
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 4, 25 pages.

https://doi.org/10.62056/ab0ljbkrz
Check for updates

MAYO Key Recovery by Fixing Vinegar Seeds
Sönke Jendral and Elena Dubrova

KTH Royal Institute of Technology, Stockholm, Sweden

Abstract. As the industry prepares for the transition to post-quantum secure
public key cryptographic algorithms, vulnerability analysis of their implementations
is gaining importance. A theoretically secure cryptographic algorithm should also
be able to withstand the challenges of physical attacks in real-world environments.
MAYO is a candidate in the ongoing second round of the NIST post-quantum
standardization process for selecting additional digital signature schemes. This paper
demonstrates three first-order single-execution fault injection attacks on the official
MAYO implementation on the ARM Cortex-M4. By using voltage glitching to disrupt
the computation of the vinegar seed during the signature generation, we enable the
recovery of the secret key directly from the faulty signatures. Our experimental results
show that the success rates of the fault attacks in a single execution are 36%, 82%,
and 99%, respectively. They emphasize the importance of developing countermeasures
against fault attacks prior to the widespread deployment of post-quantum algorithms
like MAYO.
Keywords: Fault injection · MAYO · Multivariate cryptography · Post-quantum
digital signature · Key recovery attack

1 Introduction
The National Institute of Standards and Technology (NIST) recently concluded its compe-
tition for Post-Quantum Cryptographic (PQC) algorithms, resulting in the publication
of standards for key encapsulation mechanism ML-KEM [Nat24b], and digital signature
algorithms ML-DSA [Nat24a] and SLH-DSA [Nat24c]. To strengthen security through
diversification and broaden the range of use cases for PQC signatures, NIST launched
a second competition in 2022. The goal is to identify additional general-purpose PQC
signature algorithms based on different underlying mathematical problems than ML-DSA
and SLH-DSA, offering other key and signature sizes, and providing varied key generation,
signing or verification performance [Nat23]. MAYO is one of the submissions selected
by NIST as a second-round candidate in this competition. It is a multivariate quadratic
digital signature scheme designed to be existentially unforgeable under chosen message
attacks (EUF-CMA) in the random oracle model [Beu22]. EUF-CMA security means that
an adversary with access to the public key and a signing oracle cannot generate a valid
signature for a new message. The security of MAYO relies on the presumed hardness
of the Oil and Vinegar (OV) problem and a variant of the Multivariate Quadratic (MQ)
problem called the multi-target whipped MQ problem.

However, a theoretically secure cryptographic algorithm should also be able to withstand
the challenges of physical attacks in real-world environments. Yet, numerous successful
side-channel and fault attacks on implementations of PQC algorithms demonstrated over
the past few years [PPM17, RRB+19, GJN20] indicate that this is not always the case. It
is important to identify which types of physical attacks are most relevant in real-world

E-mail: jendral@kth.se (Sönke Jendral), dubrova@kth.se (Elena Dubrova)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-10-04 Accepted: 2024-12-03

https://doi.org/10.62056/ab0ljbkrz
https://crossmark.crossref.org/dialog/?doi=10.62056/ab0ljbkrz&domain=pdf&date_stamp=2024-12-26
https://orcid.org/0009-0000-0070-9595
https://orcid.org/0000-0001-7382-9408
mailto:jendral@kth.se
mailto:dubrova@kth.se
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 MAYO Key Recovery by Fixing Vinegar Seeds

scenarios to focus efforts on designing effective and targeted countermeasures prior to the
widespread deployment of PQC algorithms.

The idea behind multivariate signature schemes is to select a multivariate map P
consisting of several multivariate polynomials as the public key and a specific preimage
s with P(s) = t, where t is a (salted) hash of the message, as the signature. As the
secret key, OV-based schemes then use a trapdoor (a vector space O, on which P vanishes,
which is called the oil space), with which it is possible to find s efficiently. Concretely,
finding s is done by first selecting at random a vector v of so-called vinegar values and
then solving for a so-called oil vector o ∈ O such that P(v + o) = t. It is generally
assumed that finding s without knowledge of the trapdoor is difficult [BCD+23], therefore
the scheme is considered secure. Multivariate schemes differ in how P is constructed. In
general, P is chosen as P = S ◦ F ◦ T , where F is called the central map and S and T
are affine invertible maps, though it has been shown that for Unbalanced Oil and Vinegar
(UOV) (and derived schemes, such as MAYO), only the central map F and an affine
invertible map T are required [BPB10]. Newer descriptions of UOV, such as the current
specification [BCD+23], as well as the specification of MAYO [BCC+23], do not consider
the maps F and T explicitly and instead compute P directly. MAYO additionally performs
an optimisation that uses a larger map P∗ that is created by “whipping up” a smaller map
P.

Previous attacks [HTS11, KL19, SK20, AKKM22, AMSU24] on multivariate signature
schemes have shown that fault injections targeting the vinegar values can lead to recovery
of a vector in the oil space and thereby to recovery of the full secret key. However, these
attacks require multiple signatures or are limited to specific memory allocation strategies
that are not always realistic. Furthermore, while it is known that setting the vinegar values
to specific known values using fault injection can lead to key recovery, the techniques to
accomplish this have not been exhaustively explored and depend on the target implemen-
tation. Therefore the applicability of previous attacks, particularly those conducted on
other schemes, is not immediately obvious.

Contributions: In this paper, we present three first-order single-execution fault injec-
tion attacks on the official implementation of MAYO on the ARM Cortex-M4 proces-
sor [BCC+24]. All three attacks reveal the secret vinegar values by fixing the seed from
which they are derived to a known value. The first attack fixes the seed to a constant by
skipping the absorption phase during the computation of the seed, as in the attack on
CRYSTALS-Dilithium in [JMD24]. The second attack aborts a loop during the absorption
phase, thereby allowing the seed to be derived from public information. Both attacks are
not limited to a specific memory allocation strategy and instead rely only on functionality
dictated by the specification. The third attack skips the initialisation of one of the argu-
ments for the computation of the seed, similarly allowing the seed to be derived from public
information. This attack is limited to a less restrictive memory allocation strategy than
previous attacks. We identified settings that consistently skip the necessary instructions
without crashing the device or disrupting other steps of the signature generation.

All three attacks enable the recovery of the full secret key from a single faulty signature
with probabilities of 82%, 36%, and 99%, respectively, using a trivial key recovery method.

We additionally propose a technique for classifying the results of a symbolic execution-
based simulation that is able to identify potential target instructions for fault injection. Our
approach uses loopy belief propagation on a factor graph to estimate per-bit probabilities
of states. It allows us to identify frequently reachable states where the search space for the
sponge contents is small. This approach was successfully used to identify the second attack
in this paper and can also be used to find similar vulnerabilities in other implementations
and algorithms. Finally, we propose countermeasures against the presented attacks.

Sönke Jendral, Elena Dubrova 3

Table 1: Comparison to previous fault attacks on multivariate signature schemes.

Algorithm #Signatures #Faults Evaluationa Limitationsb

Hashimoto et
al. [HTS11] Multiple Multiple Multiple Theoretical None

Krämer and
Loiero [KL19]

UOV/
Rainbow

Multiple Multiple Theoretical None

Shim and
Koo [SK20] UOV 44–103 Multiple Theoretical None

Mus et
al. [MIS20] LUOV Multiple Multiple Practical

Key in F2 (not
applicable to
MAYO)

Aulbach et
al. [AKKM22] Rainbow Multiple 1 Simulation Exact memory

reuse
Furue et
al. [FKNT22] UOV Multiple 2–40 Simulation Enumeration

241–289

Sayari et
al. [SMA+24] MAYO 2 1 Theoretical

Exact memory
reuse

2 1 Deterministic

Aulbach et
al. [AMSU24] MAYO

1 1
Practical

Zero-
initialisation

2 1 Exact memory
reuse

This work MAYO

1 1
Practical,

Simulation

None
1 1 None

1 1 Similar mem-
ory location

aIndicates whether the attack is evaluated theoretically, simulated, or performed in practice.
bIndicates limitations of the attack regarding which algorithm and variant can be attacked, how complex

the key recovery is, and which memory allocation strategy should be used for the attack to succeed.

Organisation of the paper: The rest of this paper is organised as follows. Section
2 describes previous work. Section 3 provides background information on the MAYO
algorithm and voltage fault injection. Section 4 describes the simulation and classification
technique. Section 5 presents the experimental setup. Section 6 describes the fault
attacks. Section 7 introduces the secret key recovery method. Section 8 summarises the
experimental results. Section 9 discusses possible countermeasures against the attacks.
Section 10 concludes the paper.

2 Previous work
This section gives an overview of previous attacks on multivariate signature schemes,
including MAYO, which make use of fault injection or side-channel analysis to recover the
secret key. Table 1 provides a summary.

Hashimoto et al. [HTS11] presented two general fault attacks applicable to a number
of multivariate schemes. Their first attack changes single coefficients in the central map

4 MAYO Key Recovery by Fixing Vinegar Seeds

through a fault. By decrypting random messages under the faulty map and reencrypting
them under the original map, they are able to extract information about a part of the
secret key from the differences. Their second attack targets the random values used in
the signing process. By fixing these values to a constant using a fault, they are able to
combine information from several faulty signatures and thereby reduce the complexity of
the Kipnis-Shamir attack for recovering a part of the secret key. Krämer and Loiero [KL19]
reevaluated these attacks in the context of UOV and Rainbow and found that the first
attack is not applicable to schemes that omit one of the affine maps, such as UOV (and
MAYO). They also propose additional countermeasures for the second attack. Shim and
Koo [SK20] extended the second attack to achieve full key recovery from UOV with between
44 and 103 faulty signatures (depending on the fault model). The attack is not validated
experimentally.

