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Abstract. Non-interactive zero-knowledge (NIZK) proof systems are a cornerstone of
modern cryptography, but their security has received little attention in the quantum
settings. Motivated by improving our understanding of this fundamental primitive
against quantum adversaries, we propose a new definition of security against quantum
adversary. Specifically, we define the notion of quantum simulation soundness (SS-
NIZK), that allows the adversary to access the simulator in superposition.
We show a separation between post-quantum and quantum security of SS-NIZK,
and prove that Sahai’s construction for SS-NIZK (in the CRS model) can be made
quantumly-simulation-sound. As an immediate application of our new notion, we
prove the security of the Naor-Yung paradigm in the quantum settings, with respect
to a strong quantum IND-CCA security notion. This provides the quantum analogue
of the classical dual key approach to prove the security of encryption schemes. Along
the way, we introduce a new notion of quantum-query advantage functions, which
may be used as a general framework to show classical/quantum separation for other
cryptographic primitives, and it may be of independent interest.

1 Introduction
The rapid progress in quantum computing and the dramatic effects of a full-scale quantum
computer on cryptography [Sho94] have prompted the community to re-examine traditional
assumptions and security model in cryptography. Even though replacing the quantumly
broken computational assumptions with quantum-hard assumptions is essential, a number
of works (e.g., [Wat06, Unr12, DFNS14, KLLN16]) has shown attacks against cryptographic
schemes that could be proven secure classically. Even worse, many of the current security
models fail to capture the quantum nature of the adversary, thus only provide weak, or
over-optimistic guarantees.

This has motivated a fruitful line of research, where new security definitions have been
developed in the superposition-access model [KM10, KM12, Zha12a, DFNS14, BZ13a,
BZ13b, ATTU16, KLLN16, AMRS20, BBC+21, CETU21, ABKM22, EvW22, CEV22]
and many cryptographic schemes have been proven (in)secure in this model. In the
superposition-access model, a quantum adversary may be able to run the cryptographic
primitive in superposition of inputs. This is motivated by modeling the attacker’s power
realistically, e.g., when they are given the description of a hash function modeled as a

E-mail: behzad.abdolmaleki@sheffield.ac.uk (Behzad Abdolmaleki), celine.chevalier@ens.fr
(Céline Chevalier), eebrahimi.pqc@gmail.com (Ehsan Ebrahimi), giulio.malavolta@hotmail.it (Giulio
Malavolta), quoc.huy.vu@ens.fr (Quoc-Huy Vu)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-10-05 Accepted: 2024-12-03

https://doi.org/10.62056/a66ce0iuc
https://crossmark.crossref.org/dialog/?doi=10.62056/a66ce0iuc&domain=pdf&date_stamp=2025-01-10
https://orcid.org/0009-0008-8335-2787
https://orcid.org/0009-0006-4231-4958
https://orcid.org/0000-0001-6917-7734
https://orcid.org/0009-0009-9737-0094
https://orcid.org/0009-0000-4916-6798
mailto:behzad.abdolmaleki@sheffield.ac.uk
mailto:celine.chevalier@ens.fr
mailto:eebrahimi.pqc@gmail.com
mailto:giulio.malavolta@hotmail.it
mailto:quoc.huy.vu@ens.fr
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en


2 On Quantum Simulation-Soundness

random oracle, or simply as a worst-case guarantee, where one wants to minimize physical
assumptions regarding the underlying hardware. Superposition security also becomes
relevant further, when cryptographic primitives are used as part of a (possibly quantum)
protocol.

Non-Interactive Zero-Knowledge. Non-Interactive Zero-Knowledge proofs (NIZKs)
[GMR85, BFM88] are a cornerstone of modern cryptography and one of the most well-
studied primitives in the field. A NIZK allows a party to prove the validity of an
arbitrary NP statement in a single message (the proof) in a publicly verifiable way, without
revealing anything beyond its validity. NIZKs find applications in basic cryptographic
primitives and are extensively used in the design of privacy-preserving systems (such as
credentials and digital currencies) [BG90, CL01, BCC+09, CKL+16, FHS19] as well as
group signatures [Cv91, BBS04, BCC+16] and verifiable computation [GGP10, GGPR13,
BCG+18].

The notion of simulation-soundness is a strong property satisfied by NIZKs [Sah99a]
which has proven very useful for proofs of protocols in complex security models, such
as the universal composability [Can01]. Informally, we say that a NIZK proof system is
simulation-sound (SS-NIZK) if a malicious prover that has observed simulated proofs for a
polynomial number of (possibly false) statements is not able to convince the verifier on
either a new false statement or on an old false statement with a new proof. We also note
that simulation soundness implies non-malleability, where an accepting proof cannot be
modified into a different one without knowing the witness. Indeed, simulation-soundness is
arguably a property that one requires when composing NIZK with other protocols to attain
provably security guarantees in many cryptosystem, such as IND-CCA encryption schemes
via the Naor-Yung paradigm [NY90, LNPT20] or signature schemes [Gro06, Unr15, KLS18].
Furthermore, schemes lacking this property have been attacked in practice (see examples
in [DG23]).

1.1 NIZK in a Quantum World
In this work, we initiate the study of NIZK secure against superposition attacks, and
in particular we introduce the notion of quantum simulation-soundness to address the
lack of a rigorous definition of quantum security in the literature. Informally, quantum
simulation-soundness implies that the adversary cannot maul NIZK proofs, even if given
superposition access to a prover. Our motivations are:

(i) On the application side, quantum simulation-soundness is needed to prove the security
of signature schemes [Gro06, Unr15, KLS18], with respect to stronger unforgeability
definitions developed in [BZ13b, AMRS20].

(ii) In addition, such a definition would be needed if one wants to prove the security of
the Naor-Yung paradigm [NY90] with respect to a quantum IND-CCA notion that
allows quantum challenge queries [CEV22]. Traditional simulation-sound definitions
(including Unruh’s post-quantum definition [Unr15]) would fail to prove the security in
these settings, since a CCA adversary would indeed have some degree of superposition
access to the NIZK simulator. Indeed, we note that the Naor-Yung paradigm is a
powerful technique, which is used in many cryptographic constructions and different
cryptographic setting, for example, key-dependent message [CCS09] and key-leakage
attacks [NS09]. Thus, having a quantum security analysis of the Naor-Yung paradigm
would be important for many applications.

(iii) Our work is well-aligned with the general motivation for studying security of classical
cryptosystems against superposition attacks. Indeed, one of the main motivations
for the study of post-quantum cryptography is the threat of retroactive attacks, the
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so-called “store now, decrypt later attacks”. This threat is certainly relevant in the
context of encryption, and only partially effective against digital signatures and other
cryptographic protocols. We argue that if post-quantum security is cryptographically
fully relevant (i.e., when universal quantum computers become available), it makes
sense to say that quantum security (against superposition attacks) is also relevant.
One reason is that, once quantum computers are available, they should be used in a
hybrid computation model together with classical computers.1 In this setting, our
motivation boils down to the final argument below.

(iv) Finally, from a theoretical standpoint, we view this notion as a conservative version
of security for NIZK, where one places minimal assumptions on the underlying
hardware: In the world where end users run quantum computers, the use of “classical
computers” boils down to the assumption on the hardware to ensure that there are no
quantum effects in the classical computers running the algorithms. This is similar to
the line of research on device-independent quantum key distribution (QKD) [VV19],
where one does not want to make any assumption on the hardware implementing
QKD.

To address these issues, we propose a definition of quantum simulation-soundness for
NIZKs, where an adversary is allowed quantum access to the oracle that is generating
simulated proofs. This definition cannot be cast as a simple translation of the classical
variant, because of the no-cloning theorem [WZ82]: The main challenge is that quantumly
we cannot keep track of the quantum queries (since it could be just impossible to copy
such states) and therefore it is not clear how to rule out the “trivial” adversary that
simply forwards a simulated proof that they received from the simulator as the output of
a query. To bypass this hurdle, we first resort to a more restricted security model, where
the simulator is a classical algorithm. Our approach leverages the ability to track the
randomness used in the security definition, as the challenger controls this randomness,
which is classical and can be recorded. We believe this insight provides a useful framework
for addressing the quantum recording barrier in similar contexts. However, we acknowledge
that our definition is limited to classical simulators, which restricts its applicability in
certain scenarios. Extending this approach to a more general setting, where the simulator
itself can be quantum, remains an open problem.

1.2 Organization
The rest of the paper is organized as follows.

First, in Section 2, we discuss the difficulty of defining a sensible quantum simulation-
soundness definition when the quantum adversary has superposition access to a classical
simulator. We explain why the existing approaches for a similar scenario do not help to
achieve our goal. To remedy this, we take a totally different approach and we use the fact
that the randomness used to generate a simulated proof can be classical and therefore can
be recorded. The formal definitions, along with some technical discussions, are presented
in Section 4.

Then, we show that our definition is strictly stronger that the classical definition by
giving two separation results between post-quantum and quantum security in Section 5
and Appendix F. As a side result, we introduce a new notion of quantum-query advantage
functions, which are functions that demonstrate advantages of quantum queries over
classical queries. We believe that our notion of quantum-query advantage functions can
be used to provide a generic framework to show separations of cryptographic primitives
between the classical-query setting and the quantum-query setting.

1After all, it is hard to justify that we build quantum computers only to break the current classical
cryptography.
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Next, we show that our quantum simulation-soundness is achievable. More precisely, we
prove the quantum security with respect to our quantum simulation-soundness definition
of Sahai’s NIZK protocol [Sah01, DDO+01] in the CRS model in Appendix E, as well as
the quantum security of Fiat-Shamir construction [FS87] in Section 6.

Finally, we discuss how a quantum simulation-sound NIZK protocol can be used to
construct a quantum IND-CCA secure encryption scheme using the Naor-Yung construc-
tion [NY90, Sah99a] in Section 7.

2 Technical Overview
2.1 Definitions: Quantum Simulation-Soundness
Informally, a non-interactive zero-knowledge proof system is said to be simulation-sound
if it has the property that an adversary cannot provide a convincing proof for any false
statement, even if it has seen simulated proofs of arbitrary statements (including false
statements).

In the traditional experiments, classical simulation-soundness is defined with respect to
a zero-knowledge simulator. The adversary can obtain a polynomial number of simulated
proofs, some of which possibly on false statements. The simulator would keep a list of
statements and simulated proofs, and the adversary is asked to output a new pair of
statement and proof that is outside the list, meaning that it wins if it manages to give
either a proof on a new false statement, or a new proof of an old statement. Definition for
simulation-soundness thus inherently implies recording and comparison of queries.

Translating this definition into the quantum setting is thus highly non-trivial because of
several technical obstacles related to recording and comparison of quantum queries, which
are linked to quantum no-cloning and the destructiveness of quantum measurements.2 We
note that the same barrier usually appears when one wants to define quantum security
of classical primitives under superposition attacks, for example, in the case of message-
authentication code [BZ13a], signatures [BZ13b] and encryption [BZ13b, CEV22]. Since
one might find some similarities between the notion of simulation-soundness and the
notion of “existential unforgeability under a quantum chosen message attack” for message
authentication codes and signature schemes, we present below the road that we have taken
to reach the final definition start by first giving some discussions on the existing approaches
for defining quantum-secure unforgeability.

(n+1) approach. To define quantum-secure unforgeability, Boneh and Zhandry over-
came the recording barrier by allowing the adversary to make n quantum queries to its
oracle (respectively the MAC oracle or the signing oracle) and requiring it to output
n + 1 distinct valid classical (respectively (message, tag) or (message, sign)) pairs as an
output [BZ13a, BZ13b]. At first glance, one may think that this technique can be used to
define a quantum simulation-soundness. Namely, the adversary would make n quantum
queries to the simulator and at the end it would be required to output n + 1 distinct valid
classical (statement, proof) pairs. We call this definition (n + 1)-definition.

However, this is not a sensible definition because even when restricted to classical
queries, it deviates from the classical simulation-soundness definition. In more details, a
quantum adversary that makes n classical queries and obtains an extra valid pair (true
statement, proof) would break the (n + 1)-definition but not the classical simulation-
soundness definition since the last pair is a proof of a true statement. To remedy this
problem, one naive solution is that we allow the adversary to make n quantum queries on
true statements and m quantum queries on false statements. At the end, the adversary
would be required to return n valid pairs with true statements and m + 1 valid pairs

2Zhandry had a partiel success on recording quantum queries for random oracles in [Zha19].
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with false statements. We would call this definition (n + m + 1)-definition. However, a
polynomially-bounded simulator would not be able to distinguish whether a quantum
query is a superposition of true statements, or a superposition of false statements, or else
a mix of both true and false statements, without disturbing the query state. Indeed, the
adversary would always be able to win. For example, the adversary could make n − 1
queries on true statements and m + 1 queries on false statements without being detected
and use them to break the (n + m + 1)-definition.

Overall, the conclusion is that Boneh-Zhandry’s approach does not work for defining
quantum simulation-soundness due to a subtle difference with their setting. This is because,
in our case the simulator gets as inputs both true and false statements, but the adversary
wins if it outputs a different valid pair with a false statement. In contrast, the inputs to a
MAC or signing oracle all belong to a single message space and a new pair of (message,
tag) or (message, signature) is a break of the security.

Strong blind-unforgeability approach. Another approach that might help is to
use a notion similar to “blind-unforgeability” [AMRS20] that is defined for message
authentication codes. In a nutshell, in the blind-unforgeability notion, the oracle blinds a
random subset of the domain for the adversary. The adversary wins if at the end of the
execution it returns a forgery for a blinded message. In more details, at the beginning
of the game the oracle chooses a blinded set B randomly by putting a message m in B
with probability ϵ. Then, for any message in B it returns ⊥, otherwise, it answers with
the MAC oracle. The adversary wins if it returns a forgery for a message in B. Then the
strong blind-unforgeability is defined similarly with a minor difference: the blinded set is
chosen from the set of all valid pairs (message, tag).

However, this approach also has some limitations. First, since the blinded set is chosen
at the beginning of the protocol before any query has been made and this set is fixed
during the execution, in a sense, the adversary is not able to adaptively influence this
set based on the answers it gets. In addition, we are not certain a bounded reduction
adversary can sample a blinded set when the message space is exponential-size. Of course
this is not problematic when we restrict ourselves to classical adversaries — as proven in
[AMRS20] that restricted to classical queries, the blind-unforgeability notion is equivalent
to “EUF-CMA” (existential unforgeability under a chosen message attack) notion — since
for each query the oracle can toss a biased coin with the probability ϵ being blind. Then,
it either returns ⊥ or answers with the MAC oracle. But, when quantum queries are
allowed, the blinded set has to be determined at the beginning of the execution since a
single superposition query can contain all the messages.

