
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 4, 77 pages.

https://doi.org/10.62056/a3tx11zn4
Check for updates

Scalable Nonlinear Sequence Generation using
Composite Mersenne Product Registers

David Gordon , Arman Allahverdi , Simon Abrelat ,
Anna Hemingway, Adil Farooq , Isabella Smith, Nitya Arora,

Allen Ian Chang , Yongyu Qiang and Vincent John Mooney III

Georgia Institute of Technology, Atlanta, United States of America

Abstract. We introduce a novel composition method that combines linear feedback
registers into larger nonlinear structures and generalizes earlier methods such as
cascade connections. We prove a Chaining Period Theorem which provides the cycle
structure of these register constructions. We then use this Chaining Period Theorem
and a new construction we call a Product Register (PR) to introduce a flexible
and scalable register family with desirable properties, which we term Composite
Mersenne Product Registers (CMPRs). We provide an algorithm to estimate the
linear complexity of a chosen CMPR and investigate the statistical properties and
security of a CMPR-based pseudorandom generator. Finally, we propose a family of
CMPR-based stream ciphers and provide comparisons with the TRIVIUM stream
cipher in terms of hardware area and security.

Keywords: LFSR · Cascade Connection · Cycle Structure · CMPR · Nonlinear
Sequence Generation · Stream Cipher

1 Introduction

1.1 Background

There has been a long line of work focusing on the generation of binary sequences and
understanding feedback registers. Early work in the construction of feedback registers with
full period focused on de Bruijn sequences [dBru46] and LFSRs, with influential sources
such as [Gol82]. From these roots, a variety of approaches appeared, including filter and
combination generators [Rue86; Can05; Can11], cascade products [GD70; MST79], cycle
joining and cross-join pairs [Dub14; MG16], and single-cycle T-functions [KS04; ZW06],
among many others. Across these different approaches, there is often a common goal of
identifying methods for creating feedback registers with long period and complex nonlinear
updates, as these often yield useful components for lightweight cryptographic primitives.
For instance, one of the smallest (in terms of microchip area) unbroken stream cipher
proposals to date is TRIVIUM [De 06; DP08]. In summary, this field of inquiry is of both
theoretical and practical importance.

E-mail: dgordon48@gatech.edu (David Gordon), aallahverdi3@gatech.edu (Arman Allahverdi),
simon.abrelat@gatech.edu (Simon Abrelat), ahemingway6@gatech.edu (Anna Hemingway), afarooq32@
gatech.edu (Adil Farooq), ismith80@gatech.edu (Isabella Smith), narora70@gatech.edu (Nitya Arora),
allen.chang@gatech.edu (Allen Ian Chang), yqiang7@gatech.edu (Yongyu Qiang), mooney@gatech.edu
(Vincent John Mooney III)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-10-09 Accepted: 2024-12-03

https://doi.org/10.62056/a3tx11zn4
https://crossmark.crossref.org/dialog/?doi=10.62056/a3tx11zn4&domain=pdf&date_stamp=2025-01-08
https://orcid.org/0009-0005-2075-1965
https://orcid.org/0000-0002-9565-4757
https://orcid.org/0009-0007-9285-7712
https://orcid.org/0009-0003-2695-5788
https://orcid.org/0009-0005-5285-7860
https://orcid.org/0009-0001-6380-1089
https://orcid.org/0009-0006-9731-6563
mailto:dgordon48@gatech.edu
mailto:aallahverdi3@gatech.edu
mailto:simon.abrelat@gatech.edu
mailto:ahemingway6@gatech.edu
mailto:afarooq32@gatech.edu
mailto:afarooq32@gatech.edu
mailto:ismith80@gatech.edu
mailto:narora70@gatech.edu
mailto:allen.chang@gatech.edu
mailto:yqiang7@gatech.edu
mailto:mooney@gatech.edu
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

1.2 Contributions
• We generalize older results for analyzing cycle structure and introduce a more general

method of composition for register structures similar to cascades, filter generators,
or combination generators, i.e., prior methods that were used to explore enhancing
the strength of LFSRs.

• We introduce a new more general method called chaining, introduce our Chaining
Period Theorem which proves the exponential period of registers produced via
chaining, and show its application to a couple of different existing classes of register
families.

• We then introduce a new class of registers with nonlinear state sequences based on
chaining and prove some important and desirable properties. These properties include
an exponential expected value of the register period and high linear complexity. We
name this new class Composite Mersenne Product Registers.

• In the course of this analysis, we introduce a new algorithm to determine the linear
complexity of our new chaining construct.

• We perform statistical analysis and cryptanalysis on a CMPR-based PRNG, indicating
potential use for chaining-based structures in cryptographic applications.

• We design a family of CMPR-based stream ciphers, discuss the design rationale
behind CMPR-based stream cipher design, and perform a hardware implementation
comparison with the TRIVIUM stream cipher.

1.3 Organization
Section 2 covers mathematical notation and preliminaries. Section 3 states and proves
the Chaining Period Theorem, the main theorem about chaining. Section 4 introduces
a new family of registers based on the concept of chaining and proves results about the
period of any register from this new family. Section 5 discusses an approach to linear
complexity analysis and presents an algorithm for estimating linear complexity for our
proposed family. Section 6 presents an application in the form of a PRNG, along with
statistical analysis and cryptanalysis, indicating potential usefulness in cryptography.
Also presented are (i) a cube attack that may have success with generic chaining but is
prevented by appropriately restricting the chaining function and (ii) a key-independent
distinguisher that can distinguish the output of a non-permuted CMPR from truly random
bitstream (but is prevented by swapping the high and low order bits half way through
the rounds, thus permuting the internal state of the CMPR). Section 7 covers the design
and implementation of a family of CMPR-based stream ciphers, along with a hardware
implementation comparison to TRIVIUM, a lightweight, hardware-oriented stream cipher.
We end the paper with a discussion in Section 8 and conclusion in Section 9.

2 Preliminaries
2.1 Mathematical Notation
This paper utilizes a mathematical background consisting mostly of linear and abstract
algebra, with some elements from control theory, and we attempt to make our notation as
standard to those fields as possible. We denote the finite field with p elements as Fp, where
p is a prime number. We denote by Fpn the extension field of Fp which has a cardinality
of pn, and we represent its elements as an n-tuple of the elements of Fp. For a field F, we
denote the additive and multiplicative groups as F+ and F×, respectively. F[x] denotes

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 3

the ring of polynomials with coefficients in the field F. Given a particular element α ∈ F,
the subgroup α generates is denoted as ⟨α⟩ = {α, α2, α3, . . . }. A degree n polynomial P
in Fp[x] is primitive when it is an irreducible polynomial such that ⟨α⟩ = F×

pn for some
root α ∈ Fpn of P . The notation ⊕ and × will be used to denote field operations, while +
will signify arithmetic addition. We may also omit the symbol for multiplication when the
usage is unambiguous. For a group G, we denote the identity element as 1G. Additionally,
we denote that p divides n with p | n. We will also use the vertical bar in set-builder
notation of the form {2n | n ∈ Z}, but the usage should be clear from context.

Note that the notation for the extension field Fpn is distinct from the notation Fn
p

which represents the n-dimensional vector space over Fp. GL(n, p) represents the general
linear group of order n over Fp, which contains all invertible n× n matrices with entries
in Fp [Rot95, p. 13]. GA(n, p) denotes the general affine group of order n over Fp which
contains all affine functions of the form f(x) = Mx+ b, with M ∈ GL(n, p) and b ∈ F+

p .

2.2 Registers, Feedback, Cycles and Systems
In this section, we will discuss a variety of historical constructions and some of their
properties. Because we are giving an overview, we will start with more general definitions
and then narrow down to more specific types. We will also approach this topic from a
more mathematical perspective, with less of a focus on implementation details.

Definition 1 (System). In this paper, we use the word system as a shorthand for a
discrete-time finite-state dynamical system. Formally, we define this to be a pair (S, f),
where S is a finite set of states for the system and f : S → S is a function which describes
how the system evolves at each time step. If f is bijective, we may refer to either f , or the
system as a whole, as nonsingular.

For a system S, we denote by S[t] the state of the system at time t, with the initial
state of the system being at t = 0. {S[t]} denotes the sequence of states that the system
goes through according to an update function f .

Definition 2 (Cycle Structure). For a nonsingular system (S, f), f partitions S into
cycles; we say that s1, s2 ∈ S are in the same cycle if fk(s1) = s2 for some k ∈ N. We
define the cycle structure of this system as the list of the sizes of the cycles produced,
counted with multiplicity.

Definition 3 (Period). The period of a system S is the minimum value p such that
S[t+ p] = S[t] for all t, given that the system S starts within the sequence defined by the
p states with the specified period. Note that for a nonsingular system, S, the period of the
system when started in state S[0] = s ∈ S is equal to the size of the cycle which contains s.

Definition 4 (Decimation). A k-decimation of the state sequence {S[t] | t ≥ 0} is the
sequence {S[kt] | t ≥ 0}. When k is unknown, we will refer to this as a decimation.
Notably, if the period of the system is p, then the k-decimation will create gcd(k, p) cycles
of length p / gcd(k, p).

In practice, for systems implemented in hardware or software, the set of states usually
corresponds to the states of a register and the update function to some combinational
feedback logic.

Definition 5 (Feedback Register). An n-bit feedback register (FR) is a register A
such that on each clock cycle, the state is updated according to some fixed function
f : {0, 1}n → {0, 1}n:

A[t+ 1] = f(A[t])
This is a system with states S = {0, 1}n and update function f . We will refer to the
update of the ith bit of the register as fi.

4 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

For a register, we refer to the value of an individual bit at time t using a lowercase
letter with a subscript. For instance, the value of the ith bit of register A at time t would
be ai[t]. The state of an n-bit register at any given point in time, A[t], is defined as the
entire sequence of values held in the bits an−1[t] . . . a1[t]a0[t]. There are natural ways to
associate this register state with several different algebraic objects. An n-bit binary state
A[t] can easily be identified with a vector in Fn

2 or with a polynomial in F2[x] of degree
n− 1 or less. One way to do this is for each bit ai[t] to correspond to the coefficient of xi

in the polynomial. For example, the state A[t] = 101001 could correspond to polynomial
x5 + x3 + 1. Because F2n ∼= F2[x]/P (x) for any primitive polynomial P (x) of degree n,
A[t] can also be identified with an element of F2n if a primitive polynomial is chosen. It is
useful to be able to take any of these views, depending on which lens is most convenient
for a particular analysis, and we will swap between them freely.

Definition 6 (Linear Feedback Register). A Linear Feedback Register is a feedback
register, for which the update function f is linear, in the sense that it satisfies

f(a⊕ b) = f(a)⊕ f(b) for any a, b ∈ Fn
2

Notably, the feedback function for a linear feedback register can be implemented using
only XOR gates. Additionally, the feedback of any nonsingular linear feedback register
can also be represented by a matrix U ∈ GL(n, 2).

Definition 7 (Feedback Shift Register). A feedback shift register (FSR) is a feedback
register A such that for each i ∈ {1, . . . , n− 1} the output of each bit ai is connected to
the input of the next bit ai−1 either directly or through an XOR gate.

Definition 8 (Linear Feedback Shift Register). A Linear Feedback Shift Register (LFSR)
is a register that is both a feedback shift register and a linear feedback register.

There are two main LFSR styles. In the Fibonacci or “external-XOR” configura-
tion [Abr94, p. 434], ai[t+ 1] = ai+1[t] for all i ∈ {0, . . . , n− 2}, while the most significant
bit updates according to some XOR of bits in the state. This means only one new bit
is generated per clock cycle while the remaining bits shift. Because only one new bit
is generated on each clock cycle, the update functions are typically described as being
Fn

2 → F2 instead of Fn
2 → Fn

2 . In the Galois or “internal-XOR” configuration [Abr94,
p. 434], a0[t] is XORed with the feed-in to one or more bits in the state. There are
sometimes implementation advantages to using a register in one configuration (e.g., Galois)
over the other (e.g., Fibonacci). There is also a connection between the two configurations:
for any LFSR A in one configuration which generates sequence {a0[t]}, there is a dual
LFSR B in the opposite configuration which generates the same output sequences {b0[t]}.
A technicality worth noting is that the full states A[t] and B[t] need not be equal, just the
least significant bits {a0[t]} and {b0[t]}.

Often LFSRs are designed using primitive polynomials over F2 to determine which bits
are XORed in the feedback function. For an n-bit LFSR, this implies a period of 2n − 1;
such an LFSR is called full period. Figure 1 shows a full period 3-bit LFSR in both the
Fibonacci and Galois configurations.

(a) Fibonacci Configuration (b) Galois Configuration

Figure 1: LFSR in Both the Fibonacci and Galois Configuration.

LFSRs are often used in applications where security is not a concern or as parts of
more complicated cryptographic functions [SM08; AHMN12]. The values are taken from

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 5

the least significant bit of an LFSR as it cycles form a sequence with good statistical
properties. However, the linearity of LFSRs also leads to cryptographic vulnerabilities.

Definition 9 (Nonlinear Feedback Shift Register). A Nonlinear Feedback Shift Register
(NLFSR) is an FSR, for which the update function f is nonlinear.

Most research on NLFSRs has used the Fibonacci configuration, although there has
been some work on converting existing Fibonacci NLFSRs to Galois-like configurations
[Dub09]. In general, the properties and guarantees of NLFSRs are much harder to analyze,
and finding constructions of NLFSRs with large periods is nontrivial.

2.3 De Bruijn Sequences
Definition 10 (De Bruijn Sequence). A de Bruijn sequence of order n over an alphabet A
is a sequence with period |A|n, such that every n-tuple of letters from A appears exactly
once in each period of the sequence [dBru46].

In this paper, we are only concerned with binary de Bruijn sequences. These are the de
Bruijn sequences over {0, 1} where n bits have period 2n. These de Bruijn sequences are
linked to Fibonacci-style shift registers; for example, an NLFSR with n bits and period 2n

outputs a de Bruijn sequence.

Definition 11 (Cascade Connection). A cascade connection is a method for combining
two Fibonacci-style feedback registers in which the output of the first register is XORed
with the feedback which determines the new bit for the second Fibonacci-style feedback
register.

Definition 12 (Cascade Product). Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} be
two Fibonacci-style feedback functions. The cascade product of f and g is defined to be
the function

(g ∗ f)(x1, . . . , xn+m−1) = g(f(x1, . . . , xn), f(x2, . . . , xn+1), . . . , f(xm, . . . , xn+m−1))

This gives the feedback function of a Fibonacci FSR which generates the equivalent output
as the cascade connection of f and g. This product is not commutative in general.

Due to the cascade product, in early papers such as [GD70], these constructions were
called product shift registers. This construction is distinct from the concept of a “product
register” later defined in this paper.

Property 1. Let A be an m-bit Fibonacci-style FSR with nonsingular feedback function
g, and let B be an n-bit Fibonacci-style LFSR with a feedback function f corresponding to
an irreducible characteristic polynomial. Denote the period of B as pf . Let R denote the
composite system formed via the cascade connection of A into B with feedback function
g ∗ f . Then the cycle structure of R can be determined as follows:

Let {a0[t]} be a cycle with period pa, generated by the least significant bit of A. Then,

• if pf | pa then the corresponding cycle is of length pa or 2pa.

• if pf ∤ pa then there are 2n − 1 cycles of length lcm(pf , pa), and one cycle of length
pa.

Additionally, Mykkeltveit et al. give a criterion to distinguish between cases with period
pa versus 2pa [MST79, Theorem 3.15].

This property of cascades makes them useful to work with for extending existing
constructions. As a modern example of this, [MG16] and [CGW20] both involve the use of
the cascade product to extend existing NLFSRs. Theorem 1, the main theorem of this
paper which is introduced in Section 3, will generalize Property 1.

6 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

2.4 T-Functions
Definition 13 (T-Function). An n-bit T-Function is a function f : {0, 1}n → {0, 1}n in
which the ith output depends only on the input bits with indices ≤ i [KS04].

Many common word-oriented operations (e.g., integer addition and multiplication mod
a power of 2, as well as many Boolean operations) fall into this category of functions.
Because of this, T-functions are usually utilized in software-focused environments that
already have fast implementations of these operations. Thus, they are not usually considered
in the same context as FSRs. However, they can be represented in a feedback register and
thus form an interesting point of comparison in the context of this paper.

Property 2. Let fn be an n-bit invertible T-function, and let fn−1 : {0, 1}n−1 → {0, 1}n−1

be the invertible T-function formed by the first n− 1 bits of fn. Then for each cycle under
fn−1 of length p, there are either two cycles of length p or one cycle of length 2p under fn

[KS04, Lemma 3].

Note the similarity of this property to the first case of Property 1. However, Property 2
cannot be proved directly from Property 1 because of the structural differences between
T-functions and Fibonacci LFSRs.

Property 3. Let f : {0, 1}n → {0, 1}n be an invertible T-function. Then f has a single
cycle if and only its Algebraic Normal Form (ANF) has the form

f0(x0) = x0 ⊕ 1 fk(x0, . . . , xk) = xk ⊕
k−1∏
i=0

xi ⊕ ψ(x0, . . . , xk−1)

where ψ is any boolean function with algebraic degree less than k [ZW06].

Property 3 gives a nice criterion for creating large-period nonlinear systems. T-functions
form an extremely big class of large-period nonlinear structures and are interesting
components from a theoretical point of view, although they have cryptographic weaknesses
and some disadvantages for hardware implementation.

2.5 TRIVIUM
TRIVIUM is a lightweight, hardware-oriented synchronous stream cipher whose design
was motivated by the exploration of the tradeoff between design simplification and cryp-
tographic security [De 06; DP08]. Moreover, TRIVIUM is a shift-register-based stream
cipher, with a 288-bit NLFSR at the heart of its design. While its use is discouraged in
sensitive applications, TRIVIUM has yet to be fully compromised by cryptanalytic attacks.
However, variants of TRIVIUM with lowered security parameters have been successfully
attacked [LH24].

3 Chaining Period Theorem
3.1 Chaining
Cascade constructions and invertible T-functions are similar in that there is a one-directional
manner in which some components affect other components. Cascade constructions connect
Fibonacci FSRs using only 1-bit linear connections. T-functions, on the other hand, have
much more complicated connections in which the update of each bit may depend on
nonlinear functions with multiple inputs. However, each of these functions only affects one
bit, and thus the components themselves are simpler. We introduce the following concept
to capture both notions and generalize the idea of a one-directional dependence on another
system.

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 7

Definition 14 (Chaining Function). Let A be a deterministic system with states A[t] ∈
S. Let B be an n-bit feedback register that updates linearly according to the matrix
U ∈ GL(n, 2). The chaining function C : S → Fn

2 describes a connection that allows A to
change B via the following altered update equation:

B[t+ 1] = (UB[t])⊕ C(A[t]) (1)

When connected by a chaining function, A and B can be considered as part of a larger
system with states in S × Fn

2 . Importantly, even if C is nonlinear, the altered update of
register B, Equation 1, is an affine function and thus can be represented by an element of
GA(2, n) acting on the state of B.

(a) System Created by Chaining

(b) Repeated Chaining

Figure 2: Abstract Diagram of Register Chaining

Figure 2a shows an abstracted diagram of chaining. The entire system created by
chaining a register can then be reused, with a new chaining function, as shown in Figure 2b.
There are a wide variety of constructions that are derivable from chaining together smaller
systems in this fashion; cascade connections and T-functions represent well-known special
cases of these. In this section, we will derive a result concerning the cycle structure of
registers that have been chained together. This result generalizes Properties 1, 2 and 3
from Subsections 2.3 and 2.4. We will start by building up linear algebra and group theory
necessary to state the result.

In what follows, when we refer to the characteristic polynomial of an invertible matrix,
we mean the polynomial formed by taking the determinant of the matrix whose diagonal
values are replaced by the original diagonal values minus a variable λ, and where the roots
of this characteristic polynomial (the values of λ at which the characteristic polynomial
evaluates to zero) correspond to the eigenvalues of the matrix [Leo09].

Lemma 1. Let U ∈ GL(n, 2) be an invertible n× n matrix over F2, whose characteristic
polynomial is irreducible. Then, for any k ∈ N, Uk fixes either only the zero vector or the
entire space Fn

2 .

Proof. First, since the characteristic polynomial of U is irreducible, U has no nontrivial
invariant subspaces (i.e., none other than {0} and Fn

2). Then let E(1, Uk) be the eigenspace

8 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

of Uk corresponding to eigenvalue λ = 1. Commuting operators preserve each other’s
eigenspaces, so E(1, Uk) is invariant under U and thus it can only be {0} or Fn

2 . Since
E(1, Uk) is precisely the subspace of vectors fixed by Uk, this proves the claim.

Definition 15 (Group Action). A (left) group action is a function that takes as input a
group G and a set X and has the following properties. Let 1G be the identity element of
G, then α : G×X → X is a (left) group action if

(i) α(1G, x) = x for every x ∈ X, and

(ii) α(g, α(h, x)) = α(gh, x) for every g, h ∈ G and x ∈ X.

Note 1. Since there are non-commutative groups, there are also right group actions. We
only use left group actions and will omit the word left. For brevity, we will use the notation
α(g, x) = g · x when α is clear from context, with the understanding that g ∈ G, x ∈ X.

To define Frobenius groups, we briefly restate the definitions of transitive and faithful
group actions. Transitive group actions are those for which for any two elements x, y ∈ X,
there exists some element g ∈ G where y = g · x [Rot95, p. 58]. Faithful group actions are
those in which for g · x = x for all x ∈ X only when g = 1G [Rot95, p. 248].

Definition 16 (Frobenius Group). A group G is a Frobenius group if G has a faithful
transitive group action on a set X with |X| > 1, where

(i) Stab(x) ̸= {1G} for all x ∈ X, and

(ii) Stab(x) ∩ Stab(y) = {1G} for all x, y ∈ X.

Here, Stab(x) = {g ∈ G | g · x = x} is the stabilizer subgroup of x ∈ X [Gro10, p. 171].

Lemma 2. Let U ∈ GL(n, 2) be an invertible n× n matrix over F2, whose characteristic
polynomial is irreducible. Let GU be the subgroup of GA(n, 2) containing functions of the
form g(x) = U ix + c for any i ∈ N and c ∈ Fn

2 . Then, with the operation of function
composition, GU forms a Frobenius group with a Frobenius group action on Fn

2 .

Proof. Let GU act on Fn
2 by g ·v = g(v). This action is transitive because for any v, w ∈ Fn

2 ,
we can take g(x) = x⊕ (v ⊕ w) ∈ GU , which satisfies

g · w = g(w) = w ⊕ v ⊕ w = v.

It is also faithful. Fix any g(x) = U ix⊕ c ̸= 1GU
. Then either c ̸= 0, or U i ≠ I. If c ̸= 0,

then U ic ̸= 0 since U is invertible, and thus g · c = U ic⊕ c ≠ c. In particular, this says that
g does not fix c. If instead c = 0, then U i ̸= I, and so U i does not fix any nonzero points
by Lemma 1. Thus, the only element that fixes all vectors is 1G, i.e., the action is faithful.

For property (i) of Definition 16, note that any particular v ∈ Fn
2 is fixed by the

non-identity element g = Ux ⊕ (Uv ⊕ v) ̸= 1GU
. Now we demonstrate property (ii) of

Definition 16. Let some group element g = U ix⊕ c stabilize two elements u, v ∈ Fn
2 , with

u ̸= v. Then

u⊕ v = (U iu⊕ c)⊕ (U iv ⊕ c) = U iu⊕ U iv = U i(u⊕ v)

since g · u = u and g · v = v. Note that u⊕ v ̸= 0 since u ̸= v, so U i fixes a nonzero vector.
Thus by Lemma 1, U i fixes all vectors, i.e., U i = I. But g(x) = U ix⊕ c = Ix⊕ c fixes u,
so we must have c = 0 since u = g · u = u⊕ c. Thus g = I must be the identity element of
the group. Since g was arbitrary, the intersection of any two distinct stabilizer subgroups
is only the identity. Thus this group is Frobenius, as claimed.

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 9

Property 4. Within a Frobenius group, G, there are two subgroups H and N such
that any element g ∈ G can be expressed as g = nh with n ∈ N,h ∈ H. H is called
the Frobenius complement which is a subgroup that fixes some element x ∈ X such that
H = Stab(x). N is called the Frobenius kernel, which is the subgroup N∗ ∪ {1G} where
N∗ is the set of elements in G that have no fixed points. The Frobenius kernel is normal
in G, and all Frobenius complements are in the same conjugacy class [Gro10, p. 180].
In the case of GU , the Frobenius kernel is formed by the set of functions N = {Ix⊕ c |
c ∈ Fn

2}, which is isomorphic to the additive group of F2n and to Zn
2 . The Frobenius

complement is formed by the function H = {U ix ⊕ 0 | i ∈ N} and is isomorphic to Zp

where p is the period of U . For any element of GU , g = (U i ⊕ c) = (x⊕ c) ◦ (U ix) = nh,
where n = (x⊕ c) ∈ N and h = (U ix) ∈ H, as claimed. For our purposes, the important
implication of this property is that for any U i which is not equal to the identity matrix,
U i ⊕ c is conjugate to U i.

Consider the update of an n-bit register by U , with influence from a chaining function,
as described by Equation 1. Regardless of the value output by the chaining function,
any update of this form is an element of GU , which in turn is a subgroup of GA(n, 2).
Thus, the behavior of the register can be modeled by a group action of GU on Fn

2 in which
g · x = g(x). We are interested in observing how these effects on the state accumulate
throughout the chaining, which motivates the following definition.
Definition 17 (Cumulative Update Function). Consider an n-bit register R that updates
by U , with influence from a chaining function. Accounting for chaining, the update function
at time t is given by Equation 1. This update function is affine and is associated with the
element in GU , which we call gt. We define the cumulative update function ft ∈ GU to
be the composition of all gi where i < t. In other words, ft = gt−1 ◦ gt−2 ◦ . . . ◦ g0. The
update of R by gt and ft are defined as follows:

R[t+ 1] = gt ·R[t] = gt(R[t]) and
R[t] = ft ·R[0] = ft(R[0]).

Theorem 1 (Chaining Period Theorem). As shown in Figure 2a, let A = (S, f) be a
nonsingular system, and let B be an n-bit register with linear feedback represented by the
matrix U ∈ GL(n, 2). Let the characteristic polynomial of U be irreducible, and let B have
period m. Let C : S → Fn

2 be some chaining function from A to B, and let R denote the
composite system formed by A and B via chaining function C. Then the cycle structure of
R can be determined from the cycles of A and B as follows:

For any cycle of length p in A:
1. if m|p and fp = 1GU

then there are 2n cycles of length p

2. if m|p and fp ̸= 1GU
then there are 2n−1 cycles of length 2p

3. if m ∤ p then there are 2n−1
m gcd(m, p) cycles of length lcm(m, p), and one cycle of

length p
Proof. The state of A only repeats every p steps, by definition, and thus the state of
R can also only repeat on multiples of p. Also note that the series of inputs from the
chaining function C is periodic with period p, and thus fkp = fk

p for any k and R has
period kp if and only if B[0] has period k under the iteration of fp. Due to this, we are
primarily concerned with understanding the behavior of register B under the iteration of
the cumulative update function fp.

In the first two cases, m | p. Thus, fp = Up ⊕ c = Ix⊕ c for some c ∈ F2n , implying
fp is an XOR operation. These operations are part of the Frobenius kernel and are not
conjugate to any of the Frobenius complements.

10 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

Case 1. If fp = Ix ⊕ 0 then fp is the identity function, or equivalently an XOR with 0.
Accordingly, B[p] = 1GU

·B[0] = B[0]. Because the period of A is also p we have that the
entire state of R will repeat at time p, but not before, and thus R has period p. Note that
there are 2n initial states of B, each of which yields a unique cycle of length p.

Case 2. If fp = Ix⊕ c, with c ̸= 0 ∈ F2n , then fp is an XOR operation, or equivalently,
vector addition in Fn

2 . Then

(fp)2 = I(Ix⊕ c)⊕ c) = Ix⊕ c⊕ c = 1GU

as desired. Accordingly, B[2p] = 1GU
·B[0] = B[0], but B[p] = fp ·B[0] = B[0]⊕ c ̸= B[0].

Because the period of A is p we have that the entire state of R will repeat at time 2p, but
not before, and thus R has period 2p. Note that for any initial state R[0] = A[0] || B[0],
the state fp ·R[0] = A[0] || (B[0]⊕ c) will be in the same cycle. The 2n initial states of B
can then be split into 2n−1 such pairs, so there are 2n−1 cycles, each of length 2p.

Case 3. If m ∤ p then fp = Up ⊕ c for some c, and some Up ̸= I. By Property 4, fp is
conjugate to Up. This can be given even more explicitly as

fp = Up ⊕ c = (Ix⊕ ĉ) ◦ (Upx⊕ 0) ◦ (Ix⊕ ĉ)

where ĉ = (Up ⊕ I)−1c. By this similarity, the cycle structure of B under fp is the same
as the cycle structure of B under Up, although the cycles themselves contain different
elements. Since this is the same as a p-decimation of the normal operation of B, this is
well understood.

Because U has an irreducible characteristic polynomial and period m, Lemma 1 applies;
thus, the nonzero states of B are partitioned into cycles with length m. Thus, the cycles
of B are as follows: there is 1 fixed point (the zero state) and 2n−1

m cycles of length m.
For each of these length m cycles, Up creates gcd(m, p) cycles of length m

gcd(m,p) , and thus
under Up (and equivalently under fp) the cycle structure consists of one cycle of length
1 and 2n−1

m gcd(m, p) cycles of length m
gcd(m,p) . Each step in one of these cycles under fp

represents the change after a full period of A. The length of each of these cycles represents
the first multiple of p at which A and B repeat at the same time, which is the first time R
repeats. Multiplying by p, corresponding to this cycle of length p in A, the cycle structure
of R has (2n−1)

m gcd(m, p) cycles of length mp
gcd(m,p) = lcm(m, p), and one cycle of length p,

as claimed.

Theorem 1 may be applied to every cycle in A to determine the full cycle structure of R.
Knowing this full cycle structure, the process may be repeated inductively to understand
the cycle structure of any construction created via chaining.
Remark 1. There are ways to decompose the matrix into block forms that preserve the
invariant factors of the characteristic polynomial (such as the Jordan normal form). We
believe that this result could be extended to the case where the characteristic polynomial
is not irreducible, but that this would be equivalent in power to the induction on the
components using this version.

3.2 Examples and Applications
In this section, we wish to highlight part of how Theorem 1 generalizes previous results.
The first point of note is that Theorem 1 applies to LFSRs with primitive polynomials in
both the Fibonacci and Galois configurations or decimations thereof. There are no special
constraints placed on either System A or the chaining function, thereby providing for
extreme generality and applicability, particularly because nonlinear functions are allowed.

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 11

Example 1. In [GD70], the authors form a cascade from a 4-bit NLFSR that generates
two cycles with lengths 1 and 15 into a 2-bit Fibonacci LFSR with period 3.

Applying Theorem 1 to the cycle of length 1, we see that 3 ∤ 1, and this corresponds to
22−1

3 gcd(3, 1) = 1 cycle of length lcm(3, 1) = 3 and one cycle of length p = 1.

Applying Theorem 1 to the cycle of length 15 we see that 3 | 15, and this corresponds to
either 22 = 4 cycles of length p = 15 or 22−1 = 2 cycles of length 2p = 30.

Thus, in total, we have that the resulting cycle structure of this process will always be either
{30, 30, 3, 1} or {15, 15, 15, 15, 3, 1}. This is confirmed in Green and Dimond’s experiments.
This observation can also be explained by Proposition 1.

However, Theorem 1 goes further. Imagine a more complex system formed by adding a new
component via a more complicated chaining function: e.g., suppose that a nonlinear filter is
applied to the 6 bits of both the NLFSR and the LFSR, and at each time step, the output of
the filter is XORed with the most significant bit of a 5-bit LFSR in the Galois configuration.
Property 1 would be unable to analyze the cycle structure of such a configuration, as the
functions do not form a simple cascade. However, noting that 31 does not divide 1, 3, 15,
or 30, and is coprime to all, we can apply Theorem 1 to immediately determine that the
only possible cycle structures for this 11-bit construction are {930, 930, 93, 31, 30, 30, 3, 1}
and {465, 465, 465, 465, 93, 31, 15, 15, 15, 15, 3, 1}, regardless of the filter function used, and
depending only on the cycle structure of the first 6 bits.

The end of the previous example shows how we can use chaining functions to create
nonlinear cascades. Applying this view to T-functions, we can consider an invertible
T-function as being a series of chained 1-bit registers, each with irreducible characteristic
polynomial x⊕1. In [MST79], Mykkeltveit et al. also analyze cascades using 1-bit registers
well before the introduction of T-functions but due to the limitations of Property 1 are
unable to connect them nonlinearly as T-functions do. Instead, they take the cascade
product f ∗ (x⊕1) and apply cycle-joining techniques. The end result of this is the creation
of a de Bruijn sequence of length 2n+1 from a sequence of length 2n. Similarly, each
additional bit in a single-cycle T-function creates a cycle of length 2n+1 from a cycle of
length 2n. Because T-functions do not maintain the Fibonacci structure, the sequences
generated by the least significant bit are not de Bruijn sequences in general.

Example 2. Because Theorem 1 allows for nonlinear chaining functions, Theorem 1 can
be used to simply re-derive Properties 2 and 3. Let us begin with Property 2.

In the base case, the first bit in a single cycle T-function must oscillate between 1 and
0. If it remains fixed, the T-function will obviously not generate all states.

