
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 4, 32 pages.

https://doi.org/10.62056/a3wahey6b
Check for updates

Scaling Lattice Sieves across Multiple Machines
Martin R. Albrecht1,2 and Joe Rowell3

1 King’s College London, London, United Kingdom
2 SandboxAQ, Palo Alto, United States

3 Unaffiliated, United Kingdom

Abstract. Lattice sieves are algorithms for finding short vectors in lattices. We
present an implementation of two such sieves – known as “BGJ1” and “BDGL” in the
literature – that scales across multiple servers (with varying success). This class of
algorithms requires exponential memory which had put into question their ability to
scale across sieving nodes. We discuss our architecture and optimisations and report
experimental evidence of the efficiency of our approach.
Keywords: Lattices · Lattice Reduction · Distributed Computing

1 Introduction
A central hard problem in post-quantum cryptography is the Shortest Vector Problem
(SVP) on lattices: given a basis B of a lattice L find a shortest nonzero vector in L.
SVP is known to be NP-hard under randomised reductions [Ajt98], with hardness results
extending up to sub-polynomial approximation factors [Mic01, Kho05, HR12, Mic12]. It is
generally assumed that the difficulty of SVP degrades gracefully as the approximation factor
increases. Moreover, it is generally assumed that there is no probabilistic polynomial-time
or even bounded-error quantum polynomial-time algorithm that solves SVP to within
polynomial approximation factors. This hardness (coupled with compact and easy-to-
implement constructions) has led to many cryptographic primitives basing their security on
the hardness of variants of SVP, and as a result many algorithms have been considered and
proposed for solving (approximate) SVP [Kan83, FP83, AKS01, NV08, GNR10, MV10a,
MW15, Laa15, BDGL16, Duc18a, ADH+19, ABF+20, ABLR21], with the fastest known
family of algorithms being lattice sieves.

Lattice sieves come in both provable [AKS01, NV08, MV10b, ADRS15] and heuristic
variants [NV08, MV10b, BGJ15, BDGL16, HK17]. These variants exhibit time and
memory complexity of 2Θ(n) and implementations of heuristic sieves currently dominate
the Darmstadt SVP Hall of Fame [LR24].1 Briefly, lattice sieves operate by first sampling
an exponentially large list of vectors L and then iteratively reducing this list by computing
the pairwise sums and differences of vectors from this list, keeping those that have smaller
norms. For heuristic sieving algorithms – which we focus on in this work – this list typically
has 20.210 n+o(n) vectors.

While sieving outperforms alternative approaches to finding short vectors in lattices both
in practice and asymptotically, it is an open question of how it scales on realistic hardware.
The central challenges here are the aforementioned exponentially-large lists. That is, while
the benefits of sieving in a single machine context are well-understood [ADH+19, DSvW21,
ZDY24], these benefits may be somewhat limited to when access to the list is fast – say,

E-mail: martin.albrecht@kcl.ac.uk (Martin R. Albrecht), joe.rowell.2015@live.rhul.ac.uk (Joe
Rowell)

1In contrast, enumeration-based algorithms [Kan83, FP83, GNR10, MW15, ABF+20, ABLR21] run in
time nΘ(n) and poly(n) memory.

This work is licensed under a “CC BY 4.0” license.
Received: 2024-09-29 Accepted: 2024-12-03

https://doi.org/10.62056/a3wahey6b
https://crossmark.crossref.org/dialog/?doi=10.62056/a3wahey6b&domain=pdf&date_stamp=2024-12-20
mailto:martin.albrecht@kcl.ac.uk
mailto:joe.rowell.2015@live.rhul.ac.uk
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Scaling Lattice Sieves across Multiple Machines

1-14 1-28 2-14 2-28 3-14 3-28 4-14 4-28 5-14 5-28

0.8

1

1.2 122 120 118 116

Labels on the X axis: (#nodes)-(#cores per node). Y axis shows (wall time/cores)/(wall
time(1-14)/14). A factor of 1.0 is ideal scaling, values above are due to variance in the
experiments. All nodes were of type K in Table 1. One experiment per dimension and

configuration.

Figure 1: Parallel performance for BGJ1 sieving in dimensions 116 to 122.

when the entire list is in system memory.2 Indeed, some have argued [Ber16, BBC+20]
that the significantly lower memory requirements of enumeration would appear to indicate
that enumeration might scale better than sieving in a networked setting, where bandwidth
between nodes may become a significant bottleneck. More generally, the requirement for
exponential memory in lattice sieves and its implication for realistic cost estimates of
these algorithms has received significant attention around the NIST PQC standardisation
process [AS17, NIS23, Jaq24, Sch24].

1.1 Contributions
Our contributions are (a) an efficient and scalable proof-of-concept implementation of
sieving algorithms using the message passing interface (MPI, see Section B) and (b) an
investigation into the scalability of sieving algorithms over, possibly heterogeneous, larger
nodes connected over Ethernet.

In more detail, we study and implement distributed variants of the BGJ1 [BGJ15,
ADH+19] and the BDGL sieve variant [BDGL16, DSvW21] used in the General Sieve
Kernel (referred to throughout as G6K). This is motivated by their shared good performance
but rather diverging designs, allowing us to explore the problem space.

In this work, we focus on sieving via processing multiple so-called “buckets” in parallel
across different nodes. This restricts our results to a setting of somewhat powerful nodes
as the memory requirements per bucket grow as 20.104 n+o(n) in our implementation.3 In
particular, we leave the task of processing a single such bucket across multiple nodes to
future work. We analyse the efficacy of our approach in Section 3 using the logP model
and show that sieving should scale increasingly well as the lattice dimension increases,
justifying our architecture.

Then, using the open-source G6K implementation [ADH+19] as a starting point, we
present and describe an open-source implementation of distributed sieving in Section 4. It
might appear straight-forward to parallelise both BGJ1 and BDGL by simply processing
multiple buckets of vectors in parallel, which is indeed the strategy applied in G6K in
a single-server setting. However, adopting this approach in a distributed context is not
efficient. The main challenge is that G6K reduces the amount of memory needed to
represent a bucket as a series of smaller indices into a much larger table to maintain

2We note that whilst [ZDY24] studies sieving with streamed memory accesses, the experiments presented
in that work all assume that the sieving database fits into system memory.

3Asymptotically, bucket sizes of 2o(n) are achieved, but known implementations, including ours, do not
use parameters justifying such an asymptotic formula.

Martin R. Albrecht, Joe Rowell 3

consistency. We are unable to use this approach in our setting: indexing into the database
in this way assumes that each node has access to a full copy of the database, which is not
the case in the multiple server setting. Instead, we require that each node gathers buckets
in their entirety that need to be sieved, requiring additional storage. The challenge is then
to keep the additional memory usage small whilst also maintaining a small wall time.

Moreover, and critically, we found that preventing the insertion of duplicate entries
into the database in a distributed setting is highly non-trivial, requiring some consensus
across all nodes in the cluster. Interestingly, we find that bespoke consensus techniques
should be applied to each sieve, depending on the underlying properties of each algorithm.
We discuss the techniques applied for this in more detail in Section 4.

Finally, in Section 5 we show that our distributed BGJ1 lattice sieving implementation
achieves the desired reduction in wall time when using a standard 10Gbps network,4
see Figure 1 and Table 2.5 To the best of our knowledge, this is the first time that
the efficiency of any distributed lattice sieving algorithm for general lattices has been
experimentally demonstrated to be performant over such a network, and that distributed
variants of G6K have been studied, which was given as an open problem in [BBC+20].6
Our results for BDGL are less favourable, see Tables 5 and 6, we discuss this below. Our
implementation is available at https://github.com/joerowell/G6K-Dist-Sieve.

1.2 Related work

Both enumeration and sieving have previously been considered in parallel contexts. Enu-
meration has been studied widely in both locally parallel [HSB+10, DHPS10, KSD+11,
DS10, CMP+16, BBK19, PSZ21] and distributed [TKH18, TSN+20] settings. It is now
commonly accepted that enumeration scales well across multiple cores in a single machine
setting, and the widely used fplll library supports multi-core enumeration by default [dt23].
On the other hand, the largest scale distributed results are due to [TKH18] and [TSN+20].
We note that both of these works present results from large, well-connected clusters and
globally shared memory [TKH18, §6.2].7 Moreover, modern sieving implementations
outperform enumeration [ADH+19] and the Darmstadt SVP Hall of Fame is dominated by
sieving. We ignore enumeration for the rest of this work.

Existing works on scaling sieving can be divided into three broad categories. First, there
are several works that explore shared-memory parallelism for lattice sieving [MS11, IKMT14,
MBL15], and the most performant open-source library for lattice sieving, G6K [ADH+19],
uses multi-core parallelism.

Second, a line of work has considered extending G6K to operate in non-shared memory
environments; for example, Andrzejczak and Gaj [AG20] implemented the inner product
computations on FPGAs, and a G6K variant utilising GPUs was presented in [DSvW21].
In both cases, the main idea is to store the sieving database L in system memory and
to delegate all sieving operations (such as bucketing and searching for reductions) to an
external device. Despite that access to the external device is typically far slower than
accessing system memory, these works show a significant speed-up over CPU-only lattice
sieving: intuitively, these speedups are possible because the quadratic portion of the sieve –

4Latency: ≈ 50µs.
5We note that the “dimension” given is the sieving dimension rather than the dimension of the

(approx-)SVP problem that is targeted in e.g. the Darmstadt SVP Challenges. The former is smaller than
the latter due to “dimensions for free” [Duc18a]. For example, [ADH+19] solved a 155 dimensional SVP
HoF instance, but sieved in dimension up-to 127.

6The TU Darmstadt SVP Hall of Fame [LR24] includes entries that hint at distributed lattice sieving,
but these results do not appear in the literature and appear to use bandwidth-rich clusters.

7The authors do not mention exactly how much global space was used: however, they do report that
around 60GB [TKH18, 6.2] of lattice vectors remained at the end of the 150-dimensional SVP challenge,
and that “several hundred gigabytes” would have been used in total.

https://github.com/joerowell/G6K-Dist-Sieve

4 Scaling Lattice Sieves across Multiple Machines

considering all pairs of vectors – can be constrained to use only the fast, local memory of
the external devices. This masks the delay of loading vectors from RAM.

We note that, despite the apparent similarities between these works and ours, there is
still a significant difference between delegating computations to an external device and
sieving across different servers. The foremost reason for this is that a network bus – typically
Ethernet – is significantly slower than the buses considered in [AG20, DSvW21, ZDY24]. As
a result, mitigating the loading latency is a significantly harder task than in a single-machine
context. Moreover, internal buses are typically quite fault reliant. In contrast, packet
loss is a common concern in networked applications, and mitigating for this loss of data
naturally leads to performance penalties. Finally, the designs of [AG20, DSvW21, ZDY24]
assume that the entire database can fit into a single system’s RAM, whereas our work
assumes that no single entity is able to store the entire database.

In particular, concurrent work [LR24, ZDY24] gives a series of new CPU sieving records.
These entries were achieved using a low-level optimised, multi-core implementation of
a BGJ sieve [BGJ15] that places particular emphasis on minimising random memory
accesses. From a certain perspective we may view our implementation as following a
similar principle. However, as mentioned above, in our work the database is split across
multiple machines rather than system memory. We also note that the scalability analysis
in Section 3 is broadly unaffected by the size of the buckets that are used and the underlying
parameterisation of a particular sieving algorithm. Overall, we consider the improvements
in [LR24, ZDY24] as orthogonal to this work.

Third, there has been some experimental investigations to how sieving scales across
multiple-machine clusters [BNP17, TSY+21]. In the first of these works, the authors
presented results over ideal lattices in the ring Z[x]/(xn + 1), where n is a power of two,
allowing for the required bandwidth to be reduced by a factor of n. Interestingly, this
reduction of a factor n does not affect our scalability model by much, see Section 3.1.
On the other hand, [TSY+21] uses a hybrid Gauss Sieve-enumeration algorithm to solve
a dimension 134 SVP instance in around 100 hours on a super computer with 103,680
cores and with around 50Gbps of network bandwidth per CPU. Our results, in contrast,
were gathered using significantly fewer resources. This is partially explained by that the
Gauss Sieve [MV10b] is exponentially slower than both BGJ1 and BDGL, and thus our
implementation benefits from a substantial algorithmic advantage, which we leverage to
obtain good parallel speedups over slower interconnects.

In [Duc18b, Kir16, KMPM19] architectures for massively parallel sieving were sketched:
a ring of devices computing inner-products. These architectures illustrate the viability
of sieving in an area-times-time (AT) model and promise that sieving does indeed scale
reasonably well. However, since the focus of these architecture sketches are bespoke,
massive circuits, their focus is still quite different from ours and closer to the FPGA/GPU
sieves discussed above. We study sieving on commodity CPUs connected over commodity
networks, enabling cooperative sieving across different such nodes. On the other hand, by
treating large scale clusters in a similar manner to these massive circuits we may expect
similar levels of scaling.

2 Preliminaries
Notation. We start indexing at 0. Vectors and matrices are denoted by bold lower
case letters and bold capital letters respectively. Unless stated otherwise, all vectors are
column vectors and matrices B = (b0, . . . bn−1) are comprised of column vectors. We
denote the Euclidean norm of a vector b as ∥b∥. The size of an object is the length of its
binary representation. For any two vectors v, u, we denote the inner product of v and u

as ⟨v, u⟩. We define the sign function sgn(x) : R 7→ {0, 1} =
{

1 if x ≥ 0
0 otherwise

. We denote

Martin R. Albrecht, Joe Rowell 5

the exclusive-or (xor) operation by the symbol ⊕.