Another crucial problem with a quantum simulation-soundness definition in the blind-
unforgeability style is the inability to use such a definition in applications like constructing
an IND-CCA secure encryption scheme from a simulation-sound NIZK protocol and an
IND-CPA secure public-key encryption scheme (the Naor-Yung paradigm) [Sah99b]. In
particular, the protocol in [Sah99b] encrypts a message m using two different public keys
to get two ciphertexts c0, c1. Then it invokes a NIZK protocol to prove in π that c0, c1 are
indeed the encryptions of the same message. In the CCA security proof, when reducing to
the CPA security of the underlying public-key encryption, the reduction adversary has
to use only one secret key to simulate the decryption oracle. This simulation is possible
because the adversary can not generate a new valid pair ((c0, c1), π) where (c0, c1) is
not in the language (or where c0, c1 are the encryptions of two different messages) by
the simulation-soundness property of the NIZK protocol. However, a definition in the
blind-unforgeability style might not fit here because such a definition does not prevent an
adversary that returns a valid pair ((c′0, c′1), π′) /∈ B (where B is the blinded set) where
(c′0, c′1) is a false statement and it is different from the challenge ciphertext. Note that the
actual decryption oracle on (c′0, c′1) returns ⊥ but a simulated decryption oracle that uses
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one secret key returns a message. Therefore, the reduction adversary encounters obstacles
with a quantum simulation-soundness definition in the blind-unforgeability style.

Our approach. In this paper, we follow a totally different approach. In the following
discussion, we only consider zero-knowledge systems with classical simulators. We note
that most of known post-quantum construction of zero-knowledge systems in the CRS
model are proven with classical simulators against quantum adversaries.3 We then take
advantage of the fact that the randomness to compute a proof is chosen by the oracle and
can be classical. For each query, we thus ask the oracle to record the randomness used to
respond the query in a list R.

Then, the first idea would be that when the adversary outputs a valid pair (x, π) with
a false statement x, the simulator S would compute proofs for this statement x using all
the randomnesses recorded in R. That is, for any ri ∈ R, πi ← S(x, ri). If none of these
computed proofs πi is the same as the proof given by the adversary, the oracle would
declare that the adversary has won.

However, this definition does not work since we observe that restricted to the classical
queries, this definition is weaker than the classical definition. Indeed, if an adversary
breaks this definition, it can break the classical definition as well since the given proof
is a new proof that has not been obtained from the simulator. But the other direction
does not always hold. If an adversary breaks the classical definition by outputting a valid
pair (x, π) where x is a new false statement and there exists a recorded randomness that
matches with this pair (that is, ∃ r ∈ R such that S(x, r) = π), we can not use this pair to
reject this definition.

Final definition. Lastly, we present our final definition to overcome the issue discussed
above. Similarly, the oracle records the randomnesses in a list R and we assume that
it picks a fresh randomness for each query. At the end, the adversary returns two pairs
(x1, π1), (x2, π2) and wins if either of the two following statements is true:

1. None of the randomnesses in R matches with one of the pairs (x1, π1), (x2, π2) with
x1 or x2 being a false statement.

2. There exists a randomness r ∈ R that matches with these two pairs and one of the
statements x1 or x2 is a false statement.

Intuitively, the first case means that the adversary managed to give a new proof of a
false statement. Since we assume that the simulator picks a fresh randomness for each
query, the second case implies either a malleable attack, or that the adversary managed
to give a proof of a new false statement. Restricted to classical queries, this definition is
stronger than the classical simulation-soundness definition. In more details, an adversary
that breaks the classical definition outputs a new pair (x, π) where x is a false statement.
If x has not been queried before, the reduction adversary can break one of the two cases
above. If x has been queried before but π is a new proof, the randomness to generate π
should not be in R and the reduction adversary breaks case 1. A formal proof of this claim
is given in Lemma 1.

Finally, we conclude this section with some discussion on our choice of security model.
We argue that a definition where the simulator is classical, while the adversary (or
distinguisher) is quantum, is stronger than the standard quantum zero-knowledge definition,
as it imposes stricter computational constraints on the simulator while still capturing the
essence of security against quantum adversaries. Our approach relies essentially on the fact
that in the classical setting, one can de-randomize classical algorithms However, this is
not possible in the quantum setting, and we leave this interesting question of considering

3In general, non-rewinding simulators are typically PPT.
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the general definition with quantum simulators (which captures many arguably practical
constructions in the quantum random oracle model) for future work.

2.2 Separation
Separation I. The core of idea is to introduce a new notion of quantum-query advan-
tage functions, which are functions that demonstrate advantages of quantum queries
over classical queries, motivated by the recent notion of quantum advantage functions,
introduced by [LMQW22].4These objects are then used to show a separation between
quantum simulation-sound NIZKs and classical (post-quantumly secure) simulation-sound
NIZKs. This separation relies on the hardness assumption of the Learning with Errors
problem [Reg05] against quantum computers.

An overview idea of our construction of quantum-query advantage functions is as
follows. We start with interactive proof of quantumness protocols [BCM+18]. Very briefly,
an interactive proof of quantumness protocol is a demonstration of quantum unsoundness
and classical soundness: a quantum prover can easily make a classical verifier accepts,
but no efficient classical prover can make the verifier accepts. Since the verifier in an
interactive proof of quantumness protocol is classical, we note that the communication
of the protocol is also classical. Our main observation is that an interactive proof of
quantumness protocol (specifically the one given in [BCM+18]) can also be used to show
quantum unsoundness and semi-quantum soundness: a quantum prover interacting with a
quantum verifier using quantum communication can make the protocol accepts, while no
efficient quantum prover with only classical communication can make the protocol accepts.
We formalize this idea by introducing the notion of quantum-query advantage functions,
and use it to show separation between the quantum and post-quantum security settings
for SS-NIZK. In particular, our separation is constructed by carefully embedding instances
of interactive quantum-query advantage into the simulator of the NIZK system. The
key conceptual insight is that although we are considering non-interactive proof systems,
the security game for simulation-soundness is interactive, allowing us to use a quantum
adversary that makes the quantum-query advantage function accept to also break the
simulation-soundness: an efficient quantum adversary given classical oracle access to the
quantum-query advantage function cannot cause it to ever output accept, while it can do
so by only making 2 quantum queries.
Separation II. We also present an ad-hoc separation construction which holds uncondition-
ally with no extra assumptions (see Appendix F). To this aim, we start with constructing
a new pseudorandom function that is periodic with some large, secret period. Classical
adversaries will not be able to detect the period, and thus cannot distinguish this new
function from random. However, an adversary making quantum queries can detect the
period, and thus distinguish our new function from random. In more detail, inspired by the
idea of [KZM+15] with some modifications, our second separation’s construction makes use
of a one-time signature scheme. A pair of one-time signing/verification keys are generated
for each proof such that in the zero-knowledge proof, a simulator (simulated prover) is
required to provide ctF = FskPRF(x) (where the function F is a periodic pseudo-random
function with a secret key skPRF) and ctpk = fskPRF(pk) (where f is a pseudo-random function
with a secret key skPRF and pk is a public key of an underlying public key encryption
scheme). Then we require the prover to sign the statement together with the proof, the
cipher-text, ctpk, and ctF. Then, briefly, due to the security of the signature scheme,
the adversary must use a different x and pk from the ones returned from oracle queries.
Thus, for a statement to pass the verifier without a proper witness, the classical prover
must generate FskPRF(x) and fskPRF(pk) without the knowledge of skPRF (thus breaking the

4The notion defined in [LMQW22] demonstrate a quantum advantage with only classical queries,
showing separations between classical security and post-quantum security.
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pseudo-random function F and f). But given quantum queries and by using Simon’s
quantum algorithm, the quantum adversary can find the period of the pseudo-random
function F and thus obtain skPRF and breaks the simulation sound property.

2.3 Constructions and Applications
For the feasibility, in the common reference string model (CRS), we consider Sahai’s
construction of unbounded simulation-sound NIZK [Sah01, DDO+01], based on Naor
commitment scheme [Nao90], and we show that when instantiated with quantum-secure
one-time signature scheme (Definition 10), this scheme is also quantum simulation-sound.

Finally, we present and prove quantum security of a simple modification of the classical
Naor-Yung scheme [NY90, Sah99a]. In particular, we give a construction of building
quantum chosen-ciphertext secure encryption schemes from quantum chosen-plaintext
secure schemes and quantum simulation-sound NIZK proof systems. It is a combination of
quantum-secure IND-CPA encryption schemes and a family of invertible pseudorandom
functions.

3 Preliminaries
Notation. Throughout this paper, λ denotes the security parameter. The notation
negl(λ) denotes any function f such that f(λ) = λ−ω(1), and poly(λ) denotes any function
f such that f(λ) = O(λc) for some c > 0. For a, b ∈ R, [a, b] := {x ∈ R | a ≤ x ≤ b } and
Ja, bK := {x ∈ Z | a ≤ x ≤ b } will denote the closed real and integer interval with endpoints
a and b. With an abuse of notation, we will write JnK as shorthand for J0, n− 1K. For a
set I = {i1, . . . , iℓ} ⊆ JnK and a n-bit string x ∈ {0, 1}n, we write x|I := xi1 · · ·xiℓ

. When
sampling uniformly at random a value a from a set U , we employ the notation a

$← U .
When sampling a value a from a probabilistic algorithm A, we employ the notation a← A.
Let |·| denote either the length of a string, or the cardinal of a finite set, or the absolute
value. By PPT we mean a polynomial-time non-uniform family of probabilistic circuits,
and by QPT we mean a polynomial-time family of quantum circuits. For a probabilistic
algorithm f , we write f(x; r) to denote the computation of f on input x with randomness
r drawn uniformly at random. We sometimes omit the randomness and just write f(x).

3.1 Quantum Computation
We assume familiarity with quantum information and computation, and refer to [NC11]
and Section A.1 for the definition of basic concepts.

3.2 Non-interactive Zero-knowledge Proof Systems
For a NP relation R ⊆ ×W, we let L(R) := {x : ∃w, (x, w) ∈ R}. As discussed in the
introduction, in this work, we only consider zero-knowledge systems with PPT simulators.

Definition 1. A non-interactive zero-knowledge (NIZK) proof system for an NP relation
R in the common reference string (CRS) model consists of three PPT algorithms NIZK =
⟨Setup,P,V⟩:

• crs← Setup(1n, 1λ). On input a statement of length n and the security parameter λ,
the setup algorithm Setup outputs a common reference string crs.

• π ← P(crs, x, w). On input the common reference string crs, an instance x and a
witness w such that (x, w) ∈ R, the proving algorithm P outputs a proof π.
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• b ← V(crs, x, π). On input the common reference string crs, an instance x and a
proof π, the verification algorithm V outputs a bit b ∈ {0, 1}. If b = 1, we say that
V accepts, otherwise we say that V rejects.

The proof system NIZK must satisfy the following requirements for all λ ∈ N.

• Completeness. For every (x, w) ∈ R, we have that

Pr
[
V(crs, x,P(crs, x, w)) = 1 | crs← Setup(1|x|, 1λ)

]
= 1,

where the probability is taken over the randomness of Setup and P.

• Statistical soundness. There exists a negligible function negl(λ) such that for any
n ∈ N,

Pr
crs←Setup(1n,1λ)

[∃(x, π∗) s.t. V(crs, x, π∗) = 1 ∧ x /∈ L] ≤ negl(λ).

• (Adaptive) post-quantum computational zero-knowledge. There exists a
PPT simulator S = (S1,S2) such that for all QPT malicious verifier V∗ = (V∗1 ,V∗2 ),
for every n ∈ N,∣∣∣∣∣∣Pr

 V∗2 (crs, x, π, ζ) = 1 ∧ x ∈ L

∣∣∣∣∣∣
crs← Setup(1n, 1λ)
(x, w, ζ)← V∗1 (crs)

π ← P(crs, x, w)


−Pr

 V∗2 (crs, x, π, ζ) = 1 ∧ x ∈ L

∣∣∣∣∣∣
(crs, td)← S1(1λ)

(x, w, ζ)← V∗1 (crs)
π ← S2(td, x)

∣∣∣∣∣∣ ≤ negl(λ),

where ζ is the internal state of V∗.

Definition 2 (Unbounded Simulation-Soundness). A zero-knowledge proof system is
said to be (unbounded) simulation-sound if it has the property that an adversary cannot
provide a convincing proof for any false statement, even if it has seen simulated proofs
of arbitrary statements (including false statements). More precisely, an NIZK proof is
simulation sound if for all QPT adversaries A, we have:

Pr
[

(xi, πi) ̸∈ Q ∧ x ̸∈ L
∧ V(crs, x, π) = 1

∣∣∣∣ (crs, td)← S1(1λ)
(x, π)← AS2(td,·)(crs)

]
≤ negl(λ),

where Q is the list of simulation queries and responses (xi, πi).

3.3 Pseudorandom Functions

A family of pseudorandom functions (PRFs) consists of two polynomial time classical
algorithms ⟨KeyGen, PRF⟩. KeyGen is a randomized procedure that takes as input the
security parameter and outputs a random key k ∈ K. PRF takes as input a key k ∈ K and
an input x ∈, and deterministically outputs a classical string y ∈ Y . In this paper, we also
consider the notion of invertible pseudorandom function which is an injective PRF whose
inverse function PRF−1 can be computed efficiently (given the secret key). We recall the
formal security definition of (invertible) PRFs in Section A.2.
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3.4 One-time Signatures
A signature scheme consists of three polynomial time classical algorithms Sig = ⟨KeyGen,
Sign, Verif⟩. KeyGen is a randomized procedure that takes as input the security parameter
and produces a secret key and public key pair (pk, sk)← KeyGen(1λ). Sign takes as input
the secret key and a message m, and produces a signature σ ← Sign(sk, m). Finally,
Verif takes as input the public key, a message m, and a supposed signature σ on m, and
either accepts or rejects. We recall the formal security definition of one-time signatures
in Section A.3.

4 Quantum Security Definition for Simulation-Sound
Non-Interactive Zero-Knowledge

In this section, following the ideas described in Section 2, we present our definition of
quantum simulation-soundness, and give some discussions on these definitions.

4.1 Quantum-Secure Zero-Knowledge
We give below the definition for quantum-secure zero-knowledge in the common reference
string model. Our definition is a quantum counterpart of the classical definition for
post-quantum zero-knowledge: the only difference is that now the adversary can query the
simulator in superposition.

Definition 3. Let L be a language in NP. A proof system NIZK := ⟨Setup,P,V⟩ for L is
(adaptive) quantum-secure zero-knowledge if there exists a PPT simulator S = (S1,S2)
such that for all QPT distinguisher D∗ = {D∗λ, ρλ}λ∈N, for every n ∈ N, and for every
λ ∈ N: ∣∣∣Pr

[
D∗λ(ρλ, crs)|PO(crs,·,·)⟩ = 1

∣∣∣ crs← Setup(1n, 1λ)
]

−Pr
[
D∗λ(ρλ, crs)|S2(td,·)⟩ = 1

∣∣ (crs, td)← S1(1λ)
]∣∣ ≤ negl(λ),

where

− D∗ can make quantum queries to the oracles.