For each additional bit we add after this, we encounter the same situation: the bit
added has characteristic polynomial x+1 which is irreducible and has two cycles of period 1.
1 always divides the period of any cycle, so this addition either generates 2 cycles of size p
or 1 cycle of size 2p, regardless of the chaining function used. This verifies Property 2.

Now consider Property 3. The condition in Theorem 1, fp = 1GU
, allows us to use the

structure of GU to analyze the conditions for each case. In this case, GU
∼= Z2 (i.e., the

cyclic group of order 2), consisting only of the elements 1x⊕ 0 and 1x⊕ 1. At any point
in time, the constant c in the cumulative update function ft = 1x⊕ c represents the parity
of the outputs of the chaining function. The period doubles if and only if this parity is
odd. If the previous register has full 2n period, then in one period the chaining function
is evaluated on all possible 2n inputs, and so this is equivalent to the truth table of the
chaining function having odd weight. This only occurs if the ANF of the chaining function
includes a term including the product of all previous bits, verifying Property 3.

Theorem 1 can sometimes be used to analyze the cycle structure when the rule given
by Property 3 is not obeyed. Imagine a single-cycle T-function with n bits following the

12 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

rule and using chaining functions to add 1 bit that does not follow the rule and then a
final bit that does follow the rule again. In total, this creates a (n+ 2)-bit T-function. The
first n bits generate a single cycle of length 2n. Because the next bit does not follow the
rule, it generates 2 cycles of length 2n. The final bit follows the rule again, and thus its
truth table has an odd number of 1’s. These cannot be split evenly between the two cycles,
so one cycle must have an odd weight and the other even. Only the odd cycle will double.
Thus, the final cycle structure has 3 cycles, with lengths {2n+1, 2n, 2n}. This is a powerful
result, given that this derived cycle structure is independent of the actual functions chosen,
provided they meet the conditions.

In conclusion, concerning most of the prior work relating to cascade products, we
prove a more general result because we do not impose any restriction on either the system
generating the inputs or the complexity of the function connecting the two. This allows
for highly nonlinear cascades, and the resulting family of constructions is very large due to
the flexibility of the construction.

4 PRNGs Based on Chaining
4.1 Product Registers and Mersenne Primes
One of the major implications of Theorem 1 introduced in the previous section is that
chaining functions can be used to extend an existing system repeatedly, with both highly
varied nonlinear logic and predictable effects on the period and cycle structure. In the rest
of this paper, we propose a large family of feedback registers (Definition 5 in Subsection 2.2)
based on Theorem 1 and what we consider to be some of the more natural design choices.
We will also prove some properties of this construction. While there are certainly other
design choices that could be made and analyzed using similar methods or frameworks, we
will only present the construction that appears most natural to us.

Definition 18 (Product Register). An n-bit Product Register is constructed using a
primitive polynomial, P , with degree n and an additional polynomial, U , with degree at
most n− 1, which is called the update polynomial. The register has feedback logic which,
on each clock cycle, implements field multiplication by U in the F2n field defined modulo
P . The update for the product register, A, is described algebraically as follows:

A[t+ 1] = (U ×A[t]) mod P.

We do not consider U = 0 and U = 1 to be potential update polynomials because they are
not useful. Field multiplication by 0 would result in clearing the register because 0 is the
multiplicative absorbing element, and field multiplication by 1 would never change the
state of the register because 1 is the multiplicative identity.

Note 2. Field addition and multiplication are by definition modulo the primitive polynomial
P . When the choice of P does not affect the result, we will omit the modulus in this paper
to reduce clutter.

Definition 19 (Mersenne Prime). A Mersenne prime is a prime number that can be
written in the form 2n − 1, where n is a positive integer. Additionally, the exponent n is
called a Mersenne exponent.

Definition 20 (Mersenne Product Register). An n-bit Mersenne Product Register (MPR)
is a Product Register (PR) with n equal to a Mersenne exponent.

Although Product Registers are defined generally, we are primarily concerned with
Mersenne Product Registers (MPRs) because they exhibit useful properties. For an MPR

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 13

Figure 3: Example Product Register (U = x2 + x+ 1, P = x3 + x2 + 1)

with n bits, the multiplicative group of the corresponding Galois field, F×
2n , has no nontrivial

subgroups by Lagrange’s theorem [Rot95, p.24]. Consequently, U ̸= 0, 1 implies ⟨U⟩ = F×
2n .

This, in turn, implies that any MPR with U ̸= 0, 1 will have full period 2n − 1. This
is illustrated for the 3-bit case in Table 1 which keeps P constant while varying U , to
demonstrate the different state cycles a product register will go through for a given update
polynomial, all of which are full period.

Table 1: State sequence excluding all zeros for every valid U for 3-bit PR
Primitive Polynomial: x3 + x2 + 1

Update t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6
x 001 010 100 101 111 011 110
x+ 1 001 011 101 010 110 111 100
x2 001 100 111 110 010 101 011
x2 + 1 001 101 110 100 011 010 111
x2 + x 001 110 011 111 101 100 010
x2 + x+ 1 001 111 010 011 100 110 101

Because for an MPR every element of the field (other than 0, 1) is a primitive element,
all (2n − 2)/n irreducible polynomials are primitive [MvOV97]. Therefore, there are
typically more primitive polynomials to choose from when using registers with Mersenne
sizes; when combined with the choice of U from 2n − 2 elements of F2n , there are a total
of (2n − 2)2/n different MPRs for any Mersenne exponent n. This means that MPRs form
a varied and easy-to-construct class of building blocks which seem to be a natural choice
for chaining together.

4.2 Composite Mersenne Product Registers
A Composite Mersenne Product Register (CMPR) is formed from the repeated concatena-
tion of smaller individual MPRs to form a larger register whose size (i.e., number of bits)
is equal to the sum of the sizes of its component MPRs, which are connected via chaining
functions.

Definition 21 (Composite Mersenne Product Register). A Composite Mersenne Product
Register is a set of MPRs {M1,M2, . . . ,Mk}, each with their respective Ui and Pi, and a set
of chaining functions {C1, C2, . . . , Ck−1}. Each MPR now updates according to Equation 1
of Subsection 3.1 as follows:

M1[t+ 1] = (U1 ×M1[t]) mod P1

M2[t+ 1] = (U2 ×M2[t])⊕ C1(M1[t]) mod P2

...
Mk[t+ 1] = (Uk ×Mk[t])⊕ Ck−1(M1[t], . . . ,Mk−1[t]) mod Pk

14 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

Definition 22 (Composite Mersenne Product Register with Restricted Chaining). A
Composite Mersenne Product Register with restricted chaining is a CMPR with the
chaining functions Ck restricted to take input only from the immediately preceding MPR
Mk. In this setting, the update equations will be of the form

M1[t+ 1] = (U1 ×M1[t]) mod P1

M2[t+ 1] = (U2 ×M2[t])⊕ C1(M1[t]) mod P2

...
Mk[t+ 1] = (Uk ×Mk[t])⊕ Ck−1(Mk−1[t]) mod Pk

The motivation for this restriction will be justified in Section 6.3.3.3 (and further discussion
will be deferred until then), but we note that all results derived for the general CMPR
also apply to this restricted subset of CMPRs defined herein.

Figure 4 gives an example of a CMPR in which the logic shown in red (an XOR gate
and an AND gate) acts as the chaining function C1. This logic connects the MPR shown
in Figure 3 to a new, 2-bit MPR. By Theorem 1, we know that this construction has
cycle structure {21, 7, 3, 1}. Specifically, Register A from Theorem 1 is Figure 3 and has
two cycles, one of length 1 (for the case where all bits are zero) and a second of length 7.
Register B is the right-hand side of Figure 4 and has, from the notation in Theorem 1,
n = 2 and m = 3. Let us start with period 7 from Register A (p = 7). The value of
gcd(m, p) is gcd(3, 7) = 1 and the value of lcm(m, p) is lcm(3, 7) = 21, so the result is that
the period 7 cycle from Register A creates two cycles, one of length 21 and the other of
length 7. The period 1 (all zeros) cycle from Register A by a similar set of calculations,
when chained to Register B, results in a cycle of length 3 and a cycle of length 1. The
result is a cycle structure {21, 7, 3, 1}.

Figure 4: Example of CMPR with 2 and 3-bit MPRs

Theorem 2. Let R be a CMPR composed of k MPRs, denoted {M1, . . . ,Mk}, with sizes
S = {m1, . . . ,mk} where each mi is a unique Mersenne exponent. Then R has a unique
cycle of states for each subset S ⊆ {m1, . . . ,mk}, with that cycle having a length equal to∏
mi∈S

(2mi − 1).

Proof. We will prove this by induction on the number of component MPRs, k.

In the base case, consider the first MPR, M1, with size m1 and no chaining function. Note
that M1 has one cycle of size 1 and one cycle of size 2m1 − 1, corresponding to the empty
subset and {m1}.

We will now prove the inductive step by showing that if the theorem holds for any CMPR
with k − 1 component MPRs, then it holds for any CMPR with k. Consider the CMPR
with one MPR of each size in S′ = {m1, . . . ,mk−1} formed by removing the final MPR,
Mk, from any CMPR R. This CMPR still satisfies the conditions on MPR sizes, as each
mi is a Mersenne exponent and no two mi are equal. Consider adding back MPR Mk,
using the same chaining function, to recreate R, and the application of Theorem 1.

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 15

Consider any subset S ⊆ {m1, . . . ,mk} and the modified subset S′ = S ∩ {m1, . . . ,mk−1}
formed by ignoring mk. By the inductive hypothesis, there is a cycle in A with length
p =

∏
mi∈S′

(2mi − 1). Because all mi ∈ S′ are distinct Mersenne primes, this is the prime

factorization of the cycle length, and thus 2mk − 1 does not divide p. This implies that
cases one and two of Theorem 1 are not possible. Therefore, by Theorem 1, R has a cycle
of length p (corresponding to the case when mk ̸∈ S) and a cycle of length p(2mk − 1)
(corresponding to the case when mk ∈ S) proving the theorem also holds for R. This
completes the induction.

Example 3. Consider a 15-bit CMPR composed of three MPRs {M1,M2,M3} with sizes
{3, 5, 7} respectively. Table 2 shows the lengths of all state cycles in this CMPR.

Table 2: Cycles of a CMPR
Subset of MPRs Cycle Length Formula Cycle Length
{} 1 1
{M1} (23 − 1) 7
{M2} (25 − 1) 31
{M3} (27 − 1) 127
{M1,M2} (23 − 1)(25 − 1) 217
{M1,M3} (23 − 1)(27 − 1) 889
{M2,M3} (25 − 1)(27 − 1) 3937
{M1,M2,M3} (23 − 1)(25 − 1)(27 − 1) 27559
Total: 215 32768

As can be seen in Table 2, the majority of the CMPR states are contained in the
largest cycle regardless of the chaining functions used. This allows a very large degree of
freedom in chaining function selection while still guaranteeing the cycle structure of the
CMPR permutation. While the existence of short cycles is undesirable, at present, it is
unclear how to efficiently identify short cycles, or how they could be used for an attack.
Additionally, given a random seed, the odds that the register starts in a short cycle are
very low because those cycles contain relatively few of the possible states. We formalize
this intuition by analyzing the expected value of cycle length given a starting seed selected
uniformly at random.

Definition 23 (Expected Period Ratio). The Expected Period Ratio (EPR) of a CMPR
of size n is given by E(X)

2n , where E(X) is the expected value of the period when the CMPR
is initialized to a random state.

The EPR of any CMPR can be efficiently calculated using the following theorem.

Theorem 3. Let C be a CMPR composed of k MPRs, denoted {M1, . . . ,Mk}, with sizes
S = {m1, . . . ,mk} where each mi is a unique Mersenne exponent. Let n be the total
number of bits in register C. The total number of states in C is then 2n =

∏
mi∈S

2mi .

Let the initial state of C be chosen uniformly at random, and let the random variable X
denote the length of the cycle before this initial state repeats (the period of the register,
started from this state). Then,

E(X)
2n

=
∏

mi∈S

(
1− (2(mi+1) − 2)

22mi

)

16 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

Proof. We proceed by induction, as in the proof for Theorem 2. In the base case of a
single MPR with size m1, there are only two cycles, one of length (2m1 − 1) which occurs

with probability (2m1 − 1)
2m1

, and one of size 1 which occurs with probability 1
2m1

. Thus:

E(X) = (2m1 − 1)2 + 1
2m1

= 22m1 − 2m1+1 + 2
2m1

In this case, n = m1, thus:

E(X)
2n

= 22m1 − 2m1+1 + 2
22m1

= 1− (2m1+1 − 2)
22m1

We will now prove the inductive step by showing that if the theorem holds for any
CMPR with k−1 MPRs, then it holds for any CMPR with k MPRs, formed by chaining an
additional MPR. Consider the CMPR C ′ with one MPR of each size in S′ = {m1, . . . ,mk−1}
formed by removing the final MPR, Mk from C. This CMPR still satisfies the conditions
on MPR sizes, as each mi is a distinct Mersenne exponent. Consider adding back MPR
Mk using the same chaining function to recreate C. By Theorem 1, for each possible cycle
of length p in C ′ there is one cycle of length p in C and one cycle of length p(2mk − 1),
depending on the initial state of Mk.

Let X ′ be the expected period of C ′ and let n′ be its size. Because the initial state of Mk

is chosen uniformly at random, the expected period stays the same (i.e., E(X) = E(X ′)),
with only probability 1/2mk . With probability (2mk−1)/2mk , every cycle in C ′ is multiplied
by 2mk − 1, and by the linearity of expectation, E(X) = E(X ′)(2mk − 1). The inductive
step follows from the Law of Total Expectation:

E(X)
2n

=
(

E(X ′)
(2n′)(2mk)

)(
1

2mk

)
+
(
E(X ′)(2mk − 1)

(2n′)(2mk)

)(
2mk − 1

2mk

)
=
(
E(X ′)

2n′

)(
(2mk − 1)2 + 1

22mk

)
=
(∏

mi∈S′

(
1− 2mi+1 − 2

22mi

))(
1− (2mk+1 − 2)

22mk

)

=
∏

mi∈S

(
1− (2mi+1 − 2)

22mi

)

Since 1 − 2(n+1)−2
22n < 1 for every n ∈ N, this ratio decreases for each MPR added.

However, this sequence can be can shown to converge using the following argument. The
product evaluated over the set of all Mersenne exponents {2, 3, 5, . . .} is∏
m∈2,3,5,...

(
1 − (2m+1 − 2)

22m

)
≥

∞∏
m=2

(
1 − (2m+1 − 2)

22m

)
≥

∞∏
m=2

(
1 − (2m+1)

22m

)
=

∞∏
m=1

(
1 − 1

2m

)
which converges to a constant, and thus the expected period is O(2n) for any n-bit CMPR.

The product from Theorem 3 converges quickly, and we found that the product is ≈ 0.4514
when the set of sizes S consists of all Mersenne primes. This result implies that regardless
of the construction sizes or chaining functions chosen, on average, the CMPR construction
iterates through at least 45.14% of all bit-vectors that can be stored in a register of that
size when initialized to a random seed. Even in the worst configurations, the expected
cycle length of a CMPR grows linearly with the maximum period of the register and
exponentially with the number of bits. In practice, the EPR is typically much higher than

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 17

45.14%. This is because the largest decreases in the expected period are caused by the use
of small registers. For example, the use of a 2-bit MPR includes a factor of 0.625 in the
product. This single term represents a bigger decrease in the EPR than all other Mersenne
exponents combined, which have a product ≈ 0.7223. CMPR constructions that avoid
even a few of the smaller registers have a much higher lower bound on their EPR. Table 3
shows lower bounds on the EPR, depending on the smallest MPR used, calculated using
Theorem 3.

Table 3: Lower Bound on Expected Period Ratio, by Smallest Component Size
Smallest MPR Size Approximate Lower Bound on EPR
2 0.4514
3 0.7223
5 0.9246
7 0.9842
13 0.9997

Even though only using Mersenne-sized blocks might seem to be a strong restriction,
there are often many different constructions for desired sizes at practical scales. Table 4
shows some example constructions for common register sizes along with their associated
expected period and ratio.

Table 4: Example Constructions for Common Sizes
CMPR Size Mersenne Exponents Expected Period Expected Period Ratio

32 19,13 ≈ 4.2939× 109 ≈ 0.99975
64 61, 3 ≈ 1.4412× 1019 ≈ 0.78125
128 61, 31, 19, 17 ≈ 3.4028× 1038 ≈ 0.99998
256 127, 61, 31, 17, 13, 7 ≈ 1.1397× 1077 ≈ 0.98424

These results demonstrate consistently large expected periods despite the incredible
flexibility afforded by the chaining functions.

5 Linear Complexity Analysis
5.1 Preliminaries and Motivation
Definition 24 (Linear Complexity). Let u = {u[t]} be a periodic sequence of bits. The
linear complexity Λ(u) of u is the length of the smallest LFSR that can generate u.

One of the primary ways in which NLFSRs are superior to LFSRs is that LFSRs have an
inherent weakness in their low linear complexity. To be secure, we require that CMPRs
have sufficiently high linear complexity. However, analyzing the linear complexity of
CMPRs is a nontrivial task because of the large differences between designs. Due to the
freedom of selecting chaining functions, there is often significant variation between two
different CMPRs of the same size. The linear complexity of a CMPR can range from
linear in the number of bits (e.g., due to the use of trivial chaining functions which always
output 1 or 0) to a significant portion of the full period, depending on the selection of sizes
and chaining functions used.

This makes it necessary to algorithmically analyze each CMPR individually based on its
chaining functions; it also makes it difficult to provide good bounds on linear complexity for
the entire class. In addition, because the linear complexity of a CMPR can grow to be very
large, empirical measurements such as the Berlekamp-Massey algorithm become unfeasible
for large, reasonably complex CMPRs. For these reasons, we are unable to directly quantify

18 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

the linear complexity of large CMPRs. We instead introduce an algorithm that can be
used to estimate the linear complexity of a CMPR based on its chaining functions. This
allows for designers to assess the linear complexity of their selected MPR sizes and chaining
functions, even when the resulting CMPR grows to an otherwise unapproachable size.
Section 5 is devoted to presenting this algorithm and the results of the corresponding
analysis. The remainder of Subsection 5.1 reviews prior work, defines new notation and
explains the high-level approach of the algorithm. In Subsection 5.2 we discuss some of the
mathematical approaches and introduce our new notation. In Subsection 5.3 we introduce
the algorithm in full. Finally, in Subsection 5.4, we discuss a tweak to the algorithm that
handles the lower bound of the estimate.

Definition 25 (Filter Generator). Given an LFSR, L, of size n and a function, f : F2n →
F2, a filter generator outputs the bit sequence b = {b[i]} where b[i] = f(L[i]). Per [Key76],
if d is the algebraic degree of f , then the linear complexity of the filter generator satisfies

Λ(b) ≤
d∑

i=0

(
n

i

)
.

Definition 26 (Combination Generator). Given a set of LFSRs {L1, . . . , Lk} with corre-
sponding sizes {s1, . . . , sk}, and a function f : Fk

2 → F2, a combination generator outputs
the bit sequence b where b[i] = f(L1[i], L2[i], . . . , Lk[i]). Additionally, the linear complexity
of the combination generator satisfies

Λ(b) ≤ f(Λ(s1),Λ(s2), . . . ,Λ(sn))

where the algebraic normal form of f is evaluated over the integers. If the sizes {s1, . . . , sk}
are all distinct, then this holds with equality [Can11].

Filter generators, combination generators, and compositions of the two have historically
served as a tool to build large-period, nonlinear structures from compositions of LFSRs.
They are theoretically simple and have been well analyzed in terms of linear complexity. In
a CMPR, the chaining functions bear similarities to both filter generators and combination
generators. In particular, similar to filter generators, CMPRs allow for more than one bit
to be used from each sub-register. On the other hand, similar to combination generators,
CMPRs draw from multiple MPRs of different sizes. Despite these similarities, because
CMPRs have nested composition with intermediate sequences on which the above bounds
are not well-defined, we cannot naively compose the bounds to obtain an upper bound
for CMPRs. Instead, the following section will describe a modification to the traditional
methods of analysis for filter and combination generators which allows us to obtain tight
bounds when analyzing CMPRs.

5.2 Root Counting
Historically, one of the methods used to analyze linear complexity is to bound the number
of roots of certain polynomials. Notably, this technique was used by Key in [Key76] to
bound the linear complexity of filter generators, and later the technique was extended
to bound the linear complexity of combination generators. There exists a large body of
research with several good resources such as [Rue86] and [LN94]; this subsection will briefly
cover the technique and its application to CMPRs.

Definition 27 (Characteristic Polynomial). For a sequence {s[t]} over F2, if there exists
a set of coefficients c1, . . . , ck such that

s[t+ k] =
k∑

i=1
c[i]s[t+ k − i],

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 19

then we say {s[t]} satisfies a linear recurrence of degree k. We define the characteristic
polynomial of the sequence to be

C(x) = xk ⊕
k−1∑
i=0

ci+1x
i

For a sequence generated by a full period LFSR or MPR, the characteristic polynomial
coincides with the characteristic polynomial of the matrix representing the feedback
function.

Property 5. The number of solutions to C(x) = 0, which are called roots, is equal to the
linear complexity of the sequence. These roots will lie in some extension field F2n . This
makes roots useful for determining linear complexity [Key76].

Note 3. Often, authors will abuse notation by multiplying roots in different fields, e.g.,
multiplying α ∈ F25 and β ∈ F23 and obtaining αβ ∈ F215 ; we will also adopt this abuse
of notation. One way of resolving this formally is to view the roots as elements of the
algebraic closure of F2 and understand that when we say that a root is in F2n , it is a
member of the subfield isomorphic to F2n .

In [Key76], Key also showed that each term of the sequence can be expressed in terms
of these roots. Let F2n be the splitting field of C(x) (i.e., the smallest extension field which
contains all of its roots), then the tth term of the sequence can be expressed as

a[t] =
2n−1∑
i=1

Ai(αi)t (2)

where Ai ∈ F2n and αi ranges over the entire multiplicative group of F2n (i.e., α is
primitive). We will call this the root representation of the sequence.

Definition 28 (Cyclotomic coset). A cyclotomic coset is a set of integers of the form
{k2i | i ≥ 0} for k a positive integer, when reduced modulo 2n − 1.

In F2n , for any polynomial P , P (x2) = P (x)2. This implies that if P (α) = 0 for some
root α, then P (α2) = 02 = 0. This gives a natural representation of roots of any primitive
polynomial as powers of any primitive element α: {αk, α2k, α4k, . . .} for some k. Thus,
when n is prime, the cyclotomic cosets can be used to partition all elements αi ∈ F2n into
sets of roots, each corresponding to one primitive polynomial.

Definition 29 (Coset weight). We define the coset weight of a set of roots {αk, α2k, α4k, . . .}
to be the Hamming weight of any exponent {k, 2k, 4k, . . .} when written in binary.

Note 4. In F2n , α2n−1 ≡ 1, so squaring is equal to a cyclic left shift of the exponent.
Therefore, the Hamming weight is well-defined and is the same for all elements of the set.

Example 4. If {mi[t]} is a binary sequence generated by one bit in a full-period LFSR or
MPR with n bits, the linear recurrence also only has degree n. Thus, the characteristic
polynomial has only one set of conjugate roots, and we have that, using Equation 2, the
tth term can be written as

mi[t] =
n∑

i=1
Ai(αk2i

)t

with all other coefficients equal to zero.

20 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

If a root is present (i.e., if there is a nonzero coefficient) in the root representation of a
sequence, then its minimal polynomial divides the characteristic polynomial. Thus, if any
member of a coset is present, the entire coset contributes to the linear complexity of the
sequence. Key observed that term-wise operations on these sequences can be represented
using their root representation. For example, termwise XOR (addition) of sequences can
be represented as follows:

c[t] = a[t]⊕ b[t] =
2n−1∑
i=1

Ai(αi)t ⊕
2n−1∑
i=1

Bi(αi)t =
2n−1∑
i=1

(Ai ⊕Bi)(αi)t

When sequences are composed of roots from the same field (as is always the case when
they are two sequences generated by the same LFSR), the exponents can be combined:

c[t] = a[t] b[t] =
(2n−1∑

i=1
Ai(αi)t

)2n−1∑
j=1

Bj(αj)t

 =
2n−1∑
i=1

2n−1∑
j=1

AiBj(αi+j)t

After taking the termwise product, new exponents (and new cosets) may be generated,
but none of these cosets have a weight greater than the sum of the weights of the two
sequences added [Key76]. Key uses this concept of weight to tighten the upper bound on
linear complexity for a filter and arrive at an upper bound for the linear complexity of
a filter generator. If the degree of the filter is d, then the product of d terms, each with
weight 1, must have weight less than or equal to d. This means that the linear complexity
is upper bounded by the number of binary strings of length n with Hamming weight less
than or equal to d. This leads to the well-known inequality cited earlier:

Λ(s) ≤
d∑

i=1

(
n

i

)
When the two sequences instead feature roots exclusively from two fields with coprime
exponents n and m we instead have

c[t] = a[t] b[t] =
(2n−1∑

i=1
Ai(αi)t

)(2m−1∑
i=1

Bi(βi)t

)
=

2n−1∑
i=1

2m−1∑
j=1

AiBj(αiβj)t

This situation is also analyzed in a simple case by Key.

Lemma 3. If α ∈ F2n and β ∈ F2m are roots of irreducible polynomials with degree n and
m respectively, and n and m are coprime, then their product αβ is in F2nm and is not
contained in any subfield. Moreover, the product of any conjugates of α and β is conjugate
to αβ as the root of an irreducible polynomial with degree nm [Key76].

[Rue86] contains several generalizations of the result which allow the analysis of linear
complexity for combination generators with LFSR sizes that are not coprime. For CMPRs,
every MPR has a prime number of bits, and thus Lemma 3 is sufficient.

Our primary contribution in this area is introducing new notation and a method of
computing these bounds in the case where each size is prime and is used only once. In this
restricted case, which includes CMPRs, this new analysis unifies and generalizes several of
the previous results. This in turn allows us to analyze the linear complexity of chaining
functions in situations where we were unable to apply the known bounds previously. The
assumption that field sizes will be prime and unique will be in place throughout the rest
of this section.

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 21

Definition 30 (Coset class). We define the coset class with exponent e and weight w
to be the set of all roots in F2e with an exponent contained in a cyclotomic coset with
weight at most w. To improve the readability of equations, we will denote them similar to
a vector (either horizontal or vertical) with a dot in the middle to distinguish them from
traditional vectors:

Coset class with exponent e and weight w =
[
e
·
w

]
= ⟨e · w⟩

In other words, if we fix α ∈ F2e primitive, then β ∈ ⟨e · w⟩ if β = αk with k ≤ w.

Definition 31 (Root expression). To any periodic sequence S over F2 with roots only in
fields with prime exponents, we can assign a formal algebraic expression of coset classes
called its root expression. The root expression describes the set of roots that might have
nonzero coefficients in the root representation of the sequence. We will also let the function
E denote the mapping from sequences to their corresponding root expressions.

Property 6. By definition, no roots can contribute to the linear complexity of a sequence
unless they are included in the root expression, and thus we have the following:

Λ(S) ≤ |E(S)|

This format helps maintain information about the different compositions of roots with
varying extension fields and weights, which allows the results to be reused for analysis
of future combiners and filters. These expressions provide a useful approximation to the
true sets of roots. They do not fully describe which roots are present, but they do give us
large-scale groups of roots that behave predictably with high probability. The expressions
can be used to model the behavior of the underlying roots and provide tighter bounds.
The AND (product) of two sequences is associated with the formal multiplication of their
root expressions, and the XOR is associated with formal addition.

Example 5. Let sequence {a[t]} have root expression E({a[t]}) = ⟨13 · 3⟩ + ⟨3 · 1⟩ and
sequence {b[t]} have root expression E({b[t]}) = ⟨7 · 3⟩ ⟨5 · 1⟩+ ⟨7 · 6⟩. Then the sequence
formed by their termwise AND, {c[t]} = {a[t] b[t]}, has the following root expression:([

13
·
3

]
+
[

3
·
1

])([
7
·
3

][
5
·
1

]
+
[

7
·
6

])
=
[

13
·
3

][
7
·
3

][
5
·
1

]
+
[

13
·
3

][
7
·
6

]
+
[

3
·
1

][
7
·
3

][
5
·
1

]
+
[

3
·
1

][
7
·
6

]

The Algebraic Normal Form (ANF) for any Boolean filter function notation can be used
to construct the appropriate root expression for the sequence formed when that filter is
used on an LFSR or MPR. We will propose a set of rules that describe how to manipulate
these root expressions and how to use them to derive an upper bound on linear complexity.

Proposition 1. For any coset class, we have | ⟨e · w⟩ | =
w∑

i=1

(
e
i

)
Proof. This argument can be found in [Key76]; each exponent can be written as an e-
bit binary string, of which there are

(
e
i

)
roots with with exponents with coset weight i.

Summing over all weights less than w gives the number of roots in the coset class.

Proposition 2. Let {⟨e · w1⟩ , ⟨e · w2⟩ , . . . , ⟨e · wk⟩} be a set of coset classes with common
exponent e. Then we have the following:

k∏
i=1
⟨ei · wi⟩ =

〈
e ·

k∑
i=1

wi

〉

22 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

Proof. This proof can also be found in more detail in [Key76] and is the basis of the filter
generator bound, expressed in our notation.

Proposition 3. Let {⟨e1 · w1⟩ , ⟨e2 · w2⟩ , . . . , ⟨ek · wk⟩} be a set of coset classes such that
ei ̸= ej for any i, j. Then we have the following:∣∣∣∣∣

k∏
i=1
⟨ei · wi⟩

∣∣∣∣∣ =
k∏

i=1
|⟨ei · wi⟩|

Proof. This follows from induction on i, with the inductive step provided by Lemma 3.

Proposition 4. For any two root expressions E1 and E2:

|E1 + E2| ≤ |E1 ∪ E2| = |E1|+ |E2| − |E1 ∩ E2|

Proof. Consider the termwise addition of expressions in the form of Equation 2:

c[t] = a[t]⊕ b[t] =
2n−1∑
i=1

Ai(αi)t ⊕
2n−1∑
i=1

Bi(αi)t =
2n−1∑
i=1

(Ai ⊕Bi)(αi)t

For any root αi, the coefficient (Ai ⊕Bi) is nonzero if at least one of Ai or Bi is nonzero
and Ai ̸= Bi. Thus, a root can only be present in E({c[t]}) if it already existed in one of
the original sequences. This implies that for any two expressions, |E1 + E2| ≤ |E1 ∪ E2|.
The second equality follows from the principle of inclusion-exclusion.

Proposition 5. Let E1 and E2 be two root expressions, each of which is a single product
of coset classes. If they have different sets of exponents, then E1 ∩E2 is empty. Otherwise,
if two products of coset classes have the same set of exponents {e1, . . . , ek}, then

E1 ∩ E2 =
(

k∏
i=1
⟨ei · w1,i⟩

)
∩

(
k∏

i=1
⟨ei · w2,i⟩

)
=
(

k∏
i=1
⟨ei ·min (w1,i, w2,i)⟩

)
Example 6.

(⟨13 · 3⟩ ⟨7 · 6⟩ ⟨5 · 4⟩) ∩ (⟨13 · 7⟩ ⟨7 · 2⟩ ⟨5 · 1⟩) = ⟨13 · 3⟩ ⟨7 · 2⟩ ⟨5 · 1⟩
(⟨19 · 3⟩ ⟨7 · 6⟩ ⟨5 · 4⟩) ∩ (⟨13 · 7⟩ ⟨7 · 2⟩ ⟨5 · 1⟩) = ∅

The difference between the two equations is that in the second equation, there is a coset
⟨19 · 3⟩ in the first root expression, with an exponent that is not present anywhere in the
second root expression. Because the two root expressions do not have the same exact
exponents, they have no intersection.

Proof. Because any MPR uses a prime number of bits, Lemma 3 implies that the roots
represented by the term (

k∏
i=1
⟨ei · wi⟩

)
are contained in F2n where n =

∏k
i=1 ei. Furthermore, the roots are not contained in

any subfield. Thus, if the product terms do not have the same parameters ei, then their
roots reside in separate subfields and thus cannot overlap. We will proceed assuming
that the two root expressions have the same exponents and thus nonzero intersection,
and we further note that the weights introduced by Key give an ordering of the sets of
roots: ⟨ei · w1⟩ ⊆ ⟨e · w2⟩ if and only if w1 ≤ w2 [Key76]. Thus, for each parameter ei

shared by the two root expressions, ⟨ei ·min (w1,i, w2,i)⟩, is the intersection of ⟨ei · w1,i⟩
and ⟨ei · w2,i⟩.

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 23

These rules, in the case of LFSRs with distinct prime sizes, can be treated as a
generalization and unification of the bounds for filter generators and combination generators.
When allowing a nonlinear filter using multiple bits, but only from one LFSR, Propositions 1
and 2 give the filter generator bound directly. The combination generator bound is similarly
derivable when allowing multiple LFSRs but restricting to only using the output sequence
of each. Propositions 4 and 5 imply there is no nontrivial intersection of any of the
product-terms, while Propositions 2 and 3 show that each product-term has root size equal
to the product of the sizes of LFSRs used.

The primary disadvantage of this rule system is that it requires the LFSR sizes to be
prime and distinct. This limitation might be overcome with more careful casework, but the
current formulation is sufficient for the analysis of CMPRs. The primary advantage of this
system is that it can handle complicated nonlinear combinations of inputs from multiple
registers. Additionally, root expressions provide a compact intermediate representation,
which can allow for easier algebraic manipulation, as shown in the following example.

