
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 4, 28 pages.

https://doi.org/10.62056/a0iv4fe-3
Check for updates

Folding Schemes with
Privacy Preserving Selective Verification

Joan Boyar and Simon Erfurth

University of Southern Denmark, Odense, Denmark

Abstract. Folding schemes are an exciting new primitive, transforming the task of
performing multiple zero-knowledge proofs of knowledge for a relation into performing
just one zero-knowledge proof, for the same relation, and a number of cheap inclusion-
proofs. Recently, folding schemes have been used to amortize the cost associated
with proving different statements to multiple distinct verifiers, which has various
applications. We observe that for these uses, leaking information about the statements
folded together can be problematic, yet this happens with previous constructions.
Towards resolving this issue, we give a natural definition of privacy preserving folding
schemes, and what security they should offer. To construct privacy preserving folding
schemes, we first define statement hiders, a primitive which might be of independent
interest. In a nutshell, a statement hider hides an instance of a relation as a new
instance in the same relation. The new instance is in the relation if and only if
the initial instance is. With this building block, we can utilize existing folding
schemes to construct a privacy preserving folding scheme, by first hiding each of the
statements. Folding schemes allow verifying that a statement was folded into another
statement, while statement hiders allow verifying that a statement was hidden as
another statement.
Keywords: folding schemes · SNARKs · delegation of computation

1 Introduction
Suppose that N clients outsource some computations to an untrusted server. This server
does the computation (possibly with some additional secret data or a proprietary algorithm)
and then wishes to prove to the clients that each of their computations was done correctly.
One way this could be done is that for each of the N clients, the server provides a
(non-interactive) zero-knowledge proof that the client’s computation was done correctly.
However, this requires doing N (potentially expensive) proofs, one for each of the clients.
A folding scheme [KST22] allows the server to combine the N statements into just one
statement of the same size as the initial statements. Additionally, the folding scheme
produces a folding proof, which proves that all the statements were folded into the final
statement. Thus, the server can prove just the final statement, and distribute the non-
interactive zero-knowledge proof of it being correct together with the folding proof to the
clients, and all of them should be convinced that their computations were done correctly.
We refer to the server as the prover and to each client as a verifier.

To be more specific, a folding scheme for an NP-language L with relation

R = {(x, w) | w is a proof that x ∈ L},

can combine instances (xi, wi) ∈ R for 1 ≤ i ≤ N into one instance (x, w) ∈ R. Intuitively,
(x, w) is in R if and only if (xi, wi) is in R for 1 ≤ i ≤ N . Additionally, a folding scheme

E-mail: joan@imada.sdu.dk (Joan Boyar), simon@serfurth.dk (Simon Erfurth)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-09-30 Accepted: 2024-12-03

https://doi.org/10.62056/a0iv4fe-3
https://crossmark.crossref.org/dialog/?doi=10.62056/a0iv4fe-3&domain=pdf&date_stamp=2024-12-12
https://orcid.org/0000-0002-0725-8341
https://imada.sdu.dk/u/joan/
https://orcid.org/0000-0001-8862-2856
https://serfurth.dk/
mailto:joan@imada.sdu.dk
mailto:simon@serfurth.dk
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Folding Schemes with Privacy Preserving Selective Verification

produces a folding proof π, that can be used to verify that x was produced by folding the
xi’s, even though the verifiers do not necessarily learn w or any of the wi’s.

The folding proof proves that all the statements have been folded into the final statement,
and hence, its size is generally Ω(N). There are two issues with this: (1) Sending a size
Ω(N) folding proof to every verifier is wasteful, if each party only needs to verify that
their statement was folded into the final statement. (2) Verifying a folding proof requires
knowledge of all statements folded into the final statement, which in a multi-verifier setting
has obvious privacy concerns. The first issue has led to the development of folding schemes
with selective verification [RZ23]. These folding schemes support generating separate proofs
of folding for each of the N statements folded together. Each proof of folding πi should be
of size o(N), and need only prove that xi was folded into the final statement.

However, the folding schemes with selective verification from [RZ23] do not resolve
the second issue. Specifically, any folding proof for a specific statement includes either
the statement before or the statement after that specific statement. Since each proof of
folding is only required to prove that the corresponding statement was folded into the final
statement, it is natural to require the proof of folding to preserve the privacy of all other
statements, ensuring that no verifier learns anything about the other verifiers’ statements.

In this work, we introduce folding schemes with privacy preserving selective verification,
which resolves both issues (1) and (2). Privacy preserving should be understood as meaning
that if a verifier’s statement is folded together with other statements, and selective folding
proofs are generated and distributed by the prover, other verifiers might learn that the
statement is in the language (since the final statement is proven to be in the language),
but they will have no idea which statement in the language it is. In practice, we work
with an indistinguishability notion, where an adversary chooses two distinct indices i
and ℓ and the entire input to the folding scheme, including two potential inputs for the
i’th spot. One of the potential i’th inputs is then chosen at random, folding and proof
generation is done, and the adversary is then given the statement obtained by folding,
and the selective proof of folding for input ℓ. Finally, the adversary has to guess which
of the statements was used as the i’th input. We say that the folding scheme is privacy
preserving, if no adversary guesses correctly with probability more than 1/2 + negl(λ),
where λ is the security parameter.

Toward constructing folding schemes with privacy preserving selective verification, we
define a new primitive, which we call an NP-statement hider. This primitive is used by
the prover, hiding one instance, (x, w), as another instance, (x′, w′), and producing a
certificate for verifying that x′ is hiding x. Using an NP-statement hider and a folding
scheme with selective verification as building blocks, we present a generic construction of
a folding scheme with privacy preserving selective verification, and show that it satisfies
our definition of being privacy preserving. Thus, to extend a folding scheme with selective
verification to one with privacy preserving selective verification, it is sufficient to construct
a corresponding NP-statement hider. To facilitate this, we present a generic construction
of an NP-statement hider, utilizing a folding scheme (which is not required to be privacy
preserving). Essentially, the NP-statement hider works by folding the statement to be
hidden with a randomly sampled statement. There is evidence that not all folding schemes
will allow the required random sampling, but we demonstrate that there is one based on
an NP-hard problem that does. Security of the constructed NP-statement hider follows
from the security of the underlying folding scheme, and an additional property, which is
essentially that an instance hiding one instance is equally likely to hide any other instance.
Having this property results in information theoretically hiding NP-statement hiders. We
informally state our results in the following theorem.

Theorem 1 (Combining Theorems 2 and 3). Let L be a language with relation R. If
there is a folding scheme for L, R supports efficient sampling of instances, and for any
three instances (x1, v1), (x2, v2), (x, v) ∈ R there are as many instances that fold (x1, v1)

Joan Boyar, Simon Erfurth 3

into (x, v) as there are instances folding (x2, v2) into (x, v), then there is a folding scheme
with privacy preserving selective verification for L.

We apply our constructions to some example folding schemes for algebraic NP-languages.
As a warm-up problem, we consider the language Inner Product Relation of Committed
Values [BCC+16, RZ23]. Then we consider the language Committed Relaxed R1CS [KST22],
which is also the original language used for folding schemes. We show that both these
languages satisfy the conditions of Theorem 1.

1.1 Organization of paper
In Section 1.2 we review related work and in Section 1.3 we consider possible applications
for our work. We review folding schemes in Sections 2 and 2.1, and folding scheme with
selective verification in Section 2.2. After this, we define privacy preserving selective
verification in Section 3 and NP-statement hiders in Section 3.1. We construct a privacy
preserving folding scheme using an NP-statement hider in a black-box fashion in Section 3.2,
and a NP-statement hider using a folding scheme in Section 3.3. Finally, in Section 4, we
apply our constructions to two concrete languages.

1.2 Related Work
Folding schemes were introduced by Kothapalli, Setty, and Tzialla at CRYPTO’22 [KST22],
as a tool to realize incrementally verifiable computation (IVC) [Val08]. IVC, as the name
hints, is a method to do computations, such that the correctness of the entire computation
can be verified by checking each increment of the computation. Historically, IVC has been
constructed using recursive succinct non-interactive arguments of knowledge (SNARKs) to
prove that each increment was computed correctly. More recently, accumulators have been
developed [BGH19, BCMS20, BDFG21, BCL+21]. Rather than verifying a SNARK at
every increment, an accumulator based scheme allows the SNARK check to be accumulated
into the checks from previous increments. At a later time, all steps can be verified by
checking a single SNARK, and that the accumulations has been performed correctly at
each step. This can be significantly more efficient than checking a SNARK for each step,
and communicating the single SNARK and the folding proof requires less communication
than communicating a SNARK for each step. The most efficient type of accumulation
schemes are folding schemes [NDC+24], and allow one to combine the proofs that each
step was computed correctly into one single proof of the same size. Folding schemes
yield IVC constructions where the recursive proof that folding (accumulation) was done
correctly at each step is dominated by two elliptic curve scalar multiplications, and where
the only needed assumption is the discrete logarithm assumption in the random oracle
model [KST22]. Nova [KST22] introduced the notion of folding schemes. Since then,
folding schemes have attracted much interest for IVC, leading to the development of many
folding schemes, for example SuperNova/HyperNova [KS22, KS24], Protostar [BC23],
LatticeFold [BC24], and Mangrove [NDC+24].

Recently, the Reductions of Knowledge framework [KP23, Kot24] was introduced by
Kothapalli, one of the authors introducing folding schemes, and Parno. Reductions of
knowledge generalizes many flavors of arguments of knowledge, including folding schemes.
Generally, a reduction of knowledge reduces checking knowledge of a witness for a statement
from one relation, to checking knowledge of a witness for a statement from another
(usually simpler) relation. In this framework, a 2-folding scheme for a relation R, is a
reduction from R × R to R. Specifically, knowing witnesses (w1, w2) to the instance
((x1, w1), (x2, x2)) ∈ R×R is reduced to knowing witness w to instance (x, w) ∈ R. While
reductions of knowledge do not have folding proofs like folding schemes do, they instead
have a requirement that the reduction is publicly reducible: given the initial statement(s)

4 Folding Schemes with Privacy Preserving Selective Verification

and the transcript, any party can reconstruct the final statement. We note that for the
folding schemes we consider, the proof of folding is the first message from the prover, and
checking it is exactly reconstructing the final statement.

Ràfols and Zacharakis [RZ23] considers a novel use of folding schemes, by modifying
them to allow selective verification. Whereas the original version of folding schemes only
considers a single verifier verifying all the proofs, and therefore only support verifying
that all the statements are folded into the final statement, folding schemes with selective
verification instead consider multiple verifiers, where each verifier only needs to verify
that a subset of the statements are folded into the final statement. Folding schemes with
selective verification supports this by generating separate folding proofs for each statement,
where each proof only verifies that the matching statement is folded into the final statement.
A standard requirement is that each of these proofs should have size sub-linear in the
total number of statements. Folding schemes with selective verification, are particularly
useful in situations where folding proofs are not used as part of incrementally verifiable
computations, but rather for verification of delegated computations. Specifically, if many
clients outsource their distinct-but-similar computations to a server, and the server has to
prove to the clients that it performed the correct computations, it might be more efficient
to fold all the proofs into one, rather than separately proving to each client that their
computation was done correctly. In this case, rather than sending every client the full
folding proof (and all other statements that are folded), the server can send each client
only the proof that their statement was folded into the statement that was proven.

Related to folding schemes with selective verification, and hence also to our work,
the polynomial commitment scheme, hbPolyCommit, from [YLF+22] uses a Merkle tree
structure to amortize the cost of batch processing multiple inner-product arguments,
each corresponding to multiple verifiers. The commitment scheme uses the Merkle tree
when combining multiple protocol transcripts to produce a challenge. The Merkle tree
structure allows each party to verify that their transcript was considered, at a cost that
is logarithmic in the number of transcripts. Folding schemes with selective verification
differs by considering aggregation of multiple statements into one that is then proved,
rather than aggregating multiple proofs together. Similar batch processing of a polynomial
commitment scheme is considered in [ZXH+22], but again their work focuses on modifying
the proving process, rather than folding statements together.

1.3 Applications
Folding schemes were initially developed for incrementally verifiable computing, but have
since then had multiple other applications. We describe three applications, where folding
schemes with privacy preserving selective verification might be useful.