− P(crs, ·, ·) is the prover algorithm and S2(td, ·) only acts on its private trapdoor td,
the input statement x ∈ Lyes ∩ {0, 1}n and its private random tape.

Randomness. We recall the following discussion from [BZ13b]. If an oracleO implements
a classical randomized algorithm, there are several choices for how the randomness is
used in each query if the oracle is queried in superposition. One option is to choose
fresh randomness for each message in the superposition. Another option is to choose a
single randomness value for each query, and generate output in the superposition with
that randomness. We note that there is a simple transformation that converts an oracle
requiring independent randomness for every message into a scheme that is secure when a
single randomness value is used for an entire query: for each query, choose a fresh random
key k for a quantum pseudorandom function (QPRF) ([Zha12a]). This will be the single
per-query randomness value. Each message m in the superposition will be answered using
randomness obtained by applying the QPRF to m using the key k. From the adversary’s
point of view, this is indistinguishable from choosing independent randomness for each
message. Indeed, Zhandry [Zha12b] shows that we can replace the QPRF with a function
drawn from a pairwise independent function family, which allows us to achieve perfect
simulability. For this reason, requiring global randomness per query does not change the
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oracle from the adversary’s point of view, but greatly simplifies its implementation. In
this work, we choose the second approach and all randomized oracles are implemented
this way.

Construction. We note that any perfect adaptive post-quantum zero-knowledge proof
system is also (perfect) quantum-secure zero-knowledge proof system. In Appendix D, we
also give a brief discussion on the feasibility of achieving computationally quantum-secure
zero-knowledge proof systems from known constructions.

4.2 Quantum Simulation-Soundness
Definition 4 (Quantum Simulation-Sound NIZK). Let L be a language in NP. Consider a
proof system ⟨Setup,P,V⟩ for L with PPT zero-knowledge simulator S := (S1,S2). In each
query, S2 stores the randomness used to answer the query in a list R. A QPT adversary A
after making polynomial numbers of quantum queries to S2 outputs two pairs {(xi, πi)}2

i=1.
The adversary A wins if either of the following two cases hold:

1. There exists i ∈ J1, 2K such that xi /∈ L, for all r ∈ R, S2(xi, r) ̸= πi and
V(crs, xi, πi) = 1.

2. There exists a randomness r ∈ R such that S2(x1, r) = π1 and S2(x2, r) = π2 and at
least one of x1 or x2 is not in L.

Formally, we say an NIZK proof is quantum simulation-sound if for all λ ∈ N, for all QPT
adversaries A, i, j ∈ J1, 2K we have:

Pr


V(crs, xi, πi) = 1∀ i ∧
∃ i :

((
xi /∈ L

)
∧(

(S2(td, xi, r) ̸= πi ∀ r ∈ R)∨
(∃ r ∈ R : S2(td, xj , r) = πj ∀ j)

))
∣∣∣∣∣∣∣∣∣∣

(crs, td)← S1(1λ)
{(xi, πi)}2

i=1 ← A|S2(td,·)⟩(crs)


≤ negl(λ).

Next, we show that our quantum simulation-soundness (with respect to only classical
queries) implies the standard classical simulation-soundness.

Lemma 1. The classical restriction of our quantum simulation-soundness (where the
adversary can only make classical queries to the simulator) implies the standard classical
simulation-soundness (Definition 2).

Proof. We show that if there is an adversary A that breaks the standard classical simulation-
soundness (Definition 2), we can use A to build another adversary B that breaks our
quantum simulation-soundness restricted to classical queries.
B simply forwards all (classical) queries from A to its oracle, and keeps a list T of A’s

queries and responses (since now they are all classical). When A outputs a pair (x, π), B
picks at random a pair (x′, π′) from T and outputs (x, π) and (x′, π′). There are two cases:

• If x ∈ T , then (x, π) breaks the case 1 of our quantum simulation-soundness. This is
because, in this case π cannot be an answer from the oracle: that is, π /∈ T (this is
by definition of the standard classical simulation soundness). Then the pair (x, π)
would pass the check of the first condition: Note that with the randomness r and
input a statement x, the proof generation function (computed by the simulator) is a
deterministic function of r and x, so if the output proof π is not the one generated
by the simulator, the randomness used to generate π must not also be in the list of
randomness kept by the simulator.
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• If x /∈ T , this breaks either one of the two cases. If there is no collision on the
randomness used to compute (x, π) with the recorded list R of the simulator’s
randomness, this breaks case 1. Otherwise, with probability 1

q (where q is the number
of the queries), (x, π) and (x′, π′) would be computed with the same randomness and
this breaks case 2. We note that in the latter case, there is a security loss growing
with the number of queries.

4.2.1 Some Technical Discussions

We now remark on a few details on the notion of quantum simulation-soundness. First, it
might seem that our definition does not capture all possible quantum attacks. Consider
the following adversary A. A makes a quantum query to the simulator and obtains a
superposition of statements and proofs as

∑
x̸=x0,y αx,y |x, y ⊕ π⟩, where x0 /∈ L. We

assume that the simulator answered the query with a classical randomness r, that is
hidden from A. (Note that, if r is not hidden, there is a trivial attack.) A then performs
some quantum computation to come up with a proof for x0, with the same randomness
r, and during the process, A also destroys the original state, thus A cannot procedure
two pairs of {(xi, πi)}2

i=1 that are computed using the same randomness. Essentially, the
adversary makes one or more quantum queries but then must consume the post-query
states completely in order to make a single, but convincing, forgery. Obviously, if such an
adversary A exists, this might consider a quantum attack against quantum simulation-
soundness, but Definition 4 does not capture this. However, this so-called attack is inherited
from the nature of quantum queries and can be applied in similar scenarios, for instance, the
(n + 1)-definition proposed in [BZ13b, BZ13a]. We also note that the blind-unforgeability
definition of [AMRS20] is designed to avoid this kind of attacks, however, it is unknown
whether blind-unforgeability is stronger than (n + 1)-definition.5 The second condition
in Definition 4 is thus used to capture classical attacks rather than quantum attacks. We
leave this as an open problem, either to find a concrete example for this type of attack, or
to show that (in most of the cases) this is not possible.

Secondly, our definition also captures some “malleability” attack that is not captured
by the classical definition. In particular, imagine that if the adversary makes a query to
the simulator for a statement x1 /∈ L, and outputs a proof for a statement x2 ∈ L with
the same randomness used by the simulator. This attack does not violate the classical
simulation-soundness, but it is captured by our definition. This is because it is not possible
in general to distinguish which statement was queried by the adversary in the quantum
setting. We note that the “inverse” case (that is, x1 ∈ L and x2 /∈ L) is obviously an
attack and it is captured in both classical and quantum notions.

5 Separation Between Post-Quantum and Quantum
Security for SS-NIZK

In this section, we introduce a new notion of quantum-query advantage functions, which
are functions that demonstrate advantages of quantum queries over classical queries. After
recalling the definition of interactive proof of quantumness protocols in Section 5.1, we
give the definition and construction for quantum-query advantage functions in Section 5.2,
and we use them to show a separation between quantum simulation-sound NIZKs and
classical simulation-sound NIZKs in Section 5.3.

5The conference version of [AMRS20] claimed that blind-unforgeability implies (n + 1)-definition, which
was removed in [AMRS23].
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5.1 Preliminaries: Interactive Proof of Quantumness
We first recall the definition of interactive proof of quantumness protocols with 4 messages
in total, which corresponds to the best round complexity known for interactive proofs of
quantumness in the plain model [BCM+18].

Definition 5. An interactive proof of quantumness is an interactive protocol Πipq between
a prover P and a verifier V using classical communication, with the following properties:

• Quantum completeness: there exists a QPT quantum prover P such that for all
λ ∈ N:

Pr
[
(P,V)(1λ) = 1

]
≥ 1− negl(λ).

• Classical soundness: for any PPT classical prover P∗, for all λ ∈ N:

Pr[(P∗,V) = 1] ≤ negl(λ).

In a 4-round interactive proof of quantumness protocol, the first message is sent by the
verifier to the prover. Let v1, v2 (resp. p1, p2) denote the messages sent by the verifier (resp.
the prover) during the execution of an interactive proof of quantumness Πipq. An interactive
proof of quantumness Πipq can furthermore satisfy the following optional property:

• Public-coin second verifier message: the second verifier message v2 consists of
uniformly and independently sampled random coins.

• Semi-quantum soundness: for any QPT quantum prover P∗, for all λ ∈ N:

Pr
[
(P∗,Vsemi)(1λ)

]
≤ negl(λ),

where the verifier Vsemi is defined as follows.

− Let P denote the efficient quantum prover for Πipq such that

Pr
[
(P,V)(1λ)

]
≥ 1− negl(λ).

We further assume that the first message generation algorithm of P is a QPT
algorithm in the following form: this algorithm runs a classical PPT algorithm
P1 in superposition of inputs (possibly followed by a measurement in the
computational basis).

− Vsemi runs V to obtain the first verifier message v1.
− Whenever Vsemi receives a classical message x from P∗, it runs P1 on (v1, x) and

obtains a classical message p1.
− P∗ is allowed to send a classical message x to Vsemi and receive back a tuple

of classical message (p1, v2) where v2 is the second verifier message. Then it
outputs a classical message p2.

− Vsemi outputs the output of V on (v1, p1, v2, p2).

Intuitively, semi-quantum soundness guarantees that no efficient quantum prover
can cheat when the first prover message is generated by a classical prover.

Lemma 2. Under the LWE assumption, there exists a 4-message interactive proof of
quantumness protocol satisfying: (1) public-coin second verifier message and (2) semi-
quantum soundness.

The proof of this lemma can be found in Appendix B.
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5.2 Quantum Advantage with Quantum Query Algorithms
Definition 6 (Quantum-Query Advantage Functions). A quantum-query advantage func-
tion is a pair of PPT algorithms ⟨Setup, QAF⟩ with the following properties:

• (pp, sk)← Setup(1λ). On input a security parameter λ, the setup algorithm Setup
outputs a public parameter pp and a secret key sk. Without loss of generality, we
will consider that the secret key sk includes the public parameter pp.

• QAF(sk, x). On input a secret key sk and a message x, the (randomized) evaluation
algorithm QAF outputs either a message y, or a special “accept” symbol denoted
accept, or a special “reject” symbol denoted reject. For our applications later, we
require that by default QAF(sk, ·) is stateless.

We additionally require the following properties:

1. q-Quantum-query easiness. For any λ ∈ N, there exists a QPT oracle algorithm
A|QAF(sk,·)⟩(pp) such that:

Pr
[
QAF(sk, x) = accept | x← A|QAF(sk,·)⟩(pp)

]
= 1− negl(λ),

where A|QAF(sk,·)⟩ makes q quantum queries in total to QAF(sk, ·) before outputting
x, and the probability is taken over (pp, sk)← Setup(1λ).

2. Classical-query hardness. For any λ ∈ N, for all QPT oracle algorithmAQAF(sk,·)(pp)
such that:

Pr
[
QAF(sk, x) = accept | x← AQAF(sk,·)(pp)

]
≤ negl(λ),

over (pp, sk)← Setup(1λ).

Construction. Let Πipq be a 4-message interactive proof of quantumness, in the form
of Definition 5 in Section 5.1 with public-coin second verifier message and semi-quantum
soundness properties. Let PRF be a one-wise independent PRF. We define our quantum-
query advantage function below.

Construction 1 (A quantum-query advantage function.). Our construction is as follows.

• Setup(1λ):

− Run the first verifier message for Πipq to obtain (v1, r), where v1 is the first
verifier message and r is the private coin of the verifier of Πipq.

− Sample a uniformly random key k $← {0, 1}λ for PRF.
− Set pp as an empty string and sk := (pp, k, v1, r) and output (pp, sk).

• QAF(sk, ·): on input a message x, we consider several distinguished cases (all cases
are considered with appropriate input length):

− If x is of the form (0∥u): compute the semi-quantum verifier message for Πipq
on (v1, u) to obtain (v1, p1, v2), where v2 ← PRF(k, p1). Output (p1, v2).

− If x is of the form (1∥p1∥p2): compute v2 ← PRF(k, p1). If the verifier of
Πipq accepts the transcript (v1, p1, v2, p2) with the secret state r, output accept,
otherwise output reject.

− Otherwise output ⊥.
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Theorem 1. Let Πipq be a 4-message interactive proof of quantumness satisfying the
properties specified in Lemma 2: public-coin second verifier message and semi-quantum
soundness. Then there exists a quantum-query advantage function satisfying 2-quantum-
query easiness (Definition 6).

The proof of Theorem 1 follows from Lemma 3 and Lemma 4 stated below.

Lemma 3 (Quantum-query easiness). Suppose Πipq satisfies quantum completeness (Defi-
nition 5). Then Construction 1 satisfies quantum-query easiness.

Proof. Let P denote the efficient quantum prover for Πipq such that

Pr
[

(P,V)(1λ) = 1
]
≥ 1− negl(λ).

Define the following QPT algorithm P:

• Make a (quantum) query
∑

x |0∥x, 0⟩ to QAF(sk, ·).

• Measure the response register to get a classical string p1.

• Run P on p1, v2 and the post-measurement state to obtain p2.

• Output p1∥p2.

Since PRF is one-wise independent, P perfectly simulates the view of P in an instance of Πipq.
By the completeness of Πipq, QAF(sk, ·) outputs accept with probability 1− negl(λ).

Lemma 4 (Classical-query hardness). Suppose Πipq has public-coin second verifier mes-
sages and has semi-quantum soundness (Lemma 2). Then Construction 1 satisfies classical
hardness.

The proof of this lemma follows the same idea as in [LMQW22]. The only difference is
that we reduce to the semi-quantum soundness of Πipq defined above.

Combining Theorem 1 with Lemma 2, we obtain the following:

Corollary 1. Assuming the (classical) hardness of LWE, there exists a quantum advantage
function satisfying 2-quantum easiness (Definition 6).

5.3 Separation between Post-Quantum Security and Quantum
Security

Following the ideas presented in Section 2, we use our quantum-query advantage functions
to give an example of a NIZK proof system that is classically simulation-sound but not
quantum simulation-sound.

Construction 2. Let L′ be a language in NP, with the associated relation R′. Let L
denote the NP language defined in Equation (1). Let Π = ⟨Setup,P,V⟩ be a post-quantum
simulation-sound non-interactive zero-knowledge proof system for L, and ⟨Setup, QAF⟩
be a quantum-query advantage function. We define the following NIZK proof system
Π = ⟨Setup,P,V⟩ for L as follows.

• Setup(1λ) : Output pp ← Π.Setup(1λ). (We note that pp = crs in the CRS model,
and pp is a token that allow the parties to make quantum queries to the random
oracle in the QROM.)

• P(pp, x, w) : Compute (pp′, sk)← Setup(1λ). Compute y ← QAF(sk, x). Generate a
proof π using Π for the statement (x, y) ∈ L. Output (y∥π).
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• V(pp, x, π) : Parse (y∥π)← π. Output V(pp, (x, y), π).