Mus et al. [MIS20] showed a Rowhammer-based bit flipping attack on LUOV. Their
attack works by recovering a number of bits of the secret key by flipping individual bits and
observing the resulting faulty signatures. By combining the partial knowledge of the key
with an algebraic approach, they are able to recover all 11,229 bits of the key from 4116
bits obtained by bit flipping in 3hrs 49min and 49hrs of additional post-processing. They
do not state the number of signing operations that were performed by the target device in
the 3hrs 49min timeframe. As pointed out in [FKNT22], this attack is not applicable to
UOV (or MAYO), as the secret key is not in a finite field of two elements.

Aulbach et al. [AKKM22] presented two practical fault attacks on Rainbow. The first
one uses the same approach as [SK20] of fixing the vinegar values to reuse them across
iterations, but applies a more efficient postprocessing technique. The second attack skips
the linear transformation, thereby allowing it to be recovered through multiple faulty
signatures. By applying the Kipnis-Shamir attack, they are able to recover the full secret
key. They experimentally verify their results using simulation, but do not state the number
of signatures required for the attacks.

Furue et al. [FKNT22] introduced a novel fault attack on UOV. Their attack works
by injecting faults into parts of the secret key. By observing faulty signatures generated
from the changed secret key, they are able to construct a reduced UOV instance, which
can be attacked with lower complexity using either the Kipnis-Shamir attack [KS98] or an
intersection attack [Beu21, Beu22]. They simulate their attack and find that the full secret
key could be recovered with 2 to 40 faults and 241 to 289 enumerations with probabilities
between 30% to 80%

Sayari et al. [SMA+24] addressed two fault injection attacks in their hardware imple-
mentation of MAYO. The first of these concerns the reuse of vinegar values by skipping
their sampling through fault injection. The difference between the original signature and a
faulty signature can potentially be used to reveal a vector in the oil space and thus recover
the secret key. They propose to shuffle the vinegar values after the signing procedure to
prevent reuse. The second attack concerns skipping the addition of the oil values at the
end of the signing procedure through fault injection, thereby revealing a vinegar value. If
the deterministic signing mode is used, this vinegar value can be used to recover an oil
vector and thus the secret key from the difference between the original signature and the
faulty signature. As a countermeasure, they propose to check the validity of the signature,
as the fault injection causes the signature to be invalid.

Recently, Aulbach et al. [AMSU24] presented two variants of a loop-abort fault injection
attack on MAYO similar to the first attack by Sayari et al. [SMA+24]. The idea is again
to abort the loop that is used to sample the vinegar values, thus leaving some of the values
uninitialised. Under the assumption that the vinegar values are initially set to a constant
value or are reused across multiple invocations of the signing procedure, they are able to
recover a vector in the oil space, and thereby the key of the scheme, either directly or from
the difference of two signatures. They experimentally validated the attack using clock

Sönke Jendral, Elena Dubrova 5

Table 2: MAYO parameter sets from [BCC+23].

Parameter set n m o k q salt_len digest_len pk_seed_len f(z)
MAYO1 66 64 8 9 16 24b 32b 16b f64(z)
MAYO2 78 64 18 4 16 24b 32b 16b f64(z)
MAYO3 99 96 10 11 16 32b 48b 16b f96(z)
MAYO5 133 128 12 12 16 40b 64b 16b f128(z)

glitching, but do not report a fault probability. Both attacks require only a single fault
and one respective two signatures.

Aulbach et al. [ACK+23] also presented an attack making use of side-channel analysis.
They exploit leakage during the multiplication of the vinegar values with known constants
and are able to recover all vinegar values using a template-based attack. Using the vinegar
values, they recover both a vector in the oil space and the full oil space O. The latter is
recovered using a combination of the Kipnis-Shamir attack [KS98] and the reconciliation
attack [DYC+08]. They experimentally validate their attack on an STM32F303RCT7
processor and recover the full key from a single trace with a probability greater than 97%.

3 Background
This section describes the MAYO algorithm and the voltage fault injection method used
in our experiments.

3.1 MAYO algorithm
MAYO is a multivariate quadratic digital signature scheme introduced by Beullens [Beu22].
It is based on the Oil and Vinegar (OV) signature scheme originally introduced by
Patarin [Pat97] and is considered secure in the random oracle model based on the assumed
hardness of the OV and multi-target whipped Multivariate Quadratic (MQ) problems. In
OV schemes, the public key is a multivariate map P : Fn

q → Fm
q of m n-variate quadratic

polynomials p1(x), . . . , pm(x) over a finite field Fq. The map features a trapdoor, which
is a secret subspace O on which the map vanishes. Using the trapdoor, it is possible to
efficiently find a preimage s of a hash t such that P(s) = t by selecting a vector v ∈ Fn

q at
random and then solving for a vector o ∈ O with

P(v + o) = P(v)︸ ︷︷ ︸
constant

+P(o)︸ ︷︷ ︸
=0

+ P ′(v, o)︸ ︷︷ ︸
linear in o

= t

where P ′ is the polar form of P, see [BCC+23]. The signature can then be computed
as s = v + o. Without knowledge of the trapdoor, finding a preimage is assumed to be
difficult, which is known as the MQ problem. Distinguishing a map with such a trapdoor
from a fully random map is similarly assumed to be difficult and the corresponding problem
is known as the OV problem. To reduce the size of the public key, MAYO employs an
optimisation that constructs a larger map P∗ from a smaller map P before finding the
preimage. Beullens refers to this process as “whipping up” the map and the resulting
variant of the MQ problem that asks to find the preimage in P∗ is thus known as the
multi-target whipped MQ problem.

An overview of parameters for MAYO is given in Table 2. For further details we
refer to the specification [BCC+23]. We are focusing on MAYO1 in this paper, though
variants MAYO2, MAYO3 and MAYO5 can be approached similarly. A caveat that applies
to MAYO2 is addressed explicitly in Section 7.

6 MAYO Key Recovery by Fixing Vinegar Seeds

Algorithm 1 MAYO.KeyGen() [Beu22]
Output: Public key pk, secret key sk

1: O← F(n−o)×o
q

2: seedsk ← {0, 1}λ

3: seedpk ← SHAKE256(seedsk)
4: for i from 1 to m do
5: P(1)

i ← Expand(seedpk ∥ P1 ∥ i)
6: P(2)

i ← Expand(seedpk ∥ P2 ∥ i)
7: P(3)

i ← ToUpperTriangular(−OP(1)
i OT −OP(2)

i)
8: return (pk, sk) = ((seedpk, {P(3)

i }1≤i≤m), (seedsk, O))

Algorithm 2 MAYO.Sign(sk, M) [Beu22]
Input: Secret key sk, message M
Output: Signature σ

1: (seedsk, O)← sk
2: seedpk ← SHAKE256(seedsk)
3: for i from 1 to m do
4: P(1)

i ← Expand(seedpk ∥ P1 ∥ i)
5: P(2)

i ← Expand(seedpk ∥ P2 ∥ i)
6: R← {0, 1}r ▷ Deterministic variant: R← {0}r

7: salt← SHAKE256(M ∥ R ∥ seedsk)
8: t← SHAKE256(M ∥ salt)
9: for ctr from 0 to 255 do

10: V← SHAKE256(M ∥ salt ∥ seedsk ∥ ctr)
11: v1, . . . , vk ← Decode(V)
12: (A, y)← BuildLinearSystem({v1, . . . , vk}, O, P(1), P(2), t)
13: x ← SampleSolution(A, y) ▷ Try to find Ax = y (i.e. P∗(s) = t)
14: if x ̸=⊥ then break
15: s← {vi + Oxi ∥ xi}1≤i≤k

16: return σ = (s, salt)

The main components of the MAYO scheme are the key generation procedure, the
signing procedure and the verification procedure. We provide simplified versions of these
procedures here. For the full versions, including the definitions of functions not defined
here, we refer to the specification [BCC+23].

3.1.1 Key generation (Algorithm 1)

The key generation samples a random matrix O that forms the oil space. It also samples a
secret random seed seedsk, and a public seed seedpk from which the sequences of m matrices
P(1)

i and P(2)
i of the multivariate quadratic map P are expanded pseudorandomly. This

allows the public key to only contain the seed instead of the matrices, thereby reducing
its size. Finally, the remaining sequence of m matrices P(3)

i is chosen such that the map
P vanishes on the oil space O. The public key consists of the public seed seedpk and the
sequence of matrices P(3). The secret key consists of the secret seed seedsk and the matrix
O.

Sönke Jendral, Elena Dubrova 7

Algorithm 3 MAYO.Verify(pk, M, σ) [Beu22]
Input: Public key pk, message M , signature σ
Output: Boolean

1: (seedpk, P(3))← pk
2: for i from 1 to m do
3: P(1)

i ← Expand(seedpk ∥ P1 ∥ i)
4: P(2)

i ← Expand(seedpk ∥ P2 ∥ i)
5: (s, salt) = σ
6: t← SHAKE256(M ∥ salt)
7: t′ ← EvaluateP(1),P(2),P(3)(s) ▷ P∗(s) = t′

8: return true if t = t′ else false

3.1.2 Signing (Algorithm 2)

The signing procedure extracts the oil space O and the sequences of matrices P(1) and
P(2) from the secret key. It then uses SHAKE256 to compute the salt and from the salt,
the target value t. Using SHAKE256, the vinegar seed V is derived from the message
M , the salt, the secret seed seedsk and a counter value ctr. From there, a system of
linear equations is constructed and solved, corresponding to finding s such that under the
multivariate quadratic map P∗, it holds that P∗(s) = t. For certain choices of vinegar
values, the matrix A that defines the system does not have full rank and thus the system
cannot be solved. If this is the case, the signing process restarts with a different vinegar
seed. Solving the system can be done efficiently, due to the knowledge of the oil space O.
Once a solution is found, the resulting signature consists of a sequence s of oil vectors
masked by vinegar values v1 + Ox1, . . . , vk + Oxk concatenated with the corresponding
arguments x1, . . . , xk, and the salt.

