
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 4, 6 pages.

https://doi.org/10.62056/a3c39qgxq
Check for updates

A Key-Recovery Attack on a Leaky SeaSign
Variant

Shai Levin

University of Auckland, New Zealand

Abstract. We present a key-recovery attack on a variant of the SeaSign signature
scheme presented by [Kim24], which attempts to avoid rejection sampling by presam-
pling vectors f such that the f − e is contained in an acceptable bound, where e is
the secret key. We show that this choice leads to a bias of these vectors such that, in
a small number of signatures, the secret key can either be completely recovered or its
keyspace substantially reduced. In particular, given 20 signatures, with parameter
set II of their paper, the attack reduces the private key to 128 possibilities.
Keywords: Isogeny-based cryptography · Cryptanalysis · CSIDH · Signature
Schemes

1 Introduction
SeaSign is an isogeny group-action based signature scheme, first proposed by De Feo and
Galbraith [DG19], and later refined by [DPV19]. The scheme is derived from a sigma-
protocol for a proof of knowledge of a one-way function obtained by isogeny group-actions.
The security of SeaSign relies on rejection sampling, in a Fiat-Shamir-with-aborts [Lyu09]
setting, where the prover may restart the protocol in order to prevent leaking information
about the secret. The core idea is to ensure that the responses sent by the signer, which
are either ephemeral values or differences between ephemeral values and the secret key,
remain within specific bounds. If a response falls outside these bounds, the signer aborts
the protocol and restarts, thereby preventing any unintended leakage of information about
the secret key.

However, the work by Kim [Kim24], introduces a variant of the SeaSign scheme that
attempts to bypass the need for rejection sampling, eliminating the potential for unnecessary
computations caused by protocol aborts and restarts. The proposed variant claims to
achieve this by pre-sampling commitment vectors such that responses will be distributed
uniformly for either challenge bit, independent of the secret key. However, we show that
this approach inadvertently introduces a bias in the distribution of the responses. The
signer’s attempt to avoid rejection sampling by pre-sampling commitment vectors leads to
a situation where certain responses become impossible, depending on entries of the secret
key.

Notation

Given an indexed set of vectors, we use v(j)
i to refer to the i-th entry of the j-th vector.

We refer to the set {1 . . . n} as [n], and the set of integers between a and b (inclusive) as
[a, b].

E-mail: shai.levin@auckland.ac.nz (Shai Levin)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-10-02 Accepted: 2024-12-03

https://doi.org/10.62056/a3c39qgxq
https://crossmark.crossref.org/dialog/?doi=10.62056/a3c39qgxq&domain=pdf&date_stamp=2025-01-08
https://orcid.org/0000-0003-4632-9488
mailto:shai.levin@auckland.ac.nz
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en


2 A Key-Recovery Attack on a Leaky SeaSign Variant

2 The SeaSign Variant in [Kim24]
Since the cryptanalysis of our work does not depend on the technical nature of isogeny-
based group actions, we will not delve into the technical details of the SeaSign scheme.
Instead, we will briefly describe the relevant features of SeaSign signature generation, and
include a description of the variant proposed by Kim [Kim24].

The SeaSign scheme in [DG19]. SeaSign is based on an identification protocol where
the secret key corresponds to a secret vector e ∈ [−B, B]n which is used as input to a
one-way function:

f(e) = ie1
1 . . . ien

n ⋆ E = E′

where E, E′ are elliptic curves, and ii are elements of the ideal class group of End(E), which
defines a group action on the set of supersingular curves over a finite field Fp. The public
key corresponds to E′, and the signature is a proof of knowledge that the signer knows
the secret key e, with the message tied into the randomness of the challenge computation.

