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Abstract. Robust message authentication codes (MACs) and authenticated encryp-
tion (AE) schemes that provide authenticity in the presence of side-channel leakage
are essential primitives. These constructions often rely on primitives designed for
strong leakage protection, among others including the use of strong-unpredictable
(tweakable) block-ciphers. This paper extends the strong-unpredictability security
definition to the versatile and new forkcipher primitive. We show how to construct
secure and efficient MAC and AEs that guarantee authenticity in the presence of
leakage. We present a leakage-resistant MAC, ForkMAC, and two leakage-resistant
AE schemes, ForkDTE1 and ForkDTE2, which use forkciphers instead of traditional
secure (tweakable) block-ciphers as compared to the prior art. We prove and analyze
their security in the presence of leakage based on a strong unpredictable forkcipher.
A comparison with the state-of-the-art in terms of both security and efficiency is
included in the paper. Key advantages and highlights promoted by the proposed
constructions are that for the minimal assumptions they require, unpredictability with
leakage-based security, the tag-generation of ForkMAC is the most efficient among
leakage-resilient MAC proposals, like the block cipher based HBC. ForkDTE 1 and
2 have a more efficient encryption than any other scheme, achieving integrity with
leakage (and also providing misuse-resistance).

1 Introduction
One of the main goals of cryptography is to provide authenticity. For this purpose, we use
Message Authentication Codes (MAC) and Authenticated Encryption Schemes (AE) when
in addition to authenticity, privacy is required.

Typically, the security of a scheme is proved against an adversary who interacts with
the scheme and obtains its outputs [KL14]. However, in reality, adversaries and computing
devices are in the physical medium, so, we cannot assume that an adversary only receives
the outputs of the protocol. Once a cryptographic scheme is implemented on an electronic
device, an adversary can also measure the physical quantities involved in the computation,
such as time, electromagnetic radiation, power consumption etc. [Koc96, KJJ99, QS01].
From these physical measurements, an adversary can even recover complete secret values
(such as the key). Such attacks are called side-channel attacks (SCAs). However, it is
not always necessary to recover the key to break a scheme. For example, the well-known
AE-scheme OCB can be forged simply by recovering some ephemeral values without any
knowledge of the key [BBB+22]. In addition, any MAC (or AE scheme), that recomputes
the correct tag τ̃ during verification (or decryption) and checks if it is correct (that is,
Vrfyk(m, τ) computes τ̃ = Mack(m) and checks if τ̃

?= τ) can be forged simply by recovering
τ̃ via a SCA.
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To solve this, one option is to strongly protect (against side-channel adversaries utilizing
leakages) both the computation of τ̃ and the tag-comparison stage [DM21]. To avoid
protecting all these computations, another strategy can be used in the verification: use
the inverse of a block-cipher, so that we do not have to avoid recomputing the correct tag,
but instead we can perform the check on another value, which, if leaked, will not cause
any damage [BPPS17].

Many works on authenticity in the presence of leakage assume the existence of a
“leak-free” component. Although it may be theoretically possible to obtain such a primitive
(e.g., by using a high-order masking protection), their implementation would be extremely
costly [GR17, JS17, SL23, CGLS21]. Furthermore, it is impossible for an evaluation
laboratory to test whether an implementation is leak-free or not since there is no well-
defined game. For example, consider the fact that typically all implementations of
a block-cipher, even if SCA-protected, trivially leak various parameters from a simple
observation: the number of rounds, architectural properties of the block-cipher, information
about sub-rounds and number of Sbox executed in parallel, and structural properties of
the software or hardware code etc. But is this information meaningful? And what part of
it is and what is not? In order to address these questions, Berti et al. [BGP+19] extended
the unpredictability in the presence of leakage of Dodis and Steinberger [DS09] introducing
strong unpredictability in the presence of leakage (sU-L2) for block-ciphers (BC). Roughly
speaking, a BC F is sU-L2 if it is difficult for an adversary to find a fresh and valid couple
(input, output), even having oracle access to Fk, its inverse F−1

k and the leakage of all these
queries. Using a sU-L2 BC and no other security assumptions in the presence of leakage,
it is possible to prove the security of a MAC with both tag-generation and verification
leaking in the random oracle model [BGP+19], or in the standard model either with a
tweakable BC (TBC) (that is, a BC with an additional input, the tweak, allowing more
flexibility [LRW11]) or with a strong assumption on the hash [BGPS21]. Admittedly,
leak-free and sU-L2 implementations could lead to similar practical requirements, but with
sU-L2 it is possible to base security on a more solid assumption, which can be falsified
and, which can gracefully degrade| [BGP+19].

Andreeva et al. [ALP+19] introduced a new, efficient, interesting and flexible primitive:
forkciphers which map N bits into 2N bits. The idea is to have two independent pseudo-
random permutations, but the cost of computing them is amortized. Therefore, forkciphers
use an additional input, 0, 1, b which indicates which output (or both) is wanted. So,
if FC is a forkcipher, FCk(x, b) = (FCk(x, 0), FCk(x, 1)) = (y0, y1), where both FCk(·, 0),
and FCk(·, 1) are two permutations. We can also define the inverse forkcipher, FC−1 for
which from yi outputs x and/or yi⊕1. Thus, FC−1 takes two additional inputs: one input
indicating whether we want the inverse (i), the other output (o), or both (b), and another
input which is either 0 or 1 to understand which output of FC is the input of FC−1

k . For
correctness, FC−1

k (FCk(x, 0), 0, o) = FCk(x, 1) (Fig. 1).
This allows us to have a building block for authenticated encryption schemes that

is more efficient and more flexible. Forkciphers have recently been used to build en-
cryption schemes, MAC, AE schemes, pseudorandom-generators and efficient pseudo-
random functions [ALP+19, ABPV21, ACL+24, ARVV18a, AW23, BBDL23, DGL22].
The flexibility of forkciphers allows to build a leakage resilient authenticated encryption
scheme, FEDT [DDLM24], based on EDT (proposed in [BPPS17]) and TEDT (proposed
in [BGP+20]), where the forkcipher performs the rekeying and produces each time two
new refreshed keys [DDLM24] (i.e., k2i∥k2i+1 = FCki

(i) 1).

Contributions. The goal of this paper is to show how we can use forkciphers to
build leakage-resilient MACs and AEs to provide authenticity in the presence of leakage.

1We have simplified their idea, which involves a tweak and a nonce [DDLM24].
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Figure 1: A schematic illustration describing a forkcipher (Def. 3) [ALP+19]. We represent
FCk(x, b), FCk(x, 1), FC−1

k (y0, 0, i), FC−1
k (y1, 1, o), and FC−1

k (y1, 1, b)

First, we define strong unpredictability (sU-L2) for forkciphers, adapting the definition
from [BGP+19]. Particularly tricky is the formalization of what are fresh input/output
couples.

Second, using a sU-L2 forkcipher FC we can build a leakage-resilient MAC, ForkMAC.
The idea is to use one of the FC’s outputs as the tag and do the verification on the
other. That is, τ = FCk(H(m), 0), with H a hash function; and we check if FC−1

k (τ, 0, o) ?=
FCk(H(m), 1).

Third, we prove that using a strongly protected fork-cipher FC, we can construct
a nonce-based2 AE scheme which provides integrity in the presence of leakage in both
encryption and decryption. To do this, we start with the DTE2 construction [BPPS17],
and we use FC to compact the two calls to the leak-free TBC. From the hash of the nonce
and the message, we can directly obtain the tag and the first ephemeral key via FC, that
is, (τ, k0) = FCk(H(n, m)), where τ is the tag and k0 is an ephemeral key. From this
ephemeral key, using an encryption scheme based on rekeying, as PSV [PSV15], we can
encrypt the message. In decryption, given τ , we recompute k0, from which we recompute
the nonce and m.

In the paper we provide two leakage-resilient AE schemes: (1) ForkDTE 1 which uses
the original check of DTE2 and Hash-then-MAC, that is, checking if FC−1

k (τ, 0, i) ?= H(n, m),
where n and m are retrieved in the verification. ForkDTE 1 uses a single call to FC in
decryption, but requires the assumption that FC is leak-free to achieve security; and (2)
ForkDTE 2 which uses the idea of ForkMAC to establish the validity of a ciphertext. So
it needs two calls to FC in decryption. Its security in the presence of leakage is achieved
assuming that FC is sU-L2. Finally, we show how we can combine our constructions with
the encryption part of FEDT [DDLM24].

2 Background
Notations. Let {0, 1}n be the set of all the n-bit strings and {0, 1}∗ be the set of all finite
strings. Given two strings x and y, let x∥y be their concatenation and |x| be the length of
the string x. When we pick x uniformly at random from the set S, we use x

$← S. To parse
a string x in N -bits blocks, we divide x in x = (x1, ..., xℓ) with |x1| = ... = |xℓ−1| = N ,
|xℓ| ≤ N , and x = x1∥...∥xℓ (ℓ is the number of blocks of the string x). Let y be a string
and x ∈ N. With πx(y) we denote the rightmost x bits of the string y. Let X be a set
containing vectors. With (x, ·) ∈ X , we denote that there is an element (x, y) ∈ X . With
∅, we denote the empty set.

A (q1, ..., qd, t)-adversary A is a probabilistic algorithm, which is allowed qi queries
to oracle Oi and runs in time bounded by t. With y ← AO1,...,Od(x), we denote that
adversary A on input x, with access to oracles O1, ...,Od outputs y.

2To avoid using a probabilistic encryption scheme, the encryption takes an additional input, the nonce,
which should not repeat in different encryption queries [RS06].
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2.1 Hash Functions, Block-Ciphers, and Forkciphers
To build our schemes we will use hash functions, block-ciphers, and forkciphers.

Hash functions. We use hash functions to compress data. For an adversary, it should
be difficult to find a collision, (2 different inputs with the same output):

Definition 1. A hash function H : HK×{0, 1}∗ → {0, 1}N is (t, ϵ)-collision resistant (CR)
if ∀ t-adversaries A

Pr[(m0, m1)← A(s) s.t. Hs(m0) = Hs(m1) | s
$← HK] ≤ ϵ.

Since the key s of the hash function is public, we may omit it.

Block-ciphers. We use block-ciphers to produce pseudorandom random values.

Definition 2. A block-cipher E : K×{0, 1}N → {0, 1}N is a (q, t, ϵ)-PRP (Pseudo Random
Permutation) if for any (q, t)-adversary A

|Pr[1← AEk(·)]− Pr[1← Af(·)]| ≤ ϵ

where k
$← K, and f $← PERM, where PERM is the set of the permutations over {0, 1}N .

If f is picked from FUNC, the set of functions {0, 1}N → {0, 1}N , E is a pseudo-random
function, PRF.

A tweakable blockcipher (TBC), Def. 11, App. A, has an additional input, the tweak,
providing more flexibility. Thus, E : K × T W × {0, 1}N → {0, 1}N , with Ek(tw, ·) a
permutation, ∀(k, tw) [LRW11]. We often denote E(k, tw, x) with Etw

k (x).

Forkciphers. To have a more flexible primitive than a block-cipher, Andreeva et
al. [ALP+19] introduced a new primitive, the fork-cipher. It takes an input x and
produces two outputs, y0 and y1. From either y0 or y1 we can reconstruct the input x.
Formally:

Definition 3 ([ALP+19]). A forkcipher is a couple of deterministic algorithms
FC : K × {0, 1}N × {0, 1, b} → {0, 1}N ∪ ({0, 1}N ∪ {0, 1}N ), and

FC−1 : K × {0, 1}N × {0, 1} × {b, i, o} → {0, 1}N ∪ ({0, 1}N ∪ {0, 1}N ),

s.t. ∀k ∈ K, x ∈ {0, 1}N , j ∈ {0, 1}:
• FC(k, ·, j) is a permutation,
• FC−1(k, FC(k, x, j), j, i) = x,
• FC−1(k, FC(k, x, j), j, o) = FC(k, x, j ⊕ 1),
• (FC(k, x, 0), FC(k, x, 1)) = FC(k, x, b), and
• (FC−1(k, x, j, i), FC−1(k, x, j, o)) = FC−1(k, x, j, b)

We often use FCk(x, j) for FC(k, x, j).

We depict a forkcipher in Fig 1. A forkcipher is secure if its outputs are indistinguishable
from those of an idealized primitive, that is, one with the same syntax as FC, but
implemented with f0 and f1, two random permutations.

Definition 4. A forkcipher FC is a (qE , qI , t, ϵ)-pseudo random forkcipher permutation
(PRFP) if for any (qE , qI , t)-adversary A,

|Pr[1← AFCk(·,·),FC−1
k

(·,·,·)]− Pr[1← AF̃ (·,·),F̃ −1(·,·,·)]| ≤ ϵ,

where k
$← K, and F̃ is the ideal version of FC, implemented with two permutations f0, f1

picked uniformly at random from the set of permutations over {0, 1}N .
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2.2 MACs and Authenticated Encryption Schemes
In the previous section, we have formally defined hash functions, block-ciphers and
forkciphers. These are the building blocks of the MAC and AE primitives, which we define
here. We use a Message Authentication Code, MAC, to authenticate.

Definition 5. A Message Autentication Code (MAC) is a triple of algorithms Π =
(Gen, Mac, Vrfy) where

• The key-generation algorithm Gen generates a key from the sets of keys, K.
• The tag-generation algorithm Mac is a deterministic algorithm which takes as input

a key k ∈ K, and a message m ∈ M, and outputs a tag τ . We denote this with
τ ← Mack(m).

• The verification algorithm Vrfy is a deterministic algorithm which takes as input
a key k ∈ K, a message m ∈ M, and a tag τ , outputs either ⊤ (“valid”) or ⊥
(“invalid”). We denote this with ⊤/ ⊥= Vrfyk(m, τ).

We require correctness, that is ∀(k, m) ∈ K ×M, ⊤ = Vrfyk(m, Mack(m)).

To authenticate and encrypt we use an authenticated encryption (AE) scheme. We
assume that there is an additional input, called the nonce, that should not be reused in
different encryption query (see [RS06]).

Definition 6. A nonce-based authenticated encryption (nAE) scheme is a triple of algo-
rithms Π = (Gen, Enc, Dec) where

• The key-generation algorithm Gen generates a key from the sets of keys, K.
• The encryption algorithm Enc is a deterministic algorithm which takes as input a

key k ∈ K, a nonce n ∈ N , and a message m ∈M, and outputs a ciphertext c ∈ C.
We denote this with c← Enck(n, m).

• The decryption algorithm Dec is a deterministic algorithm which takes as input a
key k ∈ K, and a ciphertext c ∈ C, and outputs a message m ∈M or ⊥ (“invalid”).
We denote this with ⊥ /m = Deck(c).

We require correctness, that is ∀(k, m) ∈ K ×M, m = Deck(c) if c← Enck(n, m) for any
nonce n ∈ N .

Here we follow the syntax proposed by Bellare et al. [BNT19], where the nonces are
not an input of the decryption algorithm. For simplicity, in the main bulk of the paper,
we do not consider here associated data, that is, data that need only to be authenticated,
and not encrypted [RS06]. The appropriate definition (Def. 16) can be found in App. A.

2.3 Authenticity in the Presence of Leakage
Both the previous constructions, MAC and AE, aim to provide authenticity. Here, we give
the authenticity definitions in the presence of leakage. We start introducing the leakage
and how we model it.

Leakage. Cryptographic algorithms are usually implemented on electronic devices. When
an adversary has physical access to an electronic device, not only can she query the oracle
O, to get its answer, but she can also access and measure the physical quantities produced
during the oracle’s computation, as time, power consumption and electronic-magnetic
radiation [Koc96, KJJ99, QS01]. We represent this additional information with the leakage
function LO, and we denote that an oracle leaks appending the suffix L to the oracle, that
is, OL. Thus, when an adversary has access to a leaking oracle, AOLk , and she queries
the oracle on input x, she receives the oracle’s answer with the leakage function output
LO(x; k).

When an adversary can model the leakage of an oracle, we denote this with AL. This
means that the adversary can query the leakage function LO, choosing all the inputs, that
is, both x and the key k′ (k′ is different from the key k of the oracle OLk). These queries



6 Authenticity in the Presence of Leakage using a Forkcipher

Table 1: The FORGEL2suf-vcma-L2
MAC,LM ,LV ,A experiment (vcma stands for Verification and Chosen

Message Attacks).