Example 7. Let {a1[t]}, {a2[t]} and {a3[t]} be three different sequences, each with root
expression ⟨7 · 2⟩+ ⟨5 · 1⟩. Such a sequence could, for example, be the output of a degree-
two filter on a 7-bit LFSR XORed with the output of a 5-bit LFSR. Let s = {s[t]} be the
sequence formed by the termwise AND of all three sequences. In this example, we will use
the root expression method to upper bound the linear complexity of {s[t]}.

First, we distribute the product to simplify the root expression for {s[t]}, which
resembles ANF notation.

Λ(s) ≤

∣∣∣∣∣∣
([

7
·
2

]
+
[

5
·
1

])3
∣∣∣∣∣∣

≤

∣∣∣∣∣
([

7
·
2

][
7
·
2

][
7
·
2

]
+
[

7
·
2

][
7
·
2

][
5
·
1

]
+
[

7
·
2

][
5
·
1

][
5
·
1

]
+
[

5
·
1

][
5
·
1

][
5
·
1

])∣∣∣∣∣
Using Proposition 3, we combine terms with roots in the same field:

Λ(s) ≤

∣∣∣∣∣
([

7
·
6

]
+
[

7
·
4

][
5
·
1

]
+
[

7
·
2

][
5
·
2

]
+
[

5
·
3

])∣∣∣∣∣
Using Proposition 4, we split the expression into an evaluation of terms.

Λ(s) ≤

∣∣∣∣∣
[

7
·
6

]∣∣∣∣∣+

∣∣∣∣∣
[

7
·
4

][
5
·
1

]∣∣∣∣∣+

∣∣∣∣∣
[

7
·
2

][
5
·
2

]∣∣∣∣∣−
∣∣∣∣∣
([

7
·
4

][
5
·
1

])
∩

([
7
·
2

][
5
·
2

])∣∣∣∣∣+

∣∣∣∣∣
[

5
·
3

]∣∣∣∣∣
Using Proposition 5, we substitute | ⟨7 · 2⟩ ⟨5 · 1⟩)| in place of |(⟨7 · 4⟩ ⟨5 · 1⟩)∩(⟨7 · 2⟩ ⟨5 · 2⟩)|

Λ(s) ≤

∣∣∣∣∣
[

7
·
6

]∣∣∣∣∣+

∣∣∣∣∣
[

7
·
4

][
5
·
1

]∣∣∣∣∣+

∣∣∣∣∣
[

7
·
2

][
5
·
2

]∣∣∣∣∣−
∣∣∣∣∣
[

7
·
2

][
5
·
1

]∣∣∣∣∣+

∣∣∣∣∣
[

5
·
3

]∣∣∣∣∣
Using Propositions 1 and 2, we separate each term into the product of its different coset
classes and evaluate:

Λ(s) ≤
6∑

i=1

(
7
i

)
+

4∑
i=1

(
7
i

) 1∑
i=1

(
5
i

)
+

2∑
i=1

(
7
i

) 2∑
i=1

(
5
i

)
−

2∑
i=1

(
7
i

) 1∑
i=1

(
5
i

)
+

3∑
i=1

(
5
i

)
≤ 126 + (98 · 5) + (28 · 15)− (28 · 5) + 25
≤ 921

Thus, we know that the linear complexity of s is at most 921.

24 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

The number of roots represented by each coset class can become quite large. One of
the motivations for this approach is that working with these expressions is computationally
easier than trying to model individual roots. Consider, for example, a 127-bit MPR: there
are 2127 − 2 primitive roots in the multiplicative group, but only 127 different coset classes
to manipulate.

5.3 Root Propagation through an MPR
In total, we have that coset classes behave predictably as they propagate through chaining
functions, and we will show in this subsection that the representation propagates efficiently
through registers as well. However, because root expressions are only approximations,
their efficiency comes at the cost of imperfect information.

Definition 32 (Degeneracy). When a set of roots is included in a root expression but
does not contribute to the linear complexity of the corresponding sequence, we say that
the set of roots has degenerated. A degeneracy is evident when the linear complexity of a
system is lower than the upper bound predicted by root counting.

Although root expressions only yield an upper bound, the linear complexity is typically
very close to this bound as observed by [Key76] and [Rue86]. We will further discuss
statistical models for degeneracy in Subsection 5.4. In this subsection, we will examine
another of the major advantages of using root expressions. Because each periodic sequence
has a specific root expression, regardless of the starting point of that sequence, the root
expression is the same. Therefore, root expressions are invariant to shifts of the sequence
in time. Moreover, because a root expression is unchanged by an XOR with itself (by
Property 4), root expressions are invariant to both phase shifts and XORs with phase
shifts of the same sequence. We will show that this property means that the representation
can be propagated through an MPR easily.

There are many different ways to analyze linear systems (e.g., LFSRs and MPRs).
The following approach uses formal power series with coefficients drawn from F2 and is
explored in more detail in resources such as [Rue86] and [LN94]. In this paper, we will use
the notation of a Z-transform (i.e., a formal power series in the variable z−1). Following
this path leads to the following result.

Theorem 4. Let C(A[t]) be any periodic sequence of n-bit vectors in Fn
2 , and let its

Z-transform be denoted C(z). Let B be an n-bit linear feedback register, with n prime and
its characteristic polynomial primitive, and which updates according to Equation 1, with
C(A[t]) as input on each cycle. Then the Z-transform of B[t] is

B(z) = (zI ⊕ U)−1(C(z)⊕ zB[0]) = 1
χ

U
(z)Adj(zI ⊕ U)(C(z)⊕ zB[0]))

where χ
U

(z) is the characteristic polynomial of U , the matrix by which B updates.

Proof. We begin by writing the update equation B[t+ 1] = UB[t]⊕ C(A[t]). Then taking
the Z-transform of each side, we obtain

z(B(z)⊕B[0]) = UB(z)⊕ C(z)

After collecting the B(z) terms to one side and factoring, we find that

(zI ⊕ U)B(z) = C(z)⊕ zB[0]

From here, we can write

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 25

B(z) = (zI ⊕ U)−1(C(z)⊕ zB[0])

= 1
det(zI ⊕ U)Adj(zI ⊕ U)(C(z)⊕ zB[0])

= 1
χ

U
(z)Adj(zI ⊕ U)(C(z)⊕ zB[0])

where we use the formula M−1 = (detM)−1Adj(M) for the inverse of a matrix.

Example 8. We will consider the example from Figure 4 in Subsection 4.2. Note that for
this example, we can explicitly write out the update equation as follows:

B[t+ 1] =
[
b0[t+ 1]
b1[t+ 1]

]
=
[
0 1
1 1

] [
b0[t]
b1[t]

]
⊕ C(A[t])

Although it is not practical in general to fully compute C(z), we will do so for
this example using the Berlekamp-Massey algorithm. Consider the sequence C0(A[t]) =
a1[t]⊕ a0[t]; one period of this sequence is given by (1, 0, 0, 0, 1, 0, 0). From the Berlekamp-
Massey algorithm, we can determine

C0(z) = N(z)
1⊕ z−1 ⊕ z−3

where the numerator N(z) is dependent on the initial values of the sequence. Rearranging,
we can recover

N(z) = C0(z)(1⊕ z−1 ⊕ z−3) = z−1 ⊕ z−2

Next we substitute to obtain

C0(z) = z−1 ⊕ z−2

1⊕ z−1 ⊕ z−3 = z2 ⊕ z1

z3 ⊕ z2 ⊕ 1

We can repeat this process to obtain the slightly more complex

C1(z) = 1⊕ z−1 ⊕ z−2 ⊕ z−3

(1⊕ z−1 ⊕ z−3)(1⊕ z−2 ⊕ z−3) = z6 ⊕ z5 ⊕ z4 ⊕ z3

(z3 ⊕ z2 ⊕ 1)(z3 ⊕ z1 ⊕ 1)

This is more complex because this bit, C1, is nonlinear (C0 is linear). From the
denominator, this sequence has linear complexity 6. This also could have been noted
by observing that the root expression for this sequence is ⟨3 · 2⟩, which contains 6 roots.
Because we know U , we can solve for the resolvent as follows:

U =
[
0 1
1 1

]
=⇒ zI ⊕ U =

[
z 1
1 z ⊕ 1

]
=⇒ (zI ⊕ U)−1 = 1

z2 ⊕ z ⊕ 1

[
z ⊕ 1 1

1 z

]

In total,

26 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

B(z) =
[
b0(z)
b1(z)

]
= 1
z2 ⊕ z ⊕ 1

z ⊕ 1 1

1 z

z2 ⊕ z1

z3 ⊕ z2 ⊕ 1
z6 ⊕ z5 ⊕ z4 ⊕ z3

(z3 ⊕ z2 ⊕ 1)(z3 ⊕ z1 ⊕ 1)

⊕

z

z

=

z8 ⊕ z7 ⊕ z6 ⊕ z3 ⊕ z

(z2 ⊕ z ⊕ 1)(z3 ⊕ z2 ⊕ 1)(z3 ⊕ z1 ⊕ 1)
z5 ⊕ z3

(z2 ⊕ z ⊕ 1)(z3 ⊕ z1 ⊕ 1)

=

1⊕ z−1 ⊕ z−2 ⊕ z5 ⊕ z−7

(1⊕ z−1 ⊕ z−2)(1⊕ z−1 ⊕ z−3)(1⊕ z−2 ⊕ z−3)
1⊕ z−2

(1⊕ z−1 ⊕ z−2)(1⊕ z−2 ⊕ z−3)

These can be converted back into sequences using a division algorithm to find the

initial values and then using the recurrence to extend it. However, an easier forward check
is to compute B[t] by running the shown register, computing its Z-transform as described
earlier, and verifying that this is indeed the correct sequence.

For most MPR sizes, the matrices Adj(zI⊕U) are feasible, if slow, to calculate; however,
the Z-transform of the inputs, C(z), becomes infeasible to compute, as the degrees of the
polynomials involved are proportional to the linear complexity of the sequences involved.
However, if the goal is only to estimate linear complexity, we do not need to know the
exact Z-transform of the sequence, only its root expression. The adjugate matrix consists
of polynomials in z, which means any output signal can be interpreted as the XOR of
several shifts applied the inputs. It is worth noting that the adjugate matrices tend to be
dense; none of the matrices we tested had any entries equal to zero, although we do not
know if this always holds true. The adjugate matrices being dense implies that this results
in a strong mixing; the root expression for every bit in the MPR over time is equal to the
sum of many different delays of all root expressions coming from the chaining. Because
root expressions are invariant to shifts, after matrix multiplication by Adj(zI ⊕ U), this
means that each output root expression is equal to the sum of the root expressions of the
all the inputs. There is also an additional primitive polynomial in the denominator, visible
in the 1/χ

U
(z) term, derived from the characteristic polynomial of the current MPR. This

term contributes the roots ⟨m · 1⟩. This makes it possible to easily calculate the root
expression of the output sequences using the root expressions of the chaining functions.

Example 9. We will repeat the analysis in Example 8, using root expressions instead. By
the rules established in Subsection 5.2, we have that E(C0) = ⟨3 · 1⟩ and E(C1) = ⟨3 · 2⟩.
The sequence corresponding to 1/χ(z) has the same characteristic polynomial as U (which
has characteristic polynomial χ

U
(z)), by definition, and thus has root expression ⟨2 · 1⟩.

In total we have
E(b0[t]) = E(b1[t]) = ⟨3 · 2⟩ ⟨2 · 1⟩

which places an upper bound on the linear complexity at 8, which we can see in the example
is achieved. Note that in this case, we could not detect the degeneration of (1⊕ z−1⊕ z−3)
from the denominator of C1(z), also demonstrating a degeneracy we were unable to detect.

The estimation algorithm is given in Algorithm 1. It can be summarized informally as
follows. First, we initialize an associated root expression for each bit in the first MPR.
Next, using the algebraic manipulations given in Propositions 1 through 5, we use the
ANF of the chaining function to obtain the root expressions of the output of each chaining
function (this process is captured in line 10 of the algorithm). Using Theorem 4, we
propagate these expressions to each bit of the next MPR, adding in a new coset class

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 27

Algorithm 1 CMPR Root Expression Algorithm
input: A CMPR composed of q MPRs {M1, . . . ,Mq}, with distinct sizes {s1, . . . , sq}.

C1 . . . Cq−1 denotes the chaining functions of the CMPR.
output: An upper bound on the linear complexity of the output stream, Λ

1: procedure UpperBound
2: RootExpressions is a table containing the root expression for each bit.
3: Evaluate(R) determines the size of root expression R
4: bits(Mi) returns the bits associated with Mi

5: for b ∈bits(M1) do
6: RootExpressions [b] ← ⟨s1 · 1⟩ ▷ Initialize table
7: end for
8: for i← 2 . . . q do
9: composition← Ci−1(RootExpressions) ▷ Combine table values

10: for b ∈bits(Mi) do
11: RootExpressions [b] ← (composition+ ⟨si · 1⟩) ▷ Table update
12: end for
13: end for
14: Λ← Evaluate(RootExpressions[0])
15: end procedure

and updating our table, as shown in line 11. We then repeat this process inductively
to calculate the root expressions for any bit in the CMPR chain. Finally, after all root
expressions have been generated, we evaluate the root expression of the output stream to
upper bound linear complexity, again using Propositions 1 through 5. This process allows
for more efficient analysis of CMPRs with large linear complexity.

Example 10. We will analyze the approximate linear complexity of a simple example by
hand to demonstrate the process. Let C be a 15-bit CMPR made from MPRs with sizes
{7, 5, 3}, depicted in Figure 5.

Figure 5: Example 15-bit CMPR

Each chaining function is an AND from the two least significant bits of one MPR to
the most significant bit of the next. The ANF is as follows:

c14[t+ 1] = c13[t]⊕ c14[t]
c13[t+ 1] = c12[t]
c12[t+ 1] = c11[t]⊕ c14[t]
c11[t+ 1] = c10[t]
c10[t+ 1] = c9[t]
c9[t+ 1] = c8[t]⊕ c14[t]
c8[t+ 1] = c14[t]

c7[t+ 1] = c6[t]⊕ c8[t]c9[t]
c6[t+ 1] = c5[t]⊕ c7[t]
c5[t+ 1] = c4[t]
c4[t+ 1] = c3[t]
c3[t+ 1] = c7[t]

c2[t+ 1] = c1[t]⊕ c2[t]⊕ c3[t]c4[t]
c1[t+ 1] = c0[t]
c0[t+ 1] = c2[t]

28 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

We start by noting that the sequence generated by each bit c8 through c14 has root
expression ⟨7 · 1⟩, as this is an ordinary MPR of size 7. The output of the first chaining
function, which consists of the AND of c8 and c9, correspondingly has root expression

(⟨7 · 1⟩)2 = ⟨7 · 2⟩

By Theorem 4 we can conclude that the sequence generated by each bit c3 through c7 has
root expression ⟨7 · 2⟩ ⊕ ⟨5 · 1⟩. The next chaining function is the AND of two of these
output sequences, c3 and c4, and thus has root expression([

7
·
2

]
⊕

[
5
·
1

])2

=
([

7
·
4

]
⊕

[
7
·
2

][
5
·
1

]
⊕

[
5
·
2

])

Therefore, c0 through c2 has root expression (⟨7 · 4⟩⊕⟨7 · 2⟩ ⟨5 · 1⟩⊕⟨5 · 2⟩⊕⟨3 · 1⟩). Because
our output sequence is taken from bit zero, we can upper bound the linear complexity by
evaluating the size of this root expression. This yields the estimate 98+(28)(5)+15+3 = 256.
The actual linear complexity of this CMPR, starting from any initial state where none of
the MPRs are locked in the zero state, measured using the Berlekamp-Massey algorithm
[Mas69] is 253, which amounts to a degeneration of one root set from the 3-bit MPR.

We also note that Algorithm 1 is polynomial with respect to the number of bits of
the CMPR and exponential with respect to the number of MPRs used to construct the
CMPR. To demonstrate this, we will compute a pessimistic upper bound on the time
complexity of the algorithm. Let n denote the number of bits in the CMPR, k be the
number of constituent MPRs, and S = {s0, . . . , sk} be the set of Mersenne exponents. Any
root expression will have at most as many terms as the products of the elements in S,
excluding the largest Mersenne exponent. Thus, the maximum number of terms in a root
expression is given by

R ≤ Πsi∈Ssi

max(S)
For each addition of root expressions, we must loop through each of their terms in

sequence, giving an intermediate list of size O(R). To compute the product of the root
expressions, we must loop over every pair of terms, giving an intermediate list of size
O(R2). Producing each term in the intermediate list has a cost of at most O(k). Thus,
producing the intermediate lists for addition and multiplication has complexity O(kR) and
O(kn2), respectively.

This intermediate list is then pruned by incrementally building a list of maximal
elements. At any given point, the maximal list is less than R, and we must loop through
the maximal list once for each element we add from the intermediate list (to check
if it is maximal). Similar to the cost of building the intermediate terms, the cost of
each comparison is O(k). In total, this gives a cost of at most O(kR3) operations per
multiplication and O(kR2) operations per addition. This dominates the cost of the addition
and multiplication, so overall, the complexities for addition and multiplication are O(kR2)
and O(kR3), respectively.

There is a pruning step in which we calculate only maximal terms (terms where the set
of variables are not a subset of any other terms in the ANF of the function) of the ANF
of the chaining function, to avoid computing smaller terms which will never be maximal.
Due to this pruning step, this ANF can also have only up to R terms, each representing
a monomial of at most n variables. Thus, there are at most O(R) additions and O(nR)
multiplications, each with cost O(kR3), for a total cost of O(knR4). This is repeated for
each block (at most k blocks), yielding O(nk2R4). Recalling the expression for R, we can
obtain a simpler upper bound in terms of n and k:

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 29

R ≤ Πsi∈Ssi

max(S) ≤
Πsi∈S

n
k

max(S) = 1
max(S)

(n
k

)k

Substituting this upper bound for R into the expression O(nk2R4) and noting that max(S)
is always at least n

k gives a total runtime complexity of

O

(
k6

n3

(n
k

)4k
)

which is indeed polynomial with respect to n, the number of bits in the CMPR, and
exponential with respect to k, the number of MPRs. With additional careful analysis, we
believe that this upper bound can be tightened.

In practice and especially for large CMPRs, the CMPR Root Expression Algorithm out-
performs the Berlekamp-Massey algorithm. This difference in performance is demonstrated
in Figure 6 where each algorithm was applied to every possible CMPR configuration up to
300 bits and using degree 3 chaining functions. Using higher-degree chaining functions
(higher than degree 3) for this experiment was not feasible, as the generated sequences
would have much larger linear complexity, and we would have been unable to obtain
enough data points for the Berlekamp-Massey algorithm to generate the figures. We
note that for visual clarity, the Berlekamp-Massey results are shown on the plot only for
linear complexity lower than 10000, as the Berlekamp-Massey algorithm runtime increased
drastically. However, an extrapolated comparison is also given to compare our algorithm
to the expected behavior of Berlekamp-Massey.

Figure 6: Runtime and Linear Complexity Comparison Between the Berlekamp-Massey
Algorithm and CMPR Root Expression Algorithm

Remark 2. We can draw several structural insights about chaining as a composition
strategy from Algorithm 1. First, from Theorem 4 and the density of the adjugate matrices,
chaining with the current state of the linear feedback register appears to create complex
relationships between the every output of the register and every input to the register
(i.e., the outputs of the chaining function). Due to the polynomial entries in the adjugate
matrices, the output stream of the MPR is the XOR of many different shifts of each of
the inputs, creating different complex relationships between each output and input pair.
Additionally, by observing the propagation of root expressions (e.g., in Example 10), we
can observe that the nonlinear effects of each chaining function are amplified as they pass
through subsequent chaining functions. This yields some insight into how CMPRs are able
to generate high linear complexity, even with relatively simple chaining functions.

30 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

5.4 Degenerate Cosets and a Pessimistic Estimate
In the previous section, we mentioned degeneracy and observed an example, but did not
explore the concept further. Historically, while prior works such as [Key76] and [Rue86]
acknowledge the risk of degeneracies, they also claim that they are relatively insignificant
and that the upper bound is a good estimate of the true linear complexity. However, in
our case, we have multiple filters and opportunities for degeneracy. In addition, certain
types of degeneracies pose a larger threat to our estimates than they did to Key [Key76].
In this section, we will explore modifications to the algorithm which help to account for
these types of degeneracies, and give an additional estimate that aims to be reasonably
pessimistic, to aid designers trying to ensure a given linear complexity.

In [Rue86], Rueppel analyzes the probability of degeneracy in a filter generator under
a simplifying model which assumes each irreducible polynomial of degree n independently
degenerates with probability 1/2n. We will work under the similar assumption that in
the output of the chaining function each primitive polynomial degenerates independently
with probability 1/2n. However, even if this set of roots is nondegenerate in the output of
the chaining function, there is an additional 1/2n chance it degenerates while propagating
through the next MPR under the same simplifying assumptions. We can use this to
estimate that each primitive polynomial with size in the final answer n does not degenerate
with probability (2n − 1)2/22n.

There is a different edge-case with a more dramatic effect. Specifically, consider the
case of an n-bit filter generator: it is unlikely a designer would include an AND of all n
bits, and therefore such a designer would never encounter the full coset class ⟨e · e⟩. This
coset class is special since it is the only one that contains the element 1 from the base
field, F2. Lemma 3 and the analysis in [Rue86] explicitly apply to elements outside the
base field because multiplying a sequence by the identity can result in cancellations of
whole sequences. These cancellations produce degeneracies which are far more dramatic
than those which happen by chance. For CMPRs, as coset classes pass through multiple
nonlinear chaining functions, they mix and grow multiplicatively. Even with low-degree
chaining, it is possible to encounter these large coset classes when designing CMPRs. The
analysis of CMPRs is unable to ignore the phenomenon, even though it did not pose a
problem in the analysis of filter or combination generators.

When calculating the lower estimate, we can reuse the same root expression calculated
for the upper bound. We simply modify the algorithm to evaluate the root expressions in
a way that disregards any coset classes that have weight equal to their exponent, or any
term containing such a coset class. This is equivalent to pessimistically assuming that all
possible large cancellations did in fact occur and remove a large number of roots. We then
also evaluate each root term weighted by the probability of normal degeneracy, as discussed
in the previous paragraph. Both of these modifications create a very pessimistic estimate,
which is almost always far lower than tests for the actual linear complexity. Additionally,
the degeneracies these modifications account for become less likely as n becomes larger.
For larger MPRs and bigger CMPRs the need to account for these edge cases behavior
decreases and we can expect the upper bound to be an increasingly good estimate of the
true linear complexity. These modifications mostly help to avoid coincidental degeneracies
that occur when small sizes such as 2 or 3 are used and help to give bounds that contain
the true linear complexity with high probability.

To demonstrate the accuracy of this method, we constructed 6400 CMPRs with
randomly generated chaining and analyzed them both with the estimation and Berlekamp-
Massey algorithms. The CMPRs used were of size less than 20 due to the inefficiency
of running the Berlekamp-Massey algorithm [Mas69] on large CMPRs. However, the
estimation algorithm is scalable and extends to larger sizes. When generating Berlekamp-
Massey data points for comparison, the CMPRs were initialized to random initial states.
However, due to the small sizes of the MPRs used, the Berlekamp-Massey trials were more

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 31

likely to start in smaller cycles. To avoid skewed results caused by the shorter period, the
test was rerun. The 6400 CMPRs used were divided into the 16 possible combinations of
Mersenne primes summing to size less than 20. 400 tests were run on each Mersenne prime
combination. The Berlekamp-Massey algorithm and the estimation algorithm were run
on each construction to verify that the true linear complexity falls within the bounds the
estimation algorithm provides. Of the 6400 tests, the algorithm was correct 99.547% of
the time, despite linear complexities ranging over several orders of magnitude, depending
on the chaining used. The results are summarized in Table 5, where “Sizes Used” denotes
the sizes of the component MPRs in bits, and “Accuracy” denotes the proportion of tests
for which the actual linear complexity fell inside the predicted range. Additionally, for the
larger sizes where this algorithm is necessary, we expect it to be even more accurate than
demonstrated here.

Table 5: Estimation Algorithm Tests
Sizes Used (3,2) (5,2) (7,2) (13,2) (17,2) (5,3) (7,3) (13,3)
Accuracy 1 0.995 1 1 1 0.9975 1 1

Sizes Used (7,5) (13,5) (5,3,2) (7,3,2) (13,3,2) (7,5,2) (7,5,3) (7,5,3,2)
Accuracy 1 1 0.995 0.9925 0.9875 0.97 0.995 0.995

5.5 Examples and Comparisons
5.5.1 Linear Complexity of a Simple 128-bit CMPR

As shown in Table 4, we use the Mersenne exponents {61, 31, 19, 17} to construct a 128-
bit CMPR, where we chain the four MPRs by descending size. We choose primitive
polynomials as shown in Table 6.

Table 6: Chosen MPRs
Size Primitive Polynomial Update Polynomial
61 x61 + x58 + x54 + x49 + 1 x
31 x31 + x30 + x28 + x22 + 1 x
19 x19 + x17 + x14 + x10 + 1 x
17 x17 + x14 + 1 x

To achieve the most direct comparison possible to existing constructions, we chose U = x
for all MPRs, meaning these MPRs are also Galois LFSRs. For the chaining functions, we
choose to connect the two least significant bits of each MPR to an AND gate, the output
of which is XORed with the feed-in to the most significant bit of the next MPR, similar
to the structure shown in Figure 7b. We consider the sequence produced by the least
significant bit of the 17-bit MPR to be the output sequence of the register; this is what we
measure for linear complexity. For this construction, the estimation algorithm gives a lower
estimate ≈ 2.032× 1019 and an upper bound of ≈ 2.923× 1019, both of which are between
264 and 265 We also verified this to the best of our ability using the Berlekamp-Massey
algorithm to establish a true lower bound on the linear complexity. Due to computational
constraints, we terminated the algorithm after processing 2,060,000 bits of input and
observed a linear complexity growing approximately half as fast as the number of bits
analyzed to 1,030,000 at the termination of the algorithm. This behavior is expected, as in
a truly random sequence, the linear complexity should grow approximately half as fast as
the number of bits processed. Note that the scale of what was able to be processed with
the Berlekamp-Massey algorithm is very small relative to the estimate, demonstrating the
need for the estimation algorithm. The linear complexity is also large despite very sparse

32 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

chaining and simple choices for update polynomials; in fact, this construction uses only
slightly more hardware than a 128-bit LFSR. The linear complexity can be increased as
needed with more complicated designs or by adding more MPRs.

5.5.2 Comparison of CMPRs with Filter and Combination Generators

Filter generators, combination generators, and combinations thereof have historically
served as tools to build large-period, nonlinear structures from LFSRs. In this experiment,
we will compare the linear complexities of two similar constructions: one using a traditional
filter and combination structure, and the other using a similar CMPR structure. We
will show that the CMPR can have a much higher linear complexity while using very
similar hardware building blocks. We chose to use a CMPR constructed from the four
smallest Mersenne exponents, {7, 5, 3, 2}, to simplify the necessary computations, such as
the Berlekamp-Massey algorithm. Again, we opt to use the same Galois LFSRs in both
constructions for a more direct comparison. The different primitive polynomials we chose
are shown in Table 7.

Table 7: Chosen MPRs
MPR Name Size Primitive Polynomial Update Polynomial

A 2 x2 + x+ 1 x
B 3 x3 + x2 + 1 x
C 5 x5 + x3 + 1 x
D 7 x7 + x6 + x4 + x+ 1 x

(a) Combination of Filter Generators (b) CMPR

Figure 7: Generator Structure

Figure 7 highlights the high-level similarities and differences between the two different
constructions. The figure excludes the feedback functions for the LFSRs since their structure
is already understood. In both diagrams, an arrow originating from a box represents the
signal output by the labeled bit. Similar to Example 10 and Subsection 5.5.1, the chaining
for the CMPR connects the AND of the two least significant bits of each MPR to the most
significant bit of the next, which is denoted by the arrow into each MPR in Figure 7b.
The outward arrow Si denotes the output stream of values which we measure to calculate
linear complexity. In an attempt to make an even comparison, the combination of filter
generators also uses the AND of the two least significant bits of each MPR. However,
instead of feeding into the next MPR, these sequences are combined again using a nonlinear

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 33

combining function, denoted by the triangle in Figure 7a. This combining function can
be selected from the space of 4-input boolean functions. For example, in the setup of
Figure 7a, using a 4-input NAND gate as the combining function yields a sequence with
linear complexity of 7561. This setup ensures that the MPRs and AND gates used in
Figures 7a and 7b are as similar as possible; the only difference is what is done with the
outputs of the AND gates.

For the combination of filter generators in Figure 7a, using the upper bounds established
in Definitions 25 and 26 and naively composing the upper bounds yields the following
optimistic bound on the linear complexity of the output sequence:

Λ(Si) ≤
∏

i∈{7,5,3,2}

 2∑
j=1

(
i

j

)+ 1

 = 12992

Using the root expression techniques discussed earlier, this upper bound can be lowered to
9744, which we confirmed was achievable using the Berlekamp-Massey algorithm. We also
experimentally determined that the linear complexity of the CMPR shown is 27090 which
is a significant improvement over even the optimistic bound. Thus, use of the CMPR
construction of Figure 7b can compose LFSRs with significantly higher linear complexity
compared to traditional methods like filter and combination generators. Although linear
complexity is far from a direct measure of security, this is a promising result.

6 PRNG Analysis

6.1 Pseudorandom Number Generator Specification
We now apply CMPR theory to a practical use case: pseudorandom number gener-
ator (PRNG) design. We consider a family of 9 different CMPR sizes formed by
first using the 4 smallest Mersenne exponents, then using the 5 smallest, etc., up to
the 12 smallest. Therefore, the largest CMPR size in our family uses MPRs of sizes
2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, and 127. The result is that the 9 CMPRs in this family
have sizes of 17, 30, 47, 66, 97, 158, 247, 354 and 481 bits. These MPRs are chained in
descending order by size (e.g., the chaining function of each MPR only takes input from
larger MPRs). Furthermore, we restrict our chaining functions to consist of 2-, 3- or
4-input AND gates feeding 2- or 3-input XOR gates. We could have used 4-input XOR
gates, but using 3-input XOR gates allows for a more simple representation of the ANF of
the 17-bit CMPR, which is useful for some of the cryptanalytic examples in this section.
Figure 8 shows our smallest CMPR PRNG, which has 17 state bits, and the output is
taken to be the least significant bit of the 17-bit state.

Figure 8: 17-bit CMPR PRNG

34 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

Throughout this section, we use the 17-bit CMPR as a recurring example. The small
size of this CMPR makes it possible to include descriptions in reasonable amounts of space
and detail as well as making certain analyses computationally feasible. The update and
primitive polynomials are given in Table 8, and the randomly generated chaining logic is
described in Table 9.

Table 8: 17-bit CMPR Update and Primitive Polynomials
MPR Size Update Polynomial Primitive Polynomial State Bits
M7 7 U7 = x5 + 1 P7 = x7 + x+ 1 a16a15a14a13a12a11a10
M5 5 U5 = x4 + x+ 1 P5 = x5 + x2 + 1 a9a8a7a6a5
M3 3 U3 = x2 + 1 P3 = x3 + x+ 1 a4a3a2
M2 2 U2 = x+ 1 P2 = x2 + x+ 1 a1a0

Table 9: 17-bit CMPR Chaining Logic
Chaining Function and Bit Affected State Bit Chaining Logic

Bit 0 of C3 a0 1⊕ a6 ⊕ (a2a3a7a13)
Bit 1 of C3 a1 a2 ⊕ a3 ⊕ (a4a9a11a14)
Bit 0 of C2 a2 1⊕ a10 ⊕ (a5a7a11a15)
Bit 1 of C2 a3 a5 ⊕ a7 ⊕ (a8a9a14a15)
Bit 2 of C2 a4 a11 ⊕ a13 ⊕ (a6a7a10a16)
Bit 0 of C1 a5 1⊕ a14 ⊕ (a10a11a12a13)
Bit 1 of C1 a6 a10 ⊕ a15 ⊕ (a11a12a13a14)
Bit 2 of C1 a7 No Chaining
Bit 3 of C1 a8 1⊕ a10 ⊕ (a11a12a14a16)
Bit 4 of C1 a9 a11 ⊕ a12 ⊕ (a13a14a15a16)

6.1.1 Pseudorandom Number Generator Initialization

Each of our CMPR-based PRNGs takes as input a binary seed k. The length of k cannot
exceed n, where n refers to the CMPR size. Once the seed is provided, the bits of the
initial state of the CMPR are loaded with the seed such that the most significant bits of
the seed correspond to the most significant bits of the initial state. If the length of k does
not equal the CMPR size, the remaining least significant bits of the initial state are set to
a fixed value of 1. We recommend that the number of fixed bits be at least the size of the
smallest MPR (e.g., the final MPR with bit a0). Thus, for this family, we require that at
least the two least significant bits be part of the fixed segment.

The CMPR is then clocked a number of times as initialization to randomize the state
of the CMPR. Each clocking of the CMPR is termed an initialization round. Upon
completion of the initialization rounds, the generation of the pseudorandom output z
begins. The number of necessary initialization rounds is not fully understood, but we will
discuss a heuristic approach to the problem. If the chaining functions are approximately
balanced (in that their truth tables contain roughly the same number of ones and zeroes),
we expect it to take approximately two clock cycles for a change to propagate through a
chaining function and cause a change further down the chain of MPRs. For this reason, we
recommend at least 2q initialization rounds, where q is the number of MPRs. Thus, for the
17-bit CMPR shown in Figure 8, q = 4, and we recommend at least 4 ∗ 2 = 8 initialization
rounds. Each bit of the pseudorandom output is generated by taking the least significant
bit of the CMPR per clock cycle, such that zi = a0[i].