One application, suggested in [RZ23], is for verification in computation as a service.
Consider a case where many clients (verifiers) delegate similar computations on different
inputs to a server (prover). In a trustless setting where interaction is very expensive or
impossible, a standard solution is for the prover to use SNARKs to convince the verifiers,
that their computations have been performed correctly. The application of folding schemes
is straightforward: it amortizes the cost of proving a statement out over all the verifiers’
computations, rather than having to prove a statement for each client. Selective verification
reduces the communication to each verifier; they need only verify the correctness of their
own computations. Privacy preserving selective verification additionally guarantees that
the folding proofs do not leak information about other verifiers’ computations.

A second application suggested in [RZ23], uses folding proofs with selective verification
to share a verifiable database. In a verifiable database, clients (verifiers) outsource a database
to a server (prover) in a trustless setting. Typically, the verifiers only store a short digest
of the database, which allows querying and modifying the database. Viewing the database
as a vector, the digest is a homomorphic vector commitment [CF13, CNR+22], querying

Joan Boyar, Simon Erfurth 5

is simply opening the commitment at a specific location, and modifying is subtracting
the original value from the commitment and adding the new one. Rather than opening a
commitment for every query, the prover might batch up multiple proofs of opening, fold
them together, and then send the SNARK for the folded statement to each verifier with
a query in the batch. Again, privacy preserving selective verification both reduces the
communication to each verifier and also guarantees that each verifier does not learn what
data the other verifiers queried. Privacy preservation would be particularly important in
a setting where verifiers might have different privileges, and hence be allowed to access
different parts of the database.

Finally, a third application relates to mitigating the effects of fake news. While the
traditional approach, has been to attempt to flag fake news as such, there has recently
been a move towards also flagging authentic content as such. For images, the Adobe lead
C2PA initiative [C2P], is currently starting to gain broader adaptation, with both Google
and OpenAI having recently joined C2PA. Roughly, the solution proposed by C2PA is
to have cameras sign images when they are captured, and then have C2PA compatible
programs sign that the edits done to the image are legitimate. When viewing the image,
the last signature can be verified, and, ideally, a chain of trust guarantees the authenticity
of the image. However, C2PA’s approach requires trusting the tools used to edit the image.
One approach for resolving this issue, is to use image specific signatures allowing some
modifications to be made to the image. However, these signatures come with significant
drawbacks, such as supporting only a very limited number of transformations [Erf24],
having significant space overheads [JWL11], or only working with rarely used image
formats [ZSL04]. Another common approach, is to use zero-knowledge SNARKs to prove
that only certain edits have been applied to an image [NT16]. While this approach is more
versatile in which edits it allows, imposes minimal space overhead, and allows efficient
verification, it comes with a significant performance costs to the prover. Even the most
recent construction takes time on the order of a few minutes to an hour, to generate
proofs for a single image [DCB24, MVVZ25]. Here, folding proofs with privacy preserving
selective verification could be used to combine the proofs corresponding to many images
together, potentially amortizing the cost of proving over many images. For example,
suppose that a large (untrusted) social media wishes to support the C2PA approach, but
still needs to compress the images uploaded to their platform. Rather than separately
proving that each image was compressed by them, they could fold the proofs of many
images uploaded in a small time-slot together, using a folding scheme. Selective verification
would be sensible, since most likely a user only needs to verify one image at a time. Privacy
preservation would be a necessity, since images that are not posted publicly (for example
images sent in a private chat) should stay private.

We note that very recently, folding schemes have actually been used to reduce the
computation needed to generate a proof that only certain edits have been applied to an
image [DEH24]. However, they focus on improving the costs associated with one image,
whereas folding schemes with privacy preserving selective verification could be used to
amortize this cost out over many images.

1.4 Notation
Generally, we denote single elements a using lowercase normal weight letters, vectors a
using lowercase bold letters, and matrices A using uppercase normal weight letters. For
tuples, we will occasionally be using notation of the form (x, y, z = (a, b)). This should be
understood as the tuple (x, y, z) where z = (a, b). Similarly, {yi = (ai, bi)}1≤i≤n should
be understood as the set {yi}1≤i≤n where each yi = (ai, bi). For arrows, we use x←$ X
to denote that x is sampled uniformly from the set X, and x← A(y) to denote that the
output of algorithm A on input y is x.

We use additive group notation for cyclic groups, and let gk← G(1λ) be the description

6 Folding Schemes with Privacy Preserving Selective Verification

of a group G over a field F sampled by a group generation algorithm. A description of
a group is gk = (G,P, p), where G is a finite cyclic group of prime order p and P is a
generator of G. For P fixed, we denote with [x] the element xP, and let this notation
extend naturally to vectors [v] ∈ Gn.

2 Folding Schemes
In this section we recall the definition of folding schemes [KST22] and folding schemes
with selective verification [RZ23].

As mentioned in the introduction, folding schemes are schemes that allow folding two
(or more) NP statements from a language L into one statement from L, crucially of the
same size. Intuitively, a statement produced by folding two or more statements, is in L if
and only if all the individual statements are in L. We begin with an informal description
of 2-folding schemes, before moving on to a definition of N -folding schemes. Given a NP
language L and a corresponding relation

R = {(x, w) | w is a witness for x ∈ L} ,

a folding scheme allows efficiently reducing two instances (x1, w1), (x2, w2) to one instance
(x, w). We say that x is obtained by folding x1 and x2. The folding scheme is also required
to output a folding proof π that x is the result of folding x1 and x2. This proof, together
with x, x1 and x2, should be a convincing proof that x was formed by folding x1 and x2.
Similar to standard proofs/arguments of knowledge, folding schemes should essentially
have the following properties:

• Completeness: If y1 = (x1, w1) ∈ R and y2 = (x2, w2) ∈ R, and folding y1 and y2
gives y = (x, w), then (x, w) ∈ R. Additionally, the folding proof π is accepted.

• Knowledge soundness: If (x, w) is the result of folding (x1, w1) and (x2, w2), and
w is a witness that x ∈ L, then wi is a witness that xi ∈ L for i ∈ {1, 2}.

Following the definition of [RZ23], we formally define N -folding schemes as follows.

Definition 1 (N -Folding Scheme). For security parameter λ ∈ N, NP language Lpp
parameterized by1 pp← pp(λ), Rpp the relation for Lpp, and N = poly(λ), an N-folding
scheme FS for the language family {Lpp}pp←pp(λ) is a tuple of algorithms (Fold, FoldVerify)
which for n ≤ N operates as follows.

• (x, w, π)← Fold(pp, (x1, w1), . . . , (xn, wn)). On input parameters pp, and n instances
(xi, wi) ∈ Rpp, Fold outputs an instance (x, w) from Rpp and a folding proof π.

• 0/1 ← FoldVerify(pp, x1, . . . , xn, x, π). On input parameters pp, n + 1 statements
x1, . . . , xn and x, and a folding proof π, FoldVerify outputs 1 if x is the output of
folding x1, . . . , xn, and 0 otherwise.

Additionally, FS must satisfy the following properties:

• Completeness: For all adversaries A

Pr

 {yi}1≤i≤n ⊆ Rpp ∧
((x, w) /∈ Rpp ∨ b = 0)

∣∣∣∣∣∣
{yi = (xi, wi)}1≤i≤n ← A(pp)
(x, w, π)← Fold(pp, y1, . . . , yn)

b← FoldVerify(pp, x1, . . . , xn, x, π)

 ≤ negl(λ).

Note that we allow A to be computationally unbounded.
1Here we abuse notation. When writing pp(λ) we refer to a (randomized and polynomial time) algorithm

that on input the security parameter outputs parameter pp.

Joan Boyar, Simon Erfurth 7

(x
1 , w

1)
(x

2 , w
2)

(x
3 , w

3)

(x
4 , w

4)

(x
n−1 , w

n−1)

(x
n , w

n)

Fold
Fold

Fold . . . Fold
Fold

(x,w
, π)

(a) Chaining approach.

(x1, w1)(x2, w2)(x3, w3)(x4, w4) (xn−1, wn−1) (xn, wn)· · ·

Fold Fold Fold

Fold

Fold (x, w, π)

(b) Merkle tree approach.

Figure 1: The chaining and Merkle tree approaches to folding n instances (xi, wi) into one
instance (x, w), using n− 1 applications of the 2-folding scheme FS = (Fold, FoldVerify).

• Knowledge soundness: There exists a probabilistic polynomial time (PPT) ex-
tractor Ext, such that for all PPT adversaries A

Pr

 (x, w) /∈ Rpp ∨ b = 0 ∨
{(xi, wi)}1≤i≤n ⊆ Rpp

∣∣∣∣∣∣
({xi}1≤i≤n, x, w, π)← A(pp)

b← FoldVerify(pp, x1, . . . , xn, x, π)
{wi}1≤i≤n ← ExtA(pp)

 ≥ 1− negl(λ).

2.1 Bootstrapping from 2-folding to N-folding
Generally, folding schemes are constructed as 2-folding schemes, and then turned into
N -folding schemes by recursive invocations. Let FS = (Fold, FoldVerify) be any 2-folding
scheme for a language Lpp with relation Rpp. As an example, we construct a 3-folding
scheme. Given 3 instances (xi, wi) ∈ R, we fold the three instances into one by first folding
two instances into one, and then folding this new instance and the third instance to obtain
one final instance:

(x′, w′, π′)←Fold(pp, (x1, w1), (x2, w2)),
(x, w, π′′)←Fold(pp, (x′, w′), (x3, w3)).

Now the fold of all three instances is (x, w, π = (π′, π′′)). Observe that the folding proof
of the 3-folding scheme consists of the folding proofs from both applications of FS.

The essential property making this construction possible, is that the statement generated
by a folding scheme is in the same language and of the same size as the original statements.
Thus, any 2-folding scheme can immediately be applied in a bootstrap-like way to create an
N -folding scheme for N = poly(λ). This can be done in many ways, i.e., by chaining the
statements together one after the other, or by creating a Merkle tree-like [Mer80, Mer89]
structure, see Figures 1a and 1b. Regardless of which approach is used, the folding proof
from the N -folding scheme is the accumulated folding proofs from the applications of the
2-folding scheme. Completeness of the N - folding scheme follows immediately from the
construction, and observing that an adversary only has a negligible chance of cheating
at each step and there are a polynomial number of folds2, since N = poly(λ). Knowledge
soundness takes more care, but essentially one can construct an extractor by recursively
using the extractor for the scheme being bootstrapped. This method results in quasilinear
overhead over the extractor for the 2-folding scheme, and once again the probability of
extracting valid witnesses is polynomially related to the probability of the extractor for the
2-folding scheme extracting valid witnesses. In [RZ23], the authors give more details on
bootstrapping with a Merkle tree-like structure, and show that the bootstrapped N -folding
scheme is both complete and has knowledge soundness.

2Both constructions use exactly N − 1 folds. The Merkle tree approach has an advantage in that it can
naturally be parallelized, both when folding and when verifying

8 Folding Schemes with Privacy Preserving Selective Verification

2.2 Selective Verification
The folding scheme verification algorithm from Definition 1, takes as input all the folded
statements. However, when the number of folded statements is large, this can be very
costly if one only wishes to confirm that a single statement xi was folded into the
proven statement x. To solve this issue, [RZ23] introduces folding schemes with selective
verification. Rather than having one folding proof π that verifies that all N statements
x1, . . . , xN were folded into one statement x, they have N proofs π1, . . . , πN . For each
i ∈ {1, . . . , N}, the i’th proof πi together with xi and x proves that xi was folded into x.
Note that the size of the proofs should be sublinear in N , since otherwise one could just set
πi = (π, x1, . . . , xi−1, xi+1, . . . , xN). Formally, a folding scheme with selective verification
is defined as follows.

Definition 2 (Folding Scheme with Selective Verification). For security parameter λ ∈ N,
NP language Lpp parameterized by pp ← pp(λ), Rpp the relation for Lpp, N = poly(λ),
an N -folding scheme FS = (Fold, FoldVerify) for the language family {Lpp}pp←pp(λ), has
selective verification, if there is a tuple of algorithms (SlctProve, SlctVerify) which for n ≤ N
operates as follows.

• (π1, . . . , πn)← SlctProve(pp, x1, . . . , xn, x, π). On input parameters pp, n + 1 state-
ments x1, . . . , xn and x, and folding proof π, SlctProve outputs proofs π1, . . . , πn.