3.1.3 Verification (Algorithm 3)

The verification procedure extracts and derives the sequences of matrices P(1), P(2) and
P(3) from the public key. It also extracts the argument s, as well as the salt from the
signature. It then derives the original target value t and evaluates the multivariate
quadratic map P∗ with the argument s to compute the value t′. If the resulting values t
and t′ match, the signature is valid.

3.2 Voltage fault injection and fault model
Voltage fault injection manipulates the voltage supplied to a processor to induce faults.
Fault injection approaches differ mainly in the required degree of precision for the timing of
the glitch and in the offered degree of control over which parts of the program are affected.
Techniques that require less precise timing, such as [BBPP09, BBBP13], which uniformly
underpower the processor executing the program to slow down logic gates to cause faults,
also offer less control over which instructions are affected and how. Techniques which
require more precise timing, such as [O’F16, BFP19], use precise voltage spikes to cause
faults, and allow affecting only specific instructions.

In this paper, we apply the fault injection technique of O’Flynn [O’F16], which uses
a crowbar circuit to short the power rails of the processor and momentarily drop the
voltage, thereby inducing oscillations in the target circuit which potentially cause faults.
The fault model of this technique is single/multiple instruction skipping (i.e. the processor
is forced to skip the execution of specific attacker-chosen instructions through a precise
fault injection). While this technique can also cause instruction or data corruption, these
are not relevant for the attacks presented in this paper.

8 MAYO Key Recovery by Fixing Vinegar Seeds

3.3 SHAKE256 algorithm
SHAKE256 is an extendable output function (XOF) that is part of the FIPS202 stan-
dard [Nat15]. Extendable output functions generate pseudorandom sequences of output
from a given input. SHAKE256 uses the sponge construction [BDPVA11] and an iterated
one-way permutation function from the Keccak family of permutations.

Fig. 2 shows the main components of the construction. It contains two buffers, which
are zero-initialised, that form the state of the construction. During the absorption phase,
blocks of the input are XORed into the state and the state is updated using the permutation
function. This is repeated until all blocks of input have been absorbed. Then, output is
generated in the squeezing phase by taking part of the state, extracting it as a block of
output, and updating the state using the permutation function. The algorithm terminates
once all output blocks have been generated.

4 Simulation method
A large number of fault simulation techniques have been proposed in the past. As they
are too many to list, we focus on those relevant to this work.

Techniques such as [HSP21, HGA+21, Risnd, MTO24] perform concrete execution using
emulation. These techniques are typically based on QEMU [Bel05] or the related Unicorn
engine [ND15] and differ mainly in how the fault injection is configured and modelled.
Other techniques, such as [LFBP24, Lan22, DHHB08, CDSLN20, PNKI13] instead use
symbolic execution based on a variety of underlying frameworks. The simulation technique
used in this paper closely matches the approach by Lancia [Lan22], which employs the
same underlying framework with similar modifications, but focuses on various bit flip fault
models instead of the instruction skipping fault model.

4.1 Symbolic execution
Symbolic execution is a simulation technique that substitutes computations on concrete
values with computations on symbolic values [Kin76]. This allows for all possible branches
of a program to be explored unconditionally, instead of only those reached under a given
variable assignment. In the context of fault injection, symbolic execution can identify faults
that can only be reached under certain conditions, which may be difficult or impossible
to achieve with concrete execution, especially if data dependencies are only created as a
result of the fault injection.

Our simulation technique uses the angr framework [SWS+16] for performing symbolic
execution. We selected this framework due to its extensibility and compatibility with our
existing Python-based tooling, as well as its support for a large number of architectures
(including multiple ARM architectures, x86, RISC-V, MIPS and even domain-specific
architectures like Tricore). Using the framework, we created a simulation engine that is
able to skip a configurable number of instructions in given parts of the program. In our
case, we consider the first part of the SHAKE256 computation, from the zero-initialisation
of the sponge up until the absorption into the sponge is completed.

4.2 Reachability estimation using loopy belief propagation
As a part of the symbolic execution, the angr framework annotates each state with a list
of constraints that are necessary to reach that state. These constraints are conditional
expressions on concrete or symbolic bitvectors, modelled as an abstract syntax tree. For
example, the constraint <Bool reg_r4_8_32{UNINITIALIZED} <= 0x87> indicates that
the value of the 32-bit register r4 must be less than or equal to 0x87.

Sönke Jendral, Elena Dubrova 9

The idea behind our approach is to use the abstract syntax tree to construct a factor
graph. Consider, for example, the expression <Bool reg_r4_8_32{UNINITIALIZED} &
0x1 == reg_r5_8_32{UNINITIALIZED}>. Its abstract syntax tree will contain the values
r4, 0x8, and 1, as well as the operations “&” and “==”. To translate this into a factor
graph, we first create a node for each bit value (i.e. 32 nodes for the value of r4, 32 nodes
for the value of 0x1 and 32 nodes for the value r5, where all values are expressed using
the same number of bits) and temporary or output values (i.e. 32 nodes for the output of
the “&” operation and 32+1 nodes for the computation of the “==” operation). We then
add a factor to the graph for each bit of the & operation. The first factor is connected to
the first bit of r4, the first bit of 0x1 and the first bit of the output of the operation. The
function realised by the first factor is 1 if the output bit is equal to the bitwise AND of
the input bits (i.e. the probability of a given input assignment is 1 if the output is the
bitwise AND of the inputs). This is repeated for each of the bits.

Then, we add a factor to the graph for each bit of the “==” operation. Here, the first
factor is connected to the first bit of the output of the & operation, the first bit of r5 and
the first of the temporary bits of the “==” operation, as well as the additional temporary
bit, which is used as a placeholder for the previous comparison (which does not exist for the
first comparison, so it is set to 1). The function realised by this factor is 1 if the temporary
output bit matches both of the input bits being equal and the previous comparison being
1 (i.e. the probability of a given assignment of bit values occurring is 1 if the output is 1
only if the current bits are equal and all previous bits were also equal). This is repeated
for each of the bits, with the outputs of the previous comparison becoming the temporary
bits for the previous comparison in the subsequent comparisons. Other operations, like
addition or other comparisons, can similarly be implemented based on their corresponding
bit operations. By applying loopy belief propagation on the factor graph, we are able
to derive approximate marginal probabilities for the values of individual bits and thus
estimate the probability of a constraint being satisfied.

An advantage of this approach is that it allows to represent arbitrary per-bit probabilities
for input values. In our simulations, we assume that uninitialised bits (bits that are not
assigned a specific value during the simulated part of the algorithm) are distributed
uniformly at random, but it would be possible to achieve more accurate predictions by
integrating additional information about the distributions, for example by sampling the
register and memory values from a real device. We did not pursue this approach because,
in our experiments, the target device runs a part of the cryptographic algorithm and no
other tasks. Thus, any values gathered by sampling would be unlikely to be representative
of a real device.

We found that an unmodified version of the loopy belief propagation algorithm performs
poorly due to the presence of short loops caused, for example, by the comparison of
neighbouring bits. This is a known limitation of the loopy belief propagation algorithm
and a number of techniques have been proposed to address it, including [YFW00, KCN21].
For our use case, we found it sufficient to identify short loops and combine together
all of their factors. In cases where conditional expressions contain more terms or more
complex arithmetic operations that cause loops, the quality of the estimate will decrease
substantially and combining loops into a single factor becomes infeasible.

4.3 Results
Within 81 minutes of simulation time, we identified 665 candidate states that successfully
complete the first part of the SHAKE256 computation despite the injection of a fault.
These 665 candidate states correspond to single instruction skips at 122 unique addresses.
Recall that, under symbolic execution, a state is added for each branch in the program flow
if the branch condition cannot be statically resolved (i.e. if the branch condition depends
on a data or register value that is not unconditionally set during the program execution),

10 MAYO Key Recovery by Fixing Vinegar Seeds

thus the number of candidate states is higher than the number of single instruction skips.
Of the 665 candidate states, we identified 75 states where the number of unknown bits in
the sponge after the absorption phase is less than or equal to 32, corresponding to the
injection of single instruction skips at eight unique addresses.

We take into account that the first 32+24 bytes of the input to the SHAKE256 function
are public and are thus allowed to occur in the sponge without affecting the search space,
provided that their positions are known. These identified states are those in which an
attacker could, with reasonable number of enumerations, recover the secret key using the
technique described in Section 7. However, not all of the 75 states are reachable with high
probability.

Using the loopy belief propagation approach, we found that 69 of the 75 states for
which the search space for the sponge contents is small, are unlikely to be reached under
the assumption that uninitialised memory and register values are uniformly and randomly
distributed. Of these 69 unlikely reachable states, 61 are related to skipping the initialisation
of register r4 at the beginning of the program and thus require specific values for the
uninitialised register in order for program execution to finish successfully.

Of the remaining eight unlikely reachable states, one state is related to skipping the
initialisation of register r8, thus shifting the area of memory into which the data is absorbed
into uninitialised memory. This state is wrongly annotated as requiring the register of r8
to be zero, causing us to incorrectly deem it as unlikely reachable. A possible cause for
the wrong annotation is that the default memory model in angr does not handle writes to
memory with symbolic addresses correctly.