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 35

6.1.2 CMPR Pseudorandom Number Generator Design Considerations

To better explain the application of CMPR theory presented in the context of pseudorandom
number generation, it is important to outline the reasoning behind the CMPR PRNG design
choices. Observe that the MPRs in Figure 8 are chained from largest to smallest; that
is, any chaining function from MA →MB is chosen such that length(MA) > length(MB).
This design choice is made to maximize the linear complexity of the CMPR and is consistent
with the results presented in Section 5. Additionally, the CMPR is clocked to sufficiently
randomize the state of the CMPR. While the specific number of initialization rounds is a
rather flexible design choice, initialization to mask the initial state is necessary. When
choosing a bit or combination of bits to generate an output stream from the CMPR state,
bits closest to the least significant bit of the CMPR are preferred in the output generation
since these bits tend to best display the nonlinear effects from the chaining functions from
higher-order MPRs. In our PRNG design, we simply clock the CMPR and do not permute
the internal state or introduce any additional inputs to the internal state besides the seed.
Thus, the bits in the largest MPR evolve linearly since the largest MPR does not intake
any chaining functions from other registers. Bits from the largest MPR should not be
used in output generation since their linearity presents an exploitable vulnerability and
increases the attack surface. Additionally, in our PRNG design, we chose to simply use
the value of the least significant bit over time to generate the output, but we alternatively
could have used a balanced filter function, taking into consideration which bits we used.

6.2 Data Generation and Statistical Analysis
6.2.1 NIST Statistical Test Suite

To verify the random number generation properties and cryptographic security of the CMPR
PRNG output, we applied the NIST Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications [BRS+10] to bitstreams of length 106

generated by the CMPR PRNG from a set of random seeds. 106 is the minimum bitstream
length which ensures that all of the tests in the suite can be applied. The NIST test suite
was applied to the 9 CMPR PRNG sizes from Subsection 6.1, with the modification that
all MPRs use the update function U(x) = x. For statistical testing, we opted to use the
simplest update function U(x) = x to demonstrate that even with the simplest possible
MPR instantiation, the outputs still exhibit desirable statistical properties. The 17-bit
CMPR PRNG consistently failed the FFT test (while passing all other tests) because the
period of the CMPR was too small for the FFT test, which evaluates the periodicity of
the input sequence. However, all other CMPRs passed every test. Although satisfying the
requirements set forth by the NIST test suite alone is not enough to guarantee security,
this is a good indication that reasonably sized CMPR PRNGs (30 bits and above) produce
output streams with good statistical properties.

6.2.2 Bit Contribution Statistical Tests

To further assess the cryptographic strength of the CMPR PRNG, we ran several additional
statistical tests on various versions of the CMPR PRNG. The family of bit contribution
tests includes tests such as the bit contribution for key test, bit contribution for nonce
test, bit contribution for plaintext test [PRKK19], and the similar alternative test for the
strict avalanche criterion [WT86]. These statistical tests are used to measure properties
such as confusion and diffusion [Sha45], completeness [KD79], the avalanche effect [Fei73],
and the strict avalanche criterion [WT86]. The result of this bit contribution for seed test
is a dependence matrix D with the number of rows equal to the length of the seed and the
number of columns equal to the length of bitstream generated. The value D(i, j) in the

36 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

dependence matrix indicates how frequently bit j in the output flips when bit i in the seed
is flipped, across T randomly generated seeds.

For each test, we set the number of trials T to 10,000 as recommended by [PRKK19]. To
pass the test, every value in the dependence matrix should be approximately T/2 = 5000,
as we expect a change in any bit of the seed to cause a change in every bit of the output
with probability 1/2. We can determine if a PRNG passes the bit contribution test through
analysis of the dependence matrix. Statistically, we expect to see each element of the matrix
resemble the binomial distribution Binomial(T, 1/2). This can also be approximated by
the easier-to-calculate normal distribution, Normal(µ = T/2, σ2 = T/4). According to
NIST, a recommended 10, 000 trials yields an interval of 4750 < D(i, j) < 5250 that we
expect the matrix values to fall within with high confidence [PRKK19]. Specifically, for
10,000 trials, we expect each value to fall within that range with a 99.999943% probability.

A preliminary test of the 17-bit CMPR PRNG with no initialization rounds, 500 trials,
and an output of 500 bits revealed that the first few values of the output rarely changed
when we perturbed bits of the seed as part of the bit contribution test. Essentially, without
initialization rounds, the changes made to the bits of the CMPR’s initial state by the
bit contribution test do not have sufficient time to propagate through the entire CMPR
and thus the first few bits of the output are often similar to the first few bits of the
output of a very similar seed, which is undesirable behavior. We determined that in the
case of this particular 17-bit CMPR PRNG, as few as 8 initialization rounds would be
sufficient to yield an output with statistically desirable properties. This led to further
investigation, resulting in the development of the heuristic in Subsection 6.1.1. However,
to be conservative, and ensure that the changes to the initial states of the CMPR in the
bit contribution tests are sufficiently propagated, we use 100 initialization rounds for all
future tests.

A second observation from the preliminary test results is that the final MPR always
contributes linearly to the output because it is never filtered through a chaining function.
Thus, for these CMPR PRNGs (which have a least significant MPR of size two), any
changes made to the least significant two bits cause a predictable pattern of changes in
the output. This is the reason why the CMPR PRNG specification in Subsection 6.1.1
states that the fixed segment of the initial state of the CMPR must be at least the size
of the last MPR. Thus, for all our tests on the 17-bit, 30-bit, and 47-bit CMPR PRNGs,
we have seeds of length 15, 28, and 45 respectively, no initialization vectors, and the two
least significant bits fixed. Subsequently, when we ran the bit contribution for seed test
on the 17-bit, 30-bit, and 47-bit CMPR PRNGs, we used 10,000 trials, 100 initialization
rounds, and generated a pseudorandom output of 128 bits. The resulting dependence
matrices were analyzed using the NIST recommended bound of [4750, 5250]; the results
are displayed in Table 10.

Table 10: Ranges of different bit contribution tests
CMPR size D(i, j) minimum value D(i, j) maximum value Passes NIST bound

17 4808 5220 yes
30 4830 5181 yes
47 4820 5169 yes

According to the range given by NIST, all tested CMPR PRNGs pass. However, visually
inspecting the data offers additional insights. Figures 9, 10 and 11 show histograms of
the data for the 17-bit, 30-bit, and 47-bit tests respectively, with the expected normal
and binomial distributions overlaid. In each figure, subfigure (a) shows the actual data,
while subfigure (b) shows histogram groupings of 20, which allows the distribution to be
perceived more easily. The values in the 17-bit dependence matrix are concentrated more
heavily in the tails of the distribution and have larger variance than expected, indicating a
slight statistical weakness. However, this effect seems to disappear in larger tests, as both

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 37

the 30-bit and 47-bit tests seem to closely follow the expected distribution. We suspect
that the 17-bit CMPR is too small and thus displays non-random behavior that vanishes
as the size is increased, similar to the results observed in Subsection 6.2.1. However,
again, the distributions for the larger CMPRs we tested appear to follow the expected
distribution. Overall, the results of the bit contribution for seed test constitute strong
experimental evidence that for reasonable sizes, even simple CMPR PRNGs exhibit a
complicated relationship between seed and output stream; a change of a single bit of the
seed changes each bit in the output with 50% probability.

(a) Values with Grouping of 1 (b) Values with Grouping of 20

Figure 9: 17-Bit CMPR PRNG: Distribution of Bit Contribution Test Matrix Values

(a) Values with Grouping of 1 (b) Values with Grouping of 20

Figure 10: 30-Bit CMPR PRNG: Distribution of Bit Contribution Test Matrix Values

(a) Values with Grouping of 1 (b) Values with Grouping of 20

Figure 11: 47-Bit CMPR PRNG: Distribution of Bit Contribution Test Matrix Values

38 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

6.3 Cryptanalysis
6.3.1 Setup

To analyze the cryptographic weaknesses of a CMPR-based PRNG, the authors of this
paper were divided into two teams, offensive and defensive, to model a real-world attack
scenario. The defensive team generated a small PRNG which the offensive team then
tried to break by either finding the initial state or predicting the future output. Similar to
Subsections 6.1 and 6.2, we use the 17-bit example CMPR. Although there are obvious
weaknesses due to the small size, using this PRNG simplified the attack process. This
allowed us to obtain a better understanding of the process and help determine which types
of attacks are likely to work on larger CMPRs.

The design the defensive team chose was a simple PRNG scheme where the least
significant bit of a 17-bit CMPR was used directly as pseudorandom output. Although
this is insecure due to the small size of the CMPR, we wanted to start by finding successful
attacks on smaller and weaker variants as a proof-of-concept. Full knowledge of the CMPR,
including all primitive polynomials, update polynomials, and chaining functions were
provided to the offensive team, as well as a working model of the system. The CMPR
consists of 4 MPRs with sizes 7, 5, 3, and 2, chained in descending order (7 feeds 5, etc.).
Table 8 shows the update and primitive polynomials chosen for these MPRs. Using the
update polynomial, primitive polynomial, and chaining, the full ANF used for the 17-bit
CMPR is as follows:

c16[t+ 1] = c11[t]⊕ c16[t]
c15[t+ 1] = c10[t]⊕ c15[t]⊕ c16[t]
c14[t+ 1] = c15[t]⊕ c16[t]⊕ c14[t]
c13[t+ 1] = c15[t]⊕ c14[t]⊕ c13[t]
c12[t+ 1] = c12[t]⊕ c14[t]⊕ c13[t]
c11[t+ 1] = c11[t]⊕ c12[t]⊕ c13[t]
c10[t+ 1] = c10[t]⊕ c12[t]

c9[t+ 1] = c9[t]⊕ c5[t]⊕ c11[t]⊕ c12[t]⊕ (c13[t]c14[t]c15[t]c16[t])
c8[t+ 1] = 1⊕ c9[t]⊕ c8[t]⊕ c10[t]⊕ (c11[t]c12[t]c14[t]c16[t])
c7[t+ 1] = c8[t]⊕ c7[t]⊕ c10[t]⊕ c15[t]⊕ (c11[t]c12[t]c13[t]c14[t])
c6[t+ 1] = c5[t]⊕ c6[t]⊕ c7[t]
c5[t+ 1] = 1⊕ c6[t]⊕ c5[t]⊕ c14[t]⊕ (c10[t]c11[t]c12[t]c13[t])

c4[t+ 1] = c2[t]⊕ c11[t]⊕ c13[t]⊕ (c6[t]c7[t]c10[t]c16[t])
c3[t+ 1] = c5[t]⊕ c7[t]⊕ c4[t]⊕ (c8[t]c9[t]c14[t]c15[t])
c2[t+ 1] = 1⊕ c2[t]⊕ c3[t]⊕ c10[t]⊕ (c5[t]c7[t]c11[t]c15[t])

c1[t+ 1] = c3[t]⊕ c2[t]⊕ c0[t]⊕ (c4[t]c9[t]c11[t]c14[t])
c0[t+ 1] = 1⊕ c1[t]⊕ c6[t]⊕ c0[t]⊕ (c2[t]c3[t]c7[t]c13[t])

For a baseline, the offensive team implemented a brute force attack running through the
(22 − 1)(23 − 1)(25 − 1)(27 − 1) = 82,677 states in the main cycle of the CMPR. In the
sections to follow, various approaches and attempts by the offensive team to break the
PRNG are described.

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 39

6.3.2 Algebraic Attacks

Algebraic attacks, as described by Courtois and Meier [CM03], analyze a system by
constructing a set of multivariate polynomial equations that relate the known variables to
the desired variables. Given enough equations, the system is over-constrained, and various
techniques exist for solving the desired variables. In the given system, the only known
output is the pseudorandom output streams, and the desired variables are the seed bits.
Equations for output bits in terms of initial state can be obtained simply by composing the
ANF of the CMPR over multiple cycles. Example 11 gives the first and second equations.

Example 11.

c0[1] = 1⊕ c1[0]⊕ c6[0]⊕ c0[0]⊕ (c2[0]c3[0]c7[0]c13[0])
c0[2] = 1⊕ c1[1]⊕ c6[1]⊕ c0[1]⊕ (c2[1]c3[1]c7[1]c13[1])

= c3[0]⊕ c2[0]⊕ c5[0]⊕ c7[0]⊕ c1[0]⊕ (c4[0]c9[0]c11[0]c14[0])
⊕ (c2[0]c3[0]c7[0]c13[0])⊕ (c2[1]c3[1]c7[1]c13[1])

The second equation leaves four bits in terms of the first clock cycle instead of the initial
state for readability – after multiplying the composed polynomials, the second equation
has 157 terms.

The straightforward approach would be to solve the system of equations once it is
over-constrained. Resistance to algebraic attacks is rooted in the difficulty of solving
multivariate polynomial equations, a problem which is NP-complete even with quadratic
equations modulo 2 [CP03] [DS09]. Due to the non-linearity of the chaining functions, new
high-degree terms are introduced each clock cycle and generally persist from cycle to cycle
until a bound is reached. The attack team generated equations for the first 17 output bits
of the PRNG. The precise number of monomials and degree of these equations are shown
in Figure 12.

Figure 12: Number of Monomials and Degree of Composed Equations

Even for a small, obviously insecure, CMPR such as this, carrying out the algebraic
attack involves solving a system of polynomials of degree 11 with over 6000 terms in each
polynomial equation. In addition to the difficulty of solving these equations, generating
them was a nontrivial task. Part of our reason for using an example as small as 17 bits
is that we could not feasibly generate this data for larger examples. However, this small
example allows us to demonstrate the reasons that the attack is difficult to apply, especially
as the system scales. In general, the number of possible monomials in a CMPR equation
is slightly greater than the linear complexity. In a random equation of this form, we would
expect roughly 1

2 of these monomials to be present. The linear complexity of this 17-bit

40 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

CMPR is 12,387, which is the number of possible monomials. Thus, we would expect
the number of monomials to plateau just above 6000; the graph confirms this behavior.
CMPRs can achieve high linear complexity (and thus high degree and number of monomials
in their equations). We believe an algebraic attack would require solving an infeasibly
large system of equations, and thus the straightforward approach to algebraic attacks is
slower than brute force in all but exceptionally sparse and low-degree constructions.

Linearization is a simple technique for solving the system of equations by substituting
nonlinear terms with new independent variables to solve the resulting linear system with
methods such as Gaussian elimination [DS09]. Concerning the equations for the resulting
PRNG found using composition (see Example 11), linearization is extremely inefficient
given the number of nonlinear terms in each equation that would have to be replaced; the
third equation has 3777 alone. One idea the attack team had to cope with this was to
avoid composing variables of nonlinear terms (such as the second equation in Example 11);
however, the resulting system still has 151 unique variables. Even with sub-cubic methods
to solve the system of equations, this approach is infeasible due to the number of nonlinear
terms in the equations.

Alternate algorithms exist with the intent of reducing the complexity of finding
solutions to the system of equations. One example is with the use of a Gröbner Basis
algorithm such as Buchberger’s algorithm [AFI+04] or the F4 algorithm [Fau99]. Buch-
berger’s algorithm has exponential or worse runtime [CKPS00]. The F4 algorithm is at
least an order of magnitude faster but does not improve the worst-case complexity [Fau99].
Another example is the XL algorithm [CKPS00]. In [AFI+04], however, it was shown
to be a redundant version of F4. Due to the expected inefficiency of these algorithms,
in conjunction with the difficulty of generating the many large equations in the first
place, the attack team did not consider these alternate algorithms to be a fruitful area of
investigation.

Fast Algebraic Attacks, see [Cou03] and [Arm04], use boolean functions describing
the system in the form:

F (Lt(K), . . . , Lt+δ(K), k[0], . . . , k[t+ δ]) = 0

where k[t] is the output bit at time t, K is the seed, and Lt is a linear boolean function at
time t describing the update of a component in the system. Thus, Fast Algebraic Attacks
are not immediately applicable to CMPRs because the internal state does not update
linearly.

Correlation Attacks explored the vulnerability of the CMPR to a variety of ap-
proaches, including fast correlation attacks. These are divide-and-conquer-based techniques
that attempt to recover the initial state of every constituent MPR by exploiting observed
relationships between these components with knowledge of some output bits, along with
linear relations to compute implied probabilities that output bits match the state of the
CMPR at any time t based on constructed and observed parity relationships between MPR
bits.

To implement a fast correlation attack on the 17-bit CMPR PRNG, the PRNG was
clocked to produce output bits, aiming to exploit statistical correlations between the
output bits and the states of the MPRs. For this 17-bit CMPR composed of 2-bit, 3-bit,
5-bit, and 7-bit MPRs chained together, around 60 clock cycles were utilized to generate a
sufficient number of output bits for the attack. Using these output bits, 32 relations were
constructed by identifying patterns between these output bits and the internal states of
each MPR. However, the attack failed primarily due to under-constraining in the early
clock cycles, resulting in a system of equations that was rank-deficient. Another key
reason for failure was that the relations constructed were negligible probabilistically in
the correlations between keystream bits and internal state bits they provided, such that
information gain about an internal MPR bit from knowing a keystream bit for the relations
was not greater than that provided by a random guess of the MPR bit state.

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 41

In the early stages, the limited output bits led to fewer relations than needed to constrain
the internal states. With the number of equations m (the relationships formed) being less
than the number of variables n (the internal states), the system became under-constrained:
rank(A) < n (which implies infinitely many solutions) where rank(A) is the rank of the
matrix A representing these relations. This rank deficiency created significant ambiguity,
compounded by weak correlations represented as follows: C(X,Y) ≈ 0 where the metric
C(X,Y) used for the attack was Pearson’s correlation coefficient between output bits X
(the generated output bits) and internal states Y (the states of the MPRs), indicating that
the output provided little information about the internal states. While additional clock
cycles produced more output bits, the added complexity did not resolve the uncertainties
from the early stages. The probabilities associated with the MPR states remained largely
unchanged P (S|K) ≈ P (S) where P (S|K) is the conditional probability of the MPR states
S (the specific states to be recovered) given the observed output bits K (the bits produced
during the attack). This suggests that knowing the output and MPR construction (across
different correlational statistics) did not significantly alter the probabilities of the internal
states, further obfuscating internal state retrieval. As such, the combination of early
under-constraining, the rank deficiency of the relations, and weak correlations between
output and internal states ultimately led to the failure of the correlation attack on the
CMPR.

6.3.3 Cube Attacks and Cube Testers

The Cube Attack, defined in [DS09], treats the system as a black box polynomial p in
terms of the seed bits x[0], . . . , x[n− 1] and tries to solve for those bits. I ⊂ {0, . . . , n− 1}
represents a subset of variables, and tI is the product of those variables. For example,
if I = {0, 1, 3} then tI = x[0]x[1]x[3]. The paper [DS09] describes how the black box
polynomial may be rewritten as follows:

p(x[0], . . . , x[n− 1]) = tIpS(I) ⊕ q(x[0], . . . , x[n− 1])

where pS(I) is referred to as the superpoly of I in p and q is the remainder. When the
superpoly is linear, then tI is referred to as a maxterm. A cube is a set of all possible
assignments of 0/1 to the variables in tI . For a vector v in the cube, p|v is the derived
variable for v and pI is the sum of derived polynomials over the cube. The main observation
of the paper (Theorem 1 in [DS09]) is the following: for any polynomial p and index set
I, pI ≡ pS(I) mod 2. This allows superpolys to be computed by summing over the cube.
Thus, the idea behind cube attacks is to search for maxterms in an offline phase, use them
to obtain linear superpolys (using Theorem 2 in [DS09]), and then solve the resulting
system of linear equations combined with brute force if the seed bits are not entirely covered.

In our initial attempts, we searched for maxterms by computing a uniformly random
index subset I to determine if pS(I) is linear (i.e., a maxterm). We were unable to find
sufficiently many maxterms to perform a successful cube attack. In the following sections,
we introduce the concept of monomial profiles to exploit a regularity in the CMPR, and
then we describe how this vulnerability can be fixed.

6.3.3.1 Monomial Profiles: Notation and Definitions
To evaluate the susceptibility of the CMPR construction to cube attacks, we introduce
the concept of monomial profiles, which capture the distribution of monomials that may
appear in the ANF of the CMPR at different indices.

Definition 33 (Monomial Profile). We assign a formal expression to the sequence of
polynomials produced by a feedback register, where this expression represents the set of
monomials that can appear in any of the polynomials. In the context of CMPRs, this

42 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

formal expression, called a monomial profile, consists of pairs ⟨e;w⟩ which correspond to
sets of all monomials where:

• the variables are chosen from the constituent MPR of size e

• the number of variables chosen from the constituent MPR is between 1 and w,
inclusive.

The product of any number of pairs corresponds to the set of monomials that can be
formed by taking the product of monomials where exactly one monomial comes from each
pair in the product. The addition of any number of expressions corresponds to the union
of their corresponding sets of monomials.

Example 12. Consider a 17-bit CMPR constructed from a 7-bit MPR (bits 10-16), 5-bit
MPR (bits 5-9), 3-bit MPR (bits 2-4), and 2-bit MPR (bits 0-1). Consider the monomial
profile

⟨7; 4⟩⟨5; 2⟩+ ⟨3; 2⟩⟨2; 1⟩
Monomials which satisfy this profile will have either:

• between 1 and 4 variables from the 7-bit MPR multiplied with between 1 and 2
variables from the 5-bit MPR (e.g., x16x13x7x6), or

• between 1 and 2 variables from the 3-bit MPR multiplied with 1 variable from the
2-bit MPR (e.g., x3x2x0).

The monomial profile of a CMPR allows us to describe the upper bounds on the number
and degree of monomials within a function (in this case the polynomial representation of
the bit relationships in each MPR). e and w were chosen to be reminiscent of the root
expressions introduced in Section 5.2, as monomial profiles and root expressions exhibit
very similar properties.
Proposition 1. Propositions 1-5 (Section 5.2) for root expressions also hold for monomial
profiles.

Proof. Below, we reason about how Propositions 1-5 from Section 5.2 also apply to
monomial profiles.

1. For a monomial that is the product of d variables from an e−bit MPR, there are
(

e
d

)
such monomials. Then, summing over all possible monomial degrees between 1 and
w gives the total number of possible monomials of degree 1 to w. The equation for
this is the following:

|⟨e;w⟩| =
w∑

i=1

(
e

i

)
2. If all variables used to form a monomial come from the same e−bit MPR, then the

number of variables in the product (degree) of a set of such monomials must be at
least 1 and less than or equal to the sum of the number of variables in each monomial.
The equation for this is the following:

k∏
i=1
⟨e;wi⟩ =

〈
e;

k∑
i=1

wi

〉

3. If monomials are selected from different MPRs, then the total number of ways to pick
monomials is equivalent to the product of the number of ways to pick monomials
from each MPR. The product of each combination of monomials yields a different
monomial in the product. The equation for this is the following:∣∣∣∣∣

k∏
i=1
⟨ei;wi⟩

∣∣∣∣∣ =
k∏

i=1
|⟨ei;wi⟩|

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 43

4. Consider two monomial profiles E1 and E2. |E1 + E2| = |E1 ∪ E2|, which follows
immediately from Definition 33, and |E1 ∪ E2| = |E1|+ |E2| − |E1 ∩ E2|, from the
principle of inclusion-exclusion. In total, the result is the following:

|E1 + E2| = |E1 ∪ E2| = |E1|+ |E2| − |E1 ∩ E2|

5. Let E1 and E2 be two monomial profiles. If the sets of MPRs used to form the
monomial profiles are not identical, then E1 ∩ E2 is empty because if the two sets
are not identical, then there must be at least one pair ⟨e;w⟩ that appears in one
product, but not the other. Consider an arbitrary monomial m in the intersection
of E1 and E2. Because m is in the monomial profile that contains ⟨e;w⟩, m must
have at least one of the variables in the MPR corresponding to e. However, because
m is also in the monomial profile which does not contain ⟨e;w⟩, m cannot have any
variable coming from the MPR corresponding to e. This is a contradiction which
shows that the intersection of E1 and E2 is empty, or

E1 ∩ E2 = ∅

Otherwise, if two products of coset classes have the same set of MPRs {e1, . . . , ek},
then any monomial which has less between 1 and the minimum number of variables
allowed for each MPR, is in both products. Thus,

E1 ∩ E2 =
(

k∏
i=1
⟨ei;w1,i⟩

)
∩

(
k∏

i=1
⟨ei;w2,i⟩

)
=
(

k∏
i=1
⟨ei; min (w1,i, w2,i)⟩

)

6.3.3.2 A Successful Cube Attack Implementation
In this section, we introduce the strategy of decrementing the monomial profile of a CMPR
in order to efficiently search for cube candidates. When decrementing, for each product
of pairs T in the monomial profile and for each pair ⟨e;w⟩ in T , we include the similar
product T ′, which contains ⟨e;w − 1⟩ in place of ⟨e;w⟩. If w = 1, then the pair is omitted
from T ′. Lastly, if there exists a second product T̂ in the monomial profile such that
T̂ ̸= T and T̂ ∩ T ′ = T ′, then we do not include T ′ in the set of decremented profiles.

Example 13. Consider the the monomial profile used in Example 12:

⟨7; 4⟩⟨5; 2⟩+ ⟨3; 2⟩⟨2; 1⟩

Decrementing yields the possible monomial profiles ⟨7; 3⟩⟨5; 2⟩, ⟨7; 4⟩⟨5; 1⟩, ⟨3; 1⟩⟨2; 1⟩, or
⟨3; 2⟩. In the case of a CMPR, this would suggest that any cube would have variables
corresponding to these resulting profiles:

• 3 variables from the 7-bit MPR multiplied with 2 variables from the 5-bit MPR
• 4 variables from the 7-bit MPR multiplied with 1 variable from the 5-bit MPR
• 1 variable from the 3-bit MPR multiplied with 1 variable from the 2-bit MPR
• 2 variables from the 3-bit MPR

The key insight of our cube attack strategy is that for any monomial which has variables
exactly according to one of these decremented profiles has a superpoly with degree at most
one. This can be observed from the fact that if the superpoly were of degree greater than
one, then by the equation in Section 6.3.3, there would be a term in p(x[0], . . . , x[n− 1])
with more variables than allowed by the monomial profile. If we assume that every
monomial allowed by the monomial profile appears in p(x[0], . . . , x[n− 1]) with probability

44 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

1
2 (which is in line with our empirical observations in Section 6.3.2), then this means that
any monomial chosen according to the decremented profiles is highly likely to be a cube.
In fact, this decrementing strategy can be seen as a generalization of the idea of d−random
polynomials in [DS09].

Returning to our 17-bit CMPR from Section 6.1, the monomial profile is more compli-
cated, but can be computed using Algorithm 1, which yields the monomial profile

⟨2; 1⟩+ ⟨3; 1⟩+ ⟨7; 7⟩⟨5; 2⟩⟨3; 1⟩+ ⟨7; 3⟩⟨5; 3⟩⟨3; 1⟩+ ⟨7; 7⟩⟨3; 1⟩+ ⟨7; 1⟩⟨5; 1⟩⟨3; 2⟩
+ ⟨7; 5⟩⟨3; 2⟩+ ⟨5; 1⟩+ ⟨7; 7⟩, ⟨5; 4⟩+ ⟨7; 5⟩⟨5; 5⟩+ ⟨7; 7⟩

Decrementing this monomial profile yields the cube candidates in Table 11.

Table 11: Cube Profile Summary
Cube Profile Status

<5;1><3;2> Valid Cube

<7;2><5;3><3;1> Cube Requires Key Bits

<7;4><3;2> Cube Requires Key Bits

<7;6><5;2><3;1> Cube Requires Key Bits

<7;7><5;1><3;1> Cube Requires Key Bits

<7;4><5;5> Cube Requires Key Bits

<7;6><5;4> Cube Requires Key Bits

<7;7><5;3> Cube Requires Key Bits

The monomial profiling in Table 11 was used for cube selection for our cube attack of
the 17-bit CMPR. Due to saturation, all monomial profiles eventually become identical
after a certain point. Moreover, cubes that require key bits, or bits of the CMPR that are
initialized with the nontweakable variables, cannot be used for the cube attack. The generic
cube attack model only allows for tweaking public variables such as an IV. As a result,
only one cube was found. The cube used was {x2, x3, x5}, where x2 and x3 (bits 2 and
3) both belong to the 3-bit MPR, and x5 represents the least significant bit of the 5-bit MPR.

6.3.3.3 Modified CMPR Construction
To resolve the vulnerability found with the monomial profile-based cube attack, we present
a modified construction of the CMPR, where each block Mi chains only from the previous
block Mi−1 (see Definition 22 for more details). Thus, we can restrict the monomial
expression (ME) to the following representation:

MEi+1 = (MEi)d + ⟨si+1; 1⟩

where d is the degree of chaining, and ⟨si+1; 1⟩ introduces one variable from the (i+ 1)-th
MPR.

We also introduce a concept of degree redistribution to describe how terms from earlier
MPRs can trade degrees with terms in a current MPR block.

Definition 34. Degree Redistribution: Consider two consecutive blocks Mi and
Mi+1 with respective monomial profiles ⟨si; di⟩ and ⟨si+1; di+1⟩. The degree redistribution
property implies that for each term ⟨si+1; di+1⟩ in the profile of Mi+1, it is possible to

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 45

express that term as a combination of variables from the earlier block Mi. Specifically,
reducing the number of variables selected from the (i+ 1)-th block by 1 (i.e., decrementing
di+1 by 1) can be compensated by selecting additional variables from the i-th block.
Formally, the total degree constraint for such terms can be expressed as follows:

di + di+1 = D

where D is the total degree assigned to the combined expression involving both Mi and
Mi+1.

For any block Mi, redistributing the degree between blocks means that reducing the
number of selected variables from the later block Mi+1 results in an increase in the number
of selected variables from the earlier block Mi, ensuring that the total degree remains
constant.

Using the concept of degree distribution, we demonstrate that the proposed chaining
structure in this section, where Mi only receives chaining functions from the prior MPR
Mi−1, is a sufficient condition for preventing cube attacks.

We now analyze the root expressions for each block, in order to verify that the root
expression for each MPR (excluding the largest MPR) contains nonlinear terms even when
the cube attack from Subsection 6.3.3.2 is applied. Each root expression REi is built
recursively by combining terms from the previous root expression REi−1 raised to a power
d, along with a new term from the current block:

REi = (REi−1)d + ⟨si; 1⟩

This chaining ensures that every new block’s root expression depends on the degree d
and previous terms. This creates a structure where degree redistribution can occur across
blocks. With this redistribution, decrementing a term in a monomial profile (e.g., reducing
di+1 in ⟨si+1; di+1⟩) results in the introduction of terms with additional variables from
earlier blocks (e.g., an increase in di in ⟨si; di⟩). This process leads to the emergence of
nonlinear terms in the resulting expression, even when attempting to decrement variables
from later blocks which prevents the cube attack from simplifying the overall expression
to a linear or constant form (maxterm).

Given this property of redistribution, there are two cases to consider when the attacker
performs a cube attack (while exploiting the monomial profile) and decrements terms in
the monomial profile to isolate cube candidates. Consider a monomial profile of the form:

MPi = ⟨s1; d1⟩⟨s2; d2⟩ . . . ⟨si; di⟩

where ⟨sj ; dj⟩ represents dj variables selected from the sj-bit register and i denotes the
number of MPRs that appear in the monomial profile.

Suppose the attacker attempts to decrement ⟨sj ; dj⟩ for some j < i. By degree
redistribution, the resulting monomial profile still contains nonlinear terms, preventing the
cube attack from reducing the polynomial to a linear or constant form and formation of
maxterms.

Otherwise, consider the reduction of the monomial profile ⟨si; di⟩ for decrementing
to exploit the monomial profile computed during the offline phase, such an attack is
constrained by the fact that, in our PRNG design, the top block corresponds to the key
bits, which cannot be flipped during the cube attack. Therefore, attempts to decrement
⟨si; di⟩ are not feasible, as the attacker lacks control over these key bits.

Chaining each block in the CMPR system from only the previous block is hence a
sufficient condition for preventing cube attacks, and formalizes a strong construction for
the CMPR.

46 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

6.3.3.4 Key-Independent Distinguishers and Cube Testers
Key-independent distinguisher attacks distinguish the output of a cryptographic scheme
from random data, under the assumption that the distinguishing attack can be performed
without knowledge of the key and only knowledge of public variables, such as an IV,
can be modified [COOP23]. To analyze the susceptibility of CMPR-based designs to
key-independent distinguishers, we refer to cube testers [ADMS09], which apply a similar
methodology to cube attacks but aim to detect nonrandom behavior in the output of a
cryptographic scheme by tweaking public variables and holding the key constant. Cube
testers, which we will also refer to as cube distinguishers, are highly applicable to cryp-
tographic schemes where the input-output relation can be represented by polynomials
of known degree, which is the case for CMPRs, since the polynomial representation of a
CMPR is captured by its monomial profile. The main observation we use when applying
cube testers to CMPR-based designs is that for a tweakable black box polynomial (in this
case, the polynomial relation between the initial CMPR state and output, which we will
call the output polynomial) of degree at most d in the tweakable variables, evaluating the
polynomial over any cube of size d+ 1 or greater yields the zero polynomial, meaning the
computational cost of a cube tester is 2d+1.

Generally, to find the lowest-cost cube tester that can be applied to a CMPR-based
design, we must determine which tweakable variables in the output polynomial have the
lowest degree d, which depends heavily on the specifics of the design, namely the number of
constituent MPRs and the number of AND gate inputs to the chaining functions. In order
for a cube distinguisher to be infeasible, d+ 1 must be large enough so that it is infeasible
for an attacker to perform the required 2d+1 computations. That is, if a CMPR-based
design is to to resist cube testers, the tweakable variables in the output polynomial must
be of sufficiently high degree such that it is infeasible to perform 2d+1 computations.