• 0/1 ← SlctVerify(pp, x, i, xi, πi). On input parameters pp, statements x and xi,
integer i ∈ {1, . . . , n}, and folding proof πi, SlctVerify outputs 1 if xi is folded into x.

Additionally, the following properties must be satisfied.

• Selective completeness: For all adversaries A

Pr

 {yi}1≤i≤n ⊆ Rpp
∧ (1 ≤ j ≤ n)
∧ b = 0

∣∣∣∣∣∣∣∣
({yi = (xi, wi)}1≤i≤n, j)← A(pp)

(x, w, π)← Fold(pp, y1, . . . , yn)
(π1, . . . , πn)← SlctProve(pp, x1, . . . , xn, x, π)

b← SlctVerify(pp, x, j, xj , πj)

 ≤ negl(λ).

• Selective knowledge soundness: There exists a PPT extractor Ext such that for
all PPT adversaries A

Pr

 (x, w) /∈ Rpp ∨ b = 0∨
(xi, wi) ∈ Rpp

∣∣∣∣∣∣
(i, xi, πi, x, w)← A(pp)

b← SlctVerify(pp, x, i, xi, πi)
wi ← ExtA(pp)

 ≥ 1− negl(λ).

• Efficiency: The size of each πi is sublinear in n, i.e., |πi| = o(n).

Remark 1. A folding scheme can be equipped with selective verification as follows. First,
the Merkle tree-like bootstrapping construction, illustrated in Figure 1b, is used to get an
N -folding scheme from a 2-folding scheme. Each πi consists of the folding proofs for the
2-folding schemes used on the path between xi and x, together with the statements these
2-folding schemes take as input, that are not already on the path between xi and x.

For example, either xi−1 or xi+1 will be in πi, since one of these is input to the 2-folding
scheme taking xi as input. However, xi will not be in πi, since it is on the path between
xi and x.

When this approach is used to make a folding scheme satisfying Definition 1 selec-
tively verifiable, it follows relatively straightforwardly that the bootstrapped construction
satisfies Definition 2. Selective completeness follows immediately from the construction,
and selective knowledge soundness from an argument similar to the argument for the

Joan Boyar, Simon Erfurth 9

bootstrapped construction having knowledge soundness, except that one now only need to
follow one path from the root to xi. Once again, more details can be found in [RZ23], where
full algorithms for SlctProve and SlctVerify can also be found. For efficiency, it is easily
observed that the path between xi and x has length O(log n), and that each instance of the
2-folding scheme along the path results in 1 folding proof and requires 1 extra statement.
Since both of these are constant sized with respect to the number of statements folded
together, the size of πi is O(log N), and hence sublinear in N . The notion of selective
verification can be generalized to folding proofs for subsets of {xi, . . . , xN}. From the
Merkle tree literature [BELN23], it follows that in the case where one allows arbitrary
subsets of the xi, the number of additional statements one needs to provide might be linear
in N , but if one requires the subset to be consecutive statements, the number of additional
statements is still guaranteed to be logarithmic in N . However, one would still need to
provide up to 2N − 1 folding proofs from the underlying 2-folding scheme.

3 Privacy Preserving Selective Verification

The original definition of folding schemes has no notion of a folding scheme being “private”,
which makes sense since knowledge of all xi’s folded into x is required to verify the
folding proof for x. Thus, there is in some sense nothing to be kept private, but the
witnesses. However, for folding schemes with selective verification it seems natural to
define privacy preserving selective verification, which, informally, extends Definition 2
with a guarantee that a folding proof πi for xi does not leak information about xj for
j ≠ i. It can immediately be observed that the folding scheme with selective verification
described in Remark 1 is not privacy preserving; any πi includes either xi−1 or xi+1. In
this section, we first define folding schemes with privacy preserving selective verification,
and then discuss a general approach to making folding schemes with selective verification
privacy preserving, using a generic mechanism for hiding NP statements, which we formally
define in Definition 4. This results in Construction 1 and Theorem 2. It is possible to
construct hiding mechanisms for (some) NP languages from folding schemes, which we do
in Construction 2 and Theorem 3. In Section 4, we give examples of folding schemes with
privacy preserving selective verification, using the mechanisms from this section.

At the core of our definition of a folding scheme being privacy preserving, is a notion of
indistinguishability under chosen-message attack. In our definition, we allow an adversary
to choose an index j it wishes to attack, an index ℓ ̸= j for which it will get the proof πℓ,
the (valid) inputs (xi, wi) for all indices i ̸= j, and two (valid) potential inputs (x0

j , w0
j)

and (x1
j , w1

j) for j. For random b ←$ {0, 1}, folding is then done with (xb
j , wb

j), and the
selective verification folding proofs are generated. Finally, the adversary is given x and πℓ,
and has to guess b. For simplicity, we use a pair of algorithms as the adversary, but allow
passing information from the first algorithm to the second through a state s. A folding
scheme has privacy preserving selective verification if the probability of any adversary
guessing correctly is only negligibly better than 1

2 . We formally define this in Definition 3.

Definition 3 (Folding Schemes with Privacy Preserving Selective Verification). For
security parameter λ ∈ N, NP language Lpp parameterized by pp ← pp(λ), Rpp the
relation for Lpp, N = poly(λ), an N -folding scheme with selective verification FS =
(Fold, FoldVerify, SlctProve, SlctVerify) for the language family {Lpp}pp←pp(λ), is said to be a
folding scheme with privacy preserving selective verification if for n ≤ N and all adversaries
A consisting of a pair of algorithms A = (A1,A2),

10 Folding Schemes with Privacy Preserving Selective Verification

Pr


{yi}1≤i≤n

i̸=j
⊆ Rpp ∧

{(x0
j , w0

j), (x1
j , w1

j)} ⊆ Rpp
∧ ℓ ̸= j ∧ b′ = b

∣∣∣∣∣∣∣∣∣∣∣∣∣

(
ℓ, j, {yi = (xi, wi)}1≤i≤n

i ̸=j
,

(x0
j , w0

j), (x1
j , w1

j), s

)
← A1(pp)

b←$ {0, 1}
(x, w, π)← Fold(pp, y1, . . . , (xb

j , wb
j), . . . , yn)

(π1, . . . , πn)← SlctProve(pp, x1, . . . , xb
j , . . . , xn, x, π)

b′ ← A2(pp, x, ℓ, xℓ, πℓ, s)


≤ 1

2 + negl(λ).

3.1 NP-statement hider
As previously mentioned, the construction from Remark 1 does not satisfy Definition 3.
However, we observe that if the prover somehow “hides” the statements before folding
them, we can reuse the construction. This motivates the following definition of a hiding
mechanism, which on an instance (x, w) ∈ R and randomness r ∈ R “hides” (x, w) as
(x′, w′) ∈ R. The hiding mechanism also outputs a certificate c, which can be used to verify
that x′ is hiding x. This certificate could, for example, include the randomness r. With
such a mechanism, it is straightforward to get a folding scheme with privacy preserving
selective verification. First, each instance is hidden, then all the hidden instances are
folded, and finally the selective folding proofs πi are updated to also include ci. Crucially,
πi includes neither xi−1 nor xi+1, but rather x′i−1 or x′i+1, which, assuming the hiding
mechanism is secure, do not reveal the original statements. We formalize this construction
in Construction 1, but first formally define hiding mechanisms.
Definition 4 (NP-Statement Hider). For security parameter λ ∈ N and NP language Lpp
parameterized by pp← pp(λ), with relation Rpp, an NP-statement hider for Lpp is a pair
of efficient algorithms SH = (Hide, Check) such that for (x, w) ∈ Rpp and random string
r ∈ R from randomness space R, SH acts as follows:

• (x′, w′, c) ← Hide(pp, x, w, r) on input parameters pp, instance (x, w) ∈ Rpp and
randomness r ∈ R, Hide outputs (x′, w′) ∈ Rpp and certificate c.

• 0/1 ← Check(pp, x, x′, c) on input parameters pp, statements {x, x′} ⊆ Lpp, and
certificate c, Check outputs 1 if the certificate shows that x′ is hiding x.

Additionally, SH must satisfy the following properties.
• Completeness: For all adversaries A

Pr

 (x, w) ∈ Rpp ∧
((x′, w′) /∈ Rpp ∨ b = 0)

∣∣∣∣∣∣∣∣
(x, w)← A(pp)

r ←$ R
(x′, w′, c)← Hide(pp, x, w, r)

b← Check(pp, x, x′, c)

 ≤ negl(λ).

• Knowledge soundness: There exists a PPT extractor Ext, such that for all PPT
adversaries A

Pr

 x /∈ Lpp ∨ (x′, w′) /∈ Rpp
∨ b = 0 ∨ (x, w) ∈ Rpp

∣∣∣∣∣∣
(x, x′, w′, c)← A(pp)
b← Check(pp, x, x′, c)

w ← ExtA(pp)

 ≥ 1− negl(λ).

• Hiding: For all adversaries A consisting of a pair of algorithms A = (A1,A2),

Pr

 {(x0, w0), (x1, w1)} ⊆ Rpp
∧ b′ = b

∣∣∣∣∣∣∣∣
(x0, w0, x1, w1, s)← A1(pp)

b←$ {0, 1}, r ←$ R
(x′, w′, c)← Hide(pp, xb, wb, r)

b′ ← A2(x′, w′, s)

 ≤ 1
2 + negl(λ).

Joan Boyar, Simon Erfurth 11

3.2 Privacy preserving folding scheme from an NP-statement
hider

In Construction 1, we construct a folding scheme with privacy preserving selective verifi-
cation, using an NP-statement hider and a folding scheme with selective verification as
building blocks. We show that the construction is secure in Theorem 2. At a high level,
this construction does exactly what we previously described: each statement is hidden,
then the statements hiding the original statements are folded together, and, finally, all
proofs are updated to include some additional information, allowing checking that the
statements hiding the original statements do indeed hide the statements they are claimed
to be hiding. Similarly, the verification algorithms both check that the hiding(s) are as
claimed, and that the folding is correct.

Construction 1 (PrivateFS). Let SH = (SH.Hide, SH.Check) be an NP-statement hider
and FS = (FS.Fold, FS.FoldVerify, FS.SlctProve, FS.SlctVerify) be a folding scheme with
selective verification. Then PrivateFS = (Fold, FoldVerify, SlctProve, SlctVerify), constructed
as follows, is a folding scheme with privacy preserving selective verification.

• Fold(pp, (x1, w1), . . . , (xn, wn)):
1. Generate randomness r1, . . . , rn ∈ R.
2. For 1 ≤ i ≤ n : (x′i, w′i, ci)← SH.Hide(pp, xi, wi, ri).
3. (x, w, π′)← FS.Fold(pp, (x′1, w′i), . . . (x′n, w′n)).
4. Output (x, w, π = (π′, (c1, x′1), . . . , (cn, x′n))).

• FoldVerify(pp, x1, . . . , xn, x, π):
1. Parse π as (π′, (c1, x′1), . . . , (cn, x′n)).
2. For 1 ≤ i ≤ n: if SH.Check(pp, xi, x′i, ci) = 0, output 0 and abort.
3. If FS.FoldVerify(pp, x′1, . . . , x′n, x, π′) = 0, output 0 and abort.
4. Output 1.

• SlctProve(pp, x1, . . . , xn, x, π):
1. Parse π as (π′, (c1, x′1), . . . , (cn, x′n)).
2. (π′1, . . . , π′n)← FS.SlctProve(pp, x′1, . . . , x′n, x, π′).
3. Output (πi = (π′i, ci, x′i))1≤i≤n.

• SlctVerify(pp, x, i, xi, πi):
1. Parse πi as (π′i, ci, x′i).
2. If SH.Check(pp, xi, x′i, ci) = 0, output 0 and abort.
3. If FS.SlctVerify(pp, x, i, x′i, π′i) = 0, output 0 and abort.
4. Output 1.

Remark 2. It is immediate that the modifications in Construction 1 do not affect the
asymptotic efficiency of the underlying folding scheme. In particular, the size of each proof
πi only grows by a constant amount in n.
Remark 3. Note that if a folding scheme with privacy preserving selective verification is
used in a situation where it is frequent that a verifier will have to verify more than one
proof of folding, generating the randomness r1 to rn with a seed-tree [BKP20] can result in
less communication to each verifier. If a verifier has to verify the folding proofs of multiple
consecutive statements, the randomness included in each of the folding proofs can often be
replaced with fewer seeds from levels closer to the root of the seed-tree.

