
(crs,td)←Sim0(1λ)

[ASim1(crs,td,·)(crs) = 1]
∣∣∣∣ ≤ negl(λ).

• Simulation Extractability. Let Sim = (Sim0, Sim1) be the simulator given by
the adaptive multi-theorem computational zero-knowledge property. There exists a
polynomial-time extractor Ext and a negligible function negl(·) such that for every
oracle-aided polynomial-size quantum algorithm A and every λ ∈ N,

Pr
(crs,td)←Sim0(1λ)

(x,π)←ASim1(crs,td,·)(crs)
w←Ext(crs,td,x,π)

[V(crs, x, π) = 1 ∧ x ̸∈ Q ∧ (x, w) ̸∈ R] ≤ negl(λ),

where Q is the list of queries from A to Sim1.
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• Extractability. Let Sim be the simulator given by the adaptive multi-theorem
computational zero-knowledge property. There exists a polynomial-time extrac-
tor Ext and a negligible function negl(·) such that for every polynomial-size quantum
algorithm A and every λ ∈ N,

Pr
(crs,td)←Sim(1λ)

(x,π)←A(crs)
w←Ext(crs,td,x,π)

[V(crs, x, π) = 1 ∧ (x, w) ̸∈ R] ≤ negl(λ).

We emphasize that the extractor in the definition of extractability of the extractable-
NIZK proof is purely classical, which is sufficient for our purpose. Looking ahead, one
can notice that the classically secure extractable-NIZK proof is already enough for our
transformation. However, we still recall the post-quantum secure version of extractable
NIZK proof aiming for its potential applications in more functionalities such as certifying
qubits and key leasing (as discussed in Section 1.1).

Next, we recall a result from [JK25] about an LWE-based construction satisfying the
simulation-extractable NIZK definition.
Theorem 4 ([JK25, Corollary 4.4]). Assuming the polynomial quantum hardness of LWE,
there exists a post-quantum non-interactive simulation-extractable, adaptively multi-theorem
computationally zero-knowledge argument for NP in the common reference string model
(Definition 3).

Note that the construction provided by [JK25] achieves a stronger notion than the one
we need, but it is the closest one that we are aware of. Therefore, we take it as an example
of extractable-NIZK for instantiating our transformation.

2.3 Recall Approaches for Proofs of Quantumness
We first recall the definition of the quantum-prover interactive proof.
Definition 4 (QPIP: Quantum-prover interactive proof). A quantum-prover interactive
proof (QPIP) system is an interactive scheme between two polynomially bounded parties,
a quantum prover and a classical verifier interacting over a classical channel.

1. A semi-honest QPIP system is described by a pair of algorithms: the PPT algorithm
of the honest-but-curious verifier V and the QPT algorithm of prover P;

2. A malicious QPIP system described by a pair of algorithms: the PPT algorithm of
the malicious verifier V∗ and the QPT algorithm of prover P;

We first state the straightforward quantum completeness and classical soundness of the
proofs of quantumness (PoQ) scheme based on factoring.
Lemma 2 (Quantum Completeness). Due to Shor’s quantum polynomial-time factoring
algorithm, a QPT prover, P, following the honest strategy in the scheme ΣFactoring shown
in Figure 5 is accepted with probability 1− negl(λ).
Lemma 3 (Classical Soundness). Assuming large integer factoring is classically intractable
for any PPT prover P ′, the prover P ′ can convince the V to accept with only negligible
probability in scheme ΣFactoring shown in Figure 5.

