
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 4, 35 pages.

https://doi.org/10.62056/akmpdkp10
Check for updates

Technology-Dependent Synthesis and
Optimization of Circuits for Small S-boxes

Zihao Wei1,2 , Siwei Sun1,3 , Fengmei Liu2, Lei Hu4,5 and
Zhiyu Zhang1

1 School of Cryptology, University of Chinese Academy of Sciences, Beijing, China
2 Data Communication Science and Technology Research Institute, Beijing, China

3 State Key Laboratory of Cryptology, Beijing, China
4 Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, Chinese

Academy of Sciences, Beijing, China
5 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

Abstract. Boolean formula minimization is a notoriously hard problem that is known
to be ΣP

2 -complete. Circuit minimization, typically studied in the context of a much
broader subject known as synthesis and optimization of circuits, introduces another
layer of complexity since ultimately those technology-independent representations
(e.g., Boolean formulas and truth tables) has to be transformed into a netlist of
cells of the target technology library. To manage those complexities, the industrial
community typically separates the synthesis process into two steps: technology-
independent optimization and technology mapping. In each step, this approach only
tries to find the local optimal solution and relies heavily on heuristics rather than
a systematic search. However, for small S-boxes, a more systematic exploration of
the design space is possible. Aiming at the global optimum, we propose a method
which can synthesize a truth table for a small S-box directly into a netlist of the
cells of a given technology library. Compared with existing technology-dependent
synthesis tools like LIGHTER and PEIGEN, our method produces improved results for
many S-boxes with respect to circuit area. In particular, by applying our method
to the F24 -inverter involved in the tower field implementation of the AES S-box, we
obtain the currently known lightest implementation of the AES S-box. The search
framework can be tweaked to take circuit delay into account. As a result, we find
implementations for certain S-boxes with both latency and area improved.
Keywords: Circuit minimization · Latency · Logic synthesis · Technology mapping
· S-box · AES

1 Introduction
Chips designed for a particular, limited product or application (ASIC) can be found every-
where in our digital world. Arguably, the importance of ASICs cannot be overemphasized
in almost all aspects (from daily lives to military technologies) of our information society.
Logic synthesis, which transforms a relatively high-level functional or behavioral description
of a digital circuit into an optimized gate-level representation, plays a vital role in the
production of cost-effective and high-performance ASICs. Therefore, the development
of methodologies and tools for logic synthesis is one of the fundamental topics in digital

This work is supported by National Key Research and Development Program of China
(2022YFB2701900) and the National Natural Science Foundation of China (62032014).

E-mail: wei_z_h@163.com (Zihao Wei), siweisun.isaac@gmail.com (Siwei Sun), lfmei@sina.com
(Fengmei Liu), hulei@iie.ac.cn (Lei Hu), zhangzhiyu14@mails.ucas.ac.cn (Zhiyu Zhang)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-10-07 Accepted: 2024-12-03

https://doi.org/10.62056/akmpdkp10
https://crossmark.crossref.org/dialog/?doi=10.62056/akmpdkp10&domain=pdf&date_stamp=2025-01-11
https://orcid.org/0000-0002-5836-0282
https://orcid.org/0000-0002-3058-2377
https://orcid.org/0000-0001-8992-1647
mailto:wei_z_h@163.com
mailto:siweisun.isaac@gmail.com
mailto:lfmei@sina.com
mailto:hulei@iie.ac.cn
mailto:zhangzhiyu14@mails.ucas.ac.cn
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Technology-Dependent Synthesis and Optimization of Circuits for Small S-boxes

design, extensively studied by both the industrial and academic communities. In the
context of lightweight symmetric-key cryptography, an effective and efficient tool for logic
synthesis has direct and immediate impact on the quality of the selected building blocks
and their hardware implementations.

Guiding the Design Choices. Let us consider the typical working flow for designing a
lightweight block cipher. After the decision of the high-level structure being made, we
need to instantiate the structure with concrete components like MDS matrices or S-boxes.
At this step, typically we try to find a building block from a large set of candidates such
that some metric (e.g., area) is optimized under certain constraints (e.g., security and
latency). The quality of this selection process largely depends on the effectiveness of the
employed synthesis methodology.

This is evidenced by the development of the open literature on the construction of
lightweight MDS matrices, where the goal is to minimize the number of XOR gates required
in the implementations. At the early stage, due to the lack of efficient tools for synthesizing
linear functions, people relied on intuitive and ad-hoc local optimization heuristics. For
instances, we may guide the search based on the statement that the matrix whose binary rep-
resentation has a lower Hamming weight or whose entries enjoying lower hardware footprints
can be implemented with less XOR gates [SKOP15, BKL16, LW16, LW17, SS16, JPST17a,
ZWS18, GLWL16]. While such heuristics greatly simplify the searching process, they hardly
reflect the real cost of a matrix and thus leave a large room for improvements. With more ad-
vanced synthesizing methods (e.g., SAT-based approach [Sto16, FS10], LIGHTER [JPST17b],
PEIGEN [BGLS19], SLP heuristics [BMP13, LSL+19]) and global optimizations, more com-
pact MDS matrices are identified recently [KLSW17, JPST17b, DL18, LSL+19]. In the
case of finding lightweight S-boxes with strong security properties, we will face similar
synthesis problems [BGG+16, BGG+17, GJN+16]. In short, a good synthesis tool can
guide the designers to pick out high quality and cost effective cryptographic components.

Optimizing the implementations. For a given cipher, the ability of the synthesis tool to
produce implementations fulfilling various area and timing constraints imposed by the
target platforms and specific application scenarios partly determines the competitivity of
the final product and the range of applications of the cipher. One way to improve the overall
implementation of a cipher is to optimize the implementations of its building blocks. For
example, we have seen an endless endeavor in reducing the size (or latency) of the circuits for
the MDS matrix [LSL+19, Max19, TP20] and the S-box [Can05, RTA18, ME19, MPL+11]
involved in the Advanced Encryption Standard (AES).

As the complexity and diversity of cryptographic applications are increasing, the effect
of circuit synthesis and optimizations becomes even more profound. New technology
process requires synthesis tools to take technology-specific characteristics into account
to fully exploit the technological advancement and new applications scenarios may bring
new optimization objectives. For example, in fully homomorphic encryptions people are
interested in reducing the so-called multiplicative complexity (the number of AND gates
used in the circuit) [ARS+15a]. Also, it is known that any method for reducing the number
of multiplicative complexity for classical circuits can be employed to reduce the so-called
T -depth of quantum circuits constructed using the Clifford+T group of gates. In short,
circuit synthesis and optimization is an important field of study for both the academic
and industrial communities, and any progress in this field has a potential to impact many
applications.

Although eventually a circuit has to be constructed with a specific technology library,
most synthesis tools do not translate a given design into the cells of a target library directly
due to complexity issues. Instead, the process of circuit synthesis is typically done in a
two-step approach, where the first step is technology independent and works on abstract

Zihao Wei, Siwei Sun, Fengmei Liu, Lei Hu and Zhiyu Zhang 3

mathematical representations involving a highly restricted gate set (e.g., AND, OR, and NOT)
decoupled from any specific technology. Techniques such as Quine-McCluskey method for
two-level logic optimization [McC56] or methods for multilevel logic optimization [BHS90]
are often employed in this step by many CAD tools. The resulting design of the technology-
independent optimization can be ultimately implemented in any specific libraries of cells
by means of the so-called technology mapping. This approach is quite efficient for even
moderately large building blocks and is extensively employed in practice. However, splitting
the process into these somewhat independent phases leads to quality loss, e.g., the output
of the first phase may fit badly onto the target architecture. For small circuits, it is
possible to perform technology-dependent optimizations directly, which may result in more
fine-tuned optimizations.

Related Work. The two most relevant technology-dependent synthesis tools for small
cryptographic building blocks of this work are LIGHTER [JPST17b] and PEIGEN [BGLS19].
LIGHTER is an open-source tool developed by Jean, Peyrin, Sim, and Tourteaux [JPST17b],
which can search for efficient technology-dependent implementations of small vectorial
Boolean functions. For small non-linear S-boxes, LIGHTER applies a meet-in-the-middle
approach with breath-first search starting from the two root nodes encoding the identity
function and the target function respectively. In the search for an implementation of
an n× n S-box, new nodes are generated from old ones by applying invertible Fn

2 → Fn
2

instructions which are compositions of atomic logic gates from the underlying technology
library. This set of invertible instructions is named as B-set and LIGHTER is expected to
find the optimal B-implementation (an implementation using instructions restricted to
the B-set) of the S-box. PEIGEN can be regarded as an extended and enhanced version of
LIGHTER.1 Apart from some programming-level improvements for boosting its time and
memory efficiency, PEIGEN [BGLS19] expends the B-set with full support for ANDN and ORN
and optimizes away the meet-in-the-middle strategy by matching in one search tree rooted
at the node encoding the identity function. We note that nether LIGHTER or PEIGEN can
synthesize irreversible S-boxes due to the property of the B-set.

Our Contribution. We present a technology-dependent synthesis tool that can find
optimized implementations of small S-boxes in terms of the core cells of a specific technology
libraries. Compared with LIGHTER and PEIGEN, our tool enjoys several advantages. Firstly,
our tool is able to handle any small S-boxes, including those irreversible ones. Secondly,
the basic version of our algorithm can identify the circuit with the lowest area for a 3× 3
S-box, while the results given by LIGHTER or PEIGEN are not guaranteed to be optimal.
Thirdly, a tweaked version of our algorithm can find optimized circuit in terms of area
subject to timing (latency) constraints. By the way, some minor bugs in LIGHTER and
PEIGEN are identified.

We apply the method to a series of small (3 × 3 and 4 × 4) S-boxes with several
common CMOS technology libraries, and improved results are obtained. In particular,
we manage to produce the currently known lightest implementation of the AES S-box by
applying our tool to a F4

2 → F4
2 subcomponent of the tower field implementation of the

AES S-box. In certain cases, the circuits produced by our method are superior to existing
results with respect to both area and latency. Also, we apply our method to some 8× 8
S-boxes constructed from 4× 4 S-boxes and improved results are obtained. Moreover, our
tool can be applied in the context of synthesis and optimization of quantum circuits to
reduce the so-called T -count or employed to reduce the multiplicative complexities which
are concerned in the context of multi-party computation, zero-knowledge proofs, or fully
homomorphic encryption schemes [ARS+15b].

1PEIGEN also has functionalities for evaluating many security-related properties of the underlying
S-boxes. In this work, we only focus on its technology-dependent synthesis aspect.

4 Technology-Dependent Synthesis and Optimization of Circuits for Small S-boxes

Finally we would like to note that our algorithm is more memory extensive than
LIGHTER and PEIGEN, and sometimes it may fail to output a circuit within practical
memory consumption. Moreover, in the majority of cases, our algorithm consumes
a longer time span than LIGHTER and PEIGEN. Therefore, we regard our method as
a complement of LIGHTER and PEIGEN. The source code of this work is available via
https://github.com/zihaowei/CiC2024_TechDepSboxCircuits.

2 Notations and Preliminaries
An ordered set with n elements is denoted by A = [z0, · · · , zn−1]. Note that in our notation,
we do not allow duplicated elements, and thus all elements in the ordered set are distinct.
When the order is not important, we use A.Set() to represent the set {z0, · · · , zn−1}.
For an ordered or unordered set B, C ⊑ B signifies that C is an ordered subset of B. For
example, let B = {0, 1, 2}, then all its 2-element ordered subsets are [0, 1] ⊑ B, [0, 2] ⊑ B,
[1, 2] ⊑ B, [1, 0] ⊑ B, [2, 0] ⊑ B, and [2, 1] ⊑ B. In addition, the number of elements in a
set B is denoted by |B|.

Logic Gates and Combinatorial Circuits Logic gates are the basic building blocks
of combinational logic circuits.2 A logic gate corresponds to a Boolean function with one
or more input signals (typically less than or equal to four bits). A list of frequently used
logic gates found in common CMOS technology libraries are listed in Table 1. Hereafter,
the number of input bits of a gate β is denoted by #β. For example, according to
Table 1, we have #NOT = 1, #NAND = 2, and #OAI21 = 3. Also, for a gate β with
#β = l, β(x0, · · · , xl−1) represents the Boolean function associated with β in variables
(x0, · · · , xl−1). For instance, MUX(x0, x1, x2) = x0x1 +x0x2 +x2. Note that the order of the
variables (also called signals in this work) matters, and MUX(x0, x2, x1) = x0x2 + x0x1 + x1
is different from MUX(x0, x1, x2).

Loosely speaking, logic synthesis is the process of composing a logic circuit that
implements a given vectorial Boolean function using a predefined finite set of basic logic
gates. It is not hard to imagine that the design space of a moderately complex vectorial
Boolean function can be intractably large, and how to identify the optimal implementation
with respect to certain objective is a fundamental problem in logic design. To facilitate
our discussion, we introduce some formal notations.

Let G be a set of logic gates, a combinatorial circuit constructed with the gates in G is
called a G-circuit. A G-circuit with an n-bit input (x0, x1, · · · , xn−1) can be specified by a
sequence of signals

S = [x0, x1, · · · , xn−1; xn, xn+1 · · · , xn+t−1]

with t ≥ 0 and a sequence of gate-signal pairs

I = [(β0,X0), · · · , (βt−1,Xt−1)]

with βj ∈ G, Xj ⊑ {x0, x1, · · · , xn−1+j}, and #βj = #Xj , such that for 1 ≤ i < t,
xn+i−1 = βi−1(Xi−1). Under these notations, the symbolic object xj with n ≤ j < n + t
can be regarded as a Boolean function in the input variables {x0, x1, · · · , xj−1}, which in
turn can be regarded as a Boolean function in variables {x0, · · · , xn−1}. We call x0, · · · ,
xn−1 the input signals and xn, · · · , xn+t−1 the derived signals. Note that the input signals
and derived signals are separated with “;” in S. We emphasize again that in our notation,
when the signals in S are regarded as Boolean functions in variables {x0, · · · , xn−1}, no
duplicated elements are allowed. This requirement will not rule out the optimal solutions

2In this work we restrict our attention to combinatorial logics where the output of the logic circuit is a
pure function of the present inputs only.

https://github.com/zihaowei/CiC2024_TechDepSboxCircuits

Zihao Wei, Siwei Sun, Fengmei Liu, Lei Hu and Zhiyu Zhang 5

Table 1: Frequently-used logic gates in common CMOS technology libraries. The same
list of gates whose functionalities represented with logic formulas is given in Table 8 in
Appendix A.

Gate Domain→Range Functionality (algebraic normal form)

NOT F2 → F2 x0 7→ x0 + 1
AND F2

2 → F2 x0, x1 7→ x0x1
NAND F2

2 → F2 x0, x1 7→ x0x1 + 1
NANDN F2

2 → F2 x0, x1 7→ x0x1 + x1 + 1
OR F2

2 → F2 x0, x1 7→ x0x1 + x0 + x1
NOR F2

2 → F2 x0, x1 7→ x0x1 + x0 + x1 + 1
NORN F2

2 → F2 x0, x1 7→ x0x1 + x0
XOR F2

2 → F2 x0, x1 7→ x0 + x1
XNOR F2

2 → F2 x0, x1 7→ x0 + x1 + 1
AND3 F3

2 → F2 x0, x1, x2 7→ x0x1x2
NAND3 F3

2 → F2 x0, x1, x2 7→ x0x1x2 + 1
NANDN3 F3

2 → F2 x0, x1, x2 7→ x0x1x2 + x1x2 + 1
OR3 F3

2 → F2 x0, x1, x2 7→ x0x1x2 + x0x1 + x0x2 + x1x2 + x0 + x1 + x2
NOR3 F3

2 → F2 x0, x1, x2 7→ x0x1x2 + x0x1 + x0x2 + x1x2 + x0 + x1 + x2 + 1
NORN3 F3

2 → F2 x0, x1, x2 7→ x0x1x2 + x0x1 + x0x2 + x0
XOR3 F3

2 → F2 x0, x1, x2 7→ x0 + x1 + x2
XNOR3 F3

2 → F2 x0, x1, x2 7→ x0 + x1 + x2 + 1
MUX F3

2 → F2 x0, x1, x2 7→ x0x1 + x0x2 + x2
MUXI F3

2 → F2 x0, x1, x2 7→ x0x1 + x0x2 + x2 + 1
AO21 F3

2 → F2 x0, x1, x2 7→ x0x1x2 + x0x1 + x2
AOI21 F3

2 → F2 x0, x1, x2 7→ x0x1x2 + x0x1 + x2 + 1
OA21 F3

2 → F2 x0, x1, x2 7→ x0x1x2 + x0x2 + x1x2
OAI21 F3

2 → F2 x0, x1, x2 7→ x0x1x2 + x0x2 + x1x2 + 1
ANDN Fn

2 → F2 x0, x1 7→ x0x1 + x1
ORN Fn

2 → F2 x0, x1 7→ x0x1 + x0 + 1
MAOI1 Fn

2 → F2 x0, x1, x2, x3 7→ x0x1x2x3 + x0x1x2 + x0x1x3 + x2x3 + x2 + x3
MOAI1 Fn

2 → F2 x0, x1, x2, x3 7→ x0x1x2x3 + x0x2x3 + x1x2x3 + x0x1 + x0 + x1 + 1

since for each circuit not fulfilling our requirement, we can find a circuit satisfying our
rules whose cost is less or equal to it. Also, we call S and I the signal sequence and gate
sequence, respectively. The circuit corresponding to a given signal sequence S and a gate
sequence I is denoted by Circuit(S, I). This tedious description is best illustrated by an
example.