As part of the original protocol, the signer samples, and commits to, random vectors
f (j) ←$ [−(δ + 1)B, (δ + 1)B]n for j ∈ {1, . . . , t}. After receiving t single bit challenges,
for each challenge cj , the signer either sends f (j) if cj = 0 or f (j) − e if cj = 1. However,
for cj = 1, the signer leaks some information about the vector e, since the distribution of
f (j) − e is not uniform in [−(δ + 1)B, (δ + 1)B]n. To avoid this, rejection sampling is used.
After computing the challenge, if a response vector, which is either f (j) or f (j) − e, is not
in the bound [−δB, δB]n, the signer aborts the protocol and restarts. This is repeated
until the signer sends a valid response.

Modifications to Signature Generation in [DPV19]. The approach is refined in
the follow up work [DPV19] where aborts are avoided in the case that cj = 0, since this
only reveals the ephemeral values f (j), and leak nothing about the secret. Furthermore,
given t iterations of the sigma protocol, their protocol tolerates up to u aborts (for u < t)
before the protocol must be re-executed, which substantially improves signature generation
efficiency.

Modifications to Signature Generation in [Kim24]. The approach of [Kim24]
differs from these two prior works by attempting to avoid rejection sampling completely, by
presampling commitment vectors f (1), . . . , f (t) such that f (j) − e ∈ [−δB, δB]n. Since the
signer would not need to abort and restart the protocol, this would prevent unnecessary
isogeny computations, speeding up signing time. However, the key difference is that the
signer cannot know what the challenge bits will be in advance, and cannot prevent bias in
the distributions of the responses.



Shai Levin 3

Algorithm 1 Signature Generation in [Kim24]
Input: message m, pk = (E, EA), secret key e ∈ [−B, B]n
Output: σ = (z(1), . . . , z(t), c1, . . . , ct) ▷ z(j) ∈ [−(δ + 1)B, (δ + 1)B]n, cj ∈ {0, 1}

1: cnt← 1
2: while cnt ≤ t do
3: f (cnt) ←$ [−(δ + 1)B, (δ + 1)B]n
4: b← f (cnt) − e
5: if b ∈ [−δB, δB]n then ▷ Resample if out of acceptable bound
6: z(cnt) ← f (cnt)

7: Ecnt ← i
f (cnt)
1

1 . . . i
f (cnt)
n

n ⋆ E
8: cnt← cnt + 1
9: end if

10: end while
11: c1, . . . , ct ← H(j(E1), . . . , j(Et), m) ▷ Compute the challenge bits1

12: for j from 1 to t do
13: if cj = 0 then
14: z(j) ← z(j) ▷ The leaky case, if cj = 0
15: else
16: z(j) ← z(j) − e
17: end if
18: end for

3 The Attack
We now state an attack on signatures generated by Algorithm 1. Suppose that we are
given samples

f ←$ [−(δ + 1)B, (δ + 1)B]n, such that f − e ∈ [−δB, δB]n

for a fixed, uniform secret e ∈ [−B, B]n. The first observation is that the i-th entries of
sampled vectors are uniformly distributed in the set, i.e.

fi ←$ [−δB + ei, δB + ei],

which is clearly a distribution dependent on the secret e. In order to exploit this key
dependence, our attack amounts to guessing the unknown upper and lower bounds for the
distribution above. Suppose you are given m samples f (1), . . . , f (m). We define

ai = min
j∈[m]

(
f (j)
i + δB, B

)
bi = max

j∈[m]

(
f (j)
i − δB,−B

)
(1)

Theorem 1. Given m vectors {f (j)}j∈[m] such that, for all j ∈ [m] and some fixed
e ∈ [−B, B]n, it holds that f (j) ∈ [−(δ + 1)B, (δ + 1)B]n and f (j)− e ∈ [−δB, δB]n. Then
for i ∈ [n] and ai’s and bi’s computed as per Equation (1), we have that ei ∈ [bi, ai]. In
particular, if ai = bi, then ei = ai = bi.

Proof. Suppose that ei /∈ [bi, ai]. Since ei ∈ [−B, B], we consider either the case that:

ei < bi: in which case bi ̸= −B (since ei ≥ −B), and there exists some maximal f (j)
i such

that f (j)
i = bi + δB. Then f (j)

i − ei = bi + δB − ei > δB, which contradicts the
assumption that f (j) − e ∈ [−δB, δB].