The remaining seven unlikely reachable states skip a subtraction operation that sets
the condition flags during the XOR of data into the sponge, thus causing a loop abort
when the previous condition flags are set to certain values. This is only possible if several
specific bits of the first part of the input are zero. Note that, while the first part of the
input to the SHAKE256 function (the message digest) is attacker controlled, setting specific
bits in it to zero would require finding a preimage for such a value under SHAKE256, which
is considered infeasible, so we do not consider the corresponding attack further.

The remaining six states are unconstrained and thus correctly identified as reachable.
Of these, three states are related to skipping the branching to the absorption function
or the initialisation of one of its parameters. The corresponding attack for these three
states is described in Section 6.1. One state is related to skipping the branching to a
subroutine called from the absorption function, instead of skipping the absorption function
itself, with the same result. We did not pursue this attack further, as it requires skipping
a single branching instruction without affecting any of the surrounding instructions, which
is impractical in our experimental setup. Finally, two states are related to skipping a
backwards branch in different iterations of a loop during the absorption, thus causing a
loop abort and leaving the sponge partially initialised with the public part of the input.
This is the same loop that is targeted by the faults that skip setting a condition flag
mentioned earlier. The difference is that the branch here is skipped directly, thus removing
the need for the condition flags to have certain values. The corresponding attack for these
two states is described in Section 6.2.

Overall, we found that the loopy belief propagation technique can provide seemingly
reasonable estimates for the probability of satisfying certain constraints under the assump-
tion that uninitialised values are uniformly and randomly distributed. However, for the
constraints we encountered in our simulation, these estimates are of limited use. Most of
the constraints require registers to contain specific values where, for example, the four
highest bits of a 32-bit register must be 1 and all other bits must be 0. Under the assumed
distribution, the probability for such a value to occur is small (2−32 for the described case),
thus differentiating between states based on their probabilities is not possible. Future work
may consider alternative approaches for establishing statistical models for the distribution

Sönke Jendral, Elena Dubrova 11

Figure 1: ChipWhisperer-Husky, CW313 adapter board and CW308T-STM32F4 board
used in the experiments.

of uninitialised memory and register values, such as the sampling technique mentioned
earlier. Additionally, neither the belief propagation approach itself, nor the combining
approach for graphs that contain loops, scale well, preventing larger, more complex ex-
pressions from being used. Future work may consider applying other known techniques,
such as [YFW00, KCN21], in this context, or reducing the estimation complexity by other
means.

The approach we employed in this paper is to reuse the logic that splits constraints
into individual bit operations and apply it to identify a subset of states have at most 32
unknown bits in the sponge, before applying the loopy belief propagation to only those
states. The idea is to mark a bit as unknown if it is computed from a bit that is itself
unknown. In this way, uninitialised values from input registers propagate to the output
values if they are involved in relevant computations. While such an approach generally
overestimates the number of unknown bits (for example during addition where certain bit
combinations of the output and carry bits cannot occur but the bits are still marked as
unknown, even though the value of one could be inferred from the other), it provides a fast
and sufficiently good classification to identify states which could then be further analysed
using the loopy belief propagation technique (though as mentioned previously, the insights
gained from the latter are limited in our case). There may be other approaches to reduce
the number of states that the loopy belief propagation is applied to or the size of the factor
graph, that could be useful.

5 Experimental Setup
This section describes the equipment used for the experiments, as well as the target
implementation of MAYO.

5.1 Equipment
The equipment used in our experiments is shown in Fig. 1. The target device is a CW308-
STM32F4 board containing an ARM Cortex-M4 STM32F415RGT6 processor running at

12 MAYO Key Recovery by Fixing Vinegar Seeds

0

0

pad ⌊·⌋l

f f f f f f

absorbing squeezing

M Z

Skipped by fault injection

Figure 2: SHAKE256 sponge construction (adapted from [BDPVA11]). The fault injection
skips the absorption step highlighted in blue, thus causing the output Z to be constant
and independent of the input M .

a frequency of 24 MHz. It is mounted on a CW313 adapter board and faults are injected
using a ChipWhisperer-Husky. The fault injection is triggered via ARM CoreSight DWT
watchpoints, thus avoiding any modification of the assembly code otherwise caused by
inserting a trigger. Alternative trigger sources, such as communication with peripheral
devices or similarity of the power consumption to reference waveforms, could be used by
an attacker that does not have control over the target device.

5.2 Target implementation

In our experiments, we use the MAYO implementation by Beullens et al. [BCC+24].
Specifically, we use the most recent commit (fe46236) of the main branch, not the
nibbling-mayo branch. However, the changes introduced by the nibble representation do
not affect any of the components that we consider in this paper, so we expect the attacks
to translate to that version directly.

The implementation is compiled using arm-none-eabi-gcc with the highest optimiza-
tion level -O3 (recommended default).

6 Fault Injection Attacks

This section describes the three fault injection attacks on MAYO.

Sönke Jendral, Elena Dubrova 13

1 size_t keccak_inc_absorb (uint64_t *state , size_t bytes_not_permuted ,
2 uint8_t *m, size_t mlen) {
3 while (mlen + bytes_not_permuted >= 136) {
4 KeccakF1600_StateXORBytes (state , m, bytes_not_permuted);
5 mlen -= 136 - bytes_not_permuted ;
6 m += 136 - bytes_not_permuted ;
7 bytes_not_permuted = 0;
8 KeccakF1600_StatePermute (state);
9 }

10
11 KeccakF1600_StateXORBytes (state , m, bytes_not_permuted , mlen);
12 return bytes_not_permuted + mlen;
13 }

Listing 1: The C code of the keccak_inc_absorb procedure. The function targeted by
absorption skipping attack is highlighted in green.

1 ...
2 mov r1 , r8
3 mov r3 , r4
4 mov r0 , r7
5 bl KeccakF1600_StateXORBytes
6 ldr r2 , [sp , #208]
7 ldr r3 , [sp , #212]
8 ...

Listing 2: An excerpt of the assembly code of the keccak_inc_absorb procedure. The bl
instruction targeted by the absorption skipping attack is highlighted in green.

6.1 Absorption skipping attack on SHAKE256

The first attack, which we call the absorption skipping attack, extends the technique for
skipping the absorption of input data during the calculation of a hash introduced in the
context of CRYSTALS-Dilithium in [JMD24] to MAYO.

The implementation of MAYO by Beullens et al. [BCC+24] considered in this pa-
per and the implementation of CRYSTALS-Dilithium by Abdulrahman et al. [AHKS22]
considered in [JMD24] use the same SHAKE256 implementation from the pqm4 project.
The SHAKE256 implementation internally consists of four functions: keccak_inc_init,
keccak_inc_absorb, keccak_inc_finalize, and keccak_inc_squeeze. The first func-
tion, keccak_inc_init, is called to zero-initialise the sponge. Then, the keccak_inc_absorb
function (see Listing 1) absorbs arbitrary-sized input blockwise into the sponge. This
function may be called multiple times to absorb data from different buffers. Next, the
keccak_inc_finalize function is called once to prepare the sponge for squeezing. Fi-
nally, the keccak_inc_squeeze function, which may be called multiple times, extracts
arbitrary-sized output blockwise by squeezing the sponge. For the computation of the
vinegar seed, these four functions are invoked by calling the shake256 function in lines 15
and 16 of Listing 4.

14 MAYO Key Recovery by Fixing Vinegar Seeds

1 __KeccakF1600_StateXORLanes :
2 __KeccakF1600_StateXORLanes_LoopAligned :
3 ldr r4 , [r1], #4
4 ldr r5 , [r1], #4
5 ldrd r6 , r7 , [r0]
6 toBitInterleaving r4 , r5 , r6 , r7 , r3 , 0
7 strd r6 , r7 , [r0], #8
8 subs r2 , r2 , #1
9 bne __KeccakF1600_StateXORLanes_LoopAligned

10 bx lr

Listing 3: The assembly code of the inner loop in the absorption procedure. The bne
instruction targeted by the absorption abort attack is highlighted in orange.

The idea behind the absorption skipping attack is to prevent the absorption of data
into the sponge through fault injection in order to fix the value of the vinegar seed to a
known constant. If the branch to the KeccakF1600_StateXORBytes function (see line 11
of Listing 1 or the bl instruction in line 5 of Listing 2) is skipped, the sponge does not
absorb any data. The loop in lines 3 to 9 of Listing 1 is never executed in the computation
of the vinegar seed, because the length of the input M ∥ salt ∥ seedsk ∥ ctr is 81 bytes,
which is less than the 136 bytes required to trigger a permutation (i.e. the input does not
fill a full block). Due to the zero-initialisation performed by the keccak_inc_init function
prior to the fault injection, skipping the absorption leaves the sponge in an initialised,
but empty state. Hence squeezing the vinegar seed output from this sponge generates a
constant sequence of bytes known to the attacker.

Fig. 2 shows the sponge construction with the absorbing and squeezing phases, as well
as the two buffers of the sponge whose values are propagated to the squeezing phase by
the fault injection. Note that, unlike in the first attack of Aulbach et al. [AMSU24], the
presented attack is not limited to a specific memory allocation strategy.

6.2 Absorption abort attack on SHAKE256

The idea behind the second attack, which we call the absorption abort attack, is to abort
the loop that performs the actual absorption of data into the sponge. By skipping a
backwards branch (see bne instruction in line 9 of Listing 3), the loop exits early and
the sponge only absorbs the first part of the data. Since the first two arguments to the
SHAKE256 function in the computation of the vinegar seed are the public message digest
and salt, the attacker can predict the contents of the sponge after the absorption and thus
its output.

