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Abstract. In LWE based cryptosystems, using small (polynomially bounded)
ciphertext modulus improves both efficiency and security. In threshold encryption,
one often needs simulation security: the ability to simulate decryption shares without
the secret key. Existing lattice-based threshold encryption schemes provide one or
the other but not both. Simulation security has seemed to require superpolynomial
flooding noise, and the schemes with polynomial modulus use Rényi divergence based
analyses that are sufficient for game-based but not simulation security.
In this work, we give the first construction of simulation-secure lattice-based threshold
PKE with polynomially bounded modulus. The construction itself is relatively
standard, but we use an improved analysis, proving that when the ciphertext noise
and flooding noise are both Gaussian, simulation is possible even with very small
flooding noise. Our modulus is small not just asymptotically but also concretely:
this technique gives parameters roughly comparable to those of highly optimized
non-threshold schemes like FrodoKEM. As part of our proof, we show that LWE
remains hard in the presence of some types of leakage; these results and techniques
may also be useful in other contexts where noise flooding is used.

1 Introduction
A threshold cryptosystem allows to share a secret (decryption) key among a set of servers,
in such a way that the servers can collaboratively decrypt messages, and still no set of
servers (below a given threshold) can gain any information about the encrypted messages.
Threshold encryption schemes are a fundamental tool in cryptography, both in theory
(e.g., as a building block used in the construction of secure multiparty computation
protocols [AJL+12]) and in practice (as an effective solution to avoid the single point of
failure associated to the secret key.) In order to promote further progress in the area,
NIST (the National Institute of Standards and Technology) has recently issued a call for
Multi-Party Threshold Schemes [BP23], aimed both at the development of a standard for
threshold versions of mature “pre-quantum” schemes already standardized by NIST, and
also the exploratory investigation of other primitives that are not yet a NIST standard. Of
special interest among the more advanced primitives (and the main focus of this paper) is
lattice-based encryption, which has already been selected as a candidate for post-quantum
cryptography, and is expected to become an official standard within a year or so.

A threshold version of lattice based encryption (or, more specifically, Regev’s cryptosys-
tem [Reg09]) was first given by Bendlin and Damgard [BD10] in 2010. Based on the linear
key-homomorphic properties of lattice based encryption, the BD10 scheme [BD10] gives a
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very elegant and relatively efficient (non-interactive) solution to the threshold decryption
problem, where each server locally computes a “partial decryption”, and then these partial
decryptions are simply added up and rounded to the final output message. The main
drawback of the BD10 scheme is that in order to protect the secret key during the partial
decryption process, it uses noise flooding. This is a masking technique that requires the
use of superpolynomially large noise, and correspondingly large “ciphertext modulus” q.1
This has a negative impact both on efficiency (requiring computations modulo a large q,
and the use of “big-int” large precision arithmetic libraries) and security (requiring the
assumption that lattice problems are hard to solve within superpolynomial factors ≈ q.)
So, since the publication of [BD10], it has been an important open problem in the area to
develop an efficient threshold cryptosystem using a polynomial modulus q and based on
the hardness of approximating lattice problems within (small) polynomial factors.

Our contribution In this paper we give an efficient lattice-based threshold encryption
scheme

• satisfying a strong (simulation based) notion of security (which is relevant to the use
of threshold cryptography in MPC applications)

• supporting an arbitrary (polynomial) number of decryption queries, and

• using a polynomial modulus q (which results in a standard hardness assumption of
approximating lattice problems within a polynomial approximation factor.)

Some progress towards these goals had recently been obtained in [CSS+22, BS23], which
used Renyi divergence techniques to analyze threshold encryption with polynomial modulus,
but only achieving a weaker (game-based) definition of security and assuming an a-priori
polynomial upper bound on the number of decryption queries.2 So, to the best of our
knowledge, our is the first work achieving these strong security properties with a polynomial
modulus and inapproximability assumption.

On the technical side, we give a general construction and analysis technique that
is applicable to a broad range of lattice-based encryption schemes, including Regev’s
encryption [Reg09] (as already done in [BD10] using superpolynomial noise flooding),
and also more efficient variants like [LP11] that use the LWE problem both during key
generation and encryption. In fact, for the case of Regev’s cryptosystem, our scheme
is essentially the same as BD10, and the main contribution is in the analysis technique,
which may be of independent interest and find additional applications. This results in a
very simple design, with a concrete efficiency (both in terms of running time, and key and
ciphertext size) essentially the same as the basic (non-threshold) version of the schemes.
We exemplify the practicality of the scheme considering a threshold version of a scheme
similar to Frodo [NAB+20], a highly optimized scheme that was among the leading NIST
candidates for post-quantum cryptography based on the general (non-ring) Learning With
Errors (LWE) problem.

In this paper we focus on (plain) LWE, where we can prove security of our scheme
from standard assumptions. However, most of our results are easily adapted to the Ring
LWE ([SSTX09, LPR10]) setting, which provides even more efficient constructions based
on stronger (but still standard) hardness assumptions on algebraic lattices. In fact, the
only lemma in this paper that does not easily adapt to the ring setting is the proof that

1In lattice-based cryptography, ciphertexts consists of vectors or matrices with integer entries modulo
q, for some positive q called the ciphertext modulus.

2Specifically, the modulus q (and lattice inapproximability factor in the complexity assumption) in
these works scales with

√
ℓ, where ℓ is the number of decryption queries performed by the attacker.

So, supporting an arbitrary polynomial number of queries ℓ still requires a superpolynomial modulus q.
Moreover, this limitation seems intrinsic to the use of Renyi divergence techniques. See Section 1.2 for a
more detailed comparison.
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a certain variant of LWE with known error norm is equivalent to the standard LWE
problem. (See Lemma 9.) In Section 5.3 we introduce the ring version of this problem
as an assumption, which we call “Known-Covariance RLWE”, under which we sketch an
RLWE-based PKE scheme from which we can construct threshold cryptosystems. We leave
it as an open problem to either provide an attack showing that this generalization of LWE
with known error norm is false in the ring setting, or demonstrate that it is equivalent to
the standard Ring LWE problem and worst-case assumptions on the approximability of
algebraic lattices.

1.1 Technical Overview
A common framework for Threshold LWE encryption is as follows: Ciphertexts are of the
form (a, ⟨a, s⟩+ect +msg), so for decryption the parties need to compute ⟨a, s⟩ collectively.
Each party gets a share si of s under some linear secret sharing scheme. (For example,
for T -out-of-T threshold encryption one could have

∑
i si = s.) Party i can then compute

⟨a, si⟩ on its own, and by linearity the shares ⟨a, si⟩ can be combined to reconstruct ⟨a, s⟩.
However, because revealing ⟨a, si⟩ would leak information about si, each party instead
reveals a noisy version ⟨a, si⟩+ ẽ (where ẽ is called the “flooding” or “smudging” noise).
This means when the decryption shares are combined to reconstruct ⟨a, s⟩, the result is
noisy, but since the ciphertext is noisy anyway, the parameters of the scheme just need to
be adjusted so that decryption succeeds even with the extra noise.

An adversary is able to learn (a, ⟨a, s⟩+ ect) from the ciphertext and ⟨a, s⟩+ ẽ from
the decryption share. The difficulty when proving security is simulating the latter given
the former, but without knowing s or ect.

One approach is to have ẽ come from a very wide distribution, say a Gaussian Nσ

for large σ, such that N0,σ is statistically close to Nect,σ. Then we can simulate partial
decryption by sampling e′ ← N0,σ and returning ⟨a, s⟩+ ect + e′. This is the approach
taken by [BD10]. Unfortunately, it requires σ to be superpolynomially larger than ect.

One could use smaller σ anyway, and while N0,σ and Nect,σ have non-negligible
statistical distance, they have small Rényi divergence. Under the right conditions, this
means an adversary’s advantage in a security game must remain small if real decryption
shares are replaced with simulated ones. This is the approach taken by [CSS+22, BS23].
Unfortunately, this is insufficient for simulation-based security, because the output of the
simulator can still be distinguished from real decryption shares.

The main insight of this paper is that the real and simulated distributions just need to
be computationally indistinguishable, not statistically indistinguishable, and for computa-
tionally bounded adversaries, the ciphertext looks uniform and ect is unknown. N0,σ and
Nect,σ being distinguishable is not necessarily a problem. To simulate ⟨a, s⟩+ ẽ, we need
to know how ect − ẽ should be distributed. But rather than viewing ect as fixed (so that
the distribution is Nect,σ) we take the distribution over the uncertainty of ect as well as ẽ.

For example, if ect ← Nt and ẽ ← Nσ, then the difference between ⟨a, s⟩ + ect and
⟨a, s⟩+ ẽ is distributed as N√σ2+t2 . As long as the ciphertext (a, b) is computationally
uniform, we can sample e′ ← N√σ2+t2 and simulate partial decryption as b + e′.

It’s not immediately obvious that ⟨a, s⟩ + ect will still look uniform if ⟨a, s⟩ + ẽ has
been revealed — a and s have both been reused, and LWE might no longer be hard in
the presence of this sort of leakage. However, when ect and ẽ are both Gaussians, this
“Reused-A LWE” problem is as hard as standard LWE with slightly smaller noise, as was
already proved implicitly in [KY16] and [KLSS23]. This allows us to use smudging noise
that is polynomially large, and in fact potentially smaller than the ciphertext noise!

One technical detail is that to properly simulate, we need to know the variance of
the ciphertext noise — we can’t sample from Nσ2+t2 without knowing t. In Section 5
we slightly modify the schemes of [Reg09] and [LP11] to produce ciphertexts with known
noise variance.



4 Simulation-Secure Threshold PKE from LWE with Polynomial Modulus

We use continuous Gaussian noise for simplicity of exposition, but everything can be
adapted to the discrete case using standard discrete Gaussian convolution theorems (e.g.
[GMPW20]) with small increase in Gaussian parameter (typically a

√
2 factor).

1.2 Related Work
A number of works build Threshold PKE from lattices. In [BD10], Bendlin and Damgård
build Threshold PKE that is UC-secure, but the modulus is superpolynomially large.
Singh, Rangan, and Banerjee build Threshold PKE with polynomial modulus in [SRB13],
but they achieve only a weak form of semantic security.