Theorem 2. If SH is an NP-statement hider satisfying Definition 4 and FS is a folding
scheme with selective verification satisfying Definition 2, then PrivateFS from Construction 1
is a folding scheme with privacy preserving selective verification, in the sense of Definition 3.

12 Folding Schemes with Privacy Preserving Selective Verification

Proof. We must show that

PrivateFS = (Fold, FoldVerify, SlctProve, SlctVerify),

as constructed in Construction 1, has the properties described in Definitions 1 to 3.
For brevity, we show selective completeness, selective knowledge soundness, and privacy
preserving, i.e., the properties explicitly outlined in Definitions 2 and 3. Completeness and
knowledge soundness (Definition 1) follows from very similar arguments.3

Selective completeness follows from showing that an adversary against PrivateFS’s
selective completeness implies an adversary against either the selective completeness of
FS or the completeness of SH. Recall from Definition 2 that an adversary A against
PrivateFS’s selective completeness chooses a valid input {(xi, wi)}1≤i≤n to PrivateFS.Fold
and an index j, trying to make b = 0, where b is given by

(x, w, π)←PrivateFS.Fold(pp, y1, . . . , yn)
(π1, . . . , πn)←PrivateFS.SlctProve(pp, x1, . . . , xn, x, π)

b←PrivateFS.SlctVerify(pp, x, j, xj , πj).

From Construction 1, it is clear that if b = 0, then either SH.Check(pp, xi, x′i, ci) = 0 or
FS.SlctVerify(pp, x, i, x′i, π′i) = 0.

Consider first if SH.Check(pp, xi, x′i, ci) = 0. Since (xi, wi) ∈ Rpp, the randomness ri ∈
R was chosen at random, and x′i and ci generated as (x′i, w′i, ci)← SH.Hide(pp, xi, wi, ri),
we are in exactly the situation described by SH’s completeness definition (Definition 4).
Thus, in this case, A being successful implies an adversary against SH being complete.

On the other hand, if FS.SlctVerify(pp, x, i, x′i, π′i) = 0, we observe that each (x′i, w′i) is
in Rpp (otherwise, we again have an adversary to SH being complete), and thus we are now
in exactly the situation described by FS’s selective completeness definition (Definition 2),
where n instances (x′i, w′i) are first folded together using FS.Fold, and selective proofs
are then generated using FS.SlctProve. Thus, if FS.SlctVerify(pp, x, i, x′i, π′i) = 0, we see
that again A implies an adversary to either SH being complete or to FS being selective
complete.

Selective knowledge soundness can be shown by constructing an extractor Ext for
adversaries against PrivateFS’s selective knowledge soundness, using the selective knowledge
soundness extractor FS.Ext for FS, and the knowledge soundness extractor SH.Ext for SH.
Essentially, we first use FS.Ext to extract a witness for x′i, and then SH.Ext to extract a
witness for xi.

Assume that an adversary A against the selective knowledge soundness of PrivateFS
outputs (i, xi, πi, x, w), where πi can be parsed as πi = (π′i, ci, x′i). We construct Ext as
follows.

1. To extract w′i such that (x′i, w′i) ∈ Rpp, create an adversary AFS, which itself queries
A, but then outputs (i, x′i, π′i, x, w). Note that if A is successful against PrivateFS,
then AFS is successful against FS, since PrivateFS.SlctVerify invokes FS.SlctVerify.

2. Ext invokes FS.Ext with access to AFS, obtaining w′i.

3. To extract wi such that (xi, wi) ∈ Rpp, create an adversary ASH which queries A,
extracts w′i using FS.Ext, and then outputs (xi, x′i, w′i, ci). Similarly to AFS, we see
that if A is successful against PrivateFS, then ASH is successful against SH.

3The main difference is that for selective completeness and selective knowledge soundness, we look
at just one specific index of the input (and the output of hiding it). For completeness and knowledge
soundness, however, we have to look at all inputs (either when finding an adversary to FS or SH, or
when constructing an extractor against PrivateFS). Since the number of inputs is polynomial in n, the
constructed adversaries and extractor are still polynomial time.

Joan Boyar, Simon Erfurth 13

4. Ext invokes SH.Ext with access to ASH, obtaining wi, which Ext then outputs.

Since AFS and ASH are successful if A is successful, both FS.Ext and SH.Ext are successful
with overwhelming probability if A is successful, and, hence, so is Ext.

Privacy preservation follows from showing that an adversary against PrivateFS’s
privacy preserving property implies an adversary against SH being hiding, similarly
to how selective completeness was shown. Let A = (A1,A2) be an adversary against
PrivateFS’s privacy preserving property (Definition 3). We now construct an adversary
SH.A = (SH.A1, SH.A2) against SH being hiding as follows.

• SH.A1: Run A1 to get (ℓ, j, {(xi, wi)}1≤i≤n

i ̸=j
, (x0

j , w0
j), (x1

j , w1
j), sPrivateFS). Output

(x0
j , w0

j , x1
j , w1

j , s), where s = (ℓ, j, {(xi, wi)}1≤i≤n

i ̸=j
, sPrivateFS) is the state passed on to

SH.A2.

• SH.A2: On input (x′, w′, s), hiding either (x0
j , w0

j) or (x1
j , w1

j), essentially emulate
PrivateFS.Fold and PrivateFS.SlctProve, to generate correct input to A2.

1. For i ̸= j, hide (xi, wi) using SH.Hide with randomness ri ←$ R, obtaining
(x′i, w′i, ci). Then, fold all hidden statements using FS.Fold with (x′, w′) in the
j’th spot;

(x, w, π′)← FS.Fold(pp, (x′1, w′1), . . . , (x′, w′), . . . , (x′n, w′n)).

2. Next, run FS.SlctProve(pp, x′1, . . . , x′j−1, x′, x′j+1, . . . , x′n, x, π′) to get (π′1, . . . , π′n).
Generate πℓ by joining π′ℓ and (cℓ, x′ℓ). Since ℓ ̸= j, these are known.

3. Run A2(pp, x, ℓ, xℓ, πℓ, sPrivateFS) to obtain b′. Output b′.

Observe that the input to A2 is exactly the same if A2 is running directly on PrivateFS,
since cj is not part of the input, and is not used for generating any of the input, besides
(x′j , w′j) = (x′, w′), which is still generated using randomness sampled from R. Thus,
(SH.A1, SH.A2) is successful exactly when (A1,A2) is successful, and hence it follows from
the assumption that SH is hiding that PrivateFS is privacy preserving.

Note that this proof also show that the scheme is private against colluding adversaries,
i.e., with respect to a stronger version of Definition 3, where A2 is not only given πℓ, but
instead all folding proofs except πj . The only change to the proof would be that SH.A2
queries A2 with n− 1 folding proofs, instead of just πℓ.

3.3 NP-statement hider from a folding scheme
At this point, we have a folding scheme with selective verification from [RZ23], and we
know that a folding scheme with selective verification together with an NP-statement hider
is enough to give us a folding scheme with privacy preserving selective verification. Thus,
the next question we ask is how to construct an NP-statement hider? One straightforward
approach, is to hide an instance (x, w) by folding it with another instance (x$, w$), using
the folding scheme for the language, producing a new instance (x′, w′), which is used as the
output of the statement hider. The certificate c will then be the folding proof of folding
(x, w) and (x$, w$), together with either x$, or the seed used to generate (x$, w$). Then,
checking that x′ is hiding x is just verifying that x was folded into x′.

To show that an NP-statement hider for a language, L, with relation, R, constructed
in this fashion is secure, it is roughly sufficient that two properties hold: Let R′ ⊂ R.
We require that for any two instances (x0, w0), (x1, w1) ∈ R and any (x$, w$) ∈ R′, there
exists (x′$, w′$) ∈ R′ such that

Fold((x0, w0), (x$, w$)) = (x, w) = Fold((x1, w1), (x′$, w′$)), (1)

14 Folding Schemes with Privacy Preserving Selective Verification

where we abuse notion and ignore the folding proof. For any (x, w) there should also be
as many ways to hide (x0, w0) as (x, w), as there are ways to hide (x1, w1) as (x, w). In
addition, we require that efficient sampling random instances from R′ is possible, and we
select (x$, w$) randomly from R′. If these properties hold, it is straightforward to see that
since (x$, w$) is sampled from R′, it is equally likely that (x′$, w′$) is sampled. Thus, (x, w)
is just as likely to hide (x1, w1) as (x0, w0), and hence no adversary can do better than
random guessing, showing hiding. Completeness and soundness follow directly from the
underlying folding scheme. We present the construction of an NP-statement hider from a
folding scheme in Construction 2, and show that it is secure in Theorem 3.

Construction 2 (NP-statement hider from folding). Let FS = (Fold, FoldVerify) be a
folding scheme for a language L with relation R, and R′ ⊆ R a subset used as the random
space R. That is, Hide takes a random instance (x$, w$) ∈ R′ as its randomness input.
Then, SH = (Hide, Check), constructed as follows, is an NP-statement hider.

• Hide(pp, x, w, (x$, w$))
1. Fold (x, w) and (x$, w$) together:

(x′, w′, π)← FS.Fold(pp, (x, w), (x$, w$))
2. Output (x′, w′, c) where c = (x$, π).

• Check(pp, x, x′, c)
1. Parse c as (x$, π).
2. Output the result of FS.FoldVerify(pp, x, x$, x′, π).

Theorem 3. Suppose FS satisfies Definition 1, R′ allows efficient sampling, and

1. For any two instances (x0, w0), (x1, w1) ∈ R and any (x$, w$) ∈ R′, there exists
(x′$, w′$) ∈ R′ such that the outputs of Fold((x0, w0), (x$, w$)) and Fold((x1, w1), (x′$, w′$))
agree everywhere, except on the folding proofs.

2. For any (x0, w0), (x1, w1), (x, w) ∈ R, if {Hi}i∈{0,1} are the sets of elements (x$, w$) ∈
R′ such that hiding (xi, wi) with (x$, w$) results in (x, w), then |H0| = |H1|.

Then, the cryptographic scheme defined in Construction 2 is an NP-statement hider
satisfying Definition 4.

Proof. Completeness and knowledge soundness follow from FS satisfying Definition 1 for 2
statements. We give outlines for how they are argued.

For completeness, an adversary FS.A against FS being complete, in the sense of
Definition 1, can be constructed from an adversary A against Construction 2 being
complete in the sense of Definition 4. FS.A invokes A to get (x, w) and samples a random
instance (x$, w$) ∈ R. It then outputs ((x, w), (x$, w$)). By inspecting Hide and Check,
it can be confirmed that from this point on, everything is computed the same way in
FS’s completeness definition and in Construction 2’s completeness definition, and FS.A is
successful if A is successful.

For knowledge soundness, the extractor FS.Ext implied by FS having knowledge sound-
ness can be used to construct an extractor Ext for Construction 2’s knowledge soundness.
To do this, we create an adversary FS.A that FS.Ext queries. FS.A runs A to get (x, x′, w′, c)
and uses the information in c to derive x$, which was used to hide x. Finally, FS.A outputs
(x, x$, x′, w′, π). Now, Ext runs FS.ExtFS.A, to obtain and output w.

For hiding, let A = (A1,A2) be any adversary. Consider the (x0, w0) and (x1, w1)
output from A1. For b ∈ {0, 1} and (x$, w$) ∈ R, both sampled at random, A2 receives
(x′, w′) where

(x′, w′, c)← Hide(pp, xb, wb, (x$, w$)) = FS.Fold(pp, (xb, wb), (x$, w$)).

Joan Boyar, Simon Erfurth 15

The requirements of the theorem imply that there is (x′$, w′$) ∈ R′ = R such that

Fold((xb, wb), (x$, w$)) = Fold((x1−b, w1−b), (x′$, w′$)),

and therefore, we could obtain the same (x′, w′) from (x1−b, w1−b). Thus, the only difference
in the output of hiding (xb, wb) with (x$, w$) and hiding (x1−b, w1−b) with (x′$, w′$) is the
certificate. Further, for (x′, w′), the set of elements (x$, w$) ∈ R′ such that hiding (xb, wb)
with (x$, w$) results in (x′, w′) has the same size as the set of elements (x′$, w′$) ∈ R′ such
that hiding (x1−b, w1−b) with (x′$, w′$) results in (x′, w′).