Note that, for both the absorption skipping and absorption abort attacks to be successful,
the signing should not fail after the fault injection (i.e. there must be a solution to the
system Ax = y). Otherwise the next iteration of the signing loop will overwrite the faulty
seed. However, the failure probability for signing is known to be low (upper bound of
≃ 1.55× 10−11 for MAYO1 and MAYO2, ≃ 9.25× 10−19 for MAYO3 and ≃ 3.61× 10−21

for MAYO5; see Lemma 3 of [Beu22]). Empirically, we observed no instances of failure
during signing of 40,000 random messages. Therefore this is not an issue in practice.

Sönke Jendral, Elena Dubrova 15

6.3 Argument initialisation skipping attack on SHAKE256 via memcpy

1 shake256 (tmp , digest_bytes , m, mlen); // M_digest
2 randombytes (tmp + digest_bytes , salt_bytes) // R
3
4 // Store M_digest ∥ R ∥ seed_sk contiguously in tmp
5 memcpy (tmp + digest_bytes + salt_bytes , seed_sk , sk_seed_bytes);
6 shake256 (salt , salt_bytes , tmp ,
7 digest_bytes + salt_bytes + sk_seed_bytes); // salt
8
9 // Reuse tmp to store M_digest ∥ salt contiguously

10 memcpy (tmp + digest_bytes , salt , salt_bytes);
11
12 ...
13 *(tmp + digest_bytes + salt_bytes + sk_seed_bytes) = ctr;
14 // Sample seed for vinegar values
15 shake256 (V, k * v_bytes + r_bytes , tmp ,
16 digest_bytes + salt_bytes + sk_seed_bytes + 1);

Listing 4: The C code for the computation of the salt, t and vinegar values. The
computation of the vinegar seed is highlighted in purple. The function targeted by the
argument initialisation skipping attack is highlighted in red.

1 ...
2 mov r1 , r9
3 movs r2 , #24
4 sub.w r0 , r7 , #452
5 bl memcpy
6 movs r3 , #80
7 movs r1 , #24
8 ...

Listing 5: An excerpt of the assembly code for the copying of the secret seed seedsk into
the buffer tmp. The bl instruction targeted by the argument initialisation skipping attack
is highlighted in red.

The third attack, which we call the argument initialisation skipping attack, targets a
single memcpy operation prior to the computation of the salt.

The SHAKE256 implementation used by Beullens et al. [BCC+24] requires all arguments
of the shake256 function to be stored contiguously in a single buffer. In practice, a buffer
tmp is reused across multiple invocations of the shake256 function. More specifically, the
computation of the salt with the arguments M ∥ R ∥ seedsk is realised by first outputting
the message digest into the buffer tmp (see line 1 of Listing 4), then copying a random value
R into the buffer (line 2) and finally copying the secret seed seedsk into the buffer (line
5). The computation of the vinegar seed reuses tmp by overwriting the value R with the
computed salt (line 10) and appending the value ctr (line 13) before calling the shake256
function again. By skipping the copying of seedsk in line 5 (i.e. skipping the branching
instruction bl in line 5 of Listing 5), the corresponding section of tmp is left uninitialised.

At the end of the signing procedure, the implementation by Beullens et al. [BCC+24]
zeroes most of the memory as a security measure. Thus, when the same section of memory
is reused during the next invocation of the signing procedure, the uninitialised parts of
tmp are set to zero despite not being initialised. As a consequence, all arguments of the
shake256 function during the computation of the vinegar seed can be predicted by an
attacker. More specifically, the message digest can be derived from the message, the salt

16 MAYO Key Recovery by Fixing Vinegar Seeds

Algorithm 4 RecoverSecretKey(σ, V)
1: (senc, salt)← σ
2: s← Decode(senc)
3: for i from 1 to k do
4: vi ← Decode(n− o, V[(i− 1) ∗ v_bytes : i ∗ v_bytes])
5: (vi + Oxi, xi)← s[(i− 1) ∗ n : i ∗ n]
6: yi ← zi − vi

7: A←
(
v1 + Ox1 − v1 · · · vk + Oxk − vk

)
8: X←

(
x1 · · · xk

)
9: Solve XB = Io as in Equation 1. If no solution exists, return ⊥.

10: O← AB
11: return O

can be extracted from the signature, the secret seed seedsk is zero by assumption and the
value of the ctr could either be enumerated over all possible 256 values, or assumed to be
zero, as the same justification regarding the failure probability of the signing from the first
attack applies here. This allows the attacker to predict the vinegar seed.

Note that, unlike in the second attack method of Aulbach et al. [AMSU24], it is not
necessary that tmp is allocated in the same section of memory. Instead, even shifts of
several hundred bytes could cause tmp to be placed in zeroed memory.

7 Secret key recovery
All three attacks presented in Section 6 enable the attacker to predict the seed used for
the sampling of the vinegar values. This section presents a novel approach for recovering
the full oil space Ō from a faulty signature generated with a known vinegar seed. Note
that in MAYO (and newer descriptions of UOV [BCD+23]) the full oil space is defined

as Ō =
[
O
Io

]
, which does not significantly affect the security of the scheme [Beu22], but

slightly increases the complexity of the recovery.
Previous work has shown that it is possible to recover the entire oil space from a small

number of vectors. The reconciliation attack [DYC+08] provides a way to find additional
vectors in the oil space given an initial vector. Aulbach et al. [ACK+23] use a combination
of the reconciliation attack and the Kipnis-Shamir attack [KS98] to recover the full oil
space from a single vector. Beullens’ intersection attack [Beu21, Beu22] also combines ideas
from the reconciliation attack and the Kipnis-Shamir attack to identify initial vectors for
the reconciliation attack. Recently, Pébereau [Péb24] presented efficient polynomial-time
algorithms for recovering the secret key from UOV schemes (including MAYO).

These techniques could also be applied to recover the secret key from the faulty
signatures in the attacks presented in this paper. However, knowledge of the vinegar
seed alongside the structure of the MAYO signature allows for an alternative approach
of performing secret key recovery. We stress that this approach is not a replacement for
existing techniques: It requires knowledge of all vinegar values and occasionally fails to
recover the secret key. We present this approach mainly for completeness.

A MAYO signature contains the masked oil vectors v1 +Ox1, . . . , vk +Oxk concatenated
with the vectors x1, . . . , xk. The attacker recovers v1, . . . , vk.

If the set {x1, . . . , xk} contains a subset S of o-many linearly independent vectors, then
the set {(

Ox′

x′

)
| x′ ∈ S

}
already defines an (equivalent) basis for the full oil space that can be used for signature

Sönke Jendral, Elena Dubrova 17

forgery. However, in the following, we show how to compute the original full oil space
without explicitly determining the subset S. Although the benefits of knowledge of the
original basis of the oil space compared to knowledge of an equivalent basis are not
immediately clear, it is possible that future attacks could leverage this information.

Let
A :=

[
v1 + Ox1 − v1 · · · vk + Oxk − vk

]
∈ Fn×k

q

be a matrix of oil vectors computed using knowledge of the vinegar values and

X :=
[
x1 · · · xk

]
∈ Fo×k

q .

Any right inverse of X, which are the solutions B ∈ Fk×o
q of the linear system

XB = Io (1)

where Io is the o× o identity matrix, yields the original oil space O as

O = AB

from which we can derive the original full oil space Ō as

Ō =
[
O
Io

]
.

In order for the system in Eq. 1 to be solvable, the o× k matrix X must have (row)
rank o, which is equivalent to the set {x1, . . . , xk} containing a subset of o-many linearly
independent vectors. In parameter set MAYO2, where k < o, such a subset cannot exist
and the method thus cannot be used. In the other parameter sets, it is possible for the
vectors x1, . . . , xk to be linearly dependent such that X does not have rank o. In these
cases, the method fails and key recovery must instead be performed using one of the
previously mentioned techniques [ACK+23, Péb24].

The techniques [DYC+08, ACK+23, Beu21, Beu22, Péb24] are also capable of recov-
ering the original basis O. Compared with, e.g. the reconciliation attack [DYC+08], the
theoretical benefit of the approach described above is that the secret key recovery only
requires solving a single system of o× o equations with k × o variables for full secret key
recovery, instead of solving a system of m equations with m variables for each of the
o− 1 additional vectors that need to be recovered. In practice, however, the performance
difference may be quite small. Additionally, the presented approach occasionally fails to
recover the key, in which case a different technique must be used. Nonetheless, it may be
beneficial in cases where all vinegar values are known.

8 Experimental Results
This section describes the results of the fault injection attacks and subsequent secret key
recovery.

8.1 Fault injection success probability
We succeeded with skipping the execution of the KeccakF1600_StateXORBytes function
in 81.9% of 1,000 attempts and aborting the loop during the absorption in 36.4% of 1,000
attempts. We further succeeded with skipping the execution of the memcpy function in
100% of 1,000 attempts.

The success probability of the absorption abort attack is substantially lower than the
other two because the device crashes whenever the instruction following the skipped one

18 MAYO Key Recovery by Fixing Vinegar Seeds

is affected by the fault. Hence, the injected fault has to be very precise, which we found
difficult to achieve in our experimental setup. The success probability of the first attack
is higher than that presented in [JMD24] because we tweaked the offset parameter that
controls the position of the rising edge of the glitch within the clock cycle (we use an offset
of 600 units instead of 700 units). In practice, the success probabilities of fault attacks
are not always consistent, so the probabilities reported here should be interpreted as a
best-case scenario for an attacker.

