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Abstract. Multi-authority/input attribute-based encryption (MA-/MI-ABE) are
multi-party extensions of ABE which enable flavours of decentralised cryptographic
access control. This work aims to advance research on multi-party ABE and their
lattice-based constructions in several directions:

o We introduce the notion of multi-client (MC-)ABE. This can be seen as an
augmentation of MI-ABE with the addition of a ciphertext identity (CID) in
the syntax, or a specialisation of multi-client functional encryption (MC-FE) to
the ABE setting.

e We adapt the 2-input (2I-)ABE of Agrawal et al. (CRYPTO’22), which is
heuristically secure yet without a security proof, into a 2-client (2C-)ABE, and
prove it satisfies a variant of very-selective security under the learning with
errors (LWE) assumption.

e We extend Wee’s ciphertext-policy (CP-)ABE (EUROCRYPT’22) to the MA
setting, yielding an MA-ABE. Furthermore, combining techniques in Boneh et
al’s key-policy ABE (EUROCRYPT’14) and our MA-ABE, we construct an
MC-ABE. We prove that they satisfy variants of very-selective security under
the evasive LWE, tensor LWE, and LWE assumptions.

All our constructions support policies expressed as arbitrary polynomial-size circuits,
feature distributed key generation (for MA) and encryption (for 2C/MC), and
are proven secure in the random oracle model. Although our constructions only
achieve limited security against corrupt authorities/clients, the fully distributed key
generation/encryption feature makes them nevertheless non-trivial and meaningful.
Prior to this work, existing MA-ABEs only support up to NC1 policies regardless
of their security against corrupt authorities; existing MI-ABEs only support up to
constant-many encryptors/clients and do not achieve any security against corrupt
encryptors/clients; and MC-ABEs only existed in the form of MC-FEs for linear and
quadratic functions.

1 Introduction

Multi-authority attribute-based encryption (MA-ABE) [Cha07] and multi-input ABE
(MI-ABE) [BJK'18] are multi-party extensions of (single-authority single-input) ABE
which enable different flavours of decentralised cryptographic access control. An MA-ABE
allows to encrypt a message with respect to an access structure and a set of authorities, so
that any user who obtained suitable secret keys from a subset of authorities satisfying the
access structure can uncover the message. Similarly, an MI-ABE allows multiple encryptors

E-mail: cini.valerio@gmail.com (Valerio Cini), russell.lai@aalto.fi (Russell W. F. Lai),
ivy.woo®aalto.fi (Ivy K. Y. Woo)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-04-09 Accepted: 2024-09-02


https://doi.org/10.62056/ahmpgy4e-
https://crossmark.crossref.org/dialog/?doi=10.62056/ahmpgy4e-&domain=pdf&date_stamp=2024-12-09
https://orcid.org/0009-0003-6876-0954
https://orcid.org/0000-0001-9126-1887
https://orcid.org/0000-0001-8905-1207
mailto:cini.valerio@gmail.com
mailto:russell.lai@aalto.fi
mailto:ivy.woo@aalto.fi
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Lattice-based Multi-Authority/Client ABE for Circuits

to distributedly encrypt with respect to some attributes, so that a user who is granted a
secret key associated to a policy accepting those attributes can decrypt.

Leveraging lattice-based homomorphic computation techniques [GSW13] developed
originally for fully homomorphic encryption, the community has been relatively successful
in constructing (single-authority single-input) ABE supporting complex access structures.
Notably, Boneh et al. [BGGT14] constructed key-policy (KP-)ABE for circuits from
the learning with errors (LWE) assumption, and more recently Wee [Wee22] constructed
ciphertext-policy (CP-)ABE for circuits from the evasive LWE and tensor LWE assumptions,
both constructions having ciphertext size sublinear in the circuit size.

Less progress has been made in lattice-based multi-party ABE constructions. MA-ABE
for DNF formulas have been achieved under LWE [DKW21] based on linear-secret-sharing-
scheme (LSSS) techniques borrowed from group-based constructions, and implicitly for
NC1 circuits [DKW21] assuming honest authorities. On the MI front, two schemes for
the class of conjunction functions from LWE are implicit in the work of [FFMV23] but
unfortunately only with single-key security; [ARYY23] constructed constant-many-input
ABE from variants of the evasive LWE and tensor LWE assumptions, although both with
a stronger flavour than that for Wee’s CP-ABE.

This work seeks to explore the possibility of multi-party ABE under newly introduced
lattice-based assumptions, including the evasive LWE and tensor LWE assumptions which
have been shown to imply single-authority CP-ABE [Wee22]. Below, we first recall various
notions of multi-party ABE, then overview our contributions and highlight differences over
existing results.

1.1 Background

MA-ABE. A multi-authority (MA-)ABE seeks to decentralise the power of the authority
in a (single-authority) ABE. In the prominent global-identifier (GID) model, the setting
can be summarised as follows: Each user is associated to an identity uid. Any authority i
can generate its own master public and secret key pair (mpk;, msk;), and issue key sk;q ; .
to user uid associated with attribute x;. An encryptor can encrypt a message p with respect
to multiple authorities (identified by) (mpk;);c[x) together with a policy f. A user uid can
decrypt to p if and only if it obtains keys sk ; ., for all of the authorities (mpk;);c(x
specified by the encryptor, and the specified policy f accepts the attributes (x;); of uid,
ie. f(x1,...,zx) = 0. To prevent mix-and-match attack, security commonly requires that
an adversary cannot request keys for the same uid and from the same authority 4, but
associated to different attributes x;.

Multi-Input Functional/Attribute-based Encryption. Multi-input (MI-)ABE was
proposed by [BJKT 18] as a stepping stone towards witness encryption (WE) and is a special
case of multi-input functional encryption (MI-FE) [GGG™14]. Analogous to the relation
between (single-input) KP-ABE and FE, an MI-ABE for function class F and message
space M can be viewed as an MI-FE for the function class G = {gy, : f € F,u € M} of
policy-checking predicates, where gy, (y1,...,y¢) evaluates to message p if the MI-ABE
policy f is satisfied, else it evaluates to 1. More precisely, an MI-ABE can be summarised
as follows: A trusted setup generates a master secret key for all £ encryptors and the
authority. The first encryptor can encrypt a message p with respect to some attribute y;
as ctxty ,,, while for 2 < j < /£ the j-th encryptor provides a ciphertext ctxt;,. associated
to some attribute y; (without specifying any message). Any user, who obtains a secret
key sk, associated to a function f from the authority, can decrypt (ctxtyy,,...,Ctxtsy,)
to recover p if and only if f(y1,...,y¢) = 0.

A property of both MI-FE and MI-ABE is that mix-and-match is allowed in their
security models. In case of MI-ABE;, it is said to be secure if the message p remains
hidden from an adversary who obtains secret keys for many functions f1, fo,... € F and
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ciphertext components for many attributes y; 1,¥;.2,... € Vi, as long as f(y1,...,y¢) #0
for all combinations of (f,y1,...,y¢) € F X Y1 X ... X Y. This makes MI-FE/ABE very
powerful primitives, in that MI-FE implies iO [GGGT14] and MI-ABE implies witness
encryption [BJK 18], meaning that they also tend to be hard to construct. Existing MI-FE
(for functions beyond predicates) are all either group-based or obfuscation-based. For MI-
ABE, [AYY22] proposed a lattice-based 2-input ABE but no security proof was provided;
[FFMV23] constructed two MI-ABE schemes! for conjunctions from LWE but which has
only single-(authority-)key security; Agrawal et al. [ARYY23] constructed constant-input
ABE based on the evasive LWE assumption with private-coin auxiliaries? and an extended
version of the tensor LWE assumption.

The possibility of mix-and-match has also limited the use cases of MI-FE/ABE. Suppose
Alice wishes to disclose a secret message u to Carol under the condition that her input y;
agrees with Bob’s ¢, with Mary being the mediator. This scenario captures, for example, a
variety of voting. To achieve this, Mary acts as the authority in an MI-ABE and generates
sk for a function f which checks that y; agrees with yo; Alice acts as the first encryptor
and generates ctxt; ,, encrypting u; Bob the second and generates ctxta ,. Carol, who
collects (sk,ctxty y, m,Ctxta,y, ), decrypts and learns y if f(y1,y2) = 0. Should Alice and
her peers want to release another secret message on different conditions, they would need
to set up a new instance of MI-ABE, since (ctxty ,,, Ctxts ,) can be reused, undesirably.

Multi-Client Functional/Attribute-based Encryption. For the sake of both fea-
sibility and practicality, MI-FE has been extended to multi-client (MC-)FE [GGGT14],
which is same as an MI-FE except that each ciphertext from an encryptor is additionally
linked to a cid, also called a “tag” or a “label”. Correctness is guaranteed only when a
decryptor collects ciphertexts linked to the same cid, and security commonly requires that
the adversary does not query on a cid for all £ inputs. Same as the GID in an MA-ABE, the
CID in an MC-FE serves to prevent mix-and-match attacks. Although the security guaran-
tee becomes weaker, this model is regarded more natural in access control applications, and
a handful of constructive results [CDGT18, ABKW19, ABG19, LT19, AGT22, NPP22]
have been obtained. In the lattice setting, by now we have MC-FE for linear functions
with adaptive security from standard LWE [LT19].

Following this line of development, it is natural to ask if there exists an MC-analogue of
MI-ABE, which specialises MC-FE to the class of policy-checking predicates and unlocks
both feasibility and applications by the introduction of CID. We call this the multi-client
(MC-)ABE. Going back to the above example with Alice and her peers, in an MC-ABE the
set of ciphertexts (ctxty y, , Ctxta ,) would be associated to a common ciphertext identifier
cid, and cannot be mixed with future ciphertexts associated to cid’ # cid. The system can
thus be reused repeatedly by using different cid in each round, which is more desirable in
many real-world applications.

We see MC-ABE (or “MI-ABE in the CID model”) as a dual of MA-ABE in the
GID model: Both incorporate an ID to prevent mix-and-match, with the former allowing
multiple inputs and the latter multiple authorities. Removing the ID (so that mix-and-
match is allowed) results in formulations of MI-ABE and MA-ABE where both of which
imply witness encryption. Section D discusses the transformation to WE and why having
IDs prevents such in more detail.

1.2 Owur Contributions

This works extends the boundary of multi-party ABE in the following directions:

1Actually they constructed multi-input predicate encryption, which implies MI-ABE, although with
the heavy machinery of lockable obfuscation.
2See Section 1.4 for a short discussion on variants of evasive LWE.
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Multi-Client ABE. We formally introduce the notion of multi-client ABE, a natural
variant of MI-ABE where syntax and security forbid mix-and-match attacks, which can
also be seen as a specialisation of MC-FE to the the class of policy-checking predicates.

2C-ABE for Circuits from LWE. We adapt the heuristic 2-input ABE for general
circuits of Agrawal et al. [AYY22] to a (public-key) 2-client ABE, which we prove to satisfy
a variant of very-selective security under the (standard) LWE assumption in the random
oracle model (ROM).

MA-ABE and MC-ABE for Circuits. Adapting techniques from [Wee22] and
[BGGT14], we construct an MA-ABE and an MC-ABE for general circuits, respectively.
We prove variants of very-selective security of both constructions, under the evasive LWE,
tensor LWE, and LWE assumptions in the ROM.

All three constructions feature distributed key generation, i.e. authorities in MA-
ABE, respectively encryptors in MC-ABE, generate their secret keys independently, thus
achieving decentralisation common in MA-ABE works.

All our constructions retain security when no authority/encryptor involved in the
challenge ciphertext is corrupt. Alternatively, our MA-ABE is secure if, for each user, at
least one authority involved in the challenge ciphertext is honest, and who did not issue any
key to this user. Similarly, our MC-ABE are secure if at least one sub-encryptor specified in
the challenge ciphertext is honest, and who did not contribute any ciphertext component for
the specified slot.? Despite these restrictions, we believe that the achieved security notions
are still non-trivial and meaningful in presence of distributed key generation, since the latter
makes the schemes irreplaceable by their single-authority /encryptor counterparts, and the
security of ciphertexts involving different sets of authorities/encryptors are independent.

1.3 Related Work

Multi-party ABE is naturally connected to (single-party) ABE and (multi-party) FE, both
of which have vast literature. We do not attempt to compare the results in this work
exhaustively with every existing multi-party ABE/FE, but instead focused on most related
ones. In particular, we omit comparisons with existing MC-FE schemes which support
only linear or quadratic functions, and hence cannot be cast as MC-ABE schemes, and any
schemes based on indistinguishability obfuscation. We also omit further comparisons with
MI-ABE and MI-FE as they are already discussed above, and their security requirement
against mix-and-match attacks makes them compete in a higher league* than MA-/MC-
schemes, despite the syntactical similarity.

Since MC-ABE is a new notion that was not explicitly considered before, we focus our
discussion below on MA-ABE, and draw connections to our MC-ABE when appropriate.
We first discuss the syntax and the expressiveness of the supported access policies, and
then move to the security notions.

Syntax. MA-ABE has traditionally [LW11] been considered natively for monotone access
policies, and the support for non-monotone policies is often obtained by first converting
non-monotone policies to monotone ones (more details below). As such, an attribute secret
key skyiq; issued by an authority is traditionally associated to a user uid and an attribute
identifier ¢ € [n], but not the value x; of the i-th attribute. By collecting keys for attributes
1 € A C [n], a user uid can decrypt ciphertexts associated to access policies A C 2" with

30ur 2C-ABE is trivially secure in this case since there is only one sub-encryptor.
4They are much more powerful but also likely much more difficult to construct, both conceptually and
potentially in terms of required assumptions.
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Table 1: Overview of selected MA-ABE schemes. P: polynomial-size circuits. static™:
static corruption with restrictions. Selective queries refers to adversary declaring all queries
at once, before seeing the public parameters.

Scheme Structure Policy Corruption sk; Query

[DKW23b] Group NC1 adaptive adaptive

[DKW21] Lattice DNF static selective

[DKW21] Lattice NC1 none selective

[WWW22] Lattice NC1 static selective

Section 6 Lattice P static™ selective
A € A. When representing an access policy as a circuit f(x1,...,z,), getting a secret key
skyig,; could be interpreted as getting authorised for z; = 1.

For schemes natively supporting non-monotone policies, however, the above convention
becomes problematic since in this case the value z; of each attribute i could influence the
acceptance of the policy, and a user must collect keys from all authorities. In this work,
we instead following the syntax of ABE for circuits [BGGT14, Wee22|, where an attribute
secret key skyq; ., is additionally associated to the value x; of the i-th attribute. The
syntax of MC-ABE is defined analogously.

Pairing-based MA-ABE for NC1. A large class of MA-ABE schemes (e.g. [LW11,
WFL19, DKW21, DKW23a, DKW23b, AG23], non-exhaustively), especially pairing-based
ones, support access policies authorised by (monotone) linear secret sharing schemes
(LSSS). It is folklore that any NC1 circuit can be converted into a monotone LSSS by
interpreting positive and negative literals of the inputs as independent variables. As such
many pairing-based schemes (e.g. [LW11, DKW23a, DKW23b, AG23], see also [DKW23b,
Table 1]) can be interpreted as MA-ABE for NC1 circuits.

Lattice-based MA-ABE for DNF, NC1, and circuits. All pairing-based crypto-
graphic constructions are vulnerable against quantum adversaries. Currently, all plausibly
post-quantum secure candidates are lattice-based, including the schemes of [DKW21,
WWW22], and ours. We summarise existing lattice-based MA-ABEs in Table 1, where we
also include the state-of-the-art group-based scheme of [DKW23b] for comparison.

In the lattice setting, instantiating the MA-ABE construction of [DKW21] with the
above LSSS for NC1 turns out to be insecure since the LSSS needs to additionally satisfy a
property known as “linear independence for unauthorised rows”. Instead, they instantiate
the construction with an LSSS which captures DNF formulas, thus obtaining an MA-ABE
for DNFs under the LWE assumption.

We note, however, that if the MA-ABE of [DKW21] is instantiated with the above
LSSS for NC1, then it would be secure in a setting where all authorities involved® in the
challenge ciphertext are honest (cf. [DKW21, Remark 6.1]).

All (pairing- and lattice-based) MA-ABE constructions discussed so far are proven
secure in the random oracle model. An exception is the lattice-based scheme of [WWW22],
which also supports DNF formulas, and is proven secure in the standard model under the
evasive LWE assumption.

To summarise, all existing pairing-based MA-ABE schemes support up to NC1 circuits,
and the only two existing lattice-based schemes both support DNF formulas. If we are
willing to (completely) forego security against corrupt authorities, then the lattice-based
scheme of [DKW21] supports up to NC1 circuits. In contrast, our MA-ABE constructions

5By an authority being involved in the challenge ciphertext, we mean that the ciphertext is associated
to a policy f(X1,...,Xn) where the authority is responsible to some X;.
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Table 2: Overview of selected MI-/MC-ABE/FE schemes. PK/MSK/SK: main/sub
encryption algorithm is w.r.t. public-key/master-secret-key(corruption not possible)/user-
secret-key. Lin: linear functions, Quad: quadratic functions, P: polynomial-size circuits. -:
corruption not allowed by setting, static™: static corruption with restrictions. sel: selective,
adp: adaptive, ?: no security proof. Selective queries broadly refers to adversary declaring
all queries at once, either before or after seeing the public parameters.

Scheme MC/MI Encryption Structure Policy Corruption Query

Main Sub ctxt;  sky
[AGT22] MC MSK MSK Group Quad - sel sel
[LT19] MC SK SK Lattice Lin adaptive adp adp
Section 5 2C PK SK Lattice P static™ sel adp
Section 7 MC PK SK Lattice P static™ sel adp
[AGT22] MI SK SK Group Quad  static sel sel
[AYY22] 21 PK  MSK Lattice P - ? ?
[ARYY23] constantl PK  MSK Lattice P - sel sel

is the first to support general polynomial-size circuits with limited but non-trivial security
against corrupt authorities. Instead of LSSS, our constructions leverage homomorphic
computation, analogous to their single-party counterparts [BGG™14, Wee22].

We remark that although the scheme of [Kim19] supports arbitrary polynomial-size
circuits, it requires a centralised key generation. In contrast, all other schemes discussed
in this work, including ours, feature distributed key generation.

Security Notions. MA-ABE with a wide spectrum of security notions have been
considered, many being incomparable. Below, we attempt to give a systematic overview.
Security notions of MA-ABE mainly differ in the restrictions imposed to

(i) corruption queries, i.e. asking for the master secret key of a specified authority,

(ii) attribute key queries, i.e. asking for an attribute secret key issued by a specified
authority to a specified user associated to a specified attribute, and

(iii) challenge ciphertext queries, i.e. asking for a ciphertext encrypting one of two specified
messages associated to a specified access policy.