Now we recall the quantum completeness and classical soundness of the PoQ scheme
in [BCM+18] as follows.
Lemma 4 (Quantum Completeness, [BCM+18]). A QPT prover, P, following the honest
strategy in the scheme ΣBCMVV (as shown in Figure 6) is accepted with probability 1−negl(λ).
Lemma 5 (Classical Soundness, [BCM+18]). Assume that LWE is classically intractable.
For any PPT prover, P ′, in the parallel repetition version of the scheme ΣBCMVV (as shown
in Figure 6), the prover P ′ convinces the V to accept with negligible probability.
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ΣFactoring: PoQ for Factoring N ′

Fix a security parameter λ. Let P denote a quantum prover and V denote a classical
verifier, and ⟨P,V⟩ be a QPIP system for a PoQ scheme. Let N ′ be the product of
two primes p and q.
V: Prepare two random large primes (p, q) and compute N ′. Send N ′ to the P.
P: Compute (p, q) ← Q.factoring(N ′) by using Shor’s quantum polynomial time
algorithm Q.factoring(N ′). Send (p, q) to the V.
V: Check the validity of (p, q) and output ⟨P,V⟩ = 1 if it passes; else output 0 and
abort.

Figure 5: ΣFactoring: Factoring-based Proofs of Quantumness Scheme.

ΣBCMVV: LWE-based PoQ Scheme (Parallel repetition version)

Fix a security parameter λ and an NTCF family F =
{

f ′k,b : X → DY
}

k∈K,b∈{0,1}
described by algorithms (GenF , SampF , InvF , ChkF ), assuming that LWE is classi-
cally intractable. Let P denote a quantum prover and V denote a classical verifier,
and ⟨P,V⟩ be a QPIP system for a PoQ scheme. Repeat the following steps λ times:
V : Prepare (k, tk)← GenF (1λ) and send k to the prover P , where k = (A′, A′s′ + e′)
and tk = tdA′ is the trapdoor.
P : Run SampF (1λ) and measure the image register to yield a string y, send y to the
verifier V.
V: Sample a uniformly random challenge bit c

$←− {0, 1} and send c to the prover P.
P: Take in the challenge c, do:

• Preimage test (if c = 0): Perform a standard basis measurement, return a
pair (b, x) ∈ {0, 1} × {0, 1}n as the proof σ0 = (b, x).

• Equation test (if c = 1): Perform a Hadamard basis measurement, return a
pair (u, d) ∈ {0, 1} × {0, 1}n as the proof σ1 = (u, d).

• Send σc to the verifier V.

V: Take in (tk, y, c, σc) do:

• Compute (x0, x1)← InvF (1λ, tk, y), where x1 = x0 − s′ mod q.

• Check the validity of σc and output ⟨P,V⟩, which is defined as

⟨P,V⟩ :=


1 if c = 0 and ChkF (k, y, b, x) = 1,

1 if c = 1, d ∈ Gk,0,x0 ∩Gk,1,x1 and d⊤ · (x0 ⊕ x1) mod 2 = u,

0 otherwise.

At the end of the λ rounds, if the verifier V has not aborted it accepts.

Figure 6: ΣBCMVV: LWE-based Proofs of Quantumness Scheme [BCM+18].
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3 Zero-Knowledge Proofs of Quantumness Based on
Extractable-NIZK

In this section, we initially present the formal definition of zero-knowledge proofs of
quantumness. Subsequently, we introduce two constructions that can be provably secure
under this definition.

3.1 Zero-Knowledge Proofs of Quantumness
In the following definition, we will supplement the zero-knowledge notion to the existing
proofs of quantumness definition. Our zero-knowledge property is also formalized by
indistinguishability between real transcript and simulated one. In particular, our zero-
knowledge protocol requires indistinguishability between the communication initiated by a
quantum prover and the one by a classical prover when interacting with the same verifier.