8.2 Secret key recovery
We applied Algorithm 4 to the faulty signatures generated in the first phase of the attack.

As a guess for the vinegar seed in the absorption skipping attack, we use the output of
SHAKE256 when invoked with the argument {0}648, i.e. an all-zero input of 81 bytes, which
is equivalent to the output generated after skipping the absorption phase. In SHAKE256,
the length of the input is absorbed into the sponge after the absorption phase. As this
step is not affected by the fault attack, the length must be the same as that of the original
input to generate the correct output.

As a guess for the vinegar seed in the absorption abort attack, we use the output of
SHAKE256 when invoked with the argument M [0 : 128] ∥ {0}520, i.e. we take only the first
128 bits of the message digest and extend with zeros to achieve the same length input.

As a guess for the vinegar seed in the argument initialisation skipping attack, we use
the output of SHAKE256 when invoked with the arguments M ∥ salt ∥ 0|seedsk| ∥ 0, i.e. we
substitute the secret seed seedsk and the ctr with 0. All of these guesses can easily be
made by an attacker, because they are either constants or use public information contained
in the faulty signatures.

Algorithm 4 successfully recovered the secret key from 818 out of 819 faulty signatures
(99.88%) for the absorption skipping attack, 361 out of 364 faulty signatures (99.18%)
for the absorption abort attack, and 993 out of 1,000 faulty signatures (99.30%) for the
argument initialisation skipping attack. The remaining secret keys can be recovered using
the techniques [ACK+23, Péb24].

9 Countermeasures
This section discusses possible countermeasures against the presented fault attacks.

9.1 Absorption skipping and absorption abort attacks on SHAKE256
The absorption skipping and absorption abort attacks targeting the SHAKE256 procedure
can be mitigated by eliminating the branches that are targeted by the fault injection. For
the absorption skipping attack, it is sufficient to inline the KeccakF1600_StateXORBytes
subroutine into the keccak_inc_absorb function, as mentioned in [JMD24]. For the
absorption abort attack, this would involve unrolling the loop during the absorption, which
is possible because the input to the function during the computation of the vinegar seed
has fixed length. However, due to the resulting increase in code size and the need for a
separate implementation that is able to handle dynamic length input in other parts of the
algorithm, this countermeasure may be impractical.

A different approach is to increase the probability of the signing loop being repeated.
The attacks fail if the faulty seed is overwritten in a second iteration of the signing loop.
However, the failure probability of the signing (and thus the probability of executing the
signing loop more than once) is very low with the current parameter sets. It may be
possible to select parameters that deliberately increase the probability of signing failure to
make it more difficult for an attacker to identify the correct iteration of the signing loop for

Sönke Jendral, Elena Dubrova 19

fault injection. Assuming an attacker is only able to inject a fault into a limited number
of iterations, this lowers the success probability at the cost of an increased runtime of the
signing procedure. It is worth pointing out that the tentative round 2 parameter sets for
MAYO recently proposed in [Beu24] increase the probability of the signing loop being
repeated. However, the new repeat probabilities (≤ 2−12) are still too low to effectively
prevent the attacks presented in this paper.

In [JMD24] it is also suggested that implementations verify that the sponge is not
empty after absorbing data, thereby protecting against the absorption skipping attack.
However, the absorption abort attack can bypass this countermeasure by allowing a small
amount of data to be absorbed. It may thus be better to compare the data in the sponge
to the input data. Implementing such a check correctly may be nontrivial, especially when
absorbing later blocks of input into a non-empty sponge, as is the case for larger inputs.

To protect against the absorption abort attack, which leaves the sponge only partially
initialised, it is possible to reorder the arguments to the SHAKE256 function to make the
first part of the input unknown to the attacker. In our attack, the absorption is aborted
after filling the sponge with the first 128 input bits. Thus, without knowing the input
bytes, an attacker cannot enumerate the contents of the sponge. However, our attack
targets the second iteration of the absorption loop, which absorbs 64 bits in each iteration.
By instead targeting the first iteration, an attacker may be able to reduce the number
of bits in the sponge. Additionally, other implementations may process fewer bits per
iteration, thereby also reducing the search space for an attacker.

9.2 Argument initialisation skipping attack on SHAKE256 via memcpy

To protect against the argument initialisation attack, it is possible to use the incremental
variant of the SHAKE256 function already found in the implementation [BCC+24], which
splits the hash computation into several functions. This allows the shake256_inc_absorb
function to be used, which can be called multiple times with different buffers, eliminating
the need to copy the secret seed seedsk to a common buffer. Alternatively, instead of
zeroing buffers with sensitive information at the end of the signing, overwriting these
buffers with random data would also prevent the attack.

9.3 Other countermeasures
For the sake of completeness, we also mention that selecting parameter sets with o > k
prevents the key recovery method presented in Section 7 from being used. However,
this is not an effective countermeasure in general, because key recovery techniques, such
as [ACK+23, Péb24], are not affected by setting o > k. As mentioned previously, those
techniques can also be used for key recovery for the fault attacks in this paper.

Finally, we experimented with inserting random delays into the execution of the
algorithm to make it more difficult for an attacker to identify the right time for the
fault injection. The random delays were implemented as a buffer of NOPs into which the
actual instructions were inserted at runtime with randomly chosen distances between them.
However, we found that it is possible to reliably identify certain instructions based on
reference power consumption waveforms during the execution of the algorithm, thereby
breaking the countermeasure.

Additionally, the generation of a sequence of instructions with randomly inserted delays
has a significant runtime overhead both for the randomisation, as well as the subsequent
patching of relative branches to ensure the algorithm is executed correctly. There is
also a significant memory and execution cost associated with this technique, especially if
delays are chosen to be large enough to protect against attackers that can fault multiple
instructions. Overall, the random delay insertion does not seem viable to protect against
the attacks presented in this paper.

20 MAYO Key Recovery by Fixing Vinegar Seeds

10 Conclusion
We presented three practical first-order single-execution fault injection attacks on an
implementation of MAYO that can recover the full secret key of the scheme. Unlike
previous work, two of our attacks are not limited by the memory allocation strategy of the
device. The third requires a less restrictive memory allocation than previous attacks.

We introduced an alternative key recovery method that is simpler than previous
techniques and can be used in cases where the vinegar seed is known. We also proposed a
simulation technique that combines symbolic execution with loopy belief propagation on a
factor graph to identify faults that allow an attacker to predict the vinegar seed.

Our work demonstrates that it is possible to recover the secret key of MAYO in a
single attempt with a high probability, up to 99%. This highlights the importance of
protecting the computations of seed values. Previous fault attacks on MAYO have focused
on attacking the vinegar values derived from the seed instead of the seed itself.

Future work includes developing stronger countermeasures against fault attacks on
implementations of PQC algorithms.

11 Acknowledgement
This work was partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation and by
the Swedish Civil Contingencies Agency (Grant No. 2020-11632).

References
[ACK+23] Thomas Aulbach, Fabio Campos, Juliane Krämer, Simona Samardjiska, and

Marc Stöttinger. Separating oil and vinegar with a single trace side-channel
assisted Kipnis-Shamir attack on UOV. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2023(3):221–245, 2023. doi:10.46586/TCHES.V2023.I3.221-245.

[AHKS22] Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and Amber
Sprenkels. Faster Kyber and Dilithium on the Cortex-M4. In Giuseppe
Ateniese and Daniele Venturi, editors, Applied Cryptography and Network
Security - 20th International Conference, ACNS 2022, Rome, Italy, June
20-23, 2022, Proceedings, volume 13269 of Lecture Notes in Computer Science,
pages 853–871. Springer, 2022. doi:10.1007/978-3-031-09234-3_42.

[AKKM22] Thomas Aulbach, Tobias Kovats, Juliane Krämer, and Soundes Marzougui.
Recovering Rainbow’s secret key with a first-order fault attack. In Lejla
Batina and Joan Daemen, editors, Progress in Cryptology - AFRICACRYPT
2022, pages 348–368, Cham, 2022. Springer Nature Switzerland. doi:10.100
7/978-3-031-17433-9_15.

[AMSU24] Thomas Aulbach, Soundes Marzougui, Jean-Pierre Seifert, and Vin-
cent Quentin Ulitzsch. MAYo or MAY-not: Exploring implementation secu-
rity of the post-quantum signature scheme MAYO against physical attacks.
In Workshop on Fault Detection and Tolerance in Cryptography, FDTC
2024, Halifax, NS, Canada, September 4, 2024, pages 28–33. IEEE, 2024.
doi:10.1109/FDTC64268.2024.00012.

[BBBP13] Alessandro Barenghi, Guido Marco Bertoni, Luca Breveglieri, and Gerardo
Pelosi. A fault induction technique based on voltage underfeeding with
application to attacks against AES and RSA. J. Syst. Softw., 86(7):1864–
1878, 2013. doi:10.1016/J.JSS.2013.02.021.

https://doi.org/10.46586/TCHES.V2023.I3.221-245
https://doi.org/10.1007/978-3-031-09234-3_42
https://doi.org/10.1007/978-3-031-17433-9_15
https://doi.org/10.1007/978-3-031-17433-9_15
https://doi.org/10.1109/FDTC64268.2024.00012
https://doi.org/10.1016/J.JSS.2013.02.021

Sönke Jendral, Elena Dubrova 21

[BBPP09] Alessandro Barenghi, Guido Bertoni, Emanuele Parrinello, and Gerardo Pelosi.
Low voltage fault attacks on the RSA cryptosystem. In Luca Breveglieri,
Israel Koren, David Naccache, Elisabeth Oswald, and Jean-Pierre Seifert,
editors, Sixth International Workshop on Fault Diagnosis and Tolerance in
Cryptography, FDTC 2009, Lausanne, Switzerland, 6 September 2009, pages
23–31. IEEE Computer Society, 2009. doi:10.1109/FDTC.2009.30.