(a) A circuit with a 3-bit input (b) A circuit with a 4-bit input

Figure 1: Two simple circuits illustrating the signal sequence and gate sequence notations

Example 1. Let G = {NOT, AND, NAND, XOR}, S = [x0, x1, x2; x3, x4, x5], and

I = [(NAND, [x0, x1]), (NOT, [x3]), (XOR, [x4, x2])].

Then the G-circuit Circuit(S, I) is depicted in Figure 1(a). Considering the circuit given
in Figure 1(b), it can be specified by Circuit(S, I) with{

S = [x0, x1, x2; x3, x4, x5, x6]
I = [(XOR, [x2, x3]), (AND, [x0, x1]), (NAND, [x5, x4])]

.

6 Technology-Dependent Synthesis and Optimization of Circuits for Small S-boxes

(a) A circuit with a 4-bit input (b) A circuit with a 4-bit input

Figure 2: One circuit can have multiple different signal-gate sequence representations

We warn the reader that for a given a circuit, its signal-gate representation is not unique.
Taking the circuit depicted in Figure 2 for example, it can be specified as Circuit(S, I)
or Circuit(S ′, I ′) with{

S = [x0, x1, x2, x3; x4, x5, x6]
I = [(XOR, [x2, x3]), (OR, [x0, x1]), (NAND, [x5, x4])]

or {
S ′ = [x0, x1, x2, x3; x4, x5, x6]
I ′ = [(OR, [x0, x1]), (XOR, [x2, x3]), (NAND, [x4, x5])]

.

Therefore, we need to carefully rule out such repetitions in our search algorithms.

Area and Latency. Given a gate set G, for each gate β ∈ G, a positive integer called
area and denoted by ∥β∥ is associated with it. We should not take the notion so literally
since what it represents is some relative cost that may well deviate from the absolute
area of the gate. For example, let G = {NOT, AND, NAND, OR, NOR} whose absolute areas
are 0.532 µm2, 1.064 µm2, 0.798 µm2, 1.064 µm2 and 0.798 µm2, respectively. In terms
of gate equivalence (GE), these corresponds to 0.67 GE, 1.33 GE, 1.00 GE, 1.33 GE, and
1.00 GE, respectively. In our work, only the relative cost is essential and therefore we
may set the areas of the gates to ∥NOT∥ = 0.67 × 100 = 67, ∥AND∥ = 1.33 × 100 = 133,
∥NAND∥ = 1.00× 100 = 100, ∥OR∥ = 1.33× 100 = 133, and ∥NOR∥ = 1.00× 100 = 100.

Similarly, we associate each gate a parameter called delay to capture its latency
characteristic, and the delay of a gate β is denoted by (β). In common technology
libraries, the delay or latency characteristic of a gate is typically specified over ranges of
temperature and operating voltages, and thus this parameter is more complicated than
area. How to approximate the delay of a gate in our algorithm is described in Section 4.
Moreover, defining the overall delay of a signal and a circuit represents a formidable
challenge, considering that a multitude of factors can exert an influence. To streamline
the model, we define the delay of a signal as the cumulative sum of the delays of the gates
involved in its generation. Meanwhile, the delay of a circuit is defined as the maximum
value among the delays of all signals within the circuit.

Let C = Circuit(S, I) be a G-circuit with{
S = [x0, x1, · · · , xn−1; xn, · · · , xn+t−1]
I = [(β0,X0), · · · , (βt−1,Xt−1)]

with βj ∈ G, Xj ⊑ {x0, x1, · · · , xn−1+j}, and #βj = #Xj , such that for 1 ≤ i < t,
xn+i−1 = βi−1(Xi−1). The area of the circuit is defined as ∥C∥ =

∑t−1
i=0 ∥βi∥. Also, We

Zihao Wei, Siwei Sun, Fengmei Liu, Lei Hu and Zhiyu Zhang 7

associate each signal xj ∈ S a parameter (xj) called delay with the following rule:{
(x0) = · · · = (xn−1) = 0
(xn+i−1) = (βi−1) + max{(xj) : xj ∈ Xi−1}

. (1)

The delay of the circuit C is defined as (C) = max{(xj) : xj ∈ S}.

3 Exploring the Search Space with Single-gate Exten-
sions

Let G be a set of logic gates. A G-circuit C = Circuit(S, I) with

S = [x0, · · · , xn−1; xn, · · · , xn+t−1]

is said to implement a vectorial Boolean function F : Fn
2 → Fm

2 sending (x0, · · · , xn−1) to
(f0(x0, · · · , xn−1), · · · , fm−1(x0, · · · , xn−1)) if and only if

{f0(x0, · · · , xn−1), · · · , fm−1(x0, · · · , xn−1)} ⊆ S,

where the elements of S are regarded as Boolean functions in (x0, · · · , xn−1) as discussed
in Section 2. Our basic goal is to find a G-circuit implementing a given vectorial Boolean
function F : Fn

2 → Fm
2 whose area is minimized. Our search algorithm starts with the

circuit Circuit(S, I) with S = [x0, · · · , xn−1] and I = [] and proceeds with the so-called
single-gate extensions.

Definition 1. Given a G-circuit C with an n-bit input specified by its signal sequence S =
[x0, x1, · · · , xn−1; xn, xn+1 · · · , xn+t−1] and gate sequence I = [(β0,X0), · · · , (βt−1,Xt−1)].
We can extend it by applying a gate βt ∈ G with an ordered set Xt ⊑ {x0, · · · , xn+t−1}
such that #βt = |Xt| as its input to produce a new circuit C′ with instruction sequence

[(β0,X0), · · · , (βt−1,Xt−1), (βt,Xt)]

and signal sequence [x0, x1, · · · , xn−1; xn, xn+1 · · · , xn+t−1, xn+t] such that xn+t ̸= xj

(treated as Boolean functions in the input signals) for 0 ≤ j < n + t. The above process of
deriving C′ from C is called a single-gate extension of C with (βt,Xt).

Hereafter, we will use the notation C.S or C.I to emphasize the ownership of the signal
sequence S and instruction sequence I. For example, in Definition 1, we have{

C.S = [x0, x1, · · · , xn+t−1]
C.I = [(β0, X0), · · · , (βt−1, Xt−1)]

and
{
C′.S = [x0, x1, · · · , xn+t−1, xn+t]
C′.I = [(β0, X0), · · · , (βt−1, Xt−1), (βt, Xt)]

.

We now illustrate Definition 1 with a simple example.

Example 2. Consider the circuit C given in Figure 3(a) with{
C.S = [x0, x1, x2; x3]
C.I = [(AND, [x1, x0])]

.

The circuit C′ depicted in Figure 3(b) with{
C′.S = [x0, x1, x2; x3, x4]
C′.I = [(AND, [x1, x0]), (XOR, [x3, x2])]

is a single-gate extension of C.

8 Technology-Dependent Synthesis and Optimization of Circuits for Small S-boxes

(a) Circuit C (b) A single-gate extension of C

Figure 3: Two simple circuits illustrating the single-gate extension

Before setting up the algorithmic framework, we state a simple theorem.

Theorem 1. Let G = {β0, · · · , βs−1} be a gate set and C be a G-circuit. Then, the
area ∥C∥ is a multiple of ζ(G) = gcd(∥β0∥, · · · , ∥βs−1∥). Consequently, for any G-circuit,
∥C∥ = k · ζ(G) for some non-negative integer k.

Proof. It comes from ∥C∥ =
∑s−1

i=0 ∥βi∥ with the fact that ζ(G) divides ∥βi∥ for all i.

3.1 Technology-Dependent Synthesis: The Algorithmic Frame-
work

Let L(k·ζ(G)) be the set of all G-circuits with area k · ζ(G) for some non-negative integer k,
none of which can be implemented with area less than k · ζ(G). For a vectorial Boolean
function F : Fn

2 → Fm
2 , our basic algorithm systematically produces all G-circuits in L(k·δ(G))

with increasing k ∈ {1, 2, · · · } through single-gate extensions until a circuit implementing
F is encountered. The framework of our algorithm for technology-dependent synthesis is
described in Algorithm 1. Before showing the details of the algorithm, we first familiarize
the reader with the “shape” of the search space illustrated in Figure 4.

We call the circuits visited during the exploration of the search space nodes. Concep-
tually, the search space of our algorithm (for a circuit with an n-bit input) forms a tree
with a single root node representing the circuit with S = [x0, · · · , xn−1] and I = []. The
nodes are organized into different layers and the circuits in the same layer are of the same
area. Two nodes may be connected by a directed edge, indicating that the target node is a
single-gate extension of the source node.

Figure 4: A visualization of the search space of Algorithm 1

Now, let us look at Algorithm 1. From Line 1 to Line 5, we create the root note, and
put it into the list L(0). From Line 9 to Line 21, the algorithm creates a list L(k·ζ(G)) of

Zihao Wei, Siwei Sun, Fengmei Liu, Lei Hu and Zhiyu Zhang 9

Algorithm 1: The algorithmic framework
Input: A universal gate set G and a vectorial Boolean function F : Fn

2 → Fm
2

mapping (x0, · · · , xn−1) to (f0(x0, · · · , xn−1), · · · , fn−1(x0, · · · , xn−1))
Output: A G-circuit implementing F with minimal area

1 /* Initialization */
2 L(0) ← []
3 S ← [x0, x1, · · · , xn−1], I ← [] /* The signal and instruction sequences */
4 C← Circuit(S, I)
5 L(0).Append(C)

6 k ← 0
7 while k ≥ 0 do
8 k ← k + 1
9 L(k·ζ(G)) ← []

10 for β ∈ G with k · ζ(G)− ∥ β ∥≥ 0 do
11 w ← k · ζ(G)− ∥ β ∥
12 if L(w) ̸= [] then
13 for C ∈ L(w) do
14 S ← C.S
15 I ← C.I
16 for all ordered X ⊆ S with #X = #β do
17 if β(X) is a new signal with respect to S then
18 S ′ ← S.Append(β(X))
19 I ′ ← I.Append((β,X))
20 C′ ← Circuit(S ′, I ′)
21 L(k·ζ(G)).Append(C′)
22 if C′ implements F then
23 return C′

nodes such that for each circuit C in L(k·ζ(G)) we have ∥ C ∥= k · ζ(G). Moreover, each
node in L(k·ζ(G)) is constructed from some node in L(h·ζ(G)) for some h < k by the so-called
single-gate extension. We now explain this process in more details.

The creation of a node in L(k·ζ(G)) starts by selecting a logic gate β ∈ G with w =
k·ζ(G)− ∥ β ∥≥ 0 (see Line 10). Note that we require that w ≥ 0 since new nodes in L(k·ζ(G))

will be single-gate extensions of the nodes in L(w), whose area will be w + ∥β∥ = k · ζ(G).
Then, for each node C in L(w) (see Line 13), we select an ordered subset X of the signal
set of the node and wire the signals in X to the input pins of the gate β. This corresponds
to a single gate extension of C (see Line 18 to Line 20), and the new node is appended to
the list L(k·ζ(G)) (see Line 21).

Note that in our implementation of Algorithm 1, the gates in G are sorted in increasing
order of their sizes. When two gates are of the same size, their order can be arbitrary. Let
{β0, β1, · · · , βs−1} be the ordered gate set. When βj is selected, if k · ζ(G)−∥βj∥ < 0, then
we can stop inspecting the remaining gates since for any t > 0, we have k · ζ(G)−∥βj∥ < 0
according to the ordering of the gates. If w = k · ζ(G)− ∥βj∥ ≥ 0 and L(w) is nonempty,
we will generate all possible single-gate extensions of the circuits in L(w) with the gate βj .
All these circuits are of area k · ζ(G) and will be stored in L(k·ζ(G)). During this process,
the algorithm will return whenever a circuit implementing F is encountered (see Line 22
and Line 23). Our algorithm systematically explore the space of circuits with area k · ζ(G)

10 Technology-Dependent Synthesis and Optimization of Circuits for Small S-boxes

in the increasing order of k. Therefore, the first circuit we encounter in the search that
implements a given vectorial Boolean function F is the smallest circuit for F .

We are also able to prove that the circuit returned by Algorithm 1 does not possess any
redundant nodes. Suppose there is a circuit C1 with redundant nodes that realizes a given
F , and is the outcome of our algorithm. It can be readily demonstrated that the circuit
C2, which consists of all the nodes in C1 except the redundant ones, also implements F .
Moreover, the area of C2 is smaller than that of C1, and this conflicts with the conclusion
in our previous paragraph. In other words, C1 will not be the circuit that is returned.

3.2 A Comparison with LIGHTER, PEIGEN, and Our Algorithm
We highlight the critical difference between our algorithm and LIGHTER [JPST17b] together
with its improved version PEIGEN [BGLS19].

The creation of new circuits. In our algorithm, any new circuit (node) created during
the search is a single-gate extension of some previously created circuit which is called the
source node. The signal sequence of the newly created node is obtained by appending a
new signal derived from the application of a single basic gate in G to some signals in the
signal sequence of the source node. With this approach, both reversible and irreversible
circuits are covered by the search space.

In contrast, when LIGHTER or PEIGEN is executed for an n× n S-box, any new node
is represented as a vectorial Boolean function from Fn

2 to Fn
2 , which is obtained by ap-

plying a reversible transformation to the n output bits representing the source node.
Sometimes the reversible transformations are not basic gates but compositions of cer-
tain basic gates, which form the so-called B-set. Each transformation in the B-set of
LIGHTER and PEIGEN corresponds to a reversible vectorial Boolean function F : Fm

2 → Fm
2

mapping (x0, · · · , xm−2, xm−1) to (x0, x1, · · · , xm−2, xm−1 + f(x0, x1, · · · , xm−2)), where
f : Fm−1

2 → F2 is an arbitrary Boolean function. With this approach, the search space of
LIGHTER or PEIGEN is intrinsically incomplete and they are only applicable in the context
of reversible S-boxes without any modifications of the search algorithm. Therefore, even
with unlimited computational power, LIGHTER and PEIGEN may miss the optimal circuit
for a given vectorial Boolean function. Let us check a concrete example.

Example 3. Consider the 3× 3 S-box with substitution table [6, 2, 0, 7, 3, 4, 1, 5], whose
algebraic representation is

y0 = x2x0 + x1x0 + x2

y1 = x2x0 + x1x0 + x1 + 1
y2 = x2x1 + x2 + x1 + x0 + 1

,

where x0 is the least significant input bit and y0 is the least significant output bit. Our
algorithm with the full gate set of the TSMC 65nm library gives a circuit with 8.5 GE:

x3 = MUXI(x0, x2, x1), x4 = NOR(x2, x1), x5 = XOR(x0, x4),
x6 = AOI21(x2, x1, x3), x7 = NOR(x4, x6).

Note that we need to set y2 = x5, y1 = x3, and y0 = x7. With the TSMC 65nm library
PEIGEN generates the following circuit:

t1 = NOR(x1, x2) x0 = XOR(x0, t1) x1 = XNOR(x1, x2)
t2 = NOR(x1, x0) x2 = XNOR(x2, t2) x1 = XOR(x1, x2)

with y2 = x0, y1 = x2, y0 = x1, whose area is 12 GE.
Even if we apply our algorithm with with reduced gate set {NOT, AND, NAND, NANDN, OR,

NOR, NORN, XOR, XNOR, AND3, NAND3, OR3, NOR3 } which is fully supported by LIGHTER or
PEIGEN, our algorithm still leads to better circuit:

Zihao Wei, Siwei Sun, Fengmei Liu, Lei Hu and Zhiyu Zhang 11

x3 = NOR(x2, x1) x4 = XOR(x0, x3) x5 = NAND(x2, x1)
x6 = NAND3(x0, x4, x5) x7 = XNOR(x2, x6) x8 = XOR(x1, x6)

with y2 = x4, y1 = x8, y0 = x7, whose area is 11 GE.

The order of the search space exploration. In each round of the top loop of
Algorithm 1, a list of circuits with area k · ζ(G) for some fixed k is created from a subset
of circuits from

k−1⋃
h=0
{C is a G-circuit :∥ C ∥= h · ζ(G)}.

Therefore, in our algorithm, all newly created circuits within each top loop iteration is
of the same area, but the source circuits of the created nodes can come from different
layers whose corresponding areas are less than k · ζ(G). This order of the search space
exploration is illustrated in Figure 5(a). While in LIGHTER and PEIGEN, within each top
loop iteration, new nodes in

l⋃
h=k+1

{C is a G-circuit :∥ C ∥= h · ζ(G)}

for some integer l > h are created from a subset of circuits in {C is a G-circuit :∥ C ∥=
k · ζ(G)}, that is, the source circuits are of the same size while the created circuits are
of different sizes and larger than the source circuits. This search order is visualized in
Figure 5(b).

Notably, in our algorithm, the selected layers having areas less than k · ζ(G) are also
arranged in a specific order. Given that single-gate extension gives rise to new nodes with
the area of gates in an increasing order, the layer chosen first is the one whose area is closest
to k · ζ(G), while the last-choosen layer has the smallest area. This ordering runs counter
to intuitive expectations. In other words, the blue-colored layer in Figure 5(a) is the first
to be selected, and the grey-colored layer is the last. This underlying reason accounts for
the fact that the circuit yielded by our algorithm generates the signal associated with MUXI
gate eariler than the signal associated with NOR gate in Example 3.

(a) Nodes generation of Algorithm 1 (b) Nodes generation of of LIGHTER or PEIGEN

Figure 5: A comparison of Algorithm 1 and LIGHTER/PEIGEN

Bugs identified in LIGHTER and PEIGEN. The functionalities of MAOI1 and MOAI1 can
be described as {

MAOI1(a, b, c, d) = ¬((a ∧ b) ∨ (¬(c ∨ d)))
MOAI1(a, b, c, d) = ¬((a ∨ b) ∧ (¬(c ∧ d)))

.