Definition 5 (Zero-knowledge proofs of quantumness, ZKPoQ). Let P denote a quantum
prover and V denote a classical verifier. we say that ⟨P,V⟩ is a QPIP system for zero-
knowledge proofs of quantumness if the following properties are satisfied:

• Quantum Completeness: Let λ ∈ N be the security parameter. Given the QPT
prover P, there exists a negligible function in λ such that:

Pr[⟨V(1λ),P(1λ)⟩ = 1] ≥ 1− negl(λ)

• Classical Soundness: For any PPT prover P ′, there exists a negligible function
in λ such that:

Pr[⟨V(1λ),P ′(1λ)⟩ = 1] ≤ negl(λ)

• Computational Zero-Knowledge: For any PPT verifier V∗ and QPT prover P,
there exists a PPT simulator algorithm SimV∗ has assess to oracle V∗, such that:

SimV∗(1λ) ≈c View[⟨V∗(1λ)↔ P(1λ)⟩]

where ≈c represents computational indistinguishability.

3.2 Construction of a Factoring ZKPoQ Scheme
We refer to Figure 7 for our factoring-based ZKPoQ scheme.

Theorem 5. Assuming that the LWE problem is classically intractable, the protocol ZK.ΣFactoring
described in Figure 7 is a ZKPoQ (Definition 5) scheme satisfying quantum completeness,
classical soundness, and computational zero-knowledge.

The Theorem 5 follows from the following Lemmata 6, 7 and 8. The completeness of
our factoring-based ZKPoQ scheme is stated below.

Lemma 6 (Quantum Completeness). The scheme ZK.ΣFactoring satisfies quantum com-
pleteness of ZKPoQ in Definition 5.

Proof. Completeness follows from completeness of the Extractable-NIZK, and completeness
of PoQ Scheme ΣFactoring shown in Figure 5.

The classical soundness of our factoring-based ZKPoQ scheme is given as follows. In
particular, the classical soundness of our factoring-based ZKPoQ scheme is based on the
zero-knowledge property of the extractable-NIZK proof as well as the classical soundness
of the original factoring-based PoQ scheme.
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ZK.ΣFactoring: ZKPoQ for Factoring N

Fix a security parameter λ. Let P denote a quantum prover and V denote a clas-
sical verifier. Let ⟨P,V⟩ be a QPIP system for ZKPoQ scheme described by algo-
rithms (Setup, Nizk, Prove, Verify). Let N be the product of two primes p and q.
Let Π = (Setup, P, V) be an extractable non-interactive, adaptively multi-theorem
computationally zero-knowledge (extractable-NIZK) scheme for factoring N .
Setup(1λ):

• (crs, td)← Π.Setup(1λ).

V: Nizk(crs):

• Prepare large primes (p, q) and compute N .

• Compute proof π ← Π.P(crs, N, (p, q)) for factoring N .

• Send (N, π) to quantum prover P.

P: Prove(crs, N, π):

• Compute Π.V(crs, N, π) and continue if it passes; else output ⊥ and abort.

• Compute quantumness proof σ ← Q.factoring(N).

• Send σ = (p, q) to classical verifier V.

V: Verify(σ):

• Check the validity of σ and output ⟨P,V⟩ = 1 if it passes; else output 0 and
abort.

Figure 7: ZK.ΣFactoring: Factoring-based Zero-knowledge Proofs of Quantumness Scheme.

Lemma 7 (Classical Soundness). The scheme ZK.ΣFactoring satisfies the classical soundness
of ZKPoQ in Definition 5.

Proof. We proceed by contradiction. Assuming that there exists a PPT adversary, denoted
as A, who can break the classical soundness of scheme ZK.ΣFactoring with a non-negligible
advantage ε0. We define the following three games. Let advi(A) denote the advantage of
the adversary A in the Gamei for i = {0, 1, 2}, respectively.

• Game0: Let Game0 be the same as the real scheme ZK.ΣFactoring in Figure 7.

• Game1: Let Game1 be the same as Game0, except the generation of (crs, td) ←
Setup(1λ) is replaced by (crs, td) ← Sim0(1λ), and the proof π generated by the
classical verifier V is also replaced by the simulated one π ← Sim1(crs, td, N) corre-
spondingly, where Sim = (Sim0, Sim1) is the simulator corresponding to the adaptive
multi-theorem computational zero-knowledge property.