2.1 Lattices
Lattices are discrete additive subgroups of Rm. A lattice L in Rm can be represented as a set
of all integer linear combinations of n ≤ m linearly independent vectors B := (b0, . . . bn−1)
in Rm. We refer to this set of vectors as a basis. When n = m then L is said to be full-rank.
In this work, we will refer to n (resp. m) as the rank (resp. dimension) of the lattice L. As
soon as n ≥ 2, any lattice may be spanned by infinitely many bases; for some lattice L, any
two arbitrary bases B and C may be written as B = C · U, where U is some matrix with
|det(U)| = 1. Such a matrix U is referred to as a unimodular matrix. The determinant of
L, det(L) =

√
det(BT · B) is independent of the basis used, and thus an invariant of the

lattice. We refer to subgroups L′ ⊆ L as sublattices of L.
For a given basis B we define πi as a projection orthogonal to the span of (b0, . . . bi−1),

and the Gram–Schmidt orthogonalisation of B as

B∗ = (b∗
0, . . . , b∗

n−1) = (π0(b0), . . . , πn−1(bn−1)).

The projected sublattice L[ℓ:r] where 0 ≤ ℓ < r ≤ n − 1 is defined as the lattice with basis
B[ℓ:r] = (πℓ(bℓ), . . . , πℓ(br−1)). When working in the projected sublattice L[ℓ:r] we say we
are working in the context [ℓ : r].

2.2 Sieving algorithms
At a high level, a sieve operates by producing some list L of lattice vectors and then
searching for integer linear combinations of list vectors that are short. For an appropriately
sized list, iterating this procedure a polynomial number of times leads to a solution for
SVP. In this work we focus on algorithms that consider pairs of vectors, so called 2-sieves.8
A key factor influencing the size of the list (and hence the time complexity of the sieve)
is the distribution of the lattice vectors. Here, we follow the standard heuristic [NV08]
that points in the list L are independently and identically distributed uniformly across a
thin spherical shell. Then, the key computation task in a sieving algorithm is a Near(est)
Neighbour Search (NNS) on this spherical shell: find two vectors that are ‘close’ in the
sense that their addition or subtraction produces a shorter vector, i.e. the angle between
them is either very small < π/3 or large. Based on some geometric constants related to
sphere packing [CS87], [NV08] show that |L| = 20.210 n+o(n), leading to a time complexity
of 20.42 n+o(n), since a naive sieve loop is quadratic in the list size. We refer to a sieving
algorithm that is instantiated in this fashion as an NV-style sieve.

In Algorithm 1 we reproduce a simple NV-style sieving algorithm where we tweak the
default presentation of an NV-style sieve to include the use of a prefiltering operation.
Whilst not strictly necessary, applying a prefilter can lead to substantial speedups in
practice for CPU sieving, see below.
Remark 1. At first glance, the searching and reduction steps at Algorithm 1 would appear
to be embarrassingly (or proudly) parallel: simply process all vectors v in the list L in
parallel. Yet, the list of centres may change in each iteration; as a result, simply processing
all vectors in parallel misses reductions that would otherwise produce shorter vectors. In
addition, it is expensive to maintain two distinct lists L and L′. Instead, it is more efficient
to modify the list L directly, which in turn produces additional concurrency issues.

8There also exist heuristic sieving variants [BLS16, HK17, HKL18], known as k-sieves where the linear
combination of k > 2 many list vectors are considered. This allows the memory requirements of the sieve to
be reduced: for example, a 3-sieve presented in [BLS16] requires a database of size 20.1887 n+o(n). However,
k-sieves can also be parameterised along a time-memory trade-off curve, i.e. increasing the database size
to 20.210 n+o(n) in order to lower the time complexity, cf. the 3-sieve in [ADH+19].

6 Scaling Lattice Sieves across Multiple Machines

Algorithm 1 An NV-style sieving step with a prefilter [NV08]
Input: Some list of vectors L = {v ∈ Rm}, a predicate function prefilter : Rm × Rm 7→ {0, 1}, a

sieving radius R.
Output: A list of vectors L′ = {v : ∥v∥ < R}

1: C = ∅ // C denotes the set of centres
2: for v ∈ L do
3: if ∃ w ∈ C : prefilter(v, w) = 1 and ∥v ± w∥ < R then
4: add v ± w to L′

5: else
6: add v to C
7: return L′

2.2.1 Prefilters

For prefiltering, the most performant variant used in practice is a popcount filter. This
idea, which can be viewed as a variant of Charikar’s SimHash filter [Cha02], was originally
introduced for lattice sieving in [FBB+15] and was later extended in [Duc18a]: Let z
denote the length of the Simhash in bits. Sample z sparse ternary vectors, and denote
them as ri for i ∈ 0, . . . z − 1. Let hi(v) : Rm 7→ Rm = ⟨ri, v⟩ denote a hash function.
Then, the sketch function H : Rm 7→ Zz

2 can be defined as follows:

H(v) = (sgn(h0(v)), . . . , sgn(hz−1(v))).

Geometrically, each hash function can be thought of as a constraint on the elements of
v. So, vectors that are similar in direction will have similar sketches. Since H produces
bit-strings as output, prefiltering two vectors v, u for similarity is reduced to computing
the Hamming distance between their hashes H(v), H(u).

That is, given two hashes H(v), H(u), we first compute x = H(v) ⊕ H(u) and then
compute the Hamming weight of x. A low Hamming-weight vector implies that the hashes
are similar: as a result, this filter can be used to quickly pre-filter vectors that are unlikely
to lead to a reduction.

Note that it is typical to align z to the word length of the underlying computer.
In practice, the value of z is typically set to 256-bits, which corresponds to 4 machine
words. This leads to a filter that consists of around a dozen unvectorised x86 instructions:
Ducas [Duc18a, §5.3] reports that this filter results in a speedup that is approximately half
an order of magnitude over naively considering inner products between all the possible
pairs of vectors in some bucket.

Such a filter will typically have some error rate, i.e. will not only filter out vectors
that are not close, but also compute inner products against vectors that are too long.
A simple solution is to scale the size of the database linearly to the error rate of the
filter; for example, it was reported in [ADH+19] that optimal performance occurred when
scaling the database by a factor of 3.2 in order to overcome the empirical 30% error rate
of the popcount filter reported in [Duc18a]. Parameter choices for popcount were explored
in [AGPS20].

2.2.2 Bucketing

More efficient sieving algorithms exploit the structure of the search space by bucketing L.
Briefly, bucketing preprocesses the list L into smaller sublists L0, . . . , Lδ−1 within which the
quadratic search then commences. Many works [Laa15, BGJ15, BDGL16] have gradually
improved the time complexity, with the fastest known sieve [BDGL16] terminating after
20.292 n+o(n) [BDGL16] operations on a classical computer. In Algorithm 2 we illustrate
the idea of bucketing. Within a bucket, Algorithm 1 can then be run.

Martin R. Albrecht, Joe Rowell 7

Algorithm 2 A basic bucketing algorithm with one bucket.
Input: Some list of vectors L = {v ∈ Rm}, a predicate function prefilterB : Rm × Rm 7→

{0, 1} and a bucketing radius RB .
Output: A bucket B defined by c, containing a subset of the vectors u : ∥u ± c∥ < RB .

1: B = ∅ // bucket starts empty
2: Choose c uniformly from L
3: for v ∈ L do
4: if c ̸= v then
5: if prefilterB(v, c) = 1 and ∥c ± v∥ < RB then
6: add v to B
7: return B

To define a bucket, we may choose a list entry as a centre (this is what we illustrate
in Algorithm 2) or specifically construct buckets where sorting into buckets is relatively
cheap [BDGL16].

2.2.3 Structured bucketing

Bucketing can be improved by switching to a structured bucketing scheme, such as [BDGL16].
In such a scheme, we first split the lattice dimension n into t smaller blocks of dimensions
n0, n1, . . . nt−1 that sum up to n. In practice, t is typically chosen to be small, say at
most 4. We then sample a set of random vectors Ci ⊂ Rni and produce the global set of
bucket centres C = C0 × ±C1 × . . . ± Ct−1. Importantly, for some vector v we can find the
closest global bucket centre by finding the closest local bucket vector, implicitly evaluating
2t−1 ·

∑
i |Ci| bucket centres for a cost of around

∑
i |Ci| inner products per vector. This

algorithm is referred to as list decoding. In practice, list decoding can be made very efficient
with some minor tweaks: for example, Ducas, Stevens and Van Woerden [DSvW21] report
that a single inner product can be computed in under 1.7 cycles on a single CPU core
using AVX2 instructions.

2.3 The General Sieve Kernel
The General Sieve Kernel (G6K) [ADH+19] is a lattice reduction framework that treats
sieving algorithms as “stateful” entities, rather than black-box SVP oracles. That is,
G6K utilises the fact that sieving in dimension d produces a database L of 20.210 d+o(d)

vectors, containing many short vectors. This approach, coupled with various low-level
optimisations, has allowed the open-source implementation of G6K to break several TU
Darmstadt SVP challenges [LR24].

As our implementation is based on the (CPU) version of G6K, we briefly discuss some
details of G6K’s operation in this section.

Operation. G6K can be viewed as an abstract machine that solves SVP by applying a
series of transformations to some internal state. Conceptually, this internal state can be
divided into two distinct portions. In the first case, G6K maintains a lattice basis B ∈ Zd×d

and its associated Gram–Schmidt orthogonalisation basis B∗ and a series of positions
0 ≤ κ ≤ ℓ ≤ r ≤ d. These positions define the current sieving context [ℓ : r] and the current
lifting context [κ : r]. Additionally, G6K also maintains a database L of lattice vectors that
live in the sieving context, and series of insertion candidates cκ ∈ [κ : r] , . . . , cr ∈ [r : r].
In practice, each vector v ∈ L is represented as an Entry that contains (amongst other
data) the coefficient representation w i.e. v = B[ℓ:r] · w.

G6K manipulates its internal state using a series of abstract instructions. We stress
that these abstract instructions are entirely sequential i.e. there is no scope for instruction

8 Scaling Lattice Sieves across Multiple Machines

level parallelism. Notably, most of these instructions are independent of sieving, and
solely relate to database management. On the one hand, G6K provides a series of
instructions (Extend Left, Extend Right and Shrink Left) that change the sieving context
of the database. Each of these operations are cheap to carry out in practice: the Extend Left
operation can be achieved by applying Babai’s Nearest Plane [Bab85] algorithm to each
vector in the database, whereas the other instructions simply require truncating the co-
ordinate representation of each vector. G6K also provides instructions for growing (Grow)
and shrinking (Shrink) the database. In both cases, these instructions attempt to preserve
the quality of the database by either attempting to sample (relatively short) vectors or
by discarding the longest vectors in the database. Finally, G6K also provides a Sieve
instruction that applies a sieving algorithm to the database, producing short vectors until
some stopping condition is reached.

During the execution of the Sieve instruction, certain vectors are lifted (by repeatedly
applying Extend Left) from [ℓ : r] to [κ : r]. If the lifted vector is shorter than a particular
insertion candidate ci, then the lifted vector replaces ci as an insertion candidate. If a
particular insertion candidate cj improves the basis substantially, then it may be inserted
into B using the Insert instruction.

Strategies. We note that the aforementioned instructions can be combined to create
strategies that dictate lattice reduction from an abstract perspective. One such strategy
used in G6K is the progressive sieving strategy known as the pump. In this strategy, G6K
starts with a small context and alternates the Extend Left, Grow and Sieve instructions
until a particular target context is reached. Note that this strategy recycles the sieving
database between contexts, allowing the sieve to start with relatively many short vectors.
Once this target context has been reached, G6K applies a sequence of Insert and Shrink
instructions to improve the quality of the lattice basis. Combining several of these pumps
together is referred to as a workout, which gradually improves the quality of the basis.
We note that the increase in norm added by applying Extend Left to a particular vector
depends strongly on the quality of the basis.9 Thus, iteratively improving the basis
simultaneously reduces the amount of time needed for a particular pump and increases the
possibility of finding a short lattice vector in L.

2.4 The logP scalability model
We analyse the scalability of distributed lattice sieving using the well-known logP [CKP+93]
model of parallel systems. In contrast to other, simpler models, the logP model can be
used to succinctly predict the cost of network activity in a topology-agnostic fashion. For
brevity, we only give an introduction to this model here, and we refer the interested reader
to [CKP+93] for further details.

We now describe the logP model. At a high-level, the goal of the logP model is to
express the costs of network activity in terms of machine cycles. In order to achieve
this comparison, the logP model treats network activity as a function of four distinct
parameters: the maximum latency of sending a single byte message (λ), the overhead of
sending or receiving a single byte message (ϕ), the “gap” in time between two successive
messages (g) and the number of nodes in the network (P). The logP model can also be
augmented to model loosely connected networks by adding two additional parameters: the
maximum number of intermediate hops H, and the forwarding time at each hop r.10 As
each single byte message requires both some sending and receiving overhead, the time
taken to send a single byte message in this model is 2 · ϕ + λ + H · r cycles. We note that

9This follows from the usage of Babai’s Nearest Plane algorithm.
10Whilst H could theoretically be as large as P it is far more typical to see H being at most ≈ log P , as

nodes can always be re-arranged into a (potentially unbalanced) binary tree.