In the fully adaptive case, the adversary is allowed to adaptively issue all three kinds of
queries, so long as the challenge ciphertexts are not trivially decryptable as mandated by
the correctness of the scheme. Achieving fully adaptive security is very challenging, and
has only been recently achieved by the pairing-based MA-ABE for NC1 of [DKW23b].

All other existing schemes are proven secure under some restricted security model.
In particular, existing lattice-based schemes [DKW21, WWW22] are proven secure in a
“very-selective” model where the adversary must declare all queries of all three types in
advance before receiving even the authorities’ public keys. This is not surprising considering
even the single-authority scheme of [Wee22] has the same restrictions.

Putting aside adaptiveness of queries, the default security notion of MA-ABE has been
that the adversary cannot distinguish the encrypted message, so long as the challenge
ciphertext is not decryptable by its collection of corrupt master secret keys and attribute
keys. In particular, achieving security only when all authorities involved in the challenge
ciphertext are honest is traditionally deemed too weak.

6Except obviously that there cannot be corruption query in the single-authority setting.
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However, we make a case for this weak security notion still being non-trivial and
meaningful, if the MA-ABE scheme features distributed key generation. Indeed, the utility
of such a scheme is irreplaceable by a single-authority scheme, since having distributed key
generation means that the encryptor can freely pick any set of authorities to encrypt their
message against. Moreover, the insecurity of one ciphertext due to authority corruption
has no direct implication towards the security of another independent ciphertext.”

Both the scheme of [DKW21, Remark 6.1] for NC1 and our MA-ABE scheme achieve
very-selective honest-authorities security. Moreover, unlike the scheme of [DKW21, Remark
6.1] which offers no security in presence of corrupt authorities, the schemes presented in
this work retain limited security assuming that keys from at least one honest authority
is missing for each user. Our 2C-/MC-ABE achieve similar security in the MC setting.
As reference, we summarise existing lattice-based MC- and MI-schemes in Table 2, where
we also include the state-of-the-art group-based schemes for comparison. In this realm,
constructions for linear and quadratic policies are called MC-/MI-FEs in the literature.

1.4 Discussions

Non-triviality even assuming evasive LWE. While (some form of) evasive LWE im-
plies advanced primitives including null-iO [VWW22] and witness encryption (WE) [Tsa22],
which could be used to build (some flavours of) ABE, we observe the following limita-
tions/obstacles:

o The only existing null-iO and WE constructions [VWW22, Tsa22] rely on evasive
LWE assumptions which holds for general, private-coin auxiliary inputs, which are
qualitatively stronger assumptions. In particular, as discussed in [Wee22, Wee23],
evasive LWE for general private-coin auxiliaries is unlikely to hold in its full generality,
and recently counterexamples against certain subclasses of private-coin evasive LWE
have been discovered [BUW24]. In contrast, the evasive LWE assumptions used for
direct constructions of ABE by [Wee22] and of MA-/MC-ABE in this work involve
only public-coin auxiliaries, which is qualitatively weaker than what is currently
needed for null-iO and WE.

o Constructions of ABE from null-iO/WE seem to require embedding some form of
obfuscation of the access policy in the ciphertext, leading to non-compact ciphertexts,
i.e. ciphertext size is dependent on policy size. Explicit constructions of ABE from
WE seem to appear only recently [FWW23], which built registered-ABE (RABE)
and broadcast encryption (BE) from WE. Indeed, their RABE has non-compact
ciphertexts due to the aforementioned obstacle, and the techniques they used for
building BE do not seem to translate to an ABE for circuits. In contrast, [Wee22]
and our schemes achieve compact ciphertexts.

On Removing Random Oracles. For all of our constructions, the random oracles can
plausibly be removed by borrowing existing techniques. In a nutshell, for our 2C-ABE,
the construction may be modified in a way analogous to existing lattice-based IBE with
security in the standard model, for which we discuss in more details in Remark 3 in
Section 5. For our MA- and MC-ABEs, the random oracle may be instantiated with
a pseudorandom function of e.g. [BLMR13] which consists of subset product of public
low-norm matrices, analogous to how [WWW22] achieved MA-ABE for subset policies
without random oracles, for which we discuss in more details in Remark 4 in Section 6.

"For example, suppose authority 0 is corrupt, 1 and 2 are honest, and ctxtg,1 (resp. ctxti 2) involves
authorities 0 and 1 (resp. 1 and 2). Then even if ctxtg,; is insecure, ctxt] 2 could still be secure.
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Homomorphic KP-ABE SZeC(J::cﬁ)lz}?'
Computation [BGGT14] ’

l \Mcad)aption of [AYY22]
CP-ABE

MA-ABE MC-ABE
[Wee22] Section 6 Section 7

Figure 1: Logic flow of technical overview.

2 Technical Overview

Our constructions heavily rely on lattice-based homomorphic computation [GSW13,
BGG™14] and the techniques introduced in Wee’s CP-ABE construction [Wee22]. Figure 1
depicts the logic flow of the technical overview over our constructions.

We begin by recalling homomorphic computation techniques [GSW13] and Boneh et
al’s KP-ABE scheme [BGG™14], which Agrawal et al.s 2I-ABE [AYY22] is based on. We
then explain our adaption of Agrawal et al’s 2I-ABE to the 2-client setting. Moving to a
different construction paradigm, we recall the essence of Wee’s CP-ABE [Wee22], as well
as the evasive LWE and tensor LWE assumptions used to prove the security of the scheme.
This provides a basis for explaining our extension of Wee’s scheme to a MA-ABE. Finally,
combining many of the prior techniques, we overview our MC-ABE construction.

All discussion in this technical overview are over Z, where g is a super-polynomial
modulus, and for ease of exposition mod g operations are suppressed. In order to denote
the noisy version of a term, we underline it with a wavy underline -, e.g. s"A means

sTA + e where e is short relative to g. We abuse y to denote any Gaussian distributions
over 7Z, even if they are with different Gaussian parameters in the formal constructions.
Given any matrices A € Z2*™ and Z € Z7**, we use A~*(Z) to denote the distribution

of matrix Y samples according to x™** conditioned on AY = Z mod gq.

2.1 Homomorphic Computation

We recall the basics of homomorphic computation in lattice-based cryptography by [GSW13,
BGG*T14]. Let g" == (1,2,...,2°891-1) and G := I, ® g’ be the gadget vector and
matrix respectively [MP12]. Let B = (By,...,By) € Z2*", f: {0,1}* — {0,1} be a
Boolean function represented by a circuit of bounded-polynomial-depth, and x € {0, 1}*.
For appropriately chosen parameters, there exist efficiently computable short matrices
Hgp ; € Z'™*™ and Hp jx € Z™*™ such that

Bf ::BHB,f) (B—XT®G)'HB,f7X:Bf_f(X)G'

2.2 Boneh et al’s KP-ABE
Our starting point is the KP-ABE of Boneh et al. [BGG™14] summarised as follows.

o mpk: A s Z2*?™ B s L v s L7
o sk (A Bs)7t(v).

o ctxty,: sT(A|B—x"®G),s"v+ Lpu.

The decryptor derives s"(A | B) from s"(A | B — x" ® G), then multiplies (A | Bf)~!(v)

to derive s'v, and finally recovers £y and hence .
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Boneh et al. [BGGT14] proved the above construction selectively secure under the LWE
assumption. To recall, the selective security experiment of KP-ABE goes as follows: The
PPT adversary declares the challenge attribute x* for which they wish to see a challenge
ciphertext. They are then given the public parameters and access to a key generation
oracle, to which they can query functions f rejecting x*, i.e. f(x*) = 1. Eventually, the
adversary specifies two messages po and p1, and the ciphertext of one of which w.r.t. x*
will be given to the adversary. The adversary then continues to interact with the oracle,
and eventually guesses which message was encrypted.

A crucial step in the proof of selective security in [BGGT14] is to replace B with
B = AR + (x*)T ® G where R is some random short matrix. By the leftover hash lemma,
B generated this way is statistically close to a uniformly random one. This alternative
way of generating B, however, allows to derive a gadget trapdoor [MP12] RHRg f x- for
(A |By)=(A| ARHg ;x- + G) using which the reduction can answer any key query for
any f rejecting x*, i.e. f(x*) = 1, without knowing any trapdoor for A.

2.3 2-Client Variant of AYY’s 2-Input ABE

We start by recalling the core components in the 2I-ABE construction of Agrawal, Yadav,
and Yamada (AYY) [AYY22]. The AYY scheme borrows the main idea of the work from
Brakerski and Vaikuntanathan [BV22] on CP-ABE, which, in turn, was based on the
KP-ABE scheme of Boneh et al. [BGGT14] recalled above. We adapt their scheme to the
MC setting and prove its security under the LWE assumption in the ROM.

AYY’s 2I-ABE. AYY describe their scheme so that the authority and both encryptors
share a master secret key. We observe that, actually, the authority and encryptor can
generate their own keys distributedly, and encryptor 1 requires no secret key. Below, we
summarise this distributed version of the AYY scheme:

o pp: {Bijtic)jerg <5 (Zo7™)*, v s ZD.
o apk: A s Zp**m,

o epky: {Daj}tcigpefon) <8 (Zp<4m)2-.
o sk up s (A By)H(v).

o ctxtix,u Co, (Ciy)jer, (Cojb)jeipefo,1}, €3 Where

Co =84, Cij =SBy, ~21,G),
CQ,]‘J) = Dg,j,b . S;,j,b +S- (BQJ’ — bG), C3 = M,

with S ¢ Z2m*" and Sy ;, - Z*" for all j € [¢] and b € {0,1}.

—1
2,X2

o Cixtax,: tx, <$ D5 (0) where Dg y, vertically concatenates {Dljm,g}

JEl”
Note that ty, is a simultaneous solution of the SIS instances Dy j ., ; for all j € [/].
Such a preimage can be sampled using a trapdoor of a matrix D which is the vertical
concatenation of {Da ;s }jcipef0,1}-

To decrypt, left-multiply t,Tc2 to each of Cy, (C1,5)je[y, (Cg,j,mhj)je[(g], and c3. This
yields a ciphertext of almost the same form as in Boneh et al’s KP-ABE:

sT(A|B-x"®G), s'v 4ty gu



10 Lattice-based Multi-Authority/Client ABE for Circuits

where sT = t,T(QS. Using the decryption procedure in Boneh et al’s KP-ABE, the decryptor
removes the mask s™v and recovers t;z g, which is short if p = 0.

While Agrawal et al. [AYY22] did not provide a proof for their 2I-ABE construction,
the heuristics for security is that there seems to be no meaningful way to combine two
different short vectors tx, and t,; for x2 # x3 to obtain a new short vector tx, encoding a
new attribute X5. This allows one to conjecture that Dy j 14, ;tx, is pseudorandom for all
j €[], and hence for all j the decryptor only has access to one of (S(Ba ; + 0G))peqo,1}-

Our 2C-ABE. We adapt the AYY construction to the MC model by introducing
ciphertext identifiers cid. For this, we will use a hash function H : {0,1}* — Z} modelled
as a random oracle. Similar to AYY, ctxt; with ciphertext identifier cid consists of almost
the same ciphertext components, except that it now additionally contains (€2 j,5) e[e],be{0,1}

where € ; , = H(cid, 2, j, b)TS;jwb. We modify ctxt, such that it consists of a short vector

teidxo <8 D%, (H(cid,2,j,32;) : j € [€]).

In other words, it is a short vector satisfying Dy j 4,  teid x, = H(cid, 2, j, 22 ;) for all j € [{]
simultaneously. Finally, we modify the decryption procedure so that the step of computing
tid.xy C2.j,20,, 18 TeDlaced by t5y . Cojay ; — €2,j.a, , for each j € [(], so that the masking
term H (cid, 2, 7, xgvj)Tngm , can be cancelled out. The rest then follows the AYY scheme.

Security Analysis. The security of the scheme essentially follows from two steps. First,
we simulate ctxts via programming the random oracle H so that we can abandon the
trapdoor of D, which is possible since the adversary cannot query more than one attribute
X9 for a single ciphertext identifier cid. Then, to argue

Cajp =D}, S5, +8S (Ba; —bG)

is pseudorandom for all j,b, we show that either one of the two summands is so. More
precisely, for any attribute x2, we show that for any j € [¢]:

o If b= x5, then S(By; — 22;G) and C;; = S(B1; — z1,;G) are pseudorandom,
the proof of which follows that of Boneh et al's KP-ABE [BGG14].

o Ifb= 1—1’27]', then Dg,jﬂ—ﬂ?z,j Sg and 62’]'71,127]. = H(Cid,j, 1— (EQJ)TST

Jyl—x2 Jl—x2,;

are pseudorandom. This follows directly from LWE (w.r.t. LWE secret 92%1_“].),
as the joint distribution of Dy j 14, ; and H(cid,2,j,1 — 22 ;) is uniform random,
since the adversary never gets to query more than one attribute x5 for the same cid.

Insecurity against Corruption. We briefly discuss the insecurity of AYY and our
adapted 2C-ABE in case the adversary corrupts the second encryptor. Using the trapdoor
of D, the adversary could compute a short preimage t +$ D~1(0), hence deriving

tTCQ’j}Q = tTS(BQ,j), tTCQ’j’l = tTS<B2)j — G), tTC3 =t’Sv + tTgM.

Taking the difference of the first two terms yields t'SG, from which the adversary could

recover t'S since G admits a public trapdoor. Then, the adversary could remove the
masking term tNTVSVY and recover tgu, which is short if 4 = 0.
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2.4 Wee’s CP-ABE

To obtain our MA- and MC-ABE schemes, our starting point is the CP-ABE of [Wee22]®
which can be summarised as follows®:

o mpk: A ¢ Zp"T IO B — (B By) -8 Z2 P s ZD, u 48 X

Denote A = (i) where A € Z;’X2m(m+1),A c ZZMXQm(m,—Q—l)’

o sk ky € Z2m(mtD) U, e 72mIx(Umt1) where

m —1 ka
ky <$x™, Uy <3 A < (B—x"®G) ok,

o ctxty,: (co,c1) € Z7 X ng(mﬂ) where § <8 Z, s <8 Z;"™,

co =8P +s (Bual,)+pug', ci = (" |sHA.

To decrypt, one declares = 0 if cfkyx — ¢]Ux = ug'ky is short.

To prove the very-selective security of the scheme, Wee [Wee22] relied on the LWE,
evasive LWE, and tensor LWE assumptions. First, using the evasive LWE assumption, it
suffices to argue that the following are pseudorandom:

5P + §T(Bfu ®1,),5TA +s"A, (sTka,sT((B -Xx'®G)® kx))
AN TN e xeX

where X collects attributes for which the adversary asks for secret keys. Writing

§'Pky = (5'P + 5" (Byu ® L) )kx —8"((B — x" ® G) ® ky)Hp pxu + 5" (Gu @ ky),
for each x € X and resorting to noise flooding, it suffices to argue that

sP+s"(Bju®l,),sTA +s'A, <ST((B -x'®G | Gu)® kx))
RSO AEEEE SO T NI e e X

is pseudorandom. Notice now that the LWE secret s only appears in the terms s'P and

§"A, which are pseudorandom by LWE. We are now left with
sT(B-—x"®@G | Gu)®@ky),Vx € X

which is pseudorandom under the tensor LWE assumption.

2.5 Our MA-ABE

We extend Wee’s CP-ABE to an MA-ABE. The starting idea is two-fold: (i) We replace
A with A;, i € [k], where authority ¢ has a trapdoor for A; and is responsible for handing
out keys for x,iq; encoded as B; — x4 ; ® G. (ii) We replace the masking term §'P in
the ciphertext by sTP, for i € [k]. The ciphertext is constructed in such a way that the
i-th masking term sTP can only be removed using key material provided by authority 4.
These result in a scheme that is secure when all authorities are honest, but is insufficient
in presence of corruption (we elaborate this in Remark 1). Thus, we introduce the third
modification, which involves an additional public matrix Q, together with the associated
term QK4 in the secret key and a new component in the ciphertext.

8For simplicity, we consider the variant obtained after the “second modification” [Wee22, Section 2.1]
and proven secure under the tensor LWE assumption [Wee22, Section 5.4].

9We use A and A to denote the “top part” and “bottom part” of the matrix A. Similarly § and s for
the first and second chunk of the vector s.
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Construction. Let H : {0,1}* — x™ x x™*™ be a random oracle for deriving common
randomness for generating user secret keys for a user identifier uid. Our construction can
be summarised as follows:

o pp: P<8Zp*™, Q«$Zy ™, u«sx".
o apk;: A s Zy U TEMIMAY g, g gnxim,

e sk Uyia,i € Z2™ where (Kyid, Kuid) == H(uid) and

uid, i
| (Pky QK,,
o : 1 uid uid
g €6 8, ( (Bi — X, ® G) ® kuid) '
e ctxt: (co,C1,...,Ck,C) € ZE™ X (zZm Tk o Z; where
G =(s]s) A Vie, co=(il %) 1:2Q)

' =Y siP+sT (Bjudly,) +ug'

The new component cg allows for cancelling out the additional block QK4 in the
secret key. After that, correctness is analogous to the scheme of Wee [Wee22].

Security Analysis. We sketch a proof that the above scheme is very-selectively secure
under the evasive LWE and tensor LWE assumptions. In the following, we divide each

A;
A (&

1
use the shorthand Buid’i =B, — xﬁid’i ® G.

The adversary specifies the following information: (i) Zeorr C [k] the set of corrupt
authorities, and (ii) @ the set of (uid,,Xyiq,;) tuples for which the adversary requests
a secret key for user uid associated to attribute xiq;. We write U for the set of all uid
appearing in @ and, for each uid € U, Z,iq C [k] for the set of authorities from whom the

adversary requests a secret key for user uid. In return, the adversary receives the following:

) into a top part A; € ngzm(mﬂ) and a bottom part A; € Z;LmX2m(m+l). We

« Public information: (A;, B;)ick), P, Q, (Kuid, Kuid)uidewr, 1
o Trapdoors for corrupt authorities: (tda,)iez....

Pk,; K. L
o Attribute secret keys: Ai_1 d QKuia ,V (uid, 4, Xyig5) € Q
Buid,i ® kuid ’

¢ Challenge ciphertext:

(s 187): Addiew, (1] 50) Tx 8 Q) Dy 5P +57 (Bru@In) + pg’

We would like to show that the term masking p in the challenge ciphertext is pseudorandom
in the view of the adversary. We distinguish between two cases:

Case 1. T oy = 0, i.e. all authorities are honest.'©

Case 2. Zeorr # 0, i.e. some authorities are corrupt, and Zyiq U Zeorr # [k] for all uid € U,
i.e. for each uid there exists at least one honest authority iyig & Zcorr from whom the
adversary receives no secret key for user uid. A discussion on this corruption setting
is given in Section C.