• Game2: Let Game2 be the same as Game1, except that the N is replaced by the N ′

generated by the challenger for the soundness of the scheme ΣFactoring. We will also
forward the response (p, q) from the prover to the challenger.
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Game0 ≈c Game1: This follows directly from the property of the adaptive multi-theorem
computational zero-knowledge (Definition 3). Thus, adv0(A) ≤ adv1(A)+advzk ≤ adv1(A)+
negl(λ).

Game1 ≡ Game2: The Game1 and Game2 are identical as the distributions of N in the
ZKPoQ scheme and N ′ from the (honest) challenger for the original PoQ scheme are the
same. Thus, we have adv2(A) = adv1(A).

First, we claim that adv2(A) ≤ ε′, where the latter one denotes the advantage of any
classical PPT adversary A′ against the soundness of the original PoQ scheme ΣFactoring.
This is because a correct response (p, q) (as factorization of N ′) the adversary A in Game2
will also be the correct solution to the challenge provided by the challenger for the
soundness of the original PoQ scheme. Thus, we have ε0 = adv0(A) ≤ adv1(A) + negl(λ) =
adv2(A) + negl(λ) ≤ ε′ + negl(λ). Based on the soundness of the original PoQ scheme,
we have ε′ ≤ negl(λ) and therefore ε0 ≤ negl(λ). The lemma can be concluded by
contradiction.

Next, we show that our factoring-based ZKPoQ scheme also enjoys the zero-knowledge
property. Note that in this security notion, we will consider a malicious verifier who
will try to extract unexpected information from the prover. Notably, we can not assume
the number N sent by the malicious verifier will be honestly chosen, which makes the
construction of the simulator for zero-knowledge slightly more involved. As mentioned in
Section 1.1, the zero-knowledge property of our factoring-based ZKPoQ scheme is based
on the extractability of the extractable-NIZK proof.

Lemma 8 (Computational Zero-Knowledge). The scheme ZK.ΣFactoring satisfies computa-
tional zero-knowledge of ZKPoQ in Definition 5.

Proof. In the following, we provide the construction of the PPT simulator SimV∗ depending
solely on the classical verifier V∗.
SimV∗(1λ):

• Run (crs, td)← Sim(1λ) and store the td.

• Run verifier V∗ on crs to get N and extractable-NIZK proof π for proving the NP
relation (N, (p, q)).

• Run polynomial-time (classical) extractor Ext to compute w ← Ext(crs, td, x, π),
where the witness w = (p, q) and x = N . If this fails, then we abort.

• Feed the verifier V∗ with (p, q) and the simulation is finished.

First, the distributions crs from the setup algorithm Setup(1λ) and the simulation
algorithm Sim(1λ) are computationally indistinguishable (that is implicit in the zero-
knowledge property of the extractable-NIZK proof). In addition, since the probability of
extractable-NIZK’s extractor Ext failing to extract (p, q) is negligible, the probability of
simulator SimV∗ abort is also negligible. Thus, we have SimV∗(1λ) ≈c View[⟨V∗(1λ) ↔
P(1λ)⟩].

3.3 Construction of the LWE-based ZKPoQ Scheme
We refer to Figure 8 for our LWE-based ZKPoQ scheme.

Theorem 6. Assuming the post-quantum LWE problem, the protocol ZK.ΣBCMVV described
in Figure 8 is a ZKPoQ (Definition 5) scheme satisfying quantum completeness, classical
soundness, and computational zero-knowledge.
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ZK.ΣBCMVV: ZKPoQ for LWE-based Scheme (Parallel repetition version)

Fix a security parameter λ and an NTCF family F =
{

f ′k,b : X → DY
}

k∈K,b∈{0,1} de-
scribed by algorithms (GenF , SampF , InvF , ChkF ), assuming the post-quantum
hardness of LWE. Let P denote a quantum prover and V denote a classical
verifier. Let ⟨P,V⟩ be a QPIP system for ZKPoQ scheme described by algo-
rithms (Setup, Nizk, Prove, Verify). Let Π = (Setup, P, V) be an extractable non-
interactive, adaptively multi-theorem computationally zero-knowledge (extractable-
NIZK) scheme for factoring N . Repeat the following steps λ times:
Setup(1λ): (crs, td)← Π.Setup(1λ).
V: Nizk(crs):

• Prepare (k, tk)← GenF (1λ), where k = (A, As + e) and tk = tdA.