Martin R. Albrecht, Joe Rowell 9

the logP model assumes that at most ⌈λ/g⌋ bytes may be in transit at any given time, and
therefore care must be taken when handling potentially large messages. In order to handle
larger messages generically, we assume that each message of M bytes can be decomposed
into at most σ smaller chunks (i.e. σ is the smallest integer satisfying M ≤ σ · ⌈λ/g⌉),
leading to a total cost of σ · (2 ·ϕ+M/k · (λ+g)+H ·r) cycles per message. Put differently,
all cost calculations in this work incorporate network congestion.

Before continuing, we explain why we chose the logP model. Broadly speaking,
scalability models can be organised into a spectrum. On the one hand, models such as
the parallel RAM (PRAM) model [FW78] assume the existence of a global RAM that is
accessible with unit cost by every processor in the distributed system. On the other end of
the spectrum are the so-called massively parallel models, which model parallel systems
without shared RAM. However, models at each end of the spectrum do not accurately
reflect reality. On the one hand, massively parallel models are typically used to study
the number of required communication rounds, with details around latency and network
capacity typically omitted. Although this approach can be useful, we seek to assign more
realistic costs to our algorithms, and thus we omit this family of models. On the other
hand, the existence of globally accessible RAM is not a realistic assumption in a multi-node
setting; in fact, the logP model was introduced to address deficiencies in PRAM-based
models. Additionally, the focus of this work is on the scalability of lattice sieving in a
distributed environment without shared memory access. Yet, we observe that the logP
model can be used to model PRAM systems by taking H and r to be 0.

3 Architecture
We are now ready to discuss our high-level architecture.

Parallelising lattice sieving. Before we begin our analysis, we wish to emphasise
our approach to distributing lattice sieving algorithms across multiple machines. Morally
speaking, the aspects of lattice sieving that should scale well in this setting are precisely
those where the cost of computation outweighs the costs associated with networking
and memory accesses. On the one hand, this immediately highlights processing several
buckets in parallel as a potential strategy. Indeed, we note that for a k-sieve each
bucket B containing |B| vectors will asymptotically require |B|k inner products to process.
Algorithms that define sub-buckets (such as BGJ2 [BGJ15, ZDY24]) should also scale well
in a distributed setting for a similar reason. At first glance it may appear appealing to
add further parallelism to the aforementioned algorithm by also sub-dividing each bucket
across p nodes e.g. we may simply divide B into p blocks and pass these blocks around
all p nodes. However, as the size of the buckets grows slowly compared to the size of the
overall database, this approach is unlikely to be useful in practice. Moreover, anecdotal
evidence [ADH+19, Appendix B] suggests that processing a single bucket across multiple
cores leads to substantially poorer parallelism in practice. This can be explained by that
the gap by a factor B between computation and communication cost is what supports
distributed sieving to be compute-bound rather than bandwidth-bound. Splitting up
buckets would effectively reduce B in the “gap” B2/B.

3.1 Unstructured bucketing
First, we present a high-level scalability analysis of distributed sieving, focusing on sieving
algorithms that use random database entries to define buckets. This analysis applies
to sieving algorithms that either sieve quadratically over the entire database or use an
unstructured form of bucketing (cf. Algorithms 1 and 2 respectively).11 The goal of this

11The analysis can cover k-sieves by replacing B2 terms in the denominator below by Bk.

10 Scaling Lattice Sieves across Multiple Machines

Algorithm 3 A simplified bucketing algorithm for p nodes.
Input: A global database of N vectors, divided up into N/p lists spread across p nodes.
Output: A set of q · p buckets.

1: Each Pi chooses Ci = (c0, . . . , cq−1) from its local database.
2: for 0 ≤ j < p − 1 do
3: Pi sends Ci−j mod p to Pi+1 mod p // Pi receives Ci−j−1 mod p.
4: for j < p do
5: Pi builds set β(i,j) := bucket(Cj) against their local database.
6: // Pj ’s completed buckets are ∪iβ(i,j).
7: for 0 ≤ j < p − 1 do
8: Pi sends β(i,i−j mod p) to Pi−j mod p // Pi receives β(i+j mod p,i)

9: Pi sieves each bucket in ∪jβ(j,i).

analysis is to evaluate the ratio between the time spent communicating buckets Tcomm, and
the time spent processing them Tcomp; a large ratio would imply that sieving is unsuitable
for parallelisation, whereas a small ratio would imply that the computationally expensive
parts of sieving can be parallelised efficiently.

For the purposes of exposition, we present a simplified sieving algorithm in Algorithm 3
on a network of nodes P0, . . . , Pp−1 and use this for our analysis. At a high-level Algorithm 3
works by building a total of q · p buckets per iteration i.e. q per node before sieving them.
In order to build these buckets, each node first chooses q random vectors from their local
database to act as bucket centres, which are then forwarded to every other node in the
network. Upon receiving all centres Ci, each node builds a series of q · p local buckets
against their database, which are then re-distributed in a pairwise fashion across the
network.

We assume that all p nodes are identically capable and all have equal access to the
network. Given that all p nodes are equally powerful, we split our database of size N
equally across all p nodes, and thus each node holds approximately N/p vectors. This
assumption is valid since we may redistribute the database as we see fit. We also assume
that each lattice vector in dimension n is comprised of n entries of c bytes each, with c
being some constant that does not vary with n. Moreover, we assume that c corresponds
to a machine-friendly data-type (e.g. a single precision float) and thus assign a unit cost
for both multiplication and addition of two c byte numbers. We extend this and assign
a cost of 2 · n − 1 operations to the task of computing the inner product of two lattices
vectors in dimension n. Finally, for the sake of simplicity we assume that each built bucket
contains exactly B vectors; as the database is distributed evenly across all p nodes, this
implies that each bucket requires B · (p − 1)/p vectors to be sent.

We now analyse Algorithm 3 by considering each stage in turn. To begin, notice that
the first and second communication loops (i.e. the loops at Algorithm 3 and Algorithm 3,
respectively) are almost identical, with both loops executing p − 1 iterations. In fact, the
only difference is the amount of data sent per iteration, with each node sending q · c · n
bytes per iteration in the first loop and B · q · n · c in the second. By letting σ1 and σ2
be the smallest integers satisfying σ1 · ⌈λ/g⌉ ≥ q · c · n and σ2 · ⌈λ/g⌉ ≥ B/p · q · n, we
conclude that the first loop requires (p − 1) · σ1 · (2 · ϕ + q · c · n/σ1 · (λ + g) + H · r) cycles
to terminate, with the second loop requiring (p − 1) · σ2 · (2 · ϕ + B/p · q · n · (λ + g) + H · r)
cycles. Thus, the communication time in Algorithm 3 is approximately

Tcomm = (p − 1) ·
(

(σ1 + σ2) · (2ϕ + H · r) + (λ + g) · (B/p + 1) · (n · c · q)
)

cycles. We now consider the ratio between Tcomm and the time taken to produce and sieve
all q · p buckets. On the one hand, building a single bucket requires a total of N inner
products, and thus around N · q · (2 · n − 1) cycles in total. Since sieving a bucket requires

Martin R. Albrecht, Joe Rowell 11

B2 inner products, we get a total cost of B2 · p · q · (2 · n − 1) cycles. Therefore

Tcomm

Tcomp
=

(p − 1) ·
(

(σ1 + σ2) · (2ϕ + H · r) + (λ + g) · (B/p + 1) · (n · c · q)
)

N · q · (2 · n − 1) + B2 · (2 · n − 1) · q · p

= p − 1
p

·

(
(σ1 + σ2) · (2 · ϕ + H · r)

(N/p + B2) · (2 · n − 1) · q
+ n · c · (B/p + 1) · (λ + g)

(N/p + B2) · (2 · n − 1)

)
.

On the one hand, note that the leading (p − 1)/p term is bounded from above by 1
for any choice of p, and thus increasing p with n does not affect the scalability of sieving.
Intuitively, this observation is consistent with the fact that B is dictated solely by n, and
thus increasing p should not affect the amount of communication. On the other hand,
the inner terms of the equation are both dominated by B2 and N ; even though σ2 grows
with B (and hence exponentially in n) this increase is cancelled out by the B2 term in the
denominator. Moreover, as the second term only changes in terms of B, n and N , we note
that the same conclusion holds for that term, too.
Remark 2. Our analysis also shows that the factor n saving in bandwidth for ideal
lattices [BNP17] does not largely affect how sieving scales in an asymptotic sense. However,
the factor n reduction in bandwidth will still permit substantial improvements in practice.

Saturation in practice. We now estimate, concretely, what throughput we require of
our interconnect to saturate our computational units.

As a starting point of this analysis, suppose that processing a bucket of B vectors
requires exactly D operations, and let E be the maximum number of such operations that
our particular processor can carry out per second. Given that E is an upper bound, we may
consider our processor as saturated as soon as D/E ≥ 1, as the processor is not capable of
any additional work. Thus, we consider the task of sizing our buckets such that we satisfy
D/E = 1 i.e. we want to size our buckets such that we reach perfect saturation. For the
sake of analysis, we fix the lattice dimension as n and consider two distinct settings. On
the one hand, we may wish to saturate our processor’s ability to compute inner products
by reaching the limit of F floating point operations per second. In this case, a bucket of
size B requires B2 · 2 · n − 1 elementary operations, and thus we may saturate our processor
by supplying buckets containing B =

√
F/(2 · n − 1) vectors. On the other hand, we may

(optimistically) assume that we can process a bucket of B vectors solely by applying the
popcount filter B2 times; thus, if our processor is capable of M such operations per second,
we should set our desired bucket size as B =

√
M .

We now instantiate our analysis. First, we take inspiration from high-performing
sieving implementations [ADH+19, DSvW21] and assume that computing inner products
or applying the popcount filter uses 32-bit floating point operations or the use of hardware
accelerated instructions, respectively. In a similar vein, we use the fact that G6K uses a
16-bit coefficient representation for lattice vectors [ADH+19, §5.3] and assign a cost of
2 · n bytes for sending an n-dimensional lattice vector. For the sake of example, we use
the throughput figures provided by [DSvW21] for an Intel Xeon Gold 6248 CPU, which is
capable of up to F = 32 · 1012 ≈ 241.5 32-bit floating point operations per second and up
to M = 6.3 · 109 ≈ 233 popcount calls per second.12 As a last consideration, we assume a
1Gbps LAN, and thus we assume that we can send 226/n lattice vectors of dimension n
per second.

We now consider varying the sieving dimension n. First, we estimate the dimension n at
which a bucket contains 226/n vectors i.e. at which value of n we exceed the capacity of our
interconnect. On the one hand, the default parameterisation of the BGJ1 sieve typically
sizes buckets as containing approximately 20.105 n vectors; thus, by taking B = 20.105 n =

12This figure comes from 20 cores at 2500MHz and a popcount cost of eight cycles.

12 Scaling Lattice Sieves across Multiple Machines

226/n and re-arranging, we obtain n ≈ 176. In this particular scenario, processing a bucket
of size B = 20.105·176 ≈ 218.48 requires 2 · 175 · 242.6 > F floating point operations or
236.96 > M applications of the popcount filter. Put differently, for large enough instances
we are limited by computation, rather than by network access. Moreover, we become
increasingly limited on computation as n increases. On the other hand, taking n smaller
than 176 only reduces the dependency on network speeds. Indeed, suppose that we take B
such that we can process a bucket per second. Using the same parameterisation as before,
we obtain n = 159 for inner products and n = 157 for the popcount case respectively. Yet,
for these values of n we are only required to transmit approximately 216.7 vectors per
bucket, which is less than the 218.7 vectors that can be carried by the interconnect. In
summary, for realistic instances, the cost of processing a bucket of B vectors outweighs
the cost of sending B vectors over a network.

3.2 Structured bucketing
We now adapt our previous analysis to consider sieves that utilise structured bucketing,
such as BDGL [BDGL16]. To begin, let t be an integer and suppose, as before, that each
node holds approximately N/p vectors in their local databases. Moreover, we assume
that the random codes ±C0 × ±C1 × · · · × ±Ct−1 are evenly shared amongst all p nodes
i.e. each node is responsible for m/p = 2t−1 ·

∑
i |Ci|/p buckets, and that each bucket

contains N1/t+1 vectors. Note that as the centres are randomly (but deterministically,
i.e. from a seed) generated, we can distribute these centres by allowing one node to
distribute a random seed across the network. As the size of the seed is asymptotically
negligible, we simply assume that it has a fixed size of d ≤ ⌈λ/g⌉ bytes and thus requires
(p − 1) · (2 · ϕ + d · (λ + g) + H · r) cycles to transmit across the network. By assuming that
each node contributes exactly N1/t+1/p vectors to each bucket spread over σ3 messages and
by re-using the second communication loop from Algorithm 3 we conclude that structured
bucketing would spend around

Tcomm = (p − 1) ·
(

(1 + σ3) · (H · r + 2 · ϕ) + (λ + g) · (N1/t+1 · n · c/p + d)
)

cycles on communication. On the other hand, recall that bucketing a single vector v can be
done efficiently by considering around m1/t inner products, and hence bucketing the entire
database requires approximately N · m1/t · (2 · n − 1) cycles. Given that processing a single
bucket requires N2/t+1 · (2 · n − 1) cycles, the ratio of communication to computation is

Tcomm

Tcomp
= (p − 1) ·

(
(1 + σ3) · (H · r + 2 · ϕ) + (λ + g) · (N1/t+1 · n · c/p + d)

(2 · n − 1) · (N · m1/t + N2/t+1 · m)

)
= (p − 1)

(N t/t+1 · m1/t + N1/t+1 · m) · (2 · n − 1)

·

(
(1 + σ3) · (H · r + 2 · ϕ)

N1/t+1 + (λ + g) ·
(

n · c

p
+ d

N1/t+1

))
.