108ee Remark 2 for a discussion on assuming Q = [k] x U.
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Case 1. Notice that the adversary’s input can be efficiently simulated given:

(Ai7 Bi)ie[k]a Pa Q> (kuida Kuid)uideua u,

A (Pk“id BHS}{;‘I‘{M) LV uid €U, i € [K]

((s0187) - Ais 5/ Q)iepy LigpysiP +5"- (Bru®Ly)

To argue that the masking term is pseudorandom, it suffices to prove that the terms in
the last line above are pseudorandom. Invoking the evasive LWE assumption, it suffices to
argue that the terms below are pseudorandom:

(57 Pkuia: 5/ Qo 7 Buigs  Kuig) uiacv el

(SJ];AK/& +s'A,;, ?\;‘ig)ie[k]v Zie[k] siP+s" (Byu®ly)

A~~~

For any uid, we observe the following identity expressing sJPk,q as a short linear combi-
nation of the other given terms and an additional term s"(Gu ® kyq):

s; Pkyia = (Zie[k] s;iP+s"- (Bfu® Im)) Kuid — ZiE[Q,k] s} Pkyid
— (87 (Buig; ® Kuid))ick) HB, fxiq + 8" - (Gu® Kyig)

This means that, using noise flooding, it suffices to argue that the terms
($TPkui)ico il ideurs (37 (Buigs @ ki), 87 - (Gu & k) uiger el
(sjA; +s"A;, s]Q)icik; Yic SiP+st-(Bu®ly)

are pseudorandom. Notice that s; only appears in the terms in the second line above. By
the LWE assumption, we have that s] A1, sTQ and s!P are pseudorandom, hence so are

SNLXVEJFSNTVAVE and 3-,c siP +s' - (Byu®1I,). Now it remains to argue pseudorandomness

of the following;:

(5T Puie)iefo ) iacus- (ST Buia © Kuia). 87 - (GU © Kuig) uaers e

(s7A: +5"Ay, 5] Q)icpy

Using noise flooding, for each i € [2, k], the terms (s}Pkuid)u;deu is simulatable using SZTP.
Then, by LWE, we have that sTP, sTQ and sTA; are pseudorandom for all i € [2,k]. We

are thus left to argue the pseudorandomness of

(57 Buigs @ kia), 87 (G Kuia)hiseus et

which follows from the tensor LWE assumption.

Case 2. Before describing the security proof, we observe that security in this case cannot
rely on the secrecy of the LWE secret s, since the adversary can use tda,. of any corrupt
authority i* to invert (s%. | sT) - A;« in the ciphertext and recover both s;« and s. Security

instead relies on the secrecy of s; for an honest authority ¢, and the obstacle now is to

(PkUid . QK > which is correlated to (the

simulate the secret keys Uyig; = A
VB Fuidsd Buid,i ® kyid

K2
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no longer secret) s by the relation sTA; - Uyig; ~ (0 | E”uid,i ® kyiq) for any i. We obtain

two strategies to tackle this issue, both having different trade-offs: One is relatively simple,
but relies on a slightly stronger instance of evasive LWE, where the distribution of the
preimages is Gaussian not only subject to image evaluation but has to satisfy additional
constraints; Another one requires only a weaker evasive LWE instance, with preimages
simply distributed Gaussian subject to image evaluation (without further constraints), but
at the cost of more complicated simulation techniques and poorer asymptotic parameters.
Below we only describe the first and simpler proof, which conceptually resembles the proof
of Case 1. In this case, the adversary’s input can be efficiently simulated given:

(A, Bi)ic(k]\Zeor» P> Q, (Kuid, Kuid)uiders; 1

_ Pkui Kui . .
Ui = A} d B? ®‘;(Uid YV uid € U, i € [k]

(%@ SEWQ)ie[k]\Im’ D e[\ Leone s; P

To argue that the masking term is pseudorandom, we need to show that the terms in
the last line above are pseudorandom. By (a stronger!! instance of) the evasive LWE
assumption, it suffices to argue that the terms below are pseudorandom:

(s7Pkuid, 5] QKuid)ie T\ Zeorr idetts (5] A4y SIQ)i€ b\ Zuures 2oic b\ Lunws Si P

corr Z

Since Zeorr # [k], there exists at least one honest i* € [k] \ Zcorr. For any uid, if i* ¢ Z,;q4,
note that the term s}*Pku;d is not available to the adversary. Otherwise, if i* € Z,q,

we observe the following identity expressing sl. Pkyq as a short linear combination of
Zz‘e[k]\zcm s7P and (s[Pkyiq); for i € [k] \ Zcorr, @ # i*:

Si-PKuid = (i 2.,r, STPIKuid = 2 ic b\ Zowrviti= S P Kaia

Similarly, (sTQKuid)uiders is simulatable by sTQ for all i € [k] \ Zcorr. This means that,

using noise flooding, it suffices to argue that the terms below are pseudorandom:

(ST PKuid) i€ k\Zeorr videttiizti®s (5] A5 ST Q)ieh\Toorr Doic(k)\Loore Si P

Notice that sz* only appears in the first two terms above. By the LWE assumption, we
have that sl 1 , Sk Q and S P, and hence also ), € [k\Z. sTP, are pseudorandom. We

corr

are left with

(S Pkmd)ze[ EN\Zcorr ,uidEU 543" (S Au S; Q)ze[k]\Lm iAT*

which, upon noise flooding, are efficiently simulatable from sTP sTA and STQ for all

€ [k] \ Zcorr : @ # ¢, which are in turn all pseudorandom under the (low-norm) LWE
assumption. This concludes the analysis.

Remark 1. In Case 1 where no authority is corrupt, the term QK4 in the secret key
together with ¢ in the ciphertext can be removed (QK,q4 replaced by 0) without affecting
correctness and security. In contrast, in Case 2 where at least one authority is corrupt,
the scheme becomes insecure without these components, due to the following attack: The

1 The evasive LWE instance is such that the distribution of a preimage U.ig,i, in addition to satisfying
A; - Uiid;i = (Pkug | QKyig), satisfies also A; - Uyig; = (0 | Buid,i ® kyig). An alternative proof
in Section A.2 lifts this additional constraint.
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adversary uses tda,. of any corrupt ¢* to recover s;- and s, which allows it to further
recover sTA; from (s} | sT)A; for all honest i ¢ Zcoprr. Now suppose QK,iq is removed, so

that A; - Uyig; = (Pkyida | 0). By querying sufficiently many preimages for each honest 4,
theﬁcollection (over all uid) of the right parts of Uyq,; can be viewed as an Ajtai-trapdoor
of A;, thus allowing the adversary to further recover s; for all honest 7.

In Section C we discuss stronger security notions in presence of corruption and why it
is difficulty to achieve.
2.6 Our MC-ABE
Equipped with all the above machinery, we combine the ideas in Boneh et al’s KP-ABE
and our MA-ABE into an MC-ABE.

Construction. Let H : {0,1}* — x™ x x™*™ be a random oracle for deriving common
randomness for generating ciphertexts for a ciphertext identifier cid. Our construction can
be summarised as follows:

o pp: Bi ¢ ZyX i€ k], P s Zp, Q8 Ly v s Ly
e apk: A < Z;”Qm,
o epk;: C; < Zn(mH)xam(mtl)

7° .

o sky: uy € Z2™ where uy < (A | By) 7 (v).

e ctxty: (cg,c1,...,Ck, €,C) € ng+k(2m(m+1))+2m where (Ked, Keid) == H(cid),
ci =s' - ((B1 — xggq1 ® G) ® keg), c; =(s;[s)-Ci Vie[2k],

¢’ = Zie[z,k} siP+s' (valy)+pug'

o ctxt; fori > 1: Ugqg, € ng(mﬂ)x(mﬂ) where (keg, Keig) = H(cid) and

Pkcid QKcid )

. -1
Uz ] Cz < (Bz _ X'llf ® G) ® kcid

The decryptor computes, for all i € (2, k], ¢]Ugq,; to obtain

s] Pkeq and $iQKig + 8" - (Bi —x¢q; © G) ® keig).

Summing the first term for all i € [2, k] gives Zi€[2,k] sTPkgq, and subtracting the second
term from s7Q-Kcg (where sTQ is the i-th chunk of cf) gives s - ((B; — xzid,i ® G) @ ked).

Then, concatenating the latter for all ¢ € [2, k] together with ¢, the decryptor recov-
ers s+ (Bf ® k¢iq) using homomorphic computation assuming f(Xcid,1,-- -, Xcdx) = O.

Concatenating ¢" and s” - (B; ® keq) yields s™- (A | By) ® keiq) to which the decryptor
multiplies uy which yields s” - (v ® keig). Finally, linearly combining the above intermedi-

ate results with c"kgq yields a short element if ;4 = 0, and a random-looking (hence long)
element if p = 1.
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Security Analysis. We sketch a proof that the above scheme is very-selective secure
under the evasive LWE and tensor LWE assumptions. We use the shorthand Bcidﬂ- =
B —xgq,; ®G.

The adversary specifies the following information: (i) Jeorr C [2, k] the set of corrupt
encryptors, (i) F the set of functions for which the adversary requests a secret key, (iii) cid*
the identifier of the challenge ciphertext, (iv) Xcq=,1 the first attribute associated to the
challenge ciphertext, and (v) @ the set of (cid, ) tuples for which the adversary requests a
ciphertext from encryptor ¢ > 1 for ciphertext identifier cid associated to attribute xciq ;.
We write C for the set of all cid appearing in @ and, for each cid € C, Juq C [2, k] for the
set of encryptors from whom the adversary requests a ciphertext for ciphertext identifier
cid. In return, the adversary receives the following:

e Public information: A, (B;)icix), (Ci)iepz.1], Py Q, (Keid, Keid)cidec, v
 Trapdoors for corrupt encryptors: (tdc;)je ...,

« Policy secret keys: ((A | Bf)_l(V))

feF
e Challenge ciphertext:
((si |87) - Ci)iepz.u; YicpmSiP+sT (valy)+ gt
e Other ciphertexts: Ci_1 Pl - Qi , ¥V (cid,i) € Q
Bidi ® keid

We want to show that the term masking i in the challenge ciphertext is pseudorandom in
the view of the adversary. Again, we distinguish between two cases:

Case 1. Jeorr = 0, i.e. all encryptors are honest'?, Q = [2, k] x C, and J(Xcia*,i)ier) = 1
for all f € F.13

Case 2. Jeorr # 0, i.e. some encryptors are corrupt, and Jeig+ U Jeorr # [2, k], 1.€. there
exists at least one honest encryptor j € [2,k] \ Jeorr from whom the adversary
receives no ciphertext for ciphertext identifier cid*. The discussion in Section C
applies also here.

Case 1. As in the security proof of Boneh et al’s KP-ABE, a crucial step in this analysis
is to simulate B = (By | ... | Bg) as B := AR 4 x4 ® G, where x[. = (xfge; | -+ |
XGg- ) and R s x>k swhich by the leftover hash lemma is statistically close to a
uniformly random B. This alternative way of generating B then allows to derive a gadget
trapdoor [MP12] RHg fx . for (A | Bf) = (A | ARHg sx_. + G) using which the
reduction can answer to any key query for f with f(xqd=) = 1, without knowing any
trapdoor for A.

Another non-trivial step is that, to simulate the adversary’s input, we further assume
that the simulator is given sT(A ® kqq) and sT(Bc;d*J ® keig) for all cid € C instead of

only for cid = cid*.

121n the formal definition, we allow encryptors not specified in the challenge ciphertext to be corrupt.

13We again assumed without loss of generality, with the same argument as in the analysis of our
MA-ABE scheme, that g = [2, k] for all cid, i.e. the adversary requests ciphertexts for every cid from
every encryptor i > 1.
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With the above simulation strategy, the adversary’s input can be efficiently simulated
given the following information:

A7 R7 (Ci)ie[Z,k] ) P7 Q, (kcid7 KCid)CideC, v,
— Pk i QK X

1 cid cid . -
i BCid,i ® kCid) ’ Vie [27 k], cid € C7
(7 (A @ keg))eigec, (7 - (Baiar1 ® keia)iaec,

(M)ie[lk]’ Zie[27k] siP+s-(val,)

C

To argue that the masking term is pseudorandom, it suffices to argue that the terms in
the last two lines above are pseudorandom. From here onwards, the analysis is almost
identical to that of Case 1 of our MA-ABE scheme, with the main difference being that
we also need to take care of the additional terms (s"(A ® keig))cidec, but which is easily

handled by the tensor LWE assumption. We leave out the rest in this overview.

Case 2. The proof for Case 2 is almost identical to that for the MA-ABE scheme, with the
main difference being Jeig C [2, k| instead of Zyiq C [k], which we omit from this overview.

3 Preliminaries

Let A € N denote the security parameter, and poly(\) and negl(\) the set of all polynomials
and negligible functions in A, respectively. For k,n € N, k < n, we write [n] for {1,...,n}
and [k,n| for {k,...,n}. If S is a set, we write x +$ S for sampling a uniformly random
element from S. If D is a distribution over S, denoted as D ~ S, we write x <$ D for
sampling a random element from S according to the distribution D.

We use bold capital and lower-case letters, e.g. A and b, to denote matrices and vectors,
respectively. We write - for the usual matrix product, which is sometimes omitted, and ®
for the tensor (i.e. Kronecker) product of matrices. The matrix tensor product satisfies the
mixed product property: For all matrices A, B, C and D of suitable dimensions, we have
(A®B)(C®D)=AC®BD. For x € Z", write ||x|| = max!", |z;| for the {s-norm of x.

3.1 Discrete Gaussians

We denoted by Dy . the discrete Gaussian distribution over a lattice A with param-
eter x and center c, i.e. the distribution over A where for all x, it holds Dp yc(x) o
exp(—1 3¢ (@i — ¢3)?/x?). If € =0, it is omitted from the subscripts. With an abuse
of notation, we will also denote by x™ the zero-centered discrete Gaussian distribution
over A = Z™ with parameter x, i.e. Dzm .

Lemma 1 (Derived from [MP12, Section 2.4]). For any m € N, k > 0,
Pr||x|| > kx | x <8 x™] < 2mexp(—mk?).
In particular, for m = poly(\), it holds that
Prlllx] > A | x ¢ x™] = negl(}).

Lemma 2 (Noise Flooding). Let A be an n-dimensional lattice. For any real x > w(y/logn),
and any ¢ € R™, it holds SD(Dx .y, Day.c) < llcll/x. In particular, if x > A1) - |||, one
has Dy ~s Dp y,c-

Lemma 3 (Extended Leftover Hash Lemma [DRS04, ABB10]). Suppose that m > (n +
1)logq + w(logn) and that ¢ > 2 is prime. Let R be an m X k matriz chosen uniformly
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in {—1,1}"*k where k = k(n) is polynomial in n. Let A and B be matrices chosen
uniformly in Zy=™ and Z;’Xk respectively. Then, for all vectors w € Zj", the distribution
(A, AR, R™wW) is statistically close to the distribution (A,B,Rw).

Lemma 4 ([GPVO08]). Let n and q be positive integers with q prime, and let m > 2nlogq.
Then for all but a 2¢~" fraction of all A € Zy*™ and for any s > w(y/logm), the
distribution of the syndrome u = Ae mod q is statistically close to uniform over Zg, where
e ~ DZVYL’S.

3.2 Homomorphic Computation.

We recall the basics of homomorphic computation [GSW13, BGGT14]. There exist de-
terministic polynomial-time algorithms EvalF and EvalFX which do the following. For
n,q,f € N, m = nflogq], g" = (1,2,...,2M°891=1) "and G = I, ® g7, there exists
B < (nlogq)®@, such that for any matrix B = (By,...,B;) € (Z"*™)*, depth-d Boolean
circuit f: {0,1}* — {0,1}, and input x € {0, 1}¥, the matrices

Hg ; = EvalF(B, f) € Zf™*™, Hg ;x = EvalFX(B, f,x) € Z'™*™,

satisfy

IHp, x|l <8, (B-x"® G)Hp sx = By — f(x)G mod g,

where By :== BHgp,y mod q.

3.3 Lattice Trapdoors

There exist PPT algorithms (TrapGen,SampPre), such that for appropriately chosen
n,q,x parametrised by A, with x > O(y/n - logq - logn), the following properties are
satisfied [GPVO0S, MP12, GM18]:

« (D,R) < TrapGen(1",q) generates a matrix D € Z"*" where h = 2n[logq], and
q

a trapdoor R € ZM*nllegdl gych that DR = G mod q. The distribution of D is
statistically close to the uniform distribution over Z;LXh.

e u < SampPre(D, R, v, x) inputs a target vector v € Zy and a Gaussian parameter

X, and samples a vector u € Z". For any D € Z*" R € ZZX"“OM such that
DR = G mod g and 5(s1(R)? + 1) < x? where s1(R) is the maximal singular value of
R (e.g. when (D, R) is output of TrapGen(1”,q)), it is guaranteed that Du = v mod ¢
and |lu]] < Ay with overwhelming probability. Furthermore, for any v € Zq, the
following distributions are statistically close:

{(D,u) (D,R) eTrapGen(w,q))} N {(D,u)

u < SampPre(D, R, v, x
3.4 Lattice Assumptions

(D,R) « TrapGen(1™,q)
u+s$x":Du=vmodgq| "

Definition 1 (LWEy  m.q,x,¢ assumption). Let k,n,m, g, x, ¢ be parametrised by A. The
(decision) LWEg nm.q,x,¢ assumption, with k suppressed if &k = 1 and ¢ suppressed if it is
the uniform distribution over Z,, states that for any PPT adversary A it holds that

A g™

A o™
S «$ZF " B s ™ .
Prib=1 1 —Prib=1|B sz, " < negl(}).
B :=SA +Emodq
b+ A(A,B)

b+ A(A,B)
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ExpTensorLWEY (1*) ExpTensorlWE, (1*)
AsZP s s I A +s7Z3
ei s x5, T s X" Vie[Q) ri <s$x1 Viel[Q]

bl =s"(A-xI®G)@r) +elmodq Vie[Q bisZy" Vie(Q]

return A(A, (b;, x;, ri)ie[Q]) return A(A, (bi,xi,Ti),co))

Figure 2: Experiments for tensor LWE.

The LWE problem with ¢ being uniformly over {0,1} or the Gaussian distribution
Dzm . has been shown to be as hard as the uniform LWE problem [BLMR13].

