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Abstract. Profiled power analysis is one of the most powerful forms of passive
side-channel attacks. Over the last two decades, many works have analyzed their
impact on cryptographic implementations as well as corresponding countermeasure
techniques. To date, the most advanced variants of profiled power analysis are based
on Soft-analytical Side-Channel Attacks (SASCA). After the initial profiling phase,
a SASCA adversary creates a probabilistic graphical model, called a factor graph,
of the target implementation and encodes the results of the previous step as prior
information. Then, an inference algorithm such as loopy Belief Propagation (BP) can
be used to recover the distribution of a target variable in the graph, i.e., sensitive
data/keys.
Designers of cryptographic implementations aim to reduce information leakage as much
as possible and assess how much leakage can be allowed without compromising security
requirements. Despite the existence of many works on profiled power analysis, it is still
notoriously difficult to state under which conditions a cryptographic implementation
provides sufficient protection against a profiling attacker with certain capabilities. In
particular, it is unknown when a BP-based attack is optimal or whether tuning some
heuristics in that algorithm may significantly strengthen the attack.
This knowledge gap led us to investigate the effectiveness of BP for SASCAs by
studying the modes of failures of BP in the context of the SASCA, and systematically
analyzing the behavior of BP on practically-relevant factor graphs. We use exact
inference to gauge the quality of the approximation provided by BP. Through this
assessment, we show that there exists a significant disparity between BP and exact
inference in terms of guessing entropy when performing SASCAs on several classes
of factor graphs. We further review and analyze various BP improvement heuristics
from the literature.
Keywords: Power Analysis · SASCAs · Belief Propagation · Machine Learning

1 Introduction
Side-channel attacks (SCA) are an important threat to the security of embedded devices
that perform cryptographic operations. Using physical leakage channels such as power
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consumption of electromagnetic radiation [KJJ99; QS01], these attacks often enable key
recovery.

Since the introduction of SCAs, multiple countermeasures have been introduced, with
the goal of increasing the number of traces (i.e., number of leaky executions measured)
needed to perform an attack. For example, a common algorithmic countermeasure is
masking, which consists in applying a secret-sharing scheme to split every variable in the
computation into t+ 1 randomized shares such that the observation of up to t shares does
not reveal any information about the sensitive values [ISW03; DDF19]. Another approach
is the use of leakage-resilient cryptography, which essentially ensures that, for any secret
key, at most a few different leakage traces can be measured [BBC+20; DEM+20]. As
a result, it is important to study the feasibility of attacks that require very few traces
(typically in the single-digit range) - known as simple power analysis (SPA) - as opposed to
the better studied differential power analysis (DPA) where the number of attack traces is
large. Single-trace attacks are also relevant for public key cryptography, be it RSA, ECC
or, more recently, (mostly lattice-based) post-quantum cryptographic algorithms [PPM17;
PP19; BBPS19; KPP20; NDGJ21; HHP+21; HMS+23].

Early side-channel attacks relied only on weak and generic assumption about the
structure of the leakage, e.g., for the differential power analysis [KJJ99] (DPA), the only
assumption is that the average value of the leakage depends on an intermediate value in
the computation. While such a generic assumption is broadly applicable, it leads to a
suboptimal attack regarding the required number of traces. On the other hand, profiled
attacks build a model of the leakage of the target using a set of profiling traces for which
the secret is known. This class of attacks was first introduced with the Gaussian templates
attack [CRR02], which have been extended in various ways [SLP05; CK13; CK14; CDSU23].
More recently, deep learning has been proposed as a powerful class of models. Using
a good model, a profiled attack exploits more information content [RSV+11; BHM+19;
MCHS23] from the traces than non-profiled attacks, reducing the number of traces required
for a successful attack [MDP20]. Both profiled and non-profiled side-channel attacks
typically follow a divide-and-conquer approach: they target an intermediate state in a
computation that depends on a small part of the secret, such that the possible secret values
can be enumerated. This approach is however suboptimal: the constraint on the target
intermediate variables restricts them to a small fraction of all intermediate variables in the
computations, and as a result, only a small fraction of the leakage is used. Soft-analytical
Side-Channel Attacks (SASCA) [VGS14] have been introduced as a way to solve this issue.
SASCAs take advantage of the knowledge of the computations performed by the target to
build a probabilistic graphical model, called a factor graph, that encodes the relationships
between the intermediate variables in the computation. In these graphs, factors are added
to represent the soft information (i.e., a probability distribution) derived from the profiled
model for each variable. Then, an inference algorithm such as loopy Belief Propagation
(BP)1 can be used to recover the distribution of a target variable in the graph (i.e., secret
data/keys) with fewer traces than a divide-and-conquer attack.

Belief propagation is an algorithm to perform Bayesian inference. That is, given
probabilistic information about multiple variables and relationships between these variables,
it computes the marginal probability distribution of a variable. BP operates over a factor
graph, which is a bipartite graph with variable nodes that represent the variables of the
inference problem and factor nodes that correspond to the relationships2 between the
variables. When the factor graph is acyclic, BP computes exact marginal distributions,
while for cyclic graphs, which are very common when performing SASCAs, there is little
guarantee about the accuracy of the result of the algorithm.

1In this work, “Belief Propagation” or BP generally refers to the loopy BP algorithm.
2In the context of SASCAs, these relationships are deterministic functions, however, in general the

relationships can be arbitrary.
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Despite the existence of a plethora of works on profiled attacks, it is still notoriously
difficult to state under which conditions a cryptographic implementation provides sufficient
protection against a profiling attacker with certain capabilities. While recent works
improved the bounds for the information content of a trace about one intermediate
variable [MCHS23; CRBO24], it is still unclear to which extent such information can be
combined to infer the secrets: we do not have tight bounds for the Bayesian inference
problem, nor on how well practical methods such as BP can behave. While works such
as [KPP20; YK21; PPM17; PP19; KPP20; NDGJ21; HHP+21; HMS+23] do experiment
with various tweaks of BP aimed at improving the accuracy of the inference, they are
often not motivated, not thoroughly studied, or cover only one particular factor graph.
For a security evaluator, it is hence not easy to draw more general conclusions about the
performance of BP from these works.

Our Contributions. We present an analysis of exact and approximate algorithms to
solve inference problems in the context of the side-channel analysis of a cryptographic
computation. First, we present the application of exact inference techniques towards
SASCAs and analyze its limitations. Then, turning to BP, we provide an analysis of
failure cases of this algorithm when used in a SASCA. This analysis provides a basis for
explainability which otherwise is lacking in literature regarding profiled attacks. Following,
we analyze several heuristic tweaks to BP that have been proposed in the side-channel
literature over the last decade. We perform numerical experiments using factor graphs
induced by various parts of cryptographic algorithms, assuming that all intermediate
variables leak the same amount of information. We apply the techniques of selected works
on the most relevant targets for SASCAs, and compare their results to exact inference
to provide the basis for a security bound. Our results indicate that most proposed BP
heuristics have a minimal impact on the attack performance in general, with exceptions for
specific combinations of heuristics, circuit and experimental conditions, or for a heuristic
with high computational cost. Finally, we discuss the impact of our findings on security
evaluations.