Since A2 does not receive c and (x$, w$) is chosen randomly, A2 cannot distinguish
between the two possible inputs. Hence, no adversary can do better than random guessing,
showing hiding.

With Theorems 2 and 3 and the results from Section 2, we note that a folding scheme
with privacy preserving selective verification, is implied by the construction of a 2-folding
scheme, and showing the additional few properties outlined in Theorem 3.

Remark 4. A folding scheme with privacy preserving selective verification can be obtained
from the following 1-step transformation. Given a folding scheme with input N language
instances, simply change the scheme into a scheme with input of length 2N , where
every second language instance is randomly sampled. Since this construction is essentially
identical to Construction 1 with Construction 2 as the NP-statement hider, this construction
is clearly also privacy preserving.

While the authors have not found any folding scheme where Construction 2 cannot
be applied, we observe that in all examples we have investigated (see Section 4), we use
the entire relation R for sampling random instances in order for Equation (1) to hold.
Therefore, it is worth noting that it is an open question, if all languages in NP allow
efficient sampling of random instances from the entire language. If they do, it implies that
EXPTIME = NEXPTIME, which is not expected [SF90].

4 Examples

In this section, we consider concrete examples of NP-languages which already have folding
schemes, and show that they also allow privacy preserving selective verification. Namely,
we consider a folding scheme for Inner Product Relation of Committed Values from [RZ23]
and the original folding scheme for Committed Relaxed R1CS from [KST22]. In [RZ23],
they additionally construct folding schemes for Polynomial Commitment Openings [KZG10,
BCL+21] and for Algebraic Vector Commitment Openings [CF13]. We do not consider
either of these folding schemes, but note that the folding scheme for Algebraic Vector
Commitment Openings is a reduction of an instance of Algebraic Vector Commitment
Openings to an instance of Inner Product Relation of Committed Values, and hence
our work also implies a folding scheme with privacy preserving selective verification for
Algebraic Vector Commitment Openings.

Recently, other folding schemes for have been proposed. Noticeably amongst them, [BC24]
introduces LatticeFold, the first folding scheme that does not use an additively homo-
morphic commitment scheme based on the discrete logarithm problem, but rather Ajtai
commitments which are based on the module SIS problem. Thus, LatticeFold is the first
post-quantum secure folding scheme. LatticeFold is a general purpose scheme, and it
supports folding of both low degree relations and high degree relations. In particular, it
supports both R1CS and CCS [STW23].

16 Folding Schemes with Privacy Preserving Selective Verification

4.1 Inner Product Relation of Committed Values
As a first example, we consider Inner Product Relation of Committed Values [BCC+16,
RZ23], which are used in Bulletproofs [BBB+18].

For this example, we use Pedersen commitments for multiple values. We give details
on Pedersen commitments in Section A.1, but the essentials are as follows. Using our
group notation introduced in Section 1.4, a commitment key for a Pedersen commitment
for multiple values is [r] ∈ Gn, and a commitment to m ∈ Fn is [c]← [r]⊤m. Note that
this is non-hiding Pedersen commitments.

The language family of Inner Product Relation of Committed Values is parameterized
by a group description gk and two Pedersen commitment keys [r], [s] ∈ Gn. Statements
in the language are two Pedersen commitments [c], [d] and an element z from F, and
can be thought of as a claim of knowing two vectors a, b, satisfying that [c] and [d] are
commitments to a and b, and that the inner product of a and b is z. Thus, the language
is defined as

Lgk,[r],[s] =
{

([c], [d], z) | ∃a, b ∈ Fn s.t. [c] = [r]⊤a, [d] = [s]⊤b, z = a⊤b
}

,

and the corresponding relation as Rgk,[r],[s]. For i ∈ {1, 2} let yi = (([ci], [di], zi), (ai, bi)),
(supposedly) in Rgk,[r],[s] with the witness being (ai, bi). We now describe a public coin
protocol for folding y1 and y2.

1. The prover sends z1,2 = a⊤1 b2 and z2,1 = a⊤2 b1.
2. The verifier sends ρ←$ F.
3. The prover and verifier each construct a new statement ([c], [d], z) as

[c] =[c1] + ρ[c2]
[d] =[d1] + ρ2[d2]

z =z1 + ρz2,1 + ρ2z1,2 + ρ3z2,
and the prover also constructs a new witness (a, b) as a = a1 + ρa2, b = b1 + ρ2b2.

Completeness of the protocol follows from straightforward calculation; if y1, y2 ∈
Rgk,[r],[s], then (([c], [d], z), (a, b)) ∈ Rgk,[r],[s]. Knowledge soundness is a little more tricky,
but, as outlined in [RZ23], it essentially follows from noticing that a prover who is able to
open commitments of the form [α1] + ρ[α2] should know openings to [α1] and [α2], since
they are defined before the challenge ρ is given. Additionally, since z1,2 and z2,1 are defined
before ρ is given, one could treat the relation that a⊤b = z as a polynomial in ρ, that is,
a(ρ)⊤b(ρ) = z(ρ), and it can be shown that this implies both a⊤1 b1 = z1 and a⊤2 b2 = z2.

Since this protocol is public coin, the Fiat-Shamir heuristic [FS86] immediately trans-
forms the protocol into a (non-interactive) 2-folding scheme for Inner Product Relation
of Committed Values (2-IPRCV), essentially by replacing the random challenge ρ with
the result of hashing the public inputs and the first message from the prover using a
cryptographic hash function H. The folding proof π is simply the cross terms z1,2 and
z2,1. For completeness, we write out 2-IPRCV as Construction 3 in Section A.2.

The following corollary follows from the bootstrap construction in Section 2.1 and the
extension discussed in Remark 1. Theorems and proofs corresponding to the construction
and discussion can be found as Theorems 1 and 2 in [RZ23].
Corollary 1 (IPRCV). 2-IPRCV being a 2-folding scheme for Inner Product Relation
of Committed Values implies the existence of an N-folding scheme IPRCV with selective
verification for Inner Product Relation of Committed Values.

In order to get a folding scheme that is also privacy preserving, we apply Construction 2
to get an NP-statement hider by folding with a randomly sampled instance from the entire
space, i.e., R′ = Rgk,[r],[s]. Denote this instantiation of Construction 2 by IPRCV-SH. For
completeness, we write out IPRCV-SH as Construction 4 in Section A.3. The proof that
this construction satisfies Theorem 3 is presented in Theorem 4.

Joan Boyar, Simon Erfurth 17

Theorem 4. If 2-IPRCV is a 2-folding scheme for Inner Product Relation of Committed
Values, then IPRCV-SH is an NP-statement hider for Inner Product Relation of Committed
Values, in the sense of Definition 4, in the random oracle model.

Proof. It is sufficient to show that IPRCV-SH satisfies Theorem 3. By assumption 2-IPRCV
satisfies Definition 1.

To see that Rgk,[r],[s] supports efficient sampling, observe that we can sample a random
instance in Rgk,[r],[s] by sampling two vectors in Fn, and constructing the rest of the
random instance from these, as follows:

a$, b$ ←$ Fn

[c$] = [r]⊤a$

[d$] = [s]⊤b$

z$ = a⊤$ b$.
(2)

We need to show for any three instances (x0, w0), (x1, w1), and (x$, x$), there exists an
instance (x′$, w′$) such that:

2-IPRCV.Fold(pp, (x0, w0), (x$, w$)) = 2-IPRCV.Fold(pp, (x1, w1), (x′$, w′$)), (3)

where we abuse notation by ignoring the folding proof. Denoting the output from folding
(x0, w0) and (x$, w$) by (x′, w′) and letting α ∈ {0, 1, $}, we use the following notation for
the instances in consideration.

(xα, wα) = (([cα], [dα], zα), (aα, bα))
(x′$, w′$) = (([c′$], [d′$], z′$), (a′$, b′$)).
(x′, w′) = (([c], [d], z), (a, b)).

We prove the existence of (x′$, w′$) in the random oracle model, where we replace the
hash function H, used to find ρ, with a random oracle. By doing so, we can use fixed
random values ρ and ξ in the folds, and assume they do not depend on the instances folded.
Since the adversary will learn neither x$ nor x′$, one of which is part of the input to H, it
is justified to model H as a random oracle.

When (x′, w′) is obtained by folding (x0, w0) and (x$, w$), it has the following form:

a = a0 + ρa$ (4)
b = b0 + ρ2b$ (5)

[c] = [c0] + ρ[c$] = [c0] + ρ[r]⊤a$ (6)
[d] = [d0] + ρ2[d$] = [d0] + ρ2[s]⊤b2 (7)

z = z0 + ρz$,0 + ρ2z0,$ + ρ3z$ = a⊤0 b0 + ρa⊤$ b0 + ρ2a⊤0 b$ + ρ3a⊤$ b$. (8)

In Equations (6) to (8), we substitute in how x$ = ([c$], [d$], z$) is derived from w$ =
(a$, b$), i.e., Equation (2), and the definition of the cross terms.

Since the goal is to have (x1, w1) and (x′$, w′$) fold to (([c], [d], z), (a, b)), it follows
from Equations (4) and (5) that we need

a1 + ξa′$ = a = a0 + ρa$ (9)
b1 + ξ2b′$ = b = b0 + ρ2b$, (10)

and therefore we fix a′$ and b′$ such that ξa′$ = a0 + ρa$ − a1 and ξ2b′$ = b0 + ρ2b$ − b1.
Deriving x′$ from the now fixed w′$ = (a′$, b′$) by the same calculations as in Equation (2),
we obtain the instance (x′$, w′$) ∈ Rgk,[r],[s].

It now suffices to verify that when (x1, w1) is folded with (x′$, w′$) using randomness ξ,
we get (x′, w′). We first verify [c]:

[c1] + ξ[c′$] = [c1] + ξ[r]⊤a′$ = [c1] + [r]⊤(a0 + ρa$ − a1)

18 Folding Schemes with Privacy Preserving Selective Verification

= [c1] + [c0] + ρ[c$]− [c1] = [c0] + ρ[c$] = [c].

A very similar calculation can be done to verify [d], see Section A.4. Verifying z is done by
showing that

z = z1 + ξz$,1 + ξ2z1,$ + ξ3z′$. (11)

As a first step, we expand the four terms in Equation (11) separately.

z1 = a⊤1 b1 (12)
ξz$,1 = ξ(a′$)⊤b1 = (a0 + ρa$ − a1)⊤b1 = a⊤0 b1 + ρa⊤$ b1 − a⊤1 b1 (13)

ξ2z1,$ = a⊤1 (ξ2b′$) = a⊤1 (b0 + ρ2b$ − b1) = a⊤1 b0 + ρ2a⊤1 b$ − a⊤1 b1 (14)
ξ3z′$ = (ξa′$)⊤ξ2b′$ = (a0 + ρa$ − a1)⊤(b0 + ρ2b$ − b1)

= a⊤0 (b0 + ρ2b$ − b1) + a⊤$ (ρb0 + ρ3b$ − ρb1)− a⊤1 (b0 + ρ2b$ − b1). (15)

Inserting Equations (12) to (15) into Equation (11) gives

(11) = a⊤1 (b1 − b1 + b0 + ρ2b$ − b1 − b0 − ρ2b$ + b1)
+ a⊤0 (b1 + b0 + ρ2b$ − b1) + a⊤$ (ρb1 + ρb0 + ρ3b$ − ρb1),

(16)

and cancelling gives Equation (8). Calculations are in Section A.4. We have now shown
that there is a (x′$, w′$) such that Equation (3) holds in the random oracle model.

Finally, we observe that for a fixed (x′, w′), it follows from Equations (9) and (10)
that there is exactly one instance (x$, w$) folding (x0, w0) into (x′, w′) for each non-zero
randomness ρ, and equivalently for each ξ, there is one (x′$, w′$) folding (x1, w1) into (x′, w′).
Hence, IPRCV-SH satisfies Theorem 3.

Corollary 2. There is a folding scheme with privacy preserving selective verification for
Inner Product Relation of Committed Values in the random oracle model.

4.2 Committed Relaxed R1CS
Committed Relaxed R1CS is the language used in the original paper introducing folding
schemes [KST22]. The language is a folding amenable generalization of Rank One Con-
straint Systems (R1CS) [SBV+13, GGPR13], and a classical language used for many proof
systems [Gro16, GWC19, BCR+19, KS22]. R1CS is a satisfiability flavored characteriza-
tion of the complexity class NP. Roughly, R1CS works as follows. For the three parameters,
m×m matrices A, B, C ∈ Fm×m, an instance of R1CS is x ∈ Fn with n < m for which
there is a witness w ∈ Fm−n−1 such that with z = (w, x, 1)⊤ we have Az ◦ Bz = Cz,
where ◦ denotes entry wise multiplication, also called the Hadamard product.