• Recover LWE secret s from k via tk using algorithm from Lemma 3.

• Compute proof π ← Π.P(crs, (A, As + e), s).

• Send (k, π) to the prover P.

P: Prove1(crs, k, π):

• Compute Π.V(crs, k, π) and continue if it passes; else output ⊥ and abort.

• Run SampF (1λ) and measure the image register to yield an string y, send y to
the verifier V. Note that the y = f ′k,b(x) is distributed over random b

$←− {0, 1}
and x $←− X .

V: Sample a uniformly random challenge bit c
$←− {0, 1} and send c to the prover P

P: Prove2(c, ρ):

• Preimage test (if c = 0): Perform a standard basis measurement, return a
pair (b, x) ∈ {0, 1} × {0, 1}n as the proof σ0 = (b, x). In this case, the response
of the prover is a random one of the two preimages (b = 0, x0 = x) and (b =
1, x1 = x0 − s) of y under the function f ′k,b(xb).

• Equation test (if c = 1): Perform a Hadamard basis measurement, return a
pair (u, d) ∈ {0, 1} × {0, 1}n as the proof σ1 = (u, d). In this case, the response
of the prover is (u, d) such that d is random and u = d⊤ · (x0 ⊕ x1) mod 2.

• Send σc to the verifier V.

V: Verify(tk, y, c, σc):

• Compute (x0, x1)← InvF (1λ, tk, y), where x1 = x0 − s mod q.

• Check the validity of σc and Output ⟨P,V⟩, which is defined as

⟨P,V⟩ :=


1 if c = 0 and ChkF (k, y, b, x) = 1,

1 if c = 1, d ∈ Gk,0,x0 ∩Gk,1,x1 and d⊤ · (x0 ⊕ x1) mod 2 = u,

0 otherwise.

At the end of the λ rounds, if the verifier V has not output 0 it accepts.

Figure 8: ZK.ΣBCMVV: LWE-based Zero-Knowledge Proofs of Quantumness Scheme.
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The Theorem 6 follows from the Lemmata 9, 10 and 11. The completeness is given as
follows.

Lemma 9 (Quantum Completeness). The scheme ZK.ΣBCMVV satisfies quantum com-
pleteness of ZKPoQ in Definition 5.

Proof. Completeness follows from completeness of the extractable-NIZK, and completeness
of PoQ scheme ΣBCMVV shown in Figure 6.

The classical soundness of our LWE-based ZKPoQ scheme is given as follows. To prove
the classical soundness of the LWE-based ZKPoQ scheme, we need to rely on both the
zero-knowledge property of the extractable-NIZK proof as well as the classical soundness
of the original LWE-based PoQ scheme.

Lemma 10 (Classical Soundness). The scheme ZK.ΣBCMVV satisfies the classical soundness
of ZKPoQ in Definition 5.

Proof. Similarly, we proceed by contradiction. Assuming that there exists a probabilistic
polynomial-time (PPT) adversary, denoted as A, who can break the classical soundness
of scheme ZK.ΣBCMVV with a non-negligible advantage ε0. We define the following three
games. Let advi(A) denote the advantage of the adversary A in the Gamei for i = {0, 1, 2},
respectively.

• Game0: Let Game0 be the same as the real scheme ZK.ΣBCMVV in Figure 8.