Other works use lattices to build threshold versions of stronger primitives like IBE.
Bendlin, Krehbiel, and Peikert in [BKP13] build IBE with threshold key generation /
extraction / delegation; their construction uses polynomial modulus and they prove the
security of threshold key generation / extraction / delegation in the UC framework.
However, that work does not consider threshold decryption. In [KM16], Kuchta and
Markowitch build IBE with threshold decryption, but under a weaker security model that
does not let the adversary see partial decryption shares. In [DDK+23], Dahl, Demmler,
Elkazdadi, Meyre, Orfila, Rotaru, Smart, Tap, and Walter build a simulation-secure
Threshold FHE (and thus also PKE) scheme that uses a relatively small modulus during
evaluation, but during partial decryption they switch to an superpolynomially large modulus
and then bootstrap. Boneh, Gennaro, Goldfeder, Jain, Kim, Rasmussen, and Sahai in
[BGG+18] build simulation secure Threshold FHE (which they use to build a “universal
thresholdizer” and then numerous other threshold primitives) but with superpolynomial
modulus. By applying their “universal thresholdizer” to a non-threshold scheme with
small modulus, they can reduce their ciphertext modulus during evaluation, but at the
cost of expensive partial decryption that performs homomorphic operations in the original
large-modulus Threshold FHE scheme. Chowdhury, Sinha, Singh, Mishra, Chaudhary,
Patranabis, Mukherjee, Chatterjee, and Mukhopadhyay [CSS+22] and Boudgoust and
Scholl [BS23] both build Threshold FHE with polynomial modulus (including during partial
decryption), proving security under slightly different game-based security definitions; both
proofs use Rényi divergence arguments that are sufficient for game-based security, but
insufficient for simulation security. Furthermore, because of the Rényi divergence technique,
both [CSS+22] and [BS23] need a bound ℓ on the number of decryption queries to be
known in advance, and the modulus scales with

√
ℓ; in our scheme the modulus need not

grow with the number of decryption queries.
The security notion we consider is CPA-like and assumes static corruptions. In

[DLN+21], Devevey, Libert, Nguyen, Peters, and Yung build lattice-based threshold PKE
that achieves CCA2 security against adaptive corruptions. However, their construction uses
noise flooding with superpolynomial modulus-to-noise ratio. Combining our techniques
with those of [DLN+21] to achieve CCA2 security with polynomially large modulus would
be an interesting direction for future work.

One last technique for noise-flooding with polynomial modulus is “gentle noise flooding”,
first introduced in [BPMW16], later used for the analysis of entropic LWE in [BD20b,
BD20a], and used in [dCHI+22] to achieve (non-threshold) homomorphic encryption with
circuit privacy. Here the goal is to avoid leakage from the plaintext, rather than the key,
and the technique does not seem applicable to achieve threshold decryption.

Kim, Lee, Seo, and Song in [KLSS23] use a computational assumption called Hint-
MLWE to reduce the size of flooding noise in a lattice-based ZK proof system. Our
Reused-A LWE can be viewed as a special case of Hint-MLWE. However the constructions
and desired security properties in [KLSS23] are quite different from ours.

Threshold decryption and key generation can also be performed using general MPC
techniques [KLO+19], without any noise flooding, and keeping the same LWE (polynomial)
encryption modulus. It may be possible to adapt the multi-key FHE construction from
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MrNISC (reusable, non-interactive MPC) with polynomial modulus of [BJKL21, Shi22].
However, these methods are based on general MPC techniques and unlikely to be practical.

To the best of our knowledge, ignoring schemes based on generic MPC, ours is the
first LWE-based Threshold PKE scheme with polynomially large modulus that achieves
simulation security.

1.3 Outline
Section 2 recalls some results from previous works and proves some technical lemmas that
will be used in our proofs.

In Section 3 we prove that LWE in the presence of certain kinds of leakage is as hard
as standard LWE, which may be of independent interest.

In Section 4 we build a simulation-secure Threshold PKE scheme with polynomial
modulus from any LWE-based PKE scheme satisfying certain properties. Informally, we
require ciphertexts in the underlying scheme must look like fresh LWE samples (plus the
encoded message), even when the secret key is known. Furthermore, the error distribution
must be a (continuous) Gaussian whose standard deviation is publicly known.

In Section 5 we show a PKE scheme satisfying these conditions, namely a slightly
modified version of Lindner and Peikert’s scheme from [LP11]. We present another such
scheme, a slight modification of Regev’s scheme from [Reg09], in Appendix A.1; it is
simpler but less practical. Both schemes are secure under standard assumptions. We also
sketch a Ring-LWE based scheme whose security relies on a (plausible but nonstandard)
assumption.

Finally in Section 6 we give example concrete parameters.

2 Preliminaries
2.1 Gaussians
Definition 1 (Continuous Gaussians). The (one-dimensional) Gaussian measure ρc,s with
center c and width3 s is defined as

ρc,s(x) = e−π(x−c)2/s2
.

More generally in n dimensions,

ρc,s(x) = e−π∥x−c∥2/s2
=

n∏
i=1

ρci,s(xi).

The n-dimensional spherical Gaussian distribution Nn
c,s is the distribution over Rn

whose probability density is proportional to ρc,s. Equivalently,

Nn
c,s(x) = 1

sn

n∏
i=1

ρci,s(xi).

For brevity, we will usually write Nn
s instead of Nn

0,s (and likewise ρs instead of ρ0,s)
for Gaussians centered at zero.

Definition 2 (Discrete Gaussian). The discrete Gaussian distribution over an n-dimensional
lattice Λ, written DΛ,c,s, is the distribution over Λ whose probability density is proportional
to ρc,s. Equivalently,

DΛ,c,s(x) = ρc,s(x)
ρc,s(Λ) .

3This is not the standard deviation; a Gaussian of width s has standard deviation s/
√

2π.
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Wide-enough discrete Gaussians behave in many ways like continuous Gaussians. To
quantify how wide is wide enough, we use a lattice parameter known as the smoothing
parameter. For a full definition of the smoothing parameter we refer the reader to [MR07];
for our purposes, the following fact will be sufficient:

Lemma 1 ([MR07, Lemma 3.3]). The smoothing parameter of Zn, written ηϵ(Zn), is Õ(1)
for some negligible ϵ. More precisely,

ηϵ(Zn) ≤
√

ln(2n(1 + 1/ϵ))
π

Shifting the center c of a discrete Gaussian DZn,c,s leaves the normalization factor
ρc,s(Zn) almost unchanged, assuming the width s is above the smoothing parameter:

Lemma 2 ([Reg09, Claim 3.8], special case where lattice is Zn). For any c ∈ Rn, ϵ > 0,
and r ≥ ηϵ(Zn),

rn(1− ϵ) ≤ ρc,r(Zn) ≤ rn(1 + ϵ).

The convolution of a wide-enough discrete Gaussian and a wide-enough continuous
Gaussian is close to a continuous Gaussan:

Lemma 3 ([Reg09, Claim 3.9], special case where lattice is Zn). Let r, s > 0 be two reals,
and let t denote

√
r2 + s2. Assume that rs/t = 1/

√
1/r2 + 1/s2 ≥ ηϵ(Zn) = Õ(1) for some

ϵ < 1
2 . Consider the continuous distribution Y on Rn obtained by sampling from DZn,0,r

and then adding a noise vector taken from Nn
0,s. Then, the statistical distance between Y

and Nn
0,t is at most 4ϵ.

We will in fact need a stronger result: suppose we have a discrete Gaussian vector x
and add some continuous Gaussian noise e. Assuming both Gaussians are wide enough,
not only is x + e close to a continuous Gaussian, but also if we condition on the value of
x + e, then the conditional distribution of x will still be close to a discrete Gaussian:

Lemma 4 ([GMPW20, Corollary 4.2]). Let s, t ≥
√

2ηϵ(Zn) for some negligible ϵ. Then
the following distributions are statistically close:

D1 = {x← DZn,0,s; e← Nn
t : (x, x + e)}

D2 = {y← Nn
α ; x← DZn,βy,γ : (x, y)}

where α =
√

s2 + t2, β = s2

s2+t2 and γ = st√
s2+t2 .

Proof. This is just a special case of Corollary 3 of [GMPW20] (Corollary 4.2 in the ePrint
version), letting δ = t/α, δ′ = s/α, A1 = Λ1 = 1

sZ
n, A2 = Λ2 = Rn, and where our

x = sx1 and y = αx2.

Letting s = t immediately gives the following corollary:

Corollary 1. Let σ ≥
√

2ηϵ(Zn). Then the following distributions are statistically close:

D1 = {r← DZn,0,σ; e← Nn
σ : (r, r + e)}

D2 = {v← Nn
0,
√

2σ
; u← DZn,v/2,σ/

√
2 : (u, v)}.

We have the following tail bound on the norm of a discrete Gaussian vector:

Lemma 5 ([Ban93, Lemma 1.5]). Let L ⊂ Rn be any lattice, let s > 0, and let c ≥ 1/
√

2π.
Then Prx←DL,0,s

[∥x∥ > cs
√

n] < (c
√

2πee−πc2)n

Plugging in c = 0.8 gives the following corollary:

Corollary 2. If x← DZn,0,s then ∥x∥ < 0.8s
√

n with probability at least 1− 2−n.
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2.2 Threshold PKE
Definition 3 (Threshold PKE). A t-of-T threshold PKE scheme (also called a PKE
scheme with threshold decryption) is a tuple of algorithms (KeyGen, Enc, Dec, Rec):

KeyGen() outputs a list of T secret keys (one for each party) and a single public key pk.
Enc(pk, msg) outputs a ciphertext ct.
Dec(ski, ct) outputs a “partial decryption” (or “decryption share”) di.
Rec(ct, pk, {(i, di)}i∈S), where S ⊆ [T ] is a set of t indices, reconstructs a decrypted

message m′.
The scheme satisfies correctness if, for all messages msg and all sets S ⊆ [T ] of size t,

the following experiment returns true with overwhelming probability:
1: (sk1, . . . , skT , pk)← KeyGen()
2: ct← Enc(pk, msg)
3: for i ∈ S do
4: di ← Dec(ski, ct)
5: m′ = Rec(ct, pk, {(i, di)}i∈S)
6: return (msg = m′)

2.2.1 Game-Based Security

The following security notion for Threshold PKE is very weak; it ignores threshold
decryption entirely and merely requires the (non-threshold) encryption scheme remain
IND-CPA secure even if the adversary compromises some of the secret keyshares.