We define the following augmented language L of R′:

L := {(x, y) : ∃ (sk, r, w) : R′(x, w) = 1 ∧ (y = reject ∨ y = QAF(sk, x; r))}. (1)

It is easy to see that completeness and soundness of Π follow directly from those of Π.
We now construct a simulator S for zero-knowledge property of Π, which is later on

also used in the proofs of simulation-soundness. Let S := (S1,S2) be a zero-knowledge
simulator of Π. The simulator S := (S1,S2) works as follows.

• S1 : Output S1.

• S2 : Initialize an empty list Q. On the input a statement x,

− For each pair (pp′i, ski) ∈ Q, compute yi ← QAF(ski, x).
∗ If yi = reject ∀ i, set y = reject.
∗ If there exists an index i such that yi = accept, set y = accept.
∗ Otherwise, compute (pp′, sk)← Setup(1λ), store (pp′, sk) in Q and compute

y ← QAF(sk, x).
− Run S2 on input (x, y) to obtain a simulated proof π.
− If y = accept, generate a simulated proof π′ for a random false statement x′ ∈ L

(by sampling x′ ∈ {0, 1}n uniformly at random, where n is the length of a
statement in L) and output (π, (x′, π′)). Otherwise, output (y∥π).

Claim. Assume that ⟨Setup, QAF⟩ satisfies classical-query hardness (Definition 6), then
Π is zero-knowledge.

Proof. We define the following hybrid experiment:

Game G1: We modify the behavior of the simulator S2. It computes y and π as normal.
However, if y = accept, it aborts. Otherwise, it outputs y∥π.

For any classical-query QPT adversary P∗, the probability of P∗ making a query with
some input x that makes the simulator S2 abort in G1 is negligible by classical-query
hardness of ⟨Setup, QAF⟩. Therefore the output of the simulator for Π is indistinguishable
from its output in G1. Now the zero-knowledge property in G1 follows directly from the
zero-knowledge property of Π, where the reduction samples (pp, sk)← Setup(1λ), computes
y ← QAF(sk, x) on its own and efficiently generates a proof π for the statement (x, y) for
each query.

Using the simulation S, we show that our definition is strictly stronger than the classical
one below.

Claim. Assume that ⟨Setup, QAF⟩ satisfies quantum-query easiness (Definition 6), then Π
is not quantum simulation-sound.

Proof. Let A be the QPT algorithm associated to the quantum-query easiness of ⟨Setup,
QAF⟩. Define P∗ as follows.

1. Run A by first making a query to S2. Note that the response registers of the query
have two component: one to record the output of QAF, the other to record the
output of S2. The first component is initialized as the all-zero string |0⟩, while the
second component is initialized as the uniform superposition state |+⟩ to remove the
entanglement between the two registers so that after the query, the second response
register can be discarded.
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2. Continue the execution of A (with an input x) and obtain a triple (π, (x′, π′)). Output
two pairs (x, π) and (x′, π′).

By definition of S2 and the quantum-query easiness of ⟨Setup, QAF⟩, both two pairs output
by P∗ are valid, and furthermore x′ is a false statement, showing that Π is not quantum
simulation-sound.

Notice that here x can be an arbitrary statement. Our attack breaks the winning
condition (1) of Definition 4: the claim is that the pair (x′, π′) will break this condition.
The reason is that since x′ is a random string, it cannot make the QAF accept except with
negligible probability, thus the re-computation of S2 on x′ will not output π′ except with
negligible probability.

Claim. Assume that ⟨Setup, QAF⟩ satisfies classical-query hardness (Definition 6), then
Π is classically simulation-sound.

Proof. The proof of this claim follows in an almost identical manner as that of Section 5.3.

6 Constructions of Quantum SS-NIZK in the CRS
Model

In this section, we show that in the common reference string model, Sahai’s construction of
unbounded simulation-sound NIZK [Sah01, DDO+01], when instantiating with quantum-
secure one-time signature scheme (Definition 10), is also quantum simulation-sound.

The Naor commitment scheme. We first recall the bit commitment protocol of Naor
[Nao90] based on pseudorandom generators, which will be used later in the construction.
Let PRG be a pseudorandom generator stretching λ bits to 3λ bits. The Naor commitment
procedure commits to a bit b as follows, using randomness r ∈ {0, 1}3λ and s ∈ {0, 1}λ.

Commit(b; (r, s)) =
{

(r, PRG(s)) if b = 0,

(r, PRG(s)⊕ r) if b = 1.

We note that if PRG is post-quantumly secure (against QPT adversaries with classical
access to PRG) then the Naor commitment scheme is also post-quantumly computationally
hiding and statistically binding.

Sahai’s construction. Let PRF be a family of pseudorandom functions mapping {0, 1}∗
to {0, 1}λ. Let Sig := ⟨KeyGen, Sign, Verif⟩ be a one-time signature scheme. Finally, let Π′
be a single-theorem adaptive NIZK systems for a language L′ described below, associated
with a QPT simulator S ′ := (S ′1,S ′2). The construction for a simulation-sound NIZK
system Π for some NP language L is given in Construction 3.

Construction 3.

• Common random string. The random reference string consists of three parts
crs1, crs2 and crs3.

− crs1 is of length 6λ2, and breaks up into λ pairs (r1, c1), . . . , (rλ, cλ).
− crs2 is of length 3λ.
− crs3 is a common random string of Π′.

• Prover. We define the language L′ to be the set of tuples (x, u, v, crs1, crs2) such
that at least one of the following three conditions hold:
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− x ∈ L
− crs1 consists of commitments to the bits of the λ bit string s: formally, there

exists s = s1 · · · sλ with si ∈ {0, 1} for all i ∈ J1, λK, and there exists a1, . . . , aλ ∈
{0, 1}λ such that (ri, ci) = Commit(si; ri, ai). Furthermore, u = PRF(s, v).

− There exists d ∈ {0, 1}λ such that crs2 = PRG(d).

On input a statement x, a witness ω and the common random string CRS :=
(crs1, crs2, crs3), the prover P does the following:

1. Generate a key pair for the one-time signature scheme: (sk, vk)← Sig.KeyGen(1λ).
2. Sample a uniformly random u

$← {0, 1}λ.
3. Using crs3 as the common random string and ω as the witness, run the prover

of Π′ to generate a proof that (x, u, v, crs1, crs2) ∈ L′. Denote this proof by π′.
4. Output π := (vk, x, u, π′, Sig.Sign(sk, (x, u, π′))).

• Verifier. The verification procedure, on input the instance x, and a proof π :=
(vk, x, u, π′, σ), with respect to CRS := (crs1, crs2, crs3) does the following:

1. Verify the validity of the one-time signature: Sig.Verif(vk, (x, u, π′), σ) = 1.
2. Verify that π′ is a valid proof that (x, u, vk, crs1, crs2) ∈ L′.

• Simulator. We now describe the two phases of the simulator S := (S1,S2) in Fig-
ure 1. S1 outputs a reference string crs along with some trapdoor information td. S2
takes as input this trapdoor information, the reference string, and an instance x, and
outputs a simulated proof for x.

S1(1λ)

s
$← {0, 1}λ

ri
$← {0, 1}3λ, ai

$← {0, 1}λ for i ∈ J1, λK

gi ← Commit(si; ri, ai) for i ∈ J1, λK

crs1 := {g1, · · · , gλ}

crs2
$← {0, 1}3λ

crs3 ← Π′.Setup(1λ)
crs := (crs1, crs2, crs3)
td := (s, a1, · · · , aλ)
return (crs, td)

S2(crs, td, x)

(vk, sk)← Sig.KeyGen(1λ)
u← PRF(s, vk)
π′ ← Π′.S ′2

(
crs3, (x, u, vk, crs1, crs2),

(s, a1, · · · , aλ)
)

σ ← Sig.Sign(sk, x, u, π′)
return (vk, x, u, π′, σ)

Figure 1: The simulator of Π.

We note that quantum-secure PRFs and the Naor commitment scheme is post-
quantumly-secure if quantum-secure one-way functions exist [Zha12a].

Theorem 2. If Π′ is a single-theorem quantum NIZK proof system for L′, Sig is a
quantum-secure one-time signature scheme and quantum-secure one-way functions exist,
the proof system Π described above is an unbounded quantum simulation-sound NIZK proof
system for L.

The proof of this theorem is given in Appendix E.
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7 Application to Quantum-Secure Naor-Yung Con-
struction for CCA Security

In this section, we present and prove quantum security of a simple modification of the
classical Naor-Yung scheme [NY90, Sah99a]. In Section 7.1, we give some preliminaries
on quantum security of encryption with classical and quantum challenge queries. Then
in Section 7.2, we give our construction of building quantum chosen-ciphertext secure
encryption schemes from quantum chosen-plaintext secure schemes and quantum simulation-
sound NIZK proof systems.

7.1 Preliminaries: Chosen-ciphertext Security with Quantum
Challenge Queries

We recall here a succinct definition of chosen-ciphertext security with quantum challenge
queries introduced in [CEV22]. Their definition is defined in the real-or-random paradigm.
Very informally, in the challenge phase, the adversary receives (in superposition) either
encryption of his query, or encryption of random messages (by applying a random function
H to the adversary’s query first then encrypting). What makes it possible is that by using
the compressed random oracle technique introduced by Zhandry [Zha19], the challenger
can record the adversary’s query in the random world. For decryption queries, in the real
world, the challenger uses the secret key to answer the decryption queries normally. Only
in the random world, by using the recorded database D, the challenger can return the
original message if the query is a challenge one. For more details on the notions, we refer
the reader to that paper, and refer to Section A.4 for other security notions used in the
paper.

Notation. We define the following oracles.

• Let OEncrypt(pk,·) the encryption oracle in the real world.

• Let REncrypt(pk,·) the encryption oracle in the random world. This oracle is augmented
with a database D = ((x1, u1, y1), (x2, u2, y2), . . . , (xq, uq, yq), (⊥, 0, 0), . . . , (⊥, 0, 0)),
containing the adversary’s queries in which xi is the adversary’s query, ui is a random
string in the message space and yi is an encryption of ui. D is kept hidden from the
adversary and yi is used to answer the queries.

• Let ODecrypt(sk,·) the decryption oracle in the real world.

• Let RDecrypt(sk,·) the decryption oracle in the random world, which is defined as
follows. We define a classical procedure FindImage which takes as input a ciphertext
y ∈ Y, and a database D. Then, it looks for a tuple (x, (u, y)) ∈ D. If found, it
outputs (b = 1, w = x), otherwise, it outputs (b = 0, w = 0). The oracle RDecrypt(sk,·)
is defined using FindImage as follows. It maps the basis state |y, z⟩ ⊗ |D⟩ to:{

|y, z ⊕ Decrypt(sk, y)⟩ ⊗ |D⟩ if FindImage(y, D) = (0, 0),
|y, z ⊕ w⟩ ⊗ |D⟩ if FindImage(y, D) = (1, w).

We define a real-or-random oracle allowing quantum queries and the decryption oracle
in the second learning phase as follows.

RR(b) =
{
OEncrypt(pk,·) if b = 1,

REncrypt(pk,·) if b = 0,
DEC(b) =

{
ODecrypt(sk,·) if b = 1,

RDecrypt(sk,·) if b = 0.
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Definition 7 (qIND-qCPA, qIND-qCCA1, qIND-qCCA2). Let E = (KeyGen, Encrypt, Decrypt)
be a public-key encryption scheme and let A = (A1,A2) be a quantum adversary. For
qatk ∈ [qcpa, qcca1, qcca2], we define the following game, where the oracles O1,O2 are
defined according to qatk:

Experiment Exptqind-qatk−b
E (λ,A):

1 : (pk, sk)← KeyGen(λ)

2 : |Φ⟩ ← AO1
1 (pk)

3 : b′ ← ARR(b),O2
2 (|Φ⟩)

4 : return b′

qatk

qcpa

qcca1
qcca2

Oracle O1

∅
ODecrypt(sk,·)

ODecrypt(sk,·)

Oracle O2

∅
∅
DEC(b)

We define A’s advantage by

Advqind-qatk
A,E (λ) :=

∣∣∣Pr
[
Exptqind-qatk−1

E (λ,A) = 1
]
− Pr

[
Exptqind-qatk−0

E (λ,A) = 1
]∣∣∣.

We say E is secure in the sense of qIND-qatk if A being QPT implies that Advqind-qatk
A,E (λ)

is negligible.

7.2 Construction
Construction 4. Our construction uses the following ingredients:

• Let E = ⟨KeyGen, Encrypt, Decrypt⟩ be an qIND-qCPA encryption scheme.

• Let E ′ = ⟨KeyGen, Encrypt, Decrypt⟩ be an IND-qCPA encryption scheme.

• Let iPRF be a family of invertible pseudorandom functions.

• Let Π = ⟨Setup,P,V,S = (S1,S2)⟩ be a quantum-simulation-sound NIZK proof sys-
tem for the language L of consistent pairs of encryptions, defined formally in Equa-
tion (2).

L := {(pk0, pk1, y0, y1, y2) : ∃ (x, k, r0, r1) : (2)
y0 = E .Encrypt(pk0, x; r0)
∧ y1 = E ′.Encrypt(pk1, k; r1) ∧ y2 = iPRF(k, x)}.

We construct a new encryption scheme E as follows.

KeyGen(1λ) :
1 : crs← Π.Setup(1λ)

2 : (pk0, sk0) $← E .KeyGen(1λ)

3 : (pk1, sk1) $← E ′.KeyGen(1λ)
4 : pk = (crs, pk0, pk1)
5 : sk = (crs, sk0, sk1)
6 : return (pk, sk)

Encrypt(pk, x) :
1 : k← iPRF.Setup(1λ)
2 : y0 ← E .Encrypt(pk0, x; r0)
3 : y1 ← E ′.Encrypt(pk1, k; r1)
4 : y2 ← iPRF(k1, x)
5 : π ← Π.P(crs, (y0, y1, y2), (x, k, r0, r1))
6 : return (y0, y1, y2, π)

Decrypt(sk, (y0, y1, y2, π)) :
1 : b← Π.V(crs, (y0, y1, y2), π)
2 : if b = 0 then
3 : return ⊥
4 : return E .Decrypt(sk0, y0)
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Theorem 3. The encryption E described in Construction 4 above is qIND-qCCA2 secure.

Proof. Let A be a QPT adversary. The proof proceeds by a sequence of games where G0
is defined in which A can make quantum queries to S2 (defined in Figure 1), and the
winning condition is defined as in Definition 4. For any game Gi, we denote by Advi(A)
the advantage of A in Gi, that is, Pr

[
Gi(1λ,A) = 1

]
, where the probability is taken over

the random coins of Gi and A. The changes in each game are depicted in Figure 2.

Game G0: This is the real-world experiment. In particular, the challenge encryption
oracle and the decryption oracle are implemented as follows.