The FORGEL2suf-vcma-L2
MAC,LM ,LV ,AL experiment

Initialization: Oracle MacLk(m):
k ← Gen τ = Mack(m)
S ← ∅ S ← S ∪ {(m, τ)}

Return (τ, LM (m; k))
Finalization:

(m, τ)← AL,MacLk(·),VrfyLk(·,·) Oracle VrfyLk(m, τ):
If (m, τ) ∈ S or ⊥ = Vrfyk(m, τ) Return

Return 0 (Vrfyk(m, τ), LV (m, τ ; k))
Return 1

correspond to the training phase that can be performed as part of an attack (for example
in profiled side-channel analyses) [PSV15].

Now, we move to the security definitions in the presence of leakage. A secure MAC
in the presence of leakage, is a MAC for which it is difficult to forge, that is to provide a
fresh and valid couple message, tag, even if the adversary has access to MacL, VrfyL and
can model the leakage. Formally:

Definition 7 ([BGP+19]). A MAC = (Gen, Mac, Vrfy) with tag-generation leakage function
LM and verification leakage function LV is (qL, qM , qV , t, ϵ)-strongly existentially unforgeable
against chosen message and verification attacks with leakage in the tag-generation and the
verification (sUF-L2) if for all (qL, qM , qV , t)-adversaries AL, we have:

Pr
[
1← FORGEL2suf-vcma-L2

MAC,LM ,LV ,A

]
≤ ϵ,

where the FORGEL2suf-vcma-L2 experiment is defined in Tab. 1.

For simplicity, in the proofs, we consider the verification query induced by the final
output of the adversary as the (qV + 1)th verification query.

The definition for authenticity with leakage for nAE schemes is analogous. We want
that it will be difficult for an adversary to find a fresh and valid ciphertext, even if the
adversary has access to EncL and DecL. Here, we allow the adversary to misuse the nonce,
that is, the adversary can repeat the nonce in different encryption queries.

Definition 8 ([BPPS17]). A nAE-scheme Π = (Gen, Enc, Dec) provides (qE , qD, t, ϵ)-
ciphertext integrity with nonce misuse and leakage in encryption and decryption (CIML2),
if for any (qE , qD, t)-adversary A

Pr[c← AEncLk(·,·),DecLk(·) | s.t. c is fresh and valid] ≤ ϵ. (1)
With fresh we denote that c has never been obtained as an answer from a EncLk(n, m)
query for any (n, m), and with valid that Deck(c) ̸=⊥.

The CIML2 game, is a straightforward adaptation of the FORGEL2suf-vcma-L2 game
(Tab. 1) to the nAE -syntax. We depict it in Tab. 6 in App. A.7.

Unbounded leakage model. To give a leakage function that is both: (1) realistic, that
is, coherent with concrete attacks on actual implementations, and which does not give
artificial bounds on what can be leaked (e.g., limiting the number of bits of leakage), and
(2) useful, that is, which we can use to prove the security of a scheme, is a tough problem.
For these reasons, the concept of leveled implementation has been introduced [PSV15]:
it leverages two types of implementations for the building blocks of a scheme: strongly
protected, modeled as leak-free or strongly unpredictable with leakage (sU-L2), and
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weakly or unprotected. Since the strongly protected implementations are very slow and
costly [GR17, JS17, SL23, CGLS21], the idea is to use as few calls to them as possible and
to process the bulk of the computations with far lighter implementations in terms of cost.

For integrity, we assume that the strongly protected blocks are either leak-free or
sU-L2. That is, they leak the inputs, outputs, but not the secret values (for example, for
a block-cipher, the key). Moreover, for sU-L2, there is a leakage of the computation. By
contrast, weakly or unprotected implementations leak all their inputs and outputs, even
the secret ones. This is the so called unbounded leakage model [PSV15, BKP+18]. Here,
we use a forkcipher as a strongly protected component.

The unbounded leakage model has a nice illustrative figure which we explain later with
Fig. 3 in respect with our proposed forkcipher based construction.

Note that for privacy, we cannot assume that these weakly protected blocks leak
unboundedly. Since their keys are used few times, we then typically assume that their
leakage is not substantial and it does not lead to a break in the security of the protocol.
This is typical with leveled-implementations and we mostly refer to these previous works
for the confidentiality part of our analyses.

3 Strongly Unpredictability with Leakage for Forkci-
pher

For the security of a forkcipher FC in the presence of leakage L we start from the strong
unpredictability definition in the presence of leakage [BGP+19] (the natural extension of
unpredictability [DS09, DS11]) for block-ciphers, and we adapt to forkciphers. Roughly
speaking we want that an adversary cannot produce a fresh and valid triple (input, selector,
output), even if she can model the leakage, has oracle access to FC with its leakage, and
FC−1 with its leakage. Let (x, sel, y) be the prediction of the adversary, x, y ∈ {0, 1}N ,
sel ∈ {0, 1, o}. We deem (x, sel, y) valid, if FCk(x, sel) = y if sel ∈ {0, 1}, otherwise if
FC−1

k (x, 0, o) = y.
Particularly tricky is to precisely formalize what means fresh. For example, if an

adversary has only called FCk on input (x, 0), we should deem (x, 1, z) fresh. On the
other hand, if an adversary has called FCk on input (x, 0) obtaining y, then she has called
FC−1

k on input (y, 0, o) obtaining z, if she outputs (x, 1, z), which is correct, we deem this
prediction invalid. We give an illustrative representation of this in Fig. 2. For simplicity,
we do not allow the adversary to output (x, (y0, y1), b) as her prediction because if this is
valid, that is, FCk(x, b) = (y0, y1) and fresh, then the adversary could also win with one of
these two predictions: (x, 0, y0) or (x, 1, y1). We formalize this in the following:

Definition 9 (sU-L2). A forkcipher FC : K × {0, 1}N × {0, 1, b} → {0, 1}N ∪ ({0, 1}N ∪
{0, 1}N ) with leakage function pair L = (LFC, LFC−1) is (qL, qF , qF −1 , t, ϵ) strongly unpre-
dictable with leakage in evaluation and inversion (sU-L2), if for any (qL, qFC, qFC−1 , t)-
adversary A, we have Pr[1← sU-L2A,FC,L] ≤ ϵ, where the sU-L2 experiment is defined in
Tab. 2, and where AL makes at most qL (offline) queries to L.

x

y0 y1

x

y0 y1

x

y0 y1

x

y0 y1

Figure 2: A schematic description of fresh and not fresh queries options for forkciphers.
With black (solid) arrows we denote queries done by the adversary, with blue (dashed)
arrows fresh predictions, while with red (dotted) not fresh predictions.

To distinguish between fresh and not fresh predictions, we use a set C to keep in memory
the queries done by the adversary. The idea is to keep in memory (x, y0, y1) for any query
with FCk(x, b) = (y0, y1). But, when a query does not give all these values, we flag the
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Table 2: Strong unpredictability with leakage in evaluation and inversion experiment. The
Add, Fresh, and AddI and Fresh algorithms are depicted in Tab. 7, and Tab. 8 in App. D.

The sU-L2A,FC,L experiment.
Initialization: Oracle FCLk(x, sel):

k
$← K y = FCk(x, sel)

C ← ∅ leak = LFC(x, sel; k)
C ← Add((x, sel, y, d), C)

Finalization: Return (y, leak)
(x, sel, y)← AL,FCLk(·,·),FC−1Lk(·,·,·)

If 0 = Fresh((x, sel, z), C) Oracle FC−1Lk(x, sel, sel′):
Return 0 y = FC−1

k (x, sel, sel′)
If y = FCk(x, sel) leak = LFC−1(x, sel, sel′; k)

Return 1 C ← AddI((x, sel, sel′, y), C)
Return 0 Return (y, leak)

missing value with gu (which stands for this value can be guessed). When a new query to
either FC or FC−1 is done, first, we see if it completes a previous query (thus removing the
flag gu and replacing it with the correct value), otherwise we add the obtained values as a
new triple. The Add oracle takes the set C and add the input and outputs of an FC query,
while the AddI oracle does the same for FC−1 queries. We deem a prediction as fresh if
either there is no entry in C with any of the two values of the prediction (in the exact
places) or if there is an entry with one value in the correct place and the other value is
deemed guessable (gu). We do this with the oracle Fresh. These oracles are described in
Tab. 7 and Tab. 8 in App. D.

4 ForkMAC, a MAC based on a Forkcipher
Here, we show that we can use a forkcipher to build a MAC which is secure in the presence
of leakage in the unbounded leakage model. We start introducing the scheme, then, we
prove its security.

4.1 Description of ForkMAC
One of the main challenges in designing a leakage-resilient MAC is the verification algorithm.
Often, the verification queries are done by recomputing the correct tag, and comparing this
value with the tag provided to assess the validity of the query (systematic). That is, for
example, in the well-known Hash-then-MAC [KL14], the Mac first hashes the message and
then uses a block-cipher with the hash as input to compute the tag (that is, τ = Ek(H(m))).
For verification, simply on input (m, τ), the algorithm checks if τ̃ = Ek(H(m)) ?= τ .
This comparison may be attacked when the adversary exploits leakage, and needs to be
protected [DM21, BPPS17]. In the unbounded leakage model every verification algorithm
that recomputes the correct tag is insecure since the correct tag is leaked. Thus, if we
want a leakage-resilient MAC in the unbounded leakage model, we need the verification
algorithm to perform its check on something else.

Berti et al. [BPPS17] proposed with HBC2 to exploit the inverse of the block-cipher in
verification for the Hash-then-MAC: for a verification query on input (m, τ), they check if
H(m) = E−1

k (τ). The idea is that if E is a leak-free block-cipher, h̃ = E−1
k (τ) is random,

thus, even the adversary knows h̃, she cannot forge because she should find a pre-image
for a random value, and it is enough to assume that the hash function is range-oriented
pre-image resistant (Def. 10, App. A). If E is sU-L2, the previous MAC is leakage -resistant
either in the random oracle model [BGP+19] or in the standard model adding a strong
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hypothesis on the hash function [BGPS21].

Forkciphers allows us to find a different value to check the validity of a verification query:
we use FCk(H(m), 0) as the tag and in verification we check if FCk(H(m), 1) = FC−1

k (τ, 0, o).
If an adversary gets FCk(H(m), 1), she has obtained nothing because still she needs to
guess FCk(H(m), 0). This is the idea behind ForkMAC which is detailed in Alg. 1 and
Fig. 3 (the tag-generation is depicted in Fig. 5, in App. E).

Algorithm 1 ForkMAC, a sUF-L2-secure MAC based on a forkcipher.
• Gen:

– k
$← K

– s
$← HK (s is a public parameter)

• Mack(m):
– h = Hs(m) // digest
– τ = FCk(h, 0) // tag
– Return τ

• Vrfyk(m, τ):
– h = Hs(m)
– v = FCk(h, 1)
– ṽ = FC−1

k (τ, 0, o)
– If v = ṽ Return ⊤, Else Return ⊥

F

k 1

v

hHm

?
= ṽ

F−1

ko

τ
unprotected prim

strongly prot prim

Legend

key strong prot p

ephemeral value

input / output

Figure 3: The verification of ForkMAC - Alg. 1 (the tag-generation algorithm can be found
in Fig. 5, App. E). We have a leveled implementation (Sec. 2.3), which is graphically
represented. We distinguish between strongly protected primitive (in gray), and unprotected
(in white). In the unbounded leakage model, we give to the adversary the ephemeral values
(the orange ones) via leakage. We assume that only the keys of the strongly protected
primitives are protected (these are the red ones) and not leaked.

4.2 sUF-L2 Security of ForkMAC
Now, we prove that our ForkMAC is leakage resistant. First, we define the leakage functions
of Mac and Vrfy, then we give the intuition for security (a full proof is provided in the
appendix).

Leakage functions. We assume that only the forkcipher is strongly protected. Let
LFC(x, sel; k) and LFC−1(x, sel, sel′; k) be its leakage functions. Then, according to the
unbounded leakage model

• LMac(m; k) := (h, LFC(h, 0; k)) with h = Hs(m).
• LVrfy((m, τ); k) := (h, v, ṽ, LFC(h, 1; k), LFC−1(τ, 0, o; k)) with v = FCk(h, 1) and ṽ =

FC−1
k (τ, 0, o).
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Now, we can state the leakage-resistance of ForkMAC

Theorem 1. Let FC : K × {0, 1}N × {0, 1, b} → {0, 1}N ∪ ({0, 1}N )2 be a (2qL, qM +
qV , qV , t1, ϵsU-L2)-strongly unpredictable forkcipher. Let H : HK × {0, 1}∗ → {0, 1}N be
a (t2, ϵCR)-collision resistant hash function. Then, ForkMAC with the leakage function
described above is (qL, qM , qV , t, ϵ)-sUF-L2 MAC, with

ϵ ≤ ϵCR + [(qV )2 + 1]ϵsU-L2,

t1 = t + (qL + qM + qv + 1)tH, t2 = t + (qM + qV + 1)tH + (qM + 2qV )tFC, where tH is the
time needed to evaluate once the hash function, and tFC is the time to evaluate once FC
and collect its leakage.

Here, we have a worse bound [(qV )2 + 1]ϵsU-L2 instead of the expected (qV + 1)ϵsU-L2
because the adversary has an additional winning strategy: finding a collision between vi

and ṽj for two different verification queries, the ith with vi = FCk(hi, 1), and the jth
where ṽj = FC−1

k (τ i, 0, o). Note that without leakage, the security of this scheme would
have been the standard security (as proved in Thm. 4, App. B.2),

ϵ = ϵPRF + ϵCR + qV + 1
2N

.

Idea of the security argument. Let (m, τ) be the first fresh and valid verification
query (if there is one, the adversary can simply output it as her forgery) and let h = H(m).
There are two cases:

• There is a previous tag-generation query with input m′ s.t H(m′) = h′ = h
• There is no such tag-generation query.

We can easily treat both cases. In fact:

• If h′ = h we have found a collision for the hash function.
• Otherwise, either (h, 0, τ) is a fresh and valid prediction or it is not fresh.

– If it is fresh, then, we have broken sU-L2.
– If it is not fresh, this means that there have been two previous verification

queries one on input (mi, τ i) and one on input (mj , τ j) s.t. mi = m and τ j = τ
s.t. vi = ṽj . We have two possible situations: i < j or i > j (if j = i, then
(mi, τ i) would have been the first fresh and valid verification queries, contrary
to our hypothesis). Thus,

∗ if i < j, then, in the jth verification query the prediction (τ j , vi, o) would
have broken the sU-L2 security of FCk. In the jth query there are at most
j − 1 possible target for vi.

∗ if i > j, then, in the ith verification query the prediction (hi, ṽj , 1) would
have broken the sU-L2 security of FCk. In the ith query there are at most
i− 1 possible target for ṽj .

In the proof, which can be found in App. B.1, we present the ideas slightly differently
to have a better security bound.

4.3 Comparison with Other Leakage Resistant MACs
Notably, BCs implementations were deeply investigated in literature. Consequently plethora
of implementations, performance- and security- analysis exist. Forkciphers on the other
hand are new, whereas only few implementations proposals exist. Meaning comparison in
terms of implementation efficiency is hardly fair. Even-though, in this section we compare
security aspects in a high-level; we supplement this comparison with so called rough
efficiency analysis. We make the general assumption (similarly to [ALP+19, ABPV21,
ACL+24, ARVV18a]) that a forkcipher is cheaper than a blockcipher per the functionality
it provides, that protecting a forkcipher is cheaper than protecting a blockcipher per the
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functionality it provides. I.e., whereas a BC and a FC(·, 0) are equivalent, a FC provides
more functionality, with an amortized cost [ALP+19, ABPV21, ACL+24, ARVV18a],
especially in the full (e.g.,) AE or MAC levels. And similarly, that an unsecured forkcipher
is less expensive than an unsecured blockcipher, again per the functionality it provides.

With respect to HBC2 [BPPS17] ForkMAC achieves the same black-box security. We
can prove its sUF-L2-security assuming that FC is sU-L2 in the standard model without
any ideal (or strong) hypothesis on the hash function H. On the other hand, it is less
efficient in verification because we need two calls to the forkcipher with respect to a single
call to the blockcipher, and sUF-L2-security is worse when we assume that the strongly
protected component is leak-free.