• Game1: Let Game1 be the same as Game0, except that the generation of (crs, td)←
Setup(1λ) is replaced by (crs, td) ← Sim0(1λ), and the proof π generated by the
classical verifier V is also replaced by the simulated one π ← Sim1(crs, td, k) with k =
(A, As+e) correspondingly, where Sim = (Sim0, Sim1) is the simulator corresponding
to the adaptive multi-theorem computational zero-knowledge property.

• Game2: Let Game2 be the same as Game1, except that all transcripts other than
the extractable-NIZK proof from the verifier to the prover are replaced by the
corresponding transcripts from the challenger for the soundness of the original
scheme ΣBCMVV. These transcripts will include k and c. All transcripts from the
prover are also forwarded to the challenger correspondingly. These transcripts will
include y and σc.

Game0 ≈c Game1: This follows directly from the property of the adaptive multi-theorem
computational zero-knowledge (Definition 3). Thus, adv0(A) ≤ adv1(A)+advzk ≤ adv1(A)+
negl(λ).

Game1 ≡ Game2: The Game1 and Game2 are identical because the distributions all tran-
scripts except the extractable-NIZK proof from the verifier to the prover in the ZKPoQ
scheme and the ones from the (honest) challenger for the original PoQ scheme are the
same. Thus, we have adv2(A) = adv1(A).

First, we claim that adv2(A) ≤ ε′, where the latter one denotes the advantage of any
classical PPT adversary A′ against the soundness of the original PoQ scheme ΣBCMVV.
This is because once the adversary A succeeds in Game2, then we can also pass the
challenge proposed by the challenger for the soundness of the original PoQ scheme ΣBCMVV.
Therefore, we have ε′ ≥ adv2(A). Thus, adv0(A) ≤ adv1(A)+negl(λ) = adv2(A)+negl(λ) ≤
ε′+ negl(λ). Based on the soundness of the original PoQ scheme, we have ε′ ≤ negl(λ) and
therefore ε0 ≤ negl(λ). The lemma can be concluded by contradiction.
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Next, we proceed to prove that our LWE-based ZKPoQ scheme also enjoys the zero-
knowledge property. We follow a similar manner as before to first extract the witness of
the extractable-NIZK proof, which can then be used to properly simulate all responses
from the quantum prover (as discussed in Section 1.1). Therefore, the zero-knowledge
property of our factoring-based ZKPoQ scheme is also based on the extractability of the
extractable-NIZK proof.

Lemma 11 (Computational Zero-Knowledge). The scheme ZK.ΣBCMVV satisfies compu-
tational zero-knowledge of ZKPoQ in Definition 5.

Proof. In the following, we provide the construction of the PPT simulator SimV∗ depending
solely on the classical verifier V∗.
SimV∗(1λ):

1. Run (crs, td)← Sim(1λ) and store the trapdoor td.

2. Run verifier V∗ on crs to get k = (A, As + e) and an extractable-NIZK proof π for
proving NP relation (k = (A, As + e), s).

3. Run polynomial-time (classical) extractor Ext to compute w ← Ext(crs, td, x, π),
where the witness w = s and the statement x = (A, As + e). If this fails, then we
abort.

4. Pick a random pair (b, x) where b
$←− {0, 1} and x $←− X . Compute y = f ′k,b(x)

classically and feed the verifier V∗ with the next input y. This produces y with the
same distribution as in the real scheme.

5. Receive from the verifier V∗ the next output challenge c, if c = 0, feed the verifier V∗
with next input (b, x); otherwise sample a random d ∈ {0, 1}n, compute u =
d⊤ · (x⊕ (x− s)) mod 2, then feed the verifier V∗ with the next input (u, d) as the
equation test result. Note that both the pair (b, x− b · s) and the pair (u, d) have
the same distribution as in the real scheme.

6. Repeat the above Step 2–Step 5 procedures λ times.

First, the distributions of crs from the setup algorithm Setup(1λ) and the simulation
algorithm (crs, td)← Sim(1λ) are computationally indistinguishable. In addition, since the
probability of extractable-NIZK’s extractor Ext failing to extract w = s is negligible, the
probability of simulator SimV∗ abort is also negligible.