First, note that for any choice of t the leading p − 1 term tends to zero even if p = N .
Moreover, as σ3 is strictly less than N1/(t+1)/p the inner terms also grow at most linearly
in n. As a result, the entire expression is dominated by N , and thus the ratio Tcomm/Tcomp

decreases as N increases.

3.3 Buckets and nodes
As mentioned above, our design is concerned with a setting where several larger or
“beefier” nodes jointly sieve over a distributed database. In particular, we do not consider

Martin R. Albrecht, Joe Rowell 13

distributing individual buckets over multiple nodes. Here, we argue that this is compatible
with existing cluster setups.

First, recall that the optimal number of buckets is dictated by the sieve we consider.
Considering both BGJ1 and BDGL with one level, i.e. the sieves considered in practice so
far [ADH+19, DSvW21], the database of size N = 20.210 n+o(n) is stored in ≈ 20.142 n buckets
each holding O(

√
N) ≈ 20.105 n vectors. In [DSvW21], the maximum sieving dimension

considered was n = 150 and used 1.5TB of RAM. Thus, we expect ≈ 221.3 ≈ 2.6 · 106

buckets. To put that into perspective, the Frontier supercomputer has 9472 nodes, each
with 128GB of RAM.13 Thus, given that we have more buckets than nodes already in
this dimension, our design choice is compatible with current supercomputer architectures.
Moreover, it is compatible with standard academic computing infrastructures where many,
possibly heterogeneous, powerful nodes are connected via Ethernet.

4 Design & implementation
We adapted G6K [ADH+19] to support distributed variants of both BGJ1 and the relaxed
BDGL sieve presented in [DSvW21]. We chose to implement these algorithms as they
naturally permit different implementation trade-offs and design choices that may be
interesting in different contexts. For example, our BGJ1 implementation handles buckets
by storing them in temporary storage, whereas our BDGL implementation writes received
buckets directly into each node’s local sieving database.

In order to separate our changes from the existing high-level code in G6K, we imple-
mented all networking code in G6K’s C++ layer by adding a stateful MPI object to G6K’s
Siever class. This separation of networking code and sieving code yields several benefits.
On the one hand, separating network code from sieving code allows us to conditionally
enable and disable MPI at compile-time, removing any runtime overhead of maintaining an
unused object. On the other hand, as all networking code is hidden behind a well-defined
interface, we allow the possibility of substituting MPI with other networking libraries in
future. We assume no particular topology and instead allow MPI to organise nodes.

4.1 High-level design decisions
We briefly describe the operation of our networking code. For simplicity, our implementation
assumes that the high-level Python layer associated with G6K executes on a single node,
ρ, with all other nodes running a simple C++ program that interfaces with G6K. As ρ
is the node that receives high-level instructions from the Python layer, we ordain ρ as
the root node of the network, making ρ responsible for issuing instructions to all other
nodes. Thus, ρ simply broadcasts all high-level instructions from the Python layer to the
rest of the nodes, with each action handled opaquely from the Python layer. In practice,
we represent these instructions as two 64-bit integers, allowing the transmission of an
additional parameter where appropriate.

Instructions issued by ρ typically trigger some additional distributed computation. On
the one hand, ρ may instruct all other nodes to engage in some sieving operation, which
requires a large amount of bandwidth to execute successfully. On the other hand, certain
context change operations also require additional work compared to the single node variant
of G6K. For example, consider the task of shrinking the global database to contain the best
N vectors. In a single node setting, finding the best N vectors can be achieved in O(N)
by using G6K’s internally sorted list of vectors: however, in a multiple node setting we are
required to discover the best N vectors globally across many lists. We note, however, that
these operations are still cheap compared to sieving itself, with even the most expensive
operation requiring time linear in the global database size. As shown in Figure 2, these

13https://en.wikipedia.org/w/index.php?title=Frontier_(supercomputer)&oldid=1218026460

https://en.wikipedia.org/w/index.php?title=Frontier_(supercomputer)&oldid=1218026460

14 Scaling Lattice Sieves across Multiple Machines

85 90 95 100 105 110 115 120 1251%

2%

3%

Dimension

Figure 2: Percentage of time spent executing context changes with dimension varying. The
overhead time taken to execute context changes is small compared to the cost of sieving.
Timings were gathered across nodes S, H, and A.

costs are practically rather small compared to the cost of sieving, requiring at most 4% of
execution time.

Database division. We divide the global sieving database amongst nodes, with more
powerful nodes receiving a larger share of the global database. At a high-level, this
approach ensures that the workload is divided fairly amongst the nodes in the cluster. We
also note that operations such as e.g. lifting lattice vectors can be trivially parallelised
across multiple machines.

Serialisation of lattice vectors. Recall that G6K represents each n-dimensional lattice
vector v = B · x ∈ Zn as an entry in a sieve database, storing both the (16-bit) integer
coefficients x and the (32-bit) vector v in each entry. Moreover, G6K also stores additional
information about v, such as its squared length and a unique identifier, leading to a cost
of around 1 KiB of storage per lattice vector for n = 128. Given the constrained network
bandwidth, we serialise v using its x representation, leading to a bandwidth cost of 2 · n
bytes per lattice vector. Whilst this representation incurs an additional cost of Θ(n2)
operations per lattice vector, we remark that this cost is rather small compared to sieving,
especially for sufficiently large buckets. We empirically verify this claim below.

4.2 Database management
One particularly difficult aspect of distributed sieving is ensuring that the database stays
free of duplicates. In more detail, the problem is that during sieving multiple nodes may
produce the same lattice vector v and insert into their local database. We refer to this
occurrence as a collision. As shown in Figure 3, we measured an increase in duplication of
around 1% per sieving iteration. Given that lattice sieving algorithms typically require
many iterations to terminate, the number of unique vectors in the database can thus
quickly shrink.

Simply accepting this behaviour is not a viable strategy as this leads to a dramatic
increase in the number of required buckets compared to single-machine sieving. This
effect is to be expected: as each bucket contains a small number of unique vectors, most
reductions are unlikely to yield short vectors. Moreover, these buckets likely contain
multiple duplicate vectors, requiring expensive filtering to remove.

We address this issue by modifying G6K’s internal hash table. Briefly, G6K maintains
a hash table containing the 64-bit hash H(v) of all vectors v in the sieving database. Each
hash H(v) is computed as the inner product of v with a global random vector in the ring
Z/264Z. Notably, this hash scheme permits the computation of H(v ± u) = H(v) ± H(u),
allowing duplicates to be rejected without requiring the computation of v ± u.

Martin R. Albrecht, Joe Rowell 15

0 5 10 15 20 25 30 35 40 45 50
0%

20%

40%

Iteration

BGJ1 (no c/m) BGJ1 (c/m)
BDGL (no c/m) BDGL (c/m)

Figure 3: Collision rate inside both distributed sieves with and without countermeasures
(abbreviated as c/m). The number of duplicate entries increases steadily with the number
of sieving iterations, necessitating our countermeasures. For BGJ1 the data was recorded
inside a pump with n ∈ {55, . . . , 60}, whereas for BDGL the data was recorded for n = 68
as the effect is more pronounced in higher dimensions. Each drop for BGJ1 corresponds
to a change in sieving dimension.

For concurrency reasons, this internal hash table is actually subdivided into several
individual hash tables T0, . . . Th−1 that are individually synchronised across all active cores.
In order to support this subdivision, G6K maps each H(v) to the hash table indexed by
H(v) mod h. Taking inspiration from this technique, we distribute the Ti amongst all
nodes in the cluster, with each node Nj receiving some proper subset Mj = Ti1 , Ti2 , . . . of
the set of hash tables. We then ensure consistency by requiring that each node maintains
exclusive ownership over the vectors that belong to their hash tables: any insertion to a
table Ti must involve the owning node Nj in some way. In practice, we implement Nj ’s
involvement in two separate ways.

BGJ1. As a first approach, we choose to tightly couple Nj ’s internal database to Mj

i.e. we restrict Ni’s internal database to only containing vectors that live in one of the sub
tables in Mj . In this approach, dealing with inserting v into the global database simply
requires computing the hash of v before streaming v to the appropriate node Nj . From
an implementation perspective, this approach comes with several trade-offs. First, this
approach naturally maps to settings where produced buckets are only kept in memory for
a short period of time: our implementation of the BGJ1 sieve, for example, discards of a
received bucket as soon as it has been processed in order to save memory. In this setting,
it is rather convenient to eagerly compute and store v = x ± y without needing to worry
about retaining x and y. However, we note that this approach handles the situation where
v is produced twice during the lifetime of the sieve rather lazily, relying on Ni to handle
the duplicate.

Moreover, we note that implementing this approach in a performant manner is rather
challenging. On the one hand, streaming vectors one at a time requires little memory, but
the latency costs for such small messages is likely to be prohibitive. Yet, naively batching
vectors for insertions requires substantial extra storage: a slow node is likely to deal with
insertions slowly, leading to many outstanding insertions on other nodes. In some instances,
this cost is as large as the sieving database itself; our prototype implementation of this
scheme, for example, required around 40GB of extra storage when sieving in dimension
113, whilst the sieving database required 34GB of storage. Whilst the relative cost of this
extra storage decreases as the sieving dimension grows, the overhead of this approach is
still noticeable even in large dimensions. We resolve these issues by handling insertions

16 Scaling Lattice Sieves across Multiple Machines

whenever a particular batch is finished, which prevents the lists of pending vectors from
growing too large. We demonstrate the efficiency of our approach in Figure 3.

BDGL. As a second approach, we choose to decouple Nj ’s internal database from Mj

i.e we allow Nj to insert vectors that do not belong to Mj into its local database. In this
setting, we only require that Nj tracks which insertions and removals have been made to
Mj during the lifetime of the sieve, without requiring that Nj holds these insertions locally.
Put differently, this approach allows Nj to act as a membership oracle for Mj , rather than
as a storage node for Mi. In contrast to the previous approach, this approach allows us
to handle duplicated insertions globally: we may simply stream the hash H(v ± u) to
Nj , allowing Nj to reject any vectors that are already present. In practice, we found this
approach preferable in situations where buckets are retained for longer than in the BGJ1
case, as we no longer need to serialise new vectors across the network. We thus used this
approach for our BDGL implementation. We demonstrate the efficiency of our approach
in Figure 3, too.

4.3 BGJ1
At a high-level, our implementation of the BGJ1 sieve is almost identical to the approach
described in Section 3.1, albeit with a few differences. For example, we do not insist that
the sieving database is evenly divided across all nodes on the network, as mentioned above.

From an operation perspective, our implementation of the BGJ1 sieve runs in an
iterative fashion (similarly to [DSvW21]). For simplicity we describe this stage from the
perspective of a single node, but note that this process is repeated in parallel across the
entire cluster. Namely, suppose that some node s wishes to produce a bucket defined as
all lattice vectors in the database close to c. To build this bucket, s broadcasts c to all
other nodes on the network, receiving in response the number of vectors ℓ that are close to
c in the global database. In practice, we simply run the BGJ1 bucketing routine against c
on each node and sum the count. At this stage, s allocates enough storage to hold the
ℓ vectors and reads the vectors that are close to c from the global database (over the
network). Here, we store each received bucket in temporary storage that is separate from
the main database: we discuss this in more detail in Section 4.3.

With the bucket B produced, s sieves over the bucket and inserts newly produced vectors
in the global database. It turns out that database insertions require some additional care,
see Section 4.2. Finally, s simply repeats this process until the global database contains
enough short vectors for the sieve to terminate.

This scheme can be easily parallelised via a series of modifications. The simplest of these
modifications is to allow every node in the cluster to request buckets simultaneously, rather
than sequentially. This transformation is trivial, as each bucketing iteration is independent.
In practice, realising this functionality requires the use of additional synchronisation, which
comes with negligible additional overhead.

We then further increase the throughput of bucketing by allowing each node to instead
request batches of multiple buckets and for multiple such batches to be processed simulta-
neously. Intuitively, the presence of multiple batches establishes a pipeline of work for each
node, reducing the amount of time that each node spends in an idle state. Moreover, as
each batch and bucket can be processed independently, each node can use multiple threads
for better local parallelism.

We note, however, that increasing both the number and size of each batch introduces
a trade-off between local CPU utilisation and sieving iterations. This trade-off appears
because the sieving algorithms used inside of G6K gradually improve the database quality
as buckets are produced. Thus, if too many buckets are processed on, say, the first iteration,
then the database is likely to only be slightly improved. In this vein, we allow nodes to
vary the number of centres they issue depending on the size of their database. In practice,

Martin R. Albrecht, Joe Rowell 17

this choice reduces the number of sieving iterations compared to using the same number
of centres per node. We remark that handling many buckets in parallel increases the
memory requirements of each node, as many extra vectors needs to be stored for each
bucket. However, in practice this extra overhead appears to be small compared to the
size of the sieving database (see Figure 5), and we found that utilising multiple batches
substantially improved CPU utilisation from around 40% to around 100% in dimensions
as low as 75. In order to improve flexibility, we allow the size and number of batches to be
controlled via a user-supplied parameter.