Definition 4 ((Weak) Threshold IND-CPA). Let TPKE = (KeyGen, Enc, Dec, Rec) be
a k-of-T threshold PKE scheme. We say the scheme is (weakly) IND-CPA secure if for
all stateful PPT adversaries A = (A1,A2), the following experiment returns true with
probability negligibly far from 1

2 :
procedure ExptIND−CPA(A)

b←$ {0, 1}
(sk1, . . . , skT , pk)← KeyGen()
Smal ← A1(pk) where Smal ⊂ [T ] and |Smal| = k − 1
b′ ← ALR

2 ({ski}i∈Smal
)

return (b′ = b)
where the oracle LR(m0, m1) returns Enc(pk, m0) if b = 0 and Enc(pk, m1) if b = 1.

The following security notion is much stronger; it is analogous to the Threshold PKE
security definition given in [BGG+18, full version, Definition 8.27] but for IND-CPA instead
of IND-CCA, and is equivalent to the “ℓ-IND-CPA for ThPKE” definition of [BS23] but
without the bound ℓ on the number of queries:

Definition 5 (Threshold IND-CPA-D). Threshold IND-CPA-D security is defined as in
Definition 4 except that A2 may also make polynomially many adaptive queries to the
following oracle:

procedure D(m)
ct← Enc(pk, m)
for all i ∈ [T ] \ Smal do

di ← Dec(ski, ct)
return (ct, {di}i∈[T ]\Smal

)

2.2.2 Simulation Security

We will use the following security notion for a T -out-of-T threshold PKE scheme. We
assume an honest-but-curious adversary that knows all but one keyshare, and can ask the
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honest party to partially decrypt honestly-generated encryptions of adversarially chosen
messages. Informally, simulation security means the adversary can by themself simulate
the honest party’s partial decryptions, without the help of the honest party or any access to
the honest party’s secret keyshare, as long as the adversary knows the underlying plaintext.
This implies that the partial decryptions reveal nothing more than the underlying plaintexts
and cannot help the adversary break the scheme.

More formally,

Definition 6. A T -out-of-T threshold PKE scheme is simulation secure if

• the scheme is weakly threshold IND-CPA secure, and

• there is an efficient algorithm Sim such that, with overwhelming probability over
(pk, skhon, skmal)← KeyGen (letting skmal denote the set of compromised keys), and
for all (possibly adaptively chosen) sequences of messages {mi},{

cti ← Encpk(mi) ∀i : (pk, skmal, {mi, cti, Decskhon(cti)})
}

is computationally indistinguishable from{
cti ← Encpk(mi) ∀i : (pk, skmal, {mi, cti, Simpk,skmal(cti, mi)})

}
.

We remark that in general one would also let the adversary call Dec on the same
ciphertext more than once, but in our constructions Dec will be deterministic, so this
definition is equivalent.

Lemma 6. Simulation security implies Threshold IND-CPA-D security.

Proof. Let A be a Threshold IND-CPA-D adversary; make a Threshold IND-CPA ad-
versary B by replacing each of A’s D queries D(mi) with cti ← Encpk(mi) followed by
di ← Simpk,skmal(cti, mi). By the simulatability property, A and B have computationally
indistinguishable output. But the scheme is Threshold IND-CPA secure, so B (and thus
A) must have negligible advantage.

In fact, simulation security is strictly stronger than Threshold IND-CPA-D security, as
shown in Lemma 15 in the Appendix.

2.3 LWE-like ciphertexts
Definition 7. Fix a parameter σdLW E . We say a (non-threshold) PKE scheme with key
generation KeyGen and encryption Enc has LWE-like ciphertexts if it satisfies the following
conditions:

1. The secret key is a vector s ∈ Zn
q .

2. Decisional LWE with secret s and Gaussian noise of width σdLW E remains hard
when the public key is known. That is, for all polynomially large m,

{(s, pk)← KeyGen(); A←$ Zm×n
q ; e←$ Nm

σdLW E
: (pk, A, As + e)} ≈c

{(s, pk)← KeyGen(); A←$ Zm×n
q ; b←$ Rm

q : (pk, A, b)}

3. With high probability over (s, pk) ← KeyGen(), and for all polynomially long se-
quences of messages {msgi}4, the following distributions are computationally indis-
tinguishable:

{(a(i), b(i))← Encpk(msgi) ∀i : (s, pk, {msgi}, {(a(i), b(i))})}
4Here the msgi are already scaled or otherwise encoded; we ignore the details of the encoding.
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and

{a(i) ←$ Zn
q ∀i; e

(i)
ct ← Nσ ∀i : (s, pk, {msgi}, {(a(i), ⟨a(i), s⟩+ e

(i)
ct + msgi)}}

for some σ ≥ σdLW E that may depend on pk. In other words, each ciphertext looks
like the message plus a fresh LWE sample with continuous Gaussian noise of width
σ.

Lemma 7. If a PKE scheme has LWE-like ciphertexts, then its ciphertexts are pseudo-
random conditioned on the public key, and thus the scheme is IND-CPA secure.

Proof. This follows immediately from conditions 3 and 2.

Definition 8. A scheme with LWE-like ciphertexts has public error width if the width σ
of the distribution of ect is publicly, efficiently computable from pk.

Note that having σ-LWE-like ciphertexts (and specifically Condition 3) is a much
stronger property than is generally needed from (or proved about) a PKE scheme, even for
schemes with ciphertexts that can be written as (a, ⟨a, s⟩+e+msg). It is unusual to require
anything beyond correctness when s is known, but here we require that (a, ⟨a, s⟩+ ect)
look like a fresh, random LWE sample even given s. For example, if (a, ⟨a, s⟩ + ect) is
generated by combining LWE samples from the public key, perhaps knowing s (and thus
also the errors in the public key LWE samples) would allow finding correlations between
a and ect; such a scheme could still be IND-CPA secure but would not have σ-LWE-like
ciphertexts. Likewise, a scheme where the ciphertext noise distribution depends on the
secret key could be IND-CPA secure but not have public error width. We will show in
Section 5 that, with slight modifications, both standard Regev PKE ([Reg09]) and the
compact variant of Lindner and Peikert ([LP11]) have LWE-like ciphertexts with public
error width, with polynomially large modulus.

3 LWE Variants
For security we will rely on a few variants of the usual LWE assumption. All are provably
as hard as the standard LWE assumption.

3.1 Reused-A LWE
Definition 9. The Reused-A LWE distribution with parameters n, m, σ1, σ2 is defined as{

A←$ Zm×n
q ; s←$ Zn

q ; e1 ← Nm
σ1

; e2 ← Nm
σ2

: (A, As + e1, As + e2)
}

.

The Search Reused-A LWE problem is to recover s.
The Decision Reused-A LWE problem is to distinguish the distribution from{

A←$ Zm×n
q ; b′ ←$ Rm

q ; c← Nm√
σ2

1+σ2
2

: (A, b′, b′ + c)
}

.

For notational convenience we present this in “matrix form” where A is a matrix of m
vectors ai. We can also consider the case where m is polynomially large but not known
in advance – i.e., the adversary can make polynomially-many queries to an oracle that
outputs samples (a, ⟨a, s⟩+ e1, ⟨a, s⟩+ e2) for fixed unknown s.

Lemma 8. Search Reused-A LWE is as hard as search LWE with Gaussian noise of width
1√

σ−2
1 +σ−2

2
. Furthermore, if decision LWE is hard with Gaussian noise of width 1√

σ−2
1 +σ−2

2
,

then decision Reused-A LWE with σ1, σ2 is also hard.
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This result is not new; more general versions (for discrete Gaussian noise) are proved
in prior works. It follows from [KY16, Lemma 1] setting V = [I|I], and can also be viewed
as a special case of the Hint MLWE problem of [KLSS23]. The special case we use here is
simpler to state and suffices for our work; for completeness we give a direct proof with
continuous Gaussian noise in the appendix.

As an aside, we remark that the hardness proofs for Reused-A LWE do not go through
if the noise is non-Gaussian. In fact, for polynomially large bounded uniform noise (whether
discrete or uniform) there is an explicit attack!

Claim. There is a poly-time adversary that solves Search Reused-A LWE if errors,
instead of Gaussian, are uniform in the interval [−B, B] for polynomially large B, given
polynomially many samples.

Proof. First consider discrete noise in {−B, . . . , B}. For each sample (a, b1 = ⟨a, s⟩ +
e1, b2 = ⟨a, s⟩+ e2), check whether b2 − b1 = 2B. If so, it must be the case that e2 = B
and e1 = −B, and we learn the value of ⟨a, s⟩. This will happen with probability

1
(2B+1)2 = O(1/B2) — non-negligible because B is only polynomially large. With Ω(B2n)
samples we expect to recover the exact value of ⟨a, s⟩ for n different values of a, from
which we can recover s.

Continuous noise can be attacked similarly by recovering ⟨a, s⟩ up to a very small error,
too small for LWE to remain secure, and then recovering s using lattice reduction. In
particular, for some small β, we check whether b2−b1 > 2B−2β. If so, then B−β < e2 < B
and −B + β > e1 > −B. This recovers ⟨a, s⟩ up to an error bounded by β, and happens
with probability O((β/B)2). For β = Ω(1/poly(n)), the attack needs only polynomially
many samples.

3.2 Known-Norm LWE
Definition 10 (LWE with known norm). Given integers n, m, q, with m and q polynomially
large in n, and an error distribution χ whose support is in Zq, the (small-secret) Known-
Norm LWE Distribution is defined as{

s← χn; e← χm; A← Zm×n
q : (A, As + e, ∥s∥2 + ∥e∥2)

}
.

In other words, Known-Norm LWE is small-secret LWE except the adversary is also given
the ℓ2 norm of the vector [s|e] ∈ Zn+m.

The decisional Known-Norm LWE assumption is that this distribution is computation-
ally indistinguishable from{

s← χn; e← χm; A← Zm×n
q : (A, Unif, ∥s∥2 + ∥e∥2)

}
.