One can also verify that the simulated transcripts from the prover to the verifier have
exactly the same distribution as the ones in the real protocol. First, it is clear that
the y = f ′k,b(x) with both b and x randomly chosen, has the same distribution as the
one produced in the real protocol. Then, in the case of c = 0, the (b, x) is a random
one of two preimages (0, xb) and (1, x1) of y under the function f ′k,b(xb), as the real case.
The last case is when c = 1, the (u, d) enjoys the relation u = d⊤ · (x ⊕ (x − s)) mod 2
for a random d, therefore also has the same distribution as the real one. Thus, we
have SimV∗(1λ) ≈c View[⟨V∗(1λ)↔ P(1λ)⟩].

References
[AA11] Scott Aaronson and Alex Arkhipov. The computational complexity of linear

optics. In 43rd Annual ACM Symposium on Theory of Computing, pages
333–342, 2011. doi:10.1145/1993636.1993682.

https://doi.org/10.1145/1993636.1993682


18 Zero-Knowledge Proofs of Quantumness

[AAB+19] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin,
Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A
Buell, et al. Quantum supremacy using a programmable superconducting
processor. Nature, 574(7779):505–510, 2019. doi:10.1038/s41586-019-1
666-5.

[ACGH20] Gorjan Alagic, Andrew M Childs, Alex B Grilo, and Shih-Han Hung. Non-
interactive classical verification of quantum computation. In Theory of
Cryptography Conference, pages 153–180. Springer, 2020. doi:10.1007/97
8-3-030-64381-2_6.

[AMMW24] Yusuf Alnawakhtha, Atul Mantri, Carl A Miller, and Daochen Wang. Lattice-
based quantum advantage from rotated measurements. Quantum, 8:1399,
2024. doi:10.22331/q-2024-07-04-1399.

[BCM+18] Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh Vazirani, and
Thomas Vidick. A cryptographic test of quantumness and certifiable random-
ness from a single quantum device. In 59th Annual Symposium on Foundations
of Computer Science, pages 320–331, 2018. doi:10.1109/FOCS.2018.00038.

[BG92] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In
Advances in Cryptology - CRYPTO 1992, pages 390–420. Springer, 1992.
doi:10.1007/3-540-48071-4_28.

[BGKM+23] Zvika Brakerski, Alexandru Gheorghiu, Gregory D. Kahanamoku-Meyer,
Eitan Porat, and Thomas Vidick. Simple tests of quantumness also certify
qubits. In Advances in Cryptology – CRYPTO 2023, pages 162–191, Cham,
2023. Springer Nature Switzerland. doi:10.1007/978-3-031-38554-4_6.

[BJS11] Michael J Bremner, Richard Jozsa, and Dan J Shepherd. Classical simulation
of commuting quantum computations implies collapse of the polynomial
hierarchy. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 467(2126):459–472, 2011. doi:10.1098/rspa.2010.
0301.

[BKVV20] Zvika Brakerski, Venkata Koppula, Umesh Vazirani, and Thomas Vidick.
Simpler proofs of quantumness. In 15th Conference on the Theory of Quantum
Computation, Communication and Cryptography, 2020. doi:10.4230/LIPI
cs.TQC.2020.8.

[CGJL23] Orestis Chardouvelis, Vipul Goyal, Aayush Jain, and Jiahui Liu. Quantum key
leasing for PKE and FHE with a classical lessor. Cryptology ePrint Archive,
Paper 2023/1640, 2023. URL: https://eprint.iacr.org/2023/1640.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing
but their validity and a methodology of cryptographic protocol design. In
27th Annual Symposium on Foundations of Computer Science, 1986. doi:
doi:10.1109/SFCS.1986.47.