2 The Side-Channel Inference Problem
Performing a key recovery is the most common goal of a side-channel adversary. In this
setting, the unknown key K = (K1, . . . ,Kκ)

3 (we denote random variables by capital
letters and vectors in bold) is the target of the adversary who observes the leakages L. If
the adversary has the computational power to enumerate n key candidates, the side-channel
attack problem can be expressed as a generalized maximum a posteriori (MAP) estimate
from Bayesian statistics: find the n most probable keys given the leakage. In other words,
given side-channel leakage traces `, what are the n most probable secret keys in the key
space K?

k1, . . . ,kη = argmax
(top η) k

Pr[K = k | L = `] (1)

A common assumption in side-channel attacks and security analysis is the independence
of leakages [BS21; DDF19; BCS21; BCM+23]: given a series of intermediate variables
V = (V1, . . . ,Vn) in the leaking computation (including the key itself: Vi = Ki for
i = 1, . . . ,κ), it is assumed that L = (L1, . . . ,Ln), where each Li is a noisy function of
Vi: Li = li(Vi) whose randomness is fresh (in particular, it is independent of the other
intermediate variables’ leakage). This implies the following Markov chains:

K → Vi → Li for i = 1, . . . ,n

3K may also be any value of interest to break the cryptographic scheme, not necessarily a long-term
key.
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such that we can write

Pr[L = ` |K = k] =
∑
v

n∏
i=1

Pr[Li = `i | Vi = vi] · Pr[V = v |K = k]. (2)

In practice, profiling adversaries build models to estimate Pr[Vi = vi | Li = `i] (e.g., using
Gaussian templates). Further, Pr[V = v | K = k] only depends on the cryptographic
algorithm implementation, which is supposed to be known to the adversary.

The side-channel inference problem consists in solving Equation 1 under the assumption
that Pr[K | L] satisfies Equation 2. In this work, algorithms that solve this problem are
named exact inference methods. We also investigate approximate, or inexact inference
methods: heuristic algorithms that aim at producing results close to the answer to the
inference problem, while being more efficient than exact inference methods.

Attacks that solve the side-channel inference problem are known as Soft-Analytical Side-
Channel Attacks (SASCA) since they exploit soft information on the intermediate variables
(Pr[Vi = vi | Li = `i]) and the analytical knowledge of the computations (which implies
the relationships between the intermediate variables and the key, Pr[V = v |K = k]).

2.1 Side-channel inference problem and probabilistic graphical
models

We identify dependencies between the variables by computing the set of parents of a
variable: for a variable Vi which is the result of an operation on other intermediate
variables, we denote by P (i) the set of indices j such that Vj is an operand of the operation,
and by VP (i) the set Vj : j ∈ P (i). For example, if V3 is computed as V3 = V1 + V2, then
P (3) = 1, 2 and VP (3) = V1,V2. Some variables are not the result of an operation: those
are the fresh randomness and the parts of the key (Ki = Vi, for i = 1, . . . ,κ). For all these
variables Vi, P (i) = ∅. These dependencies imply:

Pr[V ] =

n∏
i=1

Pr[Vi | VP (i)]. (3)

The relationships Vi | VP (i) induce a directed acyclic graph (DAG) structure: Since these
dependencies come from the way the variables Vi are originally computed, there cannot be
any cyclic dependency.

This structure of relationships fits probabilistic graphical models (PGMs) such as
Bayesian networks and factor graphs.

Bayesian networks. Such a structure of dependencies between random variables is
a Bayesian network. Formally, a Bayesian network B is a pair B = (G, Φ) over a set of
nodes representing random variables X that models probabilistic relationships between
the variables such that ([Dar09, Definition 4.1] and [KF09, Theorem 9.5])

• G is a Directed Acyclic Graph (DAG) with nodes X .

• Φ is the set of conditional probability factors between variables in X and their parent
nodes in the graph:

Φ = {φXi
}Xi∈X , φXi

= Pr[Xi | XParents(i)]

In a Bayesian network, the joint probability distribution can be factorized as

Pr[X = x] =
∏

Xi∈X
Pr[Xi = xi | XParents(i) = xParents(i)].
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Algorithm 1 The first two operations in the AES
Require: K0, P0 . Key, Plaintext
X0 ← K0 ⊕ P0 . AddRoundKey
Y0 ← Sbox(X0) . SubBytes

K LK

LPP

X

LX

Y LY

Figure 1: Bayesian network modeling the relationships between variables in Algorithm 1.

Note that the Bayesian network is not limited to modeling the relationships between
the variables in V , it can also contain the variables Li, where each Li is only connected to
its parent Vi.

Example 1. Consider the first two operations of the AES round (Algorithm 1). The
intermediate variables are V = (K,P ,X,Y ), with the corresponding leakages being L =
(lk(K), lp(P ), lx(X), ly(Y )) (in practice, the plaintext P is often known to the adversary,
which is modeled with lp(P ) = P ). The relationships between the variables are

X = P ⊕K

Y = Sbox(X)

which, in addition to the leakage, constitute the Bayesian network shown in Figure 1.

Factor graphs. A factor graph is a model that generalizes Bayesian networks by removing
the acyclic structure of dependencies. It represents an arbitrary factorization of a joint
probability with a bipartite graph. Given a function P ∗4 defined over a set of n variables,
x ≡ {xi}i=1,...,n, which is the product of m factors:

P ∗(x) =

m∏
j=1

fj(xI(j)) (4)

The corresponding factor graph G = (x, f , e) consists of variable nodes x, factor nodes
f ≡ {fj}mj=1 and undirected edges e which join all variables in xI(j) (xI(j) is a subset of the
variables in x) with fj . Each factor is a function fj : [0, 1]

nj → [0, 1]. Any Bayesian network
can therefore be re-written as a factor graph by turning each conditional probability into
a factor.
Remark 1. In the context of PGMs, factors represent the actual probabilistic relationship
between conditionally dependent variables. Intuitively, factors represent the likelihood of
each combination of values for a subset of variables. A particular case is the deterministic
factor (by opposition to probabilistic factors), which always evaluates to 0 or 1, representing
impossible or certain variable combinations. In Bayesian networks, a conditional probability

4P ∗ is not necessarily a probability distribution since it may not sum to 1. This issue can be solved by
considering P ′(x) = P ∗(x)/

∑
x′ P ∗(x′).
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K
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X Y

LK
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LX LY

XOR Sbox

l′k

l′p

l′x l′y

Figure 2: Factor graph representation of Algorithm 1. Variables and factors are represented
with circle and rectangular-shaped nodes, respectively.

distribution φXi is deterministic when there exists a (deterministic) function fi such that
Xi = fi(XParents(i)). For factor graph, a factor fj is deterministic if its image is a
subset of {0, 1}. Moreover, when converting a Bayesian network to a factor graph, a
deterministic probability distribution translates into a deterministic factor which is sparse:
if the distribution of the variable depends on ni variables, then the factor description
contains |K|ni+1 entries, of which only |K|ni are non-null (where K is the field for the
variables).

The AES scenario from Example 1 can be modeled via a factor graph (Figure 2). The
XOR and Sbox factors are

XOR(k,p,x) =

{
1 x = k ⊕ p

0 otherwise

SBOX(y,x) =

{
1 y = Sbox(x)
0 otherwise.

while the l′x factor corresponds to the joint (X,Lx) distribution (and likewise for l′y, l′k
and l′p).

The interest of using a factor graph over a Bayesian network does not appear in our
example, and in fact Bayesian network may seem sufficient to model all side-channel
inference problems, since the intrinsic ordering in a computation implies a DAG structure.
However, it is sometimes handy to insert additional variables and knowledge in the problem.
For example let us consider a masked circuit where the input is a sharing (K1, . . . ,Kd)
such that the secret K does not appear in the computations, but satisfies the relationship
K = K1 ⊕ · · · ⊕ Kd. This can be easily represented in a factor graph, while encoding
this in a Bayesian network, while feasible, is less natural. Factor graphs may become the
only option in more involved situations e.g., if we want to incorporate knowledge of a
sharing X = X1 ⊕ · · · ⊕Xd for intermediate variables Xi which already have conditional
probability factors.