Lemma 9. The (decisional) Known-Norm LWE problem is as hard as (decisional) small-
secret LWE with the same parameters, up to a polynomial factor in the advantage.

Proof. ∥s∥2+∥e∥2 is no more than q2(m+n), which is polynomially large. For search, given
a small-secret LWE instance, an adversary that solves the Known-Norm LWE problem
can just guess the value of ∥s∥2 + ∥e∥2, and will guess correctly with at least 1/poly(n)
probability. For the decision variant, the search-to-decision reduction of [MM11] extends
to Known-Norm LWE, as described in Appendix B.

The above argument is extremely loose. Concretely, when χ is a discrete Gaussian
of small width, ∥s∥2 + ∥e∥2 will with overwheming probability be much smaller than
q2(m + n), allowing better concrete parameters for a given security level.

We can also define a version of Known-Norm LWE where the secret s is uniform instead
of from the error distribution, and the norm given is ∥e∥2 instead of ∥s∥2 +∥e∥2. The same
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proof shows that this version is also as hard as standard LWE (again up to a polynomial
factor in the advantage).

We remark that while this problem is reminiscent of Hint-MLWE [KLSS23], Known-
Norm LWE is not a special case of Hint-MLWE: here the leakage ∥s∥2 + ∥e∥2 is quadratic
in the secrets, whereas the hints in Hint-MLWE are linear.

3.3 Fixed-Matrix Shifted LWE
Definition 11 (Fixed-Matrix Shifted LWE). Let n ∈ Z; q ∈ poly(n); γ ∈ R; and let Ψ be
an arbitrary distribution over Rn. The Fixed-Matrix Shifted LWE problem is as follows:
Fix a public random matrix A←$ Zn×n

q . Given A, and given polynomially many samples
all from either

Dreal = {c← Ψ; d← Ψ; r← DZn,c,γ ; f ← DZn,d,γ ; : (rA + f , c, d)}

or
Drandom =

{
c← Ψ; d← Ψ; a←$ Zn

q ; : (a, c, d)
}

,

determine whether the samples were from Dreal or Drandom.

We remark that if the r and f vectors came from zero-centered discrete Gaussians, this
would be Matrix LWE: the problem of distinguishing (A, SA + E) from uniform. Matrix
LWE is known to be as hard as standard LWE by a hybrid argument[LP11]. If the shifts c
and d were integer vectors, we could add or subtract cA + d ourselves to shift the centers.
The only subtlety is dealing with the fractional parts of the c and d, which we can do by
adding small noise with the appropriate mean.

Lemma 10. If Matrix LWE is hard in dimension n with the secret and noise taken from
discrete Gaussians of parameter σ, then Fixed-Matrix Shifted LWE is hard with noise
parameter

√
σ2 + ηϵ(Zn)2.

Proof. We are given a Matrix LWE instance (A, B = AS + E) ∈ Zn×n
q × Zn×m

q , where
columns of S and E come from DZn,0,σ. Sample m pairs of vectors (ci, di) from Ψ. Then,
for i ∈ [m], sample s̄i ← DZn,ci,ηϵ(Zn) and ēi ← DZn,di,ηϵ(Zn).

Concatenate the s̄i into an n×m matrix S̄ and the ēi into Ē. Now

(A, B + AS̄ + Ē, {(ci, di)}) = (A, A(S + S̄) + (E + Ē), {(ci, di)})

which is a Fixed-Matrix Shifted LWE instance with γ =
√

σ2 + ηϵ(Zn)2. If B is instead
uniform, then the result of this transformation is still uniform. Thus Fixed-Matrix Shifted
LWE with noise parameter γ =

√
σ2 + ηϵ(Zn)2 is as hard as Matrix LWE with noise

parameter σ.

4 Threshold PKE from PKE
We now show how to transform any PKE scheme satisfying certain properties into a
Threshold PKE scheme where the amount of “smudging noise” can be extremely small
and the modulus can be polynomially large.

Theorem 1. Let PKE be a public key encryption scheme with LWE-like ciphertexts and
public error width, and assume the error width is at least

√
2σdLW E. Assume further (for

correctness) that when the error width is σct, decryption is possible with noise slightly
wider than σct; in particular, to build T -out-of-T threshold PKE, we will have error width√

σ2
ct + 2Tσ2

dLW E .
Then the following construction of (T, T )-threshold PKE satisfies simulation security:
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Key generation: (s, pk) ← PKE.KeyGen as in the underlying (non-threshold) PKE
scheme. Each party’s secret key si is an additive share of s: s =

∑
i si.

Encryption: Same as the underlying PKE scheme.

Partial Decryption: To decrypt (a, b) using keyshare si: Sample ẽ ← Nσsm
, where

σsm =
√

2σdLW E. Output ⟨a, si⟩+ ẽ. If given the same input a multiple times, give
the same output every time (e.g., by keeping a table of previous inputs and outputs,
or by keeping some secret PRF key k and using PRFk(a) as a PRG seed for sampling
ẽ.)

Reconstruction: Add the partial decryptions {⟨a, si⟩+ ẽi}i∈[T ] to recover ⟨a, s⟩+
∑

i ẽi.
Subtract this from the b component of the ciphertext to recover

b− ⟨a, s⟩ −
∑

i

ẽi = msg + ect −
∑

i

ẽi

and then error-correct to recover the underlying message.

Proof. The underlying PKE scheme PKE by assumption has LWE-like ciphertexts and
thus is already IND-CPA secure; since giving the adversary T − 1 shares of s information
theoretically reveals nothing about s, we immediately get (weak) Threshold IND-CPA
security for our construction. What remains to be shown is that partial decryption queries
can be simulated without knowing the full secret key, and that the adversary’s view with
a real Dec oracle is computationally indistinguishable from the view with the simulated
Dec oracle. Let shon be the honest party’s secret keyshare, and let smal be the sum of the
adversary’s keyshares, such that shon + smal = s.

We simulate decryption to a given message as follows:

Simpk,skmal((a, b), msg) = b− ⟨a, smal⟩ −msg + c

where c← N√
σ2

ct+σ2
sm

. However, Sim will repeat the same output if queried repeatedly on
the same input ciphertext, like the actual Dec. (Without loss of generality we will assume
each ciphertext is unique and is decrypted exactly once.)

The adversary’s view in the real world is{
smal, pk, {msgi, ctxti, Dec(ctxti)}i

}
=

{
smal, pk, {msgi, ai, ⟨ai, s⟩+ ei + msgi, ⟨ai, shon⟩+ ẽi}i

}
Subtracting the known values {msgi + ⟨ai, smal⟩} from each ciphertext (but not from the
partial decryptions), we can equivalently write the view as

=
{

smal, pk, {msgi, ai, ⟨ai, shon⟩+ ei, ⟨ai, shon⟩+ ẽi}i

}
The {ai} are indistinguishable from i.i.d. uniform, and the {ei} are indistinguishable

from i.i.d. samples from Nσct . (This is true even in the presence of pk and the partial
decryptions: since ciphertexts are LWE-like, it would be true even if s were known, which
would be enough for the adversary to compute Dec on their own.) The {ẽi} are distributed
as Nσsm

.
So {ai, ⟨ai, shon⟩ + ei, ⟨ai, shon⟩ + ẽi}i follows the Reused-A LWE distribution, with

σ1 = σct and σ2 = σsm. We apply Lemma 8: both σct and σsm are at least
√

2σdLW E ,
so 1

σ−2
sm+σ−2

ct

≥ σ2
dLW E , large enough that decision LWE is hard. The conditions for

Lemma 8 are thus satisfied, and distribution of this part of the view is computationally
indistinguishable from

{a←$ Zn
q ; b←$ Rm

q ; c← N√
σ2

ct+σ2
sm

: (a, b, b + c)}.
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Recall that we earlier subtracted ⟨a, smal⟩+ msg from the b component of each ciphertext.
We add it back now. b′ = b + ⟨a, smal⟩+ msg remains uniform.

{a←$ Zn
q ; b′ ←$ Rm

q ; c← N√
σ2

ct+σ2
sm

: (a, b′, b′ − ⟨a, smal⟩ −msg + c)}.

We have shown that the adversary’s view in the real world is indistinguishable from

Vreal =
{

smal, pk, {msgi, ai, bi, bi − ⟨ai, smal⟩ −msg + ci}i

}
where each bi is uniform. The simulated view Vsim is the same except each bi = ⟨ai, s⟩+
ei + msgi. These views are seen to be computationally indistinguishable as follows:

Assume A is a distinguisher between Vreal and Vsim, and define a new A′

A′(pk, {msgi, ai, bi}i) = A(smal, pk, {msgi, ai, bi, bi − ⟨ai, smal⟩ −msgi + ci})

where smal and ci are chosen at random. Then A′ distinguishes between

X1 = (pk, {msgi, ai, Unif}i) and
X2 = (pk, {msgi, ai, ⟨ai, s⟩+ ei + msgi}i),

which violates the assumption that Decisional LWE with secret s remains hard given pk.
Thus the real world and simulated world are indistinguishable, and the construction is
simulation secure.

We make a few remarks:

• The smudging noise has width σsm =
√

2σdLW E — only
√

2 times wider than the
smallest possible noise under which LWE can be hard. In contrast to previous
schemes where smuding noise was superpolynomially larger than ciphertext noise,
here the smudging noise is smaller than the ciphertext noise. σsm being so small
is especially helpful for supporting a large number of parties, because when partial
decryptions from all T parties are added together during reconstruction, the width
of the noise will be

√
σ2

ct + Tσ2
sm.

• The number of decryption queries need not be known in advance, as Reused-A LWE
remains hard with arbitrary polynomially many samples.

• The proof requires that σct (or more precisely, σ2
ct + σ2

sm) be a publicly known value,
as otherwise the simulator won’t know how much noise to add. A natural question is
whether a bound on σct is sufficient, rather than the actual value, as long as the noise
is still Gaussian. This would be a useful property for building threshold homomorphic
encryption: the precise noise variance after some operations (like bootstrapping)
depends on secret information, but it can be publicly bounded.
Unfortunately, this is not a proof artifact: simulation security does require the actual
value. In the real world, given a ciphertext (a, b = ⟨a, s⟩+ e) and partial decryption
c = ⟨a, shon⟩ + ẽ, the adversary can compute b − ⟨a, smal⟩ − c = e − ẽ, which is
distributed as a Gaussian with width

√
σ2

ct + σ2
sm. The adversary could repeat this

for many ciphertexts and measure the variance of the resulting distribution to learn
σ2

ct + σ2
sm.