12 Technology-Dependent Synthesis and Optimization of Circuits for Small S-boxes

Under the condition that a = c and b = d, MAOI1 is equivalent to XOR and MOAI1 is
equivalent to XNOR. Both LIGHTER and PEIGEN exploit these equivalences to reduce the
circuit size. For example, if ∥MAOI1∥ < ∥XOR∥ in a specific technology library, then all XOR
gates will be replaced by MAOI1 gates in the optimized circuits. This type of replacement
is considered in the construction of the so-called B-set. However, the B-sets constructed in
LIGHTER and PEIGEN are both incomplete.

• In the B-set of LIGHTER, the instructions formed by MAOI1 miss the combinations of
ANDN and ORN (fixed by PEIGEN).
• In the B-set of LIGHTER and PEIGEN, the instructions formed by XOR miss the

combinations of AND3, NAND3, OR3, NOR3, NAND and NOR.

The latter issue implies that the set of instructions formed by XOR is a strict subset of that
formed by MAOI1. When ∥XOR∥ > ∥MAOI1∥, this will not cause any problems. However,
when ∥XOR∥ < ∥MAOI1∥, this may lead to suboptimal results. We note that the case
∥XOR∥ < ∥MAOI1∥ indeed happens (e.g., in the STD90/MDL90 350nmnm library).

Finally, we would like to emphasize that the B-set in LIGHTER and PEIGEN is constructed
manually and it is quite likely to miss some meaningful combinations when the number of
basic gates is large. For our method, all basic gates are considered separately and thus we
do not face such difficulties.

4 Optimizing the Implementation of 4× 4 S-boxes
Although the algorithmic framework given in Algorithm 1 is guaranteed to find the optimal
solution, it has two drawbacks. Firstly, it is too memory-extensive to practically synthesize
most 4× 4 S-boxes. Secondly, it does not consider the circuit delay, an equally important
factor that affects the performance of the synthesized circuit. In this section, we are
going to shrink the search space of Algorithm 1 based on some heuristics to make it more
efficient without losing too much in the qualities of the solutions. Moreover, we will modify
the algorithmic framework such that it can synthesize area-optimized circuit under given
timing constraints.

Reducing the Search Space. The most memory consuming part of Algorithm 1
is the storage of L(k·ζ(G)). Now, we impose an order among the circuits in L(k·ζ(G)).
Let C = Circuit(S, I). The distance from C to the target vectorial Boolean function
F = (f0, · · · , fm−1), denoted by d(C, F), is defined as the number of elements in the set
S − {f0, · · · , fm−1}. The circuits in L(k·ζ(G)) are listed in increasing order of d(C, F). If
there is a tie, the circuits with less number of gates are listed first. If there still is a tie,
the circuits are listed according to its generation order. Let δ(L(k·ζ(G)), F) = min{d(C, F) :
C ∈ L(k·ζ(G))}. In our algorithm, only circuits with size less or equal to δ(L(k·ζ(G)), F) + e
are stored and all other circuits are dropped, where e is a small integer. In practice, we
typically set e to 0 or 1. Obviously, this approach makes the search space incomplete.
However, experimental results show that we do not lose much in the quality of the solutions,
which will be see in Section 5.

Taking Timing Constraints into Account. According to Equation (1), the delay of
each node visited in our algorithm can be computed if the delay of each gate is known.
For a specific technology library, the latency or delay of a gate at a typical condition (e.g.,
1.2V, 25◦C) is modeled as the following formula:

(β) = DI + KLoad · C, (2)

Zihao Wei, Siwei Sun, Fengmei Liu, Lei Hu and Zhiyu Zhang 13

where DI measured in ns is the so-called intrinsic delay of the gate β, KLoad is the load
delay factor (ns/pF), and C is the total output load capacitance (pF). Typically, the term
KLoad · C is much smaller than DI , and thus in this work we ignore KLoad · C and use
DI to approximate (β). Note that the intrinsic delay DI of a specific gate is a variable
depending on factors like drive strength and input-output conditions. In practice, we select
the maximum possible value of DI to approximate the delay of the gate.

Given a timing constraint that the delay of the circuit should be less than or equal to
T , we can fire up the algorithm and before output the implementation we check its delay.
If the delay is less than or equal to T , we output the circuit. Otherwise, we continue the
search until a area threshold is reached. We emphasize that unlike area, a circuit with
lower delay may appear in a layer that is farther away from the root node.
Remark. To guarantee that the approximation employed is sound, we always feed the
circuits with gate-level representations returned by our method to some CAD tools like
design compiler to confirm that the latency is indeed reduced as expected.

Further optimization with ABC. Following Jean et al.’s approach [JPST17b], we
try to further optimize the circuit by applying ABC [abc, BM10] to the implementation
produced by our method, i.e., the output circuit of our method is used as a starting point
for further optimization by ABC. However, in most cases, the application of ABC makes
the implementation less efficient in terms of area.

The reader may wonder why the application of ABC makes the implementation worse
than the input circuit. This is because internally ABC transforms the input circuit into
a technology-independent representation called And-Inverter Graph (AIG), and then
performs some technology-independent optimizations. Finally, the technology-independent
representation is mapped to an implementation based on a specific technology library. This
process may introduce some quality loss due to the conversion between the technology-
dependent and technology-independent domains. Moreover, experimental results show
that our method leads to highly optimized technology-dependent implementations such
that the room for further improvements (e.g., by ABC) is quite limited.

5 Applications and Results
Firstly, we apply our method to a F4

2 → F4
2 subcomponent of the tower field implementation

of AES. Then we go through a list of 3× 3 and 4× 4 S-boxes. Finally, we optimize the
implementations of some 8× 8 S-boxes constructed from 4× 4 S-boxes.

Optimizing the Circuit for the AES S-box. Currently, the most compact implemen-
tation of the AES S-box follows the tower field approach [ME19]. In this implementation,
we can identify a subcomponent which can be regarded as a 4 × 4 S-box (see [ME19,
Sect. 5.3]). Significantly, this S-box serves as a pivotal element in both the circuit opti-
mized for achieving minimal area and the circuit engineered to optimize logic depth in
[ME19]. Any improvement of the implementation of this subcomponents directly leads
to improvement of the overall AES S-box. The truth table of the subcomponent is given
by [0, c, 8, 4, 3, a, 7, 6, 2, d, 5, e, 1, 9, b, f]. Applying our method with STD90/MDL90 350nm
library gives the following circuit

x4 = NOR(x2, x0), x5 = NAND(x3, x1), x6 = XNOR(x4, x5),
x7 = MUX(x3, x6, x2), x8 = MUX(x1, x6, x0), x9 = NAND(x2, x0),
x10 = NAND(x7, x9), x11 = MUX(x10, x3, x2), x12 = NAND(x8, x9),
x13 = MUX(x12, x1, x0).

with y0 = x11, y1 = x7, y2 = x13, and y3 = x8, whose area is 16.65 GE. In [ME19], the
authors give a circle under STD90/MDL90 350nm library:

14 Technology-Dependent Synthesis and Optimization of Circuits for Small S-boxes

Table 2: S-boxes used for comparison

S-box Lookup table (in hexadecimal) Ref.
0 1 2 3 4 5 6 7 8 9 a b c d e f

3-way 7 2 4 5 1 6 3 0 [DGV93]
ctc2 7 6 0 4 2 5 1 3 [Cou07]
PRINTcipher 0 1 3 6 7 4 5 2 [KLPR10]
SEA 0 5 6 7 4 3 1 2 [SPGQ06]
Joltik e 4 b 2 3 8 0 9 1 a 7 f 6 c 5 d [JNP14]
Joltik−1 6 8 3 4 1 e c a 5 7 9 2 d f 0 b [JNP14]
RECTANGLE 6 5 c a 1 e 7 9 b 0 3 d 8 f 4 2 [ZBL+15]
RECTANGLE−1 9 4 f a e 1 0 6 c 7 3 8 2 b 5 d [ZBL+15]
SKINNY c 6 9 0 1 a 2 b 3 8 5 d 4 e 7 f [BJK+16]
SKINNY−1 3 4 6 8 c a 1 e 9 2 5 7 0 b d f [BJK+16]
TWINE c 0 f a 2 b 9 5 8 3 d 7 1 e 6 4 [ZJB06]
PRESENT c 5 6 b 9 0 a d 3 e f 8 4 7 1 2 [BKL+07]
LBlock s0 e 9 f 0 d 4 a b 1 2 8 3 7 6 c 5 [WZ11]
LBlock s1 4 b e 9 f d 0 a 7 c 5 6 2 8 1 3 [WZ11]
LBlock s3 7 6 8 b 0 f 3 e 9 a c d 5 2 4 1 [WZ11]
GIFT 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e [BPP+17]
Midori s0 c a d 3 e b f 7 8 9 1 5 0 2 4 6 [BBI+15]
Saturnin s0 0 6 e 1 f 4 7 d 9 8 c 5 2 a 3 b [CDL+20]
Orthros 1 0 2 4 3 8 6 d 9 a b e f c 7 5 [BIL+21]

x4 = NAND(x3, x1), x5 = NOR(x2, x0), x6 = XNOR(x4, x5),
x7 = MUX(x2, x1, 1), x8 = MUX(x0, x3, 1), x9 = MUX(x1, x6, x0),
x10 = MUX(x6, x0, x7), x11 = MUX(x3, x6, x2), x12 = MUX(x6, x2, x8).

with y0 = x12, y1 = x11, y2 = x10, and y3 = x9, whose area is 18.31 GE. If we apply
LIGHTER/PEIGEN to this component, the circuit obtained costs 21.65 GE.

Optimizing 3× 3 and 4× 4 S-boxes. We apply our method to the 3× 3 and 4× 4
S-boxes listed in Table 2 with several CMOS technology libraries, where the programs are
executed within a server that is furnished with an Intel Xeon w9-3475X(72) processor,
operating at a frequency of 4.6 GHz and equipped with 503 GB of memory. Some sample
results can be found in Table 3 and 4, and their running time can be found in Table 5
and 6. In certain cases, the improvement is significant. From Table 3 we can see that
the area of the S-box Midori s0 under the TSMC 28nm library is reduced from 28 GE to
13.98 GE. However, since the search space for 4× 4 S-boxes is incomplete and the memory
usage is extensive, in practice we may encounter the following possibilities. Firstly, the
search may fail to output any result before exhausting the system memory (see the row
for TWINE in Table 3). Secondly, the circuits produced by our method may be inferior to
the circuit generated by LIGHTER or PEIGEN (see the row for GIFT in Table 4). Besides,
despite the fact that we have incorporated several heuristic strategies to curtail the search
space, the search space of our method remains larger than that of LIGHTER and PEIGEN.
Consequently, our method invariably requires a significantly longer running time, which
might pose challenges in terms of overall efficiency and practical usability. Therefore, our
method should be regarded as a complement of LIGHTER and PEIGEN. We refer the reader
to Appendix C for more results with concrete implementations.

Moreover, if we take the latency into account as discussed in Section 4, we obtain some
circuits which are superior to previous results with respect to both area and delay. For
example, for the S-box Midori s0, we obtain a circuit with area 76.38 µm2 and delay 1.36 ns
(see Table 7), while the area and delay of the circuit generated by PEIGEN are 115.42 µm2

and 2.70 ns, respectively. For the S-box LBlock s0, RECTANGLE and Orthros, we obtain

Zihao Wei, Siwei Sun, Fengmei Liu, Lei Hu and Zhiyu Zhang 15

Table 3: Synthesis results with the TSMC library, where "%" indicates that the S-box is a
3-bit S-box and it is not supported by LIGHTER, "Error " indicates that LIGHTER returns
wrong circuits, "No res " indicates that the algorithm can not return any result.

S-box TSMC 65nm TSMC 28nm

LIGHTER PEIGEN Ours LIGHTER PEIGEN Ours

3-way % 11.50 GE 11.00 GE % 12.66 GE 10.65 GE
ctc2 % 10.50 GE 9.50 GE % 12.00 GE 8.99 GE
PRINTcipher % 10.50 GE 10.50 GE % 12.00 GE 9.98 GE
SEA % 10.50 GE 10.00 GE % 12.00 GE 9.65 GE
Joltik 14.00 GE 14.00 GE 14.00 GE 16.00 GE 16.00 GE 13.99 GE
Joltik−1 14.00 GE 14.00 GE 14.00 GE 16.00 GE 16.00 GE 15.66 GE
RECTANGLE 21.50 GE 22.00 GE 20.50 GE 25.00 GE No res 19.31 GE
RECTANGLE−1 21.50 GE 22.00 GE 19.00 GE 25.00 GE No res 20.98 GE
SKINNY 14.00 GE 14.00 GE 14.00 GE 16.00 GE 16.00 GE 13.99 GE
SKINNY−1 14.00 GE 14.00 GE 14.00 GE 16.00 GE 16.00 GE 15.66 GE
TWINE 25.00 GE No res No res 28.34 GE No res No res
PRESENT 24.00 GE 24.50 GE No res 27.33 GE No res No res
LBlock s0 19.00 GE 19.00 GE 16.50 GE 22.00 GE 22.00 GE 16.32 GE
LBlock s1 19.00 GE 19.00 GE 16.50 GE 22.00 GE 22.00 GE 16.32 GE
LBlock s3 19.00 GE 19.00 GE 16.50 GE 22.00 GE 22.00 GE 16.65 GE
GIFT 19.00 GE 19.00 GE 19.50 GE 22.00 GE 22.00 GE 21.99 GE
Midori s0 24.00 GE 24.00 GE 16.50 GE 28.00 GE No res 13.98 GE
Saturnin s0 21.00 GE 21.00 GE 19.50 GE 24.00 GE 24.00 GE 20.31 GE
Orthros 27.50 GE No res 16.00 GE Error No res 15.31 GE

similar results (see Table 7). Note that in our algorithm, the delay is approximated
according to Equation (2), to confirm the validity of this approximation, the rows denoted
as "Design Complier" in Table 7 report the synthesis results generated by Design Compiler
when the gate-level description of the circuits are fed into it.

Finally, we would like to mention that our tool can be applied to those 8× 8 S-boxes
constructed from 4×4 S-boxes [BGG+16, BGG+17, CDL15, LW14], since the improvement
of the implementations of the involved 4× 4 S-boxes directly leads to improvement of the
8× 8 S-boxes constructed from them.

6 Conclusion and Discussion

We present a technology-dependent synthesis tool which can transform a small S-box
specified with a truth table directly into a netlist of cells of the target CMOS technology
library. For 3× 3 S-box, our tool performs a systematic search and therefore is able to
identify the global optimal implementation. For 4× 4 S-boxes, we prune the search space
based on some heuristics and thus the tool is not guaranteed to reach the global optimum.
However, experimental results show that our tool still outperforms LIGHTER and PEIGEN
for some 4× 4 S-boxes. In particular, we obtain the most compact implementation of the
F24 -inverter, leading to improved implementation of the AES S-box. For certain S-boxes,
our method generates circuits superior to known implementations with respect to both
area and latency. Our tool can be regarded as a complement of LIGHTER and PEIGEN.

16 Technology-Dependent Synthesis and Optimization of Circuits for Small S-boxes

Table 4: Synthesis results with the SMIC library, where "%" indicates that the S-box is a
3-bit S-box and it is not supported by LIGHTER, "Error " indicates that LIGHTER returns
wrong circuits, "No res " indicates that the algorithm can not return any result.

S-box SMIC 130nm SMIC 65nm

LIGHTER PEIGEN Ours LIGHTER PEIGEN Ours

3-way % 10.65 GE 10.32 GE % 10.75 GE 10.25 GE
ctc2 % 9.99 GE 9.33 GE % 9.75 GE 9.00 GE
PRINTcipher % 9.99 GE 9.99 GE % 9.75 GE 9.75 GE
SEA % 9.99 GE 9.33 GE % 9.75 GE 9.25 GE
Joltik 13.32 GE 13.32 GE 13.32 GE 13.00 GE 13.00 GE 13.00 GE
Joltik−1 13.32 GE 13.32 GE 13.32 GE 13.00 GE 13.00 GE 13.00 GE
RECTANGLE 20.31 GE 20.31 GE 18.98 GE 19.75 GE 19.75 GE 18.75 GE
RECTANGLE−1 20.31 GE 20.31 GE 20.65 GE 19.75 GE 19.75 GE 20.00 GE
SKINNY 13.32 GE 13.32 GE 13.32 GE 13.00 GE 13.00 GE 13.00 GE
SKINNY−1 13.32 GE 13.32 GE 13.32 GE 13.00 GE 13.00 GE 13.00 GE
TWINE 23.97 GE 23.97 GE No res 23.25 GE 23.25 GE No res
PRESENT 22.64 GE 22.64 GE No res 22.25 GE 22.25 GE No res
LBlock s0 17.98 GE 17.98 GE 15.65 GE 17.50 GE 17.50 GE 16.00 GE
LBlock s1 17.98 GE 17.98 GE 15.65 GE 17.50 GE 17.50 GE 16.00 GE
LBlock s3 17.98 GE 17.98 GE 15.65 GE 17.50 GE 17.50 GE 16.00 GE
GIFT 17.98 GE 17.98 GE 18.31 GE 17.50 GE 17.50 GE 18.25 GE
Midori s0 22.64 GE 22.64 GE 15.00 GE 22.00 GE 22.00 GE 15.00 GE
Saturnin s0 19.98 GE 19.98 GE 19.99 GE 19.50 GE 19.50 GE 18.75 GE
Orthros Error 25.97 GE 15.65 GE 25.75 GE 25.75 GE 15.50 GE

Table 5: Running time with the TSMC 65nm library, where PEIGEN consumes 6.73× 10−2 s
and 164.36 s respectively for pre-computing 3× 3 and 4× 4 S-boxes.