2.2 Inference Methods
In this section, we discuss exact and approximate inference methods for solving SASCA
problems.

2.2.1 Exact inference methods

Brute-force The simplest approach to solving the inference problem is to enumerate all
possible values for V . Indeed, in order to solve Equation 1 for a given L = `, it suffices to
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compute Pr[L = ` |K = k] for all k ∈ K, thanks to Bayes rule:

Pr[K = k | L = `] =
Pr[L = ` |K = k] Pr[K = k]∑
k′ Pr[L = ` |K = k′] Pr[K = k′]

.

Next, using Equation 2 and Equation 3, we get

Pr[L = ` |K = k] =
∑

v s.t.(v1,...,vκ)=k

n∏
i=1

Pr[Li = `i | Vi = vi]

n∏
i=κ+1

Pr[Vi = vi | VP (i) = vP (i)].

Finally, let us assume that there are ρ fresh uniform random variables in the circuit:
(Vκ+1, . . . ,Vκ+ρ) = R, then all other variables in V are fully determined by K and R:
V = c(K,R), which means:

Pr[L = ` |K = k] =
∑
r

n∏
i=1

Pr[Li = `i | Vi = ci(k, r)] Pr[R = r].

The computational cost of running the brute-force is thus O(n |K|κ+ρ
), where K is the

field in which the inference is computed.
Here, we assumed that the inference problem can be written as a Bayesian network. The

brute-force method also works with a general factor graph, with conditional probabilities
replaced by factors, although the last step (eliminating all variables except K and R from
the enumeration) cannot be systematically performed.

Variable elimination. We give a brief informal overview of variable elimination and
refer the reader to [KF09] (or other reference works on probabilistic inference) for in-depth
explanations.

The variable elimination (VE) algorithm works on factor graphs (therefore, it also
applies to Bayesian networks). Given a partition (Y,Z) of its set of variables X and a value
xY for the variables in Y , it computes marginalization queries of the form

∑
xZ

P ∗(xY ,xZ),
next denoted P ∗(XY = xY).

In order to solve Equation 1, we can compute

Pr[K = k | L = `] =
Pr[(K,L) = (k, `)]

Pr[L = `]
, (5)

but, since Pr[L = `] does not depend on k, we only need Pr[(K,L) = (k, `)]. Let us
assume that we have a factor graph whose variables are (V ,L) and whose function P ∗

corresponds to the joint probability of (V ,L). Further, let U be the non-key intermediate
variables such that V = (K,U). We then have

Pr[(K,L) = (k, `)] =
∑
u

Pr[(K,U ,L) = (k,u, `)] =
∑
u

m∏
j=1

fj((k,u, `)I(j)).

Naively computing this sum corresponds to the brute-force method, but the variable
elimination algorithm can be more efficient. Let us assume without loss of generality that
the variable u1 appears only in a subset of the factors J , we can rewrite:

Pr[(K,L) = (k, `)] =
∑

u2,u3,...

∏
j∈J̄

fj((k,u, `)I(j))

∑
u1

∏
j∈J

fj((k,u, `)I(j))


with J̄ = {1, . . . ,m} \ J . This transformation, named “eliminating u1” removes one
variable from the left-most sum, merging all factors adjacent to u1 into a single factor
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by multiplying them and summing-out u1. The computational cost is now the total of
(i) computing that merged factor and (ii) computing the leftmost sum. The latter cost
is reduced by a factor |K|, while the cost of computing the merged factor is exponential
in the number of variables involved in that factor (there is a gain as long as the merged
factor is not connected to all ui variables).

In general, the variable elimination algorithm iteratively eliminates all the variable,
in a well-chosen order. It therefore essentially amounts to using distributivity of the
multiplication to reduce the number of computations to perform, by multiplying factors and
summing-out variables. The computational cost depends exponentially on the maximum
scope size, i.e. the maximum number of variable adjacent to any single merged factor
that gets computed. This important value is lower-bounded by the treewidth of the factor
graph5, and depends crucially on the variable elimination order (finding a good elimination
order is a difficult problem).

Going back to our AES example, VE may perform the following computation:

Pr[(K,L) = (k, `)] = Pr[(K,Lk) = (k, `k)] ·
∑
x

(
Pr[(X,Lx) = (x, `x)]

·

(∑
p

Pr[(P ,Lp) = (p, `p)] · XOR(k, p,x)

)

·

(∑
y

Sbox(y,x) · Pr[(Y ,Ly) = (y, `y)]

)
)

where y, p and x have been successively eliminated.

While VE can be more efficient than brute-force, many factor graphs that are relevant for
SASCAs have high treewidth and therefore make VE impractical. Given the high treewidth
of cryptographic circuits relative to the number of key (and randomness) variables, VE is
often not more efficient than brute-force, and further, given the exponential computation
cost of VE, it is actually practical to run VE in few of those cases. There exists other
inference methods (e.g., probabilistic circuits [WNC+24]), but they suffer from similar
issues: there are very few circuits for which they are practical to run while performing
better than brute-force.

2.2.2 Approximate inference: belief propagation

The belief propagation (BP) algorithm of Pearl [Pea82] efficiently computes the marginaliza-
tion of a function given its factorization. The algorithm takes a message-passing approach
in which a node’s state is iteratively updated based on “messages” (often referred to
as “beliefs”) from adjacent nodes until reaching convergence. BP can be applied to any
PGM, like Bayesian networks, by first converting it into a factor graph representation.
For tree-like factor graphs, BP gives a correct solution and is therefore an exact inference
algorithm equivalent to VE with a good ordering (which is easy to find in this case). In
contrast, if the factor graph contains cycles, then the heuristically guided loopy variant
of the algorithm must be used and the result is an approximation of the marginalization
query. We give an overview of applying BP to SASCA problems and refer the reader to
the works [Mac03, Chapter 26] and [VGS14] for a more detailed description.

5Informally, the treewidth is an integer which quantifies how “tree-like” a graph is. The only graphs
having a treewidth of 1 are trees (while graphs with a single cycle have treewidth 2).
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In more detail, given a factor graph and one of its variable nodes Xi, the BP algorithm
computes or approximates the marginalization P ∗(Xi = xi), i.e., it computes the marginal
for a single variable. Therefore, in order to compute Pr[K = k | L = `] in Equation 1, we
first condition the factor graph by adding new factor to the graph to model the (hard)
evidence L = ` (we connect a new factor to each variable node Li, encoding the fact
Li = `i). Then, we only need to query Pr[K = k] on this modified graph. If the key
contains multiple variables, then we actually query Pr[Ki = ki] for all key variables, then
assume that the distribution of K is the product of independent distributions Ki.6

BP works by exchanging beliefs along the edges of the graph, where each belief is a
distribution over the value of the adjacent variable node. Beliefs from variables to factors
(V2F) are denoted as µXi→fj and beliefs from factors to variables (F2V) are denoted as
µfj→Xi). The beliefs are iteratively updated, according to the following rules. The belief
from a variable to a factor is the product of the beliefs from the other factors to the
variable, which corresponds to combining independent probability distributions:

µXi→fj =
∏

{j′|i∈I(j′)∧j 6=j′}

µfj′→Xi . (6)

Regarding the F2V beliefs, for a factor fj and a variable Xi, µfj→Xi is computed as the
marginalization of the factor fj taking into account independent marginals from µXi′→fj

for variables Xi′ adjacent to fj (but distinct from Xi):

µfj→Xi
α =

∑
{xI(j)|xi=α}

fj(xI(j))
∏

i′∈I(j)\{i}

µ
Xi′→fj
xi . (7)

Finally, the marginal for a variable P ∗(Xi = xi) is computed as the product of all incoming
messages:

P ∗(Xi = xi) =
∏

{j|i∈I(j)}

µfj→Xi
xi

. (8)

An important consideration in the usage of the BP algorithm is the scheduling, i.e.,
the order in which Equation 6 and Equation 7 are applied to the different factors and
variables. For tree-like structures, all7 schedulings converge to the same solution, resulting
in an exact inference. However, for loopy factor graphs, the scheduling impacts the final
result, as well as whether the algorithm converges. As a baseline, we consider the simple
parallel update scheduling: an iterative process in which each iteration is made of two
steps: first, all F2V beliefs in the graph are updated using Equation 7, then all V2F beliefs
are updated with Equation 6. The V2F beliefs are initialized with uniform distributions.