• The proof of Theorem 1 easily adapts to the Ring LWE setting, where the ciphertext
noise should now be a spherical Gaussian of known variance.

• If Dec is called on the same ciphertext twice, it must always give the same output.
Otherwise, an adversary could ask for many partial decryptions of the same ciphertext
to gather a large number of samples {⟨a, s⟩+ẽi} and average them, effectively reducing
the width of the smudging noise below the

√
2σdLW E needed for security. This is

similar to the averaging attack in [ASY22].
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• This Threshold PKE construction is linearly homomorphic (assuming the underlying
PKE scheme is) but is not secure as-is as a Threshold Linearly Homomorphic
Encryption scheme. In particular, if we allow homomorphic evaluation, the a vectors
in each ciphertext may no longer be independent. For example, Dec(ct1)+Dec(ct2) ≈
Dec(ct1 + ct2) but with different smudging noise. This effectively makes Dec no
longer deterministic: the adversary can see many samples {⟨a, s⟩+ ẽi} with the same
a but different ẽi and average them.

5 Schemes Satisfying the Conditions of Section 4
5.1 Scheme based on LP11
We now present a PKE scheme (a slight modification of the scheme of [LP11]) that satisfies
the conditions needed for the Theorem 1 construction. (For a simpler but less practical
alternative PKE scheme based on [Reg09] instead of [LP11], see Appendix A.1.)

Parameters Let q be a polynomially large prime; let n and σdLW E be chosen such that
small-secret LWE in dimension n with modulus q and discrete Gaussian noise of
parameter σdLW E is secure. (We remark that for provable security σdLW E can
be O(

√
n) [Reg09] but in practice σdLW E ∼ O(1) is often used.[ACC+18]) Let

σpk = σdLW E , and σe = 2 max(ηϵ(Z2n), σdLW E).

Key generation Sample a square matrix A ←$ Zn×n
q ; sample vectors s and epk from

DZn,0,σpk
. The secret key is s ∈ Zn

q , and the public key is (A, b = As + epk, c =
∥s∥2 + ∥epk∥2) ∈ Zn×n

q × Zn
q × Z.

Encryption On encoded input message msg and public key (A, b, c), Enc first samples
vectors r and f from DZn,0,σe and a (continuous) scalar e′ ← Nσe

√
c. The ciphertext

is (r⊤A + f , r⊤b + e′ + msg).

Theorem 2. The above scheme has LWE-like ciphertexts (Definition 7) with public error
width (Definition 8).

Proof. For the first and second conditions of Definition 7, the secret key is a vector s, and
the public key consists of LWE samples and ∥s∥2 + ∥epk∥2, so decisional LWE with secret
s when the public key is known is Known-Norm LWE, which is hard. We now show that
Condition 3 of Definition 7 is satisfied, namely, that with high probability over secret key s
and public key pk = (A, b, c), and for all polynomially long sequences of messages {msgi},
the distribution

{(a(i), b(i))← Encpk(msgi) ∀i : (s, pk, {msgi}, {(a(i), b(i))})}

is computationally indistinguishable from

{a(i) ←$ Zn
q ∀i; e

(i)
ct ← Nσct

∀i : (s, pk, {msgi}, {(a(i), ⟨a(i), s⟩+ e
(i)
ct + msgi)}}

where σct =
√

2cσe. (Observe that σct is public.)
First we consider a single call to Encpk(msg). We can rewrite the output as

(r⊤A + f , r⊤b + e′ + msg)
= (r⊤A + f , r⊤As + ⟨r, epk⟩+ e′ + msg)
= (r⊤A + f , (r⊤A + f)s− ⟨f , s⟩+ ⟨r, epk⟩+ e′ + msg).

We can’t yet replace r⊤A + f by a uniform a using decisional LWE, as r and f appear
elsewhere.



Daniele Micciancio, Adam Suhl 15

The vectors s and epk are fixed; r and f each come from DZn,0,σe
; e′ comes from

Nσe
√

c. We can view the concatenation of r and f as a single vector from DZ2n,0,σe
, and

the concatenation of epk and s as a vector of norm
√
∥s∥2 + ∥epk∥2 =

√
c. Our ciphertext

distribution is:{
[r|f ]← DZ2n,0,σe

; e′ ← Nσe
√

c :
(

rA + f , (rA + f)s +
〈

[r|f ], [epk | −s]
〉

+ e′ + msg
)}

=
{

[r|f ]← DZ2n,0,σe
; e← N 2n

σe
:

(
rA + f , (rA + f)s +

〈
[r|f ] + e, [epk | −s]

〉
+ msg

)}
We now apply Corollary 1 to the joint distribution of ([r|f ], [r|f ] + e), where the value

of σ in the corollary is σe. (σe is more than
√

2ηϵ(Z2n) so the corollary applies.) The
output distribution of Enc(msg) is statistically close to{

y← N 2n√
2σe

; [r|f ]← DZ2n,y/2,σe/
√

2 :
(

rA + f , (rA + f)s +
〈

y, [epk | −s]
〉

+ msg
)}

We now consider multiple ciphertexts, as in Condition 3 of Definition 7:

{(a(i), b(i))← Encpk(msgi) ∀i : (s, pk, {msgi}, {(a(i), b(i))})}

≈s

 y(i) ← N 2n√
2σe

[r(i)|f (i)]← DZ2n,y(i)/2,σe/
√

2
:

 s, (A, b, c), {msgi},{
r(i)A + f (i),

(r(i)A + f (i))s +
〈

y(i), [epk | −s]
〉

+ msgi

}


As r(i) and f (i) are used only in the expression r(i)A + f (i), we can argue by decisional
LWE that r(i)A + f (i) is computationally indistinguishable from uniform even given A. In
particular, this is Fixed-Matrix Shifted LWE, with fixed matrix A, and with one sample
r(i)A + f (i) per ciphertext. We apply Lemma 10; for our chosen parameters, we have noise
width σe/

√
2 =

√
2 max(ηϵ(Z2n), σdLW E), which is larger than the

√
σ2

dLW E + ηϵ(Zn)
necessary for Fixed-Matrix Shifted LWE to be hard.

≈c

y(i) ← N 2n√
2σe

a(i) ←$ Zn
q

:

 s, (A, b, c), {msgi},{
a(i),

⟨a(i), s⟩+
〈

y(i), [epk | −s]
〉

+ msgi

}


Finally, now that y(i) appears nowhere else, we can replace ⟨y(i), [epk|s]⟩ with a one-
dimensional continuous Gaussian:

=
{

e
(i)
ct ← N√2cσe

a(i) ←$ Zn
q

:
s, (A, b, c), {msgi},

(a(i), ⟨a(i), s⟩+ e
(i)
ct + msgi)

}
In particular, even conditioned on the secret (and public) keys, the output of Enc(msg)

is a fresh LWE sample (plus the message) where the ciphertext noise comes from a
continuous Gaussian of width

√
2cσe = σct.

Theorem 3. In the above scheme, σct ≥
√

2σdLW E, and with overwhelming probability,
σct is polynomially large. In particular, we have correctness for polynomially large modulus
q.
Proof. For the first inequality, σct =

√
2cσe ≥

√
2σdLW E . For the second, using the

extremely loose bound of Lemma 2, we have
√

c < 0.8
√

2nσdLW E with overwhelming
probability, so

σct < 0.8
√

2nσdLW E(2
√

2 max(ηϵ(Z2n), σdLW E))
= 3.2

√
nσdLW E max(ηϵ(Z2n), σdLW E)

which is polynomially large.
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5.2 Scheme based on Regev09
Regev’s scheme of [Reg09] can also be modified to have LWE-like ciphertexts with public
error width; we defer the details to Appendex A.1.

5.3 RLWE-based PKE
We now sketch a ring-based PKE scheme conjectured to satisfy the properties needed in
Theorem 1. Its security depends on the (conjectured but unproven) hardness of a ring
analog of the Known-Norm LWE problem that we call the Known-Covariance RLWE
problem.

5.3.1 Ring Background

We use the following facts about power-of-2 cyclotomics. Let n be a power of 2, and let
R = Z[x]

(xn+1) .

• A ring element is a degree < n polynomial a, which can be viewed as an n-dimensional
coefficient vector.

• Multiplication by a ring element a is a linear operation, which can be described as
multiplication by an n-by-n negacyclic matrix whose top row is the coefficients of
a. In a slight abuse of notation, we identify a ring element with its corresponding
matrix.

• If A is the matrix for multiplication by a(x), then its transpose A⊤ corresponds to
multiplication by the ring element a(x−1). We write a(x) = a(x−1).

• Embed R into Rn. For any ring element a, multiplying a spherical Gaussian by a
gives a (non-spherical) Gaussian with covariance matrix aa. That is, the distribution
of {e← Nn

1 : ae} is a continuous Gaussian whose covariance matrix is (the matrix
corresponding to) aa.

5.3.2 Known-Covariance RLWE

Definition 12. Let R = Z[x]
(xn+1) be a power-of-2 cyclotomic ring. Let χ be an error

distribution whose support is in R. Let q be a (polynomially large) modulus. Let m be
polynomially large.

The Known-Covariance RLWE Distribution is defined as{
s← χ; e← χm; a←$ Rm : (a, sa + e, ss +

m∑
i=1

eiei)
}

.

The decisional Known-Covariance RLWE assumption is that this distribution is com-
putationally indistinguishable from{

s← χ; e← χm; a←$ Rm : (a, Unif, ss +
m∑

i=1
eiei)

}
.

In Known-Norm LWE we revealed ∥s∥2 + ∥e∥2, which gives the variance of ⟨[s|e], z⟩
when z← Nn+m

1 .
Analogously in the ring setting, ss +

∑
i eiei gives the covariance matrix of ⟨[s|e], z⟩

when z← (Nn
1 )1+m. So this is a natural generalization of Known-Norm LWE to the ring

setting.
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In the plain LWE case Lemma 9 shows Known-Norm LWE is as hard as standard LWE.
Unfortunately, that proof does not carry over to the ring setting. It seems plausible that
the problem remains hard (for appropriate values of m), but proving or disproving the
Known-Covariance RLWE assumption is left open for future work.