S-box LIGHTER PEIGEN Ours

3-way % 2.73× 10−4 s 48.82 s
ctc2 % 2.75× 10−3 s 28.12 s
PRINTcipher % 6.93× 10−4 s 40.92 s
SEA % 2.11× 10−4 s 43.93 s
Joltik 16.92 s 0.12 s 73.41 s
RECTANGLE 1269.47 s 10.93 s 10199.40 s
SKINNY 15.98 s 0.10 s 70.60 s
TWINE 4065.69 s No res No res
PRESENT 2282.10 s 29.67 s No res
LBlock s0 225.17 s 1.94 s 1758.62 s
GIFT 368.17 s 1.50 s 29009.40 s
Midori s0 6663.90 s 23.36 s 4477.20 s
Saturnin s0 364.95 s 5.40 s 36356.00 s
Orthros 6826.29 s No res 73660.7 s

References
[abc] ABC: A System for Sequential Synthesis and Verification. https://people

.eecs.berkeley.edu/~alanmi/abc/.

[ARS+15a] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,

https://people.eecs.berkeley.edu/~alanmi/abc/
https://people.eecs.berkeley.edu/~alanmi/abc/

Zihao Wei, Siwei Sun, Fengmei Liu, Lei Hu and Zhiyu Zhang 17

Table 6: Running time with the SMIC 65nm library, where PEIGEN consumes 1.67× 10−4 s
and 3.14× 10−4 s respectively for pre-computing 3× 3 and 4× 4 S-boxes.

S-box LIGHTER PEIGEN Ours

3-way % 1.61× 10−2 s 50.14 s
ctc2 % 3.26× 10−3 s 28.15 s
PRINTcipher % 7.44× 10−2 s 41.30 s
SEA % 2.60× 10−4 s 1.10 s
Joltik 11.61 s 335.54 s 115.07 s
RECTANGLE 1364.44 s 439.82 s 85236.50 s
SKINNY 11.76 s 0.14 s 118.61 s
TWINE 3133.17 s 95.92 s No res
PRESENT 2081.53 s 497.96 s No res
LBlock s0 228.70 s 2.35 s 4566.73 s
GIFT 281.00 s 2.38 s 36016.9 s
Midori s0 5568.49 s 48.95 s 8943.34 s
Saturnin s0 396.53 s 10.23 s 47245.10 s
Orthros 7493.46 s 150.06 s 23874.70 s

and Michael Zohner. Ciphers for MPC and FHE. In Elisabeth Oswald
and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015
- 34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings,
Part I, volume 9056 of Lecture Notes in Computer Science, pages 430–454.
Springer, 2015. doi:10.1007/978-3-662-46800-5_17.

[ARS+15b] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,
and Michael Zohner. Ciphers for MPC and FHE. In Elisabeth Oswald
and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015
- 34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings,
Part I, volume 9056 of Lecture Notes in Computer Science, pages 430–454.
Springer, 2015. doi:10.1007/978-3-662-46800-5_17.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
block cipher for low energy. In Tetsu Iwata and Jung Hee Cheon, editors, Ad-
vances in Cryptology - ASIACRYPT 2015 - 21st International Conference on
the Theory and Application of Cryptology and Information Security, Auckland,
New Zealand, November 29 - December 3, 2015, Proceedings, Part II, volume
9453 of Lecture Notes in Computer Science, pages 411–436. Springer, 2015.
doi:10.1007/978-3-662-48800-3_17.

[BGG+16] Erik Boss, Vincent Grosso, Tim Güneysu, Gregor Leander, Amir Moradi, and
Tobias Schneider. Strong 8-bit sboxes with efficient masking in hardware. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware
and Embedded Systems - CHES 2016 - 18th International Conference, Santa
Barbara, CA, USA, August 17-19, 2016, Proceedings, volume 9813 of Lecture
Notes in Computer Science, pages 171–193. Springer, 2016. doi:10.1007/97
8-3-662-53140-2_9.

[BGG+17] Erik Boss, Vincent Grosso, Tim Güneysu, Gregor Leander, Amir Moradi,
and Tobias Schneider. Strong 8-bit sboxes with efficient masking in hardware

https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-662-53140-2_9
https://doi.org/10.1007/978-3-662-53140-2_9

18 Technology-Dependent Synthesis and Optimization of Circuits for Small S-boxes

Table 7: Optimization with timing constraints under the SMIC 130nm library. Note that
the "Delay" columns record the delay of the corresponding signals in a scaled unit, where
(XOR) = 1, while the "Design Compiler" row records the results reported by Design
Compiler

S-box Lighter Delay Peigon Delay Our method Delay

Midori s0

x4 = XNOR(x0, x2) 0.94 x4 = XOR(x2, x0) 1.00 x4 = XNOR(x3, x0) 0.94
x5 = NOR(x4, x2) 1.38 x5 = NAND(x4, x0) 1.34 x5 = MUX(x4, x2, x0) 2.41
x6 = XOR(x3, x5) 2.38 x6 = XOR(x3, x5) 2.34 x6 = AO21(x3, x2, x1) 2.24
x7 = XOR(x1, x6) 3.38 x7 = NAND(x4, x6) 2.68 x7 = NOR(x3, x0) 0.44
x8 = NOR(x6, x4) 2.82 x8 = XNOR(x0, x7) 3.62 x8 = NANDN(x7, x6) 3.36
x9 = XNOR(x2, x8) 3.76 x9 = XOR(x6, x1) 3.34 x9 = NOR(x2, x4) 1.38
x10 = NOR(x7, x9) 4.20 x10 = XOR(x4, x8) 4.62 x10 = NOR3(x1, x7, x9) 2.39
x11 = XNOR(x6, x10) 5.14 x11 = NAND(x9, x10) 4.96 x11 = NOR(x9, x10) 2.83
x12 = XOR(x4, x9) 4.76 x12 = XNOR(x1, x11) 5.90 x12 = NOR(x1, x10) 2.83
x13 = NOR(x11, x7) 5.58 x13 = NAND(x9, x12) 6.24 x13 = AOI21(x3, x2, x12) 3.58
x14 = XOR(x9, x13) 6.58 x14 = XOR(x10, x13) 7.24
x15 = XNOR(x7, x11) 6.08 x15 = XOR(x9, x12) 6.90

Design
Compiler

∥C∥ = 115.423197 µm2 ∥C∥ = 115.423197 µm2 ∥C∥ = 76.382999 µm2

(C) = 2.66 ns (C) = 2.70 ns (C) = 1.36 ns

LBlock s0

x4 = XNOR(x1, x0) 0.94 x4 = XOR(x0, x1) 1.00 x4 = NOT(x0) 0.19
x5 = NOR(x3, x2) 0.44 x5 = XNOR(x1, x3) 0.94 x5 = MUXI(x2, x1, x4) 1.11
x6 = XOR(x4, x5) 1.94 x6 = NOR(x4, x2) 1.44 x6 = XNOR(x3, x5) 2.05
x7 = NAND(x2, x6) 2.28 x7 = XNOR(x5, x6) 2.38 x7 = MUXI(x2, x0, x6) 2.97
x8 = XNOR(x0, x7) 3.22 x8 = NOR(x2, x3) 0.44 x8 = XOR(x1, x7) 3.97
x9 = NOR(x3, x8) 3.66 x9 = XNOR(x4, x8) 1.94 x9 = MUXI(x8, x3, x0) 4.89
x10 = XOR(x2, x9) 4.66 x10 = NOR(x7, x9) 2.82 x10 = NOR(x3, x5) 1.55
x11 = XNOR(x8, x3) 4.16 x11 = XNOR(x3, x10) 3.76 x11 = XOR(x2, x10) 2.55
x12 = NOR(x11, x6) 4.60 x12 = NAND(x11, x7) 4.10
x13 = XNOR(x3, x12) 5.54 x13 = XNOR(x2, x12) 5.04

Design
Compiler

∥C∥ = 91.659597 µm2 ∥C∥ = 91.659597 µm2 ∥C∥ = 79.777798 µm2

(C) = 1.86 ns (C) = 1.75 ns (C) = 1.51 ns

RECT-
ANGLE

x4 = NOR(x0, x1) 0.44 x4 = NOR(x0, x1) 0.44 x4 = XNOR(x2, x1) 0.94
x5 = XNOR(x4, x3) 1.38 x5 = XNOR(x4, x3) 1.38 x5 = MUXI(x0, x4, x2) 1.86
x6 = XOR(x2, x5) 2.38 x6 = NOR(x2, x5) 1.82 x6 = XNOR(x3, x5) 2.80
x7 = NOR(x5, x6) 2.82 x7 = XOR(x0, x6) 2.82 x7 = MUXI(x1, x0, x3) 0.92
x8 = XOR(x0, x7) 3.82 x8 = XNOR(x2, x1) 0.94 x8 = MUXI(x6, x7, x4) 3.72
x9 = XOR(x6, x1) 3.38 x9 = XOR(x7, x1) 3.82 x9 = XOR(x6, x7) 3.80
x10 = XOR(x1, x8) 4.82 x10 = NAND(x5, x8) 1.72 x10 = MUX(x4, x7, x9) 5.27
x11 = NAND(x9, x5) 3.72 x11 = XNOR(x7, x10) 3.76 x11 = XOR(x9, x1) 4.80
x12 = XNOR(x8, x11) 4.76 x12 = XNOR(x5, x8) 2.32
x13 = NAND(x10, x9) 5.16 x13 = NAND(x9, x12) 4.16
x14 = XNOR(x5, x13) 6.10 x14 = XNOR(x5, x13) 5.10

Design
Compiler

∥C∥ = 110.330997 µm2 ∥C∥ = 103.541397 µm2 ∥C∥ = 96.751798 µm2

(C) = 2.26 ns (C) = 1.94 ns (C) = 1.67 ns

Orthros

x4 = XOR(x0, x1) 1.00 x4 = MUXI(x0, x3, x1) 0.92
x5 = NAND(x4, x3) 1.34 x5 = MUXI(x2, x0, x4) 1.84
x6 = XNOR(x0, x5) 2.28 x6 = NOR(x3, x4) 1.36
x7 = NAND(x2, x6) 2.62 x7 = NAND(x2, x1) 0.34
x8 = XNOR(x3, x7) 3.56 x8 = MUXI(x0, x7, x6) 2.28
x9 = NAND(x6, x8) 3.90 x9 = NAND(x3, x2) 0.34
x10 = NAND(x9, x4) 4.24 x10 = NAND(x1, x0) 0.34
x11 = XNOR(x2, x10) 5.18 x11 = NAND3(x7, x9, x10) 0.89
x12 = ORN(x6, x11) 6.31 x12 = NAND3(x2, x0, x4) 1.47
x13 = XOR(x4, x12) 7.31 x13 = NAND(x3, x7) 0.68
x14 = NOR(x8, x13) 7.75 x14 = NAND(x12, x13) 1.81
x15 = NOR(x14, x11) 8.19
x16 = XNOR(x6, x15) 9.13
x17 = ORN(x16, x8) 10.26
x18 = NAND(x17, x13) 10.60
x19 = XOR(x11, x18) 11.60

Design
Compiler

∥C∥ = 132.397196 µm2 ∥C∥ = 79.777798 µm2

(C) = 4.32 ns (C) = 0.80 ns

extended version. J. Cryptogr. Eng., 7(2):149–165, 2017. URL: https://doi.
org/10.1007/s13389-017-0156-7, doi:10.1007/S13389-017-0156-7.

[BGLS19] Zhenzhen Bao, Jian Guo, San Ling, and Yu Sasaki. PEIGEN - a platform

https://doi.org/10.1007/s13389-017-0156-7
https://doi.org/10.1007/s13389-017-0156-7
https://doi.org/10.1007/S13389-017-0156-7

Zihao Wei, Siwei Sun, Fengmei Liu, Lei Hu and Zhiyu Zhang 19

for evaluation, implementation, and generation of s-boxes. IACR Trans.
Symmetric Cryptol., 2019(1):330–394, 2019. URL: https://doi.org/10.131
54/tosc.v2019.i1.330-394, doi:10.13154/TOSC.V2019.I1.330-394.

[BHS90] Robert K. Brayton, Gary D. Hachtel, and Alberto L. Sangiovanni-Vincentelli.
Multilevel logic synthesis. Proc. IEEE, 78(2):264–300, 1990. doi:10.1109/5.
52213.

[BIL+21] Subhadeep Banik, Takanori Isobe, Fukang Liu, Kazuhiko Minematsu, and
Kosei Sakamoto. Orthros: A low-latency PRF. IACR Trans. Symmetric
Cryptol., 2021(1):37–77, 2021. doi:10.46586/tosc.v2021.i1.37-77.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, volume 9815
of Lecture Notes in Computer Science, pages 123–153. Springer, 2016. doi:
10.1007/978-3-662-53008-5_5.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES
2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007,
Proceedings, volume 4727 of Lecture Notes in Computer Science, pages 450–466.
Springer, 2007. doi:10.1007/978-3-540-74735-2_31.

[BKL16] Christof Beierle, Thorsten Kranz, and Gregor Leander. Lightweight multiplica-
tion in gf(2ˆn) with applications to MDS matrices. In Matthew Robshaw and
Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2016, Proceedings, Part I, volume 9814 of Lecture Notes in Computer Science,
pages 625–653. Springer, 2016. doi:10.1007/978-3-662-53018-4_23.

[BM10] Robert K. Brayton and Alan Mishchenko. ABC: an academic industrial-
strength verification tool. In Tayssir Touili, Byron Cook, and Paul B. Jackson,
editors, Computer Aided Verification, 22nd International Conference, CAV
2010, Edinburgh, UK, July 15-19, 2010. Proceedings, volume 6174 of Lecture
Notes in Computer Science, pages 24–40. Springer, 2010. doi:10.1007/97
8-3-642-14295-6_5.

[BMP13] Joan Boyar, Philip Matthews, and René Peralta. Logic minimization techniques
with applications to cryptology. J. Cryptol., 26(2):280–312, 2013. URL:
https://doi.org/10.1007/s00145-012-9124-7, doi:10.1007/S00145-0
12-9124-7.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A small present - towards reaching
the limit of lightweight encryption. In Wieland Fischer and Naofumi Homma,
editors, Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th
International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings,
volume 10529 of Lecture Notes in Computer Science, pages 321–345. Springer,
2017. doi:10.1007/978-3-319-66787-4_16.

https://doi.org/10.13154/tosc.v2019.i1.330-394
https://doi.org/10.13154/tosc.v2019.i1.330-394
https://doi.org/10.13154/TOSC.V2019.I1.330-394
https://doi.org/10.1109/5.52213
https://doi.org/10.1109/5.52213
https://doi.org/10.46586/tosc.v2021.i1.37-77
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-662-53018-4_23
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/s00145-012-9124-7
https://doi.org/10.1007/S00145-012-9124-7
https://doi.org/10.1007/S00145-012-9124-7
https://doi.org/10.1007/978-3-319-66787-4_16

20 Technology-Dependent Synthesis and Optimization of Circuits for Small S-boxes

[Can05] David Canright. A very compact s-box for AES. In Josyula R. Rao and
Berk Sunar, editors, Cryptographic Hardware and Embedded Systems - CHES
2005, 7th International Workshop, Edinburgh, UK, August 29 - September 1,
2005, Proceedings, volume 3659 of Lecture Notes in Computer Science, pages
441–455. Springer, 2005. doi:10.1007/11545262_32.

[CDL15] Anne Canteaut, Sébastien Duval, and Gaëtan Leurent. Construction of
lightweight s-boxes using feistel and MISTY structures. In Orr Dunkelman
and Liam Keliher, editors, Selected Areas in Cryptography - SAC 2015 - 22nd
International Conference, Sackville, NB, Canada, August 12-14, 2015, Revised
Selected Papers, volume 9566 of Lecture Notes in Computer Science, pages
373–393. Springer, 2015. doi:10.1007/978-3-319-31301-6_22.

[CDL+20] Anne Canteaut, Sébastien Duval, Gaëtan Leurent, María Naya-Plasencia,
Léo Perrin, Thomas Pornin, and André Schrottenloher. Saturnin: a suite of
lightweight symmetric algorithms for post-quantum security. IACR Trans.
Symmetric Cryptol., 2020(S1):160–207, 2020. doi:10.13154/tosc.v2020.iS
1.160-207.

[Cou07] Nicolas T. Courtois. How fast can be algebraic attacks on block ciphers? In
Eli Biham, Helena Handschuh, Stefan Lucks, and Vincent Rijmen, editors,
Symmetric Cryptography, 07.01. - 12.01.2007, volume 07021 of Dagstuhl
Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum
fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2007. URL: http://dr
ops.dagstuhl.de/opus/volltexte/2007/1013.

[DGV93] Joan Daemen, René Govaerts, and Joos Vandewalle. A new approach to block
cipher design. In Ross J. Anderson, editor, Fast Software Encryption, Cam-
bridge Security Workshop, Cambridge, UK, December 9-11, 1993, Proceedings,
volume 809 of Lecture Notes in Computer Science, pages 18–32. Springer, 1993.
doi:10.1007/3-540-58108-1_2.

[DL18] Sébastien Duval and Gaëtan Leurent. MDS matrices with lightweight circuits.
IACR Trans. Symmetric Cryptol., 2018(2):48–78, 2018. URL: https://doi.or
g/10.13154/tosc.v2018.i2.48-78, doi:10.13154/TOSC.V2018.I2.48-78.

[FS10] Carsten Fuhs and Peter Schneider-Kamp. Synthesizing shortest linear straight-
line programs over GF(2) using SAT. In Ofer Strichman and Stefan Szeider,
editors, Theory and Applications of Satisfiability Testing - SAT 2010, 13th
International Conference, SAT 2010, Edinburgh, UK, July 11-14, 2010. Pro-
ceedings, volume 6175 of Lecture Notes in Computer Science, pages 71–84.
Springer, 2010. doi:10.1007/978-3-642-14186-7_8.