Memory usage. Our implementation uses additional memory compared to G6K, which
might seem counterproductive given that distributed sieving is meant to go beyond the
memory limits on a single server. We thus discuss these additional small overheads.

The extra memory use in our implementation can broadly be split into two categories.
On the one hand, each node is required to store some additional state related to networking
and job management compared to G6K. We find, however, that this cost is very small,
requiring a maximum of around 5MB in our tests. We thus ignore these overheads and
focus on the memory requirements introduced by sieving.

There are two potential memory inefficiencies that arise from how our implementation
handles buckets. Recall that each node stores their received buckets in temporary storage,
rather than in their local database. At first glance, this decision may seem surprising, as
storing these buckets separately requires extra storage. In order to explain this decision,
we recall that each database vector v may belong to several buckets that are in flight at
once, rather than just one. Given that this is the case, storing v directly in each node’s
sieving database would either introduce duplicates globally, or require an intricate system
for managing potentially overwritten vectors. In both cases, we found that the appropriate
countermeasures were simply too slow to be performant, leading to an appreciable slowdown.
Put differently, in practice we found it to be faster to simply store incoming buckets outside
of the main database, at the cost of using slightly more memory.

We now turn our attention to minimising the overheads associated with this style of
bucketing. Recall that, when a batch is processed, each node first learns the number of
vectors that they will receive, followed by the vectors themselves. To restrict the memory
usage of processing buckets, we represent each produced bucket as a series of database
indices i.e. if v = db [i] belongs to a particular bucket, we simply store i. This reduces the
cost of storing partially built buckets to around 4 bytes per vector. We note that this cost
is rather low: for example, a bucket built with G6K’s default BGJ1 parameterisation of
approximately 3.2 · 20.105 n vectors per bucket would require around 142KB of additional
storage in dimension n = 128 in this representation. Of course, this optimisation only
applies for the initial bucketing procedure and some conversion is needed before actual
sieving occurs. We discuss a low-level optimisation to this process below.

Serialising the (vectors for the) buckets themselves is substantially more expensive.
At a high-level, we serialise each bucket β by copying the x coefficient representation of
each vector in β into a single C++ std::vector, which we then send across the network.
Then, whenever a thread comes to process the bucket, we unpack the temporary vector
into a thread-local set of entries. Given that entries are much larger than the coefficient
representation, this leads to a large saving over naively storing the vectors as entries. In
practice, this always saves storage over storing buckets in their Entry representation, as we
never have fewer than one bucket per thread in a batch. Note that as a vector v belongs to
a bucket with exponentially low probability we do not expect there to be much redundant
traffic when serialising multiple buckets in this way compared to, say, a more clever system.
This claim is empirically verified in Figure 4.

Even with this rather naive scheme, we can see that the added memory requirements
are minor compared to the size of the sieving database as the sieving dimension increases.

18 Scaling Lattice Sieves across Multiple Machines

50 55 60 65 70 75 80 8580%

85%

90%

95%

99%

Dimension

Figure 4: Ratio of unique vectors and total vectors sent inside a BGJ1 distributed sieve.
This chart shows that even when sending multiple buckets the number of unique vectors
dominates the number of vectors that are sent.

50 55 60 65 70 75 80 85 90

13%
25%

50%

75%

100%

Dimension

Figure 5: Overhead memory rate: ratio of extra memory used and memory used for the
sieving database inside a BGJ1 distributed sieve. The data here was recorded across a
pump with n ∈ {50, . . . , 93}.

Indeed, suppose that there are at most b batches in flight at once, each containing m
buckets (each of size at most B). Then, as each n-dimensional vector v is represented
in both its coefficient representation (requiring 2 · n bytes) and its Entry representation
(requiring around 1KB of storage for n = 128) we conclude that a node with t threads
will require approximately B · (b · m · n · 2 + t · 1000) bytes of additional storage. Finally,
note that other than B and n, all factors in this expression are runtime-choices that may
be adjusted to suit the memory capacity of the target cluster. This, combined with that
B is roughly 20.105 n, means that this cost quickly becomes rather small compared to the
storage needed to store the 20.210 n entries that make up the global sieving database.

We further reduce this by allowing all b batches to share q ≤ b buffers of temporary
storage for serialisation, with buffers being re-used once a particular batch has been
processed. We prevent deadlocks by enforcing that each node processes batches in sequential
order: each node first processes batch 0, then batch 1, and so on. As this ordering is
consistent globally, we require no expensive global synchronisation to enforce this ordering
across nodes. In practice, this approach allows us to use relatively little extra memory
compared to G6K, especially in the relevant dimensions. We show this effect in Figure 5.
Additionally, we aggressively free memory as soon as it is no longer in use, re-allocating as
needed.

Low-level optimisation. Our implementation makes use of several low-level optimi-
sations to improve performance, of which we highlight a few here. Firstly, we store all
received buckets contiguously in memory, i.e. in one memory region, substantially improv-

Martin R. Albrecht, Joe Rowell 19

ing memory access patterns. Intuitively, this optimisation comes “for free” with distributed
sieving: as each bucket needs to be received from multiple nodes, we may arrange them
in memory in an optimal order for sieving. We stress that this optimisation is not free
compared to the original version of G6K, as this choice requires extra memory compared
to e.g. storing the vectors directly in the database. However, this optimisation enables
several further optimisations: for example, as the location of these vectors in memory is
no longer entirely random, we are able to reduce the amount of storage needed for G6K’s
compressed lists by around 50%. The combined effect of these optimisations means that
our implementation performs nearly identically to the original version of G6K on a single
machine, see Section C. For larger dimensions and multiple machines see Table 4.

4.4 BDGL
Our BDGL implementation is again rather similar to the theoretical model from Section 3.2.
As before, we assume no particular topology and place no restrictions of communications
between nodes. We leave it to future work to determine if more intricate topologies can
achieve greater parallelism.

From a practical perspective, our implementation of BDGL works as follows. Similarly
to the BDGL implementation found in G6K, our BDGL sieve follows a round-based
strategy, with sieving broken up into distinct iterations. At the beginning of a sieving
iteration, a single node chooses a set of codes to act as bucket centres, which are then
distributed across the rest of the network. Notably, this distributes buckets according to
the power of each node, with more powerful nodes receiving more buckets to sieve. Each
node then locally carries out list-decoding over their database, producing a series of local
buckets. Once all nodes have completed this step, all nodes iteratively request buckets to
process in a similar manner to our BGJ1 implementation. Upon receiving their buckets,
each node begins to sieve, producing new vectors for insertion. Given that these new
vectors are unlikely to be unique across the network, we follow a strategy similar to the one
followed by the BDGL implementation already present in G6K. In particular, each node
Ni starts sieving with an empty list Ri that is used to store potential reductions: any time
a new candidate vector v = x ± y is found by Ni, an entry is added to Ri containing v
and its unique identifier. This choice introduces a trade-off between sieving iterations and
memory, as storing more potential insertions increases memory usage. For the sake of our
prototype implementation, we do not restrict how many entries are added to Ri, but we do
ensure that Ri is always free of duplicates. Once all nodes have finished sieving, each Ni

executes a membership query on each rk ∈ Ri by first mapping rk to the correct hash table
slot Mj and then querying Nj . If Nj indicates that rk is already in the global database
(or if Nj has already been queried with rk in this round), then Ni removes rk from Ri.
With this completed, all surviving entries in Ri are processed and inserted into Ni’s local
database. Given that inserting some vector v into Ni’s local database requires removing
some other vector u, we again map u’s hash to its hash table slot Mj and forward this
hash Nj for removal from the hash table. Once these insertions have finished, all nodes
check whether the database is sufficiently reduced to terminate and continue if not. In
practice, this leads to our BDGL implementation performing less efficiently than our BGJ1
implementation, similarly to the results presented in [DSvW21].

Low-level optimisation. As a side contribution, we realise the BDGL-style bucketing
using a modified version of the AVX2 bucketer provided in [DSvW21]. In contrast to relying
directly on AVX2 intrinsics, our implementation instead uses GCC’s vector extensions,
allowing us to run the bucketer on any machine supported by GCC. At the time of writing,
this bucketer has already been merged into G6K; however, as it may be of standalone
interest we also provide this bucketer as a separate program.

20 Scaling Lattice Sieves across Multiple Machines

5 Experimental results
All of our experiments use MPICH 4.1.1 with full optimisations enabled.

BGJ1. In the case of our BGJ1 experiments we begin distributed sieving in dimension
90 with 8 bucketing batches and 4 auxiliary buffers. Each batch contains one bucket
per thread per node e.g node K received 14 or 28 buckets per batch depending on the
experiment we ran. We give experimental results in Tables 2, 3b, 4 and 5 in Section A.
The nodes referred to in these tables are listed in Table 1. Each experiment was executed
exactly once i.e. the timings given here were the result of exactly one experiment.

Table 1: Details of the machines used for experiments.
N CPUs F C RAM
H 2x Xeon Gold 6252 2.1GHz 96 768GiB
A 2x Xeon E5-2690v4 2.6GHz 28 256GiB
S 2x Xeon Gold 6138 2.0GHz 40 384GiB
K 2x Xeon Gold 6142 2.6GHz 32 192GiB
D 1x Xeon Gold 6138 2.0GHz 20 32GiB

Column “N” gives the node label, “F” gives the base frequency, “C” the number of physical
cores. Experiments had hyper-threading disabled and “Turbo” frequency enabled.

BDGL. We give experimental results for our BDGL implementation in both Table 5 and
Table 6 in Section A. In the language of Section 2.2.3, our experiments were conducted
with the default G6K parameters of t = 2 i.e. for a database of N lattice vectors we expect
each bucket to contain approximately N1/3 vectors. We took this choice to highlight
the effects of asymptotically smaller bucket sizes on the performance of our distributed
implementation.

That said, we observe that our BDGL implementation performs significantly worse
than our BGJ1 implementation in terms of wall time, as illustrated in both our tables.
On the other hand, the amount of used CPU time is actually slightly better for BDGL
than BGJ1 in the heterogeneous benchmarks, indicating that the small bucket sizes in
low dimensions prevent the masking of network latency. This is to be expected: a similar
conclusion was reached in [DSvW21], where an estimated crossover for BDGL and a
triple sieve variant on GPUs was stated to be around dimension 130. Given that the
serialisation costs between nodes is higher than the cost of serialising vectors to a GPU,
we expect that the crossover in our setting would be substantially higher than dimension
130. However, in such low dimensions our BGJ1 implementation also uses more memory
than our BDGL implementation. Similarly, [ZDY24] reports poor performance for BDGL
for their parameters and implementation.

Acknowledgements
We thank Léo Ducas, Marc Stevens and Wessel Van Woerden for sharing an advanced
copy of their BDGL bucketing implementation with us. We also thank the King’s College
London e-Research group for allowing us to use CREATE [Lon24] for the bulk of the
experiments in this work. This work was carried out whilst J.Rowell was associated with
Royal Holloway, University of London. This work was supported in part by EPSRC grants
EP/S020330/1, EP/S02087X/1, EP/P009301/1, EP/Y02432X/1 and by European Union
Horizon 2020 Research and Innovation Program Grant 780701.

Martin R. Albrecht, Joe Rowell 21

References
[ABF+20] Martin R. Albrecht, Shi Bai, Pierre-Alain Fouque, Paul Kirchner, Damien

Stehlé, and Weiqiang Wen. Faster enumeration-based lattice reduction: Root
hermite factor k1/(2k) time kk/8+o(k). In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages 186–
212. Springer, Cham, August 2020. doi:10.1007/978-3-030-56880-1_7.

[ABLR21] Martin R. Albrecht, Shi Bai, Jianwei Li, and Joe Rowell. Lattice reduction
with approximate enumeration oracles - practical algorithms and concrete
performance. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part II,
volume 12826 of LNCS, pages 732–759, Virtual Event, August 2021. Springer,
Cham. doi:10.1007/978-3-030-84245-1_25.

[ADH+19] Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Ea-
monn W. Postlethwaite, and Marc Stevens. The general sieve kernel and
new records in lattice reduction. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 717–746. Springer,
Cham, May 2019. doi:10.1007/978-3-030-17656-3_25.

[ADRS15] Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz.
Solving the shortest vector problem in 2n time using discrete Gaussian
sampling: Extended abstract. In Rocco A. Servedio and Ronitt Rubin-
feld, editors, 47th ACM STOC, pages 733–742. ACM Press, June 2015.
doi:10.1145/2746539.2746606.

[AG20] Michal Andrzejczak and Kris Gaj. A multiplatform parallel approach for lattice
sieving algorithms. In Algorithms and Architectures for Parallel Processing,
pages 661–680, Cham, 2020. Springer International Publishing. doi:10.100
7/978-3-030-60245-1_45.

[AGPS20] Martin R. Albrecht, Vlad Gheorghiu, Eamonn W. Postlethwaite, and John M.
Schanck. Estimating quantum speedups for lattice sieves. In Shiho Moriai
and Huaxiong Wang, editors, ASIACRYPT 2020, Part II, volume 12492 of
LNCS, pages 583–613. Springer, Cham, December 2020. doi:10.1007/978-3
-030-64834-3_20.

[Ajt98] Miklós Ajtai. The shortest vector problem in L2 is NP-hard for randomized
reductions (extended abstract). In 30th ACM STOC, pages 10–19. ACM Press,
May 1998. doi:10.1145/276698.276705.