Let us illustrate the BP algorithm by applying it to the AES example (Example 1 and
Figure 2). Since the graph is a tree, we use an optimal scheduling (thanks to a well-chosen
“leaf-to-root” order, we compute each belief twice):

1. Observed leakage values `v are propagated from the leakage variables Lv ∈ (Lk,Lp,Lx,Lp)
to the respective factors:

µLv→l′v = δ`v

where δx is a discrete Dirac distribution: it has probability 1 at x and 0 elsewhere.

2. Beliefs from l′v are propagated to v:

µ
l′v→v
α =

∑
`

l′v(α, `)µ
Lv→l′v
` = l′v(α, `v)

6This technique is also often used with exact inference methods, when it is infeasible to compute the
key distribution due to a too large key space K.

7As long as they satisfy some minimal constraints to not ignore some variables or factors.
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3. The belief from Y to the Sbox factor, is computed, then the belief from the Sbox to
X:

µY→Sbox = µl′Y →Y

µSbox→X
x =

∑
y

Sbox(x, y) · µY→Sbox
y

4. Next, the beliefs from X and P to the Xor factor are computed, which allows
computing the belief from that factor to K:

µP→Xor = µl′P→P

µX→Xor = µl′X→X · µSbox→X

µXor→K
k =

∑
x,p

Xor(k, p,x) · µP→Xor
p · µX→Xor

x

5. Finally, the marginal for K is

P ∗(K = k) = µXor→K
k · µl′K→K

k .

While it is not guaranteed that the loopy BP algorithm will return correct values
or even converge, it gives sufficiently precise approximations of the marginals in many
real-world applications, such as the decoding of error correcting codes [KFL01]. For
cryptographic circuits, BP can be efficiently executed, with complexity O(m |K|ni + n |K|)
per iteration when working in a field K with deterministic operations having at most
ni inputs (the factors have ni + 1 adjacent variables, but we can exploit their sparsity
to optimize computations).8 For many SASCA factor graphs, BP is the only practical
algorithm from a performance point of view, this algorithm is therefore the de-facto
standard when for conducting SASCAs.

2.3 Metrics for Comparing SASCAs
The stochastic nature of side-channel analysis leads to a zoo of metrics which attempt
to characterize the success (or failure) of a given process. Particularly in the case of
SASCAs, it is a challenging task to find an adequate metric to describe the results of many
experiments. We briefly describe the popular metrics used in the literature and motivate
our choices for the metrics we report in the next sections.

Rank and Guessing Entropy. The rank of a key candidate is its position in the
solution generated by Equation 1 over the key space, K. In our semantics, rankk = 1
means that the correct key is at the first member in the list of solutions. Often times, we
are interested if the rank of the correct key is less than n, where a brute-force test of the
solution becomes feasible (roughly 264 for a determined adversary). For large key spaces,
a rank estimation algorithm [PSG16; CDS23] can be used. It is often convenient to report
the log of the rank e.g., the Guessing Entropy: GE = log2(rankk).

Success rate. The success rate (SR) is the proportion of key ranks which are equal to 1
in the distribution of results. The generalized SR at rank r is the proportion of key ranks
less than or equal to an order r in the distribution of results.

8We can even achieve better complexity for some particular factors, e.g. for the addition, an algorithm
based on a Fourier transform achieves complexity in |K| log |K| [CDSU23].



R. Nagpal, G. Cassiers, R. Primas, C. Knoll, F. Pernkopf and S. Mangard 11

Mutual Information and Perceived Information. The Mutual Information (MI)
quantifies the information which can be extracted between a variable X and the leakage L:

MI(X;L) = H [X] +
∑
x∈X

Pr(x)
∑
l∈L

Pr(l | x) · log2 Pr(x | l)

In practice, the leakage distribution L is unknown, therefore the quantity Pr(l | x) is
replaced by one generated by a leakage model, Lm. If the chosen model differs from the
actual leakage distribution, the MI cannot be computed. Instead, the PI can be captured:

PI(X;L) = H [X] +
∑
x∈X

Pr(x)
∑
l∈Lm

Pr(l | x) · log2 Pr(x | l)

The PI is a lower bound of the MI [BHM+19] that converges to the MI if the model
can match the true leakage distribution [MCHS23].

Choice of reported metrics. The distribution of multiple SASCA experiments can
be multimodal, especially for larger bit widths: the attack may sometimes succeed and
sometimes completely fail, with a low probability of an intermediate outcome. Therefore,
extreme care must be taken when selecting the metrics for comparison as not to obfuscate
any meaningful observations. In our experiments in the next sections, we chose to report
only the average guessing entropy, as it appears to be the most relevant and reliable metric
in our case. The SR for rank = 1 was determined to be too conservative, with a very
sharp drop off as the signal-to-noise ratio (SNR) decreases. For rank > 1, it is difficult to
determine a suitable rank such that the SR is meaningful for our factor graphs, which vary
in bit width for different cases. On the other hand, the PI was omitted due to its difficult
interpretation: even when an attack succeeds (i.e., low guessing entropy), the PI can be
low if the key probability distribution estimated by the attack does not correspond to the
correct one, as discussed in Section 3.4.

3 How Belief Propagation Fails in SASCAs
As discussed in Section 2, loopy belief propagation is the most widespread inference
method for SASCA. Unfortunately, while BP may work well, it also sometimes fails
spectacularly, e.g. by not converging, or converging to a value that is clearly wrong. In
general, the behavior of BP is not well understood and general guarantees on convergence
or accuracy are unavailable. Although studying the message dynamics [MK05; KP17;
LKSP21] has significantly improved the understanding the convergence properties, sufficient
conditions for convergence remain unattainable except for specific assumptions (e.g., for
Gaussian models [SW15], models with a single loop [Wei00], or models with a unique fixed
point [MK07; IIW05]). Research on BP with abstracted factor graphs (e.g., binary Markov
Random Fields (MRFs) with pairwise factors) captures a wide variety of problems and
use-cases. However, these graphs are not typically a good match for SASCA problems:
cryptographic factor graphs in particular have several features which do not lend itself to
be modeled by e.g., binary MRFs. For instance, the SASCA typically exploits leakages
from real-world devices, whose variable domains are determined by the word size of the
processor linked by deterministic functions involving two or more inputs. Thus, it is
difficult to leverage existing theoretical results on BP for the SASCA.

In this section, we discuss concrete situations on relevant cryptographic factor graphs
where BP either fails or produces suboptimal results. In particular and in order of severity,
we study when BP converges to the wrong marginals with high confidence, when BP can
oscillate between two fixed states, when BP is “blinded” by certain functions and when
BP is overconfident. These examples illustrate some pitfalls we should care about when
using SASCA.
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Figure 3: ISAP Factor Graph with annotated expectations of beliefs. Green indicates
evidence on a variable and red indicates amortized beliefs along an edge. The numbers
indicate the probability of the value being equal to 1.
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Figure 4: Frustrated XOR factor graph example.