To make R1CS amenable to folding, the structure is modified to have u ∈ F, rather
than 1, as the last entry in z, and as a scalar in front of Cz. Additionally, an error term
e is introduced. To keep the protocol zero-knowledge, commitments for w and e are
introduced, using an additively homomorphic commitment scheme, for example Pedersen
commitments. For notation, we write x← Com(x, rx), meaning that x is a commitment
to x using randomness rx. With this notation, the language Committed Relaxed R1CS is

LA,B,C =
{

(u, x, e, w)
∣∣∣∣∃(e, re, w, rw) : z := (w, x, u); Az ◦Bz = uCz + e;

e← Com(e, re); w← Com(w, rw)

}
,

with a corresponding relation RA,B,C . Note that since R1CS is NP-complete and included
in Committed Relaxed R1CS, Committed Relaxed R1CS captures NP.4

4In [KST22], they claim that Committed Relaxed R1CS is NP-complete, but this depends on the
commitment schemes used. We discuss this further in the full version of this work [BE24].

Joan Boyar, Simon Erfurth 19

Following [KST22], a public coin protocol for folding two instances of Committed
Relaxed R1CS can be constructed as follows. For i ∈ {0, 1}, denote the two instances as

yi = ((ui, xi, ei, wi), (ei, rei
, wi, rwi

)) ∈ RA,B,C .

1. The prover sends t← Com(t, rt) where rt ←$ F and
t = Az1 ◦Bz2 + Az2 ◦Bz1 − u1Cz2 − u2Cz1. (17)

2. The verifier sends ρ←$ F.
3. Both the prover and verifier construct the folded instance (u, x, e, w) where5

u = u1 + ρu2

x = x1 + ρx2

e = e1 + ρt + ρ2e2

w = w1 + ρw2.
Additionally, the prover constructs a witness (e, re, w, rw) for the folded instance,
where

e = e1 + ρt + ρ2e2

re = re1 + ρrt + ρ2re2

w = w1 + ρw2

rw = rw1 + ρrw2 .

This protocol can be turned into a (non-interactive) 2-folding scheme using the Fiat-
Shamir heuristic, and the 2-folding scheme can be bootstrapped using the techniques
mentioned in Section 2.1 to an N -folding scheme with selective verification. Denote this
folding scheme CR-R1CS. The security of CR-R1CS follows from the same type of arguments
as the scheme in Section 4.1, and a proof can be found in [KST22]. It follows from the
proof of the bootstrap construction in [RZ23] that CR-R1CS is selectively verifiable.

In order to get a folding scheme with privacy preserving selective verification for
Committed Relaxed R1CS, we first instantiate Construction 2 with CR-R1CS to get a
statement hider SH-CR-R1CS. Similar to the IPRCV statement hider, we use the entire
relation, RA,B,C , as the sample space. We can then instantiate Construction 1 with
CR-R1CS and SH-CR-R1CS to get a folding scheme with privacy preserving selective
verification for Committed Relaxed R1CS. We denote this instantiation of Construction 1
as PP-CR-R1CS. We now show that PP-CR-R1CS is a folding scheme with privacy preserving
selective verification in the random oracle model.

Theorem 5. Assuming that CR-R1CS is a folding scheme with selective verification,
PP-CR-R1CS, constructed as described in the previous paragraph, is a folding scheme with
privacy preserving selective verification for Committed Relaxed R1CS, in the random oracle
model.

Proof. From Theorems 2 and 3, it follows that in order to show that PP-CR-R1CS satisfies
Definitions 1 to 3, it is sufficient to show that CR-R1CS satisfies Definition 2 and that
Theorem 3 applies. By assumption, CR-R1CS satisfies Definitions 1 and 2.

Efficient sampling from the entire relation space can be obtained as follows: First,
sample random vectors x ∈ Fn, w ∈ Fm−n−1 and u ∈ F. Then, with z = (w, x, u)⊤, set

e := Az ◦Bz− uCz, (18)

and generate commitments to w and e with randomness rw, re ←$ F:

e← Com(e, re) w← Com(w, rw).

The random instance is now given by ((u, x, e, w), (e, re, w, rw)). It follows from Equa-
tion (18) that the instance by definition is in RA,B,C , and since z is a random vector in
Fm, the instance is chosen randomly from the entire space.

The next criterion we show is that for any two instances, y1 and y′1, with

y1 = ((u1, x1, e1, w1), (e1, re1 , w1, rw1))
5Recall that the verifier knows the values committed to by e and w, and Pedersen commitments allow

noninteractively multiplying commitments by scalars and adding commitments.

20 Folding Schemes with Privacy Preserving Selective Verification

y′1 = ((u′1, x′1, e′1, w′1), (e′1, re′
1
, w′1, rw′

1
)),

and third instance y2 = ((u2, x2, e2, w2), (e2, re2 , w2, rw2)), there is an instance y′2 =
((u′2, x′2, e′i, w′2), (e′2, re′

2
, w′2, rw′

2
)), such that the statement and witness obtained by folding

y1 and y2 is the same as the statement and witness obtained by folding y′1 and y′2. That is,
abusing notation by ignoring the proof of folding, we find y′2 such that

Fold(y1, y2) = Fold(y′1, y′2). (19)

We show this in the random oracle model, and denote the randomness used for the first
fold as ρ and for the second fold as ξ. To satisfy Equation (19), the following equations
must hold:

x1 + ρx2 = x′1 + ξx′2 (20)
u1 + ρu2 = u′1 + ξu′2 (21)

w1 + ρw2 = w′1 + ξw′2 (22)
e1 + ρ · t + ρ2e2 = e′1 + ξt′ + ξ2e′2, (23)

where t and t′ are the cross terms from Equation (17), corresponding to Fold(y1, y2) and
Fold(y′1, y′2), respectively. Isolating x′2, u′2, w′2, e′2 and constructing commitments to w′2 and
e′2 (and their randomness) from the initial instance gives an instance

y′2 = ((u′2, x′2, e′2, w′2), (e′2, re′
2
, w′2, rw′

2
))

= ((ξ−1(u1 + ρu2 − u′1), ξ−1(x1 + ρx2 − x′1),
ξ−2(e1 + ρt + ρ2e2 − e′1 − ξt′), ξ−1(w1 + ρw2 −w′1)),

(ξ−2(e1 + ρt + ρ2e2 − e′1 − ξt′), ξ−2(re1 + ρrt + ρ2re2 − re′
1
− ξrt′),

ξ−1(w1 + ρw2 −w′1), ξ−1(rw1 + ρrw2 − rw′
1
))),

which by construction satisfies Equation (19). We need to verify that the instance is indeed
in RA,B,C . By inspection, the commitments are correct, so it suffices to verify that

Az′2 ◦Bz′2 = u′2Cz′2 + e′2. (24)

Essentially, this is done by expanding each side of Equation (24), and comparing the
results. For each of the following 3 expansions, Section B includes more steps.

By construction z′2 = (w′2, x′2, u′2)⊤ = ξ−1(z1 + ρz2 − z′1). We first expand the left side
of Equation (24) using the distributive laws for entry-wise multiplication.

Az′2 ◦Bz′2 = A(ξ−1(z1 + ρz2 − z′1)) ◦B(ξ−1(z1 + ρz2 − z′1))
= ξ−2(Az1 ◦Bz1 + ρAz1 ◦Bz2 −Az1 ◦Bz′1

+ ρAz2 ◦Bz1 + ρ2Az2 ◦Bz2 − ρAz2 ◦Bz′1
−Az′1 ◦Bz1 − ρAz′1 ◦Bz2 + Az′1 ◦Bz′1)

= ξ−2(ρ2(u2Cz2 + e2) + ρ(Az1 ◦Bz2 + Az2 ◦Bz1 −Az2 ◦Bz′1 −Az′1 ◦Bz2)
+ u1Cz1 + e1 −Az1 ◦Bz′1 −Az′1 ◦Bz1 + u′1Cz′1 + e′1). (25)

Before we expand the right side of Equation (24), we expand the error term e′2. This is
done by inserting the cross terms t and t′, multiplying out, inserting u′2 and z′2, multiplying
out again, and finally applying that Az′1 ◦Bz′1 = u′1Cz′1 + e′1 twice. We obtain that

e′2 = ξ−2(e1 + ρt + ρ2e2 − e′1 − ξt′)

Joan Boyar, Simon Erfurth 21

= ξ−2(e1 + ρ(Az1 ◦Bz2 + Az2 ◦Bz1 − u1Cz2 − u2Cz1) + ρ2e2 − e′1
− ξ(Az′1 ◦B(ξ−1(z1 + ρz2 − z′1)) + A(ξ−1(z1 + ρz2 − z′1)) ◦Bz′1
− u′1C(ξ−1(z1 + ρz2 − z′1))− ξ−1(u1 + ρu2 − u′1)Cz′1))

= ρ2ξ−2e2 + ρξ−2(Az1 ◦Bz2 + Az2 ◦Bz1 − u1Cz2 − u2Cz1

−Az′1 ◦Bz2 −Az2 ◦Bz′1 + u′1Cz2 + u2Cz′1)
+ ξ−2(e1 − e′1 −Az′1 ◦Bz1 + Az′1 ◦Bz′1 −Az1 ◦Bz′1 + Az′1 ◦Bz′1

+ u′1Cz1 − u′1Cz′1 + u1Cz′1 − u′1Cz′1).
= ρ2ξ−2e2 + ρξ−2(Az1 ◦Bz2 + Az2 ◦Bz1 − u1Cz2 − u2Cz1

−Az′1 ◦Bz2 −Az2 ◦Bz′1 + u′1Cz2 + u2Cz′1)
+ ξ−2(e1 + e′1 −Az′1 ◦Bz1 −Az1 ◦Bz′1 + u′1Cz1 + u1Cz′1).

(26)

We are now ready to expand the right side of Equation (24). At Equation (27), we insert
Equation (26) in place of e′2, and cancel out where applicable.

u′2Cz′2 + e′2 = ξ−1(u1 + ρu2 − u′1)C(ξ−1(z1 + ρz2 − z′1)) + e′2
= ρ2ξ−2(u2Cz2) + ρξ−2(u1Cz2 + u2Cz1 − u2Cz′1 − u′1Cz2)

+ ξ−2(u1Cz1 − u1Cz′1 − u′1Cz1 + u′1Cz′1) + e′2
= ρ2ξ−2(u2Cz2 + e2) + ρξ−2(Az1 ◦Bz2 + Az2 ◦Bz1

−Az′1 ◦Bz2 −Az2 ◦Bz′1)
+ ξ−2(u1Cz1 + e1 + u′1Cz′1 + e′1 −Az′1 ◦Bz1 −Az1 ◦Bz′1).

(27)

Equation (24) can now be verified, simply by comparing Equations (25) and (27). Thus,
we have shown the existence of y′2 ∈ RA,B,C such that Equation (19) holds.

Finally, it can be observed from Equations (20) to (23) that each unique pair ρ and y2
hiding y1 as a fixed instance corresponds to a unique pair ξ and y′2 hiding y′1 as the same
instance, showing that the last criterion of Theorem 3 is satisfied, and hence finishing the
proof of Theorem 5.

Acknowledgments
We would like to thank the anonymous reviewers for helpful feedback that improved the
quality of this article.

References
[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,

and Gregory Maxwell. Bulletproofs: Short proofs for confidential transactions
and more. In IEEE Symposium on Security and Privacy - SP 2018, pages
315–334. IEEE Computer Society, 2018. doi:10.1109/SP.2018.00020.

[BC23] Benedikt Bünz and Binyi Chen. Protostar: Generic efficient accumula-
tion/folding for special-sound protocols. In Advances in Cryptology - ASI-
ACRYPT 2023, volume 14439 of Lecture Notes in Computer Science, pages
77–110. Springer, 2023. doi:10.1007/978-981-99-8724-5_3.