1j(E) is a function which returns the j-invariant of an elliptic curve E (given its curve coefficients over
a finite field).



4 A Key-Recovery Attack on a Leaky SeaSign Variant

ei > ai: in which case ai ≠ B (since ei ≤ B), and there exists some minimal f (j)
i such

that f (j)
i = ai − δB. Then f (j)

i − ei = ai − δB − ei < −δB, which contradicts the
assumption that f (j) − e ∈ [−δB, δB].

Hence the attack is as follows. On input s signatures σ1, . . . , σs:
1. From each signature, collect the set of vectors {z(j)} for which cj = 0. Set m to be

the size of such set.

2. For each i ∈ [n], compute ai and bi as per Equation (1). Output the set of guesses
for e as

⊕n
i=1[bi, ai].

Let Pm,i be probability of m biased vectors leaking the i-th entry of the secret key,
which satisfies the bound:

Pm,i ≥ 1− 2
(

1− 1
2(δ + 1)B + 1

)m

+
(

1− 2
2(δ + 1)B + 1

)m

Hence the probability Pm of m biased vectors leaking the entire secret key satisfies
Pm = P n

m,i. The parameters in this setting are not well suited for approximating the
binomial terms via low-order taylor approximations. For reference, however, with parameter
set II; P6173 ≈ 0.5. Hence, the attack is expected to recover the secret key in a small
number of signatures. We provide practical results of the attack in the next section, which
account for the keyspace reduction of the signing key.

On guessing the correct value of secret scalars By Theorem 1, given m samples
for each entry i ∈ [n], we determine some interval [bi, ai] which contains ei. Fix a row
i. While it might seem intuitive to prioritize values near the mean value of the interval
[bi, ai], we show that given samples f (1)

i , . . . , f (m)
i , the probability that they result from the

distribution [−δB + ei, δB + ei] is uniform for the choice of ei over [bi, ai]. By construction
of Equation (1), we have that f (j)

i ∈ [−δB + ai, δB + bi] for all j ∈ [m]. This interval is
strictly contained in [−δB + ei, δB + ei] if and only if ei ∈ [bi, ai]. Let Dei

be the uniform
distribution on [−δB + ei, δB + ei]. Hence, the event of receiving the observed samples
f (1)
i , . . . , f (m)

i arise from the distribution Dei precisely once when ei ∈ [bi, ai] (and cannot
occur otherwise). Now, observe that for all ei ∈ [bi, ai], it holds that:

Pr[ei | f (1)
i , . . . , f (m)

i ] = #Events where f (1)
i , . . . , f (m)

i arises from Dei

#Events where f (1)
i , . . . , f (m)

i arises from Dx for some x ∈ [bi, ai]

= #Events where f (1)
i , . . . , f (m)

i arises from Dei

(#Events where f (1)
i , . . . , f (m)

i arises from Dx) · (#x ∈ [bi, ai])

= 1
1 · (ai − bi + 1) .

This implies there is no better way to guess the correct value of ei than to guess
uniformly over the interval [bi, ai], indicating the attack is in a sense, optimal.

On avoiding rejection sampling At a high level, the reason why rejection sampling
after the challenge computation cannot be avoided, is that the distribution of responses to
a fixed challenge bit must be independent of the secret in both cases. By forcing a bound
on either f or f − e prior to knowing which challenge bit is chosen, the signer introduces a
bias in the distribution of the responses. In our case, f − e was rejected if out of bounds,
which induced key dependence to the distributions of responses f for c = 0, but indeed the
same issue would occur for responses f −e to c = 1 if instead the resampling was performed
when f did not satisfy some bound. The signer cannot know the challenge bits in advance,
and hence can only perform rejection of leaky responses after challenge computation.