[JK25] Ruta Jawale and Dakshita Khurana. Unclonable non-interactive zero-
knowledge. In Advances in Cryptology – ASIACRYPT 2024, pages 94–128,
Singapore, 2025. Springer Nature Singapore. doi:10.1007/978-981-96-0
947-5_4.

[KLVY23] Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Lisa Yang. Quantum
advantage from any non-local game. In 55th Annual ACM Symposium on
Theory of Computing, pages 1617–1628, 2023. doi:10.1145/3564246.3585
164.

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1007/978-3-030-64381-2_6
https://doi.org/10.1007/978-3-030-64381-2_6
https://doi.org/10.22331/q-2024-07-04-1399
https://doi.org/10.1109/FOCS.2018.00038
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/978-3-031-38554-4_6
https://doi.org/10.1098/rspa.2010.0301
https://doi.org/10.1098/rspa.2010.0301
https://doi.org/10.4230/LIPIcs.TQC.2020.8
https://doi.org/10.4230/LIPIcs.TQC.2020.8
https://eprint.iacr.org/2023/1640
https://doi.org/doi: 10.1109/SFCS.1986.47
https://doi.org/doi: 10.1109/SFCS.1986.47
https://doi.org/10.1007/978-981-96-0947-5_4
https://doi.org/10.1007/978-981-96-0947-5_4
https://doi.org/10.1145/3564246.3585164
https://doi.org/10.1145/3564246.3585164


Duong Hieu Phan, Weiqiang Wen, Xingyu Yan, Jinwei Zheng 19

[KMCVY22] Gregory D Kahanamoku-Meyer, Soonwon Choi, Umesh V Vazirani, and Nor-
man Y Yao. Classically verifiable quantum advantage from a computational
bell test. Nature Physics, 18(8):918–924, 2022. doi:10.1038/s41567-022
-01643-7.

[MLA+22] Lars S Madsen, Fabian Laudenbach, Mohsen Falamarzi Askarani, Fabien
Rortais, Trevor Vincent, Jacob FF Bulmer, Filippo M Miatto, Leonhard
Neuhaus, Lukas G Helt, Matthew J Collins, et al. Quantum computational
advantage with a programmable photonic processor. Nature, 606(7912):75–81,
2022. doi:10.1038/s41586-022-04725-x.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of sis and lwe with small
parameters. In Advances in Cryptology – CRYPTO 2013, pages 21–39, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg. doi:10.1007/978-3-642-4
0041-4_2.

[Reg24] Oded Regev. An efficient quantum factoring algorithm. Journal of the ACM,
2024. doi:10.1145/3708471.

[Sho94] Peter W Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In 35th Annual Symposium on Foundations of Computer
Science, pages 124–134. IEEE, 1994. doi:10.1109/SFCS.1994.365700.

[WBC+21] Yulin Wu, Wan-Su Bao, Sirui Cao, Fusheng Chen, Ming-Cheng Chen, Xi-
awei Chen, Tung-Hsun Chung, Hui Deng, Yajie Du, Daojin Fan, et al.
Strong quantum computational advantage using a superconducting quan-
tum processor. Physical Review Letters, 127(18):180501, 2021. doi:
10.1103/physrevlett.127.180501.

https://doi.org/10.1038/s41567-022-01643-7
https://doi.org/10.1038/s41567-022-01643-7
https://doi.org/10.1038/s41586-022-04725-x
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1145/3708471
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1103/physrevlett.127.180501
https://doi.org/10.1103/physrevlett.127.180501

	Introduction
	Our Contributions
	Related works
	Open Problems

	Preliminaries
	Notation
	Extractable-NIZK for NP in the CRS Model
	Recall Approaches for Proofs of Quantumness

	Zero-Knowledge Proofs of Quantumness Based on Extractable-NIZK
	Zero-Knowledge Proofs of Quantumness
	Construction of a Factoring ZKPoQ Scheme
	Construction of the LWE-based ZKPoQ Scheme

	References