6.3.3.5 A Successful Cube Tester Implementation
Consider the case of our PRNG in Figure 8, where the output is extracted from the least
significant bit of the 2-bit MPR. Let the 7-bit MPR be initialized with nontweakable
variables, and the 5 and 3-bit MPRs be initialized with tweakable variables. The 2-bit
MPR is also initialized with nontweakable variables. So, the internal state includes 8
tweakable bits, initially stored in the 5- and 3-bit MPRs. We will also assume that the
modified CMPR construction from Subsection 6.3.3.3 is being used; thus, the chaining
functions in the CMPR construction can only connect from one MPR to the next, and a
chaining function from a given MPR cannot connect to multiple MPRs.

The tweakable variables in the 3-bit MPR only go through the chaining functions
between the 3-bit MPR and 2-bit MPR, and these chaining functions use AND gates
with at most 4 inputs. Thus, we can initially state that the chaining functions are of
at most degree 4. However, due the use of a 3-bit MPR as the 2nd-to-last MPR in the
construction, this PRNG is a special case where an optimization can be made: when
designing the chaining functions between the 3- and 2-bit MPRs, we can only use the 3
state variables from the 3-bit MPR as AND gate inputs, since we are using the modified
CMPR construction. If we can only select from 3 state variables for the AND gate inputs,
then the actual degree of the chaining functions between the 3- and 2-bit MPRs is 3. In
the output polynomial, which is obtained from the least-significant bit of the 2-bit MPR,
the tweakable variables from the 3-bit MPR have at most degree 3. We have found that
d = 3, so the cube tester requires 2d+1 = 16 computations. For the computations, the 8-bit
vector of tweakable inputs to the PRNG is constructed such that the input varies in the 4
least significant bits, taking on all possible values of 4 bits. The rest of the input vector
remains constant. For the 16 inputs, we obtain 16 outputs of equal length. Subsequently,
we take the XOR of all 16 outputs, which is equivalent to summing over a 4−dimensional
cube. Thus, the cube tester has been successfully implemented, and the PRNG outputs

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 47

have been distinguished from true random values.

6.3.3.6 Resisting Cube Testers
In the case where the output is extracted from the smallest MPR, resisting cube testers
requires that in the output polynomial, the degree d of the variables from the last tweakable
MPR in the construction must be large enough such that it is infeasible for an attacker to
perform 2d+1 computations. For example, consider a CMPR designed using our modified
CMPR construction from Subsection 6.3.3.3, where the chaining functions are only from
one MPR to the next. In this section, the degree of the chaining (maximum number of
AND gate inputs) is k and the number of nontweakable MPRs between the last tweakable
MPR and the output extraction MPR is n. The variables from the last tweakable MPR
pass through n+ 1 stages of kth−degree chaining functions, with each stage contributing
a multiplying factor of k to the degree of these variables in the output polynomial. Then,
the degree d of the tweakable variables in the output polynomial is d = kn+1. Thus, the
cube tester requires at least 2d+1 = 2kn+1+1 computations. This number grows rapidly
with respect to n. For example, if k = 4 (as in the case of our PRNG design), then n = 2
additional fixed MPRs results in over 264 computations and n = 3 additional fixed MPRs
results in over 2256 computations being required for the cube tester.

Generally, the degree of the tweakable variables from the last tweakable MPR in the
output polynomial can be increased by (i) including additional nontweakable MPRs (MPRs
initialized to constant values that are not tweakable by an attacker) between the last
tweakable MPR and the MPR from which the output is extracted or (ii) permuting the
state of the CMPR during initialization (for example, swapping the upper and lower halves
of the state halfway through the initialization rounds). Solutions (i) and (ii) both ensure
that all bits in the initial state, including tweakable variables, pass through several stages
of chaining functions between MPRs, resulting in the output polynomial terms that include
tweakable variables having a sufficiently high degree to resist cube distinguishers. However,
applying solution (i) requires paying careful attention to the Mersenne exponents used. For
example, when including additional nontweakable MPRs, it is important that the Mersenne
exponents of the additional MPRs be greater than the number of AND gate inputs to the
chaining functions, so that the optimization made in Subsection 6.3.3.5 cannot be applied.
In addition, we note that applying solution (ii) means that the assumption that state
bits are not permuted as explained in Subsection 6.1.2 is no longer true; however, this
is not a problem at all as permuting the internal state with a single swap only enhances
cryptographic properties such as confusion and diffusion.

From a design perspective, solutions (i) and (ii) both incur additional hardware
implementation cost. The hardware implementation cost of solution (i) depends largely
on the Mersenne exponents used in the CMPR before the solution is applied. These
Mersenne exponents will limit the new MPRs that can be added. For example, if adding
MPRs to resist cube testers, one must be careful when using MPRs of identical size in a
CMPR construction, since our theory in Subsection 3 assumes coprimality of the MPR
periods for analyzing the period of a CMPR. Solution (i) also results in additional latency,
since the size of the CMPR increases and more time is needed to clock a larger register.
However, solution (ii) is more efficient to implement in hardware as no new MPRs or
chaining functions are needed. In our implementations, only one clock cycle of latency is
introduced, with the one additional clock cycle being used to permute the internal state of
the CMPR. In general, however, we believe that it is possible to implement solution (ii)
without introducing a clock cycle of latency by applying optimization techniques such as
implementing a custom circular shift function in the hardware description code for the
CMPR.

48 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

6.3.4 Linear Complexity Analysis Algorithms

The Berlekamp-Massey Algorithm [Mas69] finds the smallest LFSR that could produce
the pseudorandom output of the CMPR. This would be considered an attack if it could
be done faster than brute force. As mentioned in Subsection 6.3.4, the linear complexity
of our 17-bit CMPR PRNG output was empirically determined to be 12,387. Based on
the algorithm runtime in conjunction with the huge number of output bits needed to
implement it, we believe that the Berlekamp-Massey Algorithm is not considered an attack
unless the construction is sparse and of low degree. Otherwise, if the chaining functions
use degree 4 and chaining functions are applied to nearly every state bit (as is the case
in our PRNG design), the linear complexity of the CMPR output quickly grows as the
CMPR is clocked and output bits are generated.
The Estimation Algorithm described in Section 5 should also not be viewed as an attack,
as it does not necessarily find the specific LFSR recurrence like the Berlekamp-Massey
algorithm, but rather finds the degrees of possible characteristic polynomials. We believe
this information is of little use to an attacker when the CMPR avoids sparse or low-degree
constructions.

6.3.5 Linear Cryptanalysis

Presented in [Mat94] by Matsui, linear cryptanalysis tries to obtain a linear approximation
for a given cryptographic algorithm. Let Pi denote plaintext bits at index i, Cj denote
pseudorandom output bits at index j, and Kl denote seed bits at register l. These linear
approximate equations are in the form:

P1 ⊕ P2 ⊕ . . . C1 ⊕ C2 ⊕ . . . = K1 ⊕K2 . . .

One method of generating linearized equations is to reuse the equations obtained from
the algebraic attack in Section 6.3.2 and remove nonlinear terms. For example, we could
linearly approximate the first and second equations for the least-significant bit our 17-bit
CMPR construction as follows:

C0(1) = 1⊕ C1(0)⊕ C6(0)⊕ C0(0)
C0(2) = C3(0)⊕ C2(0)⊕ C5(0)⊕ C7(0)⊕ C1(0)

Figure 13 shows the probability that the linearized equation is accurate with respect to
clock cycles. Although this strategy gives equations that hold with high probability for the
first couple of clock cycles, after a few additional initialization rounds, the probabilities are
approximately random. We were unable to derive any other strategy for finding meaningful
linearizations. Thus, we were unable to derive a meaningful attack using this approach.

6.3.6 Cryptanalysis Conclusion

After modifying the chaining structure of our CMPR construction and adding a state swap
in order to resist cube attacks and cube testers, the offensive team was unable to find an
attack on the 17-bit PRNG with everything known but the initial state of the CMPR.
Nonetheless, this PRNG could be made more cryptographically secure by employing several
different techniques, including increasing the size of the CMPR, withholding information
about the CMPR specifications such as the chaining functions, using reconfigurable logic to
make the update polynomials variable increasing the search space by size proportional to the
order of the field, and introducing additional initialization rounds before the pseudorandom
output is generated.

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 49

Figure 13: Probability of Linear Approximate Equations Holding with Respect to Initial-
ization Rounds

7 Stream Cipher Design and Comparison
In this section, we propose a new class of CMPR-based stream ciphers and provide detailed
comparisons with TRIVIUM [De 06; DP08]. Due to being a lightweight, NLFSR-based
stream cipher, we consider TRIVIUM to be a viable target for comparison with our new
CMPR-based stream ciphers.

We begin in Subsection 7.1 by proposing three CMPR-based stream ciphers. Then, in
Subsection 7.2, we continue with a discussion of the design choices involved in the design
of CMPR-based stream ciphers. Next, in Subsection 7.3 we discuss the security analysis
and statistical testing of the CMPR stream ciphers including appropriate comparisons
with TRIVIUM. Hardware implementations and stream cipher comparisons occur in
Subsection 7.4, including ASIC and FPGA synthesis results for both TRIVIUM and the
CMPR stream ciphers. Finally, we conclude this section with Subsection 7.5 where we
summarize our comparison and discuss the advantages of CMPRs in stream cipher design.

7.1 Three CMPR-Based Stream Ciphers
In this section we describe three CMPR-based stream ciphers we have designed and which
we claim exemplify the possible tradeoffs between hardware implementation area and
security margins. These stream ciphers are specified and named in Table 12 to simplify any
references to them throughout the remainder of this section. For reference, the TRIVIUM
stream cipher is included in the same table.

Table 12: Specifications for TRIVIUM and the Family of CMPR-Based Stream Ciphers
Cipher Name Internal State Size and Type Key Size IV Size

TRIVIUM 288 bits (NLFSR) 80 bits 80 bits
CMPR stream cipher v1 288 bits (CMPR) 128 bits 128 bits
CMPR stream cipher v2 162 bits (CMPR) 80 bits 80 bits
CMPR stream cipher v3 170 bits (CMPR) 84 bits 84 bits

For each CMPR-based stream cipher, the MPRs, update polynomials, and primitive
polynomials used to construct the CMPRs are shown in Tables 13, 14, and 15. Architecture
diagrams for each CMPR are also included. For all CMPRs, the chaining functions are 2-,
3- or 4-input AND gates cascaded with 2-, 3- or 4-input XOR gates, with the restriction
that a chaining function can only contain input bits from the MPR immediately before the
MPR with which the chaining function is being combined (by use of XOR). In Figures 14,

50 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

15, and 16, the Ci represent chaining functions.

Table 13: CMPR Specification for CMPR stream cipher v1

MPR Size Update Polynomial Primitive Polynomial
107 bits U107(x) = x P107(x) = x107 + x89 + x84 + x40 + x29 + x23 + 1
89 bits U89(x) = x P89(x) = x89 + x81 + x68 + x31 + x21 + x18 + 1
61 bits U61(x) = x P61(x) = x61 + x44 + x19 + x15 + 1
31 bits U31(x) = x P31(x) = x31 + x3 + x2 + x+ 1

Figure 14: Architecture Diagram for CMPR stream cipher v1

Table 14: CMPR Specification for CMPR stream cipher v2

MPR Size Update Polynomial Primitive Polynomial
107 bits U107(x) = x P107(x) = x107 + x89 + x84 + x40 + x29 + x23 + 1
31 bits U31(x) = x P31(x) = x31 + x3 + x2 + x+ 1
17 bits U17(x) = x P17(x) = x17 + x8 + x7 + x6 + x4 + x3 + 1
5 bits U5(x) = x P5(x) = x5 + x4 + x3 + x2 + 1
2 bits U2(x) = x P2(x) = x2 + x+ 1

Figure 15: Architecture Diagram for CMPR stream cipher v2

Table 15: CMPR Specification for CMPR stream cipher v3

MPR Size Update Polynomial Primitive Polynomial
127 bits U127(x) = x P127(x) = x127 + x54 + x45 + x13 + 1
19 bits U19(x) = x P19(x) = x19 + x5 + x4 + x3 + x2 + x+ 1
17 bits U17(x) = x P17(x) = x17 + x8 + x7 + x6 + x4 + x3 + 1
5 bits U5(x) = x P5(x) = x5 + x4 + x3 + x2 + 1
2 bits U2(x) = x P2(x) = x2 + x+ 1

Each CMPR-based stream cipher operates according to Algorithm 2. The Algorithm
consists of two phases. Phase (i) is the initialization phase, during which the CMPR

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 51

Figure 16: Architecture Diagram for CMPR stream cipher v3

Algorithm 2 CMPR-Based Stream Cipher Algorithm
inputs: An m−bit key K, m−bit IV IV , and n−bit plaintext message PT
output: n−bit ciphertext c
The subscript i after a variable represents indexing the variable at the ith bit

1: procedure Initialize
2: CMPR is the j−bit CMPR used in the stream cipher
3: nextstate() clocks the CMPR and advances to the next state
4: swap() swaps the upper (most significant) and lower (least significant) halves of

the CMPR state (assuming the CMPR state is of even size), preserving the original
bit ordering of the upper and lower halves

5: ones() represents a list of 1’s
6: z is the n−bit keystream used for encryption
7: (CMPRj−1, . . . , CMPRj−m)← (Km−1, . . . ,K0) ▷ Initialize the most significant

bits of CMPR with the key
8: (CMPRj−m−1, . . . , CMPRj−2m)← (IVm−1, . . . , IV0) ▷ Initialize the next most

significant bits of CMPR with the IV
9: (CMPRj−2m−1, . . . , CMPR0)← ones() ▷ Initialize the remaining bits of CMPR

with ones
10: for i← 0 . . . 50 do
11: CMPR.nextstate() ▷ Clock the CMPR
12: end for
13: CMPR.swap() ▷ Swap the upper and lower halves of the CMPR state
14: for i← 0 . . . 50 do
15: CMPR.nextstate() ▷ Clock the CMPR
16: end for
17: end procedure
18: procedure GenerateKeystream
19: for i← 1 . . . n do
20: zi ← CMPR0 ⊕ CMPR3 ⊕ CMPR7 ▷ Generate keystream bit by XORing

three internal state bits
21: CMPR.nextstate() ▷ Clock the CMPR
22: end for
23: z ← (z1, . . . , zn)
24: end procedure
25: c← PT ⊕ z ▷ Compute ciphertext using XOR of plaintext and keystream

stream cipher is initialized with the key and IV and is clocked 100 times, where clocking
the CMPR is considered an initialization round. The upper and lower halves of the internal
state are swapped midway through the 100 initialization rounds, and the overall goal of the
initialization phase is to to randomize the internal state before the keystream generation
phase. Phase (ii) is the keystream generation phase, during which the keystream bit is

52 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

derived by XORing the three internal state bits 0, 3, and 7.
In Algorithm 2, the number of initialization rounds is always 100, and state bits 0, 3,

and 7 are always used to generate the keystream. CMPR stream ciphers v1, v2, and v3 all
operate according to Algorithm 2.

7.2 Design Rationale
In the previous subsection, Subsection 7.1, three specific CMPR stream ciphers were
introduced, but in fact we believe that a large class (or "family") of CMPR stream ciphers
can be specified. In designing this family of CMPR-based stream ciphers, we formulated
and adhered to several important design principles. Some of these design principles
are generally accepted practices in stream cipher design, whereas others are unique to
CMPRs and were discovered throughout the design and testing process. The latter class
of principles is the primary focus of this section since violating CMPR-specific design
principles can result in the entire construction being vulnerable to cryptanalytic attacks or
poorly performing hardware implementations.

Some generic stream cipher design principles that are reflected in our family of CMPR-
based stream ciphers are the use of a balanced boolean function (a boolean function with
an equal amount of 0s and 1s in its truth table), specifically the XOR operation, when
deriving the keystream bit from the internal state of the cipher, the use of initialization
rounds prior to keystream generation, and the use of an XOR to combine the keystream
with plaintext for encryption [PP97].

7.2.1 Keystream Generation, Initialization, and Key Input

In this subsection we explore keystream generation, the initialization phase of the ciphers
and how to input the key. We assume that the number of bits in the CMPR is chosen to
be large enough to accommodate both the key and the IV in separate parts of the CMPR
during cipher initialization.
Keystream Generation: We extract the keystream from an XOR of bits from the
lowest-order MPRs. The use of the smallest MPRs ensures that the keystream is being
generated from the portion of the CMPR state that evolves in the most nonlinear manner.
The lowest-order MPRs are situated at the very end of the cascade of chained MPRs
and are therefore the smallest MPRs in a CMPR. As a CMPR is clocked, the bits in the
smallest MPRs evolve under the influence of all prior nonlinear chaining functions in the
CMPR, and thereby have desirable statistical properties.

We empirically made the choice to generate the keystream by performing an XOR
between three internal state bits. This choice ensures that the keystream is a function of
several bits of the internal state and also ensures that the keystream is balanced (due to
XOR being a balanced operation). For the CMPR-based stream ciphers synthesized in
our investigation, the three state bits 0, 3, and 7 were XORed to generate the keystream.
TRIVIUM uses 6 internal state bits to generate its keystream. Our empirical decision to
use three internal state bits was based on the fact that each bit of the CMPR already
depends on the state of the higher-order MPRs due to chaining, although we stress the
importance of the keystream generation bits coming from the lowest-order MPRs.
Initialization Rounds: In Section 6.1.1, it was empirically observed during statistical
testing of our CMPR-based stream ciphers that a number of initialization rounds equal
to two times the number of MPRs used to construct the CMPR obscured the statistical
relationship between the initial state of the CMPR and its output. While this observation
provides a good lower bound for initialization rounds, in practice, we choose to use 100
initialization rounds.

Our choice of 100 initialization rounds is motivated by the behavior of CMPRs in
the context of monomial counts and degrees. Figure 17 compares the degree and count

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 53

of monomials in the polynomial representation of the least-significant bit of the 17-bit
CMPR of Section 6 alongside the polynomial representation of the TRIVIUM output as
a function of initialization rounds, across 320 initialization rounds. In this comparison,
we used the 17-bit CMPR because precise monomial analysis of larger CMPRs quickly
becomes computationally infeasible.

Figure 17: Monomial Count and Degree Comparison Between TRIVIUM and 17-bit CMPR

For a CMPR, the degree and number of monomials quickly saturates, as opposed to
TRIVIUM where the degree and number of monomials grow more slowly. This rapid
growth of monomial count and degree can be explained by the aggregated effect of the
chaining functions. Every initialization round, the CMPR is clocked and the chaining
functions between MPRs add monomials to the MPRs that are being chained into. Since
the chaining functions of our designs apply to every state bit that can be chained into
(all state bits excluding those in the largest MPR), many monomials are added to the
MPRs that receive chaining functions. Moreover, across initialization rounds, the degree
of the chaining functions influences the degree of the monomials. Since we use degree
4 chaining functions (4 inputs to the AND gates of the chaining functions), we observe
that the monomials also saturate quickly with respect to degree. The tendency of the
polynomial representation of the least-significant bit of the CMPR to quickly saturate
with respect to monomial count and degree showcases why we can comfortably employ
100 initialization rounds.
Swapping During Initialization: In Section 6.3.3.4, we concluded that permuting the
internal state of a CMPR (e.g., by swapping the upper and lower halves) provides resistance
against cube distinguishers. For example, consider the scenario where the internal state of
our CMPR-based stream ciphers is not permuted. To find the lowest-cost cube tester that
can be applied to the ciphers, we must determine which of the tweakable variables (in the
case of stream ciphers, the IV bits) in the keystream polynomial have the lowest degree.
CMPR stream ciphers v1, v2, and v3 are shown in 14, 15, and 15 and operate according
to Algorithm 2. For these stream ciphers, we observe that the second-to-last MPR is
initialized with the least significant bits of the IV; thus, the second-to-last MPR includes
public variables that can be tweaked when applying cube testers. The IV bits in the
second-to-last MPR only pass through the chaining functions connecting the second-to-last
and last MPRs. As these chaining functions use AND gates with at most 4 inputs, we
conclude that in the keystream polynomial, the terms including IV bits from the second-
to-last MPR are at most degree 4. Thus, we have d = 4, so the lowest-cost cube tester
would require 24+1 = 32 computations using a fixed key and IVs that vary in the 5 least
significant bits. That is, the 32 IVs must take on all possible 5-bit values in their 5 least
significant bits, while the rest of the IV remains constant. In order to provide resistance
against this cube tester, we swap the upper and lower halves of the CMPR state halfway

54 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

through the 100 initialization rounds. That is, the CMPR is clocked 50 times, the internal
state is swapped, and the CMPR is clocked another 50 times. When performing the swap,
we preserve the original bit ordering of each half of the state. The final results is that all
of the key and IV variables in the initial state will eventually propagate through multiple
stages of chaining functions and thereby have higher degree in the keystream polynomial.
Key Input: Initializing the most significant bits of the CMPR with the secret key
ensures that the key bits immediately propagate through as many of the nonlinear chaining
functions as possible in the design as the CMPR is clocked 100 times. As a CMPR is
clocked, the bits that are initially in the largest MPRs (the most significant bits) are
fed through chaining functions that connect to smaller MPRs. The chaining functions
feed forward from larger to smaller MPRs. Thus, the key bits initially stored in the most
significant bits will propagate through nonlinear chaining functions between the MPRs.
This design choice further obscures any relation between the secret key and the keystream
since the keystream is extracted from the smallest MPRs. We place the IV in the next
highest order bits in the CMPR after the key bits to ensure that the IV bits also propagate
through nonlinear chaining functions, although we prioritize initializing the most significant
bits of the CMPR with the key.

One limitation discussed in Subsection 6.2.2 concerns adversary control of the smallest
MPR in a CMPR-based design. If the adversary can control the initial state of the
lowest-order MPR, e.g., through choosing the IV, then non-uniform statistics may emerge;
in summary, the bit-contribution tests on the smallest MPR indicate a problem. Therefore,
as suggested in Subsection 6.1, we always set the initial state of the lowest order MPR to
all ones. For example, if the smallest MPR in a CMPR stream cipher has size 31, then the
last 31 bits are always initially set to all ones and hence cannot receive a key or an IV.
Similarly, if the lowest-order MPR is a two-bit MPR, then the last two bits are always set
to one and cannot receive key bits or IV bits.

7.2.2 MPR Selection

The selection of MPRs to construct a CMPR involves several design options, including
Mersenne exponents (the size of each MPR), update polynomials, and primitive polynomials.
There are several tradeoffs to consider, as the size, update polynomials, and primitive
polynomials of the MPRs have a significant impact on linear complexity, expected period
ratio, hardware area, and energy consumption.
Mersenne Exponent Selection: When selecting Mersenne exponents for the MPRs
that are chained together to form a CMPR and considering how many MPRs are used
to construct a CMPR, we look for a tradeoff among the linear complexity, the expected
period ratio of the resulting CMPR, and the hardware area of the construction. For two
CMPRs of the same size, the CMPR that is constructed using more MPRs will have
higher linear complexity, following the results of Section 5.3. However, it is important
to remain cognizant of the number of MPRs used because there are chaining functions
between MPRs, and the chaining functions contribute to increased hardware area and
energy consumption. It is also important not to use very few MPRs (for example, a
two-MPR CMPR construction) because the resulting design will likely be vulnerable to
cryptanalytic attacks (see Subsection 6.3.3). For CMPRs with less than 300 register bits,
we prefer constructing a CMPR using 4 to 6 MPRs, which provides a reasonable middle
ground between increased usage of chaining (and hence increased linear complexity) and
increases in hardware area.
Small MPRs: The presence of small MPRs also presents an interesting tradeoff. The
presence of small MPRs (such as 2-, 3-, or 5-bit MPRs) in a CMPR construction increases
the linear complexity of the construction, and small MPRs contribute relatively little
hardware area. However, the use of small MPRs in a CMPR construction also decreases
the expected period ratio of the construction, as demonstrated in Table 3 from the very end

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 55

of Section 4. Thus, appending a small MPR to a CMPR is a good strategy for bolstering
linear complexity for little hardware cost, at the expense of a lower expected period ratio.
Additionally, following the statistical testing results of Section 6.2, we determined that
flipping a bit in the 2-bit MPR used in the PRNG resulted in a predictable change in the
PRNG output. Therefore, in CMPR stream ciphers v2 and v3, both of which use 2-bit
MPRs, we initialize the contents of the 2-bit MPRs to 1s so that these bits cannot be
altered during key and IV initialization. In the case of CMPR stream cipher v1, the 256
most significant bits of the 288-bit internal state are initialized with the 128−bit key and
128−bit IV, and the 32 least-significant bits of the state are initialized to all 1’s. So for
cipher v1, there was no need to address the statistical vulnerability discovered in Section
6.2.

To illustrate how a larger number of constituent MPRs and the presence of small MPRs
increase linear complexity, we applied Algorithm 1 to the CMPRs used in CMPR stream
ciphers v1, v2, and v3. As a result, we obtained lower estimates and upper bounds for the
linear complexity of each construction in Table 16.

Table 16: Linear Comlexity Lower Estimates and Upper Bounds for CMPR Stream Ciphers
v1, v2, and v3

Cipher CMPR Size Lower Estimate Upper Bound
CMPR stream cipher v1 288 bits 2130.30 2130.31

CMPR stream cipher v2 162 bits 2154.66 2154.67

CMPR stream cipher v3 170 bits 2163.23 2163.26

An interesting observation is that the CMPRs of ciphers v2 and v3, despite being over 100
bits smaller than the CMPR of cipher v1, have higher linear complexity estimates and
bounds due to using more MPRs in their respective CMPR constructions.
Update Polynomials: As showcased in Table 1, varying the update polynomial of an
MPR affects the state sequence of an MPR, or more specifically, the order in which the
possible states of an MPR are traversed when starting from a known initial state. For this
change of state order to be possible and to implement update functions of a higher degree,
usage of larger update functions requires additional XOR gates to be introduced into the
hardware design. Thus, using U(x) = x as the update polynomial of the MPRs lowers the
hardware implementation area of the CMPR-based stream ciphers, and also means that
the MPR is equivalent to a Galois LFSR.
Primitive Polynomials: In selecting the primitive polynomial of an MPR, we seek
primitive polynomials with enough terms to resist correlation attacks, but few enough
terms to maintain an efficient hardware implementation. Similar to update polynomials,
larger primitive polynomials correspond to using more XOR gates in hardware. Empirically,
we found that we prefer primitive polynomials with 5 to 7 terms in order to provide a
comfortable middle ground between correlation attack resistance and implementation cost,
although polynomials with even more terms may be suitable for larger MPRs. We also
want to point out, as explained at the end of Subsection 4.1, that for MPRs the use of a
Mersenne exponent results in the fact that every irreducible polynomial is primitive (thus
simplifying the search for primitive polynomials).

7.2.3 Chaining Function Selection

When analyzing algebraic attacks in Subsection 6.3.2, we observed that chaining functions
with product terms consisting of 4 variables resulted in a rapid increase in the number
of variables which must be solved for in order for the attack to succeed. The number
of variables in the product terms of the chaining function is analogous to the number
of inputs to the AND gates used in the chaining function. Thus, the number of inputs
to the AND gates of the chaining functions contributes to algebraic attack resistance,

56 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

as well as the linear complexity of the periodic state sequences generated by a CMPR.
However, chaining functions also contribute to the area and energy consumption of the
hardware implementation of a CMPR since each chaining function requires several logic
gates when being implemented in hardware. By using 4-input AND gates, we intend to
achieve reasonably lightweight hardware implementations and high linear complexity while
also resisting algebraic and cube attacks. The chaining functions applied to the CMPRs
used in the CMPR stream ciphers consist of AND gates with at most 4 inputs, and the
outputs of the AND gates are connected to XOR gates with at most 4 inputs.

We also ensured that the chaining functions are balanced, in that the truth table
of each chaining function contains an equal number of 0s and 1s. Balanced chaining is
important when considering the statistical properties of the CMPR states as the CMPR is
clocked. If unbalanced chaining functions are used, the states of the CMPR will be biased
with 1s or 0s (depending on the particular chaining functions used). This is a statistical
vulnerability that can potentially reveal information about the initial state of the CMPR.

For each CMPR used in the CMPR ciphers, the chaining functions were applied to
every bit of the CMPR excluding the bits in the largest MPR. This measure of applying
the maximum possible number of chaining functions is a precaution to ensure that each
construction incorporates as many nonlinear chaining functions as our mathematical
formulation of chaining in Section 3 allows. It is possible that fewer chaining functions can
be applied in favor of increased initialization rounds; we believe that chaining function
density forms a power-area tradeoff. The ANF of the CMPRs used in the stream ciphers
v1, v2 and v3 (which includes the specific chaining functions used) is provided in the
Appendices.

The chaining functions were applied with the restriction that a chaining function can
only contain bits from the MPR immediately prior to the MPR that is being chained into
(following Definition 22). That is, the chaining functions only connect from one MPR
to the next in descending Mersenne exponent order and cannot skip any MPRs. This is
an important limit on the chaining function design space and follows from the results of
our cryptanalysis of cube attacks against CMPRs in Section 6.3.3. The bits used in the
chaining functions were determined by uniformly sampling the bits of the prior MPR.

7.3 Security Analysis and Statistical Comparison to TRIVIUM
We divide our security analysis into two steps, namely cryptanalysis and statistical analysis.

7.3.1 Cryptanalysis

In Section 6.3, a variety of security analyses were applied to a proof-of-concept PRNG
design utilizing a 17-bit CMPR, with the assumption that the attacker possesses full
knowledge of the CMPR construction including chaining functions, update polynomials,
and primitive polynomials. The analyses were performed with generality and applicability
to CMPR constructions as a whole in mind. This is because the attack methodologies and
the overall structure of CMPRs remain consistent even as the size of a CMPR varies. We
claim the same results for restricted chaining (i.e., following Definition 22), namely the
results for algebraic attacks, cube attacks, and linear cryptanalysis, for our CMPR-based
stream cipher designs. More specifically, for the CMPR stream cipher designs using four
or more MPRs and with restricted chaining (Definition 22) and swapping, over the past
three years of effort the authors of this paper have not been able to find any cryptanalytic
attack technique that would have any reasonable chance of success.

We also applied cube attacks to our stream ciphers using the monomial profile cube
search methodology described in Section 6.3.3. The cube attacks were ran on a high-end
research server with an Intel® Xeon® E5-2699 v4 CPU running at 2.20GHz, 44 cores, and
256GB of RAM. For all of the stream ciphers, the attacks were unsuccessful.

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 57

7.3.2 Statistical Analysis of Keystreams

Strictly speaking, the statistical analyses of Section 6.2 performed on CMPR-based PRNGs
do not extend automatically to the keystreams generated by our CMPR-based stream
ciphers. Therefore, we apply the NIST Statistical Test Suite and the bit contribution
statistical tests described in Section 6.2 to large volumes of keystreams generated by the
CMPR-based stream ciphers and analyze the test results for any failures indicative of
statistical weaknesses. For comparison, we also perform the same statistical analyses on
keystream data from TRIVIUM. Moreover, we apply the bit contribution tests (abbreviated
in Table 17 as B.C.) from Section 6.2.2 to the keystreams generated by the stream ciphers
and, for comparison, also apply the bit contribution tests to keystreams generated by
TRIVIUM. Subsequently, we analyze the resultant dependence matrices for any statistical
relations between the key or IV and the keystream.

For each stream cipher (TRIVIUM and CMPR-based stream ciphers v1, v2 and v3), a
keystream dataset for the NIST Statistical Test Suite was generated from pseudorandom
(key, IV) pairs. Each dataset consisted of 10 keystreams, with each keystream being (106)
bits long, following the minimum dataset size required to apply all of the tests in the NIST
Statistical Test Suite, as mentioned in Section 6.2.1. For all four stream ciphers (TRIVIUM
and the three CMPR-based stream ciphers), the datasets passed all 15 of the tests in the
NIST Statistical Test Suite. This result means that the keystreams generated by TRIVIUM
and CMPR-based stream ciphers are pseudorandom and suitable for applications requiring
pseudorandom numbers, at least from the perspective of the NIST Statistical Test Suite.
It is important to note that the NIST Statistical Test Suite does not address whatsoever
the security of the underlying design used to generate the test set, but rather whether the
tested data on its own can be considered pseudorandom.

We also generated datasets to which the bit contribution tests (abbreviated in Table
17 as B.C.) from Section 6.2.2 were applied. For each stream cipher, the bit contribution
for key and bit contribution for IV tests were applied. For each test, the number of trials
was set to 10,000, and subsequently the dependence matrix was analyzed to determine any
statistical anomalies between the inputs (keys and IVs) and outputs (keystreams). The
results from Section 6.2.2, including the histograms shown in Figures 9, 10 and 11, are
identical. Thus, all results are the same for our CMPR-based stream cipher keystreams as
was found earlier for CMPR-based PRNGs. Table 17 summarizes this result.

Table 17: Statistical Comparison Between TRIVIUM and CMPR-based Stream Ciphers
Cipher Name Passes NIST Tests? Passes B.C. Statistical Tests?

TRIVIUM Yes Yes
CMPR stream cipher v1 Yes Yes
CMPR stream cipher v2 Yes Yes
CMPR stream cipher v3 Yes Yes

7.4 Hardware Implementations and Comparison to TRIVIUM
Since CMPRs are formed by an interconnected cascade of MPRs (and MPRs are a form of
feedback register) and TRIVIUM is a hardware-oriented and feedback-shift-register-based
stream cipher, we believe that TRIVIUM is a useful choice for comparison with CMPR-
based stream ciphers. In this section, we explore some of the tradeoffs between register
size, security, and hardware implementations.