Below we state the tensor LWE assumption as in [Wee22|, and define a version of
public-coin evasive LWE assumption closely following [Wee22, WWW22].

Definition 2 (TensorLWE,, 1, 4.x0,x1,¢,0 assumption). Let the parameters n,m, g, Xo, X1,
¢, Q be parametrised by A, where the set Q contain x1,...,xg € {0,1}¢, where |Q| = Q €
poly(A). The TensorLWE,, 1, g.x0.x1.¢,0 assumption states that for any PPT adversary A it
holds that

‘Pr[ExpTensorLWE&(l)‘) =1] - Pr[ExpTensorLWEi\(l)‘) =1] ’ < negl(A)
where ExpTensorLWEl;l is defined in Fig. 2.

The tensor LWE assumption has been heuristically justified by that, if the LWE
matrices (A — x! ® G) were low-norm!*, then it could be proven from the standard LWE
assumption. We refer to [Wee22] for the details.

Definition 3 (Public-coin EvasivelWE assumption). Let the parameters param = (g, k, n,
m,ng, mo, S, X, (Pi, Xi, ¥i, 0i)icr]) be parametrised by A, where S ~ (Zg)k X Ly, X ~
Z,Xi ~ Z,1; ~ 7 are distributions. Let Samp be a PPT algorithm which, on input 1%,
outputs

(A € zZpoxmo, (P; € Z1*Pi) ey, aux € {0,1}%)
with aux containing all coin tosses used by Samp. Denote

AV (N) = [Pr[Predy (1) = 1] — Pr[Prely (1) = 1],
Advi=t(\) = ‘Pr[Post%(lA) = 1] — Pr[Postz(1*) = 1]

)

where the experiments Prei’4 and Post% are defined in Fig. 3. The EvasivelWEg,ram
assumption states that for any PPT Samp and B there exists a PPT A such that
AdVPE(N) > AdVEE(N\)/poly(\) — negl(\).

In words, the evasive LWE assumption says that, if LWE w.r.t. the matrices A, B;, P;
jointly is hard, then LWE w.r.t. the matrices A, B; jointly is also hard even when given
short preimages f’)i_ L(P;) as hints. Behind is the intuition that, there seems no alternative
meaningful use of B;l(f’l) other than multiplying which to B; to obtain further LWE
samples w.r.t. P,. Variants similar to Definition 3 have been studied in the recent work
of [BUW24] in form of the wider class of public-coin evasive LWE assumptions. Looking
ahead, in the security proofs of our MA- and MC-ABE constructions in Sections 6 and 7,
we will make use of the assumption with the following secret distributions Sy, S1, Sa:

14 Although this cannot be true with G which is not low-norm.
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Prez‘(l’\)

Post(1%)

(A, (f’i)ie[k],aux) — Samp(l)‘)
B; « Z0°™, Vi € [k]

if b =0 then
e s X" e <+sxi, fi<syli, Vielk]

co :=8"A + €}, mod q

d] :==5]B; +e; mod ¢, Vi € [k]

q; =8P, +f] mod q, Vi € [K]
if b=1 then

(A, (f’i)ie[k], aux) — Samp(l)‘)
B; « Z0*™, Vi € [k]
if b =0 then

((8:)icix]»8) <8 S

e s X" e +sxi, Vi€ k]

co :=8"A + €}, mod q

d] :==5]B; +e; mod ¢, Vi € [k]

U; « Dy 7 B,U; = P; mod g, Vi € [K]
if b=1 then

Co <$ Z:Ino; d; s Z;n, Vi € [k}
q, <sZ, Vi€ [k

A7 (37)z€[k]7
Co, (d1)1€[k]7

Co <$ Zzno; d; s Z;n, Vi e [k}
U; « D7 : B;U; = P, mod q, Vi € [k]

151) k B P
return A ( (Pi)ierr, aux) A, (Biicw)r Pi)ic)
Ay return B aux
(@:)iemu, co, (di)icrw, (Ui)iemm,

Figure 3: Experiments Pre and Post for evasive LWE.

o In the non-corrupt setting (Case 1 in Section 2), we let 8] = (s],s”) for each i € [k],
and §" = (s],...,s],sT) where s;’s and s are the uniformly random LWE secrets in
the constructions. We call this distribution Sy. This closely resembles the evasive
LWE of [WWW?22], which also consists of B;, P; and U; for multiple i’s, with the
only differences being the precise LWE secret and error distributions.!®

o In the corrupt setting (Case 2 in Section 2), we let 8] = (s, 0") for each non-corrupt
index i ¢ Z, and 8" = (...,s],...);¢z. We call this distribution ;.

o We also provide an alternative (and more complicated) proof our MA-ABE in the
corrupt setting in Section A.2, where we let 87 = sT for each non-corrupt index
i ¢ T, and again 8" = (...,s],...);¢z. We call this distribution S,. This version is

essentially identical to that of [WWW22], up to error distributions.

We refer to Section 1.4 for a short discussion on public- vs. private-coin evasive LWE, and
to [BUW24] for more details on existing evasive LWEs, their similarity and differences,
and known counterexamples against certain private-coin variants (not applicable to the
public-coin setting).

4 Multi-Authority /Client Attribute-based Encryption

We recall the definition of multi-authority attribute-based encryption (MA-ABE) in our
notation, and formally define multi-client attribute-based encryption (MC-ABE).

MA-ABE Let X, F, and M denote the attribute space, the policy space over X*, and
the message space respectively for some k£ € N. An MA-ABE consists of PPT algorithms
(Setup, AuthSetup, KGen, Enc, Dec) with the following syntax:

o pp < Setup(1*): The setup algorithm generates the public parameters pp.

15In [WWW?22], the LWE secrets of B; and A are sT and (s,...
vectors e;, f; is restricted to have identical width for all entries.

,s',rc) respectively, and each of the error
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o (apk,ask) < AuthSetup(pp): The authority setup algorithm generates a pair of
authority public key apk and secret key ask for an authority.

o sk + KGen(pp, apk, ask, uid,x): The key generation algorithm generates a secret
key sk given a pair of authority public key apk and secret key ask, a user identity
uid € {0,1}* and an attribute x € X.

e ctxt < Enc(pp, (apk;)ic[x], f, #): The encryption algorithm encrypts a message y € M
w.r.t. a tuple ofk authority master public keys (apk;);cx, and a policy f € F.

o 1/ < Dec(pp, (apk;)ic[x]; (sk;)ie[k), ctxt): The decryption algorithm, on input a tuple
of authority master public keys (apk; )i, secret keys (sk;);cx) and a ciphertext
ctxt, outputs a message p'.

Definition 4 (Correctness). An MA-ABE scheme is correct if for any A\, k € N, pp €
Setup(1*), (apk;, ask;) € AuthSetup(pp) for i € [k], uid € {0,1}*, p € M, (x;);ep) € X*,
and f € F satisfying f(x1,...,xx) = 0, it holds that

sk; < KGen(pp, apk, ask, uid, x;) Vi € [k]
Pr|p' = p | ctxt < Enc(pp, (apk; )ie[n: /5 1) > 1 — negl(}).
NI < Dec(pp, (apki)ie[k}7 (Ski)ie[k‘]a ctxt)

Definition 5 (MA-ABE Security). An MA-ABE II is IND-CPA-secure (under selective
authority corruption, key attribute, and ciphertext policy queries), if for any PPT A,

|Pr[ExpMAY 4 (1) = 1] — Pr[ExpMA[ 4 (1*) = 1]| < negl()),

where ExpM/—\%_’ 4 are defined in Fig. 4. Alternatively, II is IND-CPA-secure without
missing keys if the inequality holds conditioning on the event “if bnonest security = 1 then
bkeyimissing = 0”7 where bhonestisecurity and bkeyimissing are defined in Flg 4~16

MC-ABE Let X, F, and M denote the attribute space, the policy space over X*, and
the message space respectively for some k£ € N. An MC-ABE consists of PPT algorithms
(Setup, AuthSetup, EKGen, KGen, Encyain, Encsu,, Dec) with the following syntax:

o pp + Setup(1?): The setup algorithm generates the public parameters pp.

o (apk,ask) < AuthSetup(pp): The authority setup algorithm generates a pair of
authority public key apk and secret key ask for an authority.

o (epk,esk) < EKGen(pp): The encryptor key generation algorithm generates a pair of
encryptor public key epk and secret key esk for a (sub)-encryptor.

o sk < KGen(pp, ask, f): The key generation algorithm generates a secret key sk given
an authority secret key ask, and a policy f € F.

e ctxty < Encpain(pp, apk, (epk;)ie[2,x], ¢id, X1, ¢): The main-encryption algorithm (for
slot 1) encrypts a message p € M w.r.t. an authority master public key apk, a tuple
of encryptor master public keys (epk;);c[2,x], a ciphertext identifier cid € {0,1}*, and
an attribute x; € X.

o ctxt; < Enceu(pp, i, esk, cid, x;): The sub-encryption algorithm (for slot ¢ € [2, k])
inputs the slot number ¢, an encryptor secret key sk, a ciphertext identifier cid, and
an attribute x;, and outputs a ciphertext ctxt;.

165ee Remark 2 for discussion on this condition.
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ExpMAY 4 (1)
N eN, // number of authorities
Teorr - [N], // authority corruption - A(lk)
Z/I, (Iuid - [N])uideu, (Xuid,i)uideu,iezuid, // attribute key queries
7 Ck [NL f*, // challenge ciphertext

pp Setup(lA)

for i € [N] do (apk;, ask;) < AuthSetup(pp)
for uid € U, i € Zyg do sk, ; < KGen(pp, apk,, ask;, uid, Xyid,:)

(po, p1) < A(pp7 (apk;)sepn - (aski) ez, s (Skuid,i ruid e Ui € Iuid))

ctxt” < Enc(pp, (apk;)iez+, f*, )

b+ A(ctxt™)

bhonest_chal_auth ‘= (" N Zcorr = )

brey missing = (3 uid € U, "¢ Lid)

bkeyimissingﬁoripolicyireject = (V uid € U, (I* Z Iuid) \% (f*(xuid,i 11 € I*) 7é 0))
Dhonest_security ‘= Dhonest_chal_auth /A Dkey missing or policy reject

beorrupt_security ‘= (V uid € U, T\ (Zuid U Zcorr) # 0)

assert bnonest_security V Deorrupt_security

return b’

Figure 4: Security experiment for MA-ABE.

o 1/ < Dec(pp, sk, (ctxt;);efx)): The decryption algorithm, on input a secret key sk and
a tuple of ciphertexts (ctxt;);e[x), outputs a message u'.

Definition 6 (Correctness). An MC-ABE scheme is correct if for any A,k € N, pp €
Setup(1*), (apk,ask) € AuthSetup(pp), (epk;,esk;) € EKGen(pp) for i € [k], cid € {0,1}*,
any p € {0,1}, f € F, (Xi)iep € X* satisfying f(x1,...,x3) = 0, it holds that

sk < KGen(pp, ask, f)

ctxty < Encuain(PP, 2Pk, (epk; )ie(2,4], €id, X1, 1)
ctxt; « Enceun(pp, 4, esk;, cid, x;) Vi € [2, k]

1" < Dec(pp, sk, (ctxt;);c(x])

Pr|y =p > 1 — negl(A).

Definition 7 (MC-ABE Security). An MC-ABE scheme II is IND-CPA-secure (under
selective encryptor corruption and ciphertext attribute queries, and adaptive key policy
queries), if for any PPT A,

|Pr[ExpMCR; 4(1%) = 1] — Pr[ExpMCy; 4(1%) = 1]| < negl()),

where ExpMC%, 4 are defined in Fig. 5. Alternatively, II is IND-CPA-secure without missing
ciphertexts if the inequality holds conditioning on the event “if buonest security = 1 then
betxt missing = 07, Where begxt missing i defined in Fig. 5.

Remark 2 (On assuming no key/ciphertext missing). In the MA-ABE security experiment
(Flg 4)3 suppose the ﬂag bhonest_security is set. Then the ﬂag bkey_missing_or_policy_reject
is set if for each uid € U, any of the following is true: 1) Z* € Z,;4, meaning that at least
one attribute key from an authority is missing, or 2) f*(Xyia,; : ¢ € Z*) # 0, meaning that
the policy f* rejects the attributes for user uid authorised by the authorities Z* C Z,iq. If
the first event never happens for any uid, then we have byey missing = 0.
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Expl\/IleLA(l)‘)
N eN, // number of encryptors
jcorr Q [2, N], // encryptor corruption - A(l)\)

C, (jcid = Lﬂ?:Qxycid,i - [27N])cid€C7 (Xcid,j)cidEC,jEJcidv // ciphertext queries
J* = (];, cee ,];) Ck-1 [ , ], cid* € C, Xcid*,1, // challenge ciphertext

pp < Setup(lA)

(apk, ask) + AuthSetup(pp)

for j € [2, N] do (epk;, esk;) < EKGen(pp)

for cid € C, i € [2,k], j € Teid,i do ctxted,i,; < Enceu(pp, 7, eskj, cid, Xcid, ;)

(0, j1) — AKGen© (pp7 apk, (epkj)je[z’N] s (eskj)je g, (Ctxteia,i,; s cid € C i € [2,K],5 € iid,i))

ctxt”™ < ENnCpain(pp, apk, (epk;)je s+, cid”, Xcia= 1, fis)

B AKCO (i)

bnonest_chal_enc = (J " N Jeorr = 0)

betxt_missing = (37 € [2,k], ji & Teia=.i)

bpoticy reject = (V f € K, f(Xcid*,17Xcid*,j;7~~~7Xcid*,j;) #0)
Dhonest_security ‘= Dhonest_chal enc /A (Dctxt_missing V Dpolicy reject)
beorrupt_security = (31 € [2,k], ji & Tcia*,i U Teorr)

assert bhonestisecurity \ bcorruptisecurity

/
return b

KGenO(f)

if K[f] = L then K[f] + KGen(pp, ask, f)
return K[f]

Figure 5: Security experiment for MC-ABE.

We show that an MA-ABE which is IND-CPA-secure without missing keys can be
generically turned into another MA-ABE which is IND-CPA-secure without such condition.
The transformation can be outlined as follows: We construct wrapped versions KGen” and
Enc’ of the KGen and Enc algorithms respectively. On input an attribute x, KGen’ calls
KGen on x’ := (0,x), i.e. appending the attribute vector with a 0. On input a function f,
writing x; = (b,x;), Enc’ calls Enc on f/(x{,...,x}) which checks if any of the b; is 1. If
so, f’ returns 1. Else, it returns f(xq,...,Xg).

Since f'((0,x1),...,(0,xx)) = f(x1,...,Xk), the wrapped scheme is functionally equiv-
alent to the base scheme. However, in a security reduction, if the flag bhonest_security is
set, but Z* € T4 for some uid, meaning that xiq; is not specified by the adversary for
some i € Z*, the reduction can pick x4 ; = (1,0) for the base scheme. Note that x/;4;
picked as such would always be rejected by any wrapped f’. The security reduction of the
base scheme for IND-CPA-security without missing keys thus follows.

A similar discussion applies to the bty missing flag of the MC-ABE security experiment
(Fig. 5) as well. In other words, an MC-ABE which is IND-CPA-secure without missing
ciphertexts can be generically turned into another MC-ABE which is IND-CPA-secure.
The only difference is that now attributes are associated to ciphertexts and policies are
associated to keys. The transformations to a policy f and an attribute x are identical to
that of the MA setting described above.
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Setup(1*)

Bi, By «$Z/™ v s Ll

return pp = (B1,B2, V)

AuthSetup(pp)

(A,tda) < TrapGen(1™,q)
=ncol(A) JAecz*"
return (apk, ask) := (A, tda)

KGen(pp, ask, f)

EKGen(pp)

(D, tdp) < TrapGen(12F2" )
k:=ncol(D) [/ Dezltanx*
return (epk,esk) := (D, tdp)

Encsub(ppa eSka Cidv XQ)

parse (D, td) < esk

Do
parse (Dz,]’,b 1 €14, be {0, 1}> <D
D3

parse tda < ask Do '

— Dy, = [ D2, :J € [{]
Hg,; < EvalF(B, f), By =B -Hg,s
tdajs,) + (tdal0")"
uy < SampPre((A | By),td(ajs,), v,7) H(epk,cid,x;) := (H(epk, cid, 2, j,x2,;) : j € [{]
return skf = (uf,f)

Ds;
H (epk, cid, 0) )

H (epk, cid, 3)
tepk,cid,xo < SampPre(Dx,, td, H (epk, cid, x2), o)

return ctxts := (tepk,cid,xq s X2)

Figure 6: Description of 2C-ABE construction I, except for Encyain and Dec algorithms.

n €N

Table 3: Parameters and shorthands for 2C-ABE (Section 5).

Number of rows of A, B; j, and Do, D3 3, D3, and G

m €N nflogq]

Number of columns of B; ; and G

heN 2m > (n+1)logqg+ w(logn) Number of columns of A
keN 4+ 1)m > n(2¢+2)logq Number of columns of D
B > kA3or(x + X + %)mCP@ Correctness bound
q > avg Modulus
Attribute length per encryptor
X poly(X) Gaussian parameter of Eg and e3
X > A“’(l)AmX Gaussian parameter of Ey ;,Eg ; 3, E21jyb, Eg, and é3
X > )\w(l)/\2r)2k Gaussian parameter of &3 ; 3,80, and €3

> (h3mO @)

Parameter of KGen algorithm

> w(4/logk)

5 2C-ABE

We construct a 2C-ABE adapting the construction of [AYY22]. We recall that in this
setting there exists a single authority and a public encryptor 1, the latter specifies (the
public key of) a single encryptor 2 in its ciphertext. Decryption succeeds if the attributes
from encryptors 1 and 2 jointly satisfy the function specified by (the secret key handed
out by) the authority.

Construction.