With respect to HTBC [BGP+19] (Alg. 6, App D), a version of HBC, where a tweakable
block-cipher (TBC) is used, ForkMAC will achieve worse security bound in black-box
(because HTBC is beyond-birthday) as we are bounded by the collision resistance of the
hash function. However, we conjecture that ForkMAC is more efficient in tag-generation
since we are comparing a single forkcipher call to a single TBC call. For example, the
minimal state needed can be smaller [BPA+23]. Moreover, to the best of our knowledge,
there are no forkciphers that are not tweakable. Clearly, as a rather new primitive, we
acknowledge that further studies on the comparison between a forkcipher and a TBC are
needed. Finally, for HTBC, as for HBC, it is impossible to provide sUF-L2-security in the
standard model when the TBC is sU-L2 without a strong hypothesis on H. Inspired by
HTBC, we can build ForkTMAC (Alg. 4, App D) a variant of ForkMAC which is based on
a tweakable forkcipher, Def. 11). ForkTMAC provides beyond-birthday security black-box.

With respect to the LR-MAC [BGPS21] which is sUF-L2-secure in the standard model
using a sU-L2 TBC, we have the same black-box security, but worse sUF-L2-security.
However, we conjecture that ForkMAC is more efficient in tag-generation since we are using
a single call to a forkcipher, with respect to a single call to a TBC for the reasons detailed
before Using a tweakable forkcipher with tweak as big as the block we can have beyond
birthday blackbox security, while LR-MAC needs a TBC whose tweaks have twice the size
of its blocks.

Finally, ForkMAC is much more efficient than ISAPMAC [DEM+17] which is a leakage
resilient MAC since, here we have only a call to a forkcipher to achieve leakage protection
while ISAPMAC execute n rounds of a sponge. I.e., to prevent differential power attack
susceptibility the key is absorb bit-by-bit by the sponge. Moreover, ISAPMAC have
to protect the comparison in verification using a permutation-based value processing
function [DM21].

We sum up the comparisons in Table 3.

5 ForkDTE - Authenticated Encryption
In this section, we show that we can use a forkcipher as a strongly protected component
to build a nAE-scheme.

5.1 Overview of ForkDTE
DTE [BKP+18] and DTE2 [BPPS17]: We start from the DTE (Digest-Tag-and-
Encrypt) nAE encryption scheme [BKP+18]. DTE starts from a leakage-resistant en-
cryption scheme, PSV (detailed in Alg. 3 in App. D, and in Fig. 6) [PSV15].

• PSV [PSV15]: from a first ephemeral key k1 (which is generated from the master
key), a pseudo-random value y1 is created, y1 = FCk1(PB) which is XORed to the
first block of the message, generating the first ciphertext block c1 = y1 ⊕m1, then,
the key k1 is refreshed, k2 = FCk1(pA) (pA and pB are two public values). Iterating,
we can encrypt the full message.
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Table 3: Comparison between different leakage-resistant MACs cost/resources factors. In
all schemes we omit the hash function cost which is used by all the schemes. BBB stands
for Beyond-birthday secure (in the black-box case), ro-PR and RO stands for the need of a
range-oriented pre-image resistance hash or the random oracle model for the proof in the
case of leakage. With FC(1) (resp. TFC) we denote the use of a call to a forkcipher (resp.
tweakable forkcipher) with a single output, PERM denotes the use of a permutation, and
k is the number of bits of the key. The tweak, if not otherwise specified, is assumed to be
as long as the input, with TBC[2n], we denote that the input is 2n bits long.

Construction Mac cost Vrfy cost BBB Model ro-PR RO
ForkMAC FC(1) 2FC(1) X sU-L2 X X
ForkTMAC TFC(1) 2TFC(1) ✓ sU-L2 X X
HBC
2 [BPPS17]

BC BC X LF ✓ X

[BGP+19] BC BC X sU-L2 X ✓
HTBC
2 [BGP+19]

TBC TBC ✓ LF ✓ X

TBC TBC ✓ sU-L2 X ✓
LR-MAC [BGPS21]TBC TBC X sU-L2 X X

TBC[2n] TBC[2n] ✓ sU-L2 X X
ISAPMAC [DEM+17]kPERM (k +

1)PERM
✓ LF X ✓

• DTE [BKP+18] (Digest, Tag and Encrypt): it aims to use PSV to build a leakage-
resistant and nonce misuse-resistant (Def. 15) nAE-scheme (Def. 6). The idea is to
first use the well-known Hash-then-MAC paradigm on the nonce and the message, to
compute the tag τ . Thus, they digest (n, m) with H obtaining the digest h = H(n∥m),
then, they tag it τ = Ek(h). Finally, the nonce and the message are encrypted using
PSV. From τ the first ephemeral key k0 = Ek(τ) is generated, and then the encryption
follows PSV. In decryption, from the tag τ , k0 is recomputed, then, the couple nonce,
message (n, m) is retrieved and it is checked to verify τ is the correct tag. Only
the two calls of E using k as key (that is, the one to generate the tag τ and the
one to generate the first ephemeral key k0), must be strongly protected against
leakage. DTE provides ciphertext integrity in the presence of leakage in encryption
in the unbounded leakage model [BKP+18] (and privacy in the presence of leakage),
but it does not provide CIML2 in the unbounded leakage model since the tag is
recomputed in verification. DTE is misuse-resistant because, roughly speaking, every
bit of the ciphertext depend on all the plaintext since all ephemeral keys depend on
h = H(n∥m) [BKP+18].

• DTE2 [BPPS17]: The CIML2-security can be obtained using the idea of inverting
the E in decryption, as it was done for Hash-then-MAC (see Sec. 4). Encryption
is done as in DTE, while in decryption as before we start from τ to recompute k0
and retrieve both (n, m). But to verify the validity of the ciphertext we compute
h̃ = E−1,0

k (τ) and we check if h̃
?= h = H(n∥m) (for security reasons, we cannot use

Ek to both compute τ and k0, instead we separate these two calls using a tweakable
blockcipher, with a single bit tweak: we use the tweak 0, E0

k to generate τ and
the tweak 1, E1

k for k0). This is DTE2 [BPPS17] (Alg. 2). It is CIML2-secure in
the unbounded leakage model if E is leak-free [BKP+18], or if E is sU-L2 in the
random oracle model [BGP+19] or in the standard model with a strong hypothesis
on H [BGPS21].
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ForkDTE: In ForkDTE we replace the two calls to the strongly protected tweakable block-
cipher E with calls to a strongly protected forkcipher FC. In encryption from h instead
of computing τ = E0

k(h) and k0 = E1
k(τ), we can simply compute (τ, k0) = FCk(h, b). In

decryption we have two choices:
1. ForkDTE1, we use only once FC and we compute (h̃, k0) = FC−1

k (τ, 0, b). From k0
and h̃ we decrypt as for DTE2.

2. ForkDTE2, using the idea of ForkMAC (Sec. 4) we use twice FC: once to recompute
k0, k0 = FCk(τ, 0, o), then, from k0, we retrieve (n, m) and we compute h. Finally,
we check if the first ephemeral key is the right one given n, m and we compute
k̃0 = FCk(h, 1) and we check if it is equal to the k0 we have obtained.

We describe ForkDTE1, and 2, and DTE2 in Alg. 2. We depict the encryption in Fig. 4, the
encryption of DTE2 in Fig. 6, the decryption of ForkDTE1 in Fig. 7, and the decryption
of ForkDTE2 in Fig. 8 (some of these figures can be found in App. E). Note that from
a functional point of view, the decryptions of ForkDTE 1 and 2 are equivalent, that is,
these algorithms with the same input, give the same result. We have given two different
algorithms because their efficiency and security in the presence of leakage is different.
Finally, in Alg. 7 we show that we can use the leakage-resilient encryption scheme proposed
with FEDT [DDLM24] which uses forkciphers, with ForkDTE1-FEDT and ForkDTE2-FEDT.

5.2 Security of ForkDTE 1 and 2
Here, we give the security properties of ForkDTE 1 and 2.

Idea of the black-box security. The black-box security of ForkDTE 1 and 2 is the
same as DTE2. Thus, both ForkDTE 1 and 2 are secure nAE-schemes (Def. 14), and both
are misuse-resistant (Def. 15). Here we give a simple argument which justify the previous
statement. Consider the following construction:

Etw
k (x) :=

{
FCk(x, 0) if tw = 0
FC−1

k (x, 0, o) if tw = 1
is a secure TBC if FC is a secure forckcipher. On the other hand, given E a secure TBC,
the following construction F̃Ck(x, b) := (E0

k(x), E1
k(E0

k(x))) is a secure forkcipher. From the
previous argument and [BKP+18, BPPS17] we obtain the claimed security. To improve
the quantitative bounds, we prove the nAE-security and misuse-security in App. B.6 and
App. B.5, respectively with a direct proof.

CIML2 security of ForkDTE 1. The fact that DTE2 and ForkDTE 1 are the same if we
are using the constructions for E and FC described before implies that in the unbounded
leakage model ForkDTE 1 is CIML2-secure if FC is leak-free. If FC is sU-L2, applying
the result to Hash-then-MAC of [BGP+19] or [BGPS21], we obtain the CIML2 security of
ForkDTE 1 in the random oracle model, or in the standard model with a strong hypothesis
on H, respectively. Here, we only give an idea of the CIML2 security of ForkDTE1 when FC
is leak-free (clearly it is strongly inspired by [BPPS17]). First, we need to give the leakage
functions for encryption and decryption: LEnc and LDec. According to the unbounded
leakage model

• LEnc((n, m); k) := (h, k0) with h = Hs(m).
• LDec(c; k) := (h̃, k0) with (h̃, k0) = FC−1

k (h, 0, b).
Note that from k0 all ephemeral values yi, ki can be recomputed in both encryption and
decryption and that FC does not leak since it is leak-free.

Here, we give a security result in the standard model assuming that the forkcipher
FC is leak-free. For the security proof, similarly to [BPPS17], we need to assume that
for the hash function H it is hard to find a pre-image for a random value. This is the
range-oriented pre-image resistance (Def. 10, App. A).
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Algorithm 2 The ForkDTE1, ForkDTE2, and DTE2 [BPPS17] algorithms. DTE2 uses
the dashed-lines-boxed instructions, both ForkDTE 1 and 2 the double boxed instruction.
ForkDTE1 uses also the boxed instructions, while ForkDTE2 the stacked-dashed double
box ones.

• Gen:
– k

$← K DTE 2 ForkDTE1 and 2 ForkDTE1 ForkDTE2

– s
$← HK

– pA, pB
$← {0, 1}N (s, pA, pB are public parameters)

• Enck(n, m):
– h = Hs(n∥m) digest
– τ = E0

k(h) tag

– k0 = E1
k(τ) generate the first ephemeral key

– (τ, k0) = FCk(h, b) tag and generate the first ephemeral key
– Parse m = (m1, m2, . . . , mℓ) in N -bit blocks ...and encrypt
– y0 = Ek0(pB)
– c0 = y0 ⊕ n
– For i = 1, . . . l

∗ ki = Eki−1(pA)
∗ yi = Eki(pB)
∗ ci = π|mi|(yi)⊕mi

– C = (c0, c1, . . . , cℓ)
– Return c = (τ, C)

• Deck(c):
– Parse c = (τ, C) with |τ | = N
– Parse C = (c0, c1, c2, . . . , cℓ) in N -bit blocks
– k0 = E−1,1

k (τ) Recovering the first ephemeral key

– (h̃, k0) = FC−1
k (τ, 0, b) Recovering the first ephemeral key and check value

– k0 = FC−1
k (τ, 0, o) Recovering the first ephemeral key

– y0 = Ek0(pB)
– n = y0 ⊕ c0
– For i = 1, .., ℓ

∗ ki = Eki−1(pA)
∗ yi = Eki

(pB)
∗ mi = π|ci|(yi ⊕ ci

– (n, m) = (n, (m1, ..., mℓ))
– h = Hs(n∥m)
– h̃ = FC−1,0

k (τ) check value

– If h = h̃ Return m; Else Return ⊥

– If h = h̃ Return m; Else Return ⊥
– k̃0 = FCk(h, 1) check value

– If k0 = k̃0 Return m; Else Return ⊥ check value
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Theorem 2. Let FC be a (qE , qD + 1, t1, ϵPRFP)-pseudo random forkcipher permutation
whose implementation is leak-free. Let H be a (t2, ϵCR)-collision resistant and (t2, ϵro-PR)-
range-oriented-pre-image resistant hash function. Then ForkDTE1 is (qE , qD, t, ϵ)-CIML2-
secure with

ϵ ≤ ϵPRFP + ϵCR + qDϵro-PR + (qD + 1)2−N ,

where ForkDTE1 encrypts at most Ln-bits message, t1 = t + (qE + qD + 1)[tH + (2L + 1)tE],
t2 = t + (qE + qD + 1)[2tf + tH + (2L + 1)tE], with tH the time needed to execute once the
hash function H, tE to execute E, and tf to randomly sample a random permutation.

Idea of the proof. (The complete proof is in App. B.3) To every decryption query, we
associate the couple nonce-message (n, m) retrieved, and h = H(n, m), h̃ = FC−1

k (τ, 0, i).
Let c∗ be the first fresh and valid decryption query. There are three cases:

1. There is a previous encryption query with input (n′, m′) such that H(n′∥m′) = h′ = h∗

2. There is no encryption query s.t. h = h∗, but there is a previous decryption query,
the ith s.t. h̃i = h∗.

3. None of the previous cases.
We can easily treat all cases. In fact:

1. If h′ = h∗ we have found a collision for the hash function.
2. Since FC is a PRFP all h̃ are random. Thus, we have found a hash pre-image for a

random h̃.
3. Since FC is a PRFP and we have never queried FC−1

k (τ, 0, i) (otherwise, we would
have been in the previous case), the probability that given the digest h we compute
in decryption, h = FC−1

k (τ, 0, i) is negligible.

CIML2 security of ForkDTE 2. First, we need to give the leakage functions for encryption
and decryption: LEnc and LDec. According to the unbounded leakage model

• LEnc((n, m); k) := (h, k0, LFC(h, b; k)) with h = Hs(m).
• LDec(c; k) := (h̃, k0, LFC−1(τ, 0, o; k), LFC(h, 1; k)) with (h̃, k0)v = FC−1

k (h, 0, b).
Note that from k0 all ephemeral values yi, ki can be recomputed. Here, we give a proof
assuming that FC is sU-L2.

Theorem 3. Let FC be a (2qL, qE + qD + 1, qD + 1, t1, ϵsU-L2)-strongly unpredictable
forkcipher in the presence of leakage. Let H be a (t2, ϵCR)-collision resistant. Then
ForkDTE1 is (qL, qE , qD, t, ϵ)-CIML2-secure with

ϵ ≤ ϵCR + [(qD)2 + 1]ϵsU-L2,

where ForkDTE2 encrypts at most Ln-bits message, t1 = t+(qL+qE +qD+1)[tH+(2L+1)tE],
t2 = t + (qE + qD + 1)tH + (qE + 2qD + 2)tFC + (qE + qD + 1)(2L + 1)tE, with tH the time
needed to execute once the hash function H, tE to execute E, and tf to randomly sample a
random permutation.

Idea of the security. We observe that we can reduce the CIML2 security of ForkDTE2
to the sUF-L2-security of ForkMAC (Sec. 4) simply observing that an adversary against
ForkMAC can simulate ForkDTE2 simply asking in addition FCk(h, 1) in every encryption
query because from k0 in both encryption and decryption, she can compute C and and
(n, m) respectively.

To improve the bound, the proof has a slightly different flow (App. B.4).

Privacy in the presence of leakage. ForkDTE 1 and 2 provides CPAL-security, that
is, CPA where the adversary gets the leakage of all encryption queries (Def. 20) as DTE
does [BKP+18]. This follows from the fact that PSV is CPAL [PSV15], and we are using
the master key k only in a strongly protected component and FC is a secure forkcipher.
For privacy in the presence of leakage, clearly, we cannot use the unbounded leakage
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model, but other models as in [PSV15, BKP+18, BGP+20] where the strongly protected
component is assumed to be leak-free. For the proof, it is enough to observe that in the
CPAL proof of DTE [BKP+18], k0 is obtained via the strongly-protected BC (which is
assumed to be leak-free). The same happens for ForkDTE. From there, the proof would
be identical since it is substantially the CPAL proof of PSV [PSV15].