Each CMPR stream cipher in Table 12 is designed to outperform TRIVIUM in one
dimension, while remaining roughly equal in the others. For example, CMPR stream
cipher v1 uses the same internal state size as TRIVIUM, while increasing the key and IV
lengths to 128 bits and thus increasing the level of security at the expense of increased

58 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

hardware area and energy consumption. CMPR stream cipher v2 uses the same key and
IV lengths as TRIVIUM and thus has the same level of security, but decreases the CMPR
size with the resulting benefit of lower hardware area and energy consumption. CMPR
stream cipher v3 slightly increases the key and IV lengths to 84 bits but is designed with
the intention of maintaining energy consumption approximately equivalent to TRIVIUM.

7.4.1 ASIC Implementation Hardware Analysis

To determine how the hardware for our family of CMPR-based stream ciphers compares
to TRIVIUM, we synthesize VHDL implementations of TRIVIUM and the CMPR-based
stream ciphers to an ASIC target and compare results for hardware area and energy
consumption. Synthesis was performed using the Synopsys DesignVision tool [Syn03].
Subsequently, we performed place and route using the Cadence Innovus Implementation
System[Cad15] and layout with the Cadence Virtuoso Layout Suite [Cad91]. All of the
aforementioned tools were configured with the FreePDK45 45nm standard cell library
[Uni11]. The fastest clock frequency we could reliably obtain was 300MHz for all designs.
The results are shown in Tables 18 and 19.

Table 18: ASIC Hardware Implementation Area and Security Comparison Between TRIV-
IUM and CMPR-based Stream Ciphers

Cipher Area (µm2) Power (mW) Key Security Init. Rounds
TRIVIUM 5627 3.0226 280 1152

CMPR stream cipher v1 12909 5.4405 2128 100
CMPR stream cipher v2 7057 2.8894 280 100
CMPR stream cipher v3 7292 2.8993 284 100

Table 19: Relative ASIC Hardware Comparison Between TRIVIUM and CMPR-based
Stream Ciphers

Cipher Area Relative to TRIVIUM Power Relative to TRIVIUM
CMPR stream cipher v1 +129.4% +80.0%
CMPR stream cipher v2 +25.4% -4.41%
CMPR stream cipher v3 +29.6% -4.08%

CMPR stream cipher v1, which has an internal state size of 288 bits and offers improved
security with a 128-bit key, results in a 129.4% larger hardware implementation with 80.0%
more energy consumption in comparison to TRIVIUM. The increased area and power of
the CMPR stream ciphers as compared to TRIVIUM are due to the chaining functions in
the CMPR-based stream cipher design. The larger a CMPR is, the more chaining functions
it has, given our design approach. Generally, chaining functions contribute significantly to
the hardware area and energy consumption of a CMPR-based design, since each chaining
function consists of numerous AND and XOR gates.

CMPR stream ciphers v2 and v3 have higher area than TRIVIUM but the increase is
not as drastic as in the case of v1, owing to their reduced internal state sizes of 162 and
170 bits, respectively. Despite their decreased state sizes, CMPR-based stream ciphers v2
and v3 can generate far more keystream bits from a single (key, IV) pair than TRIVIUM
(due to the period guarantees of Section 3). Ciphers v2 and v3 also offer equal or slightly
higher key security consume roughly equal energy relative to TRIVIUM.

7.4.2 FPGA Implementation Hardware Analysis

We present an FPGA synthesis comparison between TRIVIUM and three choices from our
CMPR-based stream cipher family in Table 20, comparing the hardware usage in terms of

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 59

registers, block RAM (BRAM) bits, ALUTs (adaptive lookup tables), and ALMs (adaptive
logic modules). ALMs and ALUTs are the combinational logic elements in the Intel Quartus
Prime Lite Edition software [Cor19]. Each design was synthesized onto the Intel DE10-
Standard board [Ter17]. The Intel DE10-Standard board is a Cyclone®V FPGA[Cor13]
with 28nm process technology (thus, the transistors at 28nm have approximately 62%
of the channel length size comparted to the ASIC transistors used at 45nm). VHDL
implementations of each of the three CMPR stream ciphers and TRIVIUM were synthesized
onto the Intel DE10-Standard FPGA board at a clock frequency of 200MHz, which we
empirically found to be the threshold frequency at which the design met FPGA timing
constraints – in other words, choosing a higher clock frequency, e.g., 205MHz, resulted
in failing to meet timing constraints. The key insight provided by the FPGA synthesis
results in Table 20 is that CMPR implementations on an FPGA do not require BRAM. In
the case of a CMPR, the chaining functions are defined bit-by-bit when generating RTL
for a CMPR stream cipher, and the registers are contained in the adaptive logic modules
(ALMs); thus, the FPGA synthesis tools will not map any part of the CMPR stream cipher
VHDL design to BRAM elements.

Table 20: FPGA Resource Utilization Comparison Between TRIVIUM and CMPR-based
Stream Ciphers

TRIVIUM CMPR cipher v1 CMPR cipher v2 CMPR cipher v3
Registers 295 323 210 216

BRAM Bits 66 0 0 0
ALMs 283 651 349 366
ALUTs 556 1193 629 653

We also present an FPGA synthesis comparison for CMPR stream cipher v3 to demon-
strate the flexibility of CMPRs when implemented on a reconfigurable hardware target. In
Figure 18, we varied the update polynomials of the MPRs used to construct the CMPR
seven times – specifically, we investigate U(x) = x, U(x) = x2, U(x) = x3, U(x) = x4,
U(x) = x5, U(x) = x10 and U(x) = x15. In this plot, it is implied that an update polyno-
mial is only used if the MPR is large enough to accommodate the update polynomial; for
example, for U(x) = x15, only MPRs of sizes larger than 15 utilize this update value – the
smaller MPRs still utilize U(x) = x. We observed slight variations in the lookup tables
(ALUTs) and combinational logic blocks (ALMs) required for each FPGA implementation.
These results seem to indicate that on reconfigurable hardware platforms, the update
polynomials of a CMPR can be varied at little additional hardware implementation cost.
In general, an MPR has an exponential number of possible update polynomials, where the
number of possible update polynomials depends on the size of the MPR. We explored the
FPGA implementation results for a select few out of the many possible update polynomials
of Definition 18.

7.5 Comparison Summary
We conclude this section by discussing how our results illustrate the flexibility and advan-
tages of CMPRs over NLFSRs in the context of stream cipher design. Unlike NLFSRs,
CMPRs do not support nonlinear feedback. Nonlinear chaining functions in CMPRs feed
forward from one MPR to the next, following Definition 22. As a result, a CMPR-based
design cannot rely solely on initialization rounds to provide security and resistance against
polynomial-based cryptanalytic methods such as cube testers, since there is no nonlinear
feedback to increase the degree of the output polynomial. Instead, we can permute the in-
ternal state of the CMPR during the initialization stage. Despite the exclusion of nonlinear
feedback, CMPRs are still incredibly flexible and provide a framework for scalable, nearly
full-period register constructions. Due to the Chaining Period Theorem (Theorem 1), we

60 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

Figure 18: FPGA Resource Utilization for CMPR stream cipher v3 Varied Update Functions

can guarantee that a CMPR will have exponential period provided that its constituent
MPRs use irreducible feedback polynomials.

The motivation behind designing three CMPR-based stream ciphers was to demonstrate
the flexibility designers have when constructing CMPR-based schemes. For each of our
CMPR-based stream ciphers, we use a different CMPR size, only needing to ensure that
the CMPR is large enough to store both the key and IV during the initialization phase.
NLFSRs do not have this kind of design flexibility or period guarantee. Full-period NLFSRs
are defined for only a few small register sizes [Dub12].

Finally, we observe that the keystreams generated by TRIVIUM and the CMPR stream
ciphers both pass cryptographic statistical testing, namely the randomness tests of the
NIST Statistical Test Suite and the confusion and avalanche effect principles tested by our
bit contribution statistical tests, which verified that a bit flip in the key or IV resulted in
a significant change in the keystream. We also observed that the CMPR stream ciphers
with identical or similar security margins to TRIVIUM, namely CMPR stream ciphers
v2 and v3, have ASIC and FPGA hardware implementations with roughly a quarter to a
third higher area than TRIVIUM, but nearly identical energy consumption.

8 Discussion
In this section, we wish to acknowledge and highlight some areas of our research that
provide promising opportunities for future work and exploration.

• Our restriction to using only Mersenne primes allows for a simpler statement of
Theorem 2, as well as simplifying the analysis used to estimate linear complexity.
However, with stronger casework and more careful handling, the general ideas
presented in Theorem 1 and Section 5 might be extended to a wider array of systems.

• In CMPRs, and all of the specific examples in this paper, all feedback registers are
chosen to be linear in order to make the induction simpler and more consistent. All
nonlinearity in the update is derived from the nonlinear chaining functions. However,
again, this is not a strict requirement, and we foresee future work exploring using
chaining to extend nonlinear structures. At a minimum, the very first register in a
CMPR can clearly be replaced by a nonlinear feedback register such as an NLFSR.

• Our notion of root expressions seems to offer several powerful advantages for calcu-
lating linear complexity in the situations where they are applicable, but suffers from
limitations such as requiring Mersenne primes and distinct exponents.

• We are committed to continue our efforts to find attack avenues that have the
potential to succeed against CMPR-based structures. For example, although we have

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 61

searched for high-order key-independent distinguishers without success to date, it is
possible such attacks may succeed in the future.

• Although we focus on the applications of CMPRs to stream ciphers and present
a comparison with the TRIVIUM stream cipher, we believe CMPRs can serve as
building blocks for different types of cryptographic schemes such as hash functions
and block ciphers. We anticipate future work exploring the wider cryptographic
applications of CMPRs.

• Our initial investigation of FPGA implementations of CMPRs with varied update
polynomials indicates that, with additional analysis, it may be possible for update
polynomials to be treated as a hardware-based key not revealed to the adversary.
For a given MPR, there exists an exponential number of possible update polynomials
(and thus can be quite large depending on the size of the MPR), and based on the
update polynomials used, the state sequence of the CMPR will be different. However,
there is still a lot of work to be done in this space.

9 Conclusion
The main mathematical proof on which the majority of the results in this paper depend is
the Chaining Period Theorem (Theorem 1). The Chaining Period Theorem brings together
prior work from a range of areas including cascades and T-functions, and which applies
to many feedback register constructions. Based on this theorem, we present a new type
of linear feedback register which we term a Product Register (PR) and show that if the
PR length is a Mersenne exponent, we can create update functions with greater variety.
Furthermore, these Mersenne Product Registers (MPRs) are well-suited for use with the
Chaining Period Theorem to create a Composite Mersenne Product Register (CMPR).
This allows for nonlinear state sequences and drastically increases the space of potential
CMPR constructions. Regardless of the chaining functions chosen, we are able to show any
CMPR has an exponential expected period. To estimate CMPR linear complexity more
efficiently than what is provided by the classic Berlekamp-Massey algorithm, we develop
the concepts of root expressions, which we use to create the CMPR Root Expression
Algorithm (Algorithm 1). We apply a set of experiments consisting of cryptanalytic and
statistical tests on simple CMPRs, which entail a restriction on the chaining functions
with the aim of protecting against cube attacks. Furthermore, we add swapping to the
initialization rounds to resist linear distinguishers. Finally, we design and test a family
of three CMPR-based stream ciphers that vary in key length, IV length, and internal
state size (number of register bits). We also implement the CMPR-based stream ciphers
on ASIC and FPGA hardware targets, with a hardware cost comparison to the NLFSR-
based TRIVIUM stream cipher. Overall, our results appear to confirm that CMPRs are
suitable for generating pseudorandom numbers for cryptographic applications and that the
hardware implementations of CMPRs can compare to TRIVIUM which is a representative
NLFSR-based cryptographic scheme from the literature. We believe that this research
sets the stage for the design of new hardware-oriented cryptographic primitives utilizing
CMPRs.

62 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

References
[Abr94] Miron Abramovici. Digital Systems Testing and Testable Design. IEEE Wiley-

Interscience, New York, NY, 1994. isbn: 0780310624.
[ADMS09] Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube

testers and key recovery attacks on reduced-round md6 and trivium. In Lecture
Notes in Computer Science. Springer, Cham, 2009, pages 1–22. isbn: 978-3-
642-03317-9. doi: 10.1007/978-3-642-03317-9_1. url: https://doi.org
/10.1007/978-3-642-03317-9_1.

[AFI+04] Gwénolé Ars, Jean-Charles Faugère, Hideki Imai, Mitsuru Kawazoe, and
Makoto Sugita. Comparison Between XL and Gröbner Basis Algorithms. In
Pil Joong Lee, editor, Advances in Cryptology - ASIACRYPT 2004, pages 338–
353, Berlin, Heidelberg. Springer Berlin Heidelberg, 2004. isbn: 978-3-540-
30539-2. doi: 10.1007/978-3-540-30539-2_24.

[AHMN12] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and María Naya-Plasencia.
Quark: A Lightweight Hash. Journal of Cryptology, 26(2):313–339, May 2012.
doi: 10.1007/s00145-012-9125-6. url: https://doi.org/10.1007/s001
45-012-9125-6.

[Arm04] Frederik Armknecht. Improving Fast Algebraic Attacks. In Bimal Roy and
Willi Meier, editors, Fast Software Encryption, pages 65–82, Berlin, Heidelberg.
Springer Berlin Heidelberg, 2004. isbn: 978-3-540-25937-4. doi: 10.1007/97
8-3-540-25937-4_5.

[BRS+10] Lawrence E. Bassham, Andrew L. Rukhin, Juan Soto, James R. Nechvatal,
Miles E. Smid, Elaine B. Barker, Stefan D. Leigh, Mark Levenson, Mark
Vangel, David L. Banks, Nathanael Alan Heckert, James F. Dray, and San Vo.
A Statistical Test Suite for Random and Pseudorandom Number Generators
for Cryptographic Applications. Technical report 22, National Institute of
Standards and Techonology, April 2010, pages 171–186. url: https://nvlp
ubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1
a.pdf.

[Cad15] Cadence Design Systems, Inc. Innovus Implementation System, 2015. url:
https://www.cadence.com/en_US/home/tools/digital-design-and-si
gnoff/soc-implementation-and-floorplanning/innovus-implementat
ion-system.html. (accessed: 10.07.2024).

[Cad91] Cadence Design Systems, Inc. Virtuoso layout suite, 1991. url: https://ww
w.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/layo
ut-design/virtuoso-layout-suite.html. (accessed: 10.07.2024).

[Can05] Anne Canteaut. Filter Generator. In Encyclopedia of Cryptography and Se-
curity. Henk C. A. van Tilborg, editor. Springer US, Boston, MA, 2005,
pages 223–224. isbn: 978-0-387-23483-0. doi: 10.1007/0-387-23483-7_165.
url: https://doi.org/10.1007/0-387-23483-7_165.

[Can11] Anne Canteaut. Combination Generator. In Encyclopedia of Cryptography
and Security (2nd ed.) Pages 82–83. Springer US, 2011. doi: 10.1007/0-387
-23483-7_70. url: https://doi.org/10.1007/0-387-23483-7_70.

[CGW20] Zuling Chang, Guang Gong, and Qiang Wang. Cycle Structures of a Class of
Cascaded FSRs. IEEE Transactions on Information Theory, 66(6):3766–3774,
2020. doi: 10.1109/TIT.2019.2956741.

https://doi.org/10.1007/978-3-642-03317-9_1
https://doi.org/10.1007/978-3-642-03317-9_1
https://doi.org/10.1007/978-3-642-03317-9_1
https://doi.org/10.1007/978-3-540-30539-2_24
https://doi.org/10.1007/s00145-012-9125-6
https://doi.org/10.1007/s00145-012-9125-6
https://doi.org/10.1007/s00145-012-9125-6
https://doi.org/10.1007/978-3-540-25937-4_5
https://doi.org/10.1007/978-3-540-25937-4_5
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/layout-design/virtuoso-layout-suite.html
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/layout-design/virtuoso-layout-suite.html
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/layout-design/virtuoso-layout-suite.html
https://doi.org/10.1007/0-387-23483-7_165
https://doi.org/10.1007/0-387-23483-7_165
https://doi.org/10.1007/0-387-23483-7_70
https://doi.org/10.1007/0-387-23483-7_70
https://doi.org/10.1007/0-387-23483-7_70
https://doi.org/10.1109/TIT.2019.2956741

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 63

[CKPS00] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Effi-
cient Algorithms for Solving Overdefined Systems of Multivariate Polynomial
Equations. In Advances in Cryptology — EUROCRYPT 2000, pages 392–407.
Springer, Berlin, Heidelberg, 2000. isbn: 978-3-540-45539-4. doi: 10.1007/3-
540-45539-6_27.

[CM03] Nicolas T. Courtois and Willi Meier. Algebraic Attacks on Stream Ciphers
with Linear Feedback. In Eli Biham, editor, Advances in Cryptology — EURO-
CRYPT 2003, pages 345–359, Berlin, Heidelberg. Springer Berlin Heidelberg,
2003. doi: 10.1007/3-540-39200-9_21.

[COOP23] Marco Cianfriglia, Elia Onofri, Silvia Onofri, and Marco Pedicini. Fourteen
Years of Cube Attacks. Applicable Algebra in Engineering, Communication,
and Computing, May 2023. doi: 10 . 1007 / s00200 - 023 - 00602 - w. url:
https://doi.org/10.1007/s00200-023-00602-w.

[Cor13] Intel Corporation. Cyclone® V FPGA and SoC FPGA, 2013. url: https:
//www.intel.com/content/www/us/en/products/details/fpga/cyclone
/v.html. (accessed: 10.07.2024).

[Cor19] Intel Corporation. Intel® Quartus® Prime Lite Edition Design Software
Version 20.1.1 for Windows, 2019. url: https://www.intel.com/conten
t/www/us/en/software-kit/660907/intel-quartus-prime-lite-edit
ion-design-software-version-20-1-1-for-windows.html. (accessed:
10.06.2024).

[Cou03] Nicolas T. Courtois. Fast Algebraic Attacks on Stream Ciphers with Linear
Feedback. In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003,
volume 2729, pages 176–194, Berlin, Heidelberg. Springer Berlin Heidelberg,
2003. doi: 10.1007/978-3-540-45146-4_11.

[CP03] N. Courtois and J. Patarin. About the XL algorithm over GF(2). In Topics in
Cryptology — CT-RSA 2003, volume 2612, pages 141–157. Springer, Berlin,
Heidelberg, 2003. doi: 10.1007/3-540-36563-X_10. url: https://doi.or
g/10.1007/3-540-36563-X_10.

[dBru46] N.G. de Bruijn. A Combinatorial Problem. Proceedings of the Section of
Sciences of the Koninklijke Nederlandse Akademie van Wetenschappen te
Amsterdam, 49(7):758–764, 1946.

[De 06] Christophe De Cannière. Trivium: A Stream Cipher Construction Inspired
by Block Cipher Design Principles. In Proceedings of the 9th International
Conference on Information Security, ISC’06, pages 171–186, Samos Island,
Greece. Springer-Verlag, 2006. isbn: 3540383417. doi: 10.1007/11836810_13.
url: https://doi.org/10.1007/11836810_13.

[DP08] Christophe De Cannière and Bart Preneel. Trivium. In Lecture Notes in
Computer Science, pages 244–266, Berlin, Heidelberg. Springer-Verlag, 2008.
doi: 10.1007/978-3-540-68351-3_18. url: https://doi.org/10.1007/9
78-3-540-68351-3_18.

[DS09] Itai Dinur and Adi Shamir. Cube Attacks on Tweakable Black Box Poly-
nomials. In Antoine Joux, editor, Advances in Cryptology - EUROCRYPT
2009, pages 278–299, Berlin, Heidelberg. Springer Berlin Heidelberg, 2009.
doi: 10.1007/978-3-642-01001-9_16.

[Dub09] Elena Dubrova. A Transformation From the Fibonacci to the Galois NLFSRs.
IEEE Transactions on Information Theory, 55(11):5263–5271, 2009. doi:
10.1109/TIT.2009.2030467.

https://doi.org/10.1007/3-540-45539-6_27
https://doi.org/10.1007/3-540-45539-6_27
https://doi.org/10.1007/3-540-39200-9_21
https://doi.org/10.1007/s00200-023-00602-w
https://doi.org/10.1007/s00200-023-00602-w
https://www.intel.com/content/www/us/en/products/details/fpga/cyclone/v.html
https://www.intel.com/content/www/us/en/products/details/fpga/cyclone/v.html
https://www.intel.com/content/www/us/en/products/details/fpga/cyclone/v.html
https://www.intel.com/content/www/us/en/software-kit/660907/intel-quartus-prime-lite-edition-design-software-version-20-1-1-for-windows.html
https://www.intel.com/content/www/us/en/software-kit/660907/intel-quartus-prime-lite-edition-design-software-version-20-1-1-for-windows.html
https://www.intel.com/content/www/us/en/software-kit/660907/intel-quartus-prime-lite-edition-design-software-version-20-1-1-for-windows.html
https://doi.org/10.1007/978-3-540-45146-4_11
https://doi.org/10.1007/3-540-36563-X_10
https://doi.org/10.1007/3-540-36563-X_10
https://doi.org/10.1007/3-540-36563-X_10
https://doi.org/10.1007/11836810_13
https://doi.org/10.1007/11836810_13
https://doi.org/10.1007/978-3-540-68351-3_18
https://doi.org/10.1007/978-3-540-68351-3_18
https://doi.org/10.1007/978-3-540-68351-3_18
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1109/TIT.2009.2030467

64 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

[Dub12] Elena Dubrova. A List of Maximum Period NLFSRs, 2012. url: https://e
print.iacr.org/2012/166.pdf. (accessed: 10.1.2024).

[Dub14] Elena Dubrova. Generation of full cycles by a composition of NLFSRs. Designs,
Codes, and Cryptography, 73:469–486, March 2014. doi: 10.1007/s10623-01
4-9947-3. url: https://doi.org/10.1007/s10623-014-9947-3.

[Fau99] JC. Faugère. A New Efficient Algorithm for Computing Gröbner Bases (F4).
Journal of Pure and Applied Algebra, 139(1):61–88, 1999. doi: https://doi
.org/10.1016/S0022-4049(99)00005-5. url: https://www.sciencedire
ct.com/science/article/pii/S0022404999000055.

[Fei73] Horst Feistel. Cryptography and Computer Privacy. Scientific American,
228(5):15–23, 1973. issn: 00368733, 19467087. url: http://www.jstor.org
/stable/24923044 (visited on 05/30/2023).

[GD70] D.H. Green and K.R. Dimond. Nonlinear Product-Feedback Shift Registers.
Proceedings of the Institution of Electrical Engineers, 117(4):681–686, 1970.
issn: 0020-3270. doi: https://doi.org/10.1049/piee.1970.0134. url:
https://digital-library.theiet.org/content/journals/10.1049/pi
ee.1970.0134.

[Gol82] Solomon Golomb. Shift Register Sequences. Aegean Park Press, Laguna Hills,
Calif, 1982. isbn: 978-0894120480.

[Gro10] Larry C. Grove. Groups and Characters. John Wiley & Sons, Inc., 2010. doi:
10.1007/978-3-642-04101-3. url: https://doi.org/10.1007/978-3-64
2-04101-3.

[KD79] John B. Kam and George I. Davida. Structured Design of Substitution-
Permutation Encryption Networks. IEEE Transactions on Computers, C-
28(10):747–753, 1979. doi: 10.1109/TC.1979.1675242.

[Key76] E. Key. An Analysis of the Structure and Complexity of Nonlinear Binary
Sequence Generators. IEEE Transactions on Information Theory, 22(6):732–
736, November 1976. doi: 10.1109/tit.1976.1055626. url: https://doi
.org/10.1109/tit.1976.1055626.

[KS04] Alexander Klimov and Adi Shamir. Cryptographic Applications of T-Functions.
In Mitsuru Matsui and Robert J. Zuccherato, editors, Selected Areas in Cryp-
tography, pages 248–261, Berlin, Heidelberg. Springer Berlin Heidelberg, 2004.
isbn: 978-3-540-24654-1. doi: 10.1007/978-3-540-24654-1_18.

[Leo09] Steven Leon. Linear Algebra with Applications. In Pearson, New York, 2009.
Chapter 6.1. isbn: 2009023730.

[LH24] He Lei and Wang Hu. More Balanced Polynomials: Cube Attacks on 810-
and 825-Round Trivium with Practical Complexities. Selected Areas in Cryp-
tography – SAC 2023, February 2024. doi: 10.1007/978-3-031-53368-6_1.
url: https://doi.org/10.1007/978-3-031-53368-6_1.

[LN94] Rudolf Lidl and Harald Niederreiter. Introduction to Finite Fields and their
Applications. Cambridge University Press, 2nd edition, 1994. doi: 10.1017
/CBO9781139172769.

[Mas69] J. Massey. Shift-register Synthesis and BCH Decoding. IEEE Transactions
on Information Theory, 15(1):122–127, January 1969. doi: 10.1109/tit.19
69.1054260. url: https://doi.org/10.1109/tit.1969.1054260.

[Mat94] Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. In Tor Helle-
seth, editor, Advances in Cryptology — EUROCRYPT ’93, pages 386–397,
Berlin, Heidelberg. Springer Berlin Heidelberg, 1994. isbn: 978-3-540-48285-7.
doi: 10.1007/3-540-48285-7_33.

https://eprint.iacr.org/2012/166.pdf
https://eprint.iacr.org/2012/166.pdf
https://doi.org/10.1007/s10623-014-9947-3
https://doi.org/10.1007/s10623-014-9947-3
https://doi.org/10.1007/s10623-014-9947-3
https://doi.org/https://doi.org/10.1016/S0022-4049(99)00005-5
https://doi.org/https://doi.org/10.1016/S0022-4049(99)00005-5
https://www.sciencedirect.com/science/article/pii/S0022404999000055
https://www.sciencedirect.com/science/article/pii/S0022404999000055
http://www.jstor.org/stable/24923044
http://www.jstor.org/stable/24923044
https://doi.org/https://doi.org/10.1049/piee.1970.0134
https://digital-library.theiet.org/content/journals/10.1049/piee.1970.0134
https://digital-library.theiet.org/content/journals/10.1049/piee.1970.0134
https://doi.org/10.1007/978-3-642-04101-3
https://doi.org/10.1007/978-3-642-04101-3
https://doi.org/10.1007/978-3-642-04101-3
https://doi.org/10.1109/TC.1979.1675242
https://doi.org/10.1109/tit.1976.1055626
https://doi.org/10.1109/tit.1976.1055626
https://doi.org/10.1109/tit.1976.1055626
https://doi.org/10.1007/978-3-540-24654-1_18
https://doi.org/10.1007/978-3-031-53368-6_1
https://doi.org/10.1007/978-3-031-53368-6_1
https://doi.org/10.1017/CBO9781139172769
https://doi.org/10.1017/CBO9781139172769
https://doi.org/10.1109/tit.1969.1054260
https://doi.org/10.1109/tit.1969.1054260
https://doi.org/10.1109/tit.1969.1054260
https://doi.org/10.1007/3-540-48285-7_33

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 65

[MG16] Kalikinkar Mandal and Guang Gong. Feedback Reconstruction and Imple-
mentations of Pseudorandom Number Generators from Composited De Bruijn
Sequences. IEEE Transactions on Computers, 65(9):2725–2738, 2016. doi:
10.1109/TC.2015.2506557.

[MST79] Johannes Mykkeltveit, Man-Keung Siu, and Po Tong. On the Cycle Struc-
ture of Some Nonlinear Shift Register Sequences. Information and Control,
43(2):202–215, 1979. issn: 0019-9958. doi: https://doi.org/10.1016/S001
9-9958(79)90708-3. url: https://www.sciencedirect.com/science/ar
ticle/pii/S0019995879907083.

[MvOV97] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Public-Key
Parameters. In Handbook of Applied Cryptography. CRC Press, Boca Raton,
FL, 1997, pages 154–160. isbn: 9780429466335. doi: 10.1201/97804294663
35. url: https://doi.org/10.1201/9780429466335.

[PP97] Christof Paar and Jan Pelzl. Understanding Cryptography: A Textbook for
Students and Practitioners. Springer Heidelberg Dordrecht London New York,
May 1997. doi: 10.1002/9781118032688. url: https://doi.org/10.1002
/9781118032688.

[PRKK19] Sydney Pugh, MS Raunak, D Richard Kuhn, and Raghu Kacker. Systematic
Testing of Lightweight Cryptographic Implementations. Technical report,
National Institute of Standards and Technology, Gaithersburg, MD, USA,
November 2019.

[Rot95] Joseph Rotman. An Introduction to the Theory of Groups. Springer-Verlag,
New York, 1995. isbn: 0387942858.

[Rue86] Rainer A Rueppel. Analysis and Design of Stream Ciphers. en. Communica-
tions and Control Engineering. Springer, Berlin, Germany, 1986th edition,
August 1986.

[Sha45] Claude Shannon. A Mathematical Theory of Cryptography. Classified Report,
Bell Laboratories, Murray Hill, NJ, USA, September 1945.

[SM08] Mutsuo Saito and Makoto Matsumoto. SIMD-Oriented Fast Mersenne Twister:
a 128-bit Pseudorandom Number Generator. In Alexander Keller, Stefan
Heinrich, and Harald Niederreiter, editors, Monte Carlo and Quasi-Monte
Carlo Methods 2006, pages 607–622, Berlin, Heidelberg. Springer Berlin
Heidelberg, 2008. isbn: 978-3-540-74496-2. doi: 10.1007/978-3-540-74496
-2_36.

[Syn03] Synopsys, Inc. Design Vision User Guide, 2003. url: http://beethoven.ee
.ncku.edu.tw/testlab/course/VLSIdesign_course/course_96/Tool/De
sign_Vision_User_Guide.pdf. (accessed: 10.06.2024).

[Ter17] Terasic, Inc. De10-standard, 2017. url: https://www.terasic.com.tw/c
gi-bin/page/archive.pl?Language=English&CategoryNo=165&No=1081.
(accessed: 09.26.2024).

[Uni11] North Carolina State University. FreePDK45(TM), 2011. url: https://eda
.ncsu.edu/freepdk/freepdk45/. (accessed: 05.22.2023).

[WT86] A. F. Webster and S. E. Tavares. On the Design of S-Boxes. In Hugh
C. Williams, editor, Advances in Cryptology — CRYPTO ’85 Proceedings,
pages 523–534, Berlin, Heidelberg. Springer Berlin Heidelberg, 1986. isbn:
978-3-540-39799-1. doi: 10.1007/3-540-39799-X_41.

https://doi.org/10.1109/TC.2015.2506557
https://doi.org/https://doi.org/10.1016/S0019-9958(79)90708-3
https://doi.org/https://doi.org/10.1016/S0019-9958(79)90708-3
https://www.sciencedirect.com/science/article/pii/S0019995879907083
https://www.sciencedirect.com/science/article/pii/S0019995879907083
https://doi.org/10.1201/9780429466335
https://doi.org/10.1201/9780429466335
https://doi.org/10.1201/9780429466335
https://doi.org/10.1002/9781118032688
https://doi.org/10.1002/9781118032688
https://doi.org/10.1002/9781118032688
https://doi.org/10.1007/978-3-540-74496-2_36
https://doi.org/10.1007/978-3-540-74496-2_36
http://beethoven.ee.ncku.edu.tw/testlab/course/VLSIdesign_course/course_96/Tool/Design_Vision_User_Guide.pdf
http://beethoven.ee.ncku.edu.tw/testlab/course/VLSIdesign_course/course_96/Tool/Design_Vision_User_Guide.pdf
http://beethoven.ee.ncku.edu.tw/testlab/course/VLSIdesign_course/course_96/Tool/Design_Vision_User_Guide.pdf
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=165&No=1081
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=165&No=1081
https://eda.ncsu.edu/freepdk/freepdk45/
https://eda.ncsu.edu/freepdk/freepdk45/
https://doi.org/10.1007/3-540-39799-X_41

66 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

[ZW06] Wenying Zhang and Chuan-Kun Wu. The Algebraic Normal Form, Linear
Complexity and k-Error Linear Complexity of Single-Cycle T-Function. In
Guang Gong, Tor Helleseth, Hong-Yeop Song, and Kyeongcheol Yang, edi-
tors, Sequences and Their Applications – SETA 2006, pages 391–401, Berlin,
Heidelberg. Springer Berlin Heidelberg, 2006. isbn: 978-3-540-44524-1. doi:
10.1007/11863854_34.

Appendices
The content of this appendix can also be found at https://github.com/gt-hwswcosec
/cmprs2025

A ANF for CMPRs used in the CMPR-based Stream
Cipher Family

The ANF for the large CMPRs used in our stream ciphers is formatted in the same way
as in Section 6.3.