3.1 Converging to the Wrong Value
It is well understood that, in general, BP can converge to incorrect marginals with high
confidence. In the context of SASCA, an overconfident BP algorithm would converge
towards assigning a high likelihood to the wrong key. As an example of this situation, let
us consider the ISAP-RK [DEM+20] factor graph in Figure 3. With the given evidence,
BP is tasked with finding the marginals of K0 and K1, whose respective true values are
1 and 0. Due to the (highly noisy) evidence on K0, the posterior marginal on Pr[K0]
converges to the incorrect value, 0. With more BP iterations, the uncertainty on the joint
distribution of K0 and K1 converges to 0 as well, however, the guessing entropy remains
high. If the correct values for K0 and K1 were unknown, one would conclude that K0 = 0
incorrectly. In contrast, an enumeration solution (i.e., exact inference) on the same setting
results in a lower guessing entropy, but with higher uncertainty at 0.36-bits. In other
words, the exact method is able to solve the SASCA, but does recognize the uncertainty in
the solution, whereas BP converges to a wrong solution, and assigns it a high confidence.

3.2 Oscillations in Marginals
Consider the “frustrated XOR” example in Figure 4 which depicts a factor graph over three
binary variables, x0, x1 and x2. All nodes marked with 1 are variables with observations
assumed to be certain (Pr[xn = 1] = 1), and ⊕ refers to the XOR operator. While this
graph does not admit any solution (the bits x0, x1 and x2 would have to be all distinct
from each other), it is a simple illustration of the source of oscillations in the BP algorithm.

The dynamics of BP for this graph is fairly simple: starting from a belief (p, 1 − p)
from x0 to the XOR that connects it to x1, we get a belief of (1 − p, p) to x1, which is
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Figure 6: Simplified version of the factor graph given in Figure 5

then forwarded as a belief of (p, 1− p) to x2 (for the sake of simplicity, we assume that
there is no evidence for the variables), which in turn leads to a belief (1− p, p) towards x0.
Since this is the inverse of the belief we started with, and since the belief circles through
the graph, with an inversion each time it goes through a factor, it can be the source of
oscillation. While we considered only one belief, the dynamics of BP for the graph is
actually composed of three beliefs going through this circle independently, and three beliefs
circling in the other direction.

In the next example, we show that dynamics similar to the “frustrated XOR” can
appear in realistic factor graphs that admit a valid solution. Consider the two layer
simplified “butterfly” circuit depicted in Figure 5, where each function Fn is given the
same definition:

Fn(x0,x1, y0, y1) =

1
y0 = x0 + ωx1 mod q ∧
y1 = x0 − ωx1 mod q

0 otherwise
(9)

This circuit corresponds to a very small number-theoretic transform (NTT) circuit, and
we take all twiddle factors ω = 1 for the sake of simplicity. It is a downsized case study
for practically-relevant circuits, since NTTs are often used in lattice-based cryptogra-
phy [BDK+18]. Again for illustration, we use a small field size of q = 13.

As a starting point, evaluate the circuit for input (x0,x1,x2,x3) = (0, 10, 3, 10) and
initialize each variable with evidence corresponding to noise-free leakage of the Hamming
weight of the variable’s value, denoted HW (x). For two variables (a1 and a2), we assume
that there is no leakage: we set the leakage to the uniform distribution (denoted by U).
For example, HW (1) generates a distribution where all values from [0, 12] with a Hamming
weight of 1 are equally likely i.e., Pr[X = 1] = Pr[X = 2] = Pr[X = 4] = Pr[X = 8] = 1

4 .
Although the butterfly layout of Figure 5 does not make it obvious, the factor graph

actually has a fairly simple structure. Indeed, it is equivalent to the graph of Figure 6,
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Table 1: Beliefs in the NTT example. For compactness, as multi-sets: the probability of a
value is proportional to the number of times it appears in the list (e.g., 0, 0, 1 indicates
Pr[x = 0] = 2

3 and Pr[x = 1] = 1
3 ).

Iteration a1 → F0 a0 → F2 a2 → F1 a3 → F3

0 3, 5, 6, 9, 10, 12
1 3,10
2 0, 0, 6, 7
3 6, 12
4 3, 4, 11, 12
5 9, 10
6 0, 0, 3, 10
7 6, 9
8 1, 3, 12
9 10, 12
10 0, 0, 6, 7
11 6, 12

where each F ′
i factor corresponds to the Fi factor of the original graph, multiplied with

the evidence factors of the adjacent xj or yj variables (this simplification does not change
the results BP computations on the graph). Therefore, the “circling beliefs” analysis of
the frustrated XOR example also apply to the NTT example, this time with 4 variables in
the loop instead of 3.

Now, there is evidence in the system, hence the circling beliefs are updated at each
step, which leads to multiple possible situations:

• All beliefs converge to the same state, hence BP converges (to a correct state: the
“happy” case, or incorrect value: the wrong convergence described in the previous
section).

• The beliefs in the two circling directions converge to different states. If these states
are incompatible (i.e., there is no value that has non-zero probability in both beliefs),
then BP cannot produce a marginalization.9 This may happen, e.g., if a part (or
“circle direction”) of a graph converges to the correct value, while another part of
the graph converges to a wrong value.

• The circling beliefs do not converge, and instead oscillate. This case happens for the
NTT graph with the values given above, as shown in Table 1.

More generally, deterministic factors (such as the XOR, AND or butterfly factors)
remove possible solutions from beliefs (i.e., set more values to Pr[X = x] = 0), which has
been shown to cause oscillations in other settings [KF09, Chapter 11.3]. Cryptographic
factor graphs are particularly susceptible to oscillations since they typically contain many
deterministic factors.

3.3 Blinding
BP uses local propagation rules to perform global inference on the graph. While this
may work well in some cases (e.g., when the information is contained in the marginals of
individual variables), it tends to not work well in more complex cases, where information

9In this case, concrete implementations of BP may produce surprising results, depending on how they
perform the computations, and there may be a high sensitivity to numerical errors.
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Figure 8: Blinded Keccak example. Green labels indicate evidence and red indicates the
amortized beliefs along an edge. Blue edges are used to increase readability. Beliefs are
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lies in the joint distribution of multiple variables. We coin the term “blinding” to designate
the situations where this limitation leads to the inability of a SASCA to exploit part of
the evidence in the factor graph.

An example of blinding is given in Figure 7, which is a simplified masked circuit. The
two shares (x0,x1) of a variable x are refreshed with a uniform random bit U$ to create
a new sharing of x: (y0, y1). Let us assume that evidence is only supplied for y0 and y1,
and that this evidence reveals the exact values of these shares. This evidence is enough to
recover the value of x since x = y0⊕y1, however BP completely fails and returns a uniform
distribution. Indeed, for both XOR factors, two of the incoming beliefs are initially the
uniform distribution, making the belief from these factors to the variables uniform. The
BP algorithm is therefore stuck in a “uniform beliefs” state.

The blinding issue is not limited to “uniform beliefs” and does not require variables
without evidence. We illustrate this in Figure 8, a 3 input Keccak-like S-box. In the
example, the evidence is sampled from a normal distribution with σ = 0.29. The concrete
values for the inputs and outputs to the S-box are: (x0,x1,x2) = (c0, c1, c2) = (1, 1, 1).
From the noisy sampling, the evidence on x0 and t2 are biased incorrectly (i.e., the wrong
value is more likely than the correct one) but the rest of the variables are biased correctly.10

We run BP, then compute a joint distribution for (x0,x1,x2) by multiplying the marginals.
This distribution can then be compared to the joint distribution of these variables obtained

10While a confidently wrong evidence such as the one we have for x0 may seem unlikely, such things
happen frequently in practice due to the large number of variables in factor graphs, therefore many evidence
factors are extracted from the leakage, making “unlucky” events appear frequently (e.g., even our tiny
graph has already 9 evidence factors).
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via exact inference. The guessing entropy of the BP solution is 2 bits, while the guessing
entropy of the exact solution is only 1 bit.