5.3.3 Construction

We now sketch our RLWE-based PKE scheme. At a high level, it is similar to the LP11-like
scheme from Section 5.1. But directly mapping that construction to the ring setting would
give non-spherical ciphertext noise – its covariance matrix will depend on the secret key.
So we will add extra noise whose covariance matrix is chosen to cancel this out and make
the result spherical, and reveal in the public key the information necessary to compute
this covariance matrix. Assuming Known-Covariance RLWE is hard, the scheme remains
secure with this leakage.

Let m be such that Known-Covariance RLWE is (conjectured) hard. Let the distribution
χ be a discrete Gaussian on R with width σr. Let α be a fixed public parameter.

The secret key is a short ring element s. The public key contains a vector of m RLWE
samples (a, b = sa + e). (We remark that m = 1 is sufficient if we assume Known-
Covariance RLWE is hard when m = 1.) The public key also includes a ring element F
and an integer λ computed as follows: Let E = ss +

∑
i eiei. Let λ ≥ (σ2

r + α)λ1, where
λ1 is the largest eigenvalue of E (viewing E as a matrix). Let F = λIn − σ2

rE. The public
key is (a, b, F, λ).

Observe that F has the same eigenvectors as E, and all its eigenvalues are non-negative
(so F is positive semi-definite). Moreover, observe that the sum of a Gaussian with
covariance σ2

rE and an independent Gaussian with covariance F will be spherical, having
covariance λIn.

Like in the rest of the paper, for ease of presentation ciphertexts will use continuous
rather than discrete Gaussian noise.5

Encryption is as follows: sample r← χm and r0 ← χ. Sample f from an n-dimensional
non-spherical Gaussian with covariance matrix F .6 Output ciphertext (a′ = ⟨r, a⟩−r0, b′ =
⟨r, b⟩+ f + msg).

Claim. In the above scheme, conditioned on the secret key, the distribution of a fresh
ciphertext is indistinguishable from (a′, a′s + e′ + msg) where a′ is a uniform R element
and e′ is an (independent) spherical Gaussian of variance λ.

Proof Sketch.

b′ = ⟨r, b⟩+ f + msg

= s⟨r, a⟩+ ⟨r, e⟩+ f + msg

= sa′ + sr0 + ⟨r, e⟩+ f + msg

e′ = b′ − a′s−msg = ⟨r, e⟩+ sr0 + f

= ⟨[r|r0], [e|s]⟩+ f

Since ⟨[r|r0], [e|s]⟩ has covariance matrix σ2
rE, and f is independent with covariance matrix

F , the resulting ciphertext noise e′ has covariance matrix σ2
rE + F = λIn, so is a spherical

Gaussian of variance λ (all over the randomness of r, r0, and f).
On its own, a′ = ⟨r, a⟩ − r0 would be computationally indistinguishable from uniform

even given a under Decisional RLWE.7 However, this is insufficient, because it might be
noticeably correlated with e′; we need to analyze the joint distribution of (a′, e′).

5The public key still uses discrete noise, like in the rest of the paper, and it does not need to be
Gaussian.

6For example, sample from N n
σ and multiply by the matrix square root

√
F.

7If m > 1 we could instead assume Module LWE, but Ring LWE suffices.
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We can write e = e1 + e2 where e1 has covariance αE and e2 has covariance F − αE.

(a′, e′) = (⟨r, a⟩ − r0, ⟨[r0|r], [s|e]⟩+ e1 + e2)

e1 has covariance αE, and ⟨r, e⟩ has covariance σ2
rE; we can combine:

= (⟨r, a⟩ − r0, ⟨[r0|r] + y, e⟩+ e2)

where y is a spherical Gaussian with variance α.
The rest is similar to the proof of Theorem 2 for the plain case. We apply Lemma 4

to argue that the joint distribution of ([r|r0], [r|r0] + y) is the same as (r′, y′) where y′
is a zero-centered Gaussian and r′ is a discrete Gaussian whose center depends on y′.
As long as α and σr aren’t too small, the distribution of r′ is wide enough to argue
that a′ is computationally uniform under a ring version of Fixed-Matrix Shifted LWE
(Lemma 10), which essentially says that RLWE remains hard if the secrets and error come
from discrete Gaussians that aren’t centered at zero. This makes a′ and e′ computationally
indistinguishable from independent samples, completing the proof.

6 Example concrete parameters
We now present some example concrete parameters for the threshold version of the LP11-
like scheme from Section 5.1, showing that simulation-secure Threshold PKE is possible
with parameters roughly similar to those of FrodoKEM[NAB+20].

Frodo-640 targets NIST Level 1, “matching or exceeding the brute-force security of
AES-128.” It uses LWE secret dimension n = 640 and ciphertext modulus q = 32768. The
plaintext modulus is 4 — Frodo encodes a 128-bit message as an 8-by-8 matrix of 2-bit
values.

For our comparison we will use plaintext modulus 4 as well. Our construction from
Section 5.1 encrypts individual scalars rather than 8-by-8 matrices; adapting the construc-
tion to matrices we believe should be straightforward but we leave it for future work. Our
example parameters are not highly optimized and are for rough comparison only.

First we set n, q, and σdLW E . For the 128-bit security level, we set n = 640 (to match
Frodo-640) and q = 65537 (twice the modulus of Frodo-640) and σdLW E = 5 (giving
standard deviation ≈ 1.99, somewhat smaller than Frodo-640’s standard deviation of 2.8,
although Frodo’s noise is not exactly Gaussian). According to Albrecht, Player, and Scott’s
Lattice Estimator[APS15]8, the estimated complexity of attacking small-secret LWE with
these parameters is roughly 2141.4 operations. Applying Lemma 5 with c = 0.509, we get
that

√
∥s∥2 + ∥epk∥2 is less than 91.053 with probability at least 1−2−128. In particular, if

we assume we lose 2 lg(91.053) ≈ 13.02 bits of security in the reduction from Known-Norm
LWE to LWE, then the complexity of attacking the public key is still at least 2128.3. So
σdLW E = 5 is sufficient for the 128-bit security level.

By Lemma 1, for ϵ = 2−128, we have ηϵ(Z2n) ≤ 5.545. We set σe = 2 max(ηϵ(Z2n),
σdLW E) ≈ 11.09, and we set σpk = σdLW E = 5. With these parameters, and using the fact
that

√
∥s∥2 + ∥epk∥2 < 91.053 with overwhelming probability, we have

σct <
√

91.053 · 2σe ≈ 1428.

Now we verify that decryption will be correct (for 2-bit messages) with these parameters.
For threshold decryption with T parties, the noise during reconstruction will have width
σd =

√
σ2

ct + 2Tσ2
dLW E <

√
14282 + 50T . To successfully decrypt 2-bit messages, we need

the size of the noise to be less than 65536/8 = 8192 with high probability.

Pr
x←Nσd

[|x| > 8192] = Pr
x←N1

[|x| > 8192/σd].

8https://github.com/malb/lattice-estimator, commit 374f0733

https://github.com/malb/lattice-estimator
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We can compute numerically that this decryption failure probability will be less than 2−128

as long as σd < 1566. This means these parameters will support as many as T = 8263
parties.

We remark that while Frodo-640 ostensibly targets 2128 security, its parameters are
chosen to withstand quantum attacks and include a large security margin — the Lattice
Estimator estimates 2163 operations to break Frodo-640. Still, this rough comparison to a
highly optimized scheme like FrodoKEM shows that our technique allows Threshold PKE
for large numbers of parties with concrete parameters of practical size.
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A Appendix

A.1 Regev-like PKE

A.1.1 Preliminaries: Min-Entropy and the Leftover Hash Lemma

Definition 13 (Min-entropy). The min-entropy of a discrete distribution P is defined as

H∞(P ) = log min
x∈Supp(P )

1
P (x)

The following lemma shows that the min-entropy of a discrete Gaussian distribution
over a lattice is minimized when the Gaussian is centered around the origin. Notice
that this statement is different from the well known fact (usually proved using Poisson
summation formula) that the Gaussian sum ρc,s(L) is maximized when c = 0 because
both the numerator and denominator of DL,c,s(x) = ρc,s(x)/ρc,s(L) depend on c.

Lemma 11. The min-entropy of a discrete Gaussian over a lattice L is lowest when
centered at the origin. That is, for all s > 0 and c ∈ Rn, we have

H∞(DL,c,s) ≥ H∞(DL,0,s).

For simplicity, we prove the statement only for L = Zn, as this is all that we need in
this paper.

Proof. Since Zn has an orthogonal basis, we have DZn,c,s(x) =
∏n

i=1DZ,ci,s(xi), and it
suffices to prove the lemma for n = 1. Without loss of generality assume c ∈ [− 1

2 , 1
2 ], so

that DZ,c,s(x) is maximized at x = 0, and the min-entropy H∞(DZ,c,s) is log(1/DZ,c,s(0)).
We wish to show that (for fixed s) 1/DZ,c,s(0) is minimized at c = 0.

1
DZ,c,s(0) = ρc,s(Z)

ρc,s(0) =
∑

x∈Z e−π(x−c)2/s2

e−πc2/s2

=
∑
x∈Z

e(−π/s2)((x−c)2−c2)

=
∑
x∈Z

e(−π/s2)(x2−2xc)

https://doi.org/10.22667/JOWUA.2013.12.31.093
https://doi.org/10.22667/JOWUA.2013.12.31.093
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36
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Merging the summands for +x and −x,

= 1 +
∞∑

x=1
(e(−π/s2)(x2−2xc) + e(−π/s2)(x2+2xc))

= 1 +
∞∑

x=1
e(−π/s2)x2

(
e2πxc/s2

+ e−2πxc/s2
)

= 1 +
∞∑

x=1
e(−π/s2)x2

(
y + 1

y

)

where y = e2πxc/s2 . By symmetry/convexity, this quantity is minimized when y = 1, i.e.,
c = 0. Thus 1/DZ,c,s(0) is minimized at c = 0, and so is the min-entropy of DZ,c,s.