[GJN+16] Jian Guo, Jérémy Jean, Ivica Nikolic, Kexin Qiao, Yu Sasaki, and Siang Meng
Sim. Invariant subspace attack against midori64 and the resistance criteria for
s-box designs. IACR Trans. Symmetric Cryptol., 2016(1):33–56, 2016. URL:
https://doi.org/10.13154/tosc.v2016.i1.33-56, doi:10.13154/TOSC.
V2016.I1.33-56.

[GLWL16] Zhiyuan Guo, Renzhang Liu, Wenling Wu, and Dongdai Lin. Direct construc-
tion of lightweight rotational-xor MDS diffusion layers. IACR Cryptol. ePrint
Arch., page 1036, 2016. URL: http://eprint.iacr.org/2016/1036.

[JNP14] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Joltik v1. CAESAR competi-
tion, 2014.

https://doi.org/10.1007/11545262_32
https://doi.org/10.1007/978-3-319-31301-6_22
https://doi.org/10.13154/tosc.v2020.iS1.160-207
https://doi.org/10.13154/tosc.v2020.iS1.160-207
http://drops.dagstuhl.de/opus/volltexte/2007/1013
http://drops.dagstuhl.de/opus/volltexte/2007/1013
https://doi.org/10.1007/3-540-58108-1_2
https://doi.org/10.13154/tosc.v2018.i2.48-78
https://doi.org/10.13154/tosc.v2018.i2.48-78
https://doi.org/10.13154/TOSC.V2018.I2.48-78
https://doi.org/10.1007/978-3-642-14186-7_8
https://doi.org/10.13154/tosc.v2016.i1.33-56
https://doi.org/10.13154/TOSC.V2016.I1.33-56
https://doi.org/10.13154/TOSC.V2016.I1.33-56
http://eprint.iacr.org/2016/1036

Zihao Wei, Siwei Sun, Fengmei Liu, Lei Hu and Zhiyu Zhang 21

[JPST17a] Jérémy Jean, Thomas Peyrin, Siang Meng Sim, and Jade Tourteaux. Optimiz-
ing implementations of lightweight building blocks. IACR Trans. Symmetric
Cryptol., 2017(4):130–168, 2017. URL: https://doi.org/10.13154/tosc.v2
017.i4.130-168, doi:10.13154/TOSC.V2017.I4.130-168.

[JPST17b] Jérémy Jean, Thomas Peyrin, Siang Meng Sim, and Jade Tourteaux. Optimiz-
ing implementations of lightweight building blocks. IACR Trans. Symmetric
Cryptol., 2017(4):130–168, 2017. URL: https://doi.org/10.13154/tosc.v2
017.i4.130-168, doi:10.13154/TOSC.V2017.I4.130-168.

[KLPR10] Lars R. Knudsen, Gregor Leander, Axel Poschmann, and Matthew J. B.
Robshaw. Printcipher: A block cipher for ic-printing. In Stefan Mangard and
François-Xavier Standaert, editors, Cryptographic Hardware and Embedded
Systems, CHES 2010, 12th International Workshop, Santa Barbara, CA, USA,
August 17-20, 2010. Proceedings, volume 6225 of Lecture Notes in Computer
Science, pages 16–32. Springer, 2010. doi:10.1007/978-3-642-15031-9_2.

[KLSW17] Thorsten Kranz, Gregor Leander, Ko Stoffelen, and Friedrich Wiemer. Shorter
linear straight-line programs for MDS matrices. IACR Trans. Symmetric
Cryptol., 2017(4):188–211, 2017. URL: https://doi.org/10.13154/tosc.v2
017.i4.188-211, doi:10.13154/TOSC.V2017.I4.188-211.

[LSL+19] Shun Li, Siwei Sun, Chaoyun Li, Zihao Wei, and Lei Hu. Constructing
low-latency involutory MDS matrices with lightweight circuits. IACR Trans.
Symmetric Cryptol., 2019(1):84–117, 2019. URL: https://doi.org/10.131
54/tosc.v2019.i1.84-117, doi:10.13154/TOSC.V2019.I1.84-117.

[LW14] Yongqiang Li and Mingsheng Wang. Constructing s-boxes for lightweight
cryptography with feistel structure. In Lejla Batina and Matthew Robshaw,
editors, Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th
International Workshop, Busan, South Korea, September 23-26, 2014. Pro-
ceedings, volume 8731 of Lecture Notes in Computer Science, pages 127–146.
Springer, 2014. doi:10.1007/978-3-662-44709-3_8.

[LW16] Yongqiang Li and Mingsheng Wang. On the construction of lightweight
circulant involutory MDS matrices. In Thomas Peyrin, editor, Fast Software
Encryption - 23rd International Conference, FSE 2016, Bochum, Germany,
March 20-23, 2016, Revised Selected Papers, volume 9783 of Lecture Notes in
Computer Science, pages 121–139. Springer, 2016. doi:10.1007/978-3-662
-52993-5_7.

[LW17] Chaoyun Li and Qingju Wang. Design of lightweight linear diffusion layers
from near-mds matrices. IACR Trans. Symmetric Cryptol., 2017(1):129–
155, 2017. URL: https://doi.org/10.13154/tosc.v2017.i1.129-155,
doi:10.13154/TOSC.V2017.I1.129-155.

[Max19] Alexander Maximov. AES mixcolumn with 92 XOR gates. IACR Cryptol.
ePrint Arch., page 833, 2019. URL: https://eprint.iacr.org/2019/833.

[McC56] Edward J. McCluskey. Minimization of boolean functions. The Bell System
Technical Journal, 35(6):1417–1444, 1956. URL: https://onlinelibrar
y.wiley.com/doi/abs/10.1002/j.1538-7305.1956.tb03835.x, doi:
10.1002/j.1538-7305.1956.tb03835.x.

[ME19] Alexander Maximov and Patrik Ekdahl. New circuit minimization techniques
for smaller and faster AES sboxes. IACR Trans. Cryptogr. Hardw. Embed.

https://doi.org/10.13154/tosc.v2017.i4.130-168
https://doi.org/10.13154/tosc.v2017.i4.130-168
https://doi.org/10.13154/TOSC.V2017.I4.130-168
https://doi.org/10.13154/tosc.v2017.i4.130-168
https://doi.org/10.13154/tosc.v2017.i4.130-168
https://doi.org/10.13154/TOSC.V2017.I4.130-168
https://doi.org/10.1007/978-3-642-15031-9_2
https://doi.org/10.13154/tosc.v2017.i4.188-211
https://doi.org/10.13154/tosc.v2017.i4.188-211
https://doi.org/10.13154/TOSC.V2017.I4.188-211
https://doi.org/10.13154/tosc.v2019.i1.84-117
https://doi.org/10.13154/tosc.v2019.i1.84-117
https://doi.org/10.13154/TOSC.V2019.I1.84-117
https://doi.org/10.1007/978-3-662-44709-3_8
https://doi.org/10.1007/978-3-662-52993-5_7
https://doi.org/10.1007/978-3-662-52993-5_7
https://doi.org/10.13154/tosc.v2017.i1.129-155
https://doi.org/10.13154/TOSC.V2017.I1.129-155
https://eprint.iacr.org/2019/833
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1956.tb03835.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1956.tb03835.x
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x

22 Technology-Dependent Synthesis and Optimization of Circuits for Small S-boxes

Syst., 2019(4):91–125, 2019. URL: https://doi.org/10.13154/tches.v20
19.i4.91-125, doi:10.13154/TCHES.V2019.I4.91-125.

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the limits: A very compact and a threshold implementation of AES.
In Kenneth G. Paterson, editor, Advances in Cryptology - EUROCRYPT 2011
- 30th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings,
volume 6632 of Lecture Notes in Computer Science, pages 69–88. Springer,
2011. doi:10.1007/978-3-642-20465-4_6.

[RTA18] Arash Reyhani-Masoleh, Mostafa M. I. Taha, and Doaa Ashmawy. Smashing
the implementation records of AES s-box. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(2):298–336, 2018. URL: https://doi.org/10.13154/tch
es.v2018.i2.298-336, doi:10.13154/TCHES.V2018.I2.298-336.

[SKOP15] Siang Meng Sim, Khoongming Khoo, Frédérique E. Oggier, and Thomas
Peyrin. Lightweight MDS involution matrices. In Gregor Leander, editor,
Fast Software Encryption - 22nd International Workshop, FSE 2015, Istanbul,
Turkey, March 8-11, 2015, Revised Selected Papers, volume 9054 of Lecture
Notes in Computer Science, pages 471–493. Springer, 2015. doi:10.1007/97
8-3-662-48116-5_23.

[SPGQ06] François-Xavier Standaert, Gilles Piret, Neil Gershenfeld, and Jean-Jacques
Quisquater. SEA: A scalable encryption algorithm for small embedded appli-
cations. In Josep Domingo-Ferrer, Joachim Posegga, and Daniel Schreckling,
editors, Smart Card Research and Advanced Applications, 7th IFIP WG
8.8/11.2 International Conference, CARDIS 2006, Tarragona, Spain, April
19-21, 2006, Proceedings, volume 3928 of Lecture Notes in Computer Science,
pages 222–236. Springer, 2006. doi:10.1007/11733447_16.

[SS16] Sumanta Sarkar and Habeeb Syed. Lightweight diffusion layer: Importance
of toeplitz matrices. IACR Trans. Symmetric Cryptol., 2016(1):95–113, 2016.
URL: https://doi.org/10.13154/tosc.v2016.i1.95-113, doi:10.13154
/TOSC.V2016.I1.95-113.

[Sto16] Ko Stoffelen. Optimizing s-box implementations for several criteria using
SAT solvers. In Thomas Peyrin, editor, Fast Software Encryption - 23rd
International Conference, FSE 2016, Bochum, Germany, March 20-23, 2016,
Revised Selected Papers, volume 9783 of Lecture Notes in Computer Science,
pages 140–160. Springer, 2016. doi:10.1007/978-3-662-52993-5_8.

[TP20] Quan Quan Tan and Thomas Peyrin. Improved heuristics for short linear
programs. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(1):203–230,
2020. URL: https://doi.org/10.13154/tches.v2020.i1.203-230, doi:
10.13154/TCHES.V2020.I1.203-230.

[WZ11] Wenling Wu and Lei Zhang. Lblock: A lightweight block cipher. In Javier
López and Gene Tsudik, editors, Applied Cryptography and Network Security
- 9th International Conference, ACNS 2011, Nerja, Spain, June 7-10, 2011.
Proceedings, volume 6715 of Lecture Notes in Computer Science, pages 327–344,
2011. doi:10.1007/978-3-642-21554-4_19.

[ZBL+15] Wentao Zhang, Zhenzhen Bao, Dongdai Lin, Vincent Rijmen, Bohan Yang,
and Ingrid Verbauwhede. RECTANGLE: a bit-slice lightweight block cipher
suitable for multiple platforms. Sci. China Inf. Sci., 58(12):1–15, 2015. doi:
10.1007/s11432-015-5459-7.

https://doi.org/10.13154/tches.v2019.i4.91-125
https://doi.org/10.13154/tches.v2019.i4.91-125
https://doi.org/10.13154/TCHES.V2019.I4.91-125
https://doi.org/10.1007/978-3-642-20465-4_6
https://doi.org/10.13154/tches.v2018.i2.298-336
https://doi.org/10.13154/tches.v2018.i2.298-336
https://doi.org/10.13154/TCHES.V2018.I2.298-336
https://doi.org/10.1007/978-3-662-48116-5_23
https://doi.org/10.1007/978-3-662-48116-5_23
https://doi.org/10.1007/11733447_16
https://doi.org/10.13154/tosc.v2016.i1.95-113
https://doi.org/10.13154/TOSC.V2016.I1.95-113
https://doi.org/10.13154/TOSC.V2016.I1.95-113
https://doi.org/10.1007/978-3-662-52993-5_8
https://doi.org/10.13154/tches.v2020.i1.203-230
https://doi.org/10.13154/TCHES.V2020.I1.203-230
https://doi.org/10.13154/TCHES.V2020.I1.203-230
https://doi.org/10.1007/978-3-642-21554-4_19
https://doi.org/10.1007/s11432-015-5459-7
https://doi.org/10.1007/s11432-015-5459-7

Zihao Wei, Siwei Sun, Fengmei Liu, Lei Hu and Zhiyu Zhang 23

[ZJB06] Junlan Zhou, Zhengrong Ji, and Rajive L. Bagrodia. TWINE: A hybrid
emulation testbed for wireless networks and applications. In INFOCOM 2006.
25th IEEE International Conference on Computer Communications, Joint
Conference of the IEEE Computer and Communications Societies, 23-29 April
2006, Barcelona, Catalunya, Spain. IEEE, 2006. doi:10.1109/INFOCOM.20
06.183.

[ZWS18] Lijing Zhou, Licheng Wang, and Yiru Sun. On efficient constructions of
lightweight MDS matrices. IACR Trans. Symmetric Cryptol., 2018(1):180–
200, 2018. URL: https://doi.org/10.13154/tosc.v2018.i1.180-200,
doi:10.13154/TOSC.V2018.I1.180-200.

https://doi.org/10.1109/INFOCOM.2006.183
https://doi.org/10.1109/INFOCOM.2006.183
https://doi.org/10.13154/tosc.v2018.i1.180-200
https://doi.org/10.13154/TOSC.V2018.I1.180-200

24 Technology-Dependent Synthesis and Optimization of Circuits for Small S-boxes

A Gates in Common CMOS Technology Libraries

Table 8: Frequently-used logic gates in common CMOS technology libraries.
Gate Domain→Range Functionality (Logic formulas)
NOT F2 → F2 x0 7→ ¬x0
AND F2

2 → F2 x0, x1 7→ x0 ∧ x1
NAND F2

2 → F2 x0, x1 7→ ¬(x0 ∧ x1)
NANDN F2

2 → F2 x0, x1 7→ ¬(¬x0 ∧ x1)
OR F2

2 → F2 x0, x1 7→ x0 ∨ x1
NOR F2

2 → F2 x0, x1 7→ ¬(x0 ∨ x1)
NORN F2

2 → F2 x0, x1 7→ ¬(¬x0 ∨ x1)
XOR F2

2 → F2 x0, x1 7→ x0 ⊕ x1
XNOR F2

2 → F2 x0, x1 7→ ¬(x0 ⊕ x1)
AND3 F3

2 → F2 x0, x1, x2 7→ x0 ∧ x1 ∧ x2
NAND3 F3

2 → F2 x0, x1, x2 7→ ¬(x0 ∧ x1 ∧ x2)
NANDN3 F3

2 → F2 x0, x1, x2 7→ ¬(¬x0 ∧ x1 ∧ x2)
OR3 F3

2 → F2 x0, x1, x2 7→ x0 ∨ x1 ∨ x2
NOR3 F3

2 → F2 x0, x1, x2 7→ ¬(x0 ∨ x1 ∨ x2)
NORN3 F3

2 → F2 x0, x1, x2 7→ ¬(¬x0 ∨ x1 ∨ x2)
XOR3 F3

2 → F2 x0, x1, x2 7→ x0 ⊕ x1 ⊕ x2
XNOR3 F3

2 → F2 x0, x1, x2 7→ ¬(x0 ⊕ x1 ⊕ x2)
MUX F3

2 → F2 x0, x1, x2 7→ (x0 ∧ x1) ∨ (¬x0 ∧ x2)
MUXI F3

2 → F2 x0, x1, x2 7→ ¬((x0 ∧ x1) ∨ (¬x0 ∧ x2))
AO21 F3

2 → F2 x0, x1, x2 7→ (x0 ∧ x1) ∨ x2
AOI21 F3

2 → F2 x0, x1, x2 7→ ¬((x0 ∧ x1) ∨ x2)
OA21 F3

2 → F2 x0, x1, x2 7→ (x0 ∨ x1) ∧ x2
OAI21 F3

2 → F2 x0, x1, x2 7→ ¬((x0 ∨ x1) ∧ x2)
ANDN Fn

2 → F2 x0, x1 7→ ¬x0 ∧ x1
ORN Fn

2 → F2 x0, x1 7→ ¬x0 ∨ x1
MAOI1 Fn

2 → F2 x0, x1, x2, x3 7→ ¬((x0 ∧ x1) ∨ (¬(x2 ∨ x3)))
MOAI1 Fn

2 → F2 x0, x1, x2, x3 7→ ¬((x0 ∨ x1) ∧ (¬(x2 ∧ x3)))

Zihao Wei, Siwei Sun, Fengmei Liu, Lei Hu and Zhiyu Zhang 25

B Common CMOS Technology Libraries

Table 9: Used libraries, NAND and NOR are always 1 in all cases, so we omit them in the
table. Scaled with ×100

Gate UMC TSMC TSMC SMIC SMIC Nangate Nangate STD STM
180nm 65nm 28nm 130nm 65nm 45nm 15nm 350nm 65nm