RREncrypt(pk,·) |x, y⟩ 7→ |x, y ⊕ Encrypt(pk, x)⟩ ,

and
ODecrypt(sk,·) |y, x⟩ 7→ |z, x⊕ Decrypt(sk, y)⟩ .

Game G1: This is identical to G0, except that now in the decryption oracle, instead of
using sk0, we use sk1, combining with the fact that iPRF is invertible for the decryption.

Claim. For any adversary A, |Adv1(A)− Adv0(A)| ≤ negl(λ).

Proof. The proof of the claim follows from the correctness of encryption schemes E , E ′, the
statistical soundness of Π and the fact that iPRF is invertible. In particular, the soundness
of Π guarantees that any queried ciphertext is valid (i.e., its components are encryption of
the same plaintext), with overwhelming probability.

Game G2: This is identical to G1, except that now in the challenge encryption oracle, we
use the simulator S of Π to generate the proof instead of using the real prover P.

Claim. For any QPT adversary A, |Adv2(A)− Adv1(A)| ≤ negl(λ).

Proof. The indistinguishability between G1 and G2 follows from zero-knowledge property
of Π.

Game G3: This is identical to G2, except now in the challenge encryption oracle, instead
of encrypting using the actual encryption algorithm E .Encrypt, we use the encryption
oracle in the random world of E . Denote this oracle as REncrypt(pk0,·).

Claim. For any QPT adversary A, |Adv3(A)− Adv2(A)| ≤ negl(λ).

Proof. We note that in G2 and G3, the secret key sk0 is not used at all. The indistin-
guishability between G2 and G3 follows immediately from qIND-qCPA security of E .

We note that starting from G3, the challenge encryption oracle can be implemented as
a compressed encryption oracle (sine we are now in the random world of E). Concretely,
the challenge encryption oracle implements the following map:∑
x,y

αx,y |x, y⟩ 7→
∑
x,y

∑
u

αx,y |x, E .Encrypt(pk0, u)∥E ′.Encrypt(pk1, k)∥iPRF(k, x)∥π⟩ ⊗ |D⟩

where D is the database of the compressed random encryption oracle for E . In particular,
D will be in superposition of tuples (x, u, y0) (if D(x) ̸= ⊥). Furthermore, we note that if
D(x) ̸= ⊥, we can re-compute (y1, y2, π) and also store these values in the corresponding
slot in D. The reason is that from x ∈ D, these values can be computed with the classical
randomness used in the challenge encryption oracle of E .
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Game G4: This is identical to G3, except that now instead of using sk1 in the decryption
oracle, we use sk0 and D.

Claim. For any QPT adversary A, |Adv4(A)− Adv3(A)| ≤ negl(λ).

Proof. We show that if A can distinguish the two games G3 and G4 with non-negligible
probability ϵ, the we can construct a QPT adversary B that runs A internally as a black-box
and breaks the quantum simulation-soundness of Π with non-negligible probability. Notice
that the only way A can distinguish G3 and G4 is to submit an “invalid” decryption query
in which the proof π if of a false statement but the verification passes.

Formally, B runs A and randomly measure one of A’s decryption queries to obtain a
tuple y∗ = (y∗0 , y∗1 , y∗2 , π∗). If A makes at most q decryption queries, then with probability
at least ϵ/q, y∗ will be a pair of statement and proof such that the statement is a false
statement but π∗ passes the verification of Π. Then B measure its own database D to
obtain another tuple y = (y0, y1, y2, π) which is supposed to be generated by the simulator
of Π. By the definition of Decrypt5, we have that y ̸= y∗. Thus by outputting (y, y∗), B
breaks the quantum simulation-soundness of Π with probability ϵ/q, which completes the
proof of the claim.

We note that from starting from this game, the secret key sk1 is not used any more.

Game G5: This is identical to G4, except that now in the challenge encryption oracle,
we change the encryption E ′.Encrypt(pk1, k) for some random key k by an encryption
E ′.Encrypt(pk1, 0).

Claim. For any QPT adversary A, |Adv5(A)− Adv4(A)| ≤ negl(λ).

Proof. The indistinguishability between G4 and G5 follows immediately from IND-qCPA
security of E ′. Note that since here the encryption is a classical encryption of a classical
random key k (which is independent from A’s query), we only need qCPA security against
classical challenge query of E ′.

Game G6: This is identical to G5, except that now in the challenge encryption oracle,
instead of computing y2 as iPRF(k, x), we compute y2 ← iPRF(k, u) where u is extracted
from the database D (note that u ∈ D(x)). We abuse the notation and write D(x) = u.
Furthermore, for consistency, we also allow E ’s encryption algorithm to take as input the
database D.

Claim. For any QPT adversary A, |Adv6(A)− Adv5(A)| ≤ negl(λ).

Proof. The indistinguishability between G5 and G6 follows immediately from (weak)
quantum-pseudorandomness of iPRF. We note that here we only need weak security notion,
since iPRF−1 is never invoked in the decryption oracle.

Game G7: This is identical to G6, except that now in the challenge encryption oracle,
instead of computing y1 as an encryption of 0, we change it back to encryption of a random
key k, that is y1 ← E ′.Encrypt(pk1, k).

Claim. For any QPT adversary A, |Adv7(A)− Adv6(A)| ≤ negl(λ).

Proof. The indistinguishability between G6 and G7 follows immediately from IND-qCPA
security of E ′.
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Game G8: This is identical to G7, except that now in the challenge encryption oracle, we
use the real prover P of Π to generate the proof instead of using the simulator.

Claim. For any QPT adversary A, |Adv8(A)− Adv7(A)| ≤ negl(λ).

Proof. The indistinguishability between G7 and G8 follows from zero-knowledge property
of Π.

In this final game G8, we have the challenge encryption oracle implements exactly as
the one in the random-world of E . Overall, we complete the proof of the theorem.

8 Acknowledgment
Ehsan Ebrahimi was supported by the Luxembourg National Research Fund under the
Junior CORE project QSP (C22/IS/17272217/QSP/Ebrahimi). Céline Chevalier was
supported in part by the French ANR project TCS-NISQ (ANR-22-CE47-0004), CryptiQ
(ANR-18-CE39-0015). Giulio Malavolta is supported by the European Research Council
through an ERC Starting Grant (Grant agreement No. 101077455, ObfusQation).

References
[ABKM22] Gorjan Alagic, Chen Bai, Jonathan Katz, and Christian Majenz. Post-

quantum security of the even-mansour cipher. In Orr Dunkelman and Stefan
Dziembowski, editors, EUROCRYPT 2022, Part III, volume 13277 of LNCS,
pages 458–487. Springer, Heidelberg, May / June 2022. doi:10.1007/978-3
-031-07082-2_17.

[AGRS24] Behzad Abdolmaleki, Noemi Glaeser, Sebastian Ramacher, and Daniel
Slamanig. Circuit-succinct universally-composable nizks with updatable
CRS. In 37th IEEE Computer Security Foundations Symposium, CSF
2024, Enschede, Netherlands, July 8-12, 2024, pages 527–542. IEEE, 2024.
doi:10.1109/CSF61375.2024.00006.

[AMRS20] Gorjan Alagic, Christian Majenz, Alexander Russell, and Fang Song. Quantum-
access-secure message authentication via blind-unforgeability. In Anne
Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume
12107 of LNCS, pages 788–817. Springer, Heidelberg, May 2020. doi:
10.1007/978-3-030-45727-3_27.

[AMRS23] Gorjan Alagic, Christian Majenz, Alexander Russell, and Fang Song. Quantum-
secure message authentication via blind-unforgeability. arXiv preprint
arXiv:1803.03761v4, 2023. URL: https://arxiv.org/abs/1803.03761v4.

[ARS20] Behzad Abdolmaleki, Sebastian Ramacher, and Daniel Slamanig. Lift-and-
shift: Obtaining simulation extractable subversion and updatable SNARKs
generically. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,
editors, ACM CCS 2020, pages 1987–2005. ACM Press, November 2020.
doi:10.1145/3372297.3417228.

[ATTU16] Mayuresh Vivekanand Anand, Ehsan Ebrahimi Targhi, Gelo Noel Tabia, and
Dominique Unruh. Post-quantum security of the CBC, CFB, OFB, CTR,
and XTS modes of operation. In Tsuyoshi Takagi, editor, Post-Quantum
Cryptography - 7th International Workshop, PQCrypto 2016, pages 44–63.
Springer, Heidelberg, 2016. doi:10.1007/978-3-319-29360-8_4.

https://doi.org/10.1007/978-3-031-07082-2_17
https://doi.org/10.1007/978-3-031-07082-2_17
https://doi.org/10.1109/CSF61375.2024.00006
https://doi.org/10.1007/978-3-030-45727-3_27
https://doi.org/10.1007/978-3-030-45727-3_27
https://arxiv.org/abs/1803.03761v4
https://doi.org/10.1145/3372297.3417228
https://doi.org/10.1007/978-3-319-29360-8_4


24 On Quantum Simulation-Soundness

G1 : Decrypt(sk, (y0, y1, y2, π))

b← Π.V(crs, (y0, y1, y2), π)
if b = 0 then return ⊥
k← E ′.Decrypt(sk1, y1)

return iPRF−1(k, y2)

G2 : Encrypt(pk, x)

k $← iPRF.Setup(1λ)
y0 ← E .Encrypt(pk0, x; r0)
y1 ← E ′.Encrypt(pk1, k; r1)
y2 ← iPRF(k, x)
π ← Π.S(crs, (y0, y1, y2))
return (y0, y1, y2, π)

G3 : Encrypt(pk, x)

k $← iPRF.Setup(1λ)
y0 ← REncrypt(pk0,·)(x)

y1 ← E ′.Encrypt(pk1, k; r1)
y2 ← iPRF(k, x)
π ← Π.S(crs, (y0, y1, y2))
return (y0, y1, y2, π)

G4 : Decrypt(sk, (y0, y1, y2, π), D)

b← Π.V(crs, (y0, y1, y2), π)
if b = 0 then return ⊥
if ∃(x, (y0, y1, y2, π)) ∈ D then

return x

return E .Decrypt(sk0, y0)

G5 : Encrypt(pk, x)

k $← iPRF.Setup(1λ)
y0 ← REncrypt(pk0,·)(x)

y1 ← E ′.Encrypt(pk1, 0; r1)
y2 ← iPRF(k, x)
π ← Π.S(crs, (y0, y1, y2))
return (y0, y1, y2, π)

G6 : Encrypt(pk, x, D)

u← D(x)

k $← iPRF.Setup(1λ)
y0 ← REncrypt(pk0,·)(x)
y1 ← E ′.Encrypt(pk1, 0; r1)
y2 ← iPRF(k, u)
π ← Π.S(crs, (y0, y1, y2))
return (y0, y1, y2, π)

G7 : Encrypt(pk, x, D)

u← D(x)

k $← iPRF.Setup(1λ)
y0 ← REncrypt(pk0,·)(x)

y1 ← E ′.Encrypt(pk1, k; r1)
y2 ← iPRF(k, u)
π ← Π.S(crs, (y0, y1, y2))
return (y0, y1, y2, π)

G8 : Encrypt(pk, x, D)

u← D(x)

k $← iPRF.Setup(1λ)
y0 ← REncrypt(pk0,·)(x; r0)
y1 ← E ′.Encrypt(pk1, k; r1)
y2 ← iPRF(k, u)
π ← Π.P(crs, (y0, y1, y2), (x, r0, r1))
return (y0, y1, y2, π)

Figure 2: Description of the changes in games Gi for i ∈ J1, 8K. In each program, the
changes relative to the previous program are highlighted in light gray.
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Supplementary Material

A Preliminaries

A.1 Quantum Information
We use H to denote an arbitrary finite-dimensional Hilbert space, and use indices to
differentiate between distinct spaces. We let |ϕ⟩ denote an arbitrary pure quantum state,
let |x⟩ denote an element of the standard (computational) basis. A mixed state will be
denoted by lowercase Greek letters, e.g., ρ. We let |+⟩ denote the uniform superposition,
that is |+⟩ :=

∑
x |x⟩.

A pure state |ϕ⟩ can be manipulated by performing a unitary transformation U to
the state |ϕ⟩, which we denote U |ϕ⟩. The identity on a n-bit quantum system is denoted
In. Given two quantum systems A, B, with corresponding Hilbert spaces HA,HB, let
|ϕ⟩ = |ϕ0, ϕ1⟩ be a state of the joint system. We write UA |ϕ⟩ to denote that we act with
U on register A, and with identity I on register B, and we write UAB to denote that we
act with U on both registers A, B simultaneously, that is UAB = UA ⊗ UB .

Partial Measurement. Given two quantum systems A, B, with corresponding Hilbert
spaces HA,HB , let ρAB be the density matrix of the joint system. We write TrB(ρAB) for
the state obtained by tracing out system A.

Quantum Computations. Let Q be a n-bit quantum system over Zq for some integer
q. The Quantum Fourier Transform (QFT) performs the following operation efficiently:

QFT |x⟩ := 1√
qn

∑
y∈{0,1}n

ωx·y
q |y⟩ ,

where ωq := exp( 2πi
q ), and x · y denotes the dot product. In this paper, we usually consider

q = 2, so that ωq = (−1).
Given a function f : X → Y, we model a quantum-accessible oracle O for f as

a unitary transformation Of acting on three registers X, Y, Z with the property that
Of : |x, y, 0⟩ 7→ |x, y ⊕ f(x), 0⟩, where ⊕ is some involutive group operation (so-called
quantum query model). Given an algorithm A, we sometimes write y ← AO1,O2,...(x)
for the event that a quantum adversary A takes x as input, makes quantum queries to
O1,O2, . . ., and finally outputs y.

A.2 Pseudorandom Functions
Definition 8 (Pseudorandom Function). A pseudorandom function (PRF) is a tuple of
PPT algorithms ⟨KeyGen, PRF⟩ such that:

• k← KeyGen(1λ). The key generation algorithm KeyGen takes a security parameter
λ as input and outputs a random key k ∈ K.

• y ← PRF(k, x). The PRF algorithm takes as input a key k ∈ K and an input x ∈,
and deterministically outputs a classical string y ∈ Y.

We require the following properties.
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• Pseudorandomness. For every QPT adversary A, and every λ ∈ N, the following
holds:∣∣∣∣∣ Pr

k $←KeyGen(1λ)

[
A|PRF(k,·)⟩(1λ) = 1

]
− Pr

[
A|OH⟩(1λ) = 1

]∣∣∣∣∣ ≤ 1
2 + negl(λ),

where the probability is taken over the randomness of KeyGen, and OH is a random
function from F := {F | F :→ Y }.

We will optionally require the following property:
• One-wise Independence. Let = {0, 1}n(λ) and Y = {0, 1}m(λ). We say ⟨KeyGen, PRF⟩

is 1-wise independent if for any input x ∈ and any y ∈ Y:

Pr [ PRF(k, x) = y ] = 1
2m

,

where the probability is over k← KeyGen(1λ).
Definition 9 (Invertible Pseudorandom Functions). An invertible pseudorandom function
(IPF) with key-space K, domain , and range Y consists of two functions iPRF : K× → Y
and iPRF−1 : K × Y → ∪{⊥}. An IPF can also include a setup algorithm iPRF.Setup(1λ)
that on input the security parameter λ, outputs a key k ∈ K. The functions iPRF and
iPRF−1 satisfy the following properties:
• Both iPRF and iPRF−1 can be computed by deterministic polynomial-time algorithms.