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the
shortest lattice vector problem. In 33rd ACM STOC, pages 601–610. ACM
Press, July 2001. doi:10.1145/380752.380857.

[AS17] Jacob Alperin-Sheriff. NIST’s PQC Standardization: Suggested avenues for
lattice-based research. Talk, slides available at http://crypto-events.di.e
ns.fr/LATCA/program/alperin-sheriff.pdf, May 2017.

[Bab85] László Babai. On lovász’ lattice reduction and the nearest lattice point
problem (shortened version). In Kurt Mehlhorn, editor, STACS ’86, volume 82
of Lecture Notes in Computer Science, pages 13–20. Springer, Heidelberg,
1985. doi:10.1007/BF02579403.

[BBC+20] Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, Chitchanok
Chuengsatiansup, Tanja Lange, Adrian Marotzke, Bo-Yuan Peng, Nicola

https://doi.org/10.1007/978-3-030-56880-1_7
https://doi.org/10.1007/978-3-030-84245-1_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1145/2746539.2746606
https://doi.org/10.1007/978-3-030-60245-1_45
https://doi.org/10.1007/978-3-030-60245-1_45
https://doi.org/10.1007/978-3-030-64834-3_20
https://doi.org/10.1007/978-3-030-64834-3_20
https://doi.org/10.1145/276698.276705
https://doi.org/10.1145/380752.380857
http://crypto-events.di.ens.fr/LATCA/program/alperin-sheriff.pdf
http://crypto-events.di.ens.fr/LATCA/program/alperin-sheriff.pdf
https://doi.org/10.1007/BF02579403

22 Scaling Lattice Sieves across Multiple Machines

Tuveri, Christine van Vredendaal, and Bo-Yin Yang. NTRU Prime. Technical
report, National Institute of Standards and Technology, 2020. available at
https://csrc.nist.gov/projects/post-quantum-cryptography/post-q
uantum-cryptography-standardization/round-3-submissions.

[BBK19] Michael Burger, Christian Bischof, and Juliane Krämer. p3Enum: A new
parameterizable and shared-memory parallelized shortest vector problem
solver. In Computational Science – ICCS 2019, pages 535–542, 2019. doi:
10.1007/978-3-030-22750-0_48.

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions
in nearest neighbor searching with applications to lattice sieving. In Robert
Krauthgamer, editor, 27th SODA, pages 10–24. ACM-SIAM, January 2016.
doi:10.1137/1.9781611974331.ch2.

[Ber16] Daniel Bernstein. Re: Inaccurate security claims in NTRUprime. Cryptanalytic
algorithms mailing list, May 2016. https://groups.google.com/g/crypta
nalytic-algorithms/c/BoSRL0uHIjM/m/eB4G-dscCAAJ.

[BGJ15] Anja Becker, Nicolas Gama, and Antoine Joux. Speeding-up lattice sieving
without increasing the memory, using sub-quadratic nearest neighbor search.
Cryptology ePrint Archive, Report 2015/522, 2015. URL: https://eprint.i
acr.org/2015/522.

[BHK+97] J. Bruck, Ching-Tien Ho, S. Kipnis, E. Upfal, and D. Weathersby. Efficient
algorithms for all-to-all communications in multiport message-passing systems.
IEEE Transactions on Parallel and Distributed Systems, 8(11):1143–1156,
1997. doi:10.1109/71.642949.

[BLS16] Shi Bai, Thijs Laarhoven, and Damien Stehle. Tuple lattice sieving. LMS
Journal of Computation and Mathematics, 19(A), 2016. doi:10.1112/S146
1157016000292.

[BNP17] Joppe W. Bos, Michael Naehrig, and Joop Van De Pol. Sieving for shortest
vectors in ideal lattices: a practical perspective. International Journal of
Applied Cryptography, 3(4):313–329, 2017. doi:10.1504/IJACT.2017.089353.

[Cha02] Moses Charikar. Similarity estimation techniques from rounding algorithms.
In 34th ACM STOC, pages 380–388. ACM Press, May 2002. doi:10.1145/
509907.509965.

[CKP+93] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik
Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken.
LogP: Towards a realistic model of parallel computation. SIGPLAN Not.,
28(7):1–12, jul 1993. doi:10.1145/173284.155333.

[CMP+16] Fábio Correia, Artur Mariano, Alberto Proença, Christian Bischof, and Erik
Agrell. Parallel improved schnorr-euchner enumeration SE++ for the CVP
and SVP. In 2016 24th Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (PDP), pages 596–603, 2016. doi:
10.1109/PDP.2016.95.

[CS87] J. H. Conway and N. J. A. Sloane. Sphere-packings, Lattices, and Groups.
Springer, 1987. doi:10.1007/978-1-4757-6568-7.

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/978-3-030-22750-0_48
https://doi.org/10.1007/978-3-030-22750-0_48
https://doi.org/10.1137/1.9781611974331.ch2
https://groups.google.com/g/cryptanalytic-algorithms/c/BoSRL0uHIjM/m/eB4G-dscCAAJ
https://groups.google.com/g/cryptanalytic-algorithms/c/BoSRL0uHIjM/m/eB4G-dscCAAJ
https://eprint.iacr.org/2015/522
https://eprint.iacr.org/2015/522
https://doi.org/10.1109/71.642949
https://doi.org/10.1112/S1461157016000292
https://doi.org/10.1112/S1461157016000292
https://doi.org/10.1504/IJACT.2017.089353
https://doi.org/10.1145/509907.509965
https://doi.org/10.1145/509907.509965
https://doi.org/10.1145/173284.155333
https://doi.org/10.1109/PDP.2016.95
https://doi.org/10.1109/PDP.2016.95
https://doi.org/10.1007/978-1-4757-6568-7

Martin R. Albrecht, Joe Rowell 23

[DHPS10] Jérémie Detrey, Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Acceler-
ating lattice reduction with FPGAs. In Michel Abdalla and Paulo S. L. M.
Barreto, editors, LATINCRYPT 2010, volume 6212 of LNCS, pages 124–143.
Springer, Berlin, Heidelberg, August 2010. doi:10.1007/978-3-642-14712
-8_8.

[DS10] Özgür Dagdelen and Michael Schneider. Parallel enumeration of shortest
lattice vectors. In Euro-Par 2010 - Parallel Processing, pages 211–222, 2010.
doi:10.1007/978-3-642-15291-7_21.

[DSvW21] Léo Ducas, Marc Stevens, and Wessel P. J. van Woerden. Advanced lattice
sieving on GPUs, with tensor cores. In Anne Canteaut and François-Xavier
Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages
249–279. Springer, Cham, October 2021. doi:10.1007/978-3-030-77886-6
_9.

[dt23] The FPLLL development team. fplll, a lattice reduction library, Version:
5.4.4. Available at https://github.com/fplll/fplll, 2023. URL: https:
//github.com/fplll/fplll.

[Duc18a] Léo Ducas. Shortest vector from lattice sieving: A few dimensions for free. In
Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I,
volume 10820 of LNCS, pages 125–145. Springer, Cham, April / May 2018.
doi:10.1007/978-3-319-78381-9_5.

[Duc18b] Léo Ducas. Shortest vector from lattice sieving: a few dimensions for free.
Presentation at EUROCRYPT 2018, April 2018. https://eurocrypt.iacr
.org/2018/Slides/Monday/TrackB/01-01.pdf.

[FBB+15] Robert Fitzpatrick, Christian H. Bischof, Johannes Buchmann, Özgür Dagde-
len, Florian Göpfert, Artur Mariano, and Bo-Yin Yang. Tuning GaussSieve for
speed. In Diego F. Aranha and Alfred Menezes, editors, LATINCRYPT 2014,
volume 8895 of LNCS, pages 288–305. Springer, Cham, September 2015.
doi:10.1007/978-3-319-16295-9_16.

[For12] Message Passing Interface Forum. MPI: A message-passing interface standard,
2012. URL: https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.
pdf.

[FP83] Ulrich Fincke and Michael Pohst. A procedure for determining algebraic
integers of given norm. In J. A. van Hulzen, editor, EUROCAL, volume 162
of LNCS, pages 194–202. Springer, 1983. doi:10.1007/3-540-12868-9_103.

[FW78] Steven Fortune and James Wyllie. Parallelism in random access machines. In
Proceedings of the Tenth Annual ACM Symposium on Theory of Computing,
page 114–118, 1978. doi:10.1145/800133.804339.

[GNR10] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumeration
using extreme pruning. In Henri Gilbert, editor, EUROCRYPT 2010, volume
6110 of LNCS, pages 257–278. Springer, Berlin, Heidelberg, May / June 2010.
doi:10.1007/978-3-642-13190-5_13.

[HK17] Gottfried Herold and Elena Kirshanova. Improved algorithms for the approx-
imate k-list problem in euclidean norm. In Serge Fehr, editor, PKC 2017,
Part I, volume 10174 of LNCS, pages 16–40. Springer, Berlin, Heidelberg,
March 2017. doi:10.1007/978-3-662-54365-8_2.

https://doi.org/10.1007/978-3-642-14712-8_8
https://doi.org/10.1007/978-3-642-14712-8_8
https://doi.org/10.1007/978-3-642-15291-7_21
https://doi.org/10.1007/978-3-030-77886-6_9
https://doi.org/10.1007/978-3-030-77886-6_9
https://github.com/fplll/fplll
https://github.com/fplll/fplll
https://github.com/fplll/fplll
https://doi.org/10.1007/978-3-319-78381-9_5
https://eurocrypt.iacr.org/2018/Slides/Monday/TrackB/01-01.pdf
https://eurocrypt.iacr.org/2018/Slides/Monday/TrackB/01-01.pdf
https://doi.org/10.1007/978-3-319-16295-9_16
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://doi.org/10.1007/3-540-12868-9_103
https://doi.org/10.1145/800133.804339
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-662-54365-8_2

24 Scaling Lattice Sieves across Multiple Machines

[HKL18] Gottfried Herold, Elena Kirshanova, and Thijs Laarhoven. Speed-ups and
time-memory trade-offs for tuple lattice sieving. In Michel Abdalla and Ricardo
Dahab, editors, PKC 2018, Part I, volume 10769 of LNCS, pages 407–436.
Springer, Cham, March 2018. doi:10.1007/978-3-319-76578-5_14.

[HR12] Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector
problem to within almost polynomial factors. Theory of Computing, 8(1):513–
531, 2012. Preliminary version in Proceedings of STOC ’07. doi:10.4086/to
c.2012.v008a023.

[HSB+10] Jens Hermans, Michael Schneider, Johannes Buchmann, Frederik Vercauteren,
and Bart Preneel. Parallel shortest lattice vector enumeration on graphics
cards. In Daniel J. Bernstein and Tanja Lange, editors, AFRICACRYPT 10,
volume 6055 of LNCS, pages 52–68. Springer, Berlin, Heidelberg, May 2010.
doi:10.1007/978-3-642-12678-9_4.

[IKMT14] Tsukasa Ishiguro, Shinsaku Kiyomoto, Yutaka Miyake, and Tsuyoshi Tak-
agi. Parallel gauss sieve algorithm: Solving the SVP challenge over a 128-
dimensional ideal lattice. In Hugo Krawczyk, editor, PKC 2014, volume
8383 of LNCS, pages 411–428. Springer, Berlin, Heidelberg, March 2014.
doi:10.1007/978-3-642-54631-0_24.

[Jaq24] Samuel Jaques. Memory adds no cost to lattice sieving for computers in 3 or
more spatial dimensions, 2024. doi:10.62056/ay4fbn2hd.

[Kan83] Ravi Kannan. Improved algorithms for integer programming and related
lattice problems. In 15th ACM STOC, pages 193–206. ACM Press, April 1983.
doi:10.1145/800061.808749.

[Kho05] Subhash Khot. Hardness of approximating the shortest vector problem in
lattices. Journal of the ACM, 52(5):789–808, 2005. Preliminary version in
Proceedings of FOCS ’04. doi:10.1145/1089023.1089027.

[Kir16] Paul Kirchner. Re: Inaccurate security claims in NTRUprime. Cryptanalytic
algorithms mailing list, May 2016. https://groups.google.com/g/crypta
nalytic-algorithms/c/BoSRL0uHIjM/m/wAkZQlwRAgAJ.

[KMPM19] Elena Kirshanova, Erik Mårtensson, Eamonn W. Postlethwaite, and Sub-
hayan Roy Moulik. Quantum algorithms for the approximate k-list problem
and their application to lattice sieving. In Steven D. Galbraith and Shiho Mo-
riai, editors, ASIACRYPT 2019, Part I, volume 11921 of LNCS, pages 521–551.
Springer, Cham, December 2019. doi:10.1007/978-3-030-34578-5_19.

[KSD+11] Po-Chun Kuo, Michael Schneider, Özgür Dagdelen, Jan Reichelt, Johannes
Buchmann, Chen-Mou Cheng, and Bo-Yin Yang. Extreme enumeration on
GPU and in clouds - - how many dollars you need to break SVP challenges
-. In Bart Preneel and Tsuyoshi Takagi, editors, CHES 2011, volume 6917
of LNCS, pages 176–191. Springer, Berlin, Heidelberg, September / October
2011. doi:10.1007/978-3-642-23951-9_12.