3.4 Overconfidence
Overconfidence occurs when BP reaches a solution with low uncertainty when it should
not be able to do so, even if this solution is correct. We motivate how this can occur with
a simple example.

As an example, consider the graph in Figure 9, which is similar to the graph in Figure 4
except that it has a solution. We indicate the beliefs at the beginning of the fourth iteration
in red. Initially, x0 is the only variable with evidence, Pr[x0 = 1] = 0.6, with the rest being
set to uniform. As the messages iterate over the loop, x0 ends up receiving information
from itself, reinforcing the belief that x0 = 1 incorrectly. Indeed, at the beginning of
the fourth iteration, all outgoing beliefs from have Pr[x0 = 1] = 0.7 which eventually are
amortized to x0 = 1. In turn, this causes the values of x2 and x3 to also converge. For
reference, an inference query using an exact method would not be able to decrease the
uncertainty on the marginal distribution Pr[x0 = x] beyond what is given in the evidence.

While overconfidence is not a problem when using SASCAs to perform an attack, it
can heavily skew the key distribution, leading to an improper estimation of the amount of
leakage when computing metrics such as PI. This can be a problem when using SASCAs in
leakage assessment tasks. The overconfidence problem appears most strongly with graphs
that have many small loops. As discussed in Section 4.2, limiting the number of iterations
can mitigate overconfidence and reduce the positive reinforcement.

4 An Empirical Study of the SASCA
Works on SASCAs typically include some attempt to improve the success rate of the
attack e.g., by optimizing the factor graph or by applying additional heuristics to the BP
algorithm. Over the years, the research community explored several techniques to improve
the SASCA with varying degrees of success, however, there is a lack of transparency on why
certain heuristics perform better than others, or any generalization of these techniques.

In this section, we study the SASCA in detail and contextualize how well it performs
when instantiated with exact inference methods and BP instantiated with different heuris-
tics. First, we introduce the factor graphs we analyze based on relevant cryptographic
circuits and the experimental conditions we study. Then, we compare how belief propaga-
tion’s performance compares to the bound given by exact inference in Section 4.1. Finally,
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Table 2: Factor graph parameters
Factor Graph Treewidth Diameter #Factors Total GE
AES 25 6 128 8 log2 q
2-Share ISW AES 57 9 468 8 log2 q
3-Share ISW AES 92 11 1004 8 log2 q
Ascon 5 4 22 5 log2 q
2-Share ISW Ascon 10 5 68 5 log2 q
3-Share ISW Ascon 15 6 149 5 log2 q
ISAP-RK 3 2 8 2 log2 q
Kyber NTT 4 layers 14 8 128 16 log2 q

we conclude the section with a deep dive into several BP heuristics proposed by existing
literature and present some novel ones in Section 4.2.

Choice of factor graphs. We reviewed several cryptographic algorithms and narrowed
our final selection to four relevant cases for SASCAs: the AES S-box based on Boyar-
Peralta’s design [BP12], the Ascon S-box [DEMS21], the initialization of the ISAP-RK
function [DEM+20] (factor graph from [CDSU23, Figure 1]) and a 4-layer version of the
Kyber Number Theoretic Transform (NTT)[BDK+18]. We derived factor graphs from
the descriptions of each algorithm, which correlates to how these algorithms are typically
implemented. In the base case, we restrict our factor graphs to use only the leakage factors
and deterministic factors modeling the Boolean operators: XOR, AND and NOT, and
the modular arithmetic operators: ADD, SUB and MUL. Furthermore, each factor graph
is assumed to be invariant across each experiment, unless it is modified by an examined
heuristic e.g., butterfly factors. Given these graphs, our SASCA aims at recovering the
input of the corresponding cryptographic (sub-)circuit. This value recovery is our focus
since it is an intermediate step in most side-channel attacks, whether data-assisted (e.g.,
known plaintext or ciphertext) or not.

In Table 2, we list parameters for each factor graph to characterize their structure.
In particular, we report the treewidth of a graph, the diameter11 which characterizes the
number of BP iterations needed for beliefs to propagate between the two furthest factors,
the number of factors within the factor graph and the total GE refers to the number of
bits a naive attack would need to guess to solve the inference query.

Due to limitations in the implementation of the rank estimation algorithm used, we
were unable to report results for the GE of the full Kyber NTT. Therefore, we report
results for a factor graph with only 4 layers (16 inputs). In the context of our experiments,
the reduced version serves as a good proxy for how the full NTT would behave and does
not change our conclusions. For heuristics on masked circuits, we implemented 2 and
3-share versions of the AES and Ascon factor graphs using ISW multipliers.

Experimental setup and leakage model. The adversarial model in our experiments
assumes a worst-case scenario in which a single-trace attacker obtains prior information
on every intermediate within a factor graph, including the inputs (e.g., the secret key)
and, in masked settings, also on the random bits. For each heuristic, we created an
experiment set using the relevant factor graphs and report the guessing entropy (GE)
over the SNR, following the discussion from Section 2.3. The prior information for the
SASCAs is generated from single-trace leakage simulations. We opted for simulations to
increase reproducibility of our results and to allow for more fine-grained control over the

11The diameter is the maximum distance between all pairs of factors within a graph. The distance is
defined as the number of variable nodes along the shortest path between two factors.
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experimental setup. Precisely, we generated leakage traces from the well-known noisy
Hamming weight model, where a simulated leakage trace ` is generated from the addition
of normally distributed noise with zero mean and standard deviation σ to the Hamming
weight of an intermediate value x ∈ Zq:

` = HW(x) +N (0,σ)

In the following figures, we report the guessing entropy averaged over 100 independent
experiments for each SNR level, assuming for the sake of simplicity that all variables leak
with the same SNR. The SNR is defined as:

SNR =
Var({HW(x) | x ∈ Zq})

σ2

We perform a logarithmic sweep of σ from 10−1 to 102 where possible. We report the
field size of Zq for each experiment as the value varies depending on the computational
complexity of the inference algorithm under test. Finally, we denote “baseline” as the
results after 50 iterations of an unmodified BP implementation [CB23] in accordance to
the description given in Section 2.2.2.

Let us note that the absolute value of the GE is not very important, and we focus
on the relative performance between the curves. Indeed, these differences show how the
inference method influence the attack result, while the absolute value of the Guessing
Entropy can be improved by parameters out of the scope of this study, such as the number
of attack traces (we do exclusively single-trace attacks, which maximizes the range of SNR
for which interesting results are observed).

4.1 Comparing Exact and Approximate Inference for SASCAs
We introduce our experiments by first comparing exact vs approximate inference methods
for implementing a SASCA to better understand how well BP approximates the correct
solution.

Exact inference vs belief propagation. We compare the results of a SASCA attack
using BP and with exact inference methods. The exact SASCA can be understood as the
optimal attack given the prior information. In Figure 10, we utilize the brute-force method
for exact inference e.g., we exhaustively enumerate all possible states for a given factor
graph to find the most likely key, and in Figure 11 we utilize the variable elimination
method, both described in Section 2.2.1. For masked circuits, the inclusion of ρ fresh
uniform random bits greatly increases the cost of brute-forcing. Since the variables
representing these bits are connected to relatively few factors, the variable elimination
method is able to more efficiently execute the SASCA by successively eliminating them.