• For all security parameters λ and all keys k output by iPRF.Setup(1λ), the function
iPRF(k, ·) is an injective function from to Y. Moreover, the function iPRF−1(k, ·) is
the (generalized) inverse of iPRF(k, ·).

• (Weak) Quantum Pseudorandomness. An IPF iPRF : K× → Y is secure if for
all QPT adversaries A,∣∣∣∣∣ Pr

k $←iPRF.Setup(1λ)

[
A|iPRF(k,·)⟩(1λ) = 1

]
− Pr

R
$←InjFuncs[,Y]

[
A|R(·)⟩(1λ) = 1

]∣∣∣∣∣ ≤ negl(λ),

where InjFuncs[,Y] is the set of all injective functions from to Y.
A quantum-secure construction of invertible pseudorandom function is given in Ap-

pendix C.

A.3 One-time Signatures
A signature scheme consists of three polynomial time classical algorithms Sig = ⟨KeyGen,
Sign, Verif⟩. KeyGen is a randomized procedure that takes as input the security parameter
and produces a secret key and public key pair (pk, sk)← KeyGen(1λ). Sign takes as input
the secret key and a message m, and produces a signature σ ← Sign(sk, m). Finally, Verif
takes as input the public key, a message m, and a supposed signature σ on m, and either
accepts or rejects.

A signature scheme is correct if Verif accepts signatures outputted by Sign such that

Pr
[

Verif(pk, m, σ) = 1
∣∣∣∣ (sk, pk)← KeyGen(1λ)

σ ← Sign(sk, m)

]
≥ 1− negl(λ).

For security, we will for simplicity only consider one-time signature schemes where the
adversary only receives a single superposition of messages. Furthermore, for simplicity we
assume that the signing function is a deterministic function of the secret key and message;
this can be made without loss of generality by using a pseudorandom function to generate
the randomness.
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Boneh-Zhandry security. Boneh and Zhandry [BZ13b] give the following definition
of security for signatures in the presence of quantum adversaries. Let A be a quantum
adversary, and consider the following experiment between A and a challenger:

• The challenger runs (sk, pk)← KeyGen(1λ), and gives pk to A.

• A makes a quantum superpositions query to the function Sign(sk, ·) as |m, u⟩ 7→
|m, u⊕ Sign(sk, m)⟩.

• A outputs two classical message/signature pairs ((m0, σ0), (m1, σ1)).

• The challenger accepts and outputs 1 if and only if (1) m0 ̸= m1, and (2) Verif(pk, mb, σb)
for both b ∈ {0, 1}. Denote this output by W-BZ-Expλ(A).

Definition 10 (Boneh-Zhandry [BZ13b]). A signature scheme is one-time weakly BZ-
secure if, for any quantum polynomial time adversary A, W-BZ-Expλ(A) is negligible.

A.4 Public-key Encryption
A public-key cryptosystem E = (KeyGen, Encrypt, Decrypt) consists of three PPT algo-
rithms.

• KeyGen(λ) is a probabilistic key generation algorithm which takes as input the
security parameter λ and outputs a pair (pk, sk) of matching public and secret keys.

• Encrypt(pk, x; r) is a probabilistic encryption algorithm which takes as input a public
key pk, a plaintext x ∈ (where is some fixed message space), samples a random
coin on each invocation r ∈ R (where R is the randomness space), and outputs a
ciphertext y. We sometimes omit the random coin and write Encrypt(pk, x).

• Decrypt(sk, y) is a deterministic decryption algorithm which takes as input a secret key
sk and a ciphertext y, and outputs a message x ∈ ∪{⊥}, where ⊥ is a distinguished
symbol indicating decryption failure.

Security Definitions. Similar to the symmetric setting, we first give a Real-or-Random
security definition for public-key encryption in the classical setting, then Boneh-Zhandry’s
definitions. For any subset D of the ciphertext space C, we define the “punctured”
decryption oracle D̃ecrypt

D

(sk, y) which returns Decrypt(sk, y) if y /∈ D, else it returns ⊥.

Definition 11 (Real-or-Random IND-CPA, IND-CCA1, IND-CCA2).
Let E = (KeyGen, Encrypt, Decrypt) be an public-key encryption scheme and let A =
(A1,A2) be a classical adversary. Let F is the family of all functions over . For atk ∈
[cpa, cca1, cca2], we define the following game, where the oracles O1,O2 are defined
according to atk:

Experiment Exptind-atk−b
E (λ,A):

1 : (pk, sk)← KeyGen(λ)

2 : (x, state)← AOEncrypt(pk,·),O1
1 (λ)

3 : h
$← F

4 : y∗ ← OEncrypt(pk,·)(h1−b(x))

5 : b′ ← AOEncrypt(pk,·),O2
2 (y∗, state)

6 : return b′

atk

cpa

cca1
cca2

Oracle O1

∅
Decrypt(sk, ·)
Decrypt(sk, ·)

Oracle O2

∅
∅
Decrypt∗(sk, ·)
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Here, Decrypt∗(sk, y) returns x if y = y∗, otherwise it decrypts normally.
We define A’s advantage by

Advind-atk
A,E (λ) :=

∣∣∣Pr
[
Exptind-atk−1

E (λ,A) = 1
]
− Pr

[
Exptind-atk−0

E (λ,A) = 1
]∣∣∣.

We say E is secure in the sense of IND-atk if A being PPT implies that Advind-atk
A,E (λ) is

negligible.

Definition 12 (IND-qCPA, IND-qCCA1, IND-qCCA2 [BZ13b]).
Let E = (KeyGen, Encrypt, Decrypt) be an public-key encryption scheme and let A =
(A1,A2) be a quantum adversary. For qatk ∈ [qcpa, qcca1, qcca2], we define the following
game, where the oracles O1,O2 are defined according to qatk:

Experiment Exptind-qatk−b
E (λ,A):

1 : (pk, sk)← KeyGen(λ)

2 : |x0, x1⟩ |ϕ⟩ ← AO1
1 (pk)

3 : if |x0| ̸= |x1| then return 0
4 : y∗ ← Encrypt(pk, xb)

5 : b′ ← AO2
2 (|y∗⟩ |ϕ⟩)

6 : return b′

qatk

qcpa

qcca1

qcca2

Oracle O1

∅
Decrypt(sk, ·)

Decrypt(sk, ·)

Oracle O2

∅
∅

D̃ecrypt
D

(sk, ·) with D = {y∗}

We define A’s advantage by

Advind-qatk
A,E (λ) :=

∣∣∣Pr
[
Exptind-qatk−1

E (λ,A) = 1
]
− Pr

[
Exptind-qatk−0

E (λ,A) = 1
]∣∣∣.

We say E is secure in the sense of IND-qatk if A being QPT implies that Advind-qatk
A,E (λ) is

negligible.

B The Quantum Certification Protocol [BCM+18]
The protocol relies on a post-quantum secure trapdoor claw-free (TCF) family of functions
with adaptive hard-core bit property f0, f1 : {0, 1}n → {0, 1}m. A TCF pair is a pair of
functions which are injective, with the same image, and satisfy the following property.
With knowledge of a secret trapdoor it is possible to efficiently (classically) compute the
two pre-images x0 and x1 of a given y (f0(x0) = f1(x1) = y), but without the trapdoor,
there is no efficient quantum algorithm that can compute such a triple (x0, x1, y), referred
to as a claw, for any y. The adaptive hardcore bit property states that it is also hard to
hold both a single pre-image xb, as well as a string d ∈ {0, 1}b \ 0b and a bit c such that
c = d · (x0 ⊕ x1).

We note that while the quantum device cannot compute a claw or break the adaptive
hard-core bit property, nevertheless it can simultaneously hold an image y as well as a
superposition 1√

2 (|0, x0⟩+ |1, x1⟩) over the two pre-images of y, simply by evaluating f

on a uniform superposition over all inputs and measuring the image register y. Then by
either measuring the state in the computational basis or the Hadamard basis, the device
can obtain either a random pre-image xb of y, or a pair (c, d) such that c = d · (x0 ⊕ x1).

A high-level description of the [BCM+18] protocol is given below.

Construction 5.

1. The verifier generates a TCF pair, along with a trapdoor, and sends just the function
pair to the prover.
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2. The prover returns an image y of the TCF pair.

3. The verifier challenges the prover by randomly asking for either a pre-image of y, or
a bit c and an n-bit string d such that d · (x0 ⊕ x1) = c.

4. The prover measures in the computational or Hadamard basis to return the requested
output and the verifier checks the validity by using the trapdoor to compute the two
pre-images x0, x1 of y.

Lemma 5 (Lemma 2, restated). Under the LWE assumption, there exists a 4-message
interactive proof of quantumness protocol satisfying: (1) public-coin second verifier message
and (2) semi-quantum soundness.

Proof. The protocol we use in the proof is the n-fold parallel repetition of Construction 5.
Construction 5 has soundness error 1/2, and parallel repetition amplifies the soundness of
this protocol, which has been shown in [RS19].

By inspecting the [BCM+18] protocol, we note that the verifier’s second message is
public coin. What remains is to argue that the protocol is also semi-quantum sound:
in the [BCM+18] protocol, the crucial point is that the prover can compute a quantum
state to obtain its first message p1 on its own, and later this quantum state will be either
measured in the computational basis or the Hadamard basis to answer the challenge from
the verifier. In particular, p1 is an image of the TCF function obtained by running the
TCF function in superposition over all input and then measuring in the computational
basis. Now consider the security game of semi-quantum soundness: the prover can only
compute p1 via sending a classical query to Vsemi: that is, the prover sends a classical
input x and receives back the image p1 of x. Since this is a classical query, no efficient
quantum prover can give a valid answer in the Hadamard basis for a fixed pair (v1, p1).
Formally, we can construct a simulator S which simulates the malicious semi-quantum
prover P∗ and plays the role of the prover in the [BCM+18] protocol. S makes a copy of
(v1, x, p1) (where x is the input of P∗’s query) and later sends (v1, p1, v2) to P∗. Finally
S outputs whatever P∗ outputs. One can see that now if P∗ breaks the semi-quantum
soundness, S breaks the “adaptive hard-core bit” property of the [BCM+18] protocol.

C Quantum-Secure Invertible Pseudorandom Func-
tions

We show a construction for invertible pseudorandom functions from standard pseudorandom
functions. The construction is the one given in [BKW17]. We first recall the construction
and show that if the underlying pseudorandom functions are quantum-secure, then this
construction is also weakly quantum-secure.

Construction 6. Let PRF1 : K1× → Y and PRF2 : K2 × Y → be two pseudorandom
functions. Define the following invertible iPRF on domain using a key k := (k1, k2) ∈
K1 ×K2:

Theorem 4. Assume that PRF1, PRF2 are quantum-secure (according to Definition 8),
then iPRF in Construction 6 is weakly quantum-secure (according to Definition 9).

Proof. We note that in the weak pseudorandom security, the adversary has only quantum
access to an evaluation oracle iPRF, and not an inversion oracle iPRF−1. The proof of the
theorem follows from the standard hybrid argument, where we first replace PRF1 with a
truly random function, and then we replace PRF2 with another truly random function.
We omit the details.
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iPRF((k1, k2), x)

y1 ← PRF1(k1, x)
y2 ← PRF2(k2, y1)⊕ x

return (y1, y2)

iPRF−1((k1, k2), (y1, y2))

x← PRF2(k2, y1)⊕ y2

if y1 ̸= PRF1(k1, x)
return ⊥

else return x

Figure 3: [BKW17]’s invertible pseudorandom functions construction.

D Quantumly Computational Zero-Knowledge Proof
Systems

In this section, we briefly show that some known non-interactive zero-knowledge proof
systems in literature satisfy the stronger notion of quantumly computational zero-knowledge.
The construction we consider is the one given in [BP15]. At a high-level overview, their
construction is a concrete instantiation of the Goldwasser-Ostrovsky transformation [GO93]
which gives NIZKs from invariant signatures.

Informally, invariant signatures are digital signatures where all valid signatures of
any message are either identical, or share a common property. Concretely, we say that
a signature scheme is invariant if there is some efficiently computable property P of
signatures such that for any message m∗ and any verification key vk there is a unique
value Pvk(m∗) such that P (σ) = Pvk(m∗) for any valid signature σ with respect to vk.
Furthermore, it is required that for every message m∗, for an honestly generated verification
key (sampled independently of m∗), the property value Pvk(m∗) is pseudo-random, even
given the verification key and a signature oracle on messages m ≠ m∗. We can also consider
a relaxed notion of invariant signatures in the common random string model (CRS).

The Goldwasser-Ostrovsky transformation is based on the construction of Feige, Lapidot
and Shamir [FLS90] of NIZKs in the hidden-bits model. In this model, a random hidden
string is available to the prover but is hidden from the verifier. The prover can reveal to the
verifier specific bits of the hidden string in the locations of its choice, but it cannot change
the value of these bits. Very briefly, the transformation is as follows: we interpret the CRS
(available to both prover and verifier) as containing a CRS for the invariant signature,
as well as a sequence of messages {mi} and one-time pad bits {si} where every (mi, si)
will be used to obtain a single hidden bit bi. The prover will sample keys (vk, sk) for the
invariant signature and send the verification key vk to the verifier as part of the proof.
The hidden bit bi is then defined as the bit Pvk(mi), the property value of the message
mi, XORed with the the one-time pad bit si. To reveal the bit bi, the prover sends to the
verifier a signature σi on mi. The verifier can compute bi by computing P (σ) = Pvk(mi).

The simulator can be defined based on this strategy, where first we run the simulator
of the proof system in the hidden model to obtain a proof π and a set of revealing bits
{bi}. The CRS will be generated exactly as in the real execution, except that the one-time
pad bits {si} are computed as Pvk(mi)⊕ bi.

The proof of zero-knowledge is essentially based on pseudo-randomness property of the
signature, so that each hidden bit in the simulation is computationally indistinguishable
from a uniformly random bit as in the real execution.

There are two important points that make the proof also works in the quantum setting:

• A NIZK proof system in the hidden-bit model can achieve both perfect soundness
and perfect zero-knowledge [HU19].

• The computational indistinguishability only appears in the proof of the CRS gener-
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ation in the real execution and the simulation, which is classical and independent
from the adversary’s queries.

Since perfect zero-knowledge implies quantum zero-knowledge, the classical proof also
carries to the quantum setting, when the building blocks are post-quantumly secure. For
more details, we refer the reader to the (classical) proof given in [BP15].