[BC24] Dan Boneh and Binyi Chen. LatticeFold: A lattice-based folding scheme
and its applications to succinct proof systems. In The Science of Blockchain
Conference - SBC ’24, 2024. URL: https://eprint.iacr.org/2024/257.

https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-981-99-8724-5_3
https://eprint.iacr.org/2024/257

22 Folding Schemes with Privacy Preserving Selective Verification

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe
Petit. Efficient zero-knowledge arguments for arithmetic circuits in the discrete
log setting. In Advances in Cryptology - EUROCRYPT 2016, volume 9666
of Lecture Notes in Computer Science, pages 327–357. Springer, 2016. doi:
10.1007/978-3-662-49896-5_12.

[BCL+21] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas
Spooner. Proof-carrying data without succinct arguments. In Advances in
Cryptology - CRYPTO 2021, volume 12825 of Lecture Notes in Computer
Science, pages 681–710. Springer, 2021. doi:10.1007/978-3-030-84242-0_
24.

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner.
Recursive proof composition from accumulation schemes. In Theory of Cryp-
tography - TCC 2020, volume 12551 of Lecture Notes in Computer Science,
pages 1–18. Springer, 2020. doi:10.1007/978-3-030-64378-2_1.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars
Virza, and Nicholas P. Ward. Aurora: Transparent succinct arguments for
R1CS. In Advances in Cryptology - EUROCRYPT 2019, volume 11476 of
Lecture Notes in Computer Science, pages 103–128. Springer, 2019. doi:
10.1007/978-3-030-17653-2_4.

[BDFG21] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Halo infinite: Proof-
carrying data from additive polynomial commitments. In Advances in Cryp-
tology - CRYPTO 2021, volume 12825 of Lecture Notes in Computer Science,
pages 649–680. Springer, 2021. doi:10.1007/978-3-030-84242-0_23.

[BE24] Joan Boyar and Simon Erfurth. Folding schemes with privacy preserving
selective verification. IACR Cryptol. ePrint Arch., page 1530, 2024. URL:
https://eprint.iacr.org/2024/1530.

[BELN23] Joan Boyar, Simon Erfurth, Kim S. Larsen, and Ruben Niederhagen. Quotable
signatures for authenticating shared quotes. In Progress in Cryptology - LAT-
INCRYPT 2023, volume 14168 of Lecture Notes in Computer Science, pages
273–292. Springer, 2023. doi:10.1007/978-3-031-44469-2_14.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Recursive proof composition
without a trusted setup. IACR Cryptol. ePrint Arch., page 1021, 2019. URL:
https://eprint.iacr.org/2019/1021.

[BKP20] Ward Beullens, Shuichi Katsumata, and Federico Pintore. Calamari and Falafl:
Logarithmic (linkable) ring signatures from isogenies and lattices. In Advances
in Cryptology - ASIACRYPT 2020, volume 12492 of Lecture Notes in Computer
Science, pages 464–492. Springer, 2020. doi:10.1007/978-3-030-64834-3_1
6.

[C2P] C2PA. Coalition for Content Provenance and Authenticity (C2PA). https:
//c2pa.org/.

[CF13] Dario Catalano and Dario Fiore. Vector commitments and their applications.
In Public-Key Cryptography - PKC 2013, volume 7778 of Lecture Notes in
Computer Science, pages 55–72. Springer, 2013. doi:10.1007/978-3-642-3
6362-7_5.

https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-84242-0_23
https://eprint.iacr.org/2024/1530
https://doi.org/10.1007/978-3-031-44469-2_14
https://eprint.iacr.org/2019/1021
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-64834-3_16
https://c2pa.org/
https://c2pa.org/
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-642-36362-7_5

Joan Boyar, Simon Erfurth 23

[CNR+22] Matteo Campanelli, Anca Nitulescu, Carla Ràfols, Alexandros Zacharakis,
and Arantxa Zapico. Linear-map vector commitments and their practical
applications. In Advances in Cryptology - ASIACRYPT 2022, volume 13794
of Lecture Notes in Computer Science, pages 189–219. Springer, 2022. doi:
10.1007/978-3-031-22972-5_7.

[DCB24] Trisha Datta, Binyi Chen, and Dan Boneh. VerITAS: Verifying image transfor-
mations at scale, 2024. URL: https://eprint.iacr.org/2024/1066.

[DEH24] Stefan Dziembowski, Shahriar Ebrahimi, and Parisa Hassanizadeh. VIMz:
Verifiable image manipulation using folding-based zkSNARKs. IACR Cryptol.
ePrint Arch., page 1063, 2024. URL: https://eprint.iacr.org/2024/1063.

[Erf24] Simon Erfurth. Digital signatures for authenticating compressed JPEG images.
In Security-Centric Strategies for Combating Information Disorder - SCID
2024, page 4. ACM, 2024. doi:10.1145/3660512.3665522.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In Advances in Cryptology - CRYPTO
’86, volume 263 of Lecture Notes in Computer Science, pages 186–194. Springer,
1986. doi:10.1007/3-540-47721-7_12.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct NIZKs without PCPs. In Advances in Cryptology -
EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages
626–645. Springer, 2013. doi:10.1007/978-3-642-38348-9_37.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In
Advances in Cryptology - EUROCRYPT 2016, volume 9666 of Lecture Notes
in Computer Science, pages 305–326. Springer, 2016. doi:10.1007/978-3-6
62-49896-5_11.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Per-
mutations over lagrange-bases for oecumenical noninteractive arguments of
knowledge. IACR Cryptol. ePrint Arch., page 953, 2019. URL: https:
//eprint.iacr.org/2019/953.

[JWL11] Rob Johnson, Leif Walsh, and Michael Lamb. Homomorphic signatures for
digital photographs. In Financial Cryptography and Data Security - FC 2011,
volume 7035 of LNCS, pages 141–157. Springer, 2011. doi:10.1007/978-3-6
42-27576-0_12.

[Kot24] Abhiram Kothapalli. A Theory of Composition for Proofs of Knowledge. PhD
thesis, Carnegie Mellon University, 2024. URL: https://www.andrew.cmu.e
du/user/bparno/papers/kothapalli_thesis.pdf.

[KP23] Abhiram Kothapalli and Bryan Parno. Algebraic reductions of knowledge. In
Advances in Cryptology - CRYPTO 2023, volume 14084 of Lecture Notes in
Computer Science, pages 669–701. Springer, 2023. doi:10.1007/978-3-031
-38551-3_21.

[KS22] Abhiram Kothapalli and Srinath T. V. Setty. SuperNova: Proving universal
machine executions without universal circuits. IACR Cryptol. ePrint Arch.,
page 1758, 2022. URL: https://eprint.iacr.org/2022/1758.

https://doi.org/10.1007/978-3-031-22972-5_7
https://doi.org/10.1007/978-3-031-22972-5_7
https://eprint.iacr.org/2024/1066
https://eprint.iacr.org/2024/1063
https://doi.org/10.1145/3660512.3665522
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-642-27576-0_12
https://doi.org/10.1007/978-3-642-27576-0_12
https://www.andrew.cmu.edu/user/bparno/papers/kothapalli_thesis.pdf
https://www.andrew.cmu.edu/user/bparno/papers/kothapalli_thesis.pdf
https://doi.org/10.1007/978-3-031-38551-3_21
https://doi.org/10.1007/978-3-031-38551-3_21
https://eprint.iacr.org/2022/1758

24 Folding Schemes with Privacy Preserving Selective Verification

[KS24] Abhiram Kothapalli and Srinath T. V. Setty. HyperNova: Recursive arguments
for customizable constraint systems. In Advances in Cryptology - CRYPTO
2024, volume 14929 of Lecture Notes in Computer Science, pages 345–379.
Springer, 2024. doi:10.1007/978-3-031-68403-6_11.

[KST22] Abhiram Kothapalli, Srinath T. V. Setty, and Ioanna Tzialla. Nova: Recursive
zero-knowledge arguments from folding schemes. In Advances in Cryptology -
CRYPTO 2022, volume 13510 of Lecture Notes in Computer Science, pages
359–388. Springer, 2022. doi:10.1007/978-3-031-15985-5_13.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size com-
mitments to polynomials and their applications. In Advances in Cryptology -
ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pages
177–194. Springer, 2010. doi:10.1007/978-3-642-17373-8_11.

[Mer80] Ralph C. Merkle. Protocols for public key cryptosystems. In IEEE Symposium
on Security and Privacy - S&P 1980, pages 122–134. IEEE Computer Society,
1980. doi:10.1109/SP.1980.10006.

[Mer89] Ralph C. Merkle. A certified digital signature. In Advances in Cryptology -
CRYPTO ’89, volume 435, pages 218–238. Springer, 1989. doi:10.1007/0-3
87-34805-0_21.

[MVVZ25] Pierpaolo Della Monica, Ivan Visconti, Andrea Vitaletti, and Marco Zecchini.
Trust nobody: Privacy-preserving proofs for edited photos with your laptop.
In IEEE Symposium on Security and Privacy - S&P 2025. IEEE Computer
Society, 2025. doi:10.1109/SP61157.2025.00014.

[NDC+24] Wilson D. Nguyen, Trisha Datta, Binyi Chen, Nirvan Tyagi, and Dan Boneh.
Mangrove: A scalable framework for folding-based SNARKs. In Advances
in Cryptology - CRYPTO 2024, volume 14929 of Lecture Notes in Computer
Science, pages 308–344. Springer, 2024. doi:10.1007/978-3-031-68403-6_
10.

[NT16] Assa Naveh and Eran Tromer. PhotoProof: Cryptographic image authenti-
cation for any set of permissible transformations. In IEEE Symposium on
Security and Privacy - S&P 2016, pages 255–271. IEEE Computer Society,
2016. doi:10.1109/SP.2016.23.

[Ped91] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Advances in Cryptology - CRYPTO ’91, volume 576 of
Lecture Notes in Computer Science, pages 129–140. Springer, 1991. doi:
10.1007/3-540-46766-1_9.

[RZ23] Carla Ràfols and Alexandros Zacharakis. Folding schemes with selective
verification. In Progress in Cryptology - LATINCRYPT 2023, volume 14168
of Lecture Notes in Computer Science, pages 229–248. Springer, 2023. doi:
10.1007/978-3-031-44469-2_12.

[SBV+13] Srinath T. V. Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg, Bryan
Parno, and Michael Walfish. Resolving the conflict between generality and
plausibility in verified computation. In EuroSys ’13, pages 71–84. ACM, 2013.
doi:10.1145/2465351.2465359.

[SF90] Laura A. Sanchis and Mark A. Fulk. On the efficient generation of language
instances. SIAM Journal on Computing, 19(2):281–296, 1990. doi:10.1137/
0219019.

https://doi.org/10.1007/978-3-031-68403-6_11
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1109/SP.1980.10006
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1109/SP61157.2025.00014
https://doi.org/10.1007/978-3-031-68403-6_10
https://doi.org/10.1007/978-3-031-68403-6_10
https://doi.org/10.1109/SP.2016.23
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-031-44469-2_12
https://doi.org/10.1007/978-3-031-44469-2_12
https://doi.org/10.1145/2465351.2465359
https://doi.org/10.1137/0219019
https://doi.org/10.1137/0219019

Joan Boyar, Simon Erfurth 25

[STW23] Srinath T. V. Setty, Justin Thaler, and Riad S. Wahby. Customizable constraint
systems for succinct arguments. IACR Cryptol. ePrint Arch., page 552, 2023.
URL: https://eprint.iacr.org/2023/552.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge
imply time/space efficiency. In Theory of Cryptography - TCC 2008, volume
4948 of Lecture Notes in Computer Science, pages 1–18. Springer, 2008. doi:
10.1007/978-3-540-78524-8_1.

[YLF+22] Thomas Yurek, Licheng Luo, Jaiden Fairoze, Aniket Kate, and Andrew Miller.
hbACSS: How to robustly share many secrets. In Network and Distributed
System Security Symposium - NDSS 2022. The Internet Society, 2022. URL:
https://www.ndss-symposium.org/ndss-paper/auto-draft-245/.

[ZSL04] Bin Benjamin Zhu, Mitchell D. Swanson, and Shipeng Li. Encryption and
authentication for scalable multimedia: Current state of the art and challenges.
Internet Multimedia Management Systems V, 5601:157–170, 2004. doi:10.1
117/12.571869.

[ZXH+22] Jiaheng Zhang, Tiancheng Xie, Thang Hoang, Elaine Shi, and Yupeng Zhang.
Polynomial commitment with a one-to-many prover and applications. In
USENIX Security 2022, pages 2965–2982. USENIX Association, 2022. URL:
https://www.usenix.org/conference/usenixsecurity22/presentation/
zhang-jiaheng.