[Laa15] Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-
sensitive hashing. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 3–22. Springer, Berlin,
Heidelberg, August 2015. doi:10.1007/978-3-662-47989-6_1.

https://doi.org/10.1007/978-3-319-76578-5_14
https://doi.org/10.4086/toc.2012.v008a023
https://doi.org/10.4086/toc.2012.v008a023
https://doi.org/10.1007/978-3-642-12678-9_4
https://doi.org/10.1007/978-3-642-54631-0_24
https://doi.org/10.62056/ay4fbn2hd
https://doi.org/10.1145/800061.808749
https://doi.org/10.1145/1089023.1089027
https://groups.google.com/g/cryptanalytic-algorithms/c/BoSRL0uHIjM/m/wAkZQlwRAgAJ
https://groups.google.com/g/cryptanalytic-algorithms/c/BoSRL0uHIjM/m/wAkZQlwRAgAJ
https://doi.org/10.1007/978-3-030-34578-5_19
https://doi.org/10.1007/978-3-642-23951-9_12
https://doi.org/10.1007/978-3-662-47989-6_1

Martin R. Albrecht, Joe Rowell 25

[Lon24] King’s College London. King’s computational research, engineering and
technology environment (create), 2024. Retrieved May 6, 2024 from https:
//doi.org/10.18742/rnvf-m076. URL: https://doi.org/10.18742/rnv
f-m076.

[LR24] R. Lindner and M. Ruckert. TU Darmstadt lattice challenge. Available at
http://www.latticechallenge.org/, 2024.

[MBL15] Artur Mariano, Christian Bischof, and Thijs Laarhoven. Parallel (probable)
lock-free hash sieve: A practical sieving algorithm for the SVP. In 2015
44th International Conference on Parallel Processing, pages 590–599, 2015.
doi:10.1109/ICPP.2015.68.

[MG13] Zoltan Majo and Thomas R. Gross. (mis)understanding the numa memory
system performance of multithreaded workloads. In 2013 IEEE International
Symposium on Workload Characterization (IISWC), 2013. doi:10.1109/II
SWC.2013.6704666.

[Mic01] Daniele Micciancio. The shortest vector in a lattice is hard to approximate to
within some constant. SIAM Journal on Computing, 30(6):2008–2035, 2001.
Preliminary version in Proceedings of FOCS ’98. doi:10.1137/s009753970
0373039.

[Mic12] Daniele Micciancio. Inapproximability of the shortest vector problem: Toward
a deterministic reduction. Theory of Computing, 8(22):487–512, 2012. URL:
http://www.theoryofcomputing.org/articles/v008a022, doi:10.4086/
toc.2012.v008a022.

[MS11] Benjamin Milde and Michael Schneider. A parallel implementation of
gausssieve for the shortest vector problem in lattices. In Parallel Computing
Technologies, pages 452–458, 2011. doi:10.1007/978-3-642-23178-0_40.

[MV10a] Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential
time algorithm for most lattice problems based on voronoi cell computations.
In Leonard J. Schulman, editor, 42nd ACM STOC, pages 351–358. ACM Press,
June 2010. doi:10.1145/1806689.1806738.

[MV10b] Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time algo-
rithms for the shortest vector problem. In Moses Charika, editor, 21st SODA,
pages 1468–1480. ACM-SIAM, January 2010. doi:10.1137/1.978161197307
5.119.

[MW15] Daniele Micciancio and Michael Walter. Fast lattice point enumeration with
minimal overhead. In Piotr Indyk, editor, 26th SODA, pages 276–294. ACM-
SIAM, January 2015. doi:10.1137/1.9781611973730.21.

[NIS23] NIST. FAQ on Kyber512. https://csrc.nist.gov/csrc/media/Proje
cts/post-quantum-cryptography/documents/faq/Kyber-512-FAQ.pdf,
December 2023.

[NV08] Phong Q. Nguyen and Thomas Vidick. Sieve algorithms for the shortest
vector problem are practical. J. of Mathematical Cryptology, 2(2), 2008.
doi:10.1515/JMC.2008.009.

[PSZ21] Simon Pohmann, Marc Stevens, and Jens Zumbrägel. Lattice enumeration on
GPUs for fplll. Cryptology ePrint Archive, Paper 2021/430, 2021. https://
eprint.iacr.org/2021/430. URL: https://eprint.iacr.org/2021/430.

https://doi.org/10.18742/rnvf-m076
https://doi.org/10.18742/rnvf-m076
https://doi.org/10.18742/rnvf-m076
https://doi.org/10.18742/rnvf-m076
http://www.latticechallenge.org/
https://doi.org/10.1109/ICPP.2015.68
https://doi.org/10.1109/IISWC.2013.6704666
https://doi.org/10.1109/IISWC.2013.6704666
https://doi.org/10.1137/s0097539700373039
https://doi.org/10.1137/s0097539700373039
http://www.theoryofcomputing.org/articles/v008a022
https://doi.org/10.4086/toc.2012.v008a022
https://doi.org/10.4086/toc.2012.v008a022
https://doi.org/10.1007/978-3-642-23178-0_40
https://doi.org/10.1145/1806689.1806738
https://doi.org/10.1137/1.9781611973075.119
https://doi.org/10.1137/1.9781611973075.119
https://doi.org/10.1137/1.9781611973730.21
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/faq/Kyber-512-FAQ.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/faq/Kyber-512-FAQ.pdf
https://doi.org/10.1515/JMC.2008.009
https://eprint.iacr.org/2021/430
https://eprint.iacr.org/2021/430
https://eprint.iacr.org/2021/430

26 Scaling Lattice Sieves across Multiple Machines

[Sch24] John Schanck. An Update on Lattice Cryptanalysis vol. 2. Invited talk
delivered at RWPQC’24, March 2024. https://na.eventscloud.com/websi
te/65452/presentations-and-video-/.

[TKH18] Tadanori Teruya, Kenji Kashiwabara, and Goichiro Hanaoka. Fast lattice basis
reduction suitable for massive parallelization and its application to the shortest
vector problem. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018,
Part I, volume 10769 of LNCS, pages 437–460. Springer, Cham, March 2018.
doi:10.1007/978-3-319-76578-5_15.

[TSN+20] Nariaki Tateiwa, Yuji Shinano, Satoshi Nakamura, Akihiro Yoshida, Shizuo
Kaji, Masaya Yasuda, and Katsuki Fujisawa. Massive parallelization for
finding shortest lattice vectors based on ubiquity generator framework. In
SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–15, 2020. doi:10.1109/SC41405.2020.00064.

[TSY+21] Nariaki Tateiwa, Yuji Shinano, Keiichiro Yamamura, Akihiro Yoshida, Shizuo
Kaji, Masaya Yasuda, and Katsuki Fujisawa. CMAP-LAP: Configurable
massively parallel solver for lattice problems. In 2021 IEEE 28th International
Conference on High Performance Computing, Data, and Analytics (HiPC),
pages 42–52, 2021. doi:10.1109/HiPC53243.2021.00018.

[ZDY24] Ziyu Zhao, Jintai Ding, and Bo-Yin Yang. BGJ15 revisited: Sieving with
streamed memory access. Cryptology ePrint Archive, Report 2024/739, 2024.
URL: https://eprint.iacr.org/2024/739.

https://na.eventscloud.com/website/65452/presentations-and-video-/
https://na.eventscloud.com/website/65452/presentations-and-video-/
https://doi.org/10.1007/978-3-319-76578-5_15
https://doi.org/10.1109/SC41405.2020.00064
https://doi.org/10.1109/HiPC53243.2021.00018
https://eprint.iacr.org/2024/739

Martin R. Albrecht, Joe Rowell 27

A Additional Benchmarks
In Table 2 we give our main benchmarks on a homogeneous set of up to five servers. This
data is also plotted in Figure 1. In Table 3a we compare our implementation with the
original version of G6K in a single-CPU setting to measure the overhead of using MPI in
such an environment. In Table 3b we compare our implementation with the original version
G6K to establish that it has comparable performance in a single machine multi-CPU
setting. In Table 4 we give benchmarks using a heterogeneous network of three servers
connected via 1Gbps Ethernet only.
Remark 3. We compare against CPU G6K [ADH+19] rather than the GPU variant [DSvW21].
This is to measure the impact of distributed computing rather than racing against a more
performant GPU implementation. A natural open problem is to utilise our distributed
implementation to collaboratively sieve on many GPU-augmented servers.

Table 2: Performance evaluation for BGJ1 in a homogeneous setting.
Dim 1-14 1-28 2-14 2-28 3-14 3-28 4-14 4-28 5-14 5-28
122 133h 67.9h 60.5h 33.1h 40.1h 21.2h 33.9h 17.2h 24.6h 13.2h

1.00 0.97 1.10 1.00 1.10 1.04 0.98 0.96 1.08 1.00
120 72.0h 42.2h 34.4h 18.3h 24.9h 14.4h 19.8h 10.0h 19.7h 9.15h

1.00 0.85 1.05 0.98 0.96 0.83 0.91 0.90 0.73 0.79
118 45.4h 23.7h 24.1h 12.4h 15.9h 7.7h 12.1h 6.1h 9.9h 5.4h

1.00 0.96 0.94 0.91 0.95 0.99 0.94 0.92 0.92 0.83
116 25.2h 14.5h 11.9h 6.6h 8.6h 5.2h 7.0h 3.9h 5.7h 3.2h

1.00 0.97 1.02 0.96 0.98 0.81 0.90 0.81 0.88 0.79
114 17.6h 9.47h 10.9h 4.5h 6.22h 2.79h 4.92h 2.68h 3.78h 1.9h

1.00 0.93 0.81 0.98 0.94 1.05 0.89 0.82 0.93 0.91

BGJ1 sieving using identical machines (node K in Table 1) over a 10Gbps network. “Dim” gives
the sieving dimension, “(N-C)” indicates “N” nodes and “C” cores per node. The first row for
each dimension gives wall times, the second gives the normalised speed-up relative to the baseline
of one machine and 14 core. Here, 1.00 is ideal.

Given that comparing heterogeneous experiments as in Table 4 is rather delicate, we
explicate our methodology here. First, using the most recent version of G6K14, we ran
our BGJ1 experiments on node H to establish the expected wall-time on a single machine.
Then, we repeated the BGJ1 experiments using nodes H, S and A, recording the wall-time.
Note that all experiments used 35 of the 40 cores available on node S due to system
instability. We then normalised the single node and distributed wall times by the number
of cores used multiplied by the clock speed. That is, we compute “parallel efficiency” as:

“parallel efficiency” := clock speedH · #coresH · wall timesingle∑
c∈{H,S,A} clock speedc · #coresc · wall timedist

.

Under this metric, a performance score of 1.0 is ideal, anything above should be considered
a measurement error and values ≤ 1.0 signify less than ideal scaling. Put differently, under
this loose metric, our BGJ1 implementation achieves the desired linear speed-up also in a
heterogeneous distributed setting we considered. We stress, though, that this approach can
at best give a rough indication of what performance to expect as it ignores factors such as
available instruction sets, RAM speeds, “turbo boost” etc. We consider our homogeneous

14Commit 959fd8f

28 Scaling Lattice Sieves across Multiple Machines

Table 3: Performance evaluation for BGJ1 on a single machine.

(a) Single-CPU setting

Dim. Conf. Wall time CPU time
105 G 1.57 hours 31.3 hours
105 D 1.63 hours 31.3 hours
100 G 23.3 minutes 7.7 hours
100 D 27.1 minutes 8.9 hours
95 G 6.81 minutes 2.25 hours
95 D 7.71 minutes 2.49 hours
90 G 1.6 minutes 0.5 hours
90 D 2.3 minutes 0.72 hours

Using node D (cf. Table 1). All experiments
used 20 cores and all timings are the average
of three runs. Configuration “G” refers to
timings gathered using G6K, whereas Config-
uration “D” refers to timings gathered using
our code.

(b) Multi-CPU setting

Dim. Conf. Wall time CPU time
122 N 31.6 hours 117 days
122 G 31.6 hours 124 days
120 N 18.7 hours 68.2 days
120 G 18.8 hours 73.7 days
118 N 11.4 hours 42.8 days
118 G 11.4 hours 44.6 days
116 N 6.1 hours 22.4 days
116 G 6.5 hours 25.3 days

Using node H (cf. Table 1). All experiments
used 96 cores and all timings are the average
of three runs. Configuration “G” refers to
timings gathered using G6K, whereas Config-
uration “N” refers to timings gathered using
our code.

BGJ1 sieving for our code and G6K on a single machine.

Table 4: Heterogeneous performance evaluation for BGJ1.
Dimension Wall time CPU time Memory usage (GiB) “Parallel

H S A total efficiency”
128 102 hours 583 days 194 70 56 320 0.973
127 82 hours 380 days 184 67 54 305 0.892
124 34 hours 202 days 117 43 34 194 0.958

BGJ1 sieving using 3 machines (nodes S, H, and A in Table 1) over a 1Gbps network with a total
of 159 cores. “Dimension” gives the sieving dimension. “Parallel efficiency” roughly compares
with running the most recent version of G6K [ADH+19] on node H. A value of 1.0 is ideal under
this metric, see Section 5. Memory on individual nodes is estimated, total memory was measured.

benchmarks in Table 2 a more reliable indicator. Yet, given that many academic teams
may have a heterogeneous “cluster” of servers we also report these heterogeneous timings.

In the homogeneous case, this comparison straight-forwardly simplifies to wall time
divided by the number of cores.