[BCC+23] Ward Beullens, Fabio Campos, Sofía Celi, Basil Hess, and Matthias J. Kan-
nwischer. MAYO, June 2023. URL: https://csrc.nist.gov/csrc/media
/Projects/pqc-dig-sig/documents/round-1/spec-files/mayo-spec-w
eb.pdf.

[BCC+24] Ward Beullens, Fabio Campos, Sofía Celi, Basil Hess, and Matthias J.
Kannwischer. Nibbling MAYO: optimized implementations for AVX2 and
Cortex-M4. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2024(2):252–275,
2024. URL: https://doi.org/10.46586/tches.v2024.i2.252-275,
doi:10.46586/TCHES.V2024.I2.252-275.

[BCD+23] Ward Beullens, Ming-Shing Chen, Jintai Ding, Boru Gong, Matthias J.
Kannwischer, Jacques Patarin, Bo-Yuan Peng, Dieter Schmidt, Cheng-Jhih
Shih, Chengdong Tao, and Bo-Yin Yang. UOV: Unbalanced oil and vinegar,
May 2023. URL: https://csrc.nist.gov/csrc/media/Projects/pqc-dig
-sig/documents/round-1/spec-files/UOV-spec-web.pdf.

[BDPVA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Cryp-
tographic sponge functions, 2011. URL: https://keccak.team/files/CS
F-0.1.pdf.

[Bel05] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In Proceedings
of the FREENIX Track: 2005 USENIX Annual Technical Conference, April
10-15, 2005, Anaheim, CA, USA, pages 41–46. USENIX, 2005. URL: http:
//www.usenix.org/events/usenix05/tech/freenix/bellard.html.

[Beu21] Ward Beullens. Improved cryptanalysis of UOV and Rainbow. In Anne
Canteaut and François-Xavier Standaert, editors, Advances in Cryptology -
EUROCRYPT 2021 - 40th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21,
2021, Proceedings, Part I, volume 12696 of Lecture Notes in Computer Science,
pages 348–373. Springer, 2021. doi:10.1007/978-3-030-77870-5_13.

[Beu22] Ward Beullens. MAYO: Practical post-quantum signatures from oil-and-
vinegar maps. In Riham AlTawy and Andreas Hülsing, editors, Selected
Areas in Cryptography, pages 355–376, Cham, 2022. Springer International
Publishing. doi:10.1007/978-3-030-99277-4_17.

[Beu24] Ward Beullens. MAYO: Overview + Updates. NIST PQC Seminar, September
2024. URL: https://csrc.nist.gov/csrc/media/Projects/post-quant
um-cryptography/documents/pqc-seminars/presentations/20-mayo-0
9242024.pdf.

[BFP19] Claudio Bozzato, Riccardo Focardi, and Francesco Palmarini. Shaping the
glitch: Optimizing voltage fault injection attacks. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2019(2):199–224, 2019. doi:10.13154/tches.v2019.i
2.199-224.

https://doi.org/10.1109/FDTC.2009.30
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/mayo-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/mayo-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/mayo-spec-web.pdf
https://doi.org/10.46586/tches.v2024.i2.252-275
https://doi.org/10.46586/TCHES.V2024.I2.252-275
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/UOV-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/UOV-spec-web.pdf
https://keccak.team/files/CSF-0.1.pdf
https://keccak.team/files/CSF-0.1.pdf
http://www.usenix.org/events/usenix05/tech/freenix/bellard.html
http://www.usenix.org/events/usenix05/tech/freenix/bellard.html
https://doi.org/10.1007/978-3-030-77870-5_13
https://doi.org/10.1007/978-3-030-99277-4_17
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/pqc-seminars/presentations/20-mayo-09242024.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/pqc-seminars/presentations/20-mayo-09242024.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/pqc-seminars/presentations/20-mayo-09242024.pdf
https://doi.org/10.13154/tches.v2019.i2.199-224
https://doi.org/10.13154/tches.v2019.i2.199-224

22 MAYO Key Recovery by Fixing Vinegar Seeds

[BPB10] Stanislav Bulygin, Albrecht Petzoldt, and Johannes Buchmann. Towards
provable security of the Unbalanced Oil and Vinegar signature scheme under
direct attacks. In Guang Gong and Kishan Chand Gupta, editors, Progress in
Cryptology - INDOCRYPT 2010 - 11th International Conference on Cryptology
in India, Hyderabad, India, December 12-15, 2010. Proceedings, volume 6498
of Lecture Notes in Computer Science, pages 17–32. Springer, 2010. doi:
10.1007/978-3-642-17401-8_3.

[CDSLN20] Domenico Cotroneo, Luigi De Simone, Pietro Liguori, and Roberto Natella.
ProFIPy: Programmable software fault injection as-a-service. In 2020 50th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pages 364–372, 2020. doi:10.1109/DSN48063.2020.00052.

[DHHB08] Ashish Darbari, Bashir Al Hashimi, Peter Harrod, and Daryl Bradley. A
new approach for transient fault injection using symbolic simulation. In 2008
14th IEEE International On-Line Testing Symposium, pages 93–98, 2008.
doi:10.1109/IOLTS.2008.59.

[DYC+08] Jintai Ding, Bo-Yin Yang, Chia-Hsin Owen Chen, Ming-Shing Chen, and
Chen-Mou Cheng. New differential-algebraic attacks and reparametrization
of Rainbow. In Steven M. Bellovin, Rosario Gennaro, Angelos D. Keromytis,
and Moti Yung, editors, Applied Cryptography and Network Security, 6th
International Conference, ACNS 2008, New York, NY, USA, June 3-6, 2008.
Proceedings, volume 5037 of Lecture Notes in Computer Science, pages 242–
257, 2008. doi:10.1007/978-3-540-68914-0_15.

[FKNT22] Hiroki Furue, Yutaro Kiyomura, Tatsuya Nagasawa, and Tsuyoshi Takagi. A
new fault attack on UOV multivariate signature scheme. In Jung Hee Cheon
and Thomas Johansson, editors, Post-Quantum Cryptography, pages 124–143,
Cham, 2022. Springer International Publishing. doi:10.1007/978-3-031-1
7234-2_7.

[GJN20] Qian Guo, Thomas Johansson, and Alexander Nilsson. A key-recovery tim-
ing attack on post-quantum primitives using the Fujisaki-Okamoto trans-
formation and its application on FrodoKEM. In Daniele Micciancio and
Thomas Ristenpart, editors, Advances in Cryptology - CRYPTO 2020 -
40th Annual International Cryptology Conference, CRYPTO 2020, Santa
Barbara, CA, USA, August 17-21, 2020, Proceedings, Part II, volume
12171 of Lecture Notes in Computer Science, pages 359–386. Springer, 2020.
doi:10.1007/978-3-030-56880-1_13.

[HGA+21] Florian Hauschild, Kathrin Garb, Lukas Auer, Bodo Selmke, and Johannes
Obermaier. ARCHIE: A QEMU-based framework for architecture-independent
evaluation of faults. In 18th Workshop on Fault Detection and Tolerance in
Cryptography, FDTC 2021, Milan, Italy, September 17, 2021, pages 20–30.
IEEE, 2021. doi:10.1109/FDTC53659.2021.00013.

[HSP21] Max Hoffmann, Falk Schellenberg, and Christof Paar. ARMORY: fully
automated and exhaustive fault simulation on ARM-M binaries. IEEE Trans.
Inf. Forensics Secur., 16:1058–1073, 2021. doi:10.1109/TIFS.2020.302714
3.

[HTS11] Yasufumi Hashimoto, Tsuyoshi Takagi, and Kouichi Sakurai. General fault
attacks on multivariate public key cryptosystems. In Bo-Yin Yang, editor,
Post-Quantum Cryptography, pages 1–18, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg. doi:10.1007/978-3-642-25405-5_1.

https://doi.org/10.1007/978-3-642-17401-8_3
https://doi.org/10.1007/978-3-642-17401-8_3
https://doi.org/10.1109/DSN48063.2020.00052
https://doi.org/10.1109/IOLTS.2008.59
https://doi.org/10.1007/978-3-540-68914-0_15
https://doi.org/10.1007/978-3-031-17234-2_7
https://doi.org/10.1007/978-3-031-17234-2_7
https://doi.org/10.1007/978-3-030-56880-1_13
https://doi.org/10.1109/FDTC53659.2021.00013
https://doi.org/10.1109/TIFS.2020.3027143
https://doi.org/10.1109/TIFS.2020.3027143
https://doi.org/10.1007/978-3-642-25405-5_1

Sönke Jendral, Elena Dubrova 23

[JMD24] Sönke Jendral, John Preuß Mattsson, and Elena Dubrova. A single-trace
fault injection attack on hedged module lattice digital signature algorithm
(ML-DSA). In Workshop on Fault Detection and Tolerance in Cryptography,
FDTC 2024, Halifax, NS, Canada, September 4, 2024, pages 34–43. IEEE,
2024. doi:10.1109/FDTC64268.2024.00013.

[KCN21] Alec Kirkley, George T. Cantwell, and M. E. J. Newman. Belief propagation
for networks with loops. Science Advances, 7(17):eabf1211, 2021. doi:
10.1126/sciadv.abf1211.

[Kin76] James C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, July 1976. doi:10.1145/360248.360252.

[KL19] Juliane Krämer and Mirjam Loiero. Fault attacks on UOV and Rainbow. In Ilia
Polian and Marc Stöttinger, editors, Constructive Side-Channel Analysis and
Secure Design, pages 193–214, Cham, 2019. Springer International Publishing.
doi:10.1007/978-3-030-16350-1_11.