NOT 0.67 0.50 0.67 0.67 0.75 0.67 0.75 0.67 0.50
AND 1.33 1.50 1.33 1.33 1.50 1.33 1.50 1.33 1.50
NAND 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NANDN 1.67 1.50 1.33 1.33 1.50 N/A N/A N/A 1.50
OR 1.33 1.50 1.33 1.33 1.50 1.33 1.50 1.33 1.50
NOR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NORN 1.67 1.50 1.33 1.33 1.50 N/A N/A N/A 1.50
XOR 2.67 2.50 3.00 2.33 2.25 2.00 2.25 2.33 2.00
XNOR 2.00 2.50 3.00 2.33 2.25 2.00 2.25 2.33 2.00
AND3 2.33 2.00 1.67 1.67 1.75 1.67 2.00 1.67 2.00
NAND3 1.33 1.50 1.33 1.33 1.25 1.33 1.50 1.33 1.50
NANDN3 2.00 1.67 1.67 1.75 N/A N/A N/A
OR3 2.33 2.00 1.67 2.00 1.75 1.67 2.00 1.67 2.00
NOR3 1.33 1.50 1.33 1.33 1.50 1.33 1.50 1.33 1.50
NORN3 2.00 1.67 1.67 N/A N/A N/A N/A
XOR3 4.67 5.50 4.33 5.67 4.75 N/A N/A 4.00
XNOR3 4.67 5.50 4.67 5.67 4.75 N/A N/A 4.00
MUX 3.00 2.33 2.67 2.75 2.33 3.25 2.33
MUXI 2.50 2.33 2.33 2.50 N/A N/A 2.67
AO21 2.00 1.67 1.67 2.00 N/A N/A 1.67
AOI21 1.50 1.33 1.67 1.50 1.33 1.50 1.33
OA21 2.00 1.67 2.00 1.75 N/A N/A 1.67
OAI21 1.50 1.33 1.67 1.50 1.33 1.50 1.33

26 Technology-Dependent Synthesis and Optimization of Circuits for Small S-boxes

C Applications and Results

Table 10: Synthesis results with the UMC 180nm library

S-box UMC 180nm

LIGHTER PEIGEN Ours

3-way % 10.34 GE 9.67 GE
ctc2 % 9.66 GE 9.32 GE
PRINTcipher % 9.00 GE 9.00 GE
SEA % 9.00 GE 9.00 GE
Joltik 12.99 GE 12.99 GE 12.99 GE
Joltik−1 12.99 GE 12.99 GE 12.99 GE
RECTANGLE 18.33 GE 18.33 GE 20.34 GE
RECTANGLE−1 18.33 GE 18.33 GE 20.34 GE
SKINNY 13.32 GE 13.32 GE 13.32 GE
SKINNY−1 13.32 GE 13.32 GE 13.32 GE
TWINE 21.66 GE 21.66 GE No res
PRESENT 21.32 GE 21.32 GE No res
LBlock s0 16.33 GE 16.33 GE 16.33 GE
LBlock s1 16.66 GE 16.66 GE 17.00 GE
LBlock s3 16.66 GE 16.66 GE 16.67 GE
GIFT 16.00 GE 16.00 GE 19.34 GE
Midori s0 20.66 GE 20.66 GE 19.99 GE
Saturnin s0 18.00 GE 18.00 GE 21.99 GE
Orthros 24.33 GE No res No res

Table 11: Synthesis results with the Nangate library

S-box Nangate 45nm Nangate 15nm

LIGHTER PEIGEN Ours LIGHTER PEIGEN Ours

3-way % 10.34 GE 9.67 GE % 11.25 GE 10.50 GE
ctc2 % 9.00 GE 8.33 GE % 9.75 GE 9.00 GE
PRINTcipher % 9.00 GE 8.99 GE % 9.75 GE 9.75 GE
SEA % 9.00 GE 8.33 GE % 9.75 GE 9.75 GE
Joltik 12.00 GE 12.00 GE 12.00 GE 13.00 GE 13.00 GE 13.00 GE
Joltik−1 12.00 GE 12.00 GE 12.00 GE 13.00 GE 13.00 GE 13.00 GE
RECTANGLE 18.00 GE 18.00 GE No res 19.75 GE 19.75 GE 22.00 GE
RECTANGLE−1 18.00 GE 18.00 GE No res 19.75 GE 19.75 GE 19.75 GE
SKINNY 12.00 GE 12.00 GE 12.00 GE 13.00 GE 13.00 GE 13.00 GE
SKINNY−1 12.00 GE 12.00 GE 12.00 GE 13.00 GE 13.00 GE 13.00 GE
TWINE 21.33 GE 21.33 GE No res 23.50 GE 23.50 GE No res
PRESENT 20.33 GE 20.33 GE No res 22.25 GE 22.25 GE No res
LBlock s0 16.00 GE 16.00 GE 15.33 GE 17.50 GE 17.50 GE 16.75 GE
LBlock s1 16.00 GE 16.00 GE 15.33 GE 17.50 GE 17.50 GE 16.75 GE
LBlock s3 16.00 GE 16.00 GE 15.33 GE 17.50 GE 17.50 GE 17.50 GE
GIFT 16.00 GE 16.00 GE 17.99 GE 17.50 GE 17.50 GE 17.50 GE
Midori s0 20.00 GE 20.00 GE 13.65 GE 22.00 GE 22.00 GE 14.50 GE
Saturnin s0 18.00 GE 18.00 GE 17.65 GE 19.50 GE 19.50 GE 20.00 GE
Orthros 23.67 GE 24.00 GE 15.98 GE 25.75 GE No res 17.75 GE

Zihao Wei, Siwei Sun, Fengmei Liu, Lei Hu and Zhiyu Zhang 27

Table 12: Synthesis results with the STD90/MDL90 350nm library

S-box STD90/MDL90 350nm

LIGHTER PEIGEN Ours

3-way % 11.33 GE 10.66 GE
ctc2 % 9.99 GE 8.99 GE
PRINTcipher % 9.99 GE 9.32 GE
SEA % 9.99 GE 8.99 GE
Joltik 13.32 GE 13.32 GE 13.32 GE
Joltik−1 13.32 GE 13.32 GE 13.32 GE
RECTANGLE 20.31 GE 20.31 GE 18.98 GE
RECTANGLE−1 20.31 GE 20.31 GE 17.98 GE
SKINNY 13.32 GE 13.32 GE 13.32 GE
SKINNY−1 13.32 GE 13.32 GE 13.32 GE
TWINE 23.97 GE 23.97 GE No res
PRESENT 22.64 GE 22.64 GE No res
LBlock s0 17.98 GE 17.98 GE 15.66 GE
LBlock s1 17.98 GE 17.98 GE 15.99 GE
LBlock s3 17.98 GE 17.98 GE 15.99 GE
GIFT 17.98 GE 17.98 GE 18.65 GE
Midori s0 22.64 GE 22.64 GE 13.65 GE
Saturnin s0 19.98 GE 19.98 GE 19.66 GE
Orthros 26.31 GE No res 15.65 GE

Table 13: Synthesis results with the STM 65nm library

S-box STM 65nm

LIGHTER PEIGEN Ours

3-way % 10.00 GE 9.50 GE
ctc2 % 9.00 GE 9.00 GE
PRINTcipher % 9.00 GE 9.00 GE
SEA % 9.00 GE 9.00 GE
Joltik 12.00 GE 12.00 GE 12.00 GE
Joltik−1 12.00 GE 12.00 GE 12.00 GE
RECTANGLE 19.00 GE 18.50 GE No res
RECTANGLE−1 19.00 GE 18.50 GE No res
SKINNY 12.00 GE 12.00 GE 12.00 GE
SKINNY−1 12.00 GE 12.00 GE 12.00 GE
TWINE 21.50 GE No res No res
PRESENT 21.00 GE 21.00 GE No res
LBlock s0 16.50 GE 16.00 GE 16.00 GE
LBlock s1 16.00 GE 16.00 GE 16.00 GE
LBlock s3 17.00 GE 16.00 GE 16.00 GE
GIFT 16.50 GE 16.00 GE 16.00 GE
Midori s0 20.50 GE 20.00 GE No res
Saturnin s0 18.50 GE 18.00 GE No res
Orthros Error No res No res

28 Technology-Dependent Synthesis and Optimization of Circuits for Small S-boxes

Table 14: Optimized circuits implemented with the UMC 180nm library
S-box Implementation in UMC 180nm

3-way x3 = NORN(x1, x2) x4 = XNOR(x0, x3) x5 = NOR(x1, x4) x6 = XNOR(x2, x5)
x7 = NOR(x0, x6) x8 = XNOR(x1, x7)

ctc2 x3 = OR(x1, x0) x4 = XNOR(x2, x3) x5 = NAND3(x2, x1, x0) x6 = OR(x2, x1)
x7 = NAND3(x3, x5, x6) x8 = NAND(x0, x5) x9 = NAND(x6, x8)

PRINTcipher x3 = NOR(x2, x1) x4 = XNOR(x0, x3) x5 = NAND(x1, x0) x6 = XNOR(x2, x5)
x7 = NAND(x2, x4) x8 = XNOR(x1, x7)

SEA x3 = NOR(x1, x0) x4 = XNOR(x2, x3) x5 = NAND(x2, x1) x6 = XNOR(x0, x5)
x7 = NAND(x2, x6) x8 = XNOR(x1, x7)

Joltik x4 = OR(x3, x2) x5 = XNOR(x0, x4) x6 = OR(x2, x1) x7 = XNOR(x3, x6)
x8 = OR(x5, x7) x9 = XNOR(x1, x8) x10 = NOR(x1, x5) x11 = XNOR(x2, x10)

Joltik−1 x4 = OR(x3, x2) x5 = XNOR(x0, x4) x6 = NOR(x3, x5) x7 = XNOR(x1, x6)
x8 = OR(x5, x7) x9 = XNOR(x2, x8) x10 = OR(x7, x9) x11 = XNOR(x3, x10)

RECTANGLE
x4 = NANDN(x3, x1) x5 = XNOR(x0, x4) x6 = XNOR(x2, x5) x7 = NAND(x1, x5)
x8 = XOR3(x3, x6, x7) x9 = NOR(x5, x8) x10 = XOR3(x1, x6, x9) x11 = OR(x8, x10)
x12 = XNOR(x5, x11)

RECTANGLE−1
x4 = OR(x3, x0) x5 = XNOR(x2, x4) x6 = NOR(x0, x5) x7 = XOR3(x3, x1, x6)
x8 = NAND(x5, x7) x9 = XOR3(x1, x0, x8) x10 = XNOR(x1, x5) x11 = NANDN(x9, x7)
x12 = XNOR(x5, x11)

SKINNY x4 = OR(x3, x2) x5 = XNOR(x0, x4) x6 = OR(x2, x1) x7 = XNOR(x3, x6)
x8 = OR(x1, x5) x9 = XNOR(x2, x8) x10 = OR(x5, x7) x11 = XNOR(x1, x10)

SKINNY−1 x4 = OR(x3, x2) x5 = XNOR(x0, x4) x6 = OR(x3, x5) x7 = XNOR(x1, x6)
x8 = OR(x5, x7) x9 = XNOR(x2, x8) x10 = OR(x7, x9) x11 = XNOR(x3, x10)

LBlock s0
x4 = OR(x3, x2) x5 = XNOR(x0, x4) x6 = XNOR(x1, x5) x7 = XNOR(x3, x6)
x8 = NAND(x2, x7) x9 = XNOR(x5, x8) x10 = NANDN(x3, x9) x11 = XNOR(x2, x10)
x12 = OR(x5, x7) x13 = NAND(x10, x12)

LBlock s1
x4 = OR(x2, x0) x5 = NAND(x2, x1) x6 = NAND(x4, x5) x7 = XNOR(x3, x6)
x8 = NOR(x3, x2) x9 = XNOR3(x1, x0, x8) x10 = NOR(x3, x6) x11 = XNOR(x2, x10)
x12 = NOR(x7, x9) x13 = XNOR(x3, x12)

LBlock s3
x4 = XNOR(x1, x0) x5 = NAND(x2, x4) x6 = XNOR(x1, x5) x7 = XNOR(x3, x6)
x8 = NOR(x3, x6) x9 = XNOR(x2, x8) x10 = NANDN(x3, x2) x11 = XNOR(x4, x10)
x12 = NOR(x7, x11) x13 = XNOR(x3, x12)

GIFT
x4 = NOR(x1, x0) x5 = XOR3(x3, x2, x4) x6 = NAND(x2, x0) x7 = XNOR(x1, x6)
x8 = NAND(x3, x7) x9 = XNOR(x0, x8) x10 = NAND(x5, x9) x11 = XNOR3(x2, x7, x10)
x12 = XNOR(x5, x7)

Midori s0
x4 = OR(x3, x0) x5 = NAND(x3, x2) x6 = NAND(x1, x4) x7 = AND(x5, x6)
x8 = OR(x3, x2) x9 = NAND(x2, x0) x10 = XNOR3(x4, x8, x9) x11 = NAND3(x0, x5, x8)
x12 = NAND3(x1, x5, x11) x13 = XOR3(x1, x4, x12) x14 = NAND(x11, x12)

Saturnin s0
x4 = NOR3(x3, x1, x0) x5 = NOR(x2, x0) x6 = NOR(x1, x4) x7 = XNOR(x5, x6)
x8 = NOR3(x3, x4, x7) x9 = NOR3(x2, x6, x8) x10 = XNOR(x3, x9) x11 = NOR3(x5, x8, x9)
x12 = XNOR3(x0, x4, x11) x13 = NAND3(x0, x10, x11) x14 = XNOR3(x2, x8, x13)

Zihao Wei, Siwei Sun, Fengmei Liu, Lei Hu and Zhiyu Zhang 29

Table 15: Optimized circuits implemented with the TSMC 65m library
S-box Implementation in TSMC 65nm

3-way x3 = XNOR(x2, x0) x4 = MUXI(x1, x3, x0) x5 = NAND(x2, x4) x6 = XOR(x1, x5)
x7 = NOR(x1, x3) x8 = AOI21(x2, x1, x7)

ctc2 x3 = NOR(x1, x0) x4 = XOR(x2, x3) x5 = NAND(x2, x0) x6 = XOR(x1, x5)
x7 = NOR(x0, x4) x8 = AOI21(x2, x1, x7)

PRINTcipher x3 = NOR(x2, x1) x4 = XNOR(x0, x3) x5 = NAND(x1, x0) x6 = XNOR(x2, x5)
x7 = NAND(x2, x4) x8 = XNOR(x1, x7)

SEA x3 = MUXI(x2, x0, x1) x4 = NOR(x1, x0) x5 = XNOR(x2, x4) x6 = NAND(x2, x1)
x7 = XNOR(x0, x6) x8 = NOT(x3)

Joltik x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x1, x5) x7 = XNOR(x2, x6)
x8 = NOR(x2, x1) x9 = XOR(x3, x8) x10 = NOR(x5, x9) x11 = XOR(x1, x10)

Joltik−1 x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x3, x5) x7 = XNOR(x1, x6)
x8 = NOR(x5, x7) x9 = XOR(x2, x8) x10 = NOR(x7, x9) x11 = XOR(x3, x10)

RECTANGLE x4 = XNOR(x2, x1) x5 = MUXI(x0, x4, x2) x6 = XNOR(x3, x5) x7 = MUXI(x1, x0, x3)
x8 = MUXI(x6, x7, x4) x9 = XOR(x6, x7) x10 = MUX(x4, x7, x9) x11 = XOR(x1, x9)

RECTANGLE−1
x4 = NOR(x3, x0) x5 = XNOR(x2, x4) x6 = XOR(x1, x5) x7 = MUXI(x0, x1, x6)
x8 = XNOR(x3, x7) x9 = NOT(x2) x10 = MUXI(x0, x3, x9) x11 = MUXI(x5, x7, x10)
x12 = MUXI(x8, x10, x5)

SKINNY x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x2, x1) x7 = XOR(x3, x6)
x8 = NOR(x1, x5) x9 = XOR(x2, x8) x10 = NOR(x5, x7) x11 = XOR(x1, x10)

SKINNY−1 x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x3, x5) x7 = XOR(x1, x6)
x8 = NOR(x5, x7) x9 = XOR(x2, x8) x10 = NOR(x7, x9) x11 = XOR(x3, x10)

LBlock s0
x4 = NOT(x0) x5 = MUXI(x2, x1, x4) x6 = XNOR(x3, x5) x7 = MUXI(x2, x0, x6)
x8 = XOR(x1, x7) x9 = MUXI(x8, x3, x0) x10 = NOR(x3, x5) x11 = XOR(x2, x10)

LBlock s1
x4 = NOT(x0) x5 = MUXI(x2, x1, x4) x6 = XOR(x3, x5) x7 = MUXI(x2, x4, x6)
x8 = XNOR(x1, x7) x9 = MUXI(x8, x3, x4) x10 = NAND(x5, x6) x11 = XOR(x2, x10)

LBlock s3
x4 = NOT(x0) x5 = MUXI(x2, x4, x1) x6 = XOR(x3, x5) x7 = MUXI(x2, x6, x4)
x8 = XNOR(x1, x7) x9 = MUXI(x8, x3, x4) x10 = NAND(x5, x6) x11 = XOR(x2, x10)

GIFT
x4 = NOR(x1, x0) x5 = XOR(x2, x4) x6 = XOR(x3, x5) x7 = MUXI(x0, x3, x6)
x8 = XOR(x1, x7) x9 = XOR(x5, x8) x10 = NAND(x3, x9) x11 = XNOR(x0, x10)
x12 = MUXI(x11, x9, x5)

Midori s0
x4 = OAI21(x3, x2, x0) x5 = NORN(x4, x1) x6 = AOI21(x3, x2, x5) x7 = OR(x3, x0)
x8 = NAND(x4, x7) x9 = MUX(x8, x2, x0) x10 = NOR(x2, x8) x11 = MUXI(x1, x10, x7)
x12 = AO21(x3, x2, x1) x13 = NAND(x7, x12)

Saturnin s0
x4 = MUXI(x1, x2, x3) x5 = NOR(x2, x1) x6 = NOR(x0, x5) x7 = XNOR(x4, x6)
x8 = NORN(x7, x0) x9 = XOR(x1, x8) x10 = MUXI(x3, x4, x0) x11 = XOR(x5, x10)
x12 = NOR(x2, x11) x13 = MUXI(x3, x10, x12)

Orthros
x4 = NOR(x1, x0) x5 = NOR(x3, x4) x6 = NOR(x2, x5) x7 = MUXI(x6, x4, x0)
x8 = NAND(x2, x1) x9 = MUXI(x0, x8, x5) x10 = OAI21(x3, x1, x2) x11 = NAND(x1, x0)
x12 = NAND(x10, x11) x13 = NAND3(x2, x0, x5) x14 = NAND(x3, x8) x15 = NAND(x13, x14)