5.3 Comparison with Other Leakage-Resistant Schemes
Since the strongly protected components are the slowest, reducing the number of them
significantly increases efficiency, especially for short messages. With respect to DTE2, the
proposed constructions have faster encryption since only a single call (although obtaining
both outputs) to the strongly protected component is made. Moreover, ForkDTE1 is also
faster in decryption for the same reason as compared to DTE2, while, ForkDTE2 should
be as fast as DTE2 in verification. This is due to the fact that ForkDTE2 needs a single
evaluation of the strongly protected forkcipher (obtaining both outputs), while ForkDTE1
needs two evaluations, at different times, of the strongly protected forkcipher with a single
output. Taking as example ForkAES [ARVV18b] (although it is not secure, see [BBJ+19]),
ForkDTE2 would need 15 rounds of AES (which can be sequenced as follows: the first 5,
followed by a branch with 2 parallel series of 5 rounds), while ForkDTE1 would require
20 rounds of AES with all of them done sequentially. The comparison of the security
of ForkDTE2 and DTE2 is the same as the comparison between HBC2 and ForkMAC.
ForkDTE1 is faster in decryption than ForkDTE2, and has the same security properties as
DTE2.

There are other schemes with two calls to the strongly protected component: EDT
(Encrypt-Digest and Tag) [BPPS17], its tweakable versions, TEDT [BGP+20] and TEDT2 [Lis21],
and Spook a version where encryption and digestion are computed simultaneously with a
sponge [BBB+20]. They have the same security for CIML2 and black-box integrity as for
DTE2. These constructions have to renounce the nonce-misuse security, but have better
privacy properties in the presence of leakage.

With respect to ISAP, which follows the Encryption-then-MAC paradigm, using the
ISAPMAC to authenticate, we believe the proposed constructions are more efficient in both
encryption (ISAP uses two calls to the strongly protected primitive, that is a sponge which
absorbs a single bit at a time) and decryption and we provide nonce-misuse black-box
security. From the previous discussion, the comparison between DTE2 and ISAP can be
lifted to ForkDTE 1 and 2.

Moreover, we mention CONCRETE [BPS19] an AE-scheme which provides CIML2 with
a single call to a strongly protected primitive, a TBC. CONCRETE is not a nAE, because
it is a probabilistic scheme, but it provides CIML2 (where misuse means that the adversary
has taken control of the randomness source) if the TBC is leak-free3. We believe that
CONCRETE is more efficient than our schemes, but its security has only been proved with
FC being a leak-free TBC.

Finally, FEDT [DDLM24] is based on EDT and elegantly uses a forkcipher. However,
FEDT, having the same structure as EDT, uses two calls to the strongly protected forkcipher.
The first, giving two outputs, to produce the first ephemeral keys. These ephemeral keys
are then used, using a weakly protected TFC, to create a tree of pseudorandom values whose
leafs are XORed to the message to produce the ciphertext. Finally, the tag is obtained
as in LR-MAC using a call with a single output to the strongly protected forkcipher. In
decryption, the verification is done similarly to LR-MAC. Thus, the ForkDTEs is faster
in encryption and ForkDTE1 is also faster in decryption. Considering security, FEDT
achieves CCAmL2, while the ForkDTEs achieve only CPAL. We can also use the encryption
algorithm of FEDT in ForkDTE replacing PSV (see Alg. 7), obtaining a faster encryption.

We sum up the comparisons in Table 4.
3We strongly suspect that CONCRETE is CIML2 even if the TBC is sU-L2, but this have not been

proved yet.
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6 Conclusion
In this paper, we show that unpredictability with leakage definition can also be extended
for the very flexible forkcipher primitive. As a result, we exhibit that the flexibility of
forkciphers is useful to provide authenticity in the presence of leakage; and that such
schemes are versatile and cost-efficient.

In particular, we have provided three constructions, a MAC - ForkMAC, and two
Authenticated Encryption AE - ForkDTE1 and ForkDTE2 schemes, inspired by previous
constructions, where the use of a forkcipher has allowed security and efficiency gains. We
believe that the flexibility provided by forkciphers can give even nicer constructions for
other AE schemes.

Concretely, we detail the security proofs including high-level overview of the different
constructions, and analyze security characteristics with forkciphers in the presence of
leakage. The paper also provides a comparison to the state-of-the-art in terms of both
security and efficiency. Finally, we conjecture that our MAC provides authenticity in the
presence of leakage and faults (at least faults in verification) following [BGP+23].
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A Additional definitions
A.1 Pre-image resistant hash functions
There are many possible pre-image resistance definitions for hash functions, see [RS04]. In
this paper we make use of the following definition where a value is picked uniformly at
random from the target space of H:

Definition 10. A hash function H : HK × {0, 1}∗ → {0, 1}N is (t, ϵ)-range oriented
pre-image resistant (ro-PR) if ∀ t-adversaries A

Pr[m← A(s, y) s.t. Hs(m) = y | s
$← HK, y

$← {0, 1}N ] ≤ ϵ.

A.2 Tweakable block-ciphers and tweakable forkciphers
Liskov et al. [LRW11] introduced tweakable blockciphers. These are block-ciphers with an
additional input, the tweak, that provide more flexibility. We give their syntax and their
security definitions.

Definition 11. A tweakable block-cipher (TBC) is a function E : K × T W × {0, 1}N →
{0, 1}N , s.t. ∀(k, tw) ∈ K × T W Ek(tw, ·) is a permutation.

Definition 12. A TBC E : K × {0, 1}N → {0, 1}N is a (q, t, ϵ)-TPRP ( Tweakable Pseudo
Random Permutation) if for any (q, t)-adversary A

|Pr[1← AFC·
k(·)]− Pr[1← Af·(·)]| ≤ ϵ

where k
$← K, and f $← T PERM, where T PERM is the set of the tweakable permutations

over T W × {0, 1}N , that is the set of functions f : T W × {0, 1}N → {0, 1}N s.t. ∀tw ∈
T Wf(tw) is a permutation on {0, 1}N .

When the adversary has oracle access also to the inverse of the TBC we have the strong
version of the previous definition.

Definition 13. A TBC E : K × {0, 1}N → {0, 1}N is a (q, t, ϵ)-sTPRP ( Strong Tweakable
Pseudo Random Permutation) if for any (q, qI , , t)-adversary A

|Pr[1← AFC·
k(·),FC−1,·

k
(·)]− Pr[1← Af·(·),f−1,·(·)]| ≤ ϵ

where k
$← K, and f $← T PERM, where T PERM is the set of the tweakable permutations

over T W × {0, 1}N , that is the set of functions f : T W × {0, 1}N → {0, 1}N s.t. ∀tw ∈
T Wf(tw) is a permutation on {0, 1}N .

A.3 Additional Definitions for Authenticated Encryptions
First, we give the security definition for authenticated encryption schemes. This definition
provides both privacy and authenticity.
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Definition 14. A nAE-scheme Π is (qE , qD, t, ϵ)-nAE-secure if ∀(qE , qD, t)-adversary
|Pr[AEnck(·,·),Deck(·) ⇒ 1]− Pr[A$(·,·),⊥(·) ⇒ 1]| ≤ ϵ,

where ⊥ is an oracle that outputs always ⊥. A is not allowed to ask the second oracle
on an input c if she has received c as the output of the first oracle with input (n, m).
Moreover, A is not allowed to repeat a nonce in different Enc/$-queries.

When we remove the latter condition, we have misuse-resistance
Definition 15. A nAE-scheme Π is (qE , qD, t, ϵ)-nmAE-secure (nonce-misuse resistant) if
∀(qE , qD, t)-adversary

|Pr[AEnck(·,·),Deck(·) ⇒ 1]− Pr[A$(·,·),⊥(·) ⇒ 1]| ≤ ϵ,
where ⊥ is an oracle that outputs always ⊥. A is not allowed to ask the second oracle on
an input c if she has received c as the output of the first oracle with input (n, m).

In some cases, there are data that needs only to be authenticated (for example the
header). These are the so called associated data [Rog02].
Definition 16. A nonce-based authenticated encryption with associated data (nAAE)
scheme is a triple of algorithms Π = (Gen, Enc, Dec) where

• The key-generation algorithm Gen generates a key from the sets of keys, K.
• The encryption algorithm Enc is a deterministic algorithm which takes as input a

key k ∈ K, a nonce n ∈ N , an associated data a ∈ AD, and a message m ∈M, and
outputs a ciphertext c ∈ C. We denote this with c← Enck(n, a, m).

• The decryption algorithm Dec is a deterministic algorithm which takes as input a
key k ∈ K, a associated data a ∈ AD, and a ciphertext c ∈ C, and outputs a message
m ∈M or ⊥ (“invalid”). We denote this with ⊥ /m = Deck(a, c).

We require correctness, that is ∀(k, a, m) ∈ K × AD × M, m = Deck(a, c) if c ←
Enck(n, a, m) for any nonce n ∈ N .
Definition 17. A nAAE-scheme Π is (qE , qD, t, ϵ)-nAE-secure if ∀(qE , qD, t)-adversary

|Pr[AEnck(·,·,·),Deck(·,·) ⇒ 1]− Pr[A$(·,·,·),⊥(·,·) ⇒ 1]| ≤ ϵ,
where ⊥ is an oracle that outputs always ⊥. A is not allowed to ask the second oracle on
an input (a, c) if she has received c as the output of the first oracle with input (n, a, m).
Moreover, A is not allowed to repeat a nonce in different Enc/$-queries.

A.4 Encryption schemes and privacy definitions
Historically, encryption schemes are assumed to be probabilistic, and the first security
[KL14]. On the other hand, since it is hard to build a probabilistic scheme, many schemes
assume that there is an additional input, called the initialization vector, IV which is
assumed to be randomly picked (there is a fall-back security notion, nonce-security, where,
for the security it is enough that the IV has never been repeated [RS06]). We now formalize
the syntax and the security definition:
Definition 18. A IV-based encryption (IVE)-scheme is a triple of algorithms Π =
(Gen, Enc, Dec) where

• The key-generation algorithm Gen generates a key from the sets of keys, K.
• The encryption algorithm Enc is a deterministic algorithm which takes as input a

key k ∈ K, a IV iv ∈ IV, and a message m ∈ M, and outputs a ciphertext c ∈ C.
We denote this with c← Enck(iv, m).

• The decryption algorithm Dec is a deterministic algorithm which takes as input a
key k ∈ K, an IV iv ∈ IV , and a ciphertext c ∈ C, and outputs a message m ∈M or
⊥ (“invalid”). We denote this with ⊥ /m = Deck(iv, c).

We require correctness, that is ∀(k, iv, m) ∈ K × IV ×M, m = Deck(iv, Enck(iv, m)).
Definition 19. An IVE-scheme Π is (q, t, ϵ)-IVE-secure if ∀(q, t)-adversary

|Pr[AEnc$
k(·) ⇒ 1]− Pr[A$(·) ⇒ 1]| ≤ ϵ,

where Enc$(·) is an oracle that on input m, picks iv
$← IV , and output (iv, c = Enck(iv, m)),

while $(·) is an oracle that on input m outputs (iv, c), with iv
$← IV , and c

$← {0, 1}|Enck(iv,m)|.
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Table 5: The FORGEsuf-vcma
MAC,A experiment (vcma stands for Verification and Chosen Message

Attacks).

The FORGEL2suf-vcma-L2
MAC,LM ,LV ,AL experiment

Initialization: Oracle Mack(m):
k ← Gen τ = Mack(m)
S ← ∅ S ← S ∪ {(m, τ)}

Return τ
Finalization:

(m, τ)← AMack(·),Vrfyk(·,·) Oracle Vrfyk(m, τ):
If (m, τ) ∈ S or ⊥ = Vrfyk(m, τ) Return Vrfyk(m, τ)

Return 0
Return 1

A.5 Privacy in the presence of leakage
Here we give the security definition for encryption and (authenticated encryption) in the
presence of leakage.

Definition 20. A nAE-scheme is (q, t, ϵ)−Chosen Plaintext Attacks Secure with leakage
(CPAL)-secure if

Pr[b = b′|AL,EncLk (c∗)⇒ b′, c∗ = EncLk(n∗, mb)] ≤ 1
2 + ϵ,

∀(q, t)-adversary A, with b
$← {0, 1}, where AL,EncLk outputs (n∗, m0, m1) with |m0| = |m1|.

Moreover, A is not allowed to repeat a nonce in different Enc-queries.

A.6 Unforgeability for MACs
We give the black-box authenticity definition for MACs.

Definition 21. A MAC = (Gen, Mac, Vrfy) is (qM , qV , t, ϵ)-strongly existentially unforgeable
against chosen message and verification attacks (sUF) if for all (qM , qV , t)-adversaries A,
we have:

Pr
[
1← FORGEsuf-vcma

MAC,A

]
≤ ϵ,

where the FORGEsuf-vcma experiment is defined in Tab. 5.

For simplicity, in the proofs, we consider the verification query induced by the final
output of the adversary as the (qV + 1)th verification query.

A.7 Ciphertext-integrity with Misuse and Leakage
We give the description of the experiment mentioned in the CIML2 security definition
(Def. 8).

B Proofs
B.1 Proof of the sUF-L2-security of ForkMAC
Proof. We use a sequence of games Game 0, ... , Game 4. We denote with Ei the event
that the output of Game i is 1, that is, that the adversary wins.
Game 0. This is the sUF-L2 game where the adversary A is playing against ForkMAC.
Game 1. Similar to Game 0, except that we abort if there is a collision for the hash
function.
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Table 6: The CIMLΠ,LE ,LD,A experiment.

The CIML2Π,LE ,LD,AL experiment
Initialization: Oracle EncLk(n, m):

k ← Gen c = Enck(n, m)
S ← ∅ S ← S ∪ {(c)}

Return (c, LE(n, m; k))
Finalization:

c← AL,EncLk(·,·),DecLk(·) Oracle DecLk(c):
If c ∈ S or ⊥ = Deck(c) Return (Deck(c), LD(c; k))

Return 0
Return 1

Transition between Game 0 and 1. Since Game 0 and Game 1 are the same except if
a hash collision is produced, we only need to bound the probability that such a collision is
found. To do this, we build a t2-adversary B which works as follows:

At the start of the game B obtains the key of the hash function, s, which she forwards
to A. She picks a random key k and forwards s to A. Moreover, she has a list S which is
empty.

When A perform a tag-generation query on input m, B simply computes h = Hs(m),
τ = FCk(h, 0) and collects the leakage leak = LFC(h, 0; k). She returns τ and the leakage
(h, LFC(h, 0; k)) to A and she adds (m, h) to S. This takes time tH + tFC.

When A does a verification query on input (m, τ), B simply computes h = Hs(m),
v = FCk(h, 1), ṽ = FC−1

k (τ, 0, o) and collects the leakage
LFC(h, 1; k), LFC−1(τ, 0, o; k). She returns ⊤ if v = ṽ, otherwise ⊥ to A. Moreover, she
returns to A the leakage (h, v, ṽ, LFC(h, 1; k), LFC−1(τ, 0, o; k)). Finally, she adds (m, h) to
S. This takes time tH + 2tFC.

When A outputs her forgery (m, τ), B simply computes h = Hs(m), she adds (m, h) to
S, and she looks into S to find a collision. If this is the case, she outputs it, otherwise
(0N , 1N ). This takes time tH.

The adversary A can do the modeling queries (which are qL) by himself, thus, we do
not have to explain how B treats them.

Thus, in total B runs in time bounded by t + (qM + qV + 1)tH + (qM + 2qV )tFC = t2.
Bounding |Pr[E0]− Pr[E1]|. Since B is t2-adversary, H is a (t2, ϵCR)-collision resistant
hash function, and Game 0 and Game 1 are the same except if B finds a collision, then

|Pr[E0]− Pr[E1]| = Pr[B wins ] ≤ ϵCR.

Game 2. Let Game 2 be Game 1, where we abort if there exist two verification queries,
the ith and the jth s.t. j < i and vi = ṽj .
Games 10, ..., 1qV . Let Game 1i be Game 1 where we abort if in one of the first i

verification queries there exist two verification queries, the lth and the jth s.t. j < l and
vl = ṽj . Note that Game 10 is Game 1, while Game 1qV is Game 2.
Transition between Game 1i and 1i+1. Since Game i and Game i + 1 are the same
except if in the ith verification query vi = ṽj for j < i, we only need to bound the latter
event.

To do this, we build a t1-adversary Ci which works as follows: At the start of the game
Ci obtains the key of the hash function, s, which she forwards to A. Moreover, Ci has a
list V which is empty.