A Inner Product Relation of Committed Values (Ad-
ditional Details)

A.1 Pedersen Commitments
Usually, a (single value, information-theoretically hiding, computationally binding) Peder-
sen commitment [Ped91] uses public parameters (or commitment key), G and H randomly
sampled group elements from a group G over a field F, and a commitment to m ∈ F
using randomness r ∈ F is c = rG + mH. The opening of c to m is (m, r). A non-
hiding Pedersen commitment simply does not use the randomness r, and also removes
G from the public parameters. A non-hiding Pedersen commitment for multiple values
uses public parameters G1, . . . , Gn ∈ G, and a commitment to m = (m1, . . . , mn) is
c = m1G1 + m2G2 + · · ·+ mnGn. To construct a hiding Pedersen commitment for multiple
values, simply add another group element H to the commitment key, and for randomness
r add a factor of rH to the commitment. The hiding versions of the Pedersen commitment
scheme are perfectly hiding and computationally binding under the discrete logarithm
assumption. As in [RZ23], we will work with the non-hiding version, but everything
translates trivially to the hiding version.

Using our group notation from Section 1.4, a commitment key for a non-hiding Pedersen
commitment for multiple values can be denoted as [r] ∈ Gn, and a commitment to m ∈ Fn

as [c] = [r]⊤m.

A.2 Non-interactive 2-folding scheme
This is the non-interactive 2-folding scheme for Inner Product Relation of Committed
Values obtained by applying the Fiat-Shamir heuristic to the interactive protocol in
Section 4.1.

https://eprint.iacr.org/2023/552
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-540-78524-8_1
https://www.ndss-symposium.org/ndss-paper/auto-draft-245/
https://doi.org/10.1117/12.571869
https://doi.org/10.1117/12.571869
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-jiaheng
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-jiaheng

26 Folding Schemes with Privacy Preserving Selective Verification

Construction 3. (2-IPRCV) Let H denote a hash function sampled from a family of
cryptographic hash functions. Construct 2-IPRCV = (Fold, FoldVerify) as follows.

• Fold((gk, [r], [s]), (([c1], [d1], z1), (a1, b1)), (([c2], [d2], z2), (a2, b2)))
1. Compute the cross terms: z1,2 = a1

⊤b2 and z2,1 = a2
⊤b1.

2. Compute a pseudo random challenge by hashing the parameters, public inputs,
and cross terms: ρ = H(gk, [r], [s], [c1], [d1], z1, [c2], [d2], z2, z1,2, z2,1).

3. Construct the folded instance using ρ:
[c] = [c1] + ρ[c2]
[d] = [d1] + ρ2[d2]

z = z1 + ρz2,1 + ρ2z1,2 + ρ3z2

a = a1 + ρa2

b = b1 + ρ2b2,

4. Output (([c], [d], z), (a, b), (z1,2, z2,1)).
• FoldVerify((gk, [r], [s]), ([c1], [d1], z1), ([c2], [d2], z2), ([c], [d], z), (z1,2, z2,1))

1. Compute ρ = H(gk, [r], [s], [c1], [d1], z1, [c2], [d2], z2, z1,2, z2,1).
2. Check that

[c] =[c1] + ρ[c2]
[d] =[d1] + ρ2[d2]

z =z1 + ρz2,1 + ρ2z1,2 + ρ3z2,

3. If so output 1, otherwise output 0.

A.3 Statement Hider
This is the statement hider for Inner Product Relation of Committed Values obtained by
instantiating Construction 2 with Construction 3 and R′ = Rgk,[r],[s].

Construction 4. (IPRCV-SH) Let 2-IPRCV be constructed as in Construction 3 and
pp = (gk, [r], [s]). Construct (Hide, Check) as follows.

• Hide(pp, ([c1], [d1], z1), (a1, b1), (([c$], [d$], z$), (a$, b$))
1. Fold the two instances together:

(([c], [d], z), (a, b), (z1,2, z2,1))← 2-IPRCV.Fold(pp, (([c1], [d1], z1), (a1, b1)),
(([c$], [d$], z$), (a$, b$)))

2. Output (([c], [d], z), (a, b), (([c$], [d$], z$), z1,2, z2,1))
• Check(pp, ([c1], [d1], z1), ([c], [d], z), (([c$], [d$], z$), z1,2, z2,1))

1. Output the result of
2-IPRCV.FoldVerify(pp, ([c1], [d1], z1), ([c$], [d$], z$), ([c], [d], z), (z1,2, z2,1)).

A.4 Additional Calculations for Theorem 4
From the following calculations, it can be seen that the [d] obtained by folding (x1−b, w1−b)
and (x$, w$) are the same as in Equation (7).

[d1] + ξ2[d$] = [d1] + [s]⊤ξ2b′$
= [d1] + [s]⊤(b0 + ρ2b$ − b1)
= [d1] + [d0] + ρ2[d$]− [d1]
= [d0] + ρ2[d$] = [d].

Joan Boyar, Simon Erfurth 27

Recall that Equation (16) was obtained by inserting Equations (12) to (15) into
Equation (11). Factoring out the a terms yields Equation (8), as follows.

(11) = a⊤1 (b1 − b1 + b0 + ρ2b$ − b1 − b0 − ρ2b$ + b1)
+ a⊤0 (b1 + b0 + ρ2b$ − b1) + a⊤$ (ρb1 + ρb0 + ρ3b$ − ρb1)

= a⊤1 0 + a⊤0 (b0 + ρ2b$) + a⊤$ (ρb0 + ρ3b$)
= a⊤0 b0 + ρ2a⊤0 b$ + ρa⊤$ b0 + ρ3a⊤$ b$

= z0 + ρ2z0,$ + ρz$,0 + ρ3z$ = z.

B Committed Relaxed R1CS (Additional Details)
We now present the proof that

Az′2 ◦Bz′2 = u′2Cz′2 + e′2 (28)

in greater detail. Essentially, this is done by expanding each side, and obtaining the same.
Note that by construction

z′2 :=

w′2
x′2
u′2

 =

ξ−1(w1 + ρw2 −w′1)
ξ−1(x1 + ρx2 − x′1)
ξ−1(u1 + ρu2 − u′1)

 = ξ−1(z1 + ρz2 − z′1).

We first expand the left side of Equation (28) using the distributive laws for entry-wise
multiplication.

Az′2 ◦Bz′2 = A(ξ−1(z1 + ρz2 − z′1)) ◦B(ξ−1(z1 + ρz2 − z′1))
= ξ−2(Az1 + ρAz2 −Az′1) ◦ (Bz1 + ρBz2 −Bz′1))
= ξ−2(Az1 ◦Bz1 + ρAz1 ◦Bz2 −Az1 ◦Bz′1

+ ρAz2 ◦Bz1 + ρ2Az2 ◦Bz2 − ρAz2 ◦Bz′1
−Az′1 ◦Bz1 − ρAz′1 ◦Bz2 + Az′1 ◦Bz′1)

= ρ2ξ−2(Az2 ◦Bz2) + ρξ−2(Az1 ◦Bz2 + Az2 ◦Bz1 −Az2 ◦Bz′1 −Az′1 ◦Bz2)
+ ξ−2(Az1 ◦Bz1 −Az1 ◦Bz′1 −Az′1 ◦Bz1 + Az′1 ◦Bz′1)

= ξ−2(ρ2(u2Cz2 + e2) + ρ(Az1 ◦Bz2 + Az2 ◦Bz1 −Az2 ◦Bz′1 −Az′1 ◦Bz2)
+ u1Cz1 + e1 −Az1 ◦Bz′1 −Az′1 ◦Bz1 + u′1Cz′1 + e′1). (29)

Before we expand the right side of Equation (28), we expand the error term e′2. This is
done by inserting the cross terms t and t′, and then inserting u′2 and z′2.

e′2 = ξ−2(e1 + ρt + ρ2e2 − e′1 − ξt′)
= ξ−2(e1 + ρ(Az1 ◦Bz2 + Az2 ◦Bz1 − u1Cz2 − u2Cz1) + ρ2e2

− e′1 − ξ(Az′1 ◦Bz′2 + Az′2 ◦Bz′1 − u′1Cz′2 − u′2Cz′1))
= ξ−2(e1 + ρ(Az1 ◦Bz2 + Az2 ◦Bz1 − u1Cz2 − u2Cz1) + ρ2e2 − e′1

− ξ(Az′1 ◦B(ξ−1(z1 + ρz2 − z′1)) + A(ξ−1(z1 + ρz2 − z′1)) ◦Bz′1
− u′1C(ξ−1(z1 + ρz2 − z′1))− ξ−1(u1 + ρu2 − u′1)Cz′1))

= ξ−2(e1 + ρ(Az1 ◦Bz2 + Az2 ◦Bz1 − u1Cz2 − u2Cz1) + ρ2e2 − e′1
−Az′1 ◦Bz1 − ρAz′1 ◦Bz2 + Az′1 ◦Bz′1 −Az1 ◦Bz′1 − ρAz2 ◦Bz′1
+ Az′1 ◦Bz′1 + u′1Cz1 + ρu′1Cz2 − u′1Cz′1 + u1Cz′1 + ρu2Cz′1 − u′1Cz′1)

28 Folding Schemes with Privacy Preserving Selective Verification

= ρ2ξ−2e2 + ρξ−2(Az1 ◦Bz2 + Az2 ◦Bz1 − u1Cz2 − u2Cz1

−Az′1 ◦Bz2 −Az2 ◦Bz′1 + u′1Cz2 + u2Cz′1)
+ ξ−2(e1 − e′1 −Az′1 ◦Bz1 + Az′1 ◦Bz′1 −Az1 ◦Bz′1 + Az′1 ◦Bz′1

+ u′1Cz1 − u′1Cz′1 + u1Cz′1 − u′1Cz′1).
= ρ2ξ−2e2 + ρξ−2(Az1 ◦Bz2 + Az2 ◦Bz1 − u1Cz2 − u2Cz1

−Az′1 ◦Bz2 −Az2 ◦Bz′1 + u′1Cz2 + u2Cz′1)
+ ξ−2(e1 + e′1 −Az′1 ◦Bz1 −Az1 ◦Bz′1 + u′1Cz1 + u1Cz′1).

(30)

For Equation (30), we applied that Az′1 ◦Bz′1 = u′1Cz′1 + e′1 twice. We are now ready to
expand the right side of Equation (28). At Equation (31), we insert Equation (30) in place
of e′2, and cancel out where applicable.

u′2Cz′2 + e′2 = ξ−1(u1 + ρu2 − u′1)C(ξ−1(z1 + ρz2 − z′1)) + e′2
= ξ−2(u1Cz1 + ρu1Cz2 − u1Cz′1 + ρu2Cz1 + ρ2u2Cz2

− ρu2Cz′1 − u′1Cz1 − ρu′1Cz2 + u′1Cz′1) + e′2
= ρ2ξ−2(u2Cz2) + ρξ−2(u1Cz2 + u2Cz1 − u2Cz′1 − u′1Cz2)

+ ξ−2(u1Cz1 − u1Cz′1 − u′1Cz1 + u′1Cz′1) + e′2
= ρ2ξ−2(u2Cz2 + e2) + ρξ−2(Az1 ◦Bz2 + Az2 ◦Bz1

−Az′1 ◦Bz2 −Az2 ◦Bz′1)
+ ξ−2(u1Cz1 + e1 + u′1Cz′1 + e′1 −Az′1 ◦Bz1 −Az1 ◦Bz′1).

(31)

It can now be verified that Equation (28) holds, simply by comparing Equation (29) and
Equation (31).

	Introduction
	Organization of paper
	Related Work
	Applications
	Notation

	Folding Schemes
	Bootstrapping from 2-folding to N-folding
	Selective Verification

	Privacy Preserving Selective Verification
	NP-statement hider
	Privacy preserving folding scheme from an NP-statement hider
	NP-statement hider from a folding scheme

	Examples
	Inner Product Relation of Committed Values
	Committed Relaxed R1CS

	References
	Inner Product Relation of Committed Values (Additional Details)
	Pedersen Commitments
	Non-interactive 2-folding scheme
	Statement Hider
	Additional Calculations for thrm:hider-iprcv

	Committed Relaxed R1CS (Additional Details)