The exact inference curves show that BP is still far from optimal. For high SNR cases,
BP and exact inference give very similar results, implying that, for our leakage model,
BP is optimal in low noise settings. As the SNR decreases, the results of BP degrade
much faster than exact inference. This is consistent with the observation by [MWJ99]
and the formalization by [KP17] that increased entropy on the prior information decreases
the stability of BP. Exact inference performs better here since it does not suffer from the
issues described in Section 3.

Although the “gap” between exact and approximate inference is not unexpected, from
a side-channel perspective it leads to interesting observations: (1) for high and low SNR
settings, BP performs about the same as exact inference, and (2) the “middle” SNR range
where exact inference performs much better indicates that BP (or other approximate
inference algorithms) can be tuned to further improve performance. As we discuss in the
next sections, this improvement likely comes with additional computational cost.



R. Nagpal, G. Cassiers, R. Primas, C. Knoll, F. Pernkopf and S. Mangard 19

10 4 10 3 10 2 10 1 100 101

SNR

0

1

2

3

4

5

6

GE

Baseline
Exact

(a) AES - q = 2

10 4 10 3 10 2 10 1 100 101 102

SNR

4

6

8

10

12

14

GE

Baseline
Exact

(b) Ascon - q = 8

10 3 10 2 10 1 100 101 102

SNR

8

9

10

11

12

13

14

GE

Baseline
Exact

(c) ISAP-RK - q = 256

10 4 10 3 10 2 10 1 100 101

SNR

0

2

4

6

8

10

12

14

GE

Guessing Entropy vs SNR
Baseline
Exact

(d) Kyber NTT - q = 2

Figure 10: Exact inference vs. belief propagation implementations of the SASCA

4.2 Do Heuristics Improve the SASCA?
In this section, we review the most relevant BP heuristics suggested in the literature to
characterize their effectiveness in carrying out a SASCA. Specifically, we look at varying
the number of BP iterations, the message damping technique of [MWJ99], techniques for
scheduling BP messages, merging of factor nodes, simplifying the factor graphs of masked
circuits and pruning factor graphs under different conditions.

Iteration count. Tweaking the number of BP iterations is a natural first step when
optimizing the SASCA. A good baseline is typically chosen to be a multiple of the factor
graph’s diameter, such that the information from a node passes along all edges. As
discussed in Section 3.4, multiple iterations along a loop can compound evidence and lead
to overconfidence. In Figure 12, we show the results of running up to 10,000 BP iterations
on our graph selection. We see two behaviors: Either convergence to a fixed stable point,
such as in Ascon and Kyber, or divergence, such as in AES and ISAP. Note, BP converges
within a few iterations – if it does so, running BP for more iterations is not beneficial and
one should consequently limit the maximum number of iterations.

Message damping [MWJ99]. Message damping, or simply damping, is a heuristic
intended to decrease the likelihood of oscillations (described in Section 3.2) by preserving
the “momentum” of message passages. This is achieved by computing a weighted average
between the message sent at iteration t and the previously computed message at iteration
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Figure 11: Belief propagation vs. exact inference for masked Ascon

t − 1. The weight for dampening is parameterized by 0.0 < α ≤ 1.0. Concretely, we
replace Equation 6 with a dampened version:

µXi→fj(t) = α

 ∏
{j′|i∈I(j′)∧j 6=j′}

µfj′→Xi(t)

+ (1− α)µXi→fj(t−1). (10)

Figure 13 shows the effect of damping for different α ∈ [0.01, 0.1, 0.5, 0.9]. For all factor
graphs, damping has no tangible impact on the result of BP.

At first glance, this may appear somewhat surprising, however upon closer inspection,
entirely consistent with observations made in SASCA literature. Damping was first
utilized in [PP19] among several other optimizations. Though the results of the work
yielded an improvement over their previous attack on the Kyber NTT [PPM17], it is
unclear if damping had any meaningful effect, especially with their relatively conservative
damping factor of α = 0.9. It is more likely that the structural changes made to the NTT
factor graph via butterfly factors better explain their results, as discussed later in this
section. In [KPP20], a damping factor of α = 0.75 is used in conjunction with other BP
optimizations.

Later works corroborate our findings. In [YK21], the authors found that damping
did not provide any consistent improvement to their results: “Finally, after not finding
consistent improvements when trying different damping rates, we present our results
without damping”. In [HHP+21], the authors explicitly mention that damping is omitted,
however do not give a reason as to why.

We argue that damping is not advantageous for cryptographic models because of their
inherent structure, a stance supported by the empirical observations for highly structured
problems (see [PI17]). More specifically, BP exhibits two primary failure modes: the
existence of fixed points with subpar approximation quality, and a fragile optimization
landscape characterized by poor convergence behavior. Although damping can mitigate
convergence problems, theoretical evidence suggests that it does not improve convergence in
symmetric models (similar to cryptographic models) that have a bipartite structure [KP17].

Message scheduling. It is well understood that loops in factor graphs can have an
adverse effect on the outcome of BP. Intuitively, a node within a factor graph with cycles
may receive partial information from itself after some number of iterations, which can
be seen as a sort of positive feedback. Therefore, some works suggest controlling the
scheduling of BP messages to minimize the impact of loops, especially small ones. [PP19]
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Figure 12: Comparison of BP over many iterations

first suggested an alternative message scheduling for SASCA attacks on the Kyber NTT.
Messages are propagated from the input layer to the output layer, then back to the input.
This forward-backward cycle is then one iteration of BP. This scheduling was applied in
subsequent works, such as [KPP20]. We refer to this method of message scheduling as
in-order scheduling.

The results of BP with in-order scheduling and uncontrolled scheduling for different
SNRs can be seen in Figure 14. For AES and Ascon, in-order scheduling performs as well
as BP. However, for ISAP-RK and the Kyber NTT graphs, it performs worse. This result
is an artifact of the scheduling algorithm; back and circular propagation is blocked; beliefs
may never be propagated fully in the case of graphs with low diffusion (ISAP) or graphs
with a highly regular structure (Kyber NTT). The diffusion properties of the AES and
Ascon S-box allow for all beliefs to propagate fully in both settings.

An alternative message scheduling scheme, which has not been applied to SASCAs,
is priority scheduling [AAK20]. In this method, all F2V messages (Equation 7) are pre-
computed at iteration t and stored in a priority queue, Q. Each message in Q is sorted
according to a ranking function, Qrank(·), which compares the messages at iteration t with
the ones from the previous iteration t− 1:

Qrank(µ
fj→Xi(t)) =

∥∥µfj→Xi(t) − µfj→Xi(t−1)
∥∥, (11)

where ‖·‖ is an arbitrary norm function. After sorting, only the top p% of messages from
Q are propagated, with the rest being discarded. The goal of priority scheduling is to only
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Figure 13: Comparison of different damping factors, α ∈ [0.01, 0.1, 0.5, 0.9].

propagate messages which contain the largest amount of change, with the assumption that
small messages cause divergence.

In our experiments, we studied the effect of the priority scheduling for p ∈ [25, 50, 75]%.
The Qrank(·) function is defined as the Hellinger distance between the current and previous
iterations of a F2V message:

Qrank(µ
fj→Xi(t)) =

1√
2

∥∥∥∥√µfj→Xi(t) −
√

µfj→Xi(t−1)

∥∥∥∥
2

(12)

The Hellinger distance quantifies the similarity between two probability distributions
and was previously used [GRO18] to improve SASCAs on AES.