A.1 ANF for 288-bit CMPR

c287[t + 1] = c286[t]
c286[t + 1] = c285[t]
c285[t + 1] = c284[t]
c284[t + 1] = c283[t]
c283[t + 1] = c282[t]
c282[t + 1] = c281[t]
c281[t + 1] = c280[t]
c280[t + 1] = c279[t]
c279[t + 1] = c278[t]
c278[t + 1] = c277[t]
c277[t + 1] = c276[t]
c276[t + 1] = c275[t]
c275[t + 1] = c274[t]
c274[t + 1] = c273[t]
c273[t + 1] = c272[t]
c272[t + 1] = c271[t]
c271[t + 1] = c270[t]
c270[t + 1] = c287[t] ⊕ c269[t]
c269[t + 1] = c268[t]
c268[t + 1] = c267[t]
c267[t + 1] = c266[t]
c266[t + 1] = c265[t]
c265[t + 1] = c287[t] ⊕ c264[t]
c264[t + 1] = c263[t]
c263[t + 1] = c262[t]
c262[t + 1] = c261[t]
c261[t + 1] = c260[t]
c260[t + 1] = c259[t]
c259[t + 1] = c258[t]
c258[t + 1] = c257[t]
c257[t + 1] = c256[t]
c256[t + 1] = c255[t]

https://doi.org/10.1007/11863854_34
https://github.com/gt-hwswcosec/cmprs2025
https://github.com/gt-hwswcosec/cmprs2025

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 67

c255[t + 1] = c254[t]
c254[t + 1] = c253[t]
c253[t + 1] = c252[t]
c252[t + 1] = c251[t]
c251[t + 1] = c250[t]
c250[t + 1] = c249[t]
c249[t + 1] = c248[t]
c248[t + 1] = c247[t]
c247[t + 1] = c246[t]
c246[t + 1] = c245[t]
c245[t + 1] = c244[t]
c244[t + 1] = c243[t]
c243[t + 1] = c242[t]
c242[t + 1] = c241[t]
c241[t + 1] = c240[t]
c240[t + 1] = c239[t]
c239[t + 1] = c238[t]
c238[t + 1] = c237[t]
c237[t + 1] = c236[t]
c236[t + 1] = c235[t]
c235[t + 1] = c234[t]
c234[t + 1] = c233[t]
c233[t + 1] = c232[t]
c232[t + 1] = c231[t]
c231[t + 1] = c230[t]
c230[t + 1] = c229[t]
c229[t + 1] = c228[t]
c228[t + 1] = c227[t]
c227[t + 1] = c226[t]
c226[t + 1] = c225[t]
c225[t + 1] = c224[t]
c224[t + 1] = c223[t]
c223[t + 1] = c222[t]
c222[t + 1] = c221[t]
c221[t + 1] = c287[t] ⊕ c220[t]
c220[t + 1] = c219[t]
c219[t + 1] = c218[t]
c218[t + 1] = c217[t]
c217[t + 1] = c216[t]
c216[t + 1] = c215[t]
c215[t + 1] = c214[t]
c214[t + 1] = c213[t]
c213[t + 1] = c212[t]
c212[t + 1] = c211[t]
c211[t + 1] = c210[t]
c210[t + 1] = c287[t] ⊕ c209[t]
c209[t + 1] = c208[t]
c208[t + 1] = c207[t]
c207[t + 1] = c206[t]
c206[t + 1] = c205[t]
c205[t + 1] = c204[t]
c204[t + 1] = c287[t] ⊕ c203[t]
c203[t + 1] = c202[t]
c202[t + 1] = c201[t]
c201[t + 1] = c200[t]
c200[t + 1] = c199[t]
c199[t + 1] = c198[t]

68 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

c198[t + 1] = c197[t]
c197[t + 1] = c196[t]
c196[t + 1] = c195[t]
c195[t + 1] = c194[t]
c194[t + 1] = c193[t]
c193[t + 1] = c192[t]
c192[t + 1] = c191[t]
c191[t + 1] = c190[t]
c190[t + 1] = c189[t]
c189[t + 1] = c188[t]
c188[t + 1] = c187[t]
c187[t + 1] = c186[t]
c186[t + 1] = c185[t]
c185[t + 1] = c184[t]
c184[t + 1] = c183[t]
c183[t + 1] = c182[t]
c182[t + 1] = c181[t]
c181[t + 1] = c287[t]
c180[t + 1] = c179[t] ⊕ c270[t]c286[t]c261[t]c192[t] ⊕ c195[t]c215[t]c194[t] ⊕ c230[t]c284[t] ⊕ c268[t]c251[t]c192[t]
c179[t + 1] = c178[t] ⊕ c214[t]c281[t]c232[t]c208[t] ⊕ c184[t]c218[t] ⊕ c220[t]c268[t]
c178[t + 1] = c177[t] ⊕ c212[t]c211[t]c190[t]c271[t] ⊕ c181[t]c275[t]c215[t] ⊕ c194[t]c227[t]c217[t]c272[t] ⊕ c202[t]c251[t]c210[t]c195[t]
c177[t + 1] = c176[t] ⊕ c230[t]c181[t]c242[t] ⊕ c182[t]c232[t]c248[t] ⊕ c245[t]c239[t]c267[t]c251[t]
c176[t + 1] = c175[t] ⊕ c215[t]c236[t]c254[t]c227[t] ⊕ c218[t]c272[t]c285[t]c226[t] ⊕ c281[t]c209[t]
c175[t + 1] = c174[t] ⊕ c241[t]c217[t]c262[t] ⊕ c266[t]c244[t]c205[t]c285[t]
c174[t + 1] = c173[t] ⊕ c186[t]c228[t]c220[t]c251[t] ⊕ c270[t]c203[t] ⊕ c248[t]c222[t]c256[t]
c173[t + 1] = c172[t] ⊕ c180[t] ⊕ c245[t]c192[t] ⊕ c227[t]c203[t] ⊕ c269[t]c198[t]c223[t] ⊕ c196[t]c186[t]c258[t]c230[t]
c172[t + 1] = c171[t] ⊕ c285[t]c260[t] ⊕ c249[t]c259[t] ⊕ c279[t]c266[t]c238[t]c220[t] ⊕ c278[t]c267[t]c220[t]c202[t]
c171[t + 1] = c170[t] ⊕ c285[t]c187[t]c223[t]c198[t] ⊕ c276[t]c198[t]c211[t] ⊕ c181[t]c238[t]c260[t] ⊕ c202[t]c191[t]c199[t]c196[t]
c170[t + 1] = c169[t] ⊕ c262[t]c204[t] ⊕ c256[t]c200[t]
c169[t + 1] = c168[t] ⊕ c215[t]c282[t] ⊕ c192[t]c244[t]c280[t]c275[t] ⊕ c286[t]c192[t]c263[t] ⊕ c197[t]c247[t]c199[t]
c168[t + 1] = c167[t] ⊕ c271[t]c204[t] ⊕ c194[t]c276[t] ⊕ c283[t]c241[t] ⊕ c257[t]c209[t]c275[t]
c167[t + 1] = c166[t] ⊕ c276[t]c213[t]c214[t]c190[t] ⊕ c247[t]c238[t]c275[t]c219[t] ⊕ c204[t]c252[t]c287[t]c257[t] ⊕ c247[t]c257[t]c267[t]
c166[t + 1] = c165[t] ⊕ c211[t]c221[t] ⊕ c255[t]c208[t]c272[t] ⊕ c257[t]c285[t]c200[t] ⊕ c201[t]c245[t]
c165[t + 1] = c164[t] ⊕ c219[t]c245[t]c252[t]c226[t] ⊕ c221[t]c201[t]c186[t]c250[t] ⊕ c198[t]c253[t]c193[t]
c164[t + 1] = c163[t] ⊕ c264[t]c246[t]c245[t] ⊕ c183[t]c201[t]
c163[t + 1] = c162[t] ⊕ c245[t]c223[t] ⊕ c280[t]c252[t]c229[t] ⊕ c249[t]c226[t]
c162[t + 1] = c161[t] ⊕ c277[t]c194[t] ⊕ c226[t]c251[t]c192[t]c242[t] ⊕ c270[t]c205[t]c211[t]c266[t]
c161[t + 1] = c160[t] ⊕ c284[t]c191[t]c198[t] ⊕ c231[t]c247[t]
c160[t + 1] = c180[t] ⊕ c159[t] ⊕ c220[t]c263[t] ⊕ c236[t]c228[t]c266[t] ⊕ c251[t]c249[t]c199[t]c221[t]
c159[t + 1] = c158[t] ⊕ c188[t]c216[t]c265[t]c261[t] ⊕ c231[t]c233[t]c190[t] ⊕ c186[t]c190[t]c260[t] ⊕ c227[t]c217[t]
c158[t + 1] = c157[t] ⊕ c203[t]c283[t] ⊕ c260[t]c220[t]c185[t] ⊕ c204[t]c226[t]c193[t]
c157[t + 1] = c156[t] ⊕ c268[t]c197[t]c215[t]c286[t] ⊕ c256[t]c205[t]c204[t]c245[t] ⊕ c216[t]c282[t]c248[t] ⊕ c281[t]c282[t]c250[t]c197[t]
c156[t + 1] = c155[t] ⊕ c201[t]c202[t]c277[t]c213[t] ⊕ c233[t]c253[t]c183[t]c277[t] ⊕ c215[t]c200[t]c278[t]c184[t]
c155[t + 1] = c154[t] ⊕ c194[t]c218[t]c253[t] ⊕ c243[t]c251[t]c282[t] ⊕ c281[t]c274[t]
c154[t + 1] = c153[t] ⊕ c195[t]c234[t] ⊕ c229[t]c190[t]c248[t]c226[t]
c153[t + 1] = c152[t] ⊕ c256[t]c280[t] ⊕ c208[t]c242[t] ⊕ c258[t]c195[t]c239[t]c211[t] ⊕ c240[t]c244[t]
c152[t + 1] = c151[t] ⊕ c214[t]c187[t]c185[t]c248[t] ⊕ c214[t]c201[t]c262[t] ⊕ c253[t]c233[t]
c151[t + 1] = c150[t] ⊕ c185[t]c189[t] ⊕ c211[t]c191[t]
c150[t + 1] = c149[t] ⊕ c255[t]c239[t] ⊕ c234[t]c245[t]c239[t]c222[t] ⊕ c227[t]c281[t] ⊕ c233[t]c201[t]c255[t]c276[t]
c149[t + 1] = c148[t] ⊕ c200[t]c212[t] ⊕ c218[t]c185[t]c273[t]c240[t] ⊕ c248[t]c276[t]c253[t] ⊕ c185[t]c222[t]c277[t]
c148[t + 1] = c147[t] ⊕ c273[t]c224[t] ⊕ c195[t]c187[t]
c147[t + 1] = c146[t] ⊕ c212[t]c257[t] ⊕ c218[t]c238[t]c216[t]
c146[t + 1] = c145[t] ⊕ c284[t]c206[t]c216[t] ⊕ c209[t]c230[t]c181[t] ⊕ c219[t]c269[t]c185[t]
c145[t + 1] = c144[t] ⊕ c183[t]c240[t]c234[t] ⊕ c207[t]c249[t]c263[t]c246[t] ⊕ c218[t]c221[t]c214[t] ⊕ c269[t]c219[t]
c144[t + 1] = c143[t] ⊕ c280[t]c276[t]c183[t] ⊕ c268[t]c185[t]c213[t]c225[t] ⊕ c220[t]c277[t]c239[t]
c143[t + 1] = c142[t] ⊕ c267[t]c239[t]c245[t] ⊕ c270[t]c198[t] ⊕ c266[t]c191[t]c226[t]c206[t]
c142[t + 1] = c141[t] ⊕ c206[t]c276[t]c232[t] ⊕ c229[t]c206[t]c266[t]c248[t] ⊕ c185[t]c245[t] ⊕ c277[t]c230[t]c234[t]c227[t]

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 69

c141[t + 1] = c140[t] ⊕ c221[t]c214[t] ⊕ c264[t]c239[t] ⊕ c214[t]c240[t]c226[t]
c140[t + 1] = c139[t] ⊕ c219[t]c235[t] ⊕ c217[t]c230[t]c280[t]c258[t]
c139[t + 1] = c138[t] ⊕ c226[t]c263[t]c239[t] ⊕ c209[t]c264[t]c214[t]c204[t] ⊕ c227[t]c198[t]c275[t] ⊕ c245[t]c184[t]
c138[t + 1] = c137[t] ⊕ c218[t]c226[t]c230[t] ⊕ c243[t]c257[t]c269[t]c214[t]
c137[t + 1] = c136[t] ⊕ c271[t]c191[t]c183[t]c253[t] ⊕ c236[t]c240[t]c195[t] ⊕ c225[t]c214[t]c219[t]c218[t] ⊕ c258[t]c268[t]
c136[t + 1] = c135[t] ⊕ c287[t]c237[t] ⊕ c260[t]c217[t]
c135[t + 1] = c134[t] ⊕ c220[t]c214[t]c256[t]c230[t] ⊕ c212[t]c217[t]c198[t] ⊕ c213[t]c220[t]c214[t] ⊕ c256[t]c265[t]c192[t]c194[t]
c134[t + 1] = c133[t] ⊕ c238[t]c195[t] ⊕ c266[t]c199[t]c268[t] ⊕ c261[t]c287[t] ⊕ c279[t]c222[t]c188[t]c221[t]
c133[t + 1] = c132[t] ⊕ c250[t]c266[t]c281[t]c217[t] ⊕ c279[t]c188[t]c211[t] ⊕ c278[t]c208[t]c274[t]
c132[t + 1] = c131[t] ⊕ c264[t]c253[t] ⊕ c210[t]c230[t]c215[t] ⊕ c259[t]c242[t] ⊕ c229[t]c222[t]
c131[t + 1] = c130[t] ⊕ c237[t]c249[t]c195[t] ⊕ c192[t]c250[t] ⊕ c281[t]c284[t]c280[t]c283[t] ⊕ c279[t]c265[t]c269[t]
c130[t + 1] = c129[t] ⊕ c250[t]c205[t]c213[t]c253[t] ⊕ c285[t]c189[t]c278[t] ⊕ c194[t]c239[t]c215[t] ⊕ c277[t]c208[t]c218[t]c261[t]
c129[t + 1] = c128[t] ⊕ c247[t]c279[t]c202[t] ⊕ c231[t]c234[t]c217[t] ⊕ c263[t]c224[t]c258[t] ⊕ c223[t]c254[t]c267[t]
c128[t + 1] = c127[t] ⊕ c237[t]c246[t] ⊕ c237[t]c195[t]c279[t]
c127[t + 1] = c126[t] ⊕ c185[t]c227[t] ⊕ c250[t]c206[t]c183[t]c224[t] ⊕ c224[t]c274[t]c285[t]
c126[t + 1] = c125[t] ⊕ c268[t]c266[t]c254[t]c282[t] ⊕ c277[t]c285[t]c281[t] ⊕ c236[t]c234[t]c191[t]c280[t] ⊕ c251[t]c282[t]
c125[t + 1] = c124[t] ⊕ c212[t]c221[t]c274[t]c203[t] ⊕ c246[t]c285[t]c254[t] ⊕ c265[t]c225[t] ⊕ c259[t]c181[t]
c124[t + 1] = c123[t] ⊕ c209[t]c281[t]c187[t] ⊕ c193[t]c218[t]c197[t]
c123[t + 1] = c180[t] ⊕ c122[t] ⊕ c230[t]c210[t]c259[t] ⊕ c210[t]c282[t] ⊕ c257[t]c207[t]c234[t] ⊕ c266[t]c223[t]c193[t]
c122[t + 1] = c121[t] ⊕ c230[t]c208[t] ⊕ c243[t]c267[t]c202[t]
c121[t + 1] = c120[t] ⊕ c200[t]c263[t]c205[t] ⊕ c258[t]c196[t] ⊕ c242[t]c219[t]c259[t]
c120[t + 1] = c119[t] ⊕ c274[t]c198[t]c240[t]c263[t] ⊕ c205[t]c252[t]c185[t]c274[t] ⊕ c218[t]c189[t]c214[t] ⊕ c206[t]c226[t]c220[t]
c119[t + 1] = c118[t] ⊕ c285[t]c287[t]c214[t]c281[t] ⊕ c266[t]c243[t] ⊕ c236[t]c242[t]c212[t]c202[t] ⊕ c280[t]c185[t]c251[t]
c118[t + 1] = c117[t] ⊕ c237[t]c266[t]c248[t]c246[t] ⊕ c281[t]c206[t]
c117[t + 1] = c116[t] ⊕ c192[t]c233[t]c277[t] ⊕ c268[t]c264[t] ⊕ c274[t]c261[t]c224[t]c206[t]
c116[t + 1] = c115[t] ⊕ c259[t]c187[t]c197[t] ⊕ c287[t]c202[t] ⊕ c188[t]c211[t]c194[t] ⊕ c222[t]c212[t]c240[t]
c115[t + 1] = c114[t] ⊕ c183[t]c210[t]c275[t] ⊕ c229[t]c278[t]c213[t] ⊕ c197[t]c258[t] ⊕ c285[t]c241[t]c204[t]
c114[t + 1] = c113[t] ⊕ c191[t]c254[t]c185[t] ⊕ c269[t]c264[t]c274[t] ⊕ c270[t]c216[t]c218[t] ⊕ c247[t]c222[t]c235[t]
c113[t + 1] = c180[t] ⊕ c112[t] ⊕ c181[t]c220[t] ⊕ c243[t]c251[t]c274[t]c195[t] ⊕ c257[t]c243[t]c240[t]
c112[t + 1] = c111[t] ⊕ c258[t]c282[t] ⊕ c255[t]c272[t]c278[t]c204[t] ⊕ c228[t]c196[t]c269[t] ⊕ c183[t]c191[t]c283[t]c226[t]
c111[t + 1] = c110[t] ⊕ c227[t]c216[t] ⊕ c187[t]c225[t]c188[t]c285[t]
c110[t + 1] = c180[t] ⊕ c109[t] ⊕ c207[t]c266[t]c219[t]c283[t] ⊕ c280[t]c275[t]
c109[t + 1] = c108[t] ⊕ c257[t]c266[t] ⊕ c278[t]c239[t]
c108[t + 1] = c107[t] ⊕ c228[t]c241[t]c200[t] ⊕ c219[t]c248[t]
c107[t + 1] = c106[t] ⊕ c258[t]c265[t]c244[t]c195[t] ⊕ c187[t]c228[t]c286[t]c222[t]
c106[t + 1] = c105[t] ⊕ c233[t]c185[t] ⊕ c229[t]c266[t]c202[t]c212[t]
c105[t + 1] = c104[t] ⊕ c188[t]c274[t] ⊕ c218[t]c287[t] ⊕ c243[t]c194[t]c221[t]
c104[t + 1] = c103[t] ⊕ c286[t]c248[t]c259[t]c236[t] ⊕ c248[t]c185[t]c265[t] ⊕ c239[t]c261[t]c273[t]c212[t] ⊕ c185[t]c195[t]
c103[t + 1] = c102[t] ⊕ c185[t]c241[t] ⊕ c188[t]c282[t]c208[t] ⊕ c226[t]c204[t]c201[t]
c102[t + 1] = c101[t] ⊕ c270[t]c187[t]c222[t] ⊕ c275[t]c218[t]c222[t]
c101[t + 1] = c100[t] ⊕ c277[t]c237[t]c252[t]c182[t] ⊕ c268[t]c246[t]c273[t]
c100[t + 1] = c99[t] ⊕ c272[t]c220[t]c211[t] ⊕ c222[t]c209[t]c223[t]c256[t] ⊕ c279[t]c191[t] ⊕ c220[t]c236[t]c205[t]
c99[t + 1] = c98[t] ⊕ c206[t]c272[t] ⊕ c207[t]c196[t]c231[t]c193[t] ⊕ c252[t]c209[t]c256[t]
c98[t + 1] = c97[t] ⊕ c268[t]c273[t]c184[t] ⊕ c278[t]c231[t]
c97[t + 1] = c96[t] ⊕ c238[t]c257[t]c191[t] ⊕ c192[t]c278[t]c226[t]c206[t] ⊕ c275[t]c256[t]c264[t] ⊕ c281[t]c277[t]
c96[t + 1] = c95[t] ⊕ c243[t]c199[t]c238[t]c242[t] ⊕ c262[t]c205[t]
c95[t + 1] = c94[t] ⊕ c209[t]c281[t] ⊕ c224[t]c237[t] ⊕ c285[t]c190[t]c213[t]c258[t]
c94[t + 1] = c93[t] ⊕ c181[t]c251[t]c221[t]c199[t] ⊕ c286[t]c227[t]c209[t] ⊕ c248[t]c276[t]c241[t]c225[t]
c93[t + 1] = c92[t] ⊕ c262[t]c223[t] ⊕ c279[t]c200[t]c283[t]c233[t]
c92[t + 1] = c180[t] ⊕ c263[t]c225[t] ⊕ c250[t]c265[t]c258[t]c270[t] ⊕ c285[t]c252[t]c202[t]c250[t] ⊕ c243[t]c194[t]c241[t]c209[t]
c91[t + 1] = c90[t] ⊕ c163[t]c128[t] ⊕ c120[t]c162[t] ⊕ c117[t]c165[t] ⊕ c130[t]c163[t]c180[t]c119[t]
c90[t + 1] = c89[t] ⊕ c177[t]c147[t]c162[t]c152[t] ⊕ c115[t]c92[t]c164[t]c136[t] ⊕ c164[t]c119[t]c118[t]c122[t] ⊕ c128[t]c106[t]
c89[t + 1] = c88[t] ⊕ c101[t]c163[t] ⊕ c118[t]c141[t]c97[t]c162[t] ⊕ c142[t]c171[t] ⊕ c102[t]c178[t]c98[t]c155[t]
c88[t + 1] = c87[t] ⊕ c156[t]c172[t] ⊕ c97[t]c156[t]c127[t]c115[t] ⊕ c96[t]c137[t]
c87[t + 1] = c86[t] ⊕ c131[t]c142[t]c118[t]c115[t] ⊕ c113[t]c96[t]c137[t] ⊕ c107[t]c144[t]c178[t]
c86[t + 1] = c85[t] ⊕ c107[t]c174[t]c116[t]c153[t] ⊕ c174[t]c106[t]c146[t]c96[t] ⊕ c93[t]c96[t]c150[t]c156[t]
c85[t + 1] = c84[t] ⊕ c144[t]c135[t]c103[t]c127[t] ⊕ c170[t]c145[t]c147[t]c158[t] ⊕ c156[t]c125[t]c137[t]

70 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

c84[t + 1] = c83[t] ⊕ c107[t]c108[t]c140[t]c149[t] ⊕ c102[t]c110[t]c105[t] ⊕ c115[t]c141[t]c101[t]
c83[t + 1] = c82[t] ⊕ c124[t]c118[t]c142[t] ⊕ c133[t]c125[t] ⊕ c96[t]c148[t]c131[t]
c82[t + 1] = c81[t] ⊕ c152[t]c137[t]c116[t] ⊕ c129[t]c125[t]c124[t]
c81[t + 1] = c80[t] ⊕ c126[t]c135[t]c158[t]c143[t] ⊕ c154[t]c121[t] ⊕ c153[t]c126[t] ⊕ c140[t]c173[t]c137[t]c136[t]
c80[t + 1] = c79[t] ⊕ c106[t]c142[t]c108[t] ⊕ c151[t]c107[t]c118[t]c169[t] ⊕ c95[t]c153[t]c99[t]
c79[t + 1] = c78[t] ⊕ c111[t]c160[t]c152[t] ⊕ c93[t]c100[t]c178[t] ⊕ c96[t]c165[t]c177[t]c130[t]
c78[t + 1] = c77[t] ⊕ c113[t]c169[t] ⊕ c103[t]c176[t]c167[t] ⊕ c126[t]c116[t]c124[t]c172[t]
c77[t + 1] = c76[t] ⊕ c115[t]c172[t]c174[t]c166[t] ⊕ c130[t]c128[t] ⊕ c132[t]c154[t]c93[t]c131[t] ⊕ c168[t]c109[t]
c76[t + 1] = c75[t] ⊕ c104[t]c105[t]c94[t] ⊕ c162[t]c157[t] ⊕ c93[t]c152[t]c164[t]c132[t]
c75[t + 1] = c91[t] ⊕ c74[t] ⊕ c116[t]c99[t]c142[t] ⊕ c125[t]c126[t]c174[t]c134[t] ⊕ c125[t]c152[t]c97[t] ⊕ c114[t]c119[t]c177[t]c101[t]
c74[t + 1] = c73[t] ⊕ c141[t]c132[t]c125[t] ⊕ c117[t]c93[t]c113[t] ⊕ c164[t]c115[t]c148[t] ⊕ c148[t]c107[t]
c73[t + 1] = c72[t] ⊕ c166[t]c144[t]c94[t] ⊕ c108[t]c152[t]c162[t]c131[t]
c72[t + 1] = c71[t] ⊕ c170[t]c97[t]c100[t] ⊕ c160[t]c142[t]c167[t]c137[t]
c71[t + 1] = c70[t] ⊕ c169[t]c118[t]c180[t]c156[t] ⊕ c101[t]c127[t] ⊕ c125[t]c177[t]c149[t] ⊕ c137[t]c96[t]c104[t]c123[t]
c70[t + 1] = c69[t] ⊕ c134[t]c112[t]c148[t] ⊕ c169[t]c163[t]c137[t]c180[t] ⊕ c109[t]c149[t]
c69[t + 1] = c68[t] ⊕ c139[t]c162[t] ⊕ c129[t]c102[t]
c68[t + 1] = c67[t] ⊕ c132[t]c93[t]c168[t]c137[t] ⊕ c131[t]c174[t]c98[t] ⊕ c118[t]c135[t]c138[t] ⊕ c153[t]c111[t]c133[t]
c67[t + 1] = c66[t] ⊕ c111[t]c179[t]c98[t]c138[t] ⊕ c163[t]c134[t]
c66[t + 1] = c65[t] ⊕ c139[t]c131[t] ⊕ c149[t]c128[t]c117[t]c113[t] ⊕ c116[t]c104[t]c121[t]c151[t] ⊕ c109[t]c147[t]c159[t]
c65[t + 1] = c64[t] ⊕ c109[t]c123[t]c92[t]c149[t] ⊕ c115[t]c179[t]c99[t]
c64[t + 1] = c63[t] ⊕ c106[t]c121[t] ⊕ c169[t]c122[t]c154[t]c135[t] ⊕ c157[t]c156[t]c166[t]c131[t]
c63[t + 1] = c62[t] ⊕ c121[t]c157[t] ⊕ c167[t]c122[t]c123[t]
c62[t + 1] = c61[t] ⊕ c130[t]c151[t]c119[t]c144[t] ⊕ c179[t]c119[t]c121[t]c108[t] ⊕ c130[t]c180[t]c102[t]c160[t]
c61[t + 1] = c60[t] ⊕ c99[t]c174[t]c149[t] ⊕ c165[t]c174[t]c92[t]c98[t] ⊕ c116[t]c101[t]c131[t] ⊕ c167[t]c157[t]c168[t]c137[t]
c60[t + 1] = c59[t] ⊕ c152[t]c156[t]c96[t]c158[t] ⊕ c174[t]c171[t] ⊕ c96[t]c113[t] ⊕ c108[t]c129[t]c118[t]c136[t]
c59[t + 1] = c58[t] ⊕ c123[t]c104[t] ⊕ c180[t]c156[t]c172[t]c166[t] ⊕ c122[t]c155[t]c146[t] ⊕ c151[t]c127[t]c108[t]c165[t]
c58[t + 1] = c57[t] ⊕ c113[t]c124[t]c106[t]c103[t] ⊕ c112[t]c173[t]c99[t]c107[t] ⊕ c153[t]c113[t]c96[t]c161[t]
c57[t + 1] = c56[t] ⊕ c155[t]c134[t]c121[t] ⊕ c97[t]c158[t]c128[t] ⊕ c147[t]c120[t]
c56[t + 1] = c55[t] ⊕ c110[t]c130[t] ⊕ c122[t]c161[t] ⊕ c96[t]c167[t] ⊕ c106[t]c147[t]
c55[t + 1] = c54[t] ⊕ c115[t]c143[t]c172[t] ⊕ c107[t]c174[t]c150[t]
c54[t + 1] = c53[t] ⊕ c122[t]c99[t]c172[t] ⊕ c145[t]c137[t]c97[t]c119[t] ⊕ c146[t]c136[t]c169[t]c172[t]
c53[t + 1] = c52[t] ⊕ c107[t]c99[t]c168[t] ⊕ c133[t]c115[t]
c52[t + 1] = c51[t] ⊕ c164[t]c151[t]c106[t]c133[t] ⊕ c155[t]c176[t]
c51[t + 1] = c50[t] ⊕ c116[t]c104[t]c167[t] ⊕ c150[t]c96[t] ⊕ c95[t]c100[t]c96[t]c116[t] ⊕ c162[t]c177[t]c124[t]c141[t]
c50[t + 1] = c91[t] ⊕ c49[t] ⊕ c127[t]c164[t]c93[t] ⊕ c178[t]c151[t]
c49[t + 1] = c48[t] ⊕ c153[t]c139[t]c128[t] ⊕ c105[t]c135[t] ⊕ c129[t]c136[t]c168[t]c145[t]
c48[t + 1] = c47[t] ⊕ c159[t]c110[t]c98[t] ⊕ c125[t]c94[t]
c47[t + 1] = c46[t] ⊕ c167[t]c113[t] ⊕ c100[t]c156[t] ⊕ c107[t]c145[t] ⊕ c169[t]c157[t]
c46[t + 1] = c91[t] ⊕ c45[t] ⊕ c173[t]c108[t]c160[t]c99[t] ⊕ c144[t]c141[t]c127[t]c178[t] ⊕ c135[t]c127[t]c172[t]c174[t] ⊕ c138[t]c100[t]c176[t]
c45[t + 1] = c44[t] ⊕ c129[t]c161[t] ⊕ c160[t]c147[t]
c44[t + 1] = c43[t] ⊕ c163[t]c97[t]c100[t] ⊕ c167[t]c141[t] ⊕ c122[t]c135[t]c152[t]
c43[t + 1] = c42[t] ⊕ c176[t]c120[t]c110[t]c140[t] ⊕ c160[t]c149[t]c127[t]c136[t] ⊕ c159[t]c101[t]c171[t]c115[t]
c42[t + 1] = c41[t] ⊕ c110[t]c160[t]c164[t]c124[t] ⊕ c137[t]c92[t] ⊕ c118[t]c115[t]c153[t]
c41[t + 1] = c40[t] ⊕ c180[t]c131[t]c112[t]c117[t] ⊕ c174[t]c107[t] ⊕ c152[t]c101[t]
c40[t + 1] = c39[t] ⊕ c178[t]c102[t]c164[t]c94[t] ⊕ c150[t]c147[t]c143[t] ⊕ c104[t]c111[t]c180[t]
c39[t + 1] = c38[t] ⊕ c180[t]c175[t] ⊕ c163[t]c136[t]c158[t] ⊕ c138[t]c163[t]c176[t]c132[t] ⊕ c132[t]c165[t]
c38[t + 1] = c37[t] ⊕ c178[t]c180[t] ⊕ c128[t]c135[t]c173[t] ⊕ c107[t]c98[t] ⊕ c105[t]c162[t]
c37[t + 1] = c36[t] ⊕ c98[t]c131[t] ⊕ c100[t]c127[t]
c36[t + 1] = c35[t] ⊕ c160[t]c104[t]c176[t] ⊕ c101[t]c148[t]c107[t] ⊕ c99[t]c144[t]c96[t] ⊕ c97[t]c137[t]
c35[t + 1] = c34[t] ⊕ c159[t]c160[t]c166[t] ⊕ c175[t]c136[t] ⊕ c128[t]c118[t] ⊕ c144[t]c151[t]c104[t]
c34[t + 1] = c33[t] ⊕ c170[t]c107[t] ⊕ c103[t]c173[t] ⊕ c99[t]c127[t]c94[t]c176[t] ⊕ c113[t]c133[t]
c33[t + 1] = c32[t] ⊕ c113[t]c134[t] ⊕ c124[t]c108[t]
c32[t + 1] = c31[t] ⊕ c119[t]c112[t]c176[t]c140[t] ⊕ c141[t]c99[t]c101[t] ⊕ c112[t]c179[t]c165[t]c123[t]
c31[t + 1] = c91[t] ⊕ c139[t]c110[t]c122[t]c152[t] ⊕ c127[t]c116[t]c134[t] ⊕ c120[t]c137[t]c170[t] ⊕ c125[t]c127[t]c123[t]c93[t]
c30[t + 1] = c29[t] ⊕ c60[t]c47[t]c38[t] ⊕ c69[t]c76[t] ⊕ c70[t]c91[t]c67[t]
c29[t + 1] = c28[t] ⊕ c90[t]c83[t]c67[t] ⊕ c48[t]c61[t] ⊕ c57[t]c46[t] ⊕ c75[t]c48[t]
c28[t + 1] = c27[t] ⊕ c82[t]c43[t] ⊕ c38[t]c52[t] ⊕ c63[t]c79[t]c34[t] ⊕ c52[t]c45[t]c80[t]c44[t]