Parameter of Ency algorithm

The construction Ilyc is described in Figures 6 to 8, with parameters

specified in Table 3. Our construction can support polynomial-size circuits with any depth
d = d(\) = poly(\). Formally, it supports attribute space X = {0,1}¢, £ = £(\) = poly()\),
and any circuit class F that is subclass of ¢-input poly(\)-size circuits of depth at most d.
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Encaain (PP, apk, epk, cid, x1, 11)
parse (B1,B2,v) < pp, (A, D) < (apk, epk)

Do
parse (Dz,j,b (jE, be {0,1}) < D; (Bij:jelf]) « By (By;:jel]) < By
D3

S «$ZE*" Eo ¢s X" " e3 < x"; So < Z07"; By s "

80 <3 X"; 83 <SZ; &3 <sx"; & 8%
for j € [4], be {0,1} do
E1; <$ X" Eojp <8 X7 Sojp ¢S 207" By ¢s X7 800 <8 X
Co :=SA + E¢p mod g, Co = SoDy + E¢ mod ¢, Co:= CE + Cp mod ¢
So = SOH(epk,cid, 0)+é& modg, c3:=Sv+es+gumodg, &5 :=83D3+é5modg
Cs =& +czmodyq, & =85H(epk,cid,3)+ & mod ¢
for i € [{] do
Ci1,; =SB1,; —71,;G) + E1,; mod g
foriec [{], be {0,1} do

Ca,j = S(B2,; — bG) + Ea ;,, mod g, Cajb =52,5D25 + Es ;5 mod g
C2,j,b = C;jyb + Cs,;» mod g, C2jb = Sgyj,bH(epk, cid,2,4,b) + € 5,5 mod ¢
cixt: o [ Cor (Cridiers (Cajv)jelvetony, Cs,
1 -— ~ ~ -~
Co, X1, (€2,56)je0),pe0,1},  C3

return ctxt;

Figure 7: Description of Ency,in algorithm of the 2C-ABE construction Ilac.

Theorem 1 (Correctness). For parameters as in Table 3, lac is correct.

Proof. To analyse correctness, first observe the following facts. One has:

tzpk,cid,xg CO = thk,cidch (D.(l;sg + Eg + SA + EO) ~ H(epk7 Cid’ O)ng + t:pl<7cid7X2 SA7
tzpk,cid,xfzclyj - thk,cid,xz (S(B17j - ‘TlajG) + El,j) ~ thk,cid,xQS(BLj - xlij)7
tapk,cidxs C2..e.; = bapk cidxo (Dg,j,xz,] Sg,j,zz,j + Eg,j,xz,j +8(B2,; — 22,;G) + Ez 4, ;)
~ H(epkv Cidv 27 j’ $27j)Tg£,j,ZEg,j + tgpk,cid,xQS(BQJ - anjG)v

thk,cid,xQé = thk,cid,xQ (D'?I;§3 =+ é3 +8Sv+ es + gﬂ)
~ H(epk, Cid7 3)T§’3 + tgpk,cid,xg (SV + gu),

with approximations errors given by

tzpk,cid,xg (Eg + EO)? tzpk,cid,szLjﬁ

tgpk,cid,xQ (Eg,j7mgh7‘ + EQJ@Q,]‘ )7 t:pk,cid,X2 (é3 + 63)
respectively. It follows that

tgpk}dd)xzéo — & ~ H(epk,cid, 0)*S? + ook cid g SA — (H (epk, cid, 0)'S? + &)
~t! SA,

epk,cid,xo
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Dec(pp, sk, (Ctth)je[Q})

parse (Bl,BQ,V) — PP, (llf = (u:l);,o | u’;,l)Ta f) — Skf
parse (Cov (Cij)jets  (C2b)iclnbefo,1}s c3,>  ctxty

€o, X1 (€2.40)jere.0e001y> @3
parse (tepk,cid,xy, X2) < Ctxta

B = (B: | B2), x" = (x] | x3)

Hsg ;x < EvalFX(B, f, x)

01 = (0171 | . | Cl,@)

CQ = ((_32,17902,1 | | (_32,@@2,2)
~T . (T ~T

€= (C2,1,05, |- | C200,,)

€0 = tepk.cidx, Co — € mod ¢

cl = thk,cid,XQ C; mod ¢

5 = tzpk,cid,xg C, — & mod q

€3 = tapk.cid.x, €3 — €3 mod g

z:=(cg | ((cl | €2)Hp,f,x)) us mod ¢
y = c3 —zmod q

return (Jy| > 3)

Figure 8: Description of Dec algorithm of the 2C-ABE construction Ilyc.

T = - N . . TAT T
tcid,id,x2027j7$2,j —C2jmy; H(epk7 cid, 2,7, 1'271') SQ,j,acz,j + tepk,cid,X2S(B27j - xQJG)
. . TQT ~T
— (H(epk,cid, 2, j, 2 ;) S2,j7:vz,j + e27j>12,j)

Nt S(BQ’J‘ —$2’jG)7

epk,cid,x2
tgpk cid,x5 € —C3 ~ H(epk cid 3) 83 + tepk cid,xa (SV + gu)
- (H(epkv cid, 3) 83 + 63)
~ tgpk,cid,x2 (SV + gu),

with approximations errors given by

T I ~T T I ~T T A ~
tepk,cid,xQ (EO + EO) — €y, tepk,cid,xa (E27]'~,12,_7' + E2-,j,902,_i) - e2,j,127j7 t;epk,cid,xQ (e3 + 83) —€3.

respectively.
Let ¢, ¢1, €2, ¢3, and z = (¢ | ((c] | ¢})Hp,fx)) uy mod ¢ be as computed in the
decryption algorithm. Parse u} = (u}, | u} ;) and note that [us|| < 7\ with overwhelming

probability. Write

€ epk cd.xs (Bo + Eo) — &,

€1 = tepk i, (B11 |- | E1),

€ = tepk cdoes (B2 100, + B21wy | oo [ Borws, + Bovmy,) — (85100, |- 1 €544,,);
€3 = bk cid x, (€3 + €3) — €3

and note that ||&;|| < kX%0(x + X + )Z) for i € [0, 3] with overwhelming probability. We
have ¢3 & 1 ., (SV + 81), 2 = t] Sv and hence c3 — z ~ t. gu with
approximation error given by

epk,cid,x2 epk,cid,x2

e:=é3—equyso— (€ | &) Hp fxus,
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where |e| < kX3 o7(x + X + X)mP @ < B with overwhelming probability. This means that
decryption is correct with overwhelming probability when p = 0.

When p = 1, we have ||t£pk,cid,x2 gu” > 20 with overwhelming probability since
g > XMW 3. This completes the proof. O

Theorem 2 (Security). For parameters as in Table 3, Iy is IND-CPA-secure without
missing ciphertexts (c.f. Definition 7) assuming LWE, 5 k41,5, and LWEk 5 m41,y,q 0 the
random oracle model.

Proof. Let JeorrsC, (Jaida = W oTaai C [2,N))adec, (Xeid,j)adecjeda: J* = (j3) €
[2, N],cid", xcg=,1 be the adversary’s output. Since we are proving IND-CPA-security
without missing ciphertexts, we can assume that if bponest security = 1, then beext nissing =
0. Also, w.lo.g. we can assume bcorrypt security = 0, because encryptor j5 cannot be
corrupt by definition when k = 2. Parse Xcid* ,jz from (Xcid,j)cidec,jegq, and set x* =
(x7,%3) = (Xcid*,1, Xcid*,j; ). Consider the following sequence of hybrids:

e Hp: This is the real security experiment encrypting pp.

e Hj: This is the same as Hg, except for the following modification to how Bepk cid,xciq,; 1S
generated for each ciphertext query (pp, 2, esk;, cid, Xcia ;) t0 Enceu:

— Sample a random Gaussian Sepk cid,xea; Dyk o,
— Set

H(epk]7 CId) 0) = DOtepkj,cid,xcid,j;
H(epk;,cid, 2, h, cia,j,n) = D2 hwaa ;1 bepk, cidxaa; VR E [€],
H(epk;,cid, 3) == Dstepk cidxc,; -
Using that k& > n(2¢ + 2)logq and ¢ > w(y/logk), by Lemma 4 we conclude that
Hp =5 Hi. Notice that the experiment does not use tdg any more.
e Hs: This is the same as Hy, except for the following modification to D in epk:
— sample D «s Z0 7 instead of (D, tdp) < TrapGen(17(2¢+2) )

By the property of TrapGen algorithm (Section 3.3), the distribution of D is statistically
indistinguishable between Hy and Hy. Therefore, H; =4 Hs.

e Hs = Hyo: This is the same as Hs, except for the following modification to how €&,
€20 a* g3 h Vh € [{], and €5 for the challenge ciphertext are generated:

— Sample &3 p, 5 s X™ for h € [{], & <+ X", and &3 +$ Y

ch*,j; Jh

— Set
T . 4T T ~T ~ . 4T — ~
Co = tepkj*7cid*,xcid* x (CO - CO) + €, €3 = tepkj*,cid*,xdd* jx (C3 - C3) + €3,
2 2 2 J2
and for j € [{]
~T 4T AT _ ~
C2,j7zcid*)j; = tepkj; ,ad*,xcid*ng (C2,h,wcid*7j;h CQ;h,wcid*,g‘;,h) + eQ,hJcid*,j;‘h'

Observe that

C2.h,z g 05 h
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AT ~T
tepk *,Cld X 3 (szh@cid*,j*,h - C2 hoteias jx n ) + e2,h7wcid*7j;7h

T T ~T
tepk s ,cid* Keia* 5% <D2,h,xcid*‘_» Sh Leia* 5% h + E2,h,xcid*,j;7h> + e2,h,xdd*1j; IS

QT

7 aT
tepk *,Cld Xeig* jx D2 R, @ g | % .h Sh,mcid*,j h + tepk *,Cld Xeig* jx E2 h,Tggx 35 + e2,h,rcid*dgrh

_ LS . . & T " ~T
=H (epk, cid”, h, zcia* j;.n)" Sh,%d*,j;,h + teij; cid* Xaigx jx E27h7mcid*,j;,h T €2 hwaar iz

By noise flooding, we have that the distribution of €2 ; o ; in Hy and Hy are statistically

close, as long as ¥ > AWA2rgk > A tepk i X, _*Eghz_d* ., || Identical
ci " Tcid* 5%,

reasoning applies to the distributions of ¢y and €3. We conclude that Ho =4 Hs.

o Hyp for h € [¢]: This is the same as Hy 5,1, except for the following modification to
€2 h, 1 =g v, 1D the challenge ciphertext:
5%

_ o
— sample e2,h71*xcid*,j;,h —s ™,

~T
— set C2yh,1*rcid*,j;.h as

AR TQT =T ~T
H(epkjé‘ ) cid ) 27 h7 1- 'I:Cid*aj;h) S}L,l—xdd*hj;h + eZ,h,l—xcid*’j;‘h =+ eZ,h,l—xcid*_’j;,h .

By noise flooding, we have that the distribution of ég,hﬁl_%d*’j* . inHygpoq and Hyp

are statistically close, as long as x > )\W(l))\f( > )\W(I)Hélh,l*wcid* s
93

o Hsp for h € [¢]: This is the same as Hs 51, except for the following modification to
Conl—a 4 . and €2 41—z, o in the challenge ciphertext:
5k %

— sample €, 1—4 —$ "

cid*,j;,h

e kx =
— sample Co p, 15 3 Zq maCZ,h,lfrcid*,j;,h 3 Z;”.

cid* ,j;,h

— output Cop1-¢ ,, and é2,h,1—wdd*)j;1h + é2,h,1—mcid*“7.§)h-

cid*,j%‘

To show that Hs ;1 ~. Hs p, one reduces to LWE,, ;, x4+1,%,¢- In particular, the reduction
works as follows:

— it parses M = [Mg | my] € Z}** x Z2 and N = [Ng | ny] € Z** x Z7" from the
LWE,;, 0 k+1,%,¢ instance

— produces the components of

(Cm (Ciwneps  (Conp)neigveions 037>

Co, X1 (C2,nb)nel pef0,1}, €3
except C27h71*rcid*,j;,h and 621h717xcid*,j;,h as before
— it samples €2 ;.1 ¢, e 8 m
3%
— it sets
Ch 1=z g, ik oh = M07 H(epkjg ’ Cida 2; h7 1- xcid*,j§7h> =my,

— & T a
Cotmtaar 55 = No+ Cohtmvage sz C2hdmaaee g0 = M+ €210 2

Observe that
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— if (M, N) is a structured LWE,, ,, x+1.%,q instance, the view of the adversary A is
identical to Hs n—1;

— if (M, N) is a uniform random instance, the view of A is identical to Hs .
We conclude that Hs 1 =, Hs p, for all h € [£].

+ Hg: This is the same as Hs ¢, except for the following modification to how (B;);c2) =
(Biy1, .-, Big)icpz is generated:

— Sample R; = [R; 1|+ | Riyg] <8 {-1, 1}(’”’”)2 for i € [2]
— Output B; .= AR, + (x;)" ® G mod ¢ for i € [2].

More compactly, we have that

B = [Bl | BQ} =A [Rl | Rg} +(X*)T ® G mod q.
——

=R
Since h > (n+1)log g+w(log n), indistinguishability (Hs ¢ ~5 Hg) follows from Lemma 3.
e Hy: This is the same as Hg, except for the following modification to KGen queries:

— recall that (B — x" ® G)Hp fx = By — f(x)G mod ¢, which holds for any
x € {0,1}2¢ and that a valid adversary can only make KGen queries for functions
f for which f(x*) = 1. Using these facts, one has that

[A|By|=[A](B-(x")®G)Hg . + f(x")G]
=[A] (AR |Ra] + (x)' ® G = (x")' ® G)Hp .x- + [(x")G]
— [A | A [Rl ‘ RQ]HByf’x* +G]
Ry
=[A ]| ARy + G] mod gq.

— compute Ty = [_I;f} and observe that [A | Bf]T = G mod g.

— compute
uy < SampPre([A [ By], Ty, u,7),

to answer KGen queries. This works as long as 7 > ¢h*m@@ > O(h?||Ry|)).
Therefore, since 7 satisfies such constraint by our choice of parameters, we have
that Hg =5 H7. Notice that the reduction does not use tda anymore.

e Hg: This is the same as H7, except for the following modification to A in pp:
— sample A < Zy*™ instead of (A,tda) s TrapGen(1",q)

By the property of TrapGen algorithm (Section 3.3), the distribution of A is statistically
indistinguishable between H; and Hg. Therefore, H; =, Hs.

e Hg: This is the same as Hg, except (Cin)nej, (Cone . Jre[q in the challenge

cid* 55,
ciphertext are changed as follows:

— compute Cq and c as before,

— sample Eq j, +$ X" Ea . s XFX™ for all h € [4],

cid*,j; Jh

— set Cl,h = CORl,h + E15h7Cth7mcid*,**,h = C()ngh + Egyh’m for all h € [E]

i3 ch*,j;,h’
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By noise flooding, we have that the distribution of (C1n)nefe, (Cti,h,ege » » Jnefg 0 Hg
7.725
|, for i € [2].

and Hyg are statistically close, as long as ¥ > A my > AW | EgR;

e Hjg: This is the same as Hg, except for the following modification to Cg, and c3 in the
challenge ciphertext:

— sample Cy < Z’;Xh,c 3 Z’;.

To show that Hg ~. Hig, one reduced to LWE, 5, ym+1,y,q- In particular, the reduction
works as follows:

— it parses M = [Mp | my] € Z7*™ x Z! and N = [Ny | my] € ZF*™ x Z} obtained
from the LWEy 5 m+1,y,q instance,
— it sets A := Mg and u := m; in pp,

— it sets Cp := Ny and c3 := n;.
Observe that

— if (M, N) is a structured LWEg , m+1,y,q instance, the view of the adversary A is
identical to Hg;

— if (M, N) is a uniform random instance, the view of A is identical to Hig.
We conclude that Hg ~. Hqg.

Since the message up and the challenge bit b are perfectly hidden in Hyq, this concludes
the proof. O

Remark 3. We believe it is possible to remove the random oracle in the above construction.
The strategy inspired by the lattice-based IBE literature would be the following:

e We add a uniform random matrix to epk, say F.

e In Encpain, the encryption component 627j7b is produced by encrypting [D|F +
H(cid)G]z,; (i.e., the (j,b)-th block row of [D|F + H(cid)G]), where H denote some
appropriate function mapping cid’s to matrices.

o Encgu produces the ciphertext for (cid, x2) by sampling a preimage with respect to
the matrix [D|F + H(cid)Glx, (i.e., selecting the block-rows of [D|F + H(cid)G]|
that corresponds to the bits of the attribute x2). This is done by sampling D with a
corresponding trapdoor, and using such a trapdoor.

e In the security proof, we would sample a random short matrix R and set F =
D R — H¢g* x, G, where Hcg~ x, is a matrix such that the block-rows corresponding
to 1 — x9 are zeros so that we can rely on LWE to prove pseudorandomness of the
corresponding C components, whereas the block-rows corresponding to x, form
a full-rank matrix, so that the sampling algorithm can still be run (using R as
trapdoor) to produce the challenge ciphertext component associated to Encgyp.

A property required from the function H is that any subset of rows of H(cid) — H/(cid")
form a primitive matrix for cid # cid’. Such functions exist in the literature (e.g., [ABB10,
Section 5]).

6 MA-ABE

We construct an MA-ABE scheme based on the techniques from [Wee22] on CP-ABE.
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Setup(1*) AuthSetup(pp)
PsZ)™™, Q«sZy ™, u<s X0 (A,tda) « TrapGen(1"(™ V) ¢), B s Z3 ™
return pp = (P,Q,u) J Ae ZZ(””“)“”‘('"“)

return (apk, ask) := ((A,B),tda)
KGen(pp, apk, ask, uid, x)

parse ((A,B),tda) + (apk, ask) Dec(pp, (apki)ie[k]’ (Ski)ie[k]’ ctxt)
(kuid, Kuig) :== H(uid) for i € [k] do

Pk QK. parse (A;,B;) < apk;
M := < B-x"®G)® kuid) mod ¢ parse (U;, x;, Kuid, Kuid) < sk;
U <« SampPre (A,tda, M, 7) parse (c, o, C1,...,Ck) 4 Ctxt
return sk := (U, x, kuiq, Kuid) (cg,l || cak) =cp

B:=(Bi|...|Byg)

Enc(pp, (apk)icfi]: f: 1) x" = (x| XD
parse (A;,B;)icix) < (apk;)icix] Hg ;x « EvalFX(B, f,x)
B:=(B1]...|Bs) for i € [k] do
Hg s < EvalF(B, f), By :=BHg s (dio | d} 1) = ciU; mod g
s <82y €0 <$ Xécﬁlv e < X(1) di, :=d;; — ¢, Ky mod ¢
Si <8 2Ly, € <5 x?{r;(mﬂ), Vi € [k] 20 = Zie[k] di,0 mod ¢
cr = (s; | s")A; + el mod g, Vi € [k] zi=(dj,]|...|d})Hg,sxumod q
co=(s1]...|st)(Ix ® Q) + ej mod q 22 = ¢"kyig mod g

= Dic SiP+s (Bru®Ly) +e’ +pg' modg Y=z — 21— zmodg

return ctxt := (c,co,C1,...,Cx) return (|y| > Bo)

Figure 9: MA-ABE construction ITy,.