30 Technology-Dependent Synthesis and Optimization of Circuits for Small S-boxes

Table 16: Optimized circuits implemented with the TSMC 28nm library
S-box Implementation in TSMC 28nm

3-way x3 = NANDN(x0, x2) x4 = MUX(x0, x2, x3) x5 = MUXI(x1, x4, x0) x6 = NOR(x1, x4)
x7 = MUXI(x3, x1, x6) x8 = AOI21(x2, x1, x6)

ctc2 x3 = NAND(x2, x1) x4 = NAND(x2, x0) x5 = MUXI(x4, x1, x3) x6 = NAND(x0, x3)
x7 = OAI21(x2, x1, x6) x8 = NAND(x6, x7) x9 = NAND3(x3, x4, x8)

PRINTcipher x3 = NOR3(x2, x1, x0) x4 = AOI21(x2, x1, x3) x5 = MUX(x0, x1, x4) x6 = OAI21(x2, x1, x0)
x7 = MUX(x6, x2, x4) x8 = NORN(x6, x3)

SEA x3 = AOI21(x2, x1, x0) x4 = NOR(x2, x1) x5 = MUXI(x3, x4, x2) x6 = MUX(x2, x0, x1)
x7 = NAND3(x2, x1, x0) x8 = NORN(x7, x3)

Joltik x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x2, x1) x7 = NOR(x1, x5)
x8 = MUXI(x7, x6, x2) x9 = MUX(x6, x4, x3) x10 = NOR(x5, x9) x11 = MUX(x10, x7, x1)

Joltik−1
x4 = NOR(x3, x2) x5 = NOR(x3, x0) x6 = MUX(x4, x5, x0) x7 = NOR(x3, x6)
x8 = XNOR(x1, x7) x9 = NOR(x6, x8) x10 = XOR(x2, x9) x11 = NOR(x8, x10)
x12 = MUX(x11, x5, x3)

RECTANGLE x4 = MUXI(x1, x0, x3) x5 = NANDN(x3, x1) x6 = MUX(x5, x0, x4) x7 = XNOR(x2, x6)
x8 = XOR3(x1, x4, x7) x9 = NANDN(x8, x6) x10 = MUXI(x9, x4, x3) x11 = MUX(x8, x6, x4)

RECTANGLE−1 x4 = OR(x3, x0) x5 = XOR3(x2, x1, x4) x6 = MUXI(x0, x1, x2) x7 = MUX(x0, x3, x1)
x8 = XNOR(x6, x7) x9 = MUX(x5, x7, x6) x10 = MUX(x8, x5, x6) x11 = XOR(x0, x10)

SKINNY x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x2, x1) x7 = MUX(x6, x4, x3)
x8 = NOR(x1, x5) x9 = MUX(x8, x6, x2) x10 = NOR(x5, x7) x11 = MUX(x10, x8, x1)

SKINNY−1
x4 = NOR(x3, x2) x5 = NOR(x3, x0) x6 = MUX(x4, x5, x0) x7 = NOR(x3, x6)
x8 = XOR(x1, x7) x9 = NOR(x6, x8) x10 = XOR(x2, x9) x11 = NOR(x8, x10)
x12 = MUX(x11, x5, x3)

LBlock s0
x4 = NOR(x3, x2) x5 = NOT(x1) x6 = XOR3(x0, x4, x5) x7 = MUXI(x6, x3, x0)
x8 = MUX(x2, x5, x0) x9 = NOR(x3, x8) x10 = MUX(x9, x4, x2) x11 = MUX(x3, x8, x9)

LBlock s1
x4 = NOR(x3, x2) x5 = NOT(x0) x6 = XOR3(x1, x4, x5) x7 = MUXI(x6, x3, x5)
x8 = MUX(x2, x1, x5) x9 = NOR(x3, x8) x10 = MUXI(x9, x4, x2) x11 = MUX(x3, x8, x9)

LBlock s3
x4 = NANDN(x3, x2) x5 = XOR3(x1, x0, x4) x6 = NOT(x0) x7 = MUXI(x5, x3, x6)
x8 = MUX(x2, x6, x1) x9 = OR(x3, x8) x10 = MUXI(x9, x2, x4) x11 = NAND(x3, x8)
x12 = NAND(x9, x11)

GIFT x4 = NOR(x1, x0) x5 = XOR3(x3, x2, x4) x6 = NORN(x0, x2) x7 = XOR(x1, x6)
x8 = XNOR3(x0, x5, x7) x9 = MUX(x3, x7, x0) x10 = MUXI(x9, x8, x4) x11 = XOR(x2, x10)

Midori s0
x4 = NAND(x3, x2) x5 = OAI21(x3, x2, x4) x6 = MUX(x5, x0, x2) x7 = NOR(x3, x0)
x8 = MUX(x1, x7, x4) x9 = NANDN(x5, x0) x10 = NAND3(x1, x4, x9) x11 = NAND(x9, x10)
x12 = NAND(x1, x10) x13 = NANDN(x7, x12)

Saturnin s0
x4 = NANDN(x3, x0) x5 = XOR(x1, x4) x6 = MUXI(x2, x3, x5) x7 = NOR(x3, x5)
x8 = MUX(x2, x4, x7) x9 = MUX(x0, x6, x2) x10 = XOR3(x3, x7, x9) x11 = NANDN(x0, x10)
x12 = MUX(x11, x1, x5)

Orthros
x4 = MUXI(x0, x2, x3) x5 = MUXI(x1, x4, x0) x6 = NAND3(x3, x2, x1) x7 = MUX(x4, x3, x6)
x8 = AOI21(x3, x2, x1) x9 = NOR(x2, x0) x10 = NOR(x8, x9) x11 = OAI21(x3, x2, x4)
x12 = OR(x0, x8) x13 = NAND(x11, x12)

Zihao Wei, Siwei Sun, Fengmei Liu, Lei Hu and Zhiyu Zhang 31

Table 17: Optimized circuits implemented with the SMIC 130nm library
S-box Implementation in SMIC 130nm

3-way x3 = NORN(x1, x2) x4 = XNOR(x0, x3) x5 = NOR(x1, x4) x6 = XNOR(x2, x5)
x7 = NAND(x2, x4) x8 = XOR(x1, x7)

ctc2 x3 = NOR(x1, x0) x4 = XOR(x2, x3) x5 = NAND(x2, x0) x6 = XOR(x1, x5)
x7 = NOR(x0, x4) x8 = AOI21(x2, x1, x7)

PRINTcipher x3 = NOR(x2, x1) x4 = XNOR(x0, x3) x5 = NAND(x1, x0) x6 = XNOR(x2, x5)
x7 = NAND(x2, x4) x8 = XNOR(x1, x7)

SEA x3 = MUX(x2, x0, x1) x4 = NOR(x1, x0) x5 = XNOR(x2, x4) x6 = NAND(x2, x1)
x7 = XNOR(x0, x6)

Joltik x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x1, x5) x7 = XNOR(x2, x6)
x8 = NOR(x2, x1) x9 = XOR(x3, x8) x10 = NOR(x5, x9) x11 = XOR(x1, x10)

Joltik−1 x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x3, x5) x7 = XNOR(x1, x6)
x8 = NOR(x5, x7) x9 = XOR(x2, x8) x10 = NOR(x7, x9) x11 = XOR(x3, x10)

RECTANGLE x4 = XNOR(x2, x1) x5 = MUXI(x0, x4, x2) x6 = XNOR(x3, x5) x7 = MUXI(x1, x0, x3)
x8 = MUXI(x6, x7, x4) x9 = XOR(x6, x7) x10 = MUX(x4, x7, x9) x11 = XOR(x1, x9)

RECTANGLE−1 x4 = NOR(x3, x0) x5 = XNOR3(x2, x1, x4) x6 = MUXI(x0, x3, x2) x7 = XNOR(x1, x6)
x8 = MUXI(x7, x0, x5) x9 = XNOR(x6, x8) x10 = MUXI(x7, x5, x6) x11 = XNOR(x0, x10)

SKINNY x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x2, x1) x7 = XOR(x3, x6)
x8 = NOR(x1, x5) x9 = XOR(x2, x8) x10 = NOR(x5, x7) x11 = XOR(x1, x10)

SKINNY−1 x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x3, x5) x7 = XOR(x1, x6)
x8 = NOR(x5, x7) x9 = XOR(x2, x8) x10 = NOR(x7, x9) x11 = XOR(x3, x10)

LBlock s0
x4 = NOT(x0) x5 = MUXI(x2, x1, x4) x6 = XNOR(x3, x5) x7 = MUXI(x2, x0, x6)
x8 = XOR(x1, x7) x9 = MUXI(x8, x3, x0) x10 = NOR(x3, x5) x11 = XOR(x2, x10)

LBlock s1
x4 = NOT(x0) x5 = MUXI(x2, x1, x4) x6 = XOR(x3, x5) x7 = MUXI(x2, x4, x6)
x8 = XNOR(x1, x7) x9 = MUXI(x8, x3, x4) x10 = NAND(x5, x6) x11 = XOR(x2, x10)

LBlock s3
x4 = NOT(x0) x5 = MUXI(x2, x4, x1) x6 = XOR(x3, x5) x7 = MUXI(x2, x6, x4)
x8 = XNOR(x1, x7) x9 = MUXI(x8, x3, x4) x10 = NAND(x5, x6) x11 = XOR(x2, x10)

GIFT
x4 = NOR(x1, x0) x5 = XOR(x2, x4) x6 = XOR(x3, x5) x7 = MUXI(x0, x3, x6)
x8 = XOR(x1, x7) x9 = XOR(x5, x8) x10 = NAND(x3, x9) x11 = XNOR(x0, x10)
x12 = MUXI(x11, x9, x5)

Midori s0
x4 = XNOR(x3, x0) x5 = MUX(x4, x2, x0) x6 = AO21(x3, x2, x1) x7 = NOR(x3, x0)
x8 = NANDN(x7, x6) x9 = NOR(x2, x4) x10 = NOR3(x1, x7, x9) x11 = NOR(x9, x10)
x12 = NOR(x1, x10) x13 = AOI21(x3, x2, x12)

Saturnin s0
x4 = XNOR(x1, x0) x5 = MUXI(x2, x0, x4) x6 = MUX(x3, x2, x5) x7 = AOI21(x3, x1, x2)
x8 = MUXI(x6, x3, x7) x9 = MUXI(x1, x2, x3) x10 = NANDN(x0, x5) x11 = XOR(x9, x10)
x12 = MUX(x11, x4, x1)

Orthros
x4 = MUXI(x0, x3, x1) x5 = MUXI(x2, x0, x4) x6 = NOR(x3, x4) x7 = NAND(x2, x1)
x8 = MUXI(x0, x7, x6) x9 = NAND(x3, x2) x10 = NAND(x1, x0) x11 = NAND3(x7, x9, x10)
x12 = NAND3(x2, x0, x4) x13 = NAND(x3, x7) x14 = NAND(x12, x13)

32 Technology-Dependent Synthesis and Optimization of Circuits for Small S-boxes

Table 18: Optimized circuits implemented with the SMIC 65nm library
S-box Implementation in SMIC 65nm

3-way x3 = NORN(x1, x2) x4 = XNOR(x0, x3) x5 = NOR(x1, x4) x6 = XNOR(x2, x5)
x7 = NAND(x2, x4) x8 = XOR(x1, x7)

ctc2 x3 = NOR(x1, x0) x4 = XOR(x2, x3) x5 = NAND(x2, x0) x6 = XOR(x1, x5)
x7 = NOR(x0, x4) x8 = AOI21(x2, x1, x7)

PRINTcipher x3 = NOR(x2, x1) x4 = XNOR(x0, x3) x5 = NAND(x1, x0) x6 = XNOR(x2, x5)
x7 = NAND(x2, x4) x8 = XNOR(x1, x7)

SEA x3 = MUX(x2, x0, x1) x4 = NOR(x1, x0) x5 = XNOR(x2, x4) x6 = NAND(x2, x1)
x7 = XNOR(x0, x6)

Joltik x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x1, x5) x7 = XNOR(x2, x6)
x8 = NOR(x2, x1) x9 = XOR(x3, x8) x10 = NOR(x5, x9) x11 = XOR(x1, x10)

Joltik−1 x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x3, x5) x7 = XNOR(x1, x6)
x8 = NOR(x5, x7) x9 = XOR(x2, x8) x10 = NOR(x7, x9) x11 = XOR(x3, x10)

RECTANGLE
x4 = NORN(x1, x3) x5 = XOR(x0, x4) x6 = XNOR(x2, x5) x7 = MUXI(x5, x2, x3)
x8 = XNOR(x1, x7) x9 = MUXI(x5, x8, x6) x10 = XOR(x3, x9) x11 = NOR(x8, x10)
x12 = XOR(x5, x11)

RECTANGLE−1 x4 = NOR(x3, x0) x5 = XNOR3(x2, x1, x4) x6 = MUXI(x0, x3, x2) x7 = XNOR(x1, x6)
x8 = MUXI(x7, x0, x5) x9 = XNOR(x6, x8) x10 = MUXI(x7, x5, x6) x11 = XNOR(x0, x10)

SKINNY x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x2, x1) x7 = XOR(x3, x6)
x8 = NOR(x1, x5) x9 = XOR(x2, x8) x10 = NOR(x5, x7) x11 = XOR(x1, x10)

SKINNY−1 x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x3, x5) x7 = XOR(x1, x6)
x8 = NOR(x5, x7) x9 = XOR(x2, x8) x10 = NOR(x7, x9) x11 = XOR(x3, x10)

LBlock s0
x4 = NOR(x3, x2) x5 = XNOR(x1, x4) x6 = XOR(x0, x5) x7 = MUXI(x6, x3, x0)
x8 = MUXI(x2, x5, x0) x9 = XOR(x3, x8) x10 = NAND(x7, x9) x11 = XNOR(x2, x10)

LBlock s1
x4 = NOT(x0) x5 = MUXI(x2, x1, x4) x6 = XOR(x3, x5) x7 = NAND(x5, x6)
x8 = XOR(x2, x7) x9 = MUXI(x2, x4, x6) x10 = XNOR(x1, x9) x11 = MUXI(x10, x3, x4)

LBlock s3
x4 = NOT(x0) x5 = MUXI(x2, x4, x1) x6 = XOR(x3, x5) x7 = MUXI(x2, x6, x4)
x8 = XNOR(x1, x7) x9 = MUXI(x8, x3, x4) x10 = NAND(x5, x6) x11 = XOR(x2, x10)

GIFT
x4 = NOR(x1, x0) x5 = XOR(x2, x4) x6 = XOR(x3, x5) x7 = MUXI(x0, x3, x6)
x8 = XOR(x1, x7) x9 = XOR(x5, x8) x10 = NAND(x3, x9) x11 = XNOR(x0, x10)
x12 = MUXI(x11, x9, x5)

Midori s0
x4 = NAND(x3, x2) x5 = OA21(x3, x2, x4) x6 = MUX(x5, x2, x0) x7 = NAND(x0, x5)
x8 = NAND3(x1, x4, x7) x9 = NAND(x7, x8) x10 = NOR(x3, x0) x11 = MUX(x1, x10, x4)
x12 = NAND(x1, x8) x13 = NANDN(x10, x12)

Saturnin s0
x4 = MUXI(x1, x2, x3) x5 = NOR(x2, x1) x6 = NOR(x0, x5) x7 = XNOR(x4, x6)
x8 = MUXI(x3, x4, x0) x9 = XOR(x5, x8) x10 = NOR(x2, x9) x11 = MUXI(x3, x8, x10)
x12 = NORN(x7, x0) x13 = XOR(x1, x12)

Orthros
x4 = NOR(x1, x0) x5 = NOR(x3, x4) x6 = NOR(x2, x5) x7 = MUXI(x6, x4, x0)
x8 = NAND(x2, x1) x9 = MUXI(x0, x8, x5) x10 = NAND(x3, x2) x11 = NAND(x1, x0)
x12 = NAND3(x8, x10, x11) x13 = NAND3(x2, x0, x5) x14 = NAND(x3, x8) x15 = NAND(x13, x14)

Zihao Wei, Siwei Sun, Fengmei Liu, Lei Hu and Zhiyu Zhang 33

Table 19: Optimized circuits implemented with the Nangate 45nm library
S-box Implementation in Nangate 45nm

3-way x3 = NOT(x2) x4 = NAND(x1, x3) x5 = XOR(x0, x4) x6 = NAND(x2, x5)
x7 = XOR(x1, x6) x8 = NAND(x0, x7) x9 = XOR(x2, x8)

ctc2 x3 = NOR(x1, x0) x4 = XOR(x2, x3) x5 = NAND(x2, x0) x6 = XOR(x1, x5)
x7 = NOR(x0, x4) x8 = AOI21(x2, x1, x7)

PRINTcipher x3 = NOR(x2, x1) x4 = AOI21(x2, x1, x3) x5 = MUX(x0, x4, x2) x6 = MUX(x0, x1, x4)
x7 = XNOR(x0, x3)

SEA x3 = MUX(x2, x0, x1) x4 = NOR(x1, x0) x5 = XNOR(x2, x4) x6 = NAND(x2, x1)
x7 = XNOR(x0, x6)

Joltik x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x1, x5) x7 = XNOR(x2, x6)
x8 = NOR(x2, x1) x9 = XOR(x3, x8) x10 = NOR(x5, x9) x11 = XOR(x1, x10)

Joltik−1 x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x3, x5) x7 = XNOR(x1, x6)
x8 = NOR(x5, x7) x9 = XOR(x2, x8) x10 = NOR(x7, x9) x11 = XOR(x3, x10)