[KS98] Aviad Kipnis and Adi Shamir. Cryptanalysis of the oil & vinegar signature
scheme. In Hugo Krawczyk, editor, Advances in Cryptology - CRYPTO ’98,
18th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 23-27, 1998, Proceedings, volume 1462 of Lecture Notes in
Computer Science, pages 257–266. Springer, 1998. doi:10.1007/BFB0055733.

[Lan22] Julien Lancia. Detecting fault injection vulnerabilities in binaries with
symbolic execution. In 2022 14th International Conference on Electron-
ics, Computers and Artificial Intelligence (ECAI), pages 1–8, 2022. doi:
10.1109/ECAI54874.2022.9847500.

[LFBP24] Guilhem Lacombe, David Feliot, Etienne Boespflug, and Marie-Laure Potet.
Combining static analysis and dynamic symbolic execution in a toolchain to
detect fault injection vulnerabilities. Journal of Cryptographic Engineering,
14(1):147–164, April 2024. doi:10.1007/s13389-023-00310-8.

[MIS20] Koksal Mus, Saad Islam, and Berk Sunar. Quantumhammer: A practical
hybrid attack on the LUOV signature scheme. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, CCS
’20, page 1071–1084, New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3372297.3417272.

[MTO24] Kit Murdock, Martin Thompson, and David F. Oswald. FaultFinder:
Lightning-fast, multi-architectural fault injection simulation. In Chip-Hong
Chang, Ulrich Rührmair, Jakub Szefer, Lejla Batina, and Francesco Regaz-
zoni, editors, Proceedings of the 2024 Workshop on Attacks and Solutions in
Hardware Security, ASHES 2024, Salt Lake City, UT, USA, October 14-18,
2024, pages 78–88. ACM, 2024. doi:10.1145/3689939.3695788.

[Nat15] National Institute of Standards and Technology. SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions. Technical Report
NIST FIPS 202, National Institute of Standards and Technology, Gaithersburg,
MD, August 2015. doi:10.6028/NIST.FIPS.202.

[Nat23] National Institute of Standards and Technology. NIST announces additional
digital signature candidates for the PQC standardization process, June 2023.
URL: https://csrc.nist.gov/News/2023/additional-pqc-digital-s
ignature-candidates.

https://doi.org/10.1109/FDTC64268.2024.00013
https://doi.org/10.1126/sciadv.abf1211
https://doi.org/10.1126/sciadv.abf1211
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/978-3-030-16350-1_11
https://doi.org/10.1007/BFB0055733
https://doi.org/10.1109/ECAI54874.2022.9847500
https://doi.org/10.1109/ECAI54874.2022.9847500
https://doi.org/10.1007/s13389-023-00310-8
https://doi.org/10.1145/3372297.3417272
https://doi.org/10.1145/3689939.3695788
https://doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/News/2023/additional-pqc-digital-signature-candidates
https://csrc.nist.gov/News/2023/additional-pqc-digital-signature-candidates

24 MAYO Key Recovery by Fixing Vinegar Seeds

[Nat24a] National Institute of Standards and Technology. Module-Lattice-Based Digital
Signature Standard. Technical Report NIST FIPS 204, National Institute of
Standards and Technology, Gaithersburg, MD, August 2024. doi:10.6028/
NIST.FIPS.204.

[Nat24b] National Institute of Standards and Technology. Module-Lattice-Based Key
Encapsulation Mechanism Standard. Technical Report NIST FIPS 203,
National Institute of Standards and Technology, Gaithersburg, MD, August
2024. doi:10.6028/NIST.FIPS.203.

[Nat24c] National Institute of Standards and Technology. Stateless Hash-Based Digital
Signature Standard. Technical Report NIST FIPS 205, National Institute of
Standards and Technology, Gaithersburg, MD, August 2024. doi:10.6028/
NIST.FIPS.205.

[ND15] Anh Quynh Nguyen and Hoang Vu Dang. Unicorn: Next generation CPU
emulator framework. BlackHat USA, 476, 2015. URL: https://www.unicor
n-engine.org/.

[O’F16] Colin O’Flynn. Fault injection using crowbars on embedded systems. IACR
Cryptol. ePrint Arch., page 810, 2016. URL: http://eprint.iacr.org/20
16/810.

[Pat97] Jacques Patarin. The oil and vinegar signature scheme. In Presented at the
Dagstuhl Workshop on Cryptography September 1997, 1997.

[Péb24] Pierre Pébereau. One vector to rule them all: Key recovery from one vector in
UOV schemes. In Markku-Juhani O. Saarinen and Daniel Smith-Tone, editors,
Post-Quantum Cryptography - 15th International Workshop, PQCrypto 2024,
Oxford, UK, June 12-14, 2024, Proceedings, Part II, volume 14772 of Lecture
Notes in Computer Science, pages 92–108. Springer, 2024. doi:10.1007/97
8-3-031-62746-0_5.

[PNKI13] Karthik Pattabiraman, Nithin M. Nakka, Zbigniew T. Kalbarczyk, and
Ravishankar K. Iyer. SymPLFIED: Symbolic program-level fault injection
and error detection framework. IEEE Transactions on Computers, 62(11):2292–
2307, 2013. doi:10.1109/TC.2012.219.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel
attacks on masked lattice-based encryption. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017,
Proceedings, volume 10529 of Lecture Notes in Computer Science, pages
513–533. Springer, 2017. doi:10.1007/978-3-319-66787-4_25.

[Risnd] Riscure. Riscure FiSim. https://github.com/Keysight/FiSim, n.d.

[RRB+19] Prasanna Ravi, Debapriya Basu Roy, Shivam Bhasin, Anupam Chattopadhyay,
and Debdeep Mukhopadhyay. Number "not used" once - practical fault attack
on pqm4 implementations of NIST candidates. In Ilia Polian and Marc
Stöttinger, editors, Constructive Side-Channel Analysis and Secure Design -
10th International Workshop, COSADE 2019, Darmstadt, Germany, April
3-5, 2019, Proceedings, volume 11421 of Lecture Notes in Computer Science,
pages 232–250. Springer, 2019. doi:10.1007/978-3-030-16350-1_13.

https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.205
https://doi.org/10.6028/NIST.FIPS.205
https://www.unicorn-engine.org/
https://www.unicorn-engine.org/
http://eprint.iacr.org/2016/810
http://eprint.iacr.org/2016/810
https://doi.org/10.1007/978-3-031-62746-0_5
https://doi.org/10.1007/978-3-031-62746-0_5
https://doi.org/10.1109/TC.2012.219
https://doi.org/10.1007/978-3-319-66787-4_25
https://github.com/Keysight/FiSim
https://doi.org/10.1007/978-3-030-16350-1_13

Sönke Jendral, Elena Dubrova 25

[SK20] Kyung-Ah Shim and Namhun Koo. Algebraic fault analysis of UOV and
Rainbow with the leakage of random vinegar values. IEEE Transactions on
Information Forensics and Security, 15:2429–2439, 2020. doi:10.1109/TIFS
.2020.2969555.

[SMA+24] Oussama Sayari, Soundes Marzougui, Thomas Aulbach, Juliane Krämer,
and Jean-Pierre Seifert. HaMAYO: A fault-tolerant reconfigurable hardware
implementation of the MAYO signature scheme. In Romain Wacquez and
Naofumi Homma, editors, Constructive Side-Channel Analysis and Secure
Design - 15th International Workshop, COSADE 2024, Gardanne, France,
April 9-10, 2024, Proceedings, volume 14595 of Lecture Notes in Computer
Science, pages 240–259. Springer, 2024. doi:10.1007/978-3-031-57543-3
_13.

[SWS+16] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario
Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christo-
pher Krügel, and Giovanni Vigna. SOK: (State of) The Art of War: Offensive
techniques in binary analysis. In IEEE Symposium on Security and Pri-
vacy, SP 2016, San Jose, CA, USA, May 22-26, 2016, pages 138–157. IEEE
Computer Society, 2016. doi:10.1109/SP.2016.17.

[YFW00] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Generalized belief
propagation. In Todd K. Leen, Thomas G. Dietterich, and Volker Tresp,
editors, Advances in Neural Information Processing Systems 13, Papers from
Neural Information Processing Systems (NIPS) 2000, Denver, CO, USA, pages
689–695. MIT Press, 2000. URL: https://proceedings.neurips.cc/pap
er/2000/hash/61b1fb3f59e28c67f3925f3c79be81a1-Abstract.html.

https://doi.org/10.1109/TIFS.2020.2969555
https://doi.org/10.1109/TIFS.2020.2969555
https://doi.org/10.1007/978-3-031-57543-3_13
https://doi.org/10.1007/978-3-031-57543-3_13
https://doi.org/10.1109/SP.2016.17
https://proceedings.neurips.cc/paper/2000/hash/61b1fb3f59e28c67f3925f3c79be81a1-Abstract.html
https://proceedings.neurips.cc/paper/2000/hash/61b1fb3f59e28c67f3925f3c79be81a1-Abstract.html

	Introduction
	Previous work
	Background
	MAYO algorithm
	Voltage fault injection and fault model
	SHAKE256 algorithm

	Simulation method
	Symbolic execution
	Reachability estimation using loopy belief propagation
	Results

	Experimental Setup
	Equipment
	Target implementation

	Fault Injection Attacks
	Absorption skipping attack on SHAKE256
	Absorption abort attack on SHAKE256
	Argument initialisation skipping attack on SHAKE256 via memcpy

	Secret key recovery
	Experimental Results
	Fault injection success probability
	Secret key recovery

	Countermeasures
	Absorption skipping and absorption abort attacks on SHAKE256
	Argument initialisation skipping attack on SHAKE256 via memcpy
	Other countermeasures

	Conclusion
	Acknowledgement
	References