Shai Levin 5

n B δ t

Parameter Set I [DG19] 74 5 9472 128
Parameter Set II [DPV19] 74 5 114 337

Figure 1: Parameter sets used in [Kim24].

4 Implementation and Benchmarks
We implement the key-recovery attack using a sage script available at https://github
.com/levanin/leakysea-public. On each iteration of the experiment, a random key is
sampled and a fixed number of biased samples are generated. The protocol of [Kim24] only
leaks a biased vector when a challenge bit is 0, which occurs with probability 1

2 . So we will
assume that given s signatures with challenge length t, we may obtain

⌊
st
2

⌋
biased vectors.

The attack is efficient, and all of our benchmarking was comfortably performed on a
laptop over a lunch break. We provide the results of our attack given a varying number
of signatures on the parameter sets provided by [Kim24] in Figures 2 and 3, obtained
from the prior works [DPV19,DG19]. Once the keyspace has been reduced to a size 2b, a
meet-in-the-middle search strategy can be used to recover the secret key in time O(2b/2),
using techniques described in [DG19].

We note that the parameter set I requires a larger number of signatures to effectively
perform the attack. This parameter set is designed to handle the high failure probability
of the original SeaSign protocol, so ephemeral vectors must be sampled from a much larger
space. Hence, there is a lower chance of receiving "good" vectors which leak information
about the secret key. We remark that it would have be unreasonable to use these parameters
over parameter set II in the first place, since they do not yield any performance benefits
over existing work. In particular, the performance of the prior work [DPV19] using
parameter set II is roughly 10× faster (2, 195 s) than the performance of [Kim24] running
on parameter set I (27, 685.92 s), with claimed equivalent security levels.

0 5 10 15 20 25 30

0

50

100

150

200

Number of signatures

K
ey

sp
ac

e
siz

e
(in

bi
ts

)

Figure 2: Results of our attack on [Kim24, Parameter Set II]. Results are the mean over 100
random instances. The keyspace refers to the bit-length of the size of the set of possible secret
keys (i.e., if the keyspace is n bits, then the number of possible secret keys is 2n).

https: //github.com/levanin/leakysea-public
https: //github.com/levanin/leakysea-public


6 A Key-Recovery Attack on a Leaky SeaSign Variant

0 500 1,000 1,500 2,000 2,500 3,000
0

50

100

150

200

250

Number of signatures

K
ey

sp
ac

e
siz

e
(in

bi
ts

)

Figure 3: Results of our attack on [Kim24, Parameter Set I]. Results are the mean over 20
random instances.

References
[DG19] Luca De Feo and Steven D. Galbraith. SeaSign: Compact isogeny signatures

from class group actions. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part III, volume 11478 of LNCS, pages 759–789. Springer, Cham,
May 2019. doi:10.1007/978-3-030-17659-4_26.

[DPV19] Thomas Decru, Lorenz Panny, and Frederik Vercauteren. Faster SeaSign signa-
tures through improved rejection sampling. In Jintai Ding and Rainer Steinwandt,
editors, Post-Quantum Cryptography - 10th International Conference, PQCrypto
2019, pages 271–285. Springer, Cham, 2019. doi:10.1007/978-3-030-25510-7
_15.

[Kim24] Suhri Kim. Optimized SeaSign for Enhanced Efficiency. IEEE Access, pages
1–1, 2024. URL: https://ieeexplore.ieee.org/document/10416853/,
doi:10.1109/ACCESS.2024.3360297.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume
5912 of LNCS, pages 598–616. Springer, Berlin, Heidelberg, December 2009.
doi:10.1007/978-3-642-10366-7_35.

https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-25510-7_15
https://doi.org/10.1007/978-3-030-25510-7_15
https://ieeexplore.ieee.org/document/10416853/
https://doi.org/10.1109/ACCESS.2024.3360297
https://doi.org/10.1007/978-3-642-10366-7_35

	Introduction
	The SeaSign Variant in SeaSignkim
	The Attack
	Implementation and Benchmarks
	References