Construction. Let H: {0,1}* — X(1) X Xﬁ)xmé be a random oracle.!” In Fig. 9 is our
MA-ABE construction Iy, for polynomial-size circuits with any depth d = d(\) = poly(X).
It supports attribute space X = {0,1}*, £ = £(\) = poly()\), and the class F of f-input
poly(\)-size circuits of depth at most d.

Theorem 3 (Correctness). For parameters as in Table 4, Ty, is correct.
Proof. For each of the i-th secret key the decryptor computes

(dio | dfyl) = c]U; mod q
(siPkyia | 5] QKuig +s™((B; — x; ® G) @ kyig)) mod ¢

Q

with approximation error e] - U;. Let U; = (u; 0 | U; 1), then
dfg = dg’l — cg’iKuid mod ¢
=5 QKyig +8'((Bi —x] ©® G) @ kyia) + €] U; 1 — (5] Q + €)Kuig mod ¢
~ sT((B; — x; ® G) ® kyig) mod ¢
with approximation error eJU; 1 + e[K,4. We have 2y ~ Dicik] sTPkyiq mod ¢, with
approximation error 3, el -u;,

21 = (d{’2 [ ... ] d£’2) -Hpg, ¢ xumod g
= (ST((B —xT X G) 029 kuid) + (e{ULl + egKuid | R | erk,l + egKuid))

17"We refer to Remark 4 for a short discussion on how the random oracle can plausibly be removed.
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Table 4: Parameters and shorthands for MA-ABE scheme (Section 6).

n €N Parameter for matrix dimension
m €N =nflogq] Parameter for matrix dimension
{eN Attribute length per authority
keN Number of authorities
Bo > poly(A, m)x%l)(kr + 2lmo(’i)x(0)) Correctness bound
> a8, Modulus
T Parameter of KGen algorithm
X(1) >0\ Gaussian width of u, kyid, Kuid, €, €0 = (€:,Q)i, (€i)ic[k]
and of &,iq4,s, p in proofs
X(2) > A€ Xﬁl) Gaussian width of eyq,i, B, €uid,i, P, €uid,i,Q in proofs
X(3) > A@@) X(2) mO Gaussian width of e;« 4, p in proofs
I,z z = |[k] \ Z| Set T of corrupt authorities in proofs

paramy (g, k,n(m+1),2m(m+1), (k+m)n, (k+ Evasive LWE parameter
1)m, 8o, x(1), (Poly(A), X(1)s ¥is T)ielk])
where ¥1 = x(3), ¥i = X(2),1 # 1

param; (q,z,n(m+1),2m(m + 1), zn, (z + Evasive LWE parameter
1)m, 81, x(1)» (pOIY(/\)aX(l)awi_v'r)_i*e[z])
where Y« = X(3), ¥i = X(2),1 # 1

. Hviyxu mod q
(s"(B—x"® G) ®kyd)) - (Hp,z.x ® 1)umod ¢
=" ((By — f(x) G)u® kyia) mod ¢
=0
= s"(Bf ® kyig) mod ¢,

Q

with approximation error ((efUy 1 |...| e Uk1) + ef(Ir ® Kua)) - Hp, rxu,
Tk T T T T
29 = cC Kyig = ZsiP—i—s(Bfu@Im)—&—e + ug - Kuid
i€ [k]
~ Z s;Pkyid + s (Byu ® kyia) + g Kuia
i€ (k]

with approximation error e"k,iy. Therefore

Y~ Z siPkyid +s"(Bru ® kyig) + g Kuid — Z siPkyid — s"(Bu ® kyiq) = pg'kuid mod g,
i€k i€[k]

where the error term involved in y is given by
ekyg + Z e;r "0 + ((er{ULl [ ... eiUk,l) + eg(Ik &® Kuid)) Hg s xu
i€ k]
and whose norm is upper-bounded by

o) .

Bo = poly(A,m) - (x(1) - Xy + k- Xy T+ x)-£-m X +X0) -m% D).

Since kyiq is random short, gTkyq is statistically close to uniform over Z4, and correctness
follows as long as ¢ > By AW, O
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6.1 Security

We present the security proof for the MA-ABE construction. W.l.o.g. we assume the
adversary only queries keys from authorities 7 € [k] which are associated to the challenge
ciphertext. We recall some notation: We let U be the set of all uid every queried by an
adversary, and Z,iq C [k] be the set of authorities from whom the adversary requests a
secret key for user uid.

We will also use the following notation: We let A; = <21> where A; € ngzm(mH)

ExY)

and A, € ngxzm(mﬂ) are the “top part” and “bottom part” of A; respectively. For
ease of exposition, for any matrices A and B we abuse notation and write A~!(B) for
an element in the domain A~!(B) output by SampPre(tda,B). We use the shorthand
]A3uid,i =B, — xﬁid,i ® G for any query Xiq; on the i-th authority associated to uid.

Theorem 4 (Security). For parameters as in Table 4, Iy, is IND-CPA-secure without
missing keys (Definition 5) assuming

LWEn,2m(m+2),q,x(1> ) LWEm,Poly(n%%xm sX(1)7

TensorlWE,, km+1,¢,x(2),x1)6,Q,  EvasivelWEparam, and  EvasivelWE,aram,
in the (non-programmable) random oracle model.
Proof. Recall that in the experiment in Fig. 4, (at least) one of the two cases below holds:

(1) bhonest security = 1, that is, all authorities ¢ € [k] involved in the challenge ciphertext
ctxt* are not corrupt by the adversary, and f*(Xuid,1,- - -, Xuid,x) = 1 for all uid € U.
In this case, due to Remark 2, it suffices to consider the case where the adversary
queries all k authorities for secret keys for all uid, so that Z,4 = [k] for all uid.

(2) beorrupt_security = 1, that is, for all uid € U there exists an honest authority i € [k]
such that a key sky;q ; from ¢ has not been queried.

Below we focus on that Case (1) happens. That of Case (2) is analogous, we defer repeating
the very similar arguments to Section A.1.
We define the following sequence of hybrids'®:

. Hybl()ho) : This is the real security experiment for the scheme in Fig. 9, encrypting pp,
and conditioned on that buonest security = 1.

Recall that in this hybrid the adversary is given the following:
(Bl)ze[k] ) <AZ)Z€U€] 7P7 Qa (kuid; KUid)uidGu 9 u

Uyig; = A" (Pk“‘d . QK ) Vi € [k],uid e U

Buid,i ® kyid
cl = (sT|s")A; +e] Vic k|
cg=(s1]...|sp)(Ix ® Q) +ef
c'=> s;P+s"(Bu@ly,)+e +pug'

1€ k]

where all terms are sampled according to the distribution as in the scheme. We
recall each Uyg,; is sampled with tda,. Below we write cj = (cj o | ... | ¢} o) where

ClQ=8iQteiq

18We use the superscript (h) to identify Case (1) honest authorities. In the continued proof we use (c)
to identify Case (2) corrupt authorities.
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. Hybl()hl): Same as Hybl()ho) , except that for all ¢ € [k], A; is sampled uniformly randomly
and all (entries of the) corresponding preimages U\q,; are sampled (inefficiently)
from the Gaussian distribution with parameter 7, subject to

Pkyiq QK.
AUy, = AN .
¢ ( Buid,i ® Kkuid

We have Hybl(fo) A Hyb,(]]fl) by the properties of TrapGen from Section 3.3.
. Hybl(fz) : Same as Hyb,(]]fl) , except that (c;)iex], Co, ¢ are sampled uniformly randomly.

We show in the following that Hybl(fl) ~ Hybl(fz) . Then, the theorem follows from noting

that Hybé}g 2 Hybgfg , since in both hybrids the component c in the challenge ciphertext is
chosen uniformly randomly.
Define the distribution

(Bi)ie[k] B (Ai)ie[k] 7P7 Q’ (kuid7 KUid)uidEM ,u

<A»_1 (Pkuid . QKuid
h ! Buidi @ Kuid ) / ; -
Dg,l) = i€ [k],uideU

((si |shA; + eg)ie[k]
(siQ+e] g)icik
' =3 cysiP +s'(Buely,) +ef

where all terms are distributed same as in Hybgll) . Define also the distribution

(Bi)ie[k] ) (Ai)ie[k] 7P7 Qa (kuid7 KUid)uideu ,yu

(Afl (Pku;d QK. )>
i Buid.i @ Kuid ) / jc 1y videu

(C})ie[k]
(C'{,Q?rie[k]
c

n{) =

where all elements are distributed same as in Hybl(:;) , l.e. this is same as Dﬁ except that
(ciscigicin and c are all uniformly random.

Suppose there exists a PPT A that distinguishes Hybl(:ll) and Hybl(:;) with non-negligible
probability. It is easy to verify that there then exists a PPT B that distinguishes D%hl) and

Déhl) defined above with non-negligible probability.
Now consider a PPT Samp which on input A outputs the following;:

< 1P I, ®Q 5 . (Pkua QK ,
A= [(Bfu@)lm) ( 0 )]’ Pi= < Buid,i ® Kuid uidet vielr

where 1 € {0, 1}* is the all-one vector, and aux containing (Bi)ie[k] P, Q, (kuid, Kuid) yigews »
u together with all random coins used.
By the EvasivelWEparam, assumption (c.f. Table 4) w.r.t. Samp, there exists a PPT &

that distinguishes the distributions Dghz) and DéhQ) with non-negligible probability, where
D%hQ) and DéhQ) are defined as follows:

(Bi)ie[k] ’ (Ai)ie[k] P, Q, (kuid7 KUid)uideZ/{ ,u
STPkui +6Lli 7 b ST Kui +ST Bui i®kui +eT. . ) s
D) . ( ’ ‘ aupr 5 Q 7d (Bue, a) + Cuig.. i€ [k],uideld 5
12 (sjA;+sTA; +e€])ici (3)
(siQ+ejg)iclk]
cf = > iclh] siP+s"(Bju®l,,) +e'
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where all terms are distributed as in Dy 1, additionally e1 yia,p <8 X(3), €uid,i,p <3 X(2) for
all i # 1, and eyiq,;, B +$ X?gf for all 3.

(Bl)z€[k)] ) (AZ)ZG[IC] 7P7 Qa (kuid7 KUid)uidGZ/{ ,a

T
Cuid,i,Py Cyid i, B

(h) ._ ic[k],uidetd
Dap = (i a)iclk] (4)
(cig)ien
CT

h2) except that (cT, C;{Q)ie[k] and c are all uniformly random. However,
under the LWE,, 2 (m+2),¢,x,, and TensorlWE;, k1,6, x(1).¢,0 assumptions, this is not
possible by Lemma 5. Thus we have a contradiction.

Similarly, in Section A.1 we show that Case (2) happening would contradict either
of the LWEn,2m(m+2),q,x(1>a LWEm,poly(n),q,X(g),x(l)7 and EvasivelWE,,am, assumptions, the
latter with appropriate parameters. The theorem then follows. O

which is same as D§

Lemma 5. For the distributions DYQ and Déhz) defined in Eq. (3) and Eq. (4), we have

Dihz) ~ Dé’g assuming

LWEn,?m(m+2)7q7X<1)7 LWEm,poly(n)7q7X(z),X(1>’ and TensorLWEn,k’m-&-LmX(z)7X(1>,€,Q-
Proof. We consider the following sequence of hybrid distributions:

. Dghz) as in Eq. (3).

. D1,2715 For each uid € U, we swap S{Pkuid + €1,uid,P to

Z siP + ST(Bfll @1I,) +e" | kug — Z s;Pkyiq + €uid,i, P
ic[k] i€[2,k]

—(s"(Buid,i ® kuid) + €lias.5)ick HB, fx 0 + 5T (Gu ® kuig) + €uig, + €1,4id, P

where (ST(]guidJ‘ @ kyid) + €l g)ic[k) is the horizontal concatenation of ST(Buidﬂ' ®
Kuid) +ejq,; p for all i € [k], and eyig,q <8 X(2)-

We have Dghg & Dj 21 by noise flooding, which is due to the equality

siPkyg = [ > _siP+s"(Buel,) | kia— Y s/Pkyg
i€(k] i€[2,k]

— (s"(Buid;i ® kuid))ictHB, f.x01 + 8T (Gu @ kyia)

and that

S T T
€1,uid,P ~ € Kyjg — E euid,i,P — (€uid.i.B)ic[k/HB, f.xu T €uid,G + €1,uid, P
1€[2,k]

since

X@) = A*Wpoly(A, m) (xfl) +Ex(2) + X(o>x<2>€mo(d)>

> AWl eTkyig — Z euid,i,P — (€Gid i, 5 )ic k] HB, £ xu 0 + €uid,G
1€[2,k]
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Notice that the only remaining terms in D 51 involving s1 are s]A; +é{7A, sTQK g+
sT(Buid}l ® kyig) + eEid,l’B, sTQ + e{’Q and sTP + e'. Also, looking ahead, to argue
the above simulation is pseudorandom, it suffices to argue s*(Gu ® kyiq) + eEid’G is.

Di,2.9: For all uid € U, all i € [k], we swap
s1QKuig + 8" (Buia,i ® Kuia) + €ligi 5
to (s;Q+ €] o) Kuia + 5" (Buidi @ Kuia) + €liq s 5-
We have D 53 = Dy 22 by noise flooding, since x(2) > A0\ X(1) X))+ n >

A He}’Q -Kid || Now in Dj 32 the remaining terms involving s; are s] Ay —&—é{A,
siQ +el o and s{P +ef p.

D1,2,3: We swap
s]A; +e], s1Q + e{,Q and siP +e’

to uniformly random.
We have D1,272 é D17273 by the LWEn,2m(m+2)

Notice that as a result c is also uniformly random.

X (D) assumption.

Di,2.4: For each ¢ € [2, k] and all uid € U, we swap
;i Pkyig + €uid,i,p to (8iP + &yiai,p)Kuid + Cuid,i,P-
where €4 p +$ X?I)'

We have D 23 x D1 ,2,4 by noise flooding, due to éﬁid’ijpku;d + euid,i,P = +eyid,i, P
since X (2) = /\w(1))\2X(21) > AW (&g, pkuid |-

Di,25: For each ¢ € [2,k] and all uid € U, we swap

T AT T
(s;P + &4 p)Kuid + €uid,i,P to byid i, PKuid + Cuid,i,p
where bzid’i’ p is uniformly random, and we also swap

s;A; + el and s;Q + eg,Q

to uniformly random.

We have Dy 2.4 & D1 2,5 by the LWE,, 5y, (m+-2) assumption.

sd5X (1)

D126: For all uid € U, all i € [k] \ {1}, we swap
bapkuid + €uid,i, P

to uniformly random.

We have D125 ~ Di 26 by the (low-norm) LWE . poly(n).q,x(2yx (1, ASSUmMption.

D12 7: For all i € [k], all uid € U, we swap the terms
(sTQ + e o) Kuid + 5" (Buid,s ® kud) + €ia;. 5 and  sT(Gu® ku) + eqid,c

to uniformly random.

Note that Gu mod ¢ is statistically close to uniformly random. Then, we have
Dy ~ Dior by the TensorLWE,, km-+1,q,x(2).x(1).6.Q assumption (applied on LWE
samples with secret s), where the set Q contains all queries Xiq,; from the adversary.
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Observe that Dy o7 £ ’Déhg in Eq. (12), which concludes the proof. O

Remark 4 (Removing RO). The work of Waters, Wee, and Wu [WWW22] showed how to
construct MA-ABE for subset policies from lattices in the standard model, i.e. without
random oracles. They achieved this by instantiating the random oracle with a subset
product of public low-norm matrices, and relying on the fact that multiplying a secret key
by such subset products (plus noise) yields a pseudorandom function (PRF) [BLMR13], in
addition to the evasive LWE assumption. We believe similar techniques can be applied to
our construction in Fig. 9 to remove the random oracle. More concretely, H (uid) can be
instantiated as the PRF of [BLMR13], so that kg, Kuig are replaced by []. Xuid;, Hj Yuig,
respectively, where X,ig;, Yuid; are random low-norm matrices and uid = (uidj)j. Invoking
the evasive LWE assumption, one is left to argue pseudorandomness of the LWE samples
of the forms s!P - [1; Xuid sIQ - [1; Yuia, + s"(Byia.i ® [1; Xuig;) (and some more that

i’

are not bound to the hash/PRF values), which can be handled by a hybrid argument
analogous to that of Lemma 5. We note that handling the term ST(Eu;d,i ® Hj Xuid].)
requires a strengthening of the tensor LWE assumption. However, since this is not the
focus of this work, we do not attempt formalisation.

7 MC-ABE

We construct an MC-ABE scheme, which combines the techniques from both [BGG™14]
and [Wee22].

Construction. Let H : {0,1}* — X[ X x%)xmé be a random oracle.!® In Fig. 10 is our

MC-ABE construction Ilyc for polynomial-size circuits with any depth d = d(A) = poly(X).
It supports attribute space X = {0,1}*, £ = £(\) = poly()), and the class F of (-input
poly(A)-size circuits of depth at most d.

Theorem 5 (Correctness). For parameters as in Table 5, Ty is correct.
Proof. During decryption, the decryptor computes for each ¢ € [k] \ {1}
(dio | diy) =ci U,
= (STCZ' + elT) . Uz
(siPkeid | 5; QKcia+s' ((Bi — x; ® G) ® keig)) mod ¢,

Q

with approximation error €] - U;. Let U; = (u;0 | U;,1), hence
d;»r72 = d;r,l — caiKcid mod ¢
=5/QKuq +s(B; —x; ® G) ®ked) + €/ Ui 1 — (s]Q + e()Kcig mod ¢
~ s ((B; —x; ® G) ® kgq) mod ¢
with approximation error e] U; ;1 + e[ Kc4. We have

k
20 & Z s] Pk mod ¢
i—2

. . . k
with approximation error >, , el - u; o, Hence

zi = (cj [d3, | ... | dj5)Hp px mod g

19The discussion in Remark 4 again applies here.
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Setup(1*)

B, s Z0 ™ Vi € [k]
P+s$sZy ™ Q<+s$Zy ™", vsZy
return pp := ((Bi)icix), P, Q, v)

AuthSetup(pp)

(A,tda) < TrapGen(1",q) ) A ez ™™
return (apk, ask) := (A, tda)

KGen(pp, ask, f)

parse tda < ask
Hg s < EvalF(B, f), By := BHp ¢
ry < SampPre(td(a|B;), Vv, 0)

return sk, := (ry, f)

EKGen(pp)
(C,tdc) « TrapGen(1"(™+1) ¢)
// Ce Z;L(m+1)><2m(7n+1)

return (epk,esk) := (C,tdc)

Encsus (pp, i, esk, cid, x)

(kcid7 Kcid) = H(Cld)
QKcid

_ [ Pkdq
M= ( (B: xT®G)®kcid> mod g

U <« SampPre(tdc, M, 1)
return ctxt; = (U, x, Kcia, Kcid)

Encuain(pp, apk, (epki)ie[k]\{l} ,cid, x, 1)
parse A < apk, C; < epk; Vi € [k] \ {1}
(Keid, Keia) == H(cid); s ¢$Zg; s <$Zg "

e <3 X(0), €+ X%’)l, ey <% X%?, el «$ X?éf
ei 5 ;o " Vi € UK\ {1}

¢ =s"(A®kaa) +&"

ci =s'(B1 —x"®G)®@kdd) +e]

¢ = (s; | s")Ci+e; Vie [k]\ {1}
co=(s5]...|sp)(Tx—1 ® Q) + e mod ¢

= Zf:Q siP+s'(vel,)+e' + ug’ modq

return ctxt; := ((c;) (k] ,€, ¢, %, Kad, Kcid)

ie{0}u

Dec(pp, sky, (ctxti)ie[k])
parse (ry, f) < sk;

parse ((Ci);c (oo » € € X1, Keid, Kaia) = ctxty
(co2 || cok) =cp
for i € [K]\ {1} do

parse (U, x;, keig, Kcia) < ctxt;

(dio | di1) = c; - U; mod ¢

dzT,Q = dzT',l —
B:i=(Bi|...|Bx), x" = (x1|...[x)
Hg ;x + EvalFX(B, f, x)
Zo = ZLQ di,0 mod ¢
zi = (ci | dap | ... [ dk2) Hg jx mod g

T
¢y, Ked mod ¢

Y= ckaa — 20 — (¢ | 21) - s mod ¢
return (|y| > Bo)

Figure 10: MC-ABE construction ITyc.