E Sahai’s Construction
Proof of Theorem 2. Completeness follows by inspection. Soundness follows by the fact
that if crs is chosen uniformly at random, then the probability that crs1 can be interpreted
as a commitment to any string is exponentially small, and likewise the probability that
crs2 is in the image of the pseudorandom generator PRG is exponentially small.

For the proof of adaptive unbounded zero-knowledge, we note that the only difference
in the common random string crs between the real protocol and the simulation is crs1.
However, by post-quantum security of the commitment scheme, the two are computationally
indistinguishable. (We note that the commitments are classical.) Thus, since the simulator
for Π uses only a different witness to prove the same statement, the view of the adversary
in the simulator experiment is computationally indistinguishable from the view of the
adversary in the modified prover experiment. Thus, adaptive unbounded zero-knowledge
follows.

Quantum simulation-soundness proof. The proof of simulation-soundness follows
almost identical as the one in the classical setting [Sah01], except for some small modifica-
tions on the reductions to quantum security of building blocks. We give the full proof as
follows.

Let A be a QPT adversary. The proof proceeds by a sequence of games where G0
is defined in which A can make quantum queries to S2 (defined in Figure 1), and the
winning condition is defined as in Definition 4. For any game Gi, we denote by Advi(A)
the advantage of A in Gi, that is, Pr

[
Gi(1λ,A) = 1

]
, where the probability is taken over

the random coins of Gi and A.

Game G0: This is the actual adversary experiment, in which A can make quantum queries
to the simulator S2 and outputs two pairs {(xi, πi)}2

i=1. Let R be the list of all classical
randomness S2 used to answer each adversarial query during the experiment. We say A
wins if either of the following holds:

(a) There exists i ∈ J1, 2K such that xi /∈ L, for all r ∈ R, S2(xi, r) ̸= πi and
V(crs, xi, πi) = 1.

(b) There exists a randomness r ∈ R such that S2(x1, r) = π1 and S2(x2, r) = π2 and at
least one of x1 or x2 is not in L.

Game G1: In this game, we change the winning condition. The winning condition is now
defined as:

(a) There exists i ∈ J1, 2K such that xi /∈ L, for all r ∈ R, S2(xi, r) ̸= πi and
V(crs, xi, πi) = 1.

Claim. For any QPT adversary A, |Adv0(A)− Adv1(A)| ≤ negl(λ).

Proof. We show that the probability that the adversary wins by the second condition is
negligible, otherwise it must be able to break the unforgeability of the one-time signature.
Assume that A wins by the second condition with non-negligible probability ϵ.
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Let T be the list of verification keys output by the simulator. We note that since
verification keys (as well as signing keys) are classically and independently from the
adversary’s queries, T is well-defined as a list of classical strings. Furthermore, with all
but exponentially small probability, these verification keys will all be distinct. First, we
note that if the output of the adversary can be computed from the same randomness
r ∈ R, it means that the verification keys vk1 and vk2 (as parts of the proofs) output by
the adversary also in T , and furthermore it must be the case that vk1 = vk2, and at least
one of the two proofs is a forgery of the signature scheme. Denote this verification key as
vk∗, and the forge as (m, t).

We show how to use A to break the (weak) unforgeability of Sig (the security game
W-BZ-Exp as defined in Definition 10). Specifically, assume that the adversary A makes at
most q queries to the simulator. The reduction algorithm picks a random index i ∈ J1, qK
and uses A’s i-th query in the game W-BZ-Exp. With probability 1/q, this verification key
returned by the challenger in the game W-BZ-Exp is vk∗. In this case, the reduction just
returns A’s output pairs {(xi, πi = (vk∗, xi, ui, π′i, σi))}2

i=1. If follows that with probability
ϵ/q, {((xi, ui, π′i), σi)}2

i=1 are valid forges of Sig (with respect to vk∗). We note that x1 ̸= x2
by the assumption. This probability is non-negligible if ϵ is non-negligible. The proof of
the claim follows.

Game G2: In this game, we continue changing the winning condition, as follows:

(a) There exists i ∈ J1, 2K such that for all r ∈ R, S2(xi, r) ̸= πi and V(crs, xi, πi) = 1
and u = PRF(s, vk) where (u, vk) is parts of the output of the proof πi and s is a part
of the trapdoor information td.

We note that now this game can be implemented in quantum-polynomial-time.

Claim. For any QPT adversary A, |Adv1(A)− Adv2(A)| ≤ negl(λ).

Proof. Since crs2 is a uniformly random string, there is a string d such that crs2 = PRG(d)
with only negligible probability. By the definition of the language L′ and the fact that Π′
is a proof system for L′, we conclude that if x /∈ L, the only way the adversary’s proof
can be accepted is if PRF(s, vk) = u with overwhelming probability. This is because the
adversary never sees a valid proof for a false statement of L′ (the simulator is generating
the simulated proofs using the commitment witness), thus any adversary that outputs a
valid proof for a false statement of L′ (which means x /∈ L ∧ PRF(s, vk) ̸= u) would break
the soundness of Π′. Therefore, the winning conditions in G1 and G2 are exponentially
close.

Game G3: In this game, we make crs2 to be pseudorandom. That is, instead of sampling
crs2 uniformly at random, we compute crs2 by using a pseudorandom generator PRG. The
change is described in Figure 4.

Claim. For any QPT adversary A, |Adv2(A)− Adv3(A)| ≤ negl(λ).

Proof. The indistinguishability between G2 and G3 follows directly from post-quantum
security of PRG.

Game G4: In this game, the trapdoor information also includes the seed d of PRG.
Furthermore, the simulator S ′2, instead of using the witness of the commitments (that is,
(s, a1, · · · , aλ)), uses the seed d for crs2 to generate the proof π′. The change is described
in Figure 5.

Claim. For any QPT adversary A, |Adv3(A)− Adv4(A)| ≤ negl(λ).
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S1(1λ)

d
$← {0, 1}λ

s
$← {0, 1}λ

ri
$← {0, 1}3λ, ai

$← {0, 1}λ for i ∈ J1, λK

gi ← Commit(si; ri, ai) for i ∈ J1, λK

crs1 := {g1, · · · , gλ}

crs2
$← PRG(d)

crs3 ← Π′.Setup(1λ)
crs := (crs1, crs2, crs3)
td := (s, a1, · · · , aλ)
return (crs, td)

S2(crs, td, x)

(vk, sk)← Sig.KeyGen(1λ)
u← PRF(s, vk)
π′ ← Π′.S ′2

(
crs3, (x, u, vk, crs1, crs2),

(s, a1, · · · , aλ)
)

σ ← Sig.Sign(sk, x, u, π′)
return (vk, x, u, π′, σ)

Figure 4: The simulator of game G3.

S1(1λ)

d
$← {0, 1}λ

s
$← {0, 1}λ

ri
$← {0, 1}3λ, ai

$← {0, 1}λ for i ∈ J1, λK

gi ← Commit(si; ri, ai) for i ∈ J1, λK

crs1 := {g1, · · · , gλ}

crs2
$← PRG(d)

crs3 ← Π′.Setup(1λ)
crs := (crs1, crs2, crs3)
td := (s, a1, · · · , aλ, d )
return (crs, td)

S2(crs, td, x)

(vk, sk)← Sig.KeyGen(1λ)
u← PRF(s, vk)
π′ ← Π′.S ′2

(
crs3, (x, u, vk, crs1, crs2),

(d)
)

σ ← Sig.Sign(sk, x, u, π′)
return (vk, x, u, π′, σ)

Figure 5: The simulator of game G4.



40 On Quantum Simulation-Soundness

Proof. The indistinguishability between G3 and G4 follows the quantum zero-knowledge
property (Definition 3) of Π′ (which implies witness-indistinguishability): instead of using
witness (s, a1, · · · , aλ), we now use witness d to generate the proof.

Game G5: In this game, we make crs1 independent of s: we choose two independent
uniformly random strings s, s′ and make crs1 into a commitment to s′ rather than s. The
change is described in Figure 6.

S1(1λ)

d
$← {0, 1}λ

s, s′
$← {0, 1}λ

ri
$← {0, 1}3λ, ai

$← {0, 1}λ for i ∈ J1, λK

gi ← Commit( s′i ; ri, ai) for i ∈ J1, λK

crs1 := {g1, · · · , gλ}

crs2
$← PRG(d)

crs3 ← Π′.Setup(1λ)
crs := (crs1, crs2, crs3)
td := (s, a1, · · · , aλ, d)
return (crs, td)

S2(crs, td, x)

(vk, sk)← Sig.KeyGen(1λ)
u← PRF(s, vk)
π′ ← Π′.S ′2

(
crs3, (x, u, vk, crs1, crs2),

(d)
)

σ ← Sig.Sign(sk, x, u, π′)
return (vk, x, u, π′, σ)

Figure 6: The simulator of game G5.

Claim. For any QPT adversary A, |Adv4(A)− Adv5(A)| ≤ negl(λ).

Proof. The indistinguishability between G4 and G5 follows the computational hiding
property of the Naor’s commitment scheme.

Game G6: In this game, we replace PRF with a truly random function H (lazy-sampling).
The change is described in Figure 7.

Claim. For any QPT adversary A, |Adv5(A)− Adv6(A)| ≤ negl(λ).

Proof. The indistinguishability between G5 and G6 follows pseudorandomnesss of PRF.
Note that here since vk is classical, we only need classical pseudorandomess of PRF against
quantum adversaries.

Claim. For any adversary A, Adv6(A) ≤ 2−λ.

Proof. Since we only consider the case where vk∗ /∈ T , for any vk∗ output by A, H(vk∗)
will be a uniformly selected value that is totally independent of everything the adversary
sees. Denote this value as u′. Then the probability that the proof output by A having
u = u′ is exactly 2−λ. The claim follows.

Overall, we conclude the proof of the theorem.
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S1(1λ)

d
$← {0, 1}λ

s, s′
$← {0, 1}λ

ri
$← {0, 1}3λ, ai

$← {0, 1}λ for i ∈ J1, λK

gi ← Commit(s′i; ri, ai) for i ∈ J1, λK

crs1 := {g1, · · · , gλ}

crs2
$← PRG(d)

crs3 ← Π′.Setup(1λ)
crs := (crs1, crs2, crs3)
td := (s, a1, · · · , aλ, d)
return (crs, td)

S2(crs, td, x)

(vk, sk)← Sig.KeyGen(1λ)

u
$← {0, 1}λ

π′ ← Π′.S ′2
(
crs3, (x, u, vk, crs1, crs2),

(d)
)

σ ← Sig.Sign(sk, x, u, π′)
return (vk, x, u, π′, σ)

Figure 7: The simulator of game G6.

F Separation II: Simulation Sound NIZK in the CRS
Model

In this section, we construct a simulation sound (extractable) NIZK6 in the CRS model
that is secure against a classical adversary. Then we show our separation result that is
the simulation sound property of the construction can be broken if the adversary allows
making superposition queries. Formally, we prove the following theorems:

Theorem 5. Assume that the underlying NIZK scheme satisfies perfect completeness,
computational soundness, and computational zero-knowledge, that the encryption scheme
is semantically secure and perfectly correct, that the pseudo-random function family is
secure, that the commitment scheme is perfectly binding and computational hiding, and
that the one-time signature scheme is strongly unforgeable. Then the construction ΠSE is a
zero-knowledge proof system satisfying perfect completeness, computational zero-knowledge,
and simulation sound extractability.

Theorem 6. If secure simulation (extractable) sound NIZKs exist, then there are standard-
secure simulation (extractable) sound NIZKs that are not secure simulation (extractable)
sound when an adversary queries in superpositions of the statement.

Before describing our protocol formally, we first recall some notation and the primitives
used in the construction.
Ingredients and notation.

• An encryption scheme E is semantically secure and perfectly correct.

• A pseudo-random function family F is standard-secure PRFs.

• A pseudo-random permutation family PRP is standard-secure PRPs.

• A commitment scheme Com is perfectly binding and computational hiding.
6The stronger notion of simulation sound is called simulation sound extractability [Gro06], which is a

combination of the definitions of simulation soundness introduced by Sahai [Sah01] and proofs of knowledge
from De Santis and Persiano [DP92].
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• A one-time signature scheme Sig is strongly unforgeable.

• A NIZK scheme NIZK satisfies perfect completeness, computational soundness, and
computational zero-knowledge.

F.1 Periodic PRFs
Our construction makes use of a pseudo-random function that is a PRF to be a standard-
secure pseudorandom function with key-space K, domain X, and co-domain Y . We will
construct a new pseudorandom function that is periodic with some large, secret period.
Classical adversaries will not be able to detect the period, and thus cannot distinguish this
new function from random. However, an adversary making quantum queries can detect
the period, and thus distinguish our new function from random.

We now construct a new pseudo-random function F as follows,

FskPRF(x) = fskPRF(x)⊕ fskPRF(x ⊕ pPRF),

where skPRF
$← {0, 1}λ is the secret key of the PRF. The function f(.) is a PRF function

. The value pPRF is the perodic of the function F which later we set pPRF = skPRF.
Let K be the key space, and X and Y are the domain and range. K, X, and Y are

implicit functions of the security parameter λ. Assume without loss of generality that Y
contains at least N/2 elements (if not, we can construct a new pseudorandom function
with a smaller domain but larger range in a standard way). In theorem 7, we prove that
the function F is a pseudorandom function : K ×X → Y .

Theorem 7. Assume a function f is a standard-secure PRF. Then the pseudo-random
function F is standard-secure PRFs and periodic.

Proof. Pseudo-randomness property: it directly follows from the pseudo-random function f.
Perodic peroperty: The function F is periodic with value pPRF iff FskPRF(x) = FskPRF(x⊕pPRF).
We observe that FskPRF(x ⊕ pPRF) = fskPRF(x ⊕ pPRF) ⊕ fskPRF(x ⊕ pPRF ⊕ pPRF) = fskPRF(x ⊕
pPRF)⊕ fskPRF(x) = FskPRF(x).

F.2 Construction
Before describing our protocol formally, to help the exposition, we first give a brief intuition
of the construction.
Intuition. For the simulation extractable property, a prover must always provide en-
cryption of a witness. Inspired by the idea of [AGRS24, ARS20, KZM+15] with some
modifications, our construction makes use of a one-time signature scheme. A pair of one-
time signing/verification keys are generated for each proof such that in the zero-knowledge
proof, a simulator (simulated prover) is required to provide ctF = FskPRF(x) (where the
function F is the pseudo-random function introduced in section F.1) and ctpk = fskPRF(pk)
(where f is a pseudo-random function). Then we require the prover to sign the statement
together with the proof, the cipher-text, ctpk, and ctF. Then, briefly, due to the security of
the signature scheme, the adversary must use a different x and pk from the ones returned
from oracle queries. Thus, for a statement to pass the verifier without a proper witness,
the prover must generate FskPRF(x) and fskPRF(pk) without the knowledge of skPRF (thus
breaking the pseudo-random function F and f).
Construction. Let L be a NP language for a relation R. Define a language L′ to be the
language that (x, , ct, ctF, pks, pke, ctc, ctr), (r, r0, w, a, b) ∈ RL iff

ct = Epke
(w, r0) ∧ (x, w) ∈ L ∨ (ctF = FskPRF(x) ∧ ctpk = fskPRF(pks)∧

ctc = Com(skPRF, r) ∧ ctr = PRPskPRF(r)),
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where the function F is a pseudo-random function introduced in section F.1. PRP is a
pseudo-random permutation function with the key skPRF.