SKINNY x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x2, x1) x7 = XOR(x3, x6)
x8 = NOR(x1, x5) x9 = XOR(x2, x8) x10 = NOR(x5, x7) x11 = XOR(x1, x10)

SKINNY−1 x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x3, x5) x7 = XOR(x1, x6)
x8 = NOR(x5, x7) x9 = XOR(x2, x8) x10 = NOR(x7, x9) x11 = XOR(x3, x10)

LBlock s0
x4 = NOT(x1) x5 = MUX(x2, x4, x0) x6 = XNOR(x3, x5) x7 = MUX(x2, x0, x6)
x8 = XOR(x4, x7) x9 = NOR(x3, x5) x10 = XOR(x2, x9) x11 = MUX(x8, x3, x0)
x12 = NOT(x11)

LBlock s1
x4 = NOT(x0) x5 = MUX(x2, x1, x4) x6 = XNOR(x3, x5) x7 = NOR(x3, x5)
x8 = XNOR(x2, x7) x9 = MUX(x2, x4, x6) x10 = XOR(x1, x9) x11 = MUX(x10, x3, x4)
x12 = NOT(x11)

LBlock s3
x4 = NOT(x0) x5 = MUX(x2, x4, x1) x6 = XNOR(x3, x5) x7 = NOR(x3, x5)
x8 = XNOR(x2, x7) x9 = MUX(x2, x6, x4) x10 = XOR(x1, x9) x11 = MUX(x10, x3, x4)
x12 = NOT(x11)

GIFT
x4 = XNOR(x2, x1) x5 = MUX(x0, x4, x1) x6 = MUX(x3, x5, x0) x7 = MUX(x0, x2, x4)
x8 = XOR(x3, x7) x9 = XNOR(x0, x5) x10 = XOR(x8, x9) x11 = NAND(x6, x10)
x12 = XOR(x7, x11)

Midori s0
x4 = XNOR(x3, x0) x5 = MUX(x4, x2, x0) x6 = AOI21(x3, x2, x1) x7 = NOR(x3, x0)
x8 = OR(x6, x7) x9 = NOR(x2, x4) x10 = NOR3(x1, x7, x9) x11 = NOR(x9, x10)
x12 = NOR(x1, x10) x13 = AOI21(x3, x2, x12)

Saturnin s0
x4 = MUX(x1, x2, x3) x5 = NOR3(x2, x1, x0) x6 = NOR(x0, x5) x7 = XOR(x4, x6)
x8 = XOR(x1, x7) x9 = MUX(x0, x1, x8) x10 = NOR3(x3, x5, x8) x11 = XOR(x2, x10)
x12 = NOR3(x2, x4, x10) x13 = XNOR(x3, x12)

Orthros
x4 = AOI21(x3, x2, x1) x5 = OR(x3, x4) x6 = AND(x2, x1) x7 = MUX(x0, x6, x5)
x8 = NOR3(x2, x0, x4) x9 = NOR(x4, x8) x10 = OAI21(x3, x2, x0) x11 = NOR(x2, x8)
x12 = XOR(x10, x11) x13 = MUX(x3, x6, x10) x14 = NOT(x13)

34 Technology-Dependent Synthesis and Optimization of Circuits for Small S-boxes

Table 20: Optimized circuits implemented with the Nangate 15nm library
S-box Implementation in Nangate 15nm

3-way x3 = NOT(x2) x4 = NAND(x1, x3) x5 = XOR(x0, x4) x6 = NAND(x2, x5)
x7 = XOR(x1, x6) x8 = NAND(x0, x7) x9 = XOR(x2, x8)

ctc2 x3 = NOR(x1, x0) x4 = XOR(x2, x3) x5 = NAND(x2, x0) x6 = XOR(x1, x5)
x7 = NOR(x0, x4) x8 = AOI21(x2, x1, x7)

PRINTcipher x3 = NOR(x2, x1) x4 = XNOR(x0, x3) x5 = NAND(x1, x0) x6 = XNOR(x2, x5)
x7 = NAND(x2, x4) x8 = XNOR(x1, x7)

SEA x3 = MUX(x2, x0, x1) x4 = NOR(x1, x0) x5 = XNOR(x2, x4) x6 = NAND(x2, x1)
x7 = XNOR(x0, x6)

Joltik x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x1, x5) x7 = XNOR(x2, x6)
x8 = NOR(x2, x1) x9 = XOR(x3, x8) x10 = NOR(x5, x9) x11 = XOR(x1, x10)

Joltik−1 x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x3, x5) x7 = XNOR(x1, x6)
x8 = NOR(x5, x7) x9 = XOR(x2, x8) x10 = NOR(x7, x9) x11 = XOR(x3, x10)

RECTANGLE
x4 = XNOR(x2, x0) x5 = XNOR(x3, x4) x6 = MUX(x1, x5, x4) x7 = NAND(x1, x0)
x8 = XNOR(x5, x7) x9 = MUX(x2, x1, x8) x10 = XOR(x4, x9) x11 = MUX(x8, x6, x2)
x12 = XOR(x1, x11)

RECTANGLE−1
x4 = NOR(x3, x0) x5 = XOR(x2, x4) x6 = XNOR(x1, x5) x7 = MUX(x0, x3, x2)
x8 = XOR(x1, x7) x9 = XOR(x1, x0) x10 = MUX(x8, x9, x5) x11 = NAND(x5, x8)
x12 = XOR(x9, x11)

SKINNY x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x2, x1) x7 = XOR(x3, x6)
x8 = NOR(x1, x5) x9 = XOR(x2, x8) x10 = NOR(x5, x7) x11 = XOR(x1, x10)

SKINNY−1 x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x3, x5) x7 = XOR(x1, x6)
x8 = NOR(x5, x7) x9 = XOR(x2, x8) x10 = NOR(x7, x9) x11 = XOR(x3, x10)

LBlock s0
x4 = XNOR(x1, x0) x5 = NOR(x3, x2) x6 = XOR(x4, x5) x7 = NOR(x2, x6)
x8 = AOI21(x3, x2, x7) x9 = XNOR(x1, x8) x10 = NOR(x6, x9) x11 = XNOR(x3, x10)
x12 = NAND(x9, x11) x13 = XNOR(x2, x12)

LBlock s1
x4 = XNOR(x1, x0) x5 = NOR(x3, x2) x6 = XOR(x4, x5) x7 = NOR(x2, x6)
x8 = AOI21(x3, x2, x7) x9 = XOR(x1, x8) x10 = NOR(x6, x9) x11 = XNOR(x3, x10)
x12 = NAND(x9, x11) x13 = XOR(x2, x12)

LBlock s3
x4 = NOT(x3) x5 = NAND(x2, x4) x6 = XOR(x0, x5) x7 = XOR(x1, x6)
x8 = XOR(x1, x4) x9 = MUX(x2, x6, x8) x10 = NAND(x4, x9) x11 = XOR(x2, x10)
x12 = OR(x6, x8) x13 = NAND(x10, x12)

GIFT
x4 = NOR(x1, x0) x5 = XOR(x2, x4) x6 = XOR(x3, x5) x7 = NAND(x2, x0)
x8 = XNOR(x1, x7) x9 = XNOR(x6, x8) x10 = NAND(x3, x8) x11 = XNOR(x0, x10)
x12 = NAND(x9, x11) x13 = XOR(x5, x12)

Midori s0
x4 = AOI21(x3, x2, x1) x5 = NOR(x3, x0) x6 = OR(x4, x5) x7 = NOR(x3, x5)
x8 = NOR(x0, x5) x9 = NOR3(x2, x7, x8) x10 = NOR(x8, x9) x11 = NOR(x2, x9)
x12 = NOR3(x1, x5, x11) x13 = NOR(x11, x12) x14 = NOR(x1, x12) x15 = AOI21(x3, x2, x14)

Saturnin s0
x4 = NOR3(x3, x1, x0) x5 = NOR(x2, x0) x6 = NOR(x1, x4) x7 = XNOR(x5, x6)
x8 = NOR3(x3, x4, x7) x9 = NOR3(x2, x6, x8) x10 = XNOR(x3, x9) x11 = NAND(x0, x10)
x12 = MUX(x2, x11, x8) x13 = NOR3(x5, x8, x9) x14 = NOR(x0, x4) x15 = XOR(x13, x14)

Orthros
x4 = AND(x2, x0) x5 = NAND(x2, x1) x6 = MUX(x3, x5, x4) x7 = AOI21(x3, x2, x1)
x8 = NOR(x2, x0) x9 = NOR(x7, x8) x10 = NOR3(x3, x2, x8) x11 = AND(x7, x8)
x12 = NOR3(x4, x10, x11) x13 = NOR3(x3, x0, x7) x14 = AND(x0, x5) x15 = NOR(x13, x14)

Zihao Wei, Siwei Sun, Fengmei Liu, Lei Hu and Zhiyu Zhang 35

Table 21: Optimized circuits implemented with the STD90/MDL90 350nm library
S-box Implementation in STD90/MDL90 350nm

3-way x3 = XNOR(x2, x0) x4 = MUXI(x1, x3, x0) x5 = NAND(x2, x4) x6 = XOR(x1, x5)
x7 = NOR(x1, x3) x8 = AOI21(x2, x1, x7)

ctc2 x3 = NOR(x1, x0) x4 = XOR(x2, x3) x5 = NAND(x2, x0) x6 = XOR(x1, x5)
x7 = NOR(x0, x4) x8 = AOI21(x2, x1, x7)

PRINTcipher x3 = NOR(x2, x1) x4 = AOI21(x2, x1, x3) x5 = MUX(x0, x4, x2) x6 = MUX(x0, x1, x4)
x7 = XNOR(x0, x3)

SEA x3 = MUX(x2, x0, x1) x4 = NOR(x1, x0) x5 = XNOR(x2, x4) x6 = NAND(x2, x1)
x7 = XNOR(x0, x6)

Joltik x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x1, x5) x7 = XNOR(x2, x6)
x8 = NOR(x2, x1) x9 = XOR(x3, x8) x10 = NOR(x5, x9) x11 = XOR(x1, x10)

Joltik−1 x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x3, x5) x7 = XNOR(x1, x6)
x8 = NOR(x5, x7) x9 = XOR(x2, x8) x10 = NOR(x7, x9) x11 = XOR(x3, x10)

RECTANGLE x4 = XOR(x2, x1) x5 = MUX(x3, x2, x4) x6 = XNOR(x0, x5) x7 = MUX(x1, x0, x3)
x8 = XNOR3(x1, x6, x7) x9 = MUX(x8, x7, x4) x10 = NAND(x4, x8) x11 = XOR(x7, x10)

RECTANGLE−1
x4 = NOR(x3, x0) x5 = XOR(x2, x4) x6 = XNOR(x1, x5) x7 = MUX(x0, x1, x6)
x8 = XOR(x3, x7) x9 = NOT(x2) x10 = MUX(x0, x3, x9) x11 = MUX(x5, x10, x7)
x12 = MUX(x8, x10, x5)

SKINNY x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x2, x1) x7 = XOR(x3, x6)
x8 = NOR(x1, x5) x9 = XOR(x2, x8) x10 = NOR(x5, x7) x11 = XOR(x1, x10)

SKINNY−1 x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x3, x5) x7 = XOR(x1, x6)
x8 = NOR(x5, x7) x9 = XOR(x2, x8) x10 = NOR(x7, x9) x11 = XOR(x3, x10)

LBlock s0
x4 = NOR(x3, x2) x5 = XNOR3(x1, x0, x4) x6 = MUXI(x5, x3, x0) x7 = NOR(x2, x5)
x8 = AOI21(x3, x2, x7) x9 = XNOR(x1, x8) x10 = NAND(x6, x9) x11 = XNOR(x2, x10)

LBlock s1
x4 = NOR(x3, x2) x5 = XNOR3(x1, x0, x4) x6 = NOT(x3) x7 = MUX(x5, x6, x0)
x8 = MUX(x2, x6, x5) x9 = XOR(x1, x8) x10 = NAND(x6, x9) x11 = XOR(x2, x10)

LBlock s3
x4 = NOT(x3) x5 = NAND(x2, x4) x6 = XOR3(x1, x0, x5) x7 = MUX(x6, x4, x0)
x8 = MUX(x2, x6, x4) x9 = XOR(x1, x8) x10 = NAND(x4, x9) x11 = XOR(x2, x10)

GIFT
x4 = NAND(x2, x0) x5 = XNOR(x1, x4) x6 = NAND(x3, x5) x7 = XNOR(x0, x6)
x8 = MUX(x5, x0, x3) x9 = XOR3(x2, x7, x8) x10 = XNOR(x5, x9) x11 = NOR(x7, x10)
x12 = XOR(x8, x11)

Midori s0
x4 = AOI21(x3, x2, x1) x5 = NOR(x3, x0) x6 = OR(x4, x5) x7 = NOR(x3, x5)
x8 = NOR(x0, x5) x9 = NOR3(x2, x7, x8) x10 = NOR(x8, x9) x11 = NOR(x2, x9)
x12 = NOR3(x1, x5, x11) x13 = NOR(x11, x12) x14 = NOR(x1, x12) x15 = AOI21(x3, x2, x14)

Saturnin s0
x4 = XNOR(x1, x0) x5 = MUXI(x2, x0, x4) x6 = MUX(x3, x2, x5) x7 = AOI21(x3, x1, x2)
x8 = MUXI(x6, x3, x7) x9 = NOR(x0, x7) x10 = NAND(x1, x8) x11 = XNOR3(x3, x9, x10)
x12 = MUX(x11, x4, x1)

Orthros
x4 = AOI21(x3, x2, x1) x5 = NOR3(x2, x0, x4) x6 = NOR(x4, x5) x7 = OA21(x3, x2, x0)
x8 = NAND(x2, x1) x9 = MUX(x3, x8, x7) x10 = NOR(x2, x5) x11 = XNOR(x7, x10)
x12 = NOR3(x3, x0, x4) x13 = AND(x0, x8) x14 = NOR(x12, x13)

Table 22: Optimized circuits implemented with the STM 65nm library
S-box Implementation in STM 65nm

3-way x3 = NANDN(x2, x1) x4 = XOR(x0, x3) x5 = NAND(x2, x4) x6 = XOR(x1, x5)
x7 = NAND(x0, x6) x8 = XOR(x2, x7)

ctc2 x3 = NOR(x1, x0) x4 = XOR(x2, x3) x5 = NAND(x2, x0) x6 = XOR(x1, x5)
x7 = NAND(x4, x6) x8 = XNOR(x0, x7)

PRINTcipher x3 = NOR(x2, x1) x4 = XNOR(x0, x3) x5 = NAND(x1, x0) x6 = XNOR(x2, x5)
x7 = NAND(x2, x4) x8 = XNOR(x1, x7)

SEA x3 = NOR(x1, x0) x4 = XNOR(x2, x3) x5 = NAND(x2, x1) x6 = XNOR(x0, x5)
x7 = NAND(x2, x6) x8 = XNOR(x1, x7)

Joltik x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x1, x5) x7 = XNOR(x2, x6)
x8 = NOR(x2, x1) x9 = XOR(x3, x8) x10 = NOR(x5, x9) x11 = XOR(x1, x10)

Joltik−1 x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x3, x5) x7 = XNOR(x1, x6)
x8 = NOR(x5, x7) x9 = XOR(x2, x8) x10 = NOR(x7, x9) x11 = XOR(x3, x10)

SKINNY x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x2, x1) x7 = XOR(x3, x6)
x8 = NOR(x1, x5) x9 = XOR(x2, x8) x10 = NOR(x5, x7) x11 = XOR(x1, x10)

SKINNY−1 x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = NOR(x3, x5) x7 = XOR(x1, x6)
x8 = NOR(x5, x7) x9 = XOR(x2, x8) x10 = NOR(x7, x9) x11 = XOR(x3, x10)

LBlock s0
x4 = NOR(x3, x2) x5 = XNOR(x0, x4) x6 = XOR(x1, x5) x7 = XNOR(x3, x6)
x8 = NAND(x2, x7) x9 = XOR(x5, x8) x10 = NANDN(x3, x9) x11 = XNOR(x2, x10)
x12 = NANDN(x7, x5) x13 = NAND(x10, x12)

LBlock s1
x4 = NOR(x3, x2) x5 = XOR(x0, x4) x6 = XNOR(x1, x5) x7 = XNOR(x3, x6)
x8 = NAND(x2, x7) x9 = XOR(x5, x8) x10 = NANDN(x3, x9) x11 = XOR(x2, x10)
x12 = NANDN(x7, x5) x13 = NAND(x10, x12)

LBlock s3
x4 = NOR(x3, x2) x5 = XNOR(x1, x4) x6 = XNOR(x0, x5) x7 = XOR(x3, x6)
x8 = NAND(x2, x7) x9 = XOR(x5, x8) x10 = NANDN(x3, x9) x11 = XOR(x2, x10)
x12 = NANDN(x9, x6) x13 = NAND(x10, x12)

GIFT
x4 = NOR(x1, x0) x5 = XOR(x2, x4) x6 = XOR(x3, x5) x7 = NAND(x2, x0)
x8 = XNOR(x1, x7) x9 = XNOR(x6, x8) x10 = NAND(x3, x8) x11 = XNOR(x0, x10)
x12 = NAND(x9, x11) x13 = XOR(x5, x12)

	Introduction
	Notations and Preliminaries
	Exploring the Search Space with Single-gate Extensions
	Technology-Dependent Synthesis: The Algorithmic Framework
	A Comparison with LIGHTER, PEIGEN, and Our Algorithm

	Optimizing the Implementation of 4 4 S-boxes
	Applications and Results
	Conclusion and Discussion
	References
	Gates in Common CMOS Technology Libraries
	Common CMOS Technology Libraries
	Applications and Results