~s'(B-x"®G)®kdd)(Hp, jx ©1) mod ¢
=s'((By — f(x) G) ® keig) mod ¢
——

=0

= s"(By ® keg) mod g,

with approximation error (€] | (€fUsz1 | .. | €Uk 1) + el (Iy ® Kcid)) - Hp fx. Therefore

(ch|2}) -t

Q

sT((A | B¢) ® keig)ry mod ¢
= sT(v ® keq) mod ¢

(s"((A | By) @ kea) + (e} | (€] | €bUs1 | ... | €lUs1) - Hp ) -1 mod g

with approximation error (& | (] | (€lUsa; | ..|efUk1) +ef(Ix ® Kaa)) - Hp rx) - ry.

We have

k
y~ (Z s;iP+s'(valy,)+ ugT>

1=2

k

‘Keia — Y _ 51 Pkeia — 8" (v ® Keig) mod ¢

=2
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Table 5: Parameters and shorthands for MC-ABE scheme (Section 7).

n €N Parameter for matrix dimension

m € N n[logq] Parameter for matrix dimension

{eN Attribute length per encryptor

keN Number of encryptors

Bo > poly(A, m) - x(0)(x(0) + k7 + 0o + 270m O . o) Correctness bound

q > )\w(l)ﬁo Modulus

T Parameter of Encgy algorithm

o > m O (D Parameter of KGen algorithm

X@©) =0 Gaussian width of kad, Kdd, €, &, (€:)ic[r], €0 =

(€i,Q)ic(2,k]>
and of ecid, A, €cid,i, Py € f* cids €cid* cid,1, B in proofs

X(1) > X"(l)xﬁo) Gaussian width of edq,i, B, €dd,i, P, €cd,i,Q in proofs
X(2) > A@@) . X(1) mO(d Gaussian width of e;« ¢q p in proofs

T,z z:=|[2,k\J| Set J of corrupt encryptors in proofs

paramg (¢, k — 1,n(m +1),2m(m + 1), (k — 1+ Evasive LWE parameter

m)n, poly(X), So, X0y, (POIY(A)s X0y, ¥i» T)ie[2,k])
where Y2 = Xx(2), ¥i = X(1),1 # 2

param; (q, z,n(m + 1),2m(m + 1), zn, (z + Evasive LWE parameter
1)m, S1, x(0), (poly(N), X(0)) Yis T)ic[z]) Where
Yix = X(2), Vi = X(1),1 F£ 1

= pg'keq mod g,

where the error term involved in y is given by
k
e"kag — Y € -uio— (&7 (e] | (e5Us1 | . | efUs1) + +€j(Ix @ Kaa)) - Hp x) - 1
i=2

and whose norm is upper-bounded by
Bo = poly(A,m) - (x{oy + k- X(0) - T+ X(0) - & + (X(0) + X(0)) - T £~ mO@ . o)

Since kg is random short, g7 - kg is statistically close to uniform over Z4, and correctness
follows as long as ¢ > By AW, O

7.1 Security

We present the security proof for the MC-ABE construction. W.l.o.g. we assume the
adversary only queries keys from encryptors ¢ € [2, k] which are associated to the challenge
ciphertext. We recall some notation (analogous to that in the MA-ABE setting): We let C
be the set of all cid ever queried by the adversary, and Jqq C [2, k] be the set of encryptors
from whom the adversary requests a ciphertext for identity cid. Let F denote the set of
functions f queried to the authority by the adversary.

C;
C.

T

We will also use the following notation: We let C; = ( ), where C; € ngzm(mH)

and C, € ZZWXQm(mH) are the “top part” and “bottom part” of C; respectively. For
ease of exposition, for any matrices A and B we abuse notation and write A~1(B) for
an element in the domain A~!(B) output by SampPre(tda,B). We use the shorthand

Ecid’i =B, — xzidJ ® G for any query Xq,; on the i-th encryptor associated to cid.
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Theorem 6. For parameters as in Table 5, Iy is IND-CPA-secure without missing
ciphertexts (Definition 7) assuming

LWEn’2m(m+2),q,X(o) ) LWEm,POW(n)’q’Xu)’X(o) )

TensorLWEm(k+2)m+17q7x(0),X(O),Z,Q Evasivel WEparam, and  EvasivelWEaram,

in the (non-programmable) random oracle model.
Proof. Recall that in the experiment in Fig. 5, (at least) one of the two cases below holds:

(1) bnonest security = 1, that is, all encryptors i € [k] involved in the challenge ciphertext
ctxt* are not corrupt by the adversary, and f(Xcig* 1, ..., Xcd=x) = 1 for all f € F.
In this case, due to Remark 2, it suffices to consider the case where the adversary
queries all k — 1 encryptors on ciphertext for all cid, so that Juq = [2, k] for all cid.

(2) beorrupt_security = 1, that is, for all cid € C there exists an honest encryptor i € [k]
such that a ciphertext ctxtcq ;x from ¢ has not been queried.

Below we focus on that Case (1) happens. That of Case (2) is analogous, we defer repeating
the very similar arguments to Section B.2.
We define the following sequence of hybrids:

. Hybl()ho) : This is the real very-selective security experiment for the scheme in Fig. 10,
encrypting pp.

Recall that in this hybrid the adversary is given the following:
Aa (Bi)ig[k] ) (Cz) P Q7 ( cid) C'd)cidec y V
rp= (Al Bf)_l(v) Vf €F

1 (Pkgq QK.ig ) ) .
Udg; = C; 1 ad N Yed e C,i € [2,k
d ’ ( Beid,s ® keid 12,4

=sT(A @ keg-) + &'

{ s"(Beigr,1 ® keia-) + €]

ci =(s] |s")Ci+e] Vie[2Kk]

o= (s3] |sp)Tim1® Q) +eg

= Z s'"P+s"(vel,)+e' +pu-g'
i€[2,k]

where all terms are sampled according to the distribution as in the scheme. We recall
each ry is sampled with tda.

. Hybl(fl) : We change how secret keys queries are answered. For a query on any f, do
the following:

— Let x(qe = (Xqgeq | -+ | XGg= x), which satisfies f(xcq-) = 1 by design of
security experiment. If, for any i € [2, k], Xcia~,; has not been queried by the
adversary, pick an arbitrary one such that the above holds.

— Sample R < {0,1}"™ and let B = (By,...,Bg) = AR +x%,- ® G mod ¢.
Note that B — xL;. ® G = AR mod g¢.

— Compute Hp ¢« ,. < EvalFX(B, f,Xc¢*). Let R* =R -Hp ¢« ,. -

— When answering KGenO(f) query, use R* as a gadget-trapdoor for (A | By) to
generate ry = (A | Bf)~!(v). Note that this is possible since f(xcq+) = 1, and
hence By = (B — x4 ® G) - Hp 5 x . + [(Xcia*)G =A-R*+ G mod q.
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We have Hyb}()ho) ~ Hyb(h) by the properties of TrapGen from Section 3.3.

. Hyb : Same as Hybl() 1) , except that for all ¢ € [k], C; is sampled uniformly randomly
and all (entries of the) corresponding preimages Ucgqg; are sampled (inefficiently)
from the Gaussian distribution with parameter 7, subject to

_ Pkc::id QKcid
Cilcai = ( P’cid,i Qked/)

We have Hybl(fl) % Hybl(fz) by the properties of TrapGen from Section 3.3.
. Hyblgd) Same as Hybb 5, except €, (€;)ieqk], Co, € are sampled uniformly randomly.

We show in the following that Hybl(:;) ~ Hybéfg. Then, the theorem follows from noting

that Hybgg 2 Hybgg , since in both hybrids the component c in the challenge ciphertext is
chosen uniformly randomly.
W.l.o.g. assume C contains cid*. Define the distribution

A, Rv (Ci)i€[2,k] ’ P7 Q, (kCida KCid)cideC , vV
(041 1:.kcid R QKud
(h) ' Beia.i ® Keig i€[2,k], c1dEC
Dyl = | (s"(A @ Keia) + €l 4)cidec: (sT(Beiar 1 ® Keia) + €5g- g1 )cidec (5)
((si | sT)Ci +ej )16[27k]
(siQ+ e;'r,Q)ie[z,k]
cf = Dic.h sTP+sT(val,)+ e’

where all terms are distributed as in Hyb, 5, and additionally eqq,4 < X%gg‘, €cid* cid,1,B <5
X(of Define also the distribution

AR, (Cyician: P, Q. (keia, Keid) aec » v
(C,l Pkqg R QKcid
o i Beid,s @ keig i€[2,k],cideC
D, = (Cg,a)cidec, (Ciigr cia,1,B)cidec (©)
(i c)icl2.hs
(CZT,Q);G[M}
C

where all elements are distributed same as in Hybb 4, i.e. this is same as ’Dg’fl) except that

(clq A)cude(h (cLy cid.1 B)c1d€Ca (c; C)Ze[g K (¢ Q)le[g % and c are all uniformly random.
Suppose there exists a PPT A that distinguishes Hybl(7 2) and Hyb(h) with non-negligible
probability, it is easy to verify that then there exists a PPT B that distinguishes Dghl) and
Déhl defined above with non-negligible probability. In more details, the only difference
between the distribution in Hyb( b2 and ’D(hl) is that D( 11 additionally contains sT(A ®keq) +

elg 4 and s T(Baa 1 @ keig) + €Xy- «cid1,p for all cid € C. A trivial reduction simply hides
these components. (These additional components will be used in the proof of Lemma 6.)
Now consider a PPT Samp which on input A outputs the following:

A (1®P> (Ik1®Q) < 0 )
S \vel, 0 A ® keig cdec]’
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i

. Pk.. K.
P . < cid . Q cid ) vl c [Q,k},
Beid,i @ Keid/ Gyec

where 1 € {0,1}*~! is the all-one vector, and aux containing A, R, P, Q, (ked, Keid)cigec vV
together with all random coins used.
By the EvasivelWE,aram, assumption (c.f. Table 5), there then exists a PPT £ that

distinguishes the distributions DYLQ) and Déhz) with non-negligible probability, where Dghg

and Déhz) are defined as follows:

A7 R7 (Ci)iG[Q,k]a P7 Qa (kcid> KCid)cidGC y V,

(S}Pkcid + eadips SIQKcig + 5T (Beid,i ® kad) + ezid,i73> R—
i€[2,k],ci

Dghz) = (s"(A ® keig) + ezid,A)CEGCv (s"(Beia=,1 ® keia) + ezid*,cid,l,B)CidGC’ (7)
(sgci + STgi + ezT)iE[Q,’f]’
(clo=5/Q+elg)icpn
Dic2.H s;P+s'(vely)+e

., . h "
where all terms are distributed as in D§,1)> additionally ez cid,p <% X(2), €cid,i,P <3 X(1) for
all ¢ # 2, and ecg;,B <$ ng.

A7 R7 (Ci)i€[2,k}] 5 P7 Q7 (kcida KCid)cidGC , V,

L T
Ceid,i, P> Ceid,i, B ic[2,k],cidec’

Dég = (Czid,A)cidECTv (Czid*,cid,l,B)CidEC (8)
(¢ic)ici2.m)
(ciQ)ie2.i]
CT

where (Ccid,i,Pacgid,i,B)ie[z,k]’ddeca (Czid,A)cide& (czid*,cid,l,B)cide& (C},c)ie[z,k], (C},Q)iG[Q,k]
and c are all uniformly random.

But under the LWEan(m_FQ)’q’X(O) and TensorLWEn,(k+2)m+17qyx(0),X(O)Vg,gassumptions
this is not possible by Lemma 6.

Similarly, in Section B.2 we show that Case (2) happening would contradict either
of the LWE,, 21n(m+2),0,x(0)» LWEm.poly(n).q.x (1) x (0 a0d EvasivelWEparam  assumptions, the
latter with appropriate parameters. The theorem then follows. O

Lemma 6. For the distributions Dghg and ’DéhQ) defined in Eq. (7) and Eq. (8), we have

Dghg < DéhQ) assuming

LWEW72m(m+2)7¢Z;X(0) and TensorLWE?’h(k+2)m+1,q’X(o)7X(o)%Q'

A proof of Lemma 6 is analogous to that of Lemma 5, which we defer to Section B.1.
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A Proofs for MA-ABE

We provide the remaining proofs for the MA-ABE construction. For clarity we also restate
the theorem appeared in the main content.

A.1 Continued proof of Theorem 4 (corruption)

Theorem 4 (Security). For parameters as in Table 4, Iy, is IND-CPA-secure without
missing keys (Definition 5) assuming

LWEn,Qm(m+2),q,x<1> ) LWEm,poly(nLq,xa) X(1)?
TensorlWE,, km+1,q,x(2).x1),6,Q>  EvasivelWEparam, and  Evasivel WE,aram,

in the (non-programmable) random oracle model.

Proof. (Continued.) Below write Z = Z.opy C [k] for the set of corrupt authorities. In this
continued proof we focus on that Case (2) beorrupt security = 1 happens. That is, for all
uid € U there exists an honest authority 7 € [k] \ Z such that a key sky; from ¢ has not
been queried.

Fix arbitrary honest authority i* € [k] \ Z, which exists since [k] # Z. For each uid € U,
denote by iuq an arbitrarily fixed honest authority from whom uid has not been queried
by the adversary, which exists by design of the security experiment.

We define the following sequence of hybrids:

uid,i

. Hybl())c()): This is the real security experiment for the scheme in Fig. 9, encrypting pup,
and conditioned on that bcorrupt security = 1.

Recall that in this hybrid the adversary is given the following:

(BZ)ZG[k] ) (Al)zé[k] ’ (tdAz)leI 3 P, Q, (kuich K"'id)uidGZ/{ ,u
— 1)kuid QKuid ) . )
Uuii:A-l ~ VUIdGL{,zeIuim k I
) ‘ ( Buid,i X kuid d ([ ] \ )
= (sT|sTA; +ef Vie k]

c;
co=(si|...|sp)Tx ® Q) +ef
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' = Z s;P+s"(Brul,)+e’ + umg'
1€ k]

where all terms are sampled according to the distribution as in the scheme. We recall
each U\g; is sampled with tda,. Relative to the case in the honest model, here
the adversary is additionally given ask; = tda, for the corrupted authorities ¢ € 7.
Below we write ¢f = (¢] o | .. | €}, o) where ¢} 5 =s]Q + €] .

. Hybl(),ci: Same as Hybl()cg, except that for all ¢ € [k] \ Z, A; is sampled uniformly

randomly and all (entries of the) corresponding preimages U\;q; are sampled (ineffi-
ciently) from the Gaussian distribution with parameter 7, subject to

_ Pkuid QKuid
AiUuias = ( Buid,i Qkyid/)

We have Hybl(f()) & Hybl(:i by the properties of TrapGen from Section 3.3.
. Hybl()f%: Same as Hybl(ﬁ, except:

— we sample uniformly random ¢ «s Z;",
— for each i € [k] \ Z, we sample uniformly random c;, and

— for each i € [k] \ Z, we sample the i-th chunk c; ¢ in ¢y uniformly randomly.

We show in the following that Hybl(fi ~ Hybl(f%. Then, the theorem follows from noting

that Hybgf; 2 Hybg7 since in both hybrids the component ¢ in the challenge ciphertext is
chosen uniformly randomly.
Define the distribution

(Bi)ie[k]\z ’ (Ai)ie[k]\za Pa Q7 (kuid7 KUid)uidEZ/l ,u
(A-_l (Pkuid . QKuid ))
’ B“id’ig Kuig uid€U i€ [k]\(ZU{ua })
(T; = sTA; +e])ic\z
T _ T T
(Cz‘,Q =s;Q+ ei,Q)ie[k]\z
e =Y cppzsiPter

D}~

where all terms are distributed as in Hybl(fi. We note that in the above distribution, the

LWE samples ¢; are w.r.t. A;, whereas the preimages are w.r.t. (the full) A;. Moreover,
for each uid € U, the distribution involves preimages w.r.t. A; for all i € [k]\ (Z U {iuid}),

a superset of the ones appearing in Hybl(h? and Hybl(f% (which will be useful in the proof
of Lemma 7). Define also the distribution

(Bi)ie[k]\l , (Ai)ie[k]\z’ P,Q, (kuid7 KUid)uideu ,u
(Afl Pkuid R QKuid >)
D(c) — Buid,i ® kyid uidett i€ [k]\(ZU{7uia })
B @)
TZ SIIAVA
€i.Q)ic\z
éT

(10)

where all elements are distributed same as in D
and € are uniformly random.

ﬁ, except that (€})icrnz, (€ Q)ickn\z
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Suppose there exists a PPT A that distinguishes Hybl()ci and Hybl()cg with non-negligible
probability, then it is easy to verify that there exists a PPT B that distinguishes Dgci
and Déci defined above with non-negligible probability. A detailed reduction is given
in Proposition 1.