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 71

c27[t + 1] = c26[t] ⊕ c42[t]c38[t]c71[t] ⊕ c84[t]c49[t]c80[t]c47[t]
c26[t + 1] = c25[t] ⊕ c86[t]c70[t]c47[t] ⊕ c59[t]c41[t]c74[t]c42[t] ⊕ c63[t]c75[t] ⊕ c89[t]c46[t]c37[t]
c25[t + 1] = c24[t] ⊕ c44[t]c63[t] ⊕ c62[t]c52[t]c44[t] ⊕ c74[t]c56[t] ⊕ c45[t]c31[t]
c24[t + 1] = c23[t] ⊕ c47[t]c64[t] ⊕ c50[t]c37[t] ⊕ c77[t]c34[t] ⊕ c58[t]c33[t]c34[t]c73[t]
c23[t + 1] = c22[t] ⊕ c86[t]c53[t] ⊕ c58[t]c89[t]c81[t] ⊕ c43[t]c31[t]
c22[t + 1] = c21[t] ⊕ c65[t]c44[t]c43[t]c56[t] ⊕ c81[t]c51[t]c76[t]
c21[t + 1] = c20[t] ⊕ c76[t]c77[t]c49[t] ⊕ c37[t]c62[t]c67[t] ⊕ c49[t]c34[t] ⊕ c71[t]c80[t]c61[t]c74[t]
c20[t + 1] = c19[t] ⊕ c71[t]c61[t]c79[t]c42[t] ⊕ c84[t]c41[t]
c19[t + 1] = c18[t] ⊕ c56[t]c37[t]c31[t]c90[t] ⊕ c47[t]c76[t]c77[t] ⊕ c56[t]c53[t]c74[t]c32[t]
c18[t + 1] = c17[t] ⊕ c58[t]c86[t] ⊕ c38[t]c73[t]c50[t]c68[t] ⊕ c48[t]c65[t]c91[t] ⊕ c56[t]c66[t]
c17[t + 1] = c16[t] ⊕ c32[t]c43[t]c55[t] ⊕ c57[t]c40[t]c52[t] ⊕ c74[t]c91[t]c43[t] ⊕ c72[t]c60[t]c37[t]
c16[t + 1] = c15[t] ⊕ c50[t]c62[t] ⊕ c41[t]c66[t]c46[t] ⊕ c58[t]c84[t] ⊕ c80[t]c36[t]
c15[t + 1] = c14[t] ⊕ c43[t]c45[t]c48[t]c66[t] ⊕ c64[t]c41[t]c67[t]c86[t] ⊕ c50[t]c41[t]c47[t]
c14[t + 1] = c13[t] ⊕ c60[t]c82[t] ⊕ c47[t]c64[t] ⊕ c77[t]c85[t]
c13[t + 1] = c12[t] ⊕ c52[t]c40[t]c50[t]c53[t] ⊕ c58[t]c67[t]c87[t]
c12[t + 1] = c11[t] ⊕ c32[t]c38[t]c58[t] ⊕ c82[t]c86[t]c59[t]c81[t] ⊕ c63[t]c54[t] ⊕ c39[t]c32[t]c52[t]c82[t]
c11[t + 1] = c10[t] ⊕ c82[t]c81[t]c59[t] ⊕ c80[t]c86[t]c60[t]c62[t]
c10[t + 1] = c9[t] ⊕ c33[t]c40[t]c56[t] ⊕ c80[t]c58[t]c81[t]c74[t] ⊕ c58[t]c83[t]c64[t]c57[t] ⊕ c68[t]c59[t]c36[t]c33[t]
c9[t + 1] = c8[t] ⊕ c68[t]c59[t] ⊕ c65[t]c61[t]c74[t]c59[t] ⊕ c55[t]c43[t]
c8[t + 1] = c7[t] ⊕ c34[t]c68[t] ⊕ c56[t]c66[t]
c7[t + 1] = c6[t] ⊕ c55[t]c31[t] ⊕ c68[t]c48[t]c74[t] ⊕ c39[t]c32[t] ⊕ c47[t]c33[t]
c6[t + 1] = c5[t] ⊕ c86[t]c49[t] ⊕ c67[t]c36[t]c81[t]c42[t] ⊕ c89[t]c64[t] ⊕ c62[t]c41[t]c52[t]c80[t]
c5[t + 1] = c4[t] ⊕ c62[t]c64[t]c67[t]c66[t] ⊕ c48[t]c60[t]c74[t]
c4[t + 1] = c3[t] ⊕ c83[t]c42[t]c47[t] ⊕ c32[t]c64[t] ⊕ c76[t]c53[t]c75[t] ⊕ c68[t]c87[t]
c3[t + 1] = c2[t] ⊕ c30[t] ⊕ c83[t]c81[t]c74[t]c89[t] ⊕ c56[t]c60[t] ⊕ c85[t]c75[t] ⊕ c67[t]c73[t]c36[t]c49[t]
c2[t + 1] = c1[t] ⊕ c30[t] ⊕ c71[t]c87[t]c60[t]c83[t] ⊕ c67[t]c62[t]c87[t]c66[t] ⊕ c49[t]c69[t]c90[t] ⊕ c90[t]c51[t]
c1[t + 1] = c30[t] ⊕ c0[t] ⊕ c69[t]c79[t] ⊕ c47[t]c61[t]c41[t] ⊕ c42[t]c71[t]c62[t]c51[t] ⊕ c42[t]c70[t]c32[t]
c0[t + 1] = c30[t] ⊕ c73[t]c89[t] ⊕ c38[t]c90[t]c69[t]c55[t] ⊕ c69[t]c72[t]c75[t] ⊕ c70[t]c59[t]c88[t]

A.2 ANF for 162-bit CMPR
c161[t + 1] = c160[t]
c160[t + 1] = c159[t]
c159[t + 1] = c158[t]
c158[t + 1] = c157[t]
c157[t + 1] = c156[t]
c156[t + 1] = c155[t]
c155[t + 1] = c154[t]
c154[t + 1] = c153[t]
c153[t + 1] = c152[t]
c152[t + 1] = c151[t]
c151[t + 1] = c150[t]
c150[t + 1] = c149[t]
c149[t + 1] = c148[t]
c148[t + 1] = c147[t]
c147[t + 1] = c146[t]
c146[t + 1] = c145[t]
c145[t + 1] = c144[t]
c144[t + 1] = c161[t] ⊕ c143[t]
c143[t + 1] = c142[t]
c142[t + 1] = c141[t]
c141[t + 1] = c140[t]
c140[t + 1] = c139[t]
c139[t + 1] = c161[t] ⊕ c138[t]
c138[t + 1] = c137[t]
c137[t + 1] = c136[t]
c136[t + 1] = c135[t]

72 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

c135[t + 1] = c134[t]
c134[t + 1] = c133[t]
c133[t + 1] = c132[t]
c132[t + 1] = c131[t]
c131[t + 1] = c130[t]
c130[t + 1] = c129[t]
c129[t + 1] = c128[t]
c128[t + 1] = c127[t]
c127[t + 1] = c126[t]
c126[t + 1] = c125[t]
c125[t + 1] = c124[t]
c124[t + 1] = c123[t]
c123[t + 1] = c122[t]
c122[t + 1] = c121[t]
c121[t + 1] = c120[t]
c120[t + 1] = c119[t]
c119[t + 1] = c118[t]
c118[t + 1] = c117[t]
c117[t + 1] = c116[t]
c116[t + 1] = c115[t]
c115[t + 1] = c114[t]
c114[t + 1] = c113[t]
c113[t + 1] = c112[t]
c112[t + 1] = c111[t]
c111[t + 1] = c110[t]
c110[t + 1] = c109[t]
c109[t + 1] = c108[t]
c108[t + 1] = c107[t]
c107[t + 1] = c106[t]
c106[t + 1] = c105[t]
c105[t + 1] = c104[t]
c104[t + 1] = c103[t]
c103[t + 1] = c102[t]
c102[t + 1] = c101[t]
c101[t + 1] = c100[t]
c100[t + 1] = c99[t]
c99[t + 1] = c98[t]
c98[t + 1] = c97[t]
c97[t + 1] = c96[t]
c96[t + 1] = c95[t]
c95[t + 1] = c161[t] ⊕ c94[t]
c94[t + 1] = c93[t]
c93[t + 1] = c92[t]
c92[t + 1] = c91[t]
c91[t + 1] = c90[t]
c90[t + 1] = c89[t]
c89[t + 1] = c88[t]
c88[t + 1] = c87[t]
c87[t + 1] = c86[t]
c86[t + 1] = c85[t]
c85[t + 1] = c84[t]
c84[t + 1] = c161[t] ⊕ c83[t]
c83[t + 1] = c82[t]
c82[t + 1] = c81[t]
c81[t + 1] = c80[t]
c80[t + 1] = c79[t]
c79[t + 1] = c78[t]

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 73

c78[t + 1] = c161[t] ⊕ c77[t]
c77[t + 1] = c76[t]
c76[t + 1] = c75[t]
c75[t + 1] = c74[t]
c74[t + 1] = c73[t]
c73[t + 1] = c72[t]
c72[t + 1] = c71[t]
c71[t + 1] = c70[t]
c70[t + 1] = c69[t]
c69[t + 1] = c68[t]
c68[t + 1] = c67[t]
c67[t + 1] = c66[t]
c66[t + 1] = c65[t]
c65[t + 1] = c64[t]
c64[t + 1] = c63[t]
c63[t + 1] = c62[t]
c62[t + 1] = c61[t]
c61[t + 1] = c60[t]
c60[t + 1] = c59[t]
c59[t + 1] = c58[t]
c58[t + 1] = c57[t]
c57[t + 1] = c56[t]
c56[t + 1] = c55[t]
c55[t + 1] = c161[t]
c54[t + 1] = c53[t] ⊕ c153[t]c72[t]c77[t] ⊕ c71[t]c102[t]c132[t]c141[t] ⊕ c59[t]c108[t]
c53[t + 1] = c52[t] ⊕ c67[t]c104[t]c99[t]c160[t] ⊕ c97[t]c145[t]
c52[t + 1] = c51[t] ⊕ c160[t]c141[t]c143[t]c94[t] ⊕ c146[t]c160[t]c100[t] ⊕ c81[t]c155[t] ⊕ c114[t]c135[t]c140[t]
c51[t + 1] = c50[t] ⊕ c59[t]c134[t] ⊕ c148[t]c60[t]
c50[t + 1] = c49[t] ⊕ c90[t]c96[t]c106[t] ⊕ c72[t]c67[t] ⊕ c62[t]c75[t]c101[t]c153[t] ⊕ c106[t]c63[t]c156[t]
c49[t + 1] = c48[t] ⊕ c59[t]c118[t] ⊕ c104[t]c135[t]c157[t]c68[t] ⊕ c119[t]c79[t]c135[t]c66[t] ⊕ c130[t]c127[t]c60[t]c123[t]
c48[t + 1] = c47[t] ⊕ c89[t]c138[t] ⊕ c78[t]c68[t]
c47[t + 1] = c46[t] ⊕ c144[t]c67[t]c146[t]c87[t] ⊕ c73[t]c153[t] ⊕ c86[t]c108[t]c107[t]c68[t]
c46[t + 1] = c45[t] ⊕ c133[t]c77[t] ⊕ c159[t]c118[t]c72[t] ⊕ c156[t]c105[t] ⊕ c150[t]c156[t]c152[t]c134[t]
c45[t + 1] = c44[t] ⊕ c131[t]c90[t]c109[t]c129[t] ⊕ c149[t]c68[t]c77[t]c127[t] ⊕ c105[t]c112[t] ⊕ c91[t]c93[t]c153[t]c92[t]
c44[t + 1] = c43[t] ⊕ c127[t]c78[t]c148[t] ⊕ c78[t]c55[t]c62[t]c152[t]
c43[t + 1] = c42[t] ⊕ c152[t]c153[t]c160[t]c75[t] ⊕ c108[t]c88[t]c100[t]c107[t] ⊕ c63[t]c96[t]c100[t]
c42[t + 1] = c41[t] ⊕ c68[t]c119[t]c135[t]c98[t] ⊕ c158[t]c77[t]c92[t]
c41[t + 1] = c40[t] ⊕ c100[t]c142[t]c118[t] ⊕ c123[t]c64[t]c93[t]c110[t] ⊕ c149[t]c110[t]c62[t]c128[t] ⊕ c107[t]c125[t]
c40[t + 1] = c39[t] ⊕ c76[t]c134[t]c98[t] ⊕ c65[t]c93[t]
c39[t + 1] = c38[t] ⊕ c132[t]c93[t]c60[t] ⊕ c151[t]c161[t]c118[t]
c38[t + 1] = c37[t] ⊕ c115[t]c125[t]c105[t]c134[t] ⊕ c76[t]c98[t] ⊕ c90[t]c61[t]c101[t]c115[t]
c37[t + 1] = c36[t] ⊕ c133[t]c86[t] ⊕ c125[t]c145[t]c105[t]c84[t]
c36[t + 1] = c35[t] ⊕ c84[t]c90[t]c55[t] ⊕ c160[t]c64[t]c138[t]c95[t] ⊕ c144[t]c139[t]
c35[t + 1] = c34[t] ⊕ c98[t]c99[t]c86[t] ⊕ c95[t]c72[t] ⊕ c69[t]c123[t]c137[t] ⊕ c158[t]c112[t]c58[t]
c34[t + 1] = c33[t] ⊕ c87[t]c91[t]c120[t] ⊕ c123[t]c158[t]
c33[t + 1] = c32[t] ⊕ c58[t]c120[t] ⊕ c87[t]c142[t]c86[t] ⊕ c79[t]c126[t] ⊕ c99[t]c76[t]c96[t]
c32[t + 1] = c31[t] ⊕ c63[t]c146[t]c107[t] ⊕ c94[t]c139[t]c110[t]
c31[t + 1] = c30[t] ⊕ c131[t]c126[t] ⊕ c116[t]c99[t] ⊕ c60[t]c121[t]c122[t]c110[t]
c30[t + 1] = c29[t] ⊕ c71[t]c142[t]c108[t]c69[t] ⊕ c100[t]c158[t]c99[t]c125[t]
c29[t + 1] = c28[t] ⊕ c64[t]c79[t]c119[t] ⊕ c106[t]c58[t]
c28[t + 1] = c27[t] ⊕ c57[t]c74[t]c84[t]c65[t] ⊕ c55[t]c147[t]c57[t]c98[t] ⊕ c102[t]c138[t]
c27[t + 1] = c26[t] ⊕ c54[t] ⊕ c151[t]c79[t]c84[t] ⊕ c99[t]c110[t]c80[t]c62[t] ⊕ c149[t]c130[t] ⊕ c98[t]c70[t]c63[t]
c26[t + 1] = c25[t] ⊕ c54[t] ⊕ c95[t]c77[t]c61[t]c87[t] ⊕ c65[t]c84[t] ⊕ c137[t]c111[t]c158[t]c118[t] ⊕ c139[t]c156[t]c129[t]
c25[t + 1] = c54[t] ⊕ c24[t] ⊕ c108[t]c127[t]c95[t] ⊕ c108[t]c112[t]c84[t]c151[t] ⊕ c144[t]c62[t]c147[t]
c24[t + 1] = c54[t] ⊕ c140[t]c74[t]c92[t]c95[t] ⊕ c155[t]c66[t]c105[t] ⊕ c143[t]c117[t]c113[t]
c23[t + 1] = c22[t] ⊕ c28[t]c37[t]c39[t]c44[t] ⊕ c27[t]c38[t] ⊕ c27[t]c42[t]c52[t]c37[t] ⊕ c38[t]c48[t]c29[t]
c22[t + 1] = c21[t] ⊕ c38[t]c53[t]c39[t] ⊕ c41[t]c36[t] ⊕ c53[t]c46[t]

74 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

c21[t + 1] = c20[t] ⊕ c41[t]c33[t]c47[t]c45[t] ⊕ c48[t]c51[t]c45[t]c34[t]
c20[t + 1] = c19[t] ⊕ c53[t]c34[t]c42[t] ⊕ c47[t]c37[t]c45[t]c33[t] ⊕ c53[t]c42[t]c33[t] ⊕ c40[t]c39[t]c35[t]
c19[t + 1] = c18[t] ⊕ c39[t]c47[t]c41[t]c53[t] ⊕ c51[t]c34[t] ⊕ c48[t]c39[t] ⊕ c49[t]c46[t]
c18[t + 1] = c17[t] ⊕ c50[t]c24[t]c37[t] ⊕ c30[t]c35[t]c36[t] ⊕ c53[t]c35[t]
c17[t + 1] = c16[t] ⊕ c48[t]c35[t]c41[t]c26[t] ⊕ c31[t]c50[t]c40[t]
c16[t + 1] = c15[t] ⊕ c31[t]c41[t]c37[t] ⊕ c27[t]c49[t]c47[t]c26[t] ⊕ c34[t]c41[t] ⊕ c50[t]c44[t]c39[t]c48[t]
c15[t + 1] = c23[t] ⊕ c14[t] ⊕ c27[t]c48[t]c36[t] ⊕ c50[t]c45[t]c27[t]c35[t]
c14[t + 1] = c13[t] ⊕ c23[t] ⊕ c37[t]c49[t]c44[t] ⊕ c38[t]c39[t]c34[t]c35[t] ⊕ c44[t]c33[t]c39[t]
c13[t + 1] = c12[t] ⊕ c23[t] ⊕ c34[t]c48[t]c31[t] ⊕ c32[t]c27[t]c47[t] ⊕ c31[t]c32[t]c50[t] ⊕ c29[t]c28[t]c42[t]
c12[t + 1] = c11[t] ⊕ c36[t]c42[t]c52[t] ⊕ c53[t]c39[t]c26[t] ⊕ c48[t]c41[t]c39[t]c35[t] ⊕ c32[t]c52[t]c37[t]c44[t]
c11[t + 1] = c10[t] ⊕ c23[t] ⊕ c43[t]c54[t]c31[t] ⊕ c37[t]c48[t]c40[t]c45[t] ⊕ c42[t]c47[t] ⊕ c33[t]c37[t]c39[t]c49[t]
c10[t + 1] = c9[t] ⊕ c23[t] ⊕ c35[t]c24[t]c54[t]c41[t] ⊕ c39[t]c43[t]c48[t]c51[t] ⊕ c36[t]c35[t]c24[t]c39[t]
c9[t + 1] = c8[t] ⊕ c34[t]c31[t]c43[t] ⊕ c53[t]c26[t]c36[t]c45[t] ⊕ c36[t]c29[t]c37[t]
c8[t + 1] = c7[t] ⊕ c35[t]c46[t] ⊕ c26[t]c34[t]c31[t]
c7[t + 1] = c23[t] ⊕ c30[t]c39[t]c52[t] ⊕ c51[t]c36[t]c42[t] ⊕ c47[t]c52[t]c48[t]c24[t] ⊕ c53[t]c52[t]c38[t]
c6[t + 1] = c5[t] ⊕ c6[t] ⊕ c21[t]c18[t]c22[t] ⊕ c21[t]c8[t]c11[t] ⊕ c18[t]c15[t]c14[t] ⊕ c18[t]c23[t]c19[t]
c5[t + 1] = c4[t] ⊕ c6[t] ⊕ c23[t]c19[t]c9[t] ⊕ c19[t]c21[t]
c4[t + 1] = c3[t] ⊕ c6[t] ⊕ c21[t]c14[t]c7[t] ⊕ c7[t]c16[t]c17[t]c23[t]
c3[t + 1] = c2[t] ⊕ c18[t]c13[t]c21[t]c11[t] ⊕ c19[t]c17[t] ⊕ c23[t]c12[t]c22[t]c18[t]
c2[t + 1] = c6[t] ⊕ c19[t]c23[t]c7[t]c12[t] ⊕ c14[t]c13[t] ⊕ c19[t]c9[t]
c1[t + 1] = c1[t] ⊕ c0[t] ⊕ c2[t]c5[t]c4[t]c6[t] ⊕ c2[t]c4[t]
c0[t + 1] = c1[t] ⊕ c3[t]c2[t]c5[t] ⊕ c2[t]c4[t]c5[t]c6[t] ⊕ c3[t]c4[t] ⊕ c3[t]c5[t]

A.3 ANF for 170-bit CMPR
c169[t + 1] = c168[t]
c168[t + 1] = c167[t]
c167[t + 1] = c166[t]
c166[t + 1] = c165[t]
c165[t + 1] = c164[t]
c164[t + 1] = c163[t]
c163[t + 1] = c162[t]
c162[t + 1] = c161[t]
c161[t + 1] = c160[t]
c160[t + 1] = c159[t]
c159[t + 1] = c158[t]
c158[t + 1] = c157[t]
c157[t + 1] = c156[t]
c156[t + 1] = c155[t]
c155[t + 1] = c154[t]
c154[t + 1] = c153[t]
c153[t + 1] = c152[t]
c152[t + 1] = c151[t]
c151[t + 1] = c150[t]
c150[t + 1] = c149[t]
c149[t + 1] = c148[t]
c148[t + 1] = c147[t]
c147[t + 1] = c146[t]
c146[t + 1] = c145[t]
c145[t + 1] = c144[t]
c144[t + 1] = c143[t]
c143[t + 1] = c142[t]
c142[t + 1] = c141[t]
c141[t + 1] = c140[t]
c140[t + 1] = c139[t]
c139[t + 1] = c138[t]
c138[t + 1] = c137[t]

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 75

c137[t + 1] = c136[t]
c136[t + 1] = c135[t]
c135[t + 1] = c134[t]
c134[t + 1] = c133[t]
c133[t + 1] = c132[t]
c132[t + 1] = c131[t]
c131[t + 1] = c130[t]
c130[t + 1] = c129[t]
c129[t + 1] = c128[t]
c128[t + 1] = c127[t]
c127[t + 1] = c126[t]
c126[t + 1] = c125[t]
c125[t + 1] = c124[t]
c124[t + 1] = c123[t]
c123[t + 1] = c122[t]
c122[t + 1] = c121[t]
c121[t + 1] = c120[t]
c120[t + 1] = c119[t]
c119[t + 1] = c118[t]
c118[t + 1] = c117[t]
c117[t + 1] = c116[t]
c116[t + 1] = c115[t]
c115[t + 1] = c114[t]
c114[t + 1] = c113[t]
c113[t + 1] = c112[t]
c112[t + 1] = c111[t]
c111[t + 1] = c110[t]
c110[t + 1] = c109[t]
c109[t + 1] = c108[t]
c108[t + 1] = c107[t]
c107[t + 1] = c106[t]
c106[t + 1] = c105[t]
c105[t + 1] = c104[t]
c104[t + 1] = c103[t]
c103[t + 1] = c102[t]
c102[t + 1] = c101[t]
c101[t + 1] = c100[t]
c100[t + 1] = c99[t]
c99[t + 1] = c98[t]
c98[t + 1] = c97[t]
c97[t + 1] = c96[t] ⊕ c169[t]
c96[t + 1] = c95[t]
c95[t + 1] = c94[t]
c94[t + 1] = c93[t]
c93[t + 1] = c92[t]
c92[t + 1] = c91[t]
c91[t + 1] = c90[t]
c90[t + 1] = c89[t]
c89[t + 1] = c88[t]
c88[t + 1] = c87[t] ⊕ c169[t]
c87[t + 1] = c86[t]
c86[t + 1] = c85[t]
c85[t + 1] = c84[t]
c84[t + 1] = c83[t]
c83[t + 1] = c82[t]
c82[t + 1] = c81[t]
c81[t + 1] = c80[t]

76 Scalable Nonlinear Sequence Gen. using Composite Mersenne Product Registers

c80[t + 1] = c79[t]
c79[t + 1] = c78[t]
c78[t + 1] = c77[t]
c77[t + 1] = c76[t]
c76[t + 1] = c75[t]
c75[t + 1] = c74[t]
c74[t + 1] = c73[t]
c73[t + 1] = c72[t]
c72[t + 1] = c71[t]
c71[t + 1] = c70[t]
c70[t + 1] = c69[t]
c69[t + 1] = c68[t]
c68[t + 1] = c67[t]
c67[t + 1] = c66[t]
c66[t + 1] = c65[t]
c65[t + 1] = c64[t]
c64[t + 1] = c63[t]
c63[t + 1] = c62[t]
c62[t + 1] = c61[t]
c61[t + 1] = c60[t]
c60[t + 1] = c59[t]
c59[t + 1] = c58[t]
c58[t + 1] = c57[t]
c57[t + 1] = c56[t]
c56[t + 1] = c55[t] ⊕ c169[t]
c55[t + 1] = c54[t]
c54[t + 1] = c53[t]
c53[t + 1] = c52[t]
c52[t + 1] = c51[t]
c51[t + 1] = c50[t]
c50[t + 1] = c49[t]
c49[t + 1] = c48[t]
c48[t + 1] = c47[t]
c47[t + 1] = c46[t]
c46[t + 1] = c45[t]
c45[t + 1] = c44[t]
c44[t + 1] = c43[t]
c43[t + 1] = c169[t]
c42[t + 1] = c41[t] ⊕ c58[t]c78[t]c129[t] ⊕ c44[t]c131[t]
c41[t + 1] = c40[t] ⊕ c128[t]c146[t]c143[t] ⊕ c117[t]c121[t]c167[t]c86[t] ⊕ c169[t]c108[t]c103[t]c43[t] ⊕ c101[t]c144[t]c68[t]c136[t]
c40[t + 1] = c39[t] ⊕ c86[t]c45[t] ⊕ c48[t]c106[t] ⊕ c77[t]c139[t]c109[t]c47[t] ⊕ c126[t]c104[t]c124[t]
c39[t + 1] = c38[t] ⊕ c95[t]c55[t] ⊕ c116[t]c101[t]c60[t]c126[t] ⊕ c106[t]c81[t]c70[t]
c38[t + 1] = c37[t] ⊕ c104[t]c161[t]c160[t] ⊕ c157[t]c122[t]c114[t] ⊕ c50[t]c157[t]c84[t]c105[t] ⊕ c46[t]c119[t]
c37[t + 1] = c36[t] ⊕ c55[t]c99[t]c121[t]c94[t] ⊕ c143[t]c50[t] ⊕ c144[t]c104[t]c66[t]c65[t]
c36[t + 1] = c35[t] ⊕ c81[t]c47[t]c164[t] ⊕ c168[t]c140[t]c59[t]
c35[t + 1] = c34[t] ⊕ c45[t]c49[t]c64[t] ⊕ c151[t]c50[t]c138[t]
c34[t + 1] = c33[t] ⊕ c51[t]c72[t]c90[t] ⊕ c113[t]c84[t]c92[t]c135[t] ⊕ c134[t]c63[t]c117[t]c89[t] ⊕ c110[t]c132[t]
c33[t + 1] = c32[t] ⊕ c140[t]c160[t]c45[t] ⊕ c120[t]c103[t]c59[t]c90[t] ⊕ c154[t]c140[t]c64[t]
c32[t + 1] = c31[t] ⊕ c83[t]c66[t] ⊕ c152[t]c64[t] ⊕ c151[t]c64[t] ⊕ c136[t]c155[t]
c31[t + 1] = c30[t] ⊕ c57[t]c143[t]c110[t] ⊕ c53[t]c117[t] ⊕ c120[t]c60[t]c96[t]c115[t] ⊕ c145[t]c79[t]c55[t]
c30[t + 1] = c29[t] ⊕ c134[t]c121[t]c160[t] ⊕ c135[t]c117[t]c161[t]
c29[t + 1] = c42[t] ⊕ c28[t] ⊕ c160[t]c135[t] ⊕ c129[t]c157[t]
c28[t + 1] = c27[t] ⊕ c42[t] ⊕ c101[t]c66[t] ⊕ c85[t]c138[t] ⊕ c108[t]c60[t]c122[t]
c27[t + 1] = c26[t] ⊕ c42[t] ⊕ c134[t]c129[t]c88[t]c85[t] ⊕ c111[t]c147[t]
c26[t + 1] = c42[t] ⊕ c25[t] ⊕ c88[t]c135[t] ⊕ c46[t]c117[t]c100[t]c125[t] ⊕ c92[t]c88[t]c167[t]c143[t]
c25[t + 1] = c42[t] ⊕ c24[t] ⊕ c43[t]c100[t]c84[t]c131[t] ⊕ c146[t]c113[t]c138[t] ⊕ c115[t]c134[t]c91[t]c84[t] ⊕ c139[t]c71[t]
c24[t + 1] = c42[t] ⊕ c156[t]c97[t] ⊕ c122[t]c55[t]c59[t]c168[t] ⊕ c104[t]c139[t] ⊕ c79[t]c65[t]c88[t]

D. Gordon, A. Allahverdi, S. Abrelat, A. Hemingway, A. Farooq, I. Smith, N. Arora,
A. Chang, Y. Qiang and V. Mooney 77

c23[t + 1] = c22[t] ⊕ c26[t]c27[t] ⊕ c37[t]c24[t] ⊕ c41[t]c24[t] ⊕ c41[t]c26[t]
c22[t + 1] = c21[t] ⊕ c30[t]c35[t]c27[t] ⊕ c32[t]c24[t] ⊕ c25[t]c38[t]c32[t] ⊕ c27[t]c32[t]c29[t]
c21[t + 1] = c20[t] ⊕ c33[t]c28[t]c31[t]c25[t] ⊕ c25[t]c30[t]c38[t] ⊕ c32[t]c35[t] ⊕ c27[t]c37[t]c40[t]
c20[t + 1] = c19[t] ⊕ c35[t]c36[t]c34[t] ⊕ c32[t]c24[t]c31[t]c28[t] ⊕ c42[t]c36[t]c37[t]c41[t] ⊕ c36[t]c26[t]c28[t]
c19[t + 1] = c18[t] ⊕ c26[t]c40[t]c32[t]c38[t] ⊕ c31[t]c26[t] ⊕ c25[t]c42[t]c26[t]c38[t]
c18[t + 1] = c17[t] ⊕ c29[t]c40[t]c31[t]c35[t] ⊕ c27[t]c37[t]c39[t]c40[t] ⊕ c24[t]c31[t]c38[t]c26[t]
c17[t + 1] = c16[t] ⊕ c25[t]c30[t] ⊕ c40[t]c32[t]c25[t]c24[t]
c16[t + 1] = c15[t] ⊕ c40[t]c34[t] ⊕ c33[t]c41[t]c32[t] ⊕ c35[t]c31[t]c33[t]c42[t] ⊕ c26[t]c28[t]c36[t]c33[t]
c15[t + 1] = c14[t] ⊕ c36[t]c35[t]c34[t]c31[t] ⊕ c28[t]c29[t]c34[t] ⊕ c31[t]c26[t] ⊕ c41[t]c40[t]
c14[t + 1] = c13[t] ⊕ c38[t]c36[t]c34[t] ⊕ c40[t]c28[t]c30[t] ⊕ c24[t]c27[t] ⊕ c32[t]c39[t]c33[t]c24[t]
c13[t + 1] = c12[t] ⊕ c27[t]c38[t]c25[t]c35[t] ⊕ c27[t]c34[t]c26[t]
c12[t + 1] = c11[t] ⊕ c36[t]c31[t]c42[t] ⊕ c42[t]c39[t]c41[t] ⊕ c26[t]c39[t] ⊕ c39[t]c30[t]
c11[t + 1] = c10[t] ⊕ c31[t]c39[t]c40[t]c24[t] ⊕ c33[t]c41[t]c26[t]c40[t]
c10[t + 1] = c9[t] ⊕ c23[t] ⊕ c29[t]c25[t] ⊕ c28[t]c38[t]c24[t] ⊕ c33[t]c29[t] ⊕ c35[t]c27[t]c26[t]
c9[t + 1] = c8[t] ⊕ c23[t] ⊕ c39[t]c37[t]c24[t] ⊕ c37[t]c38[t]c35[t]c27[t] ⊕ c25[t]c30[t]c38[t] ⊕ c38[t]c42[t]c40[t]
c8[t + 1] = c23[t] ⊕ c7[t] ⊕ c27[t]c39[t]c40[t] ⊕ c38[t]c34[t]c26[t]c39[t] ⊕ c33[t]c40[t]c32[t] ⊕ c36[t]c24[t]c31[t]
c7[t + 1] = c23[t] ⊕ c32[t]c24[t]c29[t]c40[t] ⊕ c42[t]c32[t]c30[t]c40[t]
c6[t + 1] = c5[t] ⊕ c6[t] ⊕ c21[t]c9[t] ⊕ c22[t]c15[t]c14[t]c19[t]
c5[t + 1] = c4[t] ⊕ c6[t] ⊕ c12[t]c16[t]c15[t]c20[t] ⊕ c10[t]c22[t]c8[t]
c4[t + 1] = c3[t] ⊕ c6[t] ⊕ c19[t]c7[t]c9[t] ⊕ c15[t]c19[t]c13[t]c9[t] ⊕ c19[t]c17[t]c20[t]c23[t] ⊕ c10[t]c21[t]
c3[t + 1] = c2[t] ⊕ c13[t]c16[t]c18[t]c10[t] ⊕ c10[t]c13[t] ⊕ c18[t]c7[t]c9[t]
c2[t + 1] = c6[t] ⊕ c22[t]c19[t]c7[t] ⊕ c20[t]c9[t]c17[t]c22[t] ⊕ c7[t]c10[t]c13[t] ⊕ c14[t]c22[t]c21[t]c11[t]
c1[t + 1] = c1[t] ⊕ c0[t] ⊕ c4[t]c6[t]c3[t]c5[t] ⊕ c4[t]c2[t]c5[t] ⊕ c3[t]c5[t]c2[t] ⊕ c4[t]c2[t]c6[t]
c0[t + 1] = c1[t] ⊕ c5[t]c2[t]c6[t]c4[t] ⊕ c3[t]c5[t]c6[t]c2[t]

	Introduction
	Background
	Contributions
	Organization

	Preliminaries
	Mathematical Notation
	Registers, Feedback, Cycles and Systems
	De Bruijn Sequences
	T-Functions
	TRIVIUM

	Chaining Period Theorem
	Chaining
	Examples and Applications

	PRNGs Based on Chaining
	Product Registers and Mersenne Primes
	Composite Mersenne Product Registers

	Linear Complexity Analysis
	Preliminaries and Motivation
	Root Counting
	Root Propagation through an MPR
	Degenerate Cosets and a Pessimistic Estimate
	Examples and Comparisons

	PRNG Analysis
	Pseudorandom Number Generator Specification
	Data Generation and Statistical Analysis
	Cryptanalysis

	Stream Cipher Design and Comparison
	Three CMPR-Based Stream Ciphers
	Design Rationale
	Security Analysis and Statistical Comparison to TRIVIUM
	Hardware Implementations and Comparison to TRIVIUM
	Comparison Summary

	Discussion
	Conclusion
	References
	Appendices
	ANF for CMPRs used in the CMPR-based Stream Cipher Family
	ANF for 288-bit CMPR
	ANF for 162-bit CMPR
	ANF for 170-bit CMPR