Our results in Figure 15 indicate that this scheduling algorithm has no effect on the
outcome of the SASCA. We observed that the convergence effects of this algorithm are
similar to that of message damping. All messages in the graph are eventually propagated,
but at a slower rate than that of the baseline. The parameter p determines the rate of
convergence, but does not reach other solutions.

Merging of factor nodes. It is well known that the structure of the factor graph
impacts the quality of results obtained from BP. In particular, short loops within the factor
graph compound the positive feedback effect, causing divergence or oscillations. [Sto03]
and [Yed04] first observed that BP on factor graphs of the FFT could be improved by
merging factor nodes within the butterfly structure to a single node. [PP19] later applied
this idea to the NTT to improve the SASCA attack on Kyber.
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Figure 14: Comparison of in-order scheduling

We implemented the butterfly factor similar to that of [PP19], defined in Equation 9.
In Figure 16, we show the result of the butterfly factor and the baseline case. For high
SNRs, the butterfly factor case is a significant improvement. As explained in [PP19], the
removal of small loops improves the quality of inference. The addition of this factor in
their work most likely contributes the most meaningful improvement of results compared
to [PPM17].

This improvement comes at increased computational cost. When merging two or more
factors, the scope of the resulting factor increases; the cost of the summation to compute
messages in Equation 7 therefore increases exponentially.

Simplified factor graphs for masked circuits [BS21]. Bronchain et al. describe
modifying the factor graph of a masked circuit to remove the additional complexity of
incorporating descriptions of masked gadgets (e.g., ISW multipliers). In this technique,
they combine the unmasked version of the graph with an encoding graph, where the
variables of an unmasked graph are estimated by their shares i.e., the marginal probability
of x is estimated by the XOR of the marginals on the d-shares of x: Pr[X] = f⊕d

i=0
(Pr[Xi]).

In Figure 17, we compare the result of inference on the simplified graph versus the
true masked graph. The results indicate that both techniques are roughly equivalent,
except for the 2-share graphs in high SNR ranges. This is consistent with our observations
on Figure 11.
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Figure 15: Comparison of priority scheduling for different p-values; p ∈ [25, 50, 75]%.

Dropping high entropy factors. As discussed in Section 3, graph structure and the
contents of individual beliefs can cause BP to perform poorly. Further, Knoll et al. showed
that high entropy in prior evidence on variables (e.g., from noisy leakage measurements)
can cause BP to destabilize [KP17]. These observations motivated us to explore eliminating
factors which propagate beliefs with high entropy. For this investigation, we modify the
numerical experiment setup: the “SNR” parameter σ is now a maximum, and for each
variable node X in the factor graph, we select uniformly at random an actual SNR σX

such that 0 ≤ σX ≤ σ. The leakage is then generated as previously described.

In SASCAs, high entropy beliefs originate from factors connected to variables nodes
whose prior evidence is derived from noisy measurements. In Figure 18, we sort factors
based on the maximum entropy of incoming beliefs, from highest to lowest. Then, we
eliminate factors from the graph according to this ordering, until the graph becomes
acyclic. For all considered factor graphs, this heuristic performs better than baseline BP.
We observe that high entropy beliefs tend to lead to situations similar to that described
in Section 3.4, as higher overall entropy on priors introduces more possible incorrect steady
states BP can reach.

As a control, we also perform a graph pruning BP for the “baseline” experimental
case where all variable nodes have the same SNR (Figure 19). This results in a general
degradation of the performance, leading us to conclude that the cycle pruning heuristic is
not always beneficial.
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5 Discussion

In this paper, we reviewed various techniques to solve the side-channel inference problem and
how belief propagation behaves in the context of the SASCA. First, we analyzed how BP can
lead to misleading or incorrect results under several cases relevant to cryptographic attacks.
Then, we compared SASCAs to exact inference methods such as variable elimination on
Bayesian networks and brute-force enumeration. The main downside of these methods is
their bad performance scaling when considering complex cryptographic circuits, making
them often unusable, but they provide an interesting bound to compare SASCAs against.
Next, we explored various tweaks to belief propagation. While some of these may improve
the quality of the inference results, there is no “one size fits all” solution: the effectiveness
of most tweaks depends on many parameters, including the considered problem (i.e., the
structure of the factor graph), the size of the variables’ domain and the actual probability
distributions (related to the noise level in our experiments).

A consistent positive impact could only be achieved by merging multiple nodes into a
single one, along with strategies such as removing variable nodes with high entropy on
their prior evidence. Merging multiple nodes brings BP closer to exact inference; providing
more accurate results at a higher computational cost. Consequently, our experiments
highlight the important role of the graph structure in enhancing the quality of inference
with BP. In the particular case where some variables are uninformative (low leakage
SNR), though, removing the factors adjacent to these variables from the graph in order to
eliminate cycles would generally lead to significant improvements. Further, we analyzed
the gap between exact inference and BP to quantify the (in-)effectiveness of BP on SASCA
problems. For high SNR cases, BP performs well, performing close to exact inference.
With decreasing SNR, however, a notable performance gap between exact and approximate
inference appears. One possible explanation for the poor performance in this region – given
in [KF09, Chapter 11.3.4] – lies in the nature of the factors within cryptographic factor
graphs: “graphs with factors closer to deterministic are more likely to have problems with
convergence”. Indeed, deterministic factors (such as the ones used to model computations)
are strongly influenced by their parents and a message from one parent “pulls” the belief
in one direction, which may contradict the message from the other parent, which pulls
in another direction, causing oscillations. Non-deterministic factors have a “smoothing”
effect which reduces this effect.
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Figure 17: Comparison of the simplified masked factor graphs.

Let us now discuss the impacts of our findings on side-channel security evaluations.
A first evaluation approach is to find the best possible attack, which in practice implies

finding the best way to run BP. Our results indicate that this is a challenging task, since
there are heuristics that can either improve or degrade the performance of simple BP,
depending on the attack parameters (e.g., factor graph, information on the variables).
A conceptually simple way out of this lack of a uniform behavior is to consider these
heuristics (and their parameters) as hyperparameters of the attack to be automatically
optimized. However, given the large design space, this may be computationally costly and
lead to hard-to-explain results. Narrowing down the most promising heuristic candidates
for particular circuits of interest is therefore a vast area for future investigations.

Another evaluation approach is based on finding upper-bounds to attacks. Here,
our results show that running BP is unlikely to achieve performance near to the exact
inference bound. Further, even considering only BP, it is likely not possible to find general
error bounds [YFW05; PdGF+15]12. To the best of our knowledge, the only attempt at
bounding the capabilities of the SASCA inference has been the local random probing model
(LRPM) [GGSB20; CS19], which is a heuristic technique that uses an information-based
modeling of the BP algorithm. This approach is heuristic in nature, therefore it does not
provide any formal bounds. However, in presence of cycles in the factor graph, it adopts

12The errors in BP have been analyzed for some classes of factor graphs (such as binary MRFs), which
unfortunately do not map to the ones seen in SASCAs with a reasonable complexity. (All SASCA problems
can be expressed as binary MRF graphs, however, the graph complexity scales poorly making the cost of
inference prohibitive.)
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Figure 18: Comparison of removing factors connected to variables with high entropy on
their prior evidence.

the conservative behavior of over-estimating the information. Nevertheless, the LRPM
does not provide an upper bound on the exact inference capabilities, since it may suffer
from the blinding problem, in the same way as BP.

At a higher level, it is still unclear which strategy an ideal evaluation should aim for:
bounding the capabilities of an exact inference attack, or of the best possible BP variant?
The former may be overly conservative, whereas the latter does not provide any concrete
guarantees. Further, it is unclear how well BP performs compared to exact inference in
general, requiring an evaluator to extrapolate based on simplified cases.
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