The proof can be generalized to arbitrary lattices as follows: without loss of generality,
rotate the lattice so that the optimal c is on the line through the origin and (1, 0, . . . , 0),
so that we can treat c as a scalar. Then take the derivative of 1/DL,c,s(0) with respect to
c to show that it is minimized at c = 0. We omit the details since L = Zn suffices for this
paper.

Lemma 12. Let s ≥ 3, and let c ∈ Rn be any vector. Then DZn,c,s has at least n bits of
min-entropy.

Proof. By Lemma 11 we can assume c = 0. In one dimension we can compute numerically
that ρ0,3(0)/ρ0,3(Z) < 1/2. So in n dimensions we have DZn,0,3(0) < 1/2n, and so DZn,0,3
has more than n bits of min-entropy.

We will use the following formulation of the Leftover Hash Lemma:

Lemma 13 ([BD20a, Lemma 2.1]). Let q be prime and let m, n be integers. Let r be a
random variable defined on Zm

q and let A←$ Zm×n
q be chosen uniformly at random. Then

∆((A, rT A), (A, Unif(Zn
q ))) ≤

√
qn · 2−H∞(r)

A.1.2 PKE Construction

The following PKE scheme, similar to the scheme of [Reg09], satisfies the properties needed
for Theorem 1, and so can be transformed into a simulation secure threshold PKE scheme.
Like in the original scheme, here the a vector of each ciphertext is statistically close to
uniform by the Leftover Hash Lemma. We add some additional noise to the b component
of the ciphertext to make the ciphertext noise distribution a continuous Gaussian. We also
reveal the ℓ2 norm of the error vector of the public key, so that the width of the ciphertext
noise can be publicly known.

Parameters: Let λ be the security parameter. Let q be a polynomially large prime. Let
n and σdLW E be such that LWE in dimension n with Gaussian noise of width σdLW E

is secure. (In theory, σdLW E is O(
√

n); in practice it is O(1).) Let σpk = σdLW E ,
and σr = σe =

√
2 ·max(3, ηϵ(Zn)) = Õ(1). Let m = n log q + λ.

KeyGen: Sample s←$ Zn
q , A←$ Zm×n

q , epk ← Dm
Zm,0,σpk

.

The public key is (A, bpk = As + epk, ∥epk∥).

Encpk(msg): Sample r← DZm,0,σr
, e′ ← Nσe·∥epk∥. Output (r⊤A, r⊤bpk + e′ + msg)

We now verify the conditions of Theorem 1, namely that the scheme has LWE-like
ciphertexts (Definition 7) and public error width (Definition 8).
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Theorem 4. The above construction has LWE-like ciphertexts with public error width.

Proof. For Condition 1 of Definition 7, the secret key is indeed a vector s. For Condition
2, the public key consists of LWE samples and ∥epk∥, so Decisional LWE when the public
key is known is just Known-Norm LWE with uniform secrets, which is as hard as standard
LWE (up to a polynomial factor in the advantage). For Condition 3, we will now show
that the output distribution of Enc is statistically close to (the message plus) a fresh
LWE sample with continuous Gaussian noise of width σct = σe

√
2∥epk∥. (Note that this

width can be computed from the public key, so the scheme has public error width.) For
simplicity we show it only a single ciphertext, but the proof extends to polynomially many
ciphertexts by applying the Leftover Hash Lemma to each ciphertext separately.

{Enc(msg)} = {r← DZm,0,σr ; e′ ← Nσe·∥epk∥ : (rT A, rT (As + epk) + e′ + msg)}
= {r← DZm,0,σr

; e← Nm
0,σe

: (rT A, rT As + ⟨r, epk⟩+ ⟨e, epk⟩+ msg)}
= {r← DZm,0,σr

; e← Nm
0,σe

: (rT A, rT As + ⟨r + e, epk⟩+ msg)}

We apply Corollary 1:

≈s {t← Nm
0,
√

2σe
; r′ ← DZm,t/2,σe/

√
2 : (r′T A, r′T As + ⟨t, epk⟩+ msg)}

By Lemma 12, r′ has at least m bits of min-entropy; by the Leftover Hash Lemma
(Lemma 13) the statistical distance between (A, r′T A) and (A, Unif(Zn

q )) is no more than
2−λ.

{Enc(msg)} ≈s {a′ ←$ Zn
q ; t← Nm

0,
√

2σe
: (a′, ⟨a′, s⟩+ ⟨t, epk⟩+ msg)}

= {a′ ←$ Zn
q ; ẽ← N0,

√
2σe·∥epk∥ : (a′, ⟨a′, s⟩+ ẽ + msg)}.

So the output of encryption is statistically close to an LWE sample (plus the message)
where the noise is a continuous Gaussian with width σct = σe ·

√
2∥epk∥.

Theorem 5. For the above scheme, σct >
√

2σdLW E. Furthermore, for any polynomially
large T , polynomially large q is sufficient to allow correct decryption of ciphertexts with
noise of width

√
σ2

ct + 2Tσ2
dLW E.

Proof. Since σe > σdLW E , and σct =
√

2σe∥epk∥, we have σct ≥
√

2σdLW E as desired.
Since epk comes from DZm,0,σdLW E

, by Corollary 2 we have that ∥epk∥ < 0.8
√

mσdLW E

with overwhelming probability. Now σct = σe

√
2∥epk∥ ∈ Õ(

√
nσdLW E). Since σdLW E , n,

and T are all polynomially large, so is σ2
ct + 2Tσ2

dLW E , and a polynomially large modulus
suffices to allow decryption to succeed with overwhelming probability.

A.2 Proof of Lemma 8
First we will need the following lemma:

Lemma 14. For all A ∈ Zm×n
q and s ∈ Zn

q , the following two distributions are identical:{
e1 ← Nm

σ1
; e2 ← Nm

σ2
: (A, As + e1, As + e2)

}
and {

e← Nm
σb

; e′ ← Nm
1 ; b← As + e : (A, b + σ3e′, b− σ4e′)

}
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where

σb = σ1σ2√
σ2

1 + σ2
2

= 1√
σ−2

1 + σ−2
2

σ3 = σ2
1√

σ2
1 + σ2

2

σ4 = σ2
2√

σ2
1 + σ2

2

Proof. It suffices to show that the joint distribution D1 of (e1, e2) is identical to the
joint distribution D2 of (e + σ3e′, e − σ4e′). Since these are all linear transformations
of continuous Gaussians, the distributions are completely specified by their covariance
matrices.

The covariance matrix of D1 is (
σ2

1
σ2

2

)
.

For D2, we start with (e, e′) which has covariance matrix(
σ2

b

1

)
and then apply the transformation

T =
(

1 σ3
1 −σ4

)
.

The resulting covariance matrix of D2 is

T

(
σ2

b

1

)
T⊤ =

(
σ2

b + σ2
3 σ2

b − σ3σ4
σ2

b − σ3σ4 σ2
b + σ2

4

)
=

(
σ2

1 0
0 σ2

2

)
which is the same as the covariance matrix of D1. So the two distributions are identical.

With this lemma, we show hardness of Reused-A LWE.

Proof of Lemma 8. To reduce LWE to Reused-A LWE, we take an LWE instance (A, b =
As + e) where e is continuous Gaussian with width σb = 1√

σ−2
1 +σ−2

2
. We sample e′ ← Nm

1

ourselves and compute (A, b + σ3e′, b−σ4e′), with σ3 and σ4 defined as in Lemma 14. By
the lemma, this is distributed exactly as a Reused-A LWE sample with noise parameters
σ1 and σ2, with the same secret as our input LWE instance. This gives a reduction from
search LWE to search Reused-A LWE.

For the decision version, by Lemma 14 the Reused-A LWE distribution is identical to
(A, b + σ3e′, b− σ4e′), where e′ ← Nm

1 and (A, b) are an LWE instance with noise width
σb = 1√

σ−2
1 +σ−2

2
. But (A, b) look uniform by decision LWE. Letting b′ = b + σ3e′ (which

also looks uniform), our distribution is (A, b′, b′ − (σ3 + σ4)e′), and σ3 + σ4 =
√

σ2
1 + σ2

2 ,
completing the proof.

A.3 Simulation Security vs. Threshold IND-CPA-D
Lemma 15. Threshold IND-CPA-D security does not imply simulation security.

Proof. Let (KeyGen, Enc, Dec, Rec) be a Threshold IND-CPA-D secure scheme. Modify the
scheme as follows:
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• Generate a signing keypair for each party, including each signing key as part of the
corresponding party’s secret key ski, and including all the verification keys in the
public key pk.

• Modify Dec so that Decski
(ct) also outputs a signature of ct under party i’s signing

key. (Rec is unmodified and simply ignores the signatures.)

Clearly these modifications do not affect the Threshold IND-CPA-D security of the scheme.
But real decryption shares will include valid signatures of the ciphertext, which cannot
be simulated without breaking the security of the signature scheme, and so this modified
scheme is not simulation secure.

B Extending [MM11]’s search-to-decision reduction to
Known-Norm LWE

Micciancio and Mol[MM11] give a sample-preserving search-to-decision reduction for LWE
with uniform secrets, assuming the parameters satisfy some conditions. We extend the
results of [MM11] in two ways.

First, we observe that their reduction works not only when the LWE error vector
e ∈ Zm

q is sampled from χm for some one-dimensional error distribution χ, but also when e
comes from an arbitrary m-dimensional distribution X over Zm

q . In particular, we can let
X be χm conditioned on having norm d (for any d), giving a search-to-decision reduction
for “Uniform-Secret Known-Norm LWE conditioned on the norm being d”.

Next we give a search-to-decision reduction for LWE where secret and error vectors
[s|e] come from an arbitrary (m + n)-dimensional distribution Y over Zm+n

q , provided
the distribution Y is invariant under permutations. In particular, we can let Y be χm+n

conditioned on having norm d (for any d), giving a search-to-decision reduction for “Small-
Secret Known-Norm LWE conditioned on the norm being d”.

When the number of possible norms d is polynomially large, we immediately get search-
to-decision reductions for both the small-secret and uniform-secret versions of Known
Norm LWE.

We recall the following notations and theorems from [MM11]:

Definition 14 (knapsacks). For any group G and input distribution X over Zm, the
knapsack family K(G,X ) is the function family with input distribution X and set of
functions fg : [X ]→ G indexed by g ∈ Gm and defined as fg(x) = g · x ∈ G.