When A does a modelling tag-generation query on input (m; k′), Ci simply computes
h = Hs(m), computes τ = FCk′(h, 0) and collects the leakage leak = LFC(h, 0; k′). She
returns τ and the leakage (h, LFC(h, 0; k′)) to A and she adds (m, h) to S. This takes time
tH and one modeling query to FC.

When A does a modelling verification query on input (m, τ), Ci simply computes h =
Hs(m), v = FCk′(h, 1), ṽ = FC−1

k′ (τ, 0, o) and collects the leakage (LFC(h, 1; k′), LFC−1(τ, 0, o; k′)).
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She returns ⊤ if v = ṽ, otherwise ⊥ to A. Moreover, she returns to A the leakage
(h, v, ṽ, LFC(h, 1; k′), LFC−1(τ, 0, o; k′)). This takes time tH and two modeling queries to FC.

When A does a tag-generation query on input m, Ci simply computes h = Hs(m), calls
her oracle FCLk on input (h, 0), obtaining τ and the leakage LFC(h, 0; k). She returns τ
and the leakage (h, LFC(h, 0; k)) to A. This takes time tH and one oracle query to FC.

When A does one of the first i − 1 verification queries on input (m, τ), Ci simply
computes h = Hs(m), calls her oracle FC on input (h, 1) obtaining v and the leakage
LFC(h, 1; k). She queries her oracle FC−1 on input (τ, 0, o), obtaining ṽ and the leakage
LFC−1(τ, 0, o; k). She returns ⊤ if v = ṽ, otherwise ⊥ to A. Moreover, she returns to A the
leakage (h, v, ṽ, LFC(h, 1; k), LFC−1(τ, 0, o; k)). Finally, she adds ṽ to S. This takes time tH
and one query to FC and one to FC−1.

When A outputs the ith verification query on input (m, τ), Ci simply computes
h = Hs(m), picks an element x randomly from V and she outputs (h, 1, x) as her prediction.
This takes time tH.

Thus, in total Ci runs in time bounded by t + (qL + qM + qv + 1)tH = t1, does at most
2qL modelling queries and at most qM + qV queries to FC and qV to FC−1.
Bounding |Pr[E1i ] − Pr[E1i+1 ]| . Since Ci is (2qL, qM + qV , qV , t1)-adversary, FC is a
(2qL, qM + qV , qV , t1, ϵsU-L2)-unpredictable forkcipher, and Game 1i and Game 1i+1 are
the same except if in the ith verification query vi = ṽj with j < i, then

|Pr[Ei
1]− Pr[E1i+1 ]| = Pr[correct guess] Pr[Ci wins ] ≤ (i− 1)ϵsU-L2,

because we have randomly picked x from the set of possible ṽs, thus, if i = 1, |V| = 0,
so C1 can never win, while, if i > 1, we have guessed correctly with probability at least
1/|V| = (i− 1)−1.
Bounding |Pr[E1]− Pr[E2]|. Summing all the previous probabilities, we obtain

|Pr[E10 ]− Pr[E1qV ]| =
qV∑
i=1

(i− 1)ϵsU-L2 =
qV −1∑
i=1

iϵsU-L2 = qV (qV − 1)
2 ϵsU-L2.

Game 3. Let Game 3 be Game 2, where we abort if there exist two verification queries,
the ith and the jth s.t. j < i and ṽi = vj .
Games 20, ..., 2qV . Let Game 20 be Game 2 where we abort if in one of the first i

verification queries there exist two verification queries, the lth and the jth s.t. j < l and
ṽl = vj . Note that Game 20 is Game 2, while Game 2qV is Game 3.
Transition between Game 2i and 2i+1. Since Game 2i and Game 2i+1 are the same
except if in the ith verification query ṽi = vj for j < i, we only need to bound the latter
event.

To do this, we build a t1-adversary Di which works as follows: At the start of the game
Di obtains the key of the hash function, s, which she forwards to A. Moreover, Di has a
list V which is empty.

When A does a modelling tag-generation query on input (m; k′), Di simply computes
h = Hs(m), computes τ = FCk′(h, 0) and collects the leakage leak = LFC(h, 0; k′). She
returns τ and the leakage (h, LFC(h, 0; k′)) to A and she adds (m, h) to S. This takes time
tH and one modeling query to FC.

When A does a modelling verification query on input (m, τ), Di simply computes h =
Hs(m), v = FCk′(h, 1), ṽ = FC−1

k′ (τ, 0, o) and collects the leakage (LFC(h, 1; k′), LFC−1(τ, 0, o; k′)).
She returns ⊤ if v = ṽ, otherwise ⊥ to A. Moreover, she returns to A the leakage
(h, v, ṽ, LFC(h, 1; k′), LFC−1(τ, 0, o; k′)). This takes time tH and two modeling queries to FC.

When A does a tag-generation query on input m, Di simply computes h = Hs(m), calls
her oracle FCLk on input (h, 0), obtaining τ and the leakage LFC(h, 0; k). She returns τ
and the leakage (h, LFC(h, 0; k)) to A. This takes time tH and one oracle query to FC.

When A does one of the first i − 1 verification queries on input (m, τ), Di simply
computes h = Hs(m), calls her oracle FC on input (h, 1) obtaining v and the leakage
LFC(h, 1; k). She queries her oracle FC−1 on input (τ, 0, o), obtaining ṽ and the leakage
LFC−1(τ, 0, o; k). She returns ⊤ if v = ṽ, otherwise ⊥ to A. Moreover, she returns to A the
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leakage (h, v, ṽ, LFC(h, 1; k), LFC−1(τ, 0, o; k)). Finally, she adds v to S. This takes time tH
and one query to FC and one to FC−1.

When A outputs the ith verification query on input (m, τ), Di simply computes
h = Hs(m), picks an element x randomly from V and she outputs (τ, o, x) as her prediction.
This takes time tH.

Thus, in total Di runs in time bounded by t + (qL + qM + qv + 1)tH = t1, does at most
2qL modelling queries and at most qM + qV queries to FC and qV to FC−1.

Bounding |Pr[E2i ] − Pr[E2i+1 ]| . Since Di is (2qL, qM + qV , qV , t1)-adversary, FC is a
(2qL, qM + qV , qV , t1, ϵsU-L2)-unpredictable forkcipher, and Game 2i and Game 2i+1 are
the same except if in the ith verification query ṽi = vj with j < i, then

|Pr[Ei
2]− Pr[E2i+1 ]| = Pr[correct guess] Pr[Di wins ] ≤ (i− 1)ϵsU-L2,

because we have randomly picked x from the set of possible ṽs, thus, if i = 1, |V| = 0,
so D1 can never win, while, if i > 1, we have guessed correctly with probability at least
1/|V| = (i− 1)−1.
Bounding |Pr[E2]− Pr[E3]|. Summing all the previous probabilities, we obtain

|Pr[E20 ]− Pr[E2qV ]| =
qV∑
i=1

(i− 1)ϵsU-L2 =
qV −1∑
i=1

iϵsU-L2 = qV (qV − 1)
2 ϵsU-L2.

Games 4. Let Game 4 be Game 3 where we abort there is one fresh and valid verification
query.
Games 31, ..., 3qV +1. Let Game 3i be Game 3 where we abort if one of the first i verification
queries is fresh and valid. (We remind that we consider the verification query induced by
A output as the qV + 1th verification query. Note that Game 30 is Game 3, while Game
3qV +1 is Game 3.
Transition between Game 3i and 3i+1. Since Game 3i and Game 3i+1 are the same
except if the ith verification query is fresh and valid, we only need to bound the probability
that the input of the ith verification query, (mi, τ i), is fresh and Vrfyk(mi, τ i) = ⊤.

To do this, we build a t1-adversary EEi which works as follows: At the start of the
game EEi obtains the key of the hash function, s, which she forwards to A.

When A does a modelling tag-generation query on input (m; k′), EEi simply computes
h = Hs(m), computes τ = FCk′(h, 0) and collects the leakage leak = LFC(h, 0; k′). She
returns τ and the leakage (h, LFC(h, 0; k′)) to A and she adds (m, h) to S. This takes time
tH and one modelling query to FC.

When A does a modelling verification query on input (m, τ), EEi simply computes h =
Hs(m), v = FCk′(h, 1), ṽ = FC−1

k′ (τ, 0, o) and collects the leakage (LFC(h, 1; k′), LFC−1(τ, 0, o; k′)).
She returns ⊤ if v = ṽ, otherwise ⊥ to A. Moreover, she returns to A the leakage
(h, v, ṽ, LFC(h, 1; k′), LFC−1(τ, 0, o; k′)). Finally, she adds (m, h) to S. This takes time tH
and two modelling querlies to FC.

When A does a tag-generation query on input m, EEi simply computes h = Hs(m),
calls her oracle FCLk on input (h, 0), obtaining τ and the leakage LFC(h, 0; k). She returns
τ and the leakage (h, LFC(h, 0; k)) to A. This takes time tH and one oracle query to FC.

When A does one of the first i − 1 verification queries on input (m, τ), EEi simply
computes h = Hs(m), calls her oracle FC on input (h, 1) obtaining v and the leakage
LFC(h, 1; k). She queries her oracle FC−1 on input (τ, 0, o), obtaining ṽ and the leakage
LFC−1(τ, 0, o; k). She returns ⊤ if v = ṽ, otherwise ⊥ to A. Moreover, she returns to A
the leakage (h, v, ṽ, LFC(h, 1; k), LFC−1(τ, 0, o; k)). Finally, she adds (m, h) to S. This takes
time tH and one query to FC and one to FC−1.

When A outputs the ith verification query on input (m, τ), EEi simply computes
h = Hs(m), and she outputs (h, 0, τ) as her prediction. This takes time tH.

Thus, in total EEi runs in time bounded by t + (qL + qM + qv + 1)tH = t1, does at most
2qL modelling queries and at most qM + qV queries to FC and qV to FC−1.
Bounding |Pr[E3i ]−Pr[E3i+1 ]| and |Pr[E3]−Pr[E4]|. Since EEi is (2qL, qM +qV , qV , t1)-
adversary, FC is a (2qL, qM + qV , qV , t1, ϵsU-L2)-unpredictable forkcipher, and Game 3i and
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Game 3i+1 are the same except if the ith verification query is the first fresh and valid
verification query, then

|Pr[Ei
3]− Pr[E3i+1 ]| = Pr[B wins ] ≤ ϵsU-L2.

So, |Pr[E3]− Pr[E4]| ≤
qV +1∑
i=0
|Pr[E3i ]− Pr[E4i+1 ]| ≤ (qV + 1)ϵsU-L2

Concluding the proof. We can conclude the proof, since Pr[E4] = 0, since none of the
qV verification query and the verification query induced by the forgery output of A can be
fresh and valid. Thus,

Pr[E0] ≤ Pr[E4] +
3∑

i=0
|Pr[Ei]−Pr[Ei+1]| ≤ ϵCR + 2qV (qV − 1)

2 ϵsU-L2 + (qV + 1)ϵsU-L2 = ϵ.

B.2 Unforgeability (Black-Box) of ForkMAC
The security definition is given by Def. 21.
Theorem 4. Let FC be a (qM + qV + 1, 0, t1, ϵPRFP)-pseudorandom forkcipher. Let H be a
(t2, ϵCR)-collision resistant. Then ForkMAC is (qM , qV , t, ϵ)-sUF-secure with

ϵ ≤ ϵPRFP + ϵCR + (qM + qV + 1)2 + 2qV + 2
2N+1 ,

with t1 = t + (qM + qV + 1)tH, t2 = t + (qM + qV + 1)tH + (qM + qV )tf , with tH the time
needed to execute once the hash function H, tf to randomly sample a random permutation.

Proof. We use a sequence of games Game 0, ... , Game 5. We denote with Ei the event
that the output of Game i is 1, that is, that the adversary wins.
Game 0. This is the sUF game where the adversary A is playing against ForkMAC.
Game 1. This is the sUF game where the adversary A is playing against ForkMAC′, which
is ForkMAC, where the verification is done recomputing the correct tag and checking it.
Bounding |Pr[E0] − Pr[E1]|. It is clear that ForkMAC and ForkMAC′ are functionally
equivalent, that is Mac(m)k = Mac′

k(m), and Vrfyk(m, τ) = Vrfy′
k(m, τ), since FC imple-

ments two permutations.
|Pr[E0]− Pr[E1]| = 0.

Game 2. It is Game 1, where we replace FC with two random permutations.
Transition between Game 1 and 2. Game 0 and Game 1 are the same except for
how τ and h̃ are computed in Mac and Vrfy queries respectively. In Game 0, they are
computed with FCk and FC−1

k , respectively, while in Game 1 with the ideal counterpart
F̃ , F̃ −1. Thus, we build a (qM , qV + 1, t1)-adversary B.

B has to distinguish if she is interacting with two oracle implemented either with
FCk(·, ·), FCk(·, ·, ·) or with F̃C(·, ·), F̃C(·, ·, ·). At the start of the game, B receives a key s
for the hash function, which she forwards to A. Moreover, she has a list S which is empty.

When A does a tag-generation query on input m, B simply computes h = Hs(m) and
queries her oracle on input (h, 0) obtaining τ . B answers A τ and she adds (m, τ) to
S. This requires an oracle query to the first oracle (implemented with either FCk(·, ·) or
F̃ (·, ·, ·)) and time tH.

When A does a verification query on input (m, τ), B simply computes h = Hs(m) and
queries her oracle on input (h, 0) obtaining τ̃ . B answers A ⊤ if τ = ˜tau; otherwise ⊥. This
requires an oracle query to the first oracle (implemented with either FCk(·, ·) or F̃ (·, ·, ·))
and time tH.

When A outputs its forgery (m, τ), B simply computes h = Hs(m) and queries her
oracle on input (h, 0) obtaining τ̃ . B outputs 1 if τ = ˜tau and (m, τ) /∈ S; otherwise
⊥. This requires an oracle query to the first oracle (implemented with either FCk(·, ·) or
F̃ (·, ·, ·)) and time tH.
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Thus, in total B does qM + qV + 1 queries to the first oracle (implemented with either
FCk(·, ·) or F̃ (·, ·, ·)), no queries to the second oracle, and time at most t+(qM +qV +1)tH ≤
t1.
Bounding |Pr[E1] − Pr[E2]|. Since B is (qM + qV + 1, 0, t1)-adversary, and FC is a
(qM + qV + 1, 0, t1, ϵPRFP)-pseudorandom forkcipher, and B simulates correctly Game 1 for
A if her oracles are implemented with FCk(·, ·) and FC−1

k (·, ·, ·), otherwise Game 2, thus

|Pr[E1]− Pr[E2]| = |Pr[1← BFCk(·,·),FC−1
k

(·,·,·)]− Pr[1← BtildeF (·,·),F̃ −1(·,·,·)]| ≤ ϵPRFP.

Observe, that since we are only using FCk(·, 0)-queries, we can consider that we are using
a random permutation.
Game 3. It is Game 2, where we assume that no collision for the hash function is found.
Transition between Game 2 and 3. Game 2 and Game 1 are the same except if the
following event happens: a collision for the hash function. Thus, we have only to bound
the probability that the previous event happens. For this, we build a t2-adversary against
C H which aims to find a collision.

C proceeds at follows: At the start of the game, C receives a key s for the hash function,
which she forwards to A. Moreover, she picks a random permutation f, which she lazy
samples and she has a list S which is empty.

When A does a tag-generation query on input m, C simply computes h = Hs(m), and
lazy samples τ = f(h). Then, she answers τ to A, and she adds (m, h) to S. This takes
time tH + tf .

When A does a verification query on input (m, τ), C simply computes h = Hs(m) and
lazy samples τ̃ = f(h). C answers A ⊤ if τ = ˜tau; otherwise ⊥. Moreover, she adds (m, h)
to S. This needs time tH + tf .

When A outputs its forgery (m, τ), C simply computes h = Hs(m). Then, she looks
into S to see if she can find a collision. If it is the case, she outputs it, otherwise (0, 1).
This requires time tH.

Thus, in total C runs in time at most t + (qM + qV + 1)tH + (qM + qV )tf ≤ t2.
Bounding |Pr[E2] − Pr[E3]|. Game 2 and 3 are the same except if a collision for the
hash function has been found. Since C wins if a collision for the has function is found in
Game 2, C is t2-adversary, H is a (t2, ϵCR)-collision resistant hash function,

|Pr[E2]− Pr[E3]| = Pr[C wins ] ≤ ϵCR.