Now, we show the construction from NIZKs to simulation (extractable) sound NIZKs.
The construction is similar to the construction in [KZM+15] but with some modification
in a way that.

• crs.KGen(1λ,L): On input a security parameter λ and a language L compute,

− NIZK.crs← NIZK.KGen(1λ,L′);

− pke, ske)← E .KGen(1λ);

− skPRF, r
$← {0, 1}λ, set the periodic value pPRF = skPRF (that is the periodic value

of the PRF function F). Compute ctc = Com(skPRF, r) and ctr = PRPskPRF(r).

Set crs′ := (NIZK.crs, pke, ctc, ctr).

• P(crs′, x, w): On input a CRS crs′, a statement x, and a witness w,

− Parse crs′ = (NIZK.crs, pk2, ctc). If (x, w) ̸∈ RL then abort;

− Run (pks, sks) ← Sig.KGen(1λ) and sample z0, z′0, z1, z2, r0
$← {0, 1}λ. Set

ctF := z0 and ctpk := z′0

− Compute ct← Epke
(w, r0);

− Compute NIZK.π ← NIZK.P(NIZK.crs, (x, ct, ctF, pks, pke, ctc, ctr), (r0, z1, w, z2));

− Compute σ ← Sigsks
(x, ct, ctF, ctpk, NIZK.π);

Return π := (ct, ctF, ctpk, NIZK.π, pks, σ).

• V(crs′, x, π): On input a CRS crs′, a statement x, and a proof π, check,

− Parse crs′ := (NIZK.crs, pke, ctc, ctr) and π := (ct, ctF, ctpk, NIZK.π, pks, σ);

− Abort if 0← Sig.V(pks, (x, ct, ctF, ctpk, NIZK.π), σ);

− Abort if 0← NIZK.V(NIZK.crs, (x, ct, ctF, ctpk, pks, pke, ctc, ctr), NIZK.π).

• S(1λ,L): It contains two algorithms S1 and S2. The algorithm S1(1λ,L) runs the
crs.KGen(1λ,L) and outputs crs′, sets a trapdoor td := (skPRF, r), and an extraction
key ek := skc. The algorithm S2(crs′, x, td) works as follows:

− Parse crs′ = (NIZK.crs, pke, ctc, ctr) and td := (skPRF, r);

− Run (pks, sks) ← Sig.KGen(1λ) and sample z3, r0
$← {0, 1}λ. Compute ctF ←

FskPRF(x) and ctpk ← fskPRF(pks).

− Compute ct← Epke
(z3, r0);

− Compute NIZK.π ← NIZK.P(NIZK.crs, (x, ct, ctF, ctpk, pks, pke, ctc, ctr), (r0, z3, td =
(r, skPRF)));

− Compute σ ← Sigsks
(x, ct, ctF, ctpk, NIZK.π);

− Return π := (ct, ctF, ctpk, NIZK.π, pks, σ).



44 On Quantum Simulation-Soundness

Exp(1λ,L)

NIZK.crs← NIZK.KGen(1λ,L′);
(pke, ske)← E .KGen(1λ);

skPRF, r
$← {0, 1}λ;

ctc = Com(skPRF, r);
ctr = PRPskPRF(r);
crs′ := (NIZK.crs, pke, ctc, ctr)
{(xi, πi)}2

i=1 ← AO(.)(crs′);
if V(crs, xi, πi) = 1∀ i ∧
(∃i : xi /∈ L);∧(

O(xi, r) ̸= πi ∀ r ∈ R)
)
∨

(∃r ∈ R : O(xj , r) = πj ∀ j) for i, j ∈
J1, 2K return 1
else return 0

O(x)

Parse crs′ = (NIZK.crs, pke, ctc, ctr) and
td := (skPRF, r);
(pks, sks)← Sig.KGen(1λ)

z3, r0
$← {0, 1}λ;

ctF ← FskPRF(x); ctpk ← fskPRF(pks);
ct← Epke

(z3, r0);
NIZK.π ← NIZK.P(NIZK.crs, (x, ct, ctF,
ctpk, pks, pke, ctc, ctr), (r0, z3, td));
σ ← Sigsks

(x, ct, ctF, ctpk, NIZK.π);
return
π := (ct, ctF, ctpk, NIZK.π, pks, σ).

Figure 8: Experiment Exp(1λ,L) for the simulation-sound proof of Theorem 5.

F.3 Security Proof
Next, we prove Theorem 5. The completeness is straight forward from the construction.
Next we prove it is also simulation sound (extractable) and zero-knowledge.

Proof. Simulation sound (extractable). We prove it in several games. We recall the
experiment for simulation sound extractable in Fig. 8 and we highlight changes by pointing
to the line numbers in the experiment or the oracle.

Game G0: This is the original experiment in Fig. 8.

Game G1: This game is the same as G0 but we relax the return condition as follows: let
T be the set of verification keys generated by O(.). The experiment Exp1 outputs 1 iff:

• V(crs, xi, πi) = 1 ∀ i ∧ ∃i : (O(xi, r) ̸= πi ∀ r ∈ R) ∨ (∃r ∈ R : O(xj , r) =
πj ∀ j) for i, j ∈ J1, 2K

• ∧ pks /∈ T ∧ ctpk = fskPRF(pks) ∧ ctF = FskPRF(x).

Claim. If the underlying one-time signature scheme is strongly unforgeable, and that the
underlying NIZK is sound, then we have any PPT adversary A, |Adv0(A)− Adv1(A)| ≤
negl(λ).

Proof. We know that if (i) x and π are not queried before and (ii) pks has been generated
by the oracle O(ů), then the (x, ct, ctF, ctpk, NIZK.π) is a valid message/signature pair.
Hence by the unforgeability of the signature scheme, we know that (i) and (ii) happen
with negligible probability, thus, we focus on pks ̸∈ T . Furthermore, if some witness (the
decrypted w is unique for all valid witnesses) is valid for L and that (x, w) /∈ RL, then it
has to be the case that there exists some sk′PRF, such that ctc is a valid commitment of
sk′PRF and that ctpk = fsk′

PRF
(pks), which implies ctpk = fskPRF(pks), by the perfectly binding

property.
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Game G2: This game is the same as G1 but for generating the NIZK.π, instead of the
NIZK.P we run the simulator NIZK.S of the underlying NIZK. Thus, the experiment Exp2
has the following changes:

• (NIZK.crs, tdNIZK.crs)← NIZK.KGen(1λ,L′);
• O(x): NIZK.π ← NIZK.S(NIZK.crs, (x, ct, ctF, ctpk, pks, pke, ctc, ctr), (r0, z3, tdNIZK.crs)).

Claim. If the underlying NIZK is zero-knowledge, then we have that for any PPT adversary
A, |Adv2(A)− Adv1(A)| ≤ negl(λ).

Proof. The proof follows directly from the zero-knowledge property of the underlying
NIZK.

Game G3: This game is the same as G2 but we use different skPRF in ctc than the one
used in ctF, ctpk, and ctr. Thus, the experiment Exp3 has the following changes:

• sk′PRF, skPRF, r
$← {0, 1}λ;

• ctc = Com(sk′PRF, r);

Claim. If the underlying commitment scheme is computationally hiding, then we have
any PPT adversary A, |Adv3(A)− Adv2(A)| ≤ negl(λ).

Proof. By the hiding property, no polynomial algorithm can distinguish the commitment
of two elements.

Game G4: This game is the same as G3 but we replace PRP with a true random permu-
tation PRP′. Thus, the experiment Exp4 has the following changes:

• ctr = PRP′skPRF
(r);

Claim. If the underlying PRP scheme is secure, then we have any PPT adversary A,
|Adv4(A)− Adv3(A)| ≤ negl(λ).

Proof. The proof follows directly from the security of the PRP scheme.

Game G5: This game is the same as G4 but we replace PRF with a truly random function
f ′. Thus, the experiment Exp5 has the following changes:

• O(x): ctF ← f ′(x); ctpk ← f ′(pks);
• Outputs 1 iff: ∧ pks /∈ T ∧ ctpk = f′(pks) ∧ ctF = f ′(x).

Claim. If the underlying PRF is secure, then we have that for any PPT adversary A,
|Adv5(A)− Adv4(A)| ≤ negl(λ).

Proof. As the PRF is secure, the outputs of f ′ are indistinguishable from f and F. This
completes the proof.

Finally, since pks /∈ T then f(pks) has not been queried before. Thus, we may view
f(pks) as newly generated random bits independent from ctpk. So, it concludes that
Pr[Exp5] ≤ negl(λ). This completes the proof.

Zero-knowledge. We prove this by showing a series of indistinguishable hybrids. We
recall the experiment for zero-knowledge in Fig. 9 and we highlight changes by pointing to
the line numbers in the experiment or the oracle.
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Exp(1λ,L)

NIZK.crs← NIZK.KGen(1λ,L′);
(pke, ske)← E .KGen(1λ);

skPRF, r
$← {0, 1}λ;

ctc = Com(skPRF, r);
ctr = PRPskPRF(r);
crs′ := (NIZK.crs, pke, ctc, ctr)
b← AO(.)(crs′);
return b

O(x, w)

Abort if (x, w) ̸ RL;
Parse crs′ = (NIZK.crs, pke, ctc, ctr) and
td := (skPRF, r);
(pks, sks)← Sig.KGen(1λ)

z3, r0
$← {0, 1}λ;

ctF ← FskPRF(x); ctpk ← fskPRF(pks);
ct← Epke

(z3, r0);
NIZK.π ← NIZK.P(NIZK.crs, (x, ct, ctF,
ctpk, pks, pke, ctc, ctr), (r0, z3, td));
σ ← Sigsks

(x, ct, ctF, ctpk, NIZK.π);
return
π := (ct, ctF, ctpk, NIZK.π, pks, σ).

Figure 9: Experiment Exp(1λ,L) for the zero-knowledge proof of Theorem 5.

Game G0: This is the original experiment in Fig. 9.

Game G1: This game is the same as G0 but for generating the NIZK.π, instead of the
NIZK.P we run the simulator NIZK.S of the underlying NIZK. Thus, the experiment Exp1
has the following changes:

• (NIZK.crs, tdNIZK.crs)← NIZK.KGen(1λ,L′);
• O(x): NIZK.π ← NIZK.S(NIZK.crs, (x, ct, ctF, ctpk, pks, pke, ctc, ctr), (r0, z3, tdNIZK.crs)).

Claim. If the underlying NIZK is zero-knowledge, then we have that for any PPT adversary
A, |Adv1(A)− Adv0(A)| ≤ negl(λ).

Proof. The proof follows directly from the zero-knowledge property of the underlying
NIZK.

Game G2: This game is the same as G1 but the oracle O encrypts the true witness. The
experiment Exp2 has the following changes:

• O(x): ct← Epke
(w, r0)

Claim. If the underlying encryption scheme is semantically secure, then we have any
PPT adversary A, |Adv2(A)− Adv1(A)| ≤ negl(λ).

Proof. The proof follows directly from the semantical security of the encryption scheme.

Game G3: In his game we only use different skPRF in ctc than the one used in ctF, ctpk,
and ctr. Thus, the experiment Exp3 has the following changes:

• sk′PRF, skPRF, r
$← {0, 1}λ;

• ctc = Com(sk′PRF, r);
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Claim. If the underlying commitment scheme is computationally hiding, then we have
any PPT adversary A, |Adv3(A)− Adv2(A)| ≤ negl(λ).

Proof. The proof follows directly from the hiding property of the commitment scheme.

Game G4: This game is the same as G3 but we only replace PRP with a true random
permutation PRP′. Thus, the experiment Exp4 has the following change:

• ctr = PRP′skPRF
(r);

Claim. If the underlying PRP scheme is secure, then we have that for any PPT adversary
A, |Adv4(A)− Adv3(A)| ≤ negl(λ).

Proof. The proof follows directly from the security of the PRP scheme.

Game G5: This game is the same as G4 but we replace PRF with a truly random function
f ′. Thus, the experiment Exp5 has the following changes:

• O(x): ctF ← f ′(x); ctpk ← f ′(pks);

Claim. If the underlying PRF is secure, then we have that for any PPT adversary A,
|Adv5(A)− Adv4(A)| ≤ negl(λ).

Proof. As the PRF is secure, the outputs of f ′ are indistinguishable from f and F. This
completes the proof.

Game G6: In this game, we replace the real prover P(w, x) to generate the proof π :=
(ct, ctF, ctpk, NIZK.π, pks, σ). Thus, the experiment Exp6 has the following changes in the
O(x):

• Samplez0, z′0, z1, z2, r0
$← {0, 1}λ; Set ctF := z0 and ctpk := z′0

• NIZK.π ← NIZK.P(NIZK.crs, (x, ct, ctF, pks, pke, ctc, ctr), (r0, z1, w, z2));

Claim. If the underlying NIZK is zero-knowledge, then we have that for any PPT adversary
A, |Adv6(A)− Adv5(A)| ≤ negl(λ).

Proof. The last experiment is exactly the definition. This concludes the proof for the
zero-knowledge part.

This concludes the proof.

F.4 Separation Result: Non-Secure SS-NIZK Against Superposi-
tions Query

In this section, we show our separation result in Theorem 6 that is the standard-secure
simulation (extractable) sound NIZKs that are not secure simulation (extractable) sound
when an adversary query in superpositions of the statement. We prove Theorem 6 as
follows:
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Proof. Let a quantum adversary A against the pseudo-random function F. Let F be a
standard-secure pseudorandom function (introduced in Section F.1). By using Simon’s
quantum algorithm, given quantum queries, the quantum adversary A can find the period
of the pseudo-random function F and thus obtain pPRF = skPRF. Let B be a quantum
adversary against simulation (extractable) sound property with allowing quantum queries
on the statement x. The adversary B(crs′, π) for x′ ̸∈ L works as follows:

• Run the adversary A(ctF) and return back the PRF’s secret key skPRF. Extract the
randomness r from ctr. Set the trapdoor td = (skPRF, r).

• Run (pks, sks)← Sig.KGen(1λ) and sample z3, r0
$← {0, 1}λ. Compute ctF ← FskPRF(x)

and ctpk ← fskPRF(pks);

• Compute ct← Epke
(z3, r0);

• Compute NIZK.π ← NIZK.P(NIZK.crs, (x′, ct, ctF, ctpk, pks, pke, ctc, ctr), (r0, z3, td =
(r, skPRF)));

• Compute σ ← Sigsks
(x, ct, ctF, ctpk, NIZK.π);

• Return π := (ct, ctF, ctpk, NIZK.π, pks, σ).

This concludes the proof.
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