Definition 15 ([MM11]). For a function family and input distribution (F,X ), define

F(F,X ) =
{

f ←$ F, x← X : (f, f(x))
}

The core of [MM11] is a search-to-decision reduction for knapsacks:

Lemma 16 ([MM11, Lemma 4.2]). Let G be a finite abelian group. Let p be the smallest
prime factor of |G| and X be such that [X ] ⊆ [s]m where s = poly(n) such that s ≤ p. If
K(G,X ) is one-way, then it is also pseudorandom.

The LWE search-to-decision reduction combines the knapsack search-to-decision reduc-
tion of Lemma 16 with a reduction from search LWE to knapsack search, and a reduction
from knapsack decision to decision LWE. (Note that [MM11] uses uniform secrets for
LWE.)

Lemma 17 ([MM11, Lemma 4.8]). For any n, m ≥ n + ω(log n), q, and χ, there is a
polynomial time reduction from the problem of inverting LWE(n, m, q, χ) with probability
ϵ, to the problem of inverting K(Zm−n

q , χm) with probability ϵ′ = ϵ + negl(n).
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Lemma 18 ([MM11, Lemma 4.9]). For any n, m ≥ n + ω(log n), q, and χ, there is
a polynomial time reduction from the problem of distinguishing F(K(Zm−n

q , χm)) from
uniform with advantage ϵ to the problem of distinguishing F(LWE(n, m, q, χ)) from uniform
with advantage ϵ′ = ϵ + negl(n).

By invoking Lemma 16 with G = Zm−n
q and X = χm, and combining with Lemma 17

and Lemma 18, [MM11] arrives at the following result:

Lemma 19 ([MM11, Proposition 4.10(ii)]). Let q = poly(n) be prime and let χ be
any distribution over Zq. If there exists an algorithm for decision LWEn,m,q,χ that has
noticeable advantage, then there exists an efficient algorithm that solves search LWEn,m,q,χ

with noticeable success probability.

We will use the fact that [MM11]’s reductions between LWE and knapsacks map the
error vector of the LWE instance to the solution vector of the knapsack instance and
vice-versa:

Claim. The reduction of Lemma 17, on input an LWE instance (A, As + e), outputs a
knapsack instance with solution vector e. In particular, for any m-dimensional distribution
X over Zm

q , Lemma 17 reduces search LWE(n, m, q,X ) to search K(Zm−n
q ,X ).

Proof. On input LWE instance (A, b = As + e), the reduction computes a parity-check
matrix H for A and outputs knapsack instance (H, Hb = HAs + He = He), which has
solution e. We refer to [MM11] for full details.

Claim. The reduction of Lemma 18, on input a knapsack instance (G, c = Ge), outputs
an LWE instance with error vector e. In particular, for any m-dimensional distribution X
over Zm

q , Lemma 18 reduces decision K(Zm−n
q ,X ) to decision LWE(n, m, q,X ).

Proof. On input (G, c), the reduction computes a random matrix A whose columns
generate the nullspace of G, computes an arbitrary vector r such that Gr ≡ c (mod q),
picks uniform s′ ←$ Zn

q , and outputs (A, As′ + r). If the input was a knapsack instance
c = Ge, then the output will be (A, As + e) for some unknown s, and so the LWE error
vector is exactly the knapsack solution e. We again refer to [MM11] for full details.

Thus when q is a polynomially large prime, Lemma 19 applies to LWE where the error
vector is distributed as any X over Zm

q , and not just when the error vector is distributed
as χm for some χ.

Theorem 6. Let q = poly(n) be a polynomially large prime, and let X be an arbitrary
distribution over Zm

q . If there exists an algorithm for decision LWEn,m,q,X that has
noticeable advantage, then there exists an efficient algorithm that solves search LWEn,m,q,X
with noticeable success probability.

Proof. Combine the reductions of Lemma 17 and Lemma 18 with Lemma 16.

B.1 Small Secrets
We now give alternatives of Lemma 17 and Lemma 18 that can be applied to LWE with
small secrets, rather than uniform secrets. Whereas in the uniform-secret case the knapsack
solution vector was the LWE error e exactly, here the knapsack solution vector corresponds
to the LWE secret and error [s | e], but with the elements of this vector randomly permuted.

We start by defining a generalization of small-secret LWE:

Definition 16. Let Y be a distribution over Zn+m
q . The ssLWE(n, m, q,Y) distribution is{

[s | e]← Y; A←$ Zm×n
q : (A, As + e)

}
.



Daniele Micciancio, Adam Suhl 29

The search ssLWE problem is to recover s (or equivalently, [s | e]) from such a sample.
The decision ssLWE problem is to distinguish a sample from the ssLWE distribution from
uniform.

The usual small-secret LWE with one-dimensional error distribution χ is obtained by
letting Y = χn+m.

Definition 17. Let Y be a distribution over Zn+m
q . We say that Y is invariant under

permutations if, for all v ∈ Zm+n
q and all permutation matrices P ∈ Z(m+n)×(m+n)

q , Y
assigns the same probability to v as to Pv.

Lemma 20. For any n, m, and q, and for any distribution Y over Zm+n
q that is invariant

under permutations, there is a polynomial time reduction from the problem of inverting
ssLWE(n, m, q,Y) with probability ϵ, to the problem of inverting K(Zm

q ,Y) with probability
ϵ′ = ϵ + negl(n).

Furthermore, on input small-secret LWE instance (A, As + e), the reduction outputs
a knapsack instance with solution vector t = P[s | e] for some (n + m)-dimensional
permutation matrix P.

Proof. Let the input LWE instance be (A, b = As + e mod q). Let B0 = U [A|Im] ∈
Zm×(m+n)

q , where U is a random invertible m-by-m matrix. Let t0 = [s|e]. Observe that
(B0, Ub) is a knapsack instance with solution vector t0, because B0t0 = U(As + e) = Ub.

Permute the columns of B0 and the elements of t0: let B = B0P⊤ and t = Pt0, where
P is a random (m + n)-by-(m + n) permutation matrix; observe that Bt = B0t0. The
output knapsack instance is (B, Ub), which has solution vector t, and t is a permutation
of [s | e] as desired.

Finally, we show the output knapsack instance follows the correct distribution: B must
be (statistically close to) uniform in Zm×(m+n)

q , and t must follow Y . [s | e] ∼ Y, and t is
a permutation of [s | e]. Since Y is invariant under permutation, the distribution of t is
also Y, as desired.

Since A is uniformly distributed, B0 is a uniformly distributed m-by-(m + n) matrix
conditioned on its last m columns forming an invertible matrix. Then B is uniformly
distributed conditioned on having any set of m columns that form an invertible matrix,
i.e., conditioned on being nonsingular. A random matrix in Zm×(m+n)

q is singular with
probability at most 1/pn−1 where p is the smallest prime factor of q.[MM11, proof of
Lemma 4.8] Thus the distribution of B is statistically close to the uniform distribution on
Zm×(m+n)

q .

Lemma 21. For any n, m ≥ n + ω(log n), q, and for any distribution Y over Zm+n
q that

is invariant under permutation, there is a polynomial time reduction from the problem of
distinguishing F(K(Zm

q ,Y)) from uniform with advantage ϵ to the problem of distinguishing
F(ssLWE(n, m, q,Y)) from uniform with advantage ϵ′ = ϵ + negl(n).

Furthermore, on input knapsack instance (G, c = Gt), the reduction outputs an LWE
instance (A, As + e) where [s | e] is some permutation of t.

Proof. Let the input be (G, c), where G is uniformly distributed in Zm×(m+n)
q , and c is

either uniform in Zm+n
q or is Gt for some t sampled from Y . We will output a pair (A, b)

where A is uniform in Zm×n
q and b is either uniform in Zm

q or is As + e for some [s|e]
distributed as χm+n.

As G is m-by-(m + n), with all but negligible probability, G has some set of m columns
that form an invertible matrix. Let P be a random permutation matrix such that the last
m columns of G′ = GP⊤ form an invertible matrix U.

Let [A | I] = U−1G′, noting that if G is uniformly distributed then so is A. Finally
let b = U−1c. The reduction outputs (A, b).
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If c is uniform, then clearly so is b, so the reduction maps uniform to uniform. Now
suppose instead c = Gt, with t distributed as Y . Let t′ = Pt; t′ also follows Y because Y
is invariant under permutations. Now

b = U−1c = U−1Gt = U−1G′t′ = [A | I] t′.

Letting [s | e] = t′, we have b = As + e with [s | e] ∼ Y, so the output is a random
instance of ssLWEn,m,q,Y with [s | e] a permutation of t as desired.

Theorem 7. Let q = poly(n) be a polynomially large prime. Let Y be an arbitrary
distribution over Zm+n

q that is invariant under permutations. If there exists an algorithm
for decision ssLWEn,m,q,Y that has noticeable advantage, then there exists an efficient
algorithm that solves search ssLWEn,m,q,Y with noticeable success probability.

Proof. Lemma 20 reduces search ssLWEn,m,q,Y to search K(Zm
q ,Y).

Lemma 16 reduces search K(Zm
q ,Y) to decision K(Zm

q ,Y).
Lemma 21 reduces decision K(Zm

q ,Y) to decision ssLWEn,m,q,Y .

B.2 Application to Known-Norm LWE
Finally, we prove a search-to-decision reduction for Known-Norm LWE, assuming q is a
polynomially large prime.

For all d, let Xd be χm conditioned on having norm d, and let ρ(d) = Pre←χm [∥e∥ = d].
Suppose D is a distinguisher for uniform-secret known-norm LWE with non-negligible

advantage ϵ. Let ϵd be D’s advantage conditioned on the norm being d. Then ϵ =
∑

d ρ(d)ϵd.
Since q is polynomially large and so there are only polynomially many possibilities for
d, there must be some d for which ρ(d)ϵd is non-negligible. Applying Theorem 6 with
X = Xd for this particular d gives an algorithm for search LWE conditioned on the norm
being d that succeeds with non-negligible probability. Since ρ(d) is non-negligible, this
gives an algorithm for search LWE with non-negligible success probability overall.

For small-secret Known-Norm LWE, we let Yd be χm+n conditioned on having norm d;
as this is permutation invariant, we can apply Theorem 7. The rest of the proof is as in
the uniform-secret case.
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