Game 4. Let Game 4 be Game 3 where we replace f with a random function.
Transition between Game 3 and 4. Using the well-known lemma to switch from a
PRP to a PRF, since the only difference between Game 3 and 4 is the use of a PRP or a
PRF, and we use f is qM + qV times,

|Pr[E3]− Pr[E4]| ≤ (qM + qV + 1)2

2

N+1

.

Game 5. Let Game 5 be Game 4 where we assume that there is no fresh and valid
decryption query.
Bounding |Pr[E4]− Pr[E5]|. Since the probability that the ith is valid, if it is fresh is
bounded by 2−N . Thus,

|Pr[E4]− Pr[E5]| =≤ (qV + 1)2−N .

Concluding the proof. We can conclude the proof, since Pr[E5] = 0, since none of the
qV verification query and the verification query induced by the forgery output of A can be
fresh and valid. Thus,

Pr[E0] ≤ Pr[E5] +
4∑

i=0
|Pr[Ei]−Pr[Ei+1]| ≤ ϵPRFP + ϵCR + (qM + qV + 1)2 + 2qV + 2

2N+1 = ϵ.



32 Authenticity in the Presence of Leakage using a Forkcipher

B.3 Proof of the CIML2 Security of ForkDTE1
Proof. We use a sequence of games Game 0, ... , Game 4. We denote with Ei the event
that the output of Game i is 1, that is, that the adversary wins.
Game 0. This is the CIML2 game where the adversary A is playing against ForkDTE1.
Game 1. It is Game 0, where we replace FCk with its ideal counterpart.
Transition between Game 0 and 1. Since Game 0 and Game 1 are the same except for
the use of FC, we need to build the probability an adversary distinguish the use of FC to
its ideal counterpart. To do this, we build a (qFC, qFC−1 , t1)-adversary B which has access
to two oracles which are either implemented with FCk, FC−1

k or their ideal counterparts. B
works as follows: At the start of the game B obtains the key of the hash function, s, which
she forwards to A. Moreover, B has a list S which is empty.

When A does an encryption query on input (n, m), B simply computes h = Hs(n∥m),
and calls her oracle on input (h, b) obtaining (τ, k0). From k0, B computes y0 = Ek0(pB),
and c0 = y0 ⊕ n. Then, she parses m in n-bit blocks, m1, . . . , mℓ. After that, for all
i = 1, . . . , ℓ, B computes ki = Eki−1(pA), yi = Eki

(pB), and ci = π|mi|(yi) ⊕mi. Finally,
she returns A c = (τ, C) and the leakage k0, with C = (c0, . . . , cℓ) and she adds c to S.
This takes one oracle query to FCk and time tH + (2ℓ + 1)tE ≤ tH + (2L + 1)tE, since ℓ ≤ L.

When A does a decryption query on input c, she parses it in n-bits blocks, τ, c0, c1, . . . , mℓ.
Then, B simply calls her inverse oracle on input (τ, 0, b), obtaining (h̃, k0). From k0, B
computes y0 = Ek0(pB), and n = y0 ⊕ c0. After that, for all i = 1, . . . , ℓ, B computes
ki = Eki−1(pA), yi = Eki(pB), and mi = π|mi|(yi)⊕ ci. Finally, she computes h = Hs(n∥m)
and checks if h

?= h̃. If it is the case, B returns A m = (m1, . . . , mℓ), and the leakage
(h̃, k0); otherwise, ⊥ and the leakage (h̃, k0). This takes one oracle query to FC−1

k and time
tH + (2ℓ + 1)tE ≤ tH + (2L + 1)tE, since ℓ ≤ L.

The adversary A can do the modeling queries (which are qL) by himself, thus, we do
not have to explain how B treats them.

When A outputs its forgery c, she proceeds as for a normal decryption query except
that she does not return anything to A. Instead, if at the end of the verification h = h̃ and
c /∈ S, B outputs 1; otherwise 0.

Thus, in total B does qE queries to FC, qD + 1 to FC−1 and runs in time bounded by
t + (qE + qD + 1)[tH + (2L + 1)tE] = t1.
Bounding |Pr[E0]−Pr[E1]|. If the oracles B has access to are implemented by (FCk, FC−1

k ),
B is correctly simulating Game 0 for A; otherwise, Game 1. Since B is (qE , qD + 1, t1)-
adversary, and FC is a (qE , qD + 1, t1, ϵCR)-PRFP secure forkcipher, then

|Pr[E0]− Pr[E1]| = |Pr[1← BFC,FC−1
]− Pr[1← Bf,f−1

]| ≤ ϵPRFP.

Game 2
It is Game 1, where we abort if there is a collision for the hash function.

Transition between Game 1 and 2. Since Game 1 and Game 2 are the same except if
a hash collision is found, we build a t2-adversary C based on A to find a collision for the
hash function. C works as follows: At the start of the game C obtains the key of the hash
function, s, which she forwards to A. Moreover, C has a list S which is empty, and she
picks two random permutation f0, f1, which she lazy samples.

When A does an encryption query on input (n, m), C simply computes h = Hs(n∥m)
and she adds (n∥m, h) to S, and computes τ = f0(h), and k0 = f1(h). From k0, C computes
y0 = Ek0(pB), and c0 = y0 ⊕ n. Then, she parses m in n-bit blocks, m1, . . . , mℓ. After
that, for all i = 1, . . . , ℓ, C computes ki = Eki−1(pA), yi = Eki

(pB), and ci = π|mi|(yi)⊕mi.
Finally, she returns A c = (τ, C) and the leakage k0, with C = (c0, . . . , cℓ). This takes
time tH + 2tf + (2ℓ + 1)tE ≤ tH + (2L + 1)tE, since ℓ ≤ L.

When A does a decryption query on input c, she parses it in n-bits blocks, τ, c0, c1, . . . , mℓ.
Then, C computes h̃ = f0(τ), k0 = f1(h̃). From k0, C computes y0 = Ek0(pB), and
n = y0 ⊕ c0. After that, for all i = 1, . . . , ℓ, C computes ki = Eki−1(pA), yi = Eki(pB), and
mi = π|mi|(yi) ⊕ ci. Finally, she computes h = Hs(n∥m), she adds (n∥m, h) to S, and
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checks if h
?= h̃. If it is the case, C returns A m = (m1, . . . , mℓ), and the leakage (h̃, k0);

otherwise, ⊥ and the leakage (h̃, k0). This takes time tH +2tf +(2ℓ+1)tE ≤ tH +(2L+1)tE,
since ℓ ≤ L.

The adversary A can do the modeling queries (which are qL) by himself, thus, we do
not have to explain how C treats them.

When A outputs its forgery c, she proceeds as for a normal decryption query except
that she does not return anything to A. After this, C looks into S to see whether she can
find a collision in S. If she finds it, she outputs it; otherwise (0, 1). Thus, in total C runs
in time bounded by t + (qE + qD + 1)[2tf + tH + (2L + 1)tE] = t2.
Bounding |Pr[E1]− Pr[E2]|. Game 1 and Game 2 are the same except if the event that
there is a collision for the hash function happens. Since C wins only if that event happens,
C is a t2-adversary and H is (t2, ϵCR)-collision resistant hash function,

|Pr[E1]− Pr[E2]| = Pr[ There is a collision for H] ≤ Pr[C wins] ≤ ϵCR.

Game 3
It is Game 3, where we abort if there exists a not valid decryption query which generates

h̃ and an encryption or decryption query s.t. the hash computed h is equal to that h̃.
Games 20, ..., 2qD . Let Game 2i be Game 2 where we abort if for one of the first i
decryption queries there exist j s.t. there exists an h s.t. h = h̃j . Note that Game 20 is
Game 2, while Game 2qD is Game 3.
Transition between Game 2j and 2j+1. Since Game 2j and Game 2i+1 are the same
except there is a hash query s.t. h = h̃j , we only need to bound the latter event.

To do this, we build a t3-adversary Dj which works as follows: At the start of the
game Di obtains the key of the hash function, s, which she forwards to A, and a random
target x. Moreover, Dj has two list S, and F which are empty, and she picks two random
permutation f0, f1, which she lazy samples.

When A does an encryption query on input (n, m), Dj simply computes h = Hs(n∥m)
and she adds (n∥m, h) to S, computes τ = f0(h) checking before if there is an entry
(h, τ) ∈ F , if it is the case, it answers τ , and k0 = f1(h), and she adds (h, τ) to F . From
k0, Dj computes y0 = Ek0(pB), and c0 = y0 ⊕ n. Then, she parses m in n-bit blocks,
m1, . . . , mℓ. After that, for all = 1, . . . , ℓ, C computes ki = Eki−1(pA), yi = Eki(pB),
and ci = π|mi|(yi) ⊕ mi. Finally, she returns A c = (τ, C) and the leakage k0, with
C = (c0, . . . , cℓ). This takes time tH + 2tf + (2ℓ + 1)tE ≤ tH + (2L + 1)tE, since ℓ ≤ L.

When A does a decryption query on input c, she parses it in n-bits blocks, τ, c0, c1, . . . , mℓ.
Then, if this is not the jth verification query Dj computes h̃ = f0(τ) (checking before
if there is an entry in (h̃, τ) ∈ F , if it is the case she sets h̃ coherently the with the
entry in F) Instead, if this is the jth verification query, Dj checks if there is an entry in
(h̃, τ) ∈ F , if it is the case she sets h̃ coherently the with the entry in F , otherwise she
sets h̃ := x. Then, she adds (h̃, τ) to F . Moreover, she computes k0 = f1(h̃), and adds .
From k0, Dj computes y0 = Ek0(pB), and n = y0 ⊕ c0. After that, for all i = 1, . . . , ℓ, C
computes ki = Eki−1(pA), yi = Eki

(pB), and mi = π|mi|(yi) ⊕ ci. Finally, she computes
h = Hs(n∥m), she adds (n∥m, h) to S, and checks if h

?= h̃. If it is the case, Dj returns
A m = (m1, . . . , mℓ), and the leakage (h̃, k0); otherwise, ⊥ and the leakage (h̃, k0). This
takes time tH + 2tf + (2ℓ + 1)tE ≤ tH + (2L + 1)tE, since ℓ ≤ L.

The adversary A can do the modeling queries (which are qL) by himself, thus, we do
not have to explain how Dj treats them.

When A outputs its forgery c, she proceeds as for a normal decryption query except
that she does not return anything to A. After this, Dj looks into S to see whether she can
find an entry (·, x) in S. If she finds it, she outputs it; otherwise 0.

Thus, in total Dj runs in time bounded by t + (qE + qD + 1)[2tf + tH + (2L + 1)tE] = t2.
.
Bounding |Pr[E2j ]−Pr[E2j+1 ]| . We observe that if we have not set in the jth decryption
query h̃ := x, it means that the pre-image for x has already been found in a previous query.
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Since Di is t2-adversary, H is a (t2, ϵro-PR)-range-oriented-pre-image resistant hash function,
and Game 2j and Game 2j+1 are the same except if a preimage for x is found, then

|Pr[Ej
2]− Pr[E2j+1 ]| = Pr[find a pre-image] = Pr[Dj wins ] ≤ ϵro-PR.

Bounding |Pr[E2]− Pr[E3]|. Summing all the previous probabilities, we obtain

|Pr[E20 ]− Pr[E2qD ]| =
qD∑
i=1

ϵro-PR = qDϵro-PR.

Game 4. Let Game 4 be Game 3, where we abort if there exist a fresh and valid verification
query.
Games 31, ..., 3qV +1. Let Game 3i be Game 3 where we abort if one of the first i decryption
queries is fresh and valid. (We remind that we consider the verification query induced by
A output as the qV + 1th verification query. Note that Game 30 is Game 4, while Game
3qV +1 is Game 5.
Transition between Game 3i and 3i+1. Since Game 3i and Game 3i+1 are the same
except if the ith decryption query is fresh and valid, we only need to bound the probability
of the latter event. By hypothesis, the only possibility for an adversary to win is to ask a
decryption query on input c = (τ, C), with a fresh τ (otherwise, h̃ = f−1

0 (τ) had already
been set, thus, the adversary can win by finding a pre-image for h̃, but we have already
excluded this). Since f0 is random permutation, the probability that h = h̃ with h̃ random
is 1/2N . Thus,

|Pr[E4i ]− Pr[E4i+1 ]| ≤ 2−N . Thus, |Pr[E4]− Pr[E5]| ≤ (qD + 1)2−N

Concluding the proof. We can conclude the proof, since Pr[E5] = 0, since none of the
qV decryption query and the decryptionn query induced by the forgery output of A can be
fresh and valid. Thus,

Pr[E0] ≤ Pr[E4] +
3∑

i=0
|Pr[Ei]− Pr[Ei+1]| ≤ ϵPRFP + ϵCR + qDϵro-PR + +(qD + 1)2−N = ϵ.

B.4 Proof of the CIML2 Security of ForkDTE2
Proof. We use a sequence of games Game 0, ... , Game 5. We denote with Ei the event
that the output of Game i is 1, that is, that the adversary wins.
Game 0. This is the CIML2 game where the adversary A is playing against ForkDTE2.
Game 1. It is Game 0, where we abort if there is a collision for the hash function.
Transition between Game 0 and 1. Since Game 0 and Game 1 are the same except if
a hash collision is produced, we only need to bound the probability that such a collision is
found. To do this, we build a t2-adversary B which works as follows:

At the start of the game B obtains the key of the hash function, s, which she forwards
to A. She picks a random key k and forwards s to A. Moreover, she has a list S which is
empty.

When A does an encryption query on input m, B simply computes h = Hs(m),
(τ, k0) = FCk(h, b) and collects the leakage leak = LFC(h, b; k). After having parsed m in
N -bit blocks, m = (m1, . . . , mℓ), from k0, B computes y0 = Ek0(pB), c0 = y0 ⊕ n, and, for
every i = 1, . . . ℓ, B computes ki = FCki−1(pA), yi = FCki

(pB), ci = π|mi|(yi) ⊕mi. She
sets C = (c0, . . . , cℓ). She returns c = (τ, C) and the leakage (h, k0, LFC(h, b; k)) to A and
she adds c to S. This takes time tH + tFC + (2ℓ + 1)tE ≤ tH + tFC + (2L + 1)tE.

When A does a decryption query on input c, B simply parses c in (τ, C). |τ | = N , and
she computes k0 = FC−1

k (τ, 0, o) and collects the leakage LFC−1(τ, 0, o; k). After having
parsed C in N -bit blocks, C = (c1, . . . , cℓ), from k0, B computes y0 = Ek0(pB), n = y0⊕ c0,
and, for every i = 1, . . . ℓ, B computes ki = FCki−1(pA), yi = FCki

(pB), mi = π|ci|(yi)⊕ ci.
She sets m = (m1, . . . , mℓ). Then, B computes h = Hs(n∥m), k̃0 = FCk(h, 1), and collects
the leakage LFC(h, 1; k). She returns m if k0 = k̃0, otherwise ⊥ to A. Moreover, she returns
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to A the leakage (h, k0, k̃0, LFC(h, 1; k), LFC−1(τ, 0, o; k)). Finally, she adds (n∥m, h) to S.
This takes time tH + 2tFC + (2ℓ + 1)tE ≤ tH + 2tFC + (2L + 1)tE.

When A outputs her forgery c, B simply proceeds as for a normal decryption query,
with the exception that she does not answer A anything. Instead, she looks into S to
find a collision. If this is the case, she outputs it, otherwise (0N , 1N ). This takes time
tH + 2tFC + (2ℓ + 1)tE ≤ tH + 2tFC + (2L + 1)tE.

The adversary A can do the modeling queries (which are qL) by himself, thus, we do
not have to explain how B treats them.

Thus, in total B runs in time bounded by t + (qE + qD + 1)tH + (qE + 2qD + 2)tFC +
(qE + qD + 1)(2L + 1)tE = t2.
Bounding |Pr[E0]− Pr[E1]|. Since B is t2-adversary, H is a (t2, ϵCR)-collision resistant
hash function, and Game 0 and Game 1 are the same except if B finds a collision, then

|Pr[E0]− Pr[E1]| = Pr[B wins ] ≤ ϵCR.

Game 2. Let Game 2 be Game 1, where we abort if there exist two decryption queries,
the ith and the jth s.t. j < i and k̃i

0 = kj
0.

Games 10, ..., 1qD . Let Game 1i be Game 1 where we abort if in one of the first i

decryption queries there exist two verification queries, the lth and the jth s.t. j < l and
k̃0

l = kj
0. Note that Game 10 is Game 1, while Game 1qD is Game 2.