B Message Passing Interface (MPI)
We give a short summary of the Message Passing Interface (MPI) standard used in our im-
plementation and experiments. The interested reader may refer to the MPI standard [For12]
for more details.

Messaging passing. MPI can be viewed as an instantiation of the message passing
model of concurrency. At a high-level, MPI programs are comprised of groups of processes.
Each process has exclusive access to its own local memory and computational resources
and may be further subdivided into a set of threads. In order to share data, processes
communicate over shared, stateful communicators that act as channels.

Martin R. Albrecht, Joe Rowell 29

Table 5: Heterogeneous performance evaluation for BGJ1 and BDGL.
Wall time CPU time Total Memory

Dimension BDGL BGJ1 BDGL BGJ1 BDGL BGJ1
105 2.13h 1.91h 6.91h 21.2h 11GiB 15GiB
100 0.70h 0.68h 2.23h 6.64h 5GiB 8GiB

Results for BDGL/BGJ1 sieving using 3 machines over a 1Gbps network with a total of
60 cores (20 per machine). “Dimension” gives sieving dimensions, Timing were gathered
on nodes S, H, and A, see Table 1.

Table 6: Performance evaluation for BDGL in a homogeneous setting.
Dim 1-14 1-28 2-14 2-28 3-14 3-28 4-28
114 4.4h 3.2h 4.9h 6.4h 4.5h 6.0h 3.1h
112 2.9h 2.1h 3.4h 3.7h 3.1h 3.4h 2.9h
110 2.0h 1.4h 2.0h 2.3h 1.8h 2.5h 2.0h

BDGL sieving using identical machines (node K in Table 1) over a 10Gbps network. “Dim” gives
the sieving dimension, “(N-C)” indicates “N” nodes and “C” cores per node. For each dimension
we give wall times.

We briefly describe how MPI handles messages. Namely, suppose that A wishes to
send a message M to B in a point-to-point fashion. To achieve this, A supplies M to an
MPI procedure as a message buffer. At this stage, the MPI library inspects M and decides
on how M should be sent. We remark that the scope for decision here is rather vast; for
example, if M is short then the MPI library may simply send M to B without any prior
notice. On the other hand, sending a large M in this way may overwhelm B, and thus the
implementation may choose to inform B in advance.

In order to reduce the complexity of sending messages, the MPI standard provides
several modes that specify how procedures handle messages. A procedure is said to be
completed if A can re-use the message buffer without affecting the transmission of the
message. Moreover, a procedure is said to be blocking if it does not return until after it
has completed. On the other hand, a non-blocking procedure may return immediately
without completing i.e. A may not be able to re-use the message buffer when the procedure
returns. In order to determine when the buffer can be re-used, MPI allows the progress of
a non-blocking procedure to be tracked via a request object. We note that MPI provides
the ability for the programmer to explicitly choose if a particular message is sent using
either a blocking or non-blocking procedure. This choice permits optimisations to be made
explicitly; for example, non-blocking procedures enable several concurrent requests to be
in progress at once, or for processing to be offloaded asynchronously on to a network card.
On the other hand, blocking procedures may reduce memory usage in some settings as
buffers can more easily be re-used by the programmer. In practice, we found that using
non-blocking routines was more efficient in our use-case, and thus our implementation uses
them extensively.

Collective operations. In addition to point-to-point communications, MPI also allows
for multiple processes to exchange messages at once in a collective fashion. Whilst collective
communications also come in blocking and non-blocking variants, collective communications
can also take advantage of algorithmic improvements that are not available for point-
to-point messages. For example, a broadcast from process p0 across a group P can be

30 Scaling Lattice Sieves across Multiple Machines

efficiently implemented by organising processes in a tree rooted at p0, allowing multiple
communication links to be used at once. These savings are often substantial; for example,
pairwise message exchange (also known as AlltoAll) of n messages between p nodes can
be optimally realised in O(log p) rounds [BHK+97], compared to O(p2) rounds using point-
to-point messages. We note, however, that the “best” algorithm to use typically depends
on the properties of the messages that are being transmitted and the characteristics of the
underlying interconnect i.e. if multicast is supported. To handle this, MPI implementations
typically select the appropriate algorithm on a case-by-case basis. However, the use of
collectives comes with an additional restriction; as algorithmic choices are made on a
case-by-case basis, collective operations are only guaranteed to complete if they are called
in the same order across all processes. Put differently, any two collective operations
Ci, Ci+1 must be issued as first Ci and then Ci+1 across all processes in the communicator.
In practice, this restriction can cause programs to lose some flexibility, and care needs to
be taken to use these operations safely in a fully asynchronous environment. However, in
practice the performance benefits of using these operations is typically substantial, far
outweighing any lost flexibility. We note that whilst MPI is rather high-level, substantial
performance benefits can be realised by performing additional low-level optimisations: we
describe our efforts in this regard in Section 4. Still, almost all network programming
tasks such as e.g. heartbeating are handled by the MPI library and, thus, are hidden
from the programmer. This simplicity allows the creation of highly complex distributed
applications.

C Comparison with the original version of G6K
As mentioned in Section 1.2, the original version of G6K contains several multi-threaded
implementations of lattice sieves. In more detail, the parallel sieves in G6K utilise task
parallelism, using T threads to process T independent tasks at once. For instance, in the
case of the BGJ1 sieve, G6K uses T threads to build and sieve T buckets in parallel, with
each thread working broadly independently. Moreover, the sieving implementations in
G6K are carefully crafted to avoid common pitfalls in multi-threaded programming, such
as lock contention and false sharing. However, we remark that the original version of G6K
is not designed to handle certain parallelism-based performance bottlenecks. Indeed, the
task-based parallelism in G6K allows each thread to access the entirety of the system
memory without restriction i.e. it assumes a uniform memory space. In a single CPU
setting, this assumption holds; each thread runs on the same physical CPU, and thus
access to system memory has broadly the same cost across all threads. However, modern
multi-processor machines are typically designed with a non-uniform memory architecture
(NUMA) i.e. each physical CPU has access to its own local system memory. In this setting,
a thread ti running on, say, CPU 0 can access CPU 0’s local memory fairly cheaply.
However, if ti needs to access memory that is attached to, say, CPU 1, then it must do so
using a dedicated bus. This access can be substantially more expensive than accessing local
memory, with some works reporting that cross-CPU memory accesses can be nearly twice as
expensive as local memory accesses in terms of the number of required cycles [MG13]. Yet,
we stress that the exact increase in cost depends on the access pattern of the underlying
program; for instance, a program that primarily makes sequential memory accesses can
typically take advantage of hardware prefetching to mitigate these issues. In our context,
although the bulk of the memory accesses in G6K are sequential in nature (cf. [ADH+19,
§5.3]), we note that accessing the underlying sieving database is done in an unordered
fashion, and thus we would expect some NUMA-related effects to appear when G6K is
deployed on a multi-processor system.

We now consider our own implementation. On the one hand, our implementation
focuses on a multi-processor setting by default. Indeed, we note that we can avoid all

Martin R. Albrecht, Joe Rowell 31

NUMA-related performance issues by simply binding each process to a single physical CPU
and disallowing explicit cross-CPU memory access. Yet, this manual separation of memory
comes at a cost, as our implementation requires each process to explicitly engage in the
exchange of data between CPUs. Moreover, our implementation serialises transfers lattice
vectors by representing them in terms of their coefficient representation (see Section 4.1)
and thus our implementation requires that some computation is carried out for each
lattice vector. In other words, it is not clear a priori whether our implementation would
outperform the original version of G6K in a single machine setting.

In order to quantify these overheads, we conducted two sets of experiments that compare
our code to the original version of G6K. For both sets of experiments, we repeat each
experiment three times and report the average. The results for each set of experiments
can be found in Table 3b and Table 3a respectively. For both sets of experiments, we use
8 bucket batches with 4 auxiliary buffers for our distributed code.

• The first of these experiments is intended to capture the differences (if any) in
wall-time between the original version of G6K and our code when controlling for
NUMA effects. In these experiments we take d ∈ {116, 118, 120, 122} and use node H
(cf. Table 1) with 96 cores. We note that these cores are spread across two physical
CPUs, and thus NUMA effects are likely to be visible in these experiments. For
each d, we download the SVP challenge lattice in dimension d (with seed = 0).
Then, we use the BGJ1 implementation in the original version of G6K and our
code respectively, recording the wall time for each experiment. In the case of the
original version of G6K, we instantiate a single process with 96 cores. On the other
hand, for our code we start two processes and bind each process to a single physical
CPU i.e. each process is instantiated with 48 cores. We begin distributed sieving in
dimension 90 and use the original version of G6K for all lower dimensions.

• The second of these experiments is intended to capture the overhead associated
with using MPI. In these experiments we take d ∈ {90, 95, 100, 105} and use node
D (cf. Table 1) with 20 cores. Unlike node H, these cores are confined to a single
physical CPU, and thus these experiments are not susceptible to any NUMA effects.
These experiments follow the same format as described above i.e we execute a full
sieve in dimension d for both our code and the original version of G6K and record the
results. For our distributed code, we bind two processes to the same physical CPU
with 10 cores allocated to each process and begin distributed sieving at dimension 80.
By contrast, for the original version of G6K we assign all 20 cores to a single process.

We now discuss these results. As can be gleaned from both Table 3b and Table 3a, the
wall times for the original version of G6K and our code are broadly the same. On the one
hand, we note that the CPU-time of our implementation is consistently lower than that of
the original version of G6K when running experiments in a NUMA aware context. These
results indicate, at least in our particular setup, that there is a small benefit from running
experiments in a NUMA aware context. Additionally, we observe that both the CPU and
wall time are broadly similar in the context of a single CPU machine, too. Put differently,
it appears that any overhead added by MPI in a single-machine setting is small relative to
the other costs associated with sieving.

D On the impact of pipelining
Our experiments in Section 5 critically depend on the number of batches that are in flight
at once. Thus, in this section we provide experimental results that justify our choice of 8
batches and 4 auxiliary buffers. In order to establish a baseline, we use a single node of
type K (cf. Table 1) with 14 threads and the original version of G6K to run a full sieve on

32 Scaling Lattice Sieves across Multiple Machines

the dimension 100 SVP Challenge lattice (with seed = 0). Then, we repeat this experiment
with our code across 2 nodes of type K and 14 threads, varying the number of batches and
auxiliary buffers. In the case of the two node experiments, we begin distributed sieving in
dimension 90. We repeat each experiment three times and record the average wall and
CPU time and compute the “parallel efficiency” relative to the baseline. The results for
each experiment are tabulated in Table 7.

Table 7: Performance evaluation for different numbers of batches in BGJ1.
Conf. Wall time CPU time “Parallel efficiency”
(5, 5) 14.6 minutes 6.1 hours 0.87
(4, 8) 15.0 minutes 6.4 hours 0.84
(4, 4) 15.1 minutes 6.3 hours 0.84
(3, 3) 15.1 minutes 6.0 hours 0.84
(2, 2) 16.7 minutes 6.1 hours 0.76
(1, 1) 28.4 minutes 7.1 hours 0.45
Baseline 25.4 minutes 5.9 hours 1.00

BGJ1 sieving using node K (cf. Table 1) for our code with varying numbers of batches and
auxiliary buffers. For each entry (N, M), N refers to the number of auxiliary buffers and M

refers to the number of batches that are in flight at any given time. “Baseline” refers to the time
taken to run the dimension 100 full sieve using the original version of G6K.

Before discussing these experiments, we remark that it would be unwise to extrapolate
based on the data in Table 7. Indeed, we view these data points as indicative of how
varying the pipelining parameters affects sieving for our particular configuration of nodes.
Moreover, the sieving dimension in these experiments is rather small, and thus we caution
the reader that the exact impact of pipelining may change as the dimension varies. However,
in the context of these caveats there are several conclusions that we can make. First,
notice that using no pipelining actually makes our distributed implementation slower
than the baseline, despite using twice as many CPU cores. Notably, this decrease in
performance is accompanied by an increase in CPU time, which we attribute to the time
that each node spends waiting for network activity. Simply put, removing pipelining from
our implementation appears to make parallelism so expensive as to remove any benefits
that are granted by using more CPU cores. Yet, it is clear that this slowdown vanishes as
the number of concurrent batches are increased; indeed, we see using any form of pipelining
decreases the wall time relative to the baseline. This reduction broadly continues as the
number of concurrent batches are increased, but the relative benefit diminishes as the
number of batches increases. However, we observe that the CPU time does not actually
decrease in the same manner as the wall time. First, we observe that the worst-case
scenario for the CPU time is the setting where no pipelining at all is used, and thus
we conclude that using some form of pipelining reduces the CPU time in a broad sense.
On the other hand, the CPU time does not always decrease with the number of batches,
with the minimum occurring with three batches and three buffers. Although we have
no theoretical explanation for this behaviour, we speculate that the minor variance in
CPU time is actually an implementation artefact that relates to consistency required to
safely use collective operations in MPI, and thus we do not consider this behaviour to be
indicative of a deeper pattern.

	Introduction
	Contributions
	Related work

	Preliminaries
	Lattices
	Sieving algorithms
	The General Sieve Kernel
	The logP scalability model

	Architecture
	Unstructured bucketing
	Structured bucketing
	Buckets and nodes

	Design & implementation
	High-level design decisions
	Database management
	BGJ1
	BDGL

	Experimental results
	References
	Additional Benchmarks
	Message Passing Interface (MPI)
	Comparison with the original version of G6K
	On the impact of pipelining