Now consider a PPT Samp which on input A outputs the following:

A=1pzoP|L_712Q),

5 Pk id QKuid ) . . ~
P, = we Yuid eU,i € [k]\ (ZU {iuq}),
( Buid,i ® Kuid / ey KN (2 {iuis})
where 1,7 is the (k—|Z])-dimensional all-one vector, and aux containing (Bi)ie[k}\z ,P,Q,
(kuid, Kuid) yigeys » U together with all random coins used.
By the EvasivelWEaram, assumption (c.f. Table 4) w.r.t. Samp, there exists a PPT &
that distinguishes the distributions Dg and Dgcg with non-negligible probability, where

DEC% and Décg are defined as follows:

Bi)ieppz » (Ai)icpppz Py Q, (Kuid, Kuid) yigers - 1

sTPKyiq + euidip, STQK g + €T, .
(1 uid T €uid,i, P ZQ uid uid,i,Q uidEl/{,ie[k]\(IU{fuid})

(e) ._ _
Dip= (sTA; + e-{)ie[k]\I (11)
(siQ+ e;‘r,Q)ie[k]\I
' = D iel\T s;iP +e'

where all terms are distributed as in DECL additionally e;« yia,p <8 X(3) (where we recall

i* is arbitrary in [k] \ Z defined at the7beginning of the proof), eyiq,i,p +$ X(2) for all
i€ kl,i#i*, and ey 0 <5 ng, and

(Bl)le[k]\l' ) (Ai)iG[k‘]\I7 P7 Q7 (kuida KUid)uidGU ,u

Cuid,i, I d,i Q
ul id,7 e
HE uid,?, uidel i [k]\(IU{iuid})

(E})ie[k}\l
ct
4,Q/ic[k]\T
CT

(12)

where (cu;d,@p, ety Q) (€}, €} o)iek\z; € are all uniformly random.

uidett i€ [k\(ZU{7ua})’
We observe that the above implies a PPT distinguisher G for the following distributions

DE%,D&%, given which DEC% and D§°% can be efficiently simulated respectively:

Bi)iciupz » (Ai)icmpz P Qs (Kuids Kuid) yigers » 1
(SEPkuid + e“idaifp)uideu,ie[k]\(IU{%uid})
Dg = (sjAi + €] )iclk\Z (13)
(STQ+€00) cuz
¢ = D iclk\T s;iP +e'

(Bi)ie[k]\j ’ (Al)Le[k]\Ia Pa Q» (kuidv KUid)uideu ,u
© C“idﬂixP)uidEZ/l,ie[k]\(IU{I’uid})
Dy 3= (?T)ie[k}\z (14)

€i.Q)ickn\z
CT
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which are almost identical to Dg and Décg respectively, except that s]QKuid + el ; o

T

respectively ¢4 ; o are omitted. To simulate Dg from Dg, one computes

(s;Q + e;‘r,Q)Kuid + ezid,i,Q =sIQKg + e;r’QKuid + ezid,i,Q 2 sTQK g + ezid,i’Q mod g
where the last & follows from noise flooding, since
X 2 AW X xay - xay n 2 AW - 6] o - K|

When sjQ + €] , is replaced by uniformly random cf, ; o, then the simulation becomes
also uniformly random.
Finally, by Lemma 7 the existence of G is not possible under the LWEnVQm(m“))q’X(l) and

LWE,, poly(n),q,x (2).x(1, assumptions, thus we have a contradiction. The theorem follows. [

Proposition 1. If there exists a PPT A that distinguishes Hybl(ﬁ and Hybl(f% defined
in Theorem 4 with non-negligible probability, then there exists a PPT B that distinguishes the
distributions Dgci and Déci defined in Eq. (9) and Eq. (10) with non-negligible probability.

Proof. Given such a PPT A, we construct such a PPT B. On input a sample from either
Dﬁ or Déci defined in Eq. (9) and Eq. (10) respectively, let B proceed as follows:

o Parse P, u from the input sample and let pp := (P, u) be the public parameters.
e To generate the authority public and secret keys:

— For corrupt authorities i € Z, generate (apk;, ask;) «<— AuthSetup(pp).

— For honest authorities i € [k] \ Z, parse A;, B; from the input sample and let

e To answer the authority key queries:
— For any query (uid, ¢,x) on corrupt i € Z, generate query using ask;.

Pkui Kui
— For any query (uid,4,x) on honest i € [k] \ Z, let A; ! ( ¢ QKug )
Byid;: @ kuid
from input sample be the answer.

« To generate the ciphertext, sample random s < Z;™ and random s; < Zy for all

1 €7, and:
_ ; T _ (T | T T 2m(m+1)
For i € Z, compute ¢; = (s; | s")A; + e; where e; <=5 x()) .
— Fori e [k]|\I:

* Parse A; and E}’ 4 from the input sample, write A; = (21> where A; €
Zn><2m(m+1) and A. € anme(m+1) -
q Ay q .
* Compute sTA,;, set c] =¢; 4 +s™A,.

==

Parse cj o for all i € [k]\Z from input sample. Compute c; o = s]Q+ej 5 mod ¢
for all i € 7 where €] ; = x{;). Concatenate to obtain ¢f = (cf g | ... | ¢} o).

Parse ¢ from input sample, compute c” := &'+, 7 sTP+s"(Byu®I,,)+ 8"

Let the ciphertext be (c,cq,...,ck).

e Pass all terms computed above to A, then return whatever A returns.
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It is immediate that the above simulates Hybz()ci and Hybl()C% respectively perfectly, if the
input is respectively Dgci and DEC% In more detail, for the ciphertext, if € 4 = sTA; +e]
then ] = sTA; +e] +s"A; = (s] | s")A; + €], else if €] 4 is uniform then so is ¢j. The
claim follows. O
Lemma 7. For the distributions Dg and Déc;) defined in Eq. (13) and Eq. (14), we have

Dgc% ~ Décg, assuming

LWEn,27n(m+2)7q7X(1> and LWEmmoly(n),q,x(z) X1

Proof. Continue with the notation in the proof of Theorem 4, where we have let i* € [k]\Z
be an arbitrarily fixed honest authority (which exists because [k] # Z), and for each
uid € U, we have let iyq € [k] \ Z be an honest authority where uid is not queried by the
adversary (which exists by design of security experiment).

We consider the following sequence of hybrid distributions:

. Dg?)) as in Eq. (11).

e D;3,1: For each uid € U, if i* # iuid, then do the following:

We swap sL.Pkyiq + €+ uia, p t0
Z s;iP+e’ | kyg — Z s;PKyid + euidip | + €i* uid.p
i€k\T €K\ T i1
We have D% R Dj 31 by noise flooding, which is due to the equality
sk Pkyiq = Z STP | kyig — Z sTPkyiq.
i€k\T i€ [k\Trii*

and e yia,p ~ €'Kyd — D ick\Tripir Cuidi,P t €5 uid, Py 8S X(3) = A“(l)(AQX%l)m +
kX (2)) > Aw(l)’

T
e kyig — Zie[k]\I:i;éi* 6uid,i,PH-

Otherwise, if i* = 7,4, then do nothing. The effect of this swap is that, for all uid € U,
the term sl. Pkyiq + €yid;, p 10 longer exists in Dy 31 (and is instead simulated by
the other terms, where the expression includes LWE samples with secret s;uid).

As a result, the only remaining terms in D; 31 involving s;« are sk A;+ + el. and
T T T T
s;»P + e p,and s;.Q +e;. 4.

e Dy32: We swap
T T T T T T
Si» A« + €., si-P+e.p and si-Q+e o

to uniformly random.
‘We have 'Dl,g,l & D1’3’2 by the LWEn72nL(m+2)

result c is also uniformly random.

axqy assumption. Notice that as a

o Dy33: Foralluid e, all i € [k]\ (ZU{i*}), we swap
siPKuig + eyidi,p to (siP + &lig.i p)Kuid + €uid,i.P-
where €iq;,p <3 XH)'

We have D; 32 & D 3,3 by noise flooding, due to éEid’i’Pkuid + Cuid.ip 2 Cuid.i.p- Since
X(2) = AP Ny xaym > AW |ely ;. pkuidl|-
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e Dy34: Foralluid e, alli e [k]\ (ZU{i*}), we swap
(siP + & p)Kuid + €uid,i,P to b; pKuid + €uid,i,p
where bzid’i’ p is uniformly random, and we also swap
s;Q + e{Q and s;A; +e]

to uniformly random.

We have Dy 33 & D1 3,4 by the LWE,, 5y, (m+2) assumption.

sd5X (1)

e Di35: Foralluid e, alli e [k]\ (ZU{i*}), we swap
b; pkuid + €uid,i,p

to uniformly random.

We have Dy 34 ~ D135 by the (low-norm) LWE,, poly(n) assumption.

»d5X(2),X (1)

Observe that Dy 35 £ Déc% as in Eq. (14), the proof is completed. O

A.2 Alternative security proof for corruption

In this subsection we provide an alternative security proof of the MA-ABE scheme in case
of beorrupt_security = 1, i.e. for all uid € U queried, there exists an honest authority i such
that a key skq ; from i has not been queried. The evasive LWE assumption involved in
this alternative proof is slightly weaker than that in Section A.1, although the overall
proof is more complicated. For this, we will make use of non-spherical discrete Gaussian
distributions and trapdoors for sampling preimages following these distributions. We recall
the necessary preliminaries below.

A.2.1 Non-spherical Gaussians (Extending Sections 3.1 and 3.3).

A symmetric matrix ¥ € R™*™ is said to be positive semi-definite, if xT¥x > 0 for all non-
zero x € R™. For a positive semi-definite matrix ¥, we denoted by D,,. , 5 the (centered)
discrete Gaussian distribution over Z™ with parameter /3, i.e. the distribution over Z”
where for all x, Dzm »(x) e~ ™' 2% where X is the (Moore-Penrose) pseudoinverse of
». With an abuse of notation, we sometimes also denote by v/ the (centered) discrete
Gaussian distribution over Z™ with parameter v/X.

If ¥ = X1, ie. diagonal matrix with the same entry x*, so that D,,, (x) o
e~ ™ @+ +2l)/X | we write Dy /5 and Dzm  interchangeably. Analogously, we some-
times denote by x™ the (centered) discrete Gaussian distribution over Z™ with parameter
X-

Let ¥ € R"*" be diagonal matrix with entries x?, ..., x7. There exist PPT algorithms
(TrapGen, SampPre), such that for appropriately chosen n, g, {Xi}z‘e[m] parametrised by A,
with x; > O(y/n -logq-logn) for all 4 € [h], the following properties are satisfied [GPV08S,
MP12, GM18]:

« (D,R) < TrapGen(1™,1", q) generates a matrix D € Z2*", where h > 2n[log ], and
a trapdoor R € ZM*nllegdl guch that DR = G mod q. The distribution of D is
statistically close to the uniform distribution over Zg'Xh.

e u <+ SampPre(D, R, v, \/i) inputs a target vector v € Z; and a gaussian parameter
VE, and samples a vector u € Z". For any D € Zph R € ngnﬂog‘ﬂ such that
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Table 6: Selected parameters and shorthands for MA-ABE scheme (Section 6), under alternative
security proof in Section A.2.

h > 2m(m+ 1) Number of columns of A;

Micy Mpe Mic > 2(Neyr + npr) log ¢, mre = h — my. Number of “left columns” and “right columns” of A,

Nir, Vb Nir = N, Nppr = MN Number of “top rows” and “bottom rows” of A;
X(0) > 0(N) Parameter of KGen algorithm,
Gaussian width of R, Wyid,i, Yud,i, €;,4 in proofs
X(1) >av®. X%o) Parameter of KGen algorithm,
Gaussian width of u, kud, Kud, €, €0 = (€i,Q)i,
(ei)iek)> and of v;id’i,X;idvi, &yid,i,p in proofs
X(2) > A X?l) Gaussian width of ey i, B, €uid,i, P, €uid,i,@ in proofs
X(3) > a0 X(2) mO @ Gaussian width of e;« 4 p in proofs
I,z z = |[k] \ Z| Set Z of corrupt authorities in proofs
param, (g; 2, iy, Myc, 2m, (2 + 1)m, S2, X (1), Evasive LWE parameter

(Poly()\)7X(1),wi,X(l))ig[Z])*where
Yix = X(3), Vi = X(2),t F 1

DR = G mod ¢q and 5(s1(R)? + 1) < min; x? where s1(R) is the maximal singular
value of R (e.g. when (D,R) is output of TrapGen(17,1" q)), it is guaranteed that
Du = vmod g and ||u;]| < Ay; for all ¢ € [h] with overwhelming probability, where
u; is the i-th entry of u. Furthermore, for any v € Zy, the following distributions are
statistically close:

n 1h
{(D,u) (D,R) + TrapGen(1”,1 ,q)} N {( )

u < SampPre(D, R, v, \/i)
If x1 =...= xm = X, we simply write SampPre(D, R, v, x).

(D,R) + TrapGen(1™,1",q)
u<—$\/§:Du:vmodq .

A.2.2 Alternative proof.
'_Ai Xz
LAi AJi
and analogously for A'; € Zgtr=Mre, Ay € Zyrr ™ and Ay € Zytr*™re. Also, we slightly
modify the scheme in Fig. 9:

We will denote A; = ( >’ where "A; € ZJt*™e is the “top left corner” of A,

« In AuthSetup, let A; be sampled from TrapGen(17(™+1) 1% ¢), where h > 2m(m+1).

o Let ¥ € ROmetmre)x(metmre) he diagonal matrix where the first m;. entries are
X)) = XWx? and the rest are x(g), which is the Gaussian parameter input to
SampPre in the KGen algorithm.

The modified parameters involved in this alternative proof are summarised in Table 6.

Proof. (Alternative.) Below write Z = Z.opy C [k] for the set of corrupt authorities. In
this continued proof we focus on that Case (2) beorrupt security = 1 happens. That is, for
all uid € U there exists an honest authority i € [k] \ Z such that a key sk ; from i has
not been queried.

Fix arbitrary honest authority i* € [k] \ Z, which exists since [k] # Z. For each uid € U,
denote by iuq an arbitrarily fixed honest authority from whom uid has not been queried
by the adversary, which exists by design of the security experiment.

We define the following sequence of hybrids:

. Hybgc(’)alt): This is the real very-selective security experiment for the scheme in Fig. 9,
encrypting .
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Note that in this hybrid the adversary is given the following:
(Bi)ie[k] ) (Ai)ie[k] ) (tdAi)ieI’ P.Q, (kuid)uideu »u

, (Pkas QK.
o= AL uid uid . . L )
Umd,z Az ( Buid,i ® kmd) Vi € [/ﬂL uid eU 1 i € Tyg

c; = (s} |sHA; +e] Vie k]
co=(s1] . |si)(Tx®Q) +ep
c’ = Z s;P+s"(Bruxl,)+e’ +ug'

i€ [k]

where all terms are sampled according to the distribution as in the scheme. We recall
each Uyq; is sampled with tda,. Relative to the case in the honest model, here the
adversary is additionally given ask; = tda, for the corrupt authorities ¢ € Z. Write
ch=(cigl..-|cig) where ci o =sIQ+ej,.

. Hybl(:ialt): Same as Hybl(f(’)alt)7 except that for all i € [k]\ Z, A; is sampled uniformly
randomly and all corresponding preimages U\;q; are sampled inefficiently. We have
Hybgc(’)alt) 2 Hybgfialt) by the properties of TrapGen from Section 3.3.

. Hybl(féalt): Same as Hybl(,cialt), except:

— we sample uniformly random c <$ Z",
— for each i € [k] \ Z, we sample uniformly random c;, and
— for each i € [k] \ Z, we sample the i-th chunk c; ¢ in ¢y uniformly randomly.

We show in the following that Hybl(fialt) ~ Hybl(f;lt). Then, the theorem follows from

noting that Hyb{s™** 2 Hyb{"™®.
Define the distribution

(Bi)ie[k]\z ) (rAi>ie[k]\I’ P,Q, (kuid7 KUid)uidGZ/{ i
ra—1 a1
A (Pkua), A QK .
ot ( i (Plaia), A; (QKuig) uidelU i€ K\ (ZU{7ua })
pleals) rTo_ A T (15)
b (C“TA SiT it f“‘ i€[k\T
(clo=s1Q+ ei,Q)ie[k]\I
&' =Y cppzsiP tef

where all terms are distributed as in Hyb,,;, in particular rA;l(Pkuid),rAi_l(QKuid)
are sampled (inefficiently) with Gaussian parameter x(1), and additionally the noise
reL A8 XE’SZ)C. Define also the distribution

(Bi)ie[k]\l' 9 (rAi)ie[k]\Iv Pv Q7 (kuid7 Kuid)uidgl,{ u
ra—1 ra—1
( A; (Pkua), A, (QKuid)>

1t)
D(Cva = r T
2,1 Ci A

uid€U i€ [k]\(ZU{7uia })
) (16)
i€[k\T

(¢io ielk\T
6T
where all elements are distributed same as in D ;, except that (rc;r A) , (rcT Q)
T/ ielk\T "/ ielk\T

and € are uniformly random.
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Suppose there exists a PPT A that distinguishes Hyb}(fialt) and Hybz(féalt) with non-
negligible probability, then by Lemma 8 there exists a PPT B that distinguishes D; ;
and Dy ; defined above with non-negligible probability.

Now consider a PPT Samp which on input A outputs the following:

A=1pzoP | Li_71®Q),

P; = (Pkys QKuid) gy, Yuid €U, i€ [K]\ (ZU {iuia}),

where 1p;)\z is (k — |Z])-dimensional all-one vector, and aux containing (Bi)ie[k]\I ,P,Q,
(kuid, Kuid) yigeys » U together with all random coins used.
By the EvasivelWEaram, assumption (c.f. Table 6), there exists a PPT &£ that dis-

tinguishes the distributions Dgféalt) and Dé?éalt)

Dg?éalt) and Dgféalt) are defined as follows:

with non-negligible probability, where

(Bi)ie[k]\I ) (rAi)ie[k}\I ) Pa Q, (kuidv Kuid)uideu U

(Snguid + euidi,p, S; QKuid + €l ; o
,D(c,alt) — T
1.2 (sTAi +'e; a)icinz

T T
(sfQ+ ei7Q)ie[k]\I
&' = cppzsiP +e

videl i€ [k]\(ZU{ 7 })
{iua} (17)

where all terms are distributed as in D; 1, additionally e;« yiq,p <$ X(3) (where we recall
*

i* is arbitrary in [k] \ Z defined at the beginning of the proof), and ey pr <$ X(2),
€uid,i,Q <3 X?3) for all i € [k],q # i*,

(Bi)ie[k]\I ) (rAi)ie[k]\I P, Q, (kuidv KUid)uideu »u

Cuid,i, P> C,,
uid, i, id, i i