Transition between Game 1i and 1i+1. Since Game i and Game i + 1 are the same
except if in the ith decryption query k̃i

0 = kj
0 for j < i, we only need to bound the latter

event.
To do this, we build a t1-adversary Ci which works as follows: At the start of the game

Ci obtains the key of the hash function, s, which she forwards to A. Moreover, Ci has a
list V which is empty.

When A does a modelling encryption query on input (n, m; k′), Ci simply computes h =
Hs(n, m), computes (τ, k0) = FCk′(h, b) and collects the leakage leak = LFC(h, b; k′). After
having parsed m in N -bit blocks, m = (m1, . . . , mℓ), from k0, Ci computes y0 = Ek0(pB),
c0 = y0 ⊕ n, and, for every i = 1, . . . ℓ, Ci computes ki = FCki−1(pA), yi = FCki(pB),
ci = π|mi|(yi) ⊕mi. She sets C = (c0, . . . , cℓ). She returns c = (τ, C) and the leakage
(h, LFC(h, b; k′)) to A and she adds (m, h) to S. This takes time tH + (2ℓ + 1)tE ≤
tH + (2L + 1)tE and one modeling query to FC.

When A does a modelling decryption query on input c, Ci simply parses c = (τ, C).
Then she computes,k0 = FC−1

k′ (τ, 0, o) and collects the leakage LFC−1(τ, 0, o; k′). After
having parsed C in N -bit blocks, C = (c1, . . . , cℓ), from k0, Ci computes y0 = Ek0(pB),
n = y0 ⊕ c0, and, for every i = 1, . . . ℓ, Ci computes ki = FCki−1(pA), yi = FCki(pB),
mi = π|ci|(yi)⊕ ci. She sets m = (m1, . . . , mℓ). After that, she computes h = Hs(n∥m),
k̃0 = FCk′(h, 1), and collects the leakage LFC(h, 1; k′). She returns m if k0 = k̃0, otherwise
⊥ to A. Moreover, she returns to A the leakage (h, k0, k̃0, LFC(h, 1; k′), LFC−1(τ, 0, o; k′)).
This takes time tH + (2ℓ + 1)tE ≤ tH + (2L + 1)tE and two modeling queries to FC.

When A does an encryption query on input m, Ci simply computes h = Hs(m), calls
her oracle FCLk on input (h, b), obtaining (τ, k0) and the leakage LFC(h, b; k). After
having parsed m in N -bit blocks, m = (m1, . . . , mℓ), from k0, Ci computes y0 = Ek0(pB),
c0 = y0 ⊕ n, and, for every i = 1, . . . ℓ, B computes ki = FCki−1(pA), yi = FCki

(pB),
ci = π|mi|(yi) ⊕mi. She sets C = (c0, . . . , cℓ). She returns c = (τ, C) and the leakage
(h, LFC(h, b; k)) to A. This takes time tH + (2ℓ + 1)tE ≤ tH + (2L + 1)tE and one oracle
query to FC.

When A does one of the first i − 1 decryption queries on input c, Ci simply parses
c = (τ, C), with |τ | = N . Then, she queries her oracle FC−1 on input (τ, 0, o), obtaining k0
and the leakage LFC−1(τ, 0, o; k). After having parsed C in N -bit blocks, C = (c1, . . . , cℓ),
from k0, Ci computes y0 = Ek0(pB), n = y0 ⊕ c0, and, for every i = 1, . . . ℓ, Ci computes
ki = FCki−1(pA), yi = FCki

(pB), mi = π|ci|(yi)⊕ci. She sets m = (m1, . . . , mℓ). After that,
Ci simply computes h = Hs(n∥m), and she calls her oracle FC on input (h, 1) obtaining k̃0
and the leakage LFC(h, 1; k). She returns m if k = k̃0, otherwise ⊥ to A. Moreover, she
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returns to A the leakage (h, k0, k̃0, LFC(h, 1; k), LFC−1(τ, 0, o; k)). Finally, she adds k0 to S.
This takes time tH and one query to FC and one to FC−1.

When A outputs the ith decryption query on input (m, τ), Ci proceeds as for the previous
decryption queries until having retrieved n and m. Then, she computes h = Hs(m), picks
an element x randomly from V and she outputs (h, 1, x) as her prediction. This takes time
tH + (2ℓ + 1)tE ≤ tH + (2L + 1)tE.

Thus, in total Ci runs in time bounded by t + (qL + qE + qD)[tH + (2L + 1)tE] ≤ t1,
does at most 2qL modelling queries and at most qE + qD queries to FC and qD to FC−1.
Bounding |Pr[E1i ] − Pr[E1i+1 ]| . Since Ci is (2qL, qE + qD, qD, t1)-adversary, FC is a
(2qL, qE + qD + 1, qD + 1, t1, ϵsU-L2)-unpredictable forkcipher, and Game 1i and Game 1i+1

are the same except if in the ith verification query k̃i
0 = kj

0 with j < i, then
|Pr[Ei

1]− Pr[E1i+1 ]| = Pr[correct guess] Pr[Ci wins ] ≤ (i− 1)ϵsU-L2,

because we have randomly picked x from the set of possible k0s, thus, if i = 1, |V| = 0,
so C1 can never win, while, if i > 1, we have guessed correctly with probability at least
1/|V| = (i− 1)−1.
Bounding |Pr[E1]− Pr[E2]|. Summing all the previous probabilities, we obtain

|Pr[E10 ]− Pr[E1qD ]| =
qV∑
i=1

(i− 1)ϵsU-L2 =
qD−1∑
i=1

iϵsU-L2 = qD(qD − 1)
2 ϵsU-L2.

Game 3. Let Game 3 be Game 2, where we abort if there exist two decryption queries,
the ith and the jth s.t. j < i and k̃i

0 = ki
0.

Games 20, ..., 2qD . Let Game 20 be Game 2 where we abort if in one of the first i

verification queries there exist two verification queries, the lth and the jth s.t. j < l and
ṽl = vj . Note that Game 20 is Game 2, while Game 2qD is Game 3.
Transition between Game 2i and 2i+1. Since Game 2i and Game 2i+1 are the same
except if in the ith verification query ṽi = vj for j < i, we only need to bound the latter
event.

To do this, we build a t1-adversary Di which works as follows: At the start of the game
Di obtains the key of the hash function, s, which she forwards to A. Moreover, Di has a
list V which is empty.

When A does a modelling encryption query on input (n, m; k′), Di simply computes h =
Hs(n, m), computes (τ, k0) = FCk′(h, b) and collects the leakage leak = LFC(h, b; k′). After
having parsed m in N -bit blocks, m = (m1, . . . , mℓ), from k0, Di computes y0 = Ek0(pB),
c0 = y0 ⊕ n, and, for every i = 1, . . . ℓ, Di computes ki = FCki−1(pA), yi = FCki

(pB),
ci = π|mi|(yi) ⊕mi. She sets C = (c0, . . . , cℓ). She returns c = (τ, C) and the leakage
(h, LFC(h, b; k′)) to A. This takes time tH + (2ℓ + 1)tE ≤ tH + (2L + 1)tE and one modeling
query to FC.

When A does a modelling decryption query on input c, Di simply parses c = (τ, C).
Then she computes,k0 = FC−1

k′ (τ, 0, o) and collects the leakage LFC−1(τ, 0, o; k′). After
having parsed C in N -bit blocks, C = (c1, . . . , cℓ), from k0, Ci computes y0 = Ek0(pB),
n = y0 ⊕ c0, and, for every i = 1, . . . ℓ, Di computes ki = FCki−1(pA), yi = FCki

(pB),
mi = π|ci|(yi)⊕ ci. She sets m = (m1, . . . , mℓ). After that, she computes h = Hs(n∥m),
k̃0 = FCk′(h, 1), and collects the leakage LFC(h, 1; k′). She returns m if k0 = k̃0, otherwise
⊥ to A. Moreover, she returns to A the leakage (h, k0, k̃0, LFC(h, 1; k′), LFC−1(τ, 0, o; k′)).
This takes time tH + (2ℓ + 1)tE ≤ tH + (2L + 1)tE and two modeling queries to FC.

When A does an encryption query on input (n, m), Di simply computes h = Hs(m),
calls her oracle FCLk on input (h, b), obtaining (τ, k0) and the leakage LFC(h, b; k). After
having parsed m in N -bit blocks, m = (m1, . . . , mℓ), from k0, Di computes y0 = Ek0(pB),
c0 = y0 ⊕ n, and, for every i = 1, . . . ℓ, B computes ki = FCki−1(pA), yi = FCki

(pB),
ci = π|mi|(yi) ⊕mi. She sets C = (c0, . . . , cℓ). She returns c = (τ, C) and the leakage
(h, LFC(h, b; k)) to A. This takes time tH + (2ℓ + 1)tE ≤ tH + (2L + 1)tE and one oracle
query to FC.
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When A does one of the first i− 1 verification queries on input (m, τ), Di simply parses
c = (τ, C), with |τ | = N . Then, she queries her oracle FC−1 on input (τ, 0, o), obtaining k0
and the leakage LFC−1(τ, 0, o; k). After having parsed C in N -bit blocks, C = (c1, . . . , cℓ),
from k0, Di computes y0 = Ek0(pB), n = y0 ⊕ c0, and, for every i = 1, . . . ℓ, Di computes
ki = FCki−1(pA), yi = FCki(pB), mi = π|ci|(yi)⊕ci. She sets m = (m1, . . . , mℓ). After that,
Di simply computes h = Hs(n∥m), and she calls her oracle FC on input (h, 1) obtaining k̃0
and the leakage LFC(h, 1; k). She returns m if k = k̃0, otherwise ⊥ to A. Moreover, she
returns to A the leakage (h, k0, k̃0, LFC(h, 1; k), LFC−1(τ, 0, o; k)). Finally, she adds k̃0 to S.
This takes time tH + (2ℓ + 1)tE ≤ tH + (2L + 1)tE and one query to FC and one to FC−1.

When A outputs the ith decryption query on input (m, τ), Di simply picks an element
x randomly from S and she outputs (τ, o, x) as her prediction. This takes no time. Thus,
in total Di runs in time bounded by t + (qL + qE + qD)[tH + (2L + 1)tE] ≤ t1, does at most
2qL modelling queries and at most qE + qD queries to FC and qD to FC−1.
Bounding |Pr[E2i ] − Pr[E2i+1 ]| . Since Di is (2qL, qE + qD, qD, t1)-adversary, FC is a
(2qL, qE + qD, qD, t1, ϵsU-L2)-unpredictable forkcipher, and Game 2i and Game 2i+1 are the
same except if in the ith decryption query ki

0 = k̃j
0 with j < i, then

|Pr[Ei
2]− Pr[E2i+1 ]| = Pr[correct guess] Pr[Di wins ] ≤ (i− 1)ϵsU-L2,

because we have randomly picked x from the set of possible k̃0s, thus, if i = 1, |V| = 0,
so D1 can never win, while, if i > 1, we have guessed correctly with probability at least
1/|V| = (i− 1)−1.
Bounding |Pr[E2]− Pr[E3]|. Summing all the previous probabilities, we obtain

|Pr[E20 ]− Pr[E2qD ]| =
qD∑
i=1

(i− 1)ϵsU-L2 =
qD−1∑
i=1

iϵsU-L2 = qD(qD − 1)
2 ϵsU-L2.

Games 4. Let Game 4 be Game 3 where we abort there is one fresh and valid decryption
query.
Games 31, ..., 3qD+1. Let Game 3i be Game 3 where we abort if one of the first i decryption
queries is fresh and valid. (We remind that we consider the verification query induced by
A output as the qV + 1th decryption query. Note that Game 30 is Game 3, while Game
3qD+1 is Game 3.
Transition between Game 3i and 3i+1. Since Game 3i and Game 3i+1 are the same
except if the ith decryption query is fresh and valid, we only need to bound the probability
that the input of the ith decryption query, c, is fresh and Deck(c) ̸=⊥.

To do this, we build a t1-adversary EEi which works as follows: At the start of the
game EEi obtains the key of the hash function, s, which she forwards to A.

When A does a modelling encryption query on input (n, m; k′), EEi simply computes h =
Hs(n, m), computes (τ, k0) = FCk′(h, b) and collects the leakage leak = LFC(h, b; k′). After
having parsed m in N -bit blocks, m = (m1, . . . , mℓ), from k0, EEi computes y0 = Ek0(pB),
c0 = y0 ⊕ n, and, for every i = 1, . . . ℓ, EEi computes ki = FCki−1(pA), yi = FCki

(pB),
ci = π|mi|(yi) ⊕mi. She sets C = (c0, . . . , cℓ). She returns c = (τ, C) and the leakage
(h, LFC(h, b; k′)) to A. This takes time tH + (2ℓ + 1)tE ≤ tH + (2L + 1)tE and one modeling
query to FC.

When A does a modelling decryption query on input c, EEi simply parses c = (τ, C).
Then she computes,k0 = FC−1

k′ (τ, 0, o) and collects the leakage LFC−1(τ, 0, o; k′). After
having parsed C in N -bit blocks, C = (c1, . . . , cℓ), from k0, Ci computes y0 = Ek0(pB),
n = y0 ⊕ c0, and, for every i = 1, . . . ℓ, Di computes ki = FCki−1(pA), yi = FCki

(pB),
mi = π|ci|(yi)⊕ ci. She sets m = (m1, . . . , mℓ). After that, she computes h = Hs(n∥m),
k̃0 = FCk′(h, 1), and collects the leakage LFC(h, 1; k′). She returns m if k0 = k̃0, otherwise
⊥ to A. Moreover, she returns to A the leakage (h, k0, k̃0, LFC(h, 1; k′), LFC−1(τ, 0, o; k′)).
This takes time tH + (2ℓ + 1)tE ≤ tH + (2L + 1)tE and two modeling queries to FC.

When A does an encryption query on input (n, m), EEi simply computes h = Hs(m),
calls her oracle FCLk on input (h, b), obtaining (τ, k0) and the leakage LFC(h, b; k). After
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having parsed m in N -bit blocks, m = (m1, . . . , mℓ), from k0, EEi computes y0 = Ek0(pB),
c0 = y0 ⊕ n, and, for every i = 1, . . . ℓ, EEi computes ki = FCki−1(pA), yi = FCki

(pB),
ci = π|mi|(yi) ⊕mi. She sets C = (c0, . . . , cℓ). She returns c = (τ, C) and the leakage
(h, LFC(h, b; k)) to A. This takes time tH + (2ℓ + 1)tE ≤ tH + (2L + 1)tE and one oracle
query to FC.

When A does one of the first i−1 verification queries on input (m, τ), EEi simply parses
c = (τ, C), with |τ | = N . Then, she queries her oracle FC−1 on input (τ, 0, o), obtaining k0
and the leakage LFC−1(τ, 0, o; k). After having parsed C in N -bit blocks, C = (c1, . . . , cℓ),
from k0, EEi computes y0 = Ek0(pB), n = y0 ⊕ c0, and, for every i = 1, . . . ℓ, B computes
ki = FCki−1(pA), yi = FCki

(pB), mi = π|ci|(yi) ⊕ ci. She sets m = (m1, . . . , mℓ). After
that, EEi simply computes h = Hs(n∥m), and she calls her oracle FC on input (h, 1)
obtaining k̃0 and the leakage LFC(h, 1; k). She returns m if k = k̃0, otherwise ⊥ to A.
Moreover, she returns to A the leakage (h, k0, k̃0, LFC(h, 1; k), LFC−1(τ, 0, o; k)). This takes
time tH + (2ℓ + 1)tE ≤ tH + (2L + 1)tE and one query to FC and one to FC−1.

When A outputs the ith decryption query on input c, EEi simply behaves as for a
normal decryption query except that instead of calling her oracle on input (h, 1), she
outputs (h, 1, k0) as her prediction. This takes time tH + (2ℓ + 1)tE ≤ tH + (2L + 1)tE and
one query to FC−1.

Thus, in total EEi runs in time bounded by t + (qL + qE + qD + 1)[tH + (2L + 1)tE] ≤ t1,
does at most 2qL modelling queries and at most qE + qD queries to FC and qD + 1 to FC−1.
Bounding |Pr[E3i ]− Pr[E3i+1 ]| and |Pr[E3]− Pr[E4]|. Since EEi is (2qL, qE + qD, qD +
1, t1)-adversary, FC is a (2qL, qE +qD, qD +1, t1, ϵsU-L2)-unpredictable forkcipher, and Game
3i and Game 3i+1 are the same except if the ith decryption query is the first fresh and
valid verification query, then

|Pr[Ei
3]− Pr[E3i+1 ]| = Pr[B wins ] ≤ ϵsU-L2.

So, |Pr[E3]− Pr[E4]| ≤
qV +1∑
i=0
|Pr[E3i ]− Pr[E4i+1 ]| ≤ (qV + 1)ϵsU-L2

Concluding the proof. We can conclude the proof, since Pr[E4] = 0, since none of the
qV decryption query and the decryption query induced by the forgery output of A can be
fresh and valid. Thus,

Pr[E0] ≤ Pr[E4] +
3∑

i=0
|Pr[Ei]−Pr[Ei+1]| ≤ ϵCR + 2qV (qV − 1)

2 ϵsU-L2 + (qV + 1)ϵsU-L2 = ϵ.

B.5 Nonce-Misuse-Security of ForkDTE 1 and 2
Theorem 5. Let FC be a (qE , qD + 1, t1, ϵPRFP)-pseudo random forkcipher permutation.
Let H be a (t2, ϵCR)-collision resistant hash function. Let E be a (2, t3, ϵPRF)-PRF Then
ForkDTE1 (and ForkDTE2) is (qE , qD, t, ϵ)-nmAE-secure with

ϵ ≤ ϵPRFP + ϵCR + qE(L + 1)ϵPRF + (qD + 1 + q2
E + q2

E(L + 1)2)2−N ,

where ForkDTE1 encrypts at most Ln-bits message, t1 = t + (qE + qD + 1)[tH + (2L + 1)tE],
t2 = t + (qE + qD + 1)[2tf + tH + (2L + 1)tE], t3 = t + (qE + qD + 1)[2tf + tH + (2L + 1)tE]
with tH the time needed to execute once the hash function H, tE to execute E, and tf to
randomly sample a random permutation.

ForkDTE1 and 2 have the same encryption algorithm and its verification algorithm
gives the same output (without leakage). Thus, a proof for the first is the same as a proof
of the second scheme.

Proof. We do not give the complete proof here. We only give the proof until we have
arrived to a step which is already covered in the original DTE paper [BKP+18].
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We use a sequence of games Game 0, ... , Game 2. We denote with Ei the event that
the output of Game i is 1, that is, that the adversary wins.
Game 0. This is the nmAE game where the adversary A is playing against ForkDTE1.
Game 1. It is Game 0, where we replace FCk with its ideal counterpart.
Transition between Game 0 and 1. Since Game 0 and Game 1 are the same except for
the use of FC, we need to build the probability an adversary distinguish the use of FC to
its ideal counterpart. To do this, we build a (qFC, qFC−1 , t1)-adversary B which has access
to two oracles which are either implemented with FCk, FC−1

k or their ideal counterparts. B
works as follows: At the start of the game B obtains the key of the hash function, s, which
she forwards to A. Moreover, B has a list S which is empty.

When A does an encryption query on input (n, m), B simply computes h = Hs(n∥m),
and calls her oracle on input (h, b) obtaining (τ, k0). From k0, B computes y0 = Ek0(pB),
and c0 = y0 ⊕ n. Then, she parses m in n-bit blocks, m1, . . . , mℓ. After that, for all
i = 1, . . . , ℓ, B computes ki = Eki−1(pA), yi = Eki

(pB), and ci = π|mi|(yi) ⊕mi. Finally,
she returns A c = (τ, C), with C = (c0, . . . , cℓ) and she adds c to S. This takes one oracle
query to FCk and time tH + (2ℓ + 1)tE ≤ tH + (2L + 1)tE, since ℓ ≤ L.

When A does a decryption query on input c, she parses it in n-bits blocks, τ, c0, c1, . . . , mℓ.
Then, B simply calls her inverse oracle on input (τ, 0, b), obtaining (h̃, k0). From k0, B
computes y0 = Ek0(pB), and n = y0 ⊕ c0. After that, for all i = 1, . . . , ℓ, B computes
ki = Eki−1(pA), yi = Eki(pB), and mi = π|mi|(yi)⊕ ci. Finally, she computes h = Hs(n∥m)
and checks if h

?= h̃. If it is the case, B returns A m = (m1, . . . , mℓ); otherwise, ⊥. This
takes one oracle query to FC−1

k and time tH + (2ℓ + 1)tE ≤ tH + (2L + 1)tE, since ℓ ≤ L.
When A outputs its forgery c, she proceeds as for a normal decryption query except

that she does not return anything to A. Instead, if at the end of the verification h = h̃ and
c /∈ S, B outputs 1; otherwise 0.

Thus, in total B does qE queries to FC, qD + 1 to FC−1 and runs in time bounded by
t + (qE + qD + 1)[tH + (2L + 1)tE] = t1.
Bounding |Pr[E0]−Pr[E1]|. If the oracles B has access to are implemented by (FCk, FC−1

k ),
B is correctly simulating Game 0 for A; otherwise, Game 1. Since B is (qE , qD + 1, t1)-
adversary, and FC is a (qE , qD + 1, t1, ϵCR)-PRFP secure forkcipher, then

|Pr[E0]− Pr[E1]| = |Pr[1← BFC,FC−1
]− Pr[1← Bf,f−1

]| ≤ ϵPRFP.

Game 2
It is Game 2, where we replace the second permutation f1, with f′

1 = f1 ◦ f0. Since f1 is
a random permutation, it is impossible to distinguish f ′

1 from, f1. Now, we are exactly in
the situation for DTE2 after we have replaced the tweakable blockcipher with a random
permutation.

B.6 nAE-Security of ForkDTE 1 and 2
This follows from the fact that nonce-misuse security definition (Def. 15) implies nAE-
security (Def. 14) since the latter definition is the first with an additional requirement:
the adversary is not allowed to repeat the nonce n in different encryption queries.

C Modifying ForkDTE to Accomodate Associated Data
To modify ForkDTE to accommodate associated data, it is enough to replace h = Hs(n∥m),
with h = Hs(n, a, m). We need to be careful (and not to use directly h = Hs(n∥a∥m)
because it would be easy to find “forgeries” (for example using a = (a0, a1), m = m0, and
a′ = a0, m′ = (a1, m0)).
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Algorithm 3 The PSV leakage-resilient iv-based (Def. 18 encryption scheme [PSV15]. E∗

is a strongly protected implementation of E.
• Gen:

– k
$← K

– pA, pB
$← {0, 1}N (pA, pB are public parameters)

• Enck(iv, m):
– Parse m = (m1, m2, . . . , mℓ) in N -bit blocks
– k1 = E∗

k(iv) first ephemeral key k1 generation
– y1 = Ek1(pB) first pseudorandom block y1 generation
– c1 = y1 ⊕m1 first ciphertext block c1 generation
– For i = 2, . . . ℓ

∗ ki = Eki−1(pA) ith ephemeral key ki generation
∗ yi = Eki

(pB) ith pseudorandom block yi generation
∗ ci = π|mi|(yi)⊕mi ith ciphertext block ci generation

– Return c = (c1, . . . , cℓ)
• Deck(iv, c):

– Parse c = (c1, c2, . . . , cℓ) in N -bit blocks
– k1 = E∗

k(iv)
– y1 = Ek1(pB)
– m1 = y1 ⊕ c1
– For i = 2, . . . ℓ

∗ ki = Eki−1(pA)
∗ yi = Eki(pB)
∗ mi = π|ci|(yi)⊕ ci

– Return m = (m1, . . . , mℓ)

Algorithm 4 ForkTMAC, a sUF-L2-secure MAC based on a forkcipher.
We use a hash function H whose output is 2n-bit long.

• Gen:
– k

$← K
– s

$← HK (s is a public parameter)

• Mack(m):
– h = Hs(m) // digest
– Parse h in n -bit blocks (h = h1∥h2)
– τ = FCh2

k (h1, 0) // tag
– Return τ

• Vrfyk(m, τ):
– h = Hs(m)
– Parse h in n -bit blocks (h = h1∥h2)
– v = FCh2

k (h1, 1)
– ṽ = FC−1,h2

k (τ, 0, o)
– If v = ṽ Return ⊤, Else Return ⊥
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Algorithm 5 HBC2 [BPPS17], a sUF-L2 MAC.
We use a hash function H whose output is n-bit long, and a BC E : K × {0, 1}n → {0, 1}n

• Gen:
– k

$← K
– s

$← HK (s is a public parameter)

• Mack(m):
– h = Hs(m) // digest
– τ = Ek(h) // tag
– Return τ

• Vrfyk(m, τ):
– h = Hs(m)
– h̃ = E−1

k (τ)
– If h = h̃ Return ⊤, Else Return ⊥

Algorithm 6 HTBC [BGP+19], a sUF-L2 MAC.
We use a hash function H whose output is 2n-bit long, and a TBC E : K×{0, 1}n×{0, 1}n →
{0, 1}n

• Gen:
– k

$← K
– s

$← HK (s is a public parameter)

• Mack(m):
– h = Hs(m) // digest
– Parse h in n -bit blocks (h = h1∥h2)
– τ = Eh2

k (h1) // tag
– Return τ

• Vrfyk(m, τ):
– h = Hs(m)
– Parse h in n -bit blocks (h = h1∥h2)
– h̃1 = E−1,h2

k (τ)
– If h1 = h̃1 Return ⊤, Else Return ⊥
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Algorithm 7 ForkDTE1-FEDT and ForkDTE2-FEDT: ForkDTE1, ForkDTE2,where we
have replaced the PSV encryption with the encryption of FEDT [DDLM24]. E is a leak-free
forkcipher and FC is a forkcipher.

• Gen:
– k

$← K DTE 2 ForkDTE1 and 2 ForkDTE1 ForkDTE2

– s
$← HK

– pA, pB
$← {0, 1}N (s, pA, pB are public parameters)

• Enck(n, m):
– h = Hs(n∥m) digest
– τ = E0

k(h) tag

– k0 = E1
k(τ) generate the first ephemeral key

– (τ, k0) = FCk(h, b) tag and generate the first ephemeral key
– Parse m = (m1, m2, . . . , mℓ) in N -bit blocks ...and encrypt
– (k1, k2) = Ek0(0n, b)
– For i = 3, 5, 7, . . . , 2l − 1 create a tree of random value

∗ a = (i− 1)/2
∗ (ki, ki+1) = Eka(0n, b)

– c0 = kl−1 ⊕ n encrypt the nonce
– For i = 1, . . . l encrypt the message

∗ ci = π|mi|(kl−1+i)⊕mi

– C = (c0, c1, . . . , cℓ)
– Return c = (τ, C)

• Deck(c):
– Parse c = (τ, C) with |τ | = N
– Parse C = (c0, c1, c2, . . . , cℓ) in N -bit blocks
– k0 = E−1,1

k (τ) Recovering the first ephemeral key

– (h̃, k0) = FC−1
k (τ, 0, b) Recovering the first ephemeral key and check value

– k0 = FC−1
k (τ, 0, o) Recovering the first ephemeral key

– (k1, k2) = Ek0(0n, b)
– For i = 3, 5, 7, . . . , 2l − 1

∗ a = (i− 1)/2
∗ (ki, ki+1) = Eka

(0n, b)
– n = kl−1 ⊕ c0
– For i = 1, . . . l

∗ mi = π|ci|(kl−1+i)⊕ ci

– (n, m) = (n, (m1, ..., mℓ))
– h = Hs(n∥m)
– h̃ = FC−1,0

k (τ) check value

– If h = h̃ Return m; Else Return ⊥

– If h = h̃ Return m; Else Return ⊥
– k̃0 = FCk(h, 1) check value

– If k0 = k̃0 Return m; Else Return ⊥ check value
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D Algorithms

E Additional figures
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Figure 5: The tag-generation of ForkMAC - Alg. 1.
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Figure 6: The encryption scheme of DTE2 [BPPS17] - Alg. 2. From k0 we have
PSV [PSV15].
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Figure 7: The decryption of ForkDTE1 - Alg. 2.
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Figure 8: The decryption of ForkDTE2 - Alg. 2.

Table 7: The Add, and Fresh algorithms for the strong unpredictability with leakage in
evaluation and inversion experiment (Tab. 2).

The Add, and Fresh algorithms for the sU-L2 experiment.
Algorithm Add((x, sel, y), C):

If sel = 0
If (x, ·, ·) ∈ C

If (x, gu, y1) ∈ C
Return C ← (C \ {(x, gu, y1)}) ∪ {(x, y, y1)}

Else Return C
If (·, y, ·) ∈ C

If (gu, y, y1) ∈ C
Return C ← (C \ {(gu, y, y1)}) ∪ {(x, y, y1)}

Else Return C
Else Return C ← C ∪ {(x, y, gu)}

If sel = 1
If (x, ·, ·) ∈ C

If (x, y0, gu) ∈ C
Return C ← (C \ {(x, y0, gu)}) ∪ {(x, y0, y)}

Else Return C
Else If (·, ·, y) ∈ C

If (gu, y0, y) ∈ C
Return C ← (C \ {(gu, y0, y)}) ∪ {(x, y0, y)}

Else Return C
Else Return C ← C ∪ {(x, gu, y)}

If sel = b
y = (y0, y1)
If (x, ·, ·) ∈ C

Return C ← (C \ {(x, ·, ·)}) ∪ {(x, y0, y1)}
Else If (·, y0, ·) ∈ C

Return C ← (C \ {(·, y0, ·)}) ∪ {(x, y0, y1)}
Else Return C ← C ∪ {(x, y0, y1)}

Algorithm Fresh((x, sel, z), C):
If sel = 0

If (x, z, ·) ∈ C
Return 0

If sel = 1
If (x, ·, z) ∈ C

Return 0
If sel = o

If (·, x, z) ∈ C
Return 0

Return 1
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Table 8: The AddI algorithm for the strong unpredictability with leakage in evaluation
and inversion experiment (Tab. 2).

The AddI algorithm for the sU-L2 experiment.
Algorithm AddI((x, sel, sel′, y), C):
If sel = 0 If sel = 1

If sel′ = i If sel′ = i
If (·, x, ·) ∈ C If (·, ·, x) ∈ C

If (gu, x, y1) ∈ C If (gu, y0, x) ∈ C
C ← C \ {(gu, x, y1)} C ← C \ {(gu, y0, x)}
Return C ← C∪{(y, x, y1)} Return C ← C∪{(y, y0, x)}

Else Return C Else Return C
If (y, ·, ·) ∈ C If (y, ·, ·) ∈ C

If (y, gu, y1) ∈ C If (y, y0, gu) ∈ C
C ← C \ {(y, gu, y1)} C ← C \ {(y, y0, gu)}
Return C ← C∪{(y, x, y1)} Return C ← C∪{(y, y0, x)}

Else Return C Else Return C
Else Return C ← C∪{(y, x, gu)} Else Return C ← C∪{(y, gu, x)}

If sel′ = o If sel′ = o
If (·, x, ·) ∈ C If (·, ·, x) ∈ C

If (z, x, gu) ∈ C If (z, gu, x) ∈ C
C ← C \ {(z, x, gu)} C ← C \ {(z, gu, x)}
Return C ← C ∪ {(z, x, y)} Return C ← C ∪ {(z, y, x)}

Else Return C Else Return C
If (·, ·, y) ∈ C If (·, y, ·) ∈ C

If (z, gu, y) ∈ C If (z, y, gu) ∈ C
C ← C \ {(z, gu, y)} C ← C \ {(z, y, gu)}
Return C ← C ∪ {(z, x, y)} Return C ← C ∪ {(z, y, x)}

Else Return C Else Return C
Else Return C ← C∪{(gu, x, y)} Else Return C ← C∪{(gu, y, x)}

If sel = b If sel = b
y = (z, y1) y = (z, y0)
If (z, ·, ·) ∈ C If (z, ·, ·) ∈ C
C ← C \ {(z, ·, ·)} C ← C \ {(z, ·, ·)}
Return C ← C ∪ {(z, x, y1)} Return C ← C ∪ {(z, y0, y)}

If (·, x, ·) ∈ C If (·, ·, x) ∈ C
C ← C \ {(·, x, ·)} Return C ← C \ {(·, ·, x)}
Return C ← C ∪ {(z, x, y1)} Return C ← C ∪ {(z, y0, x)}

Else Return C ← C∪{(z, x, y1)} Else Return C ← C∪{(z, y0, x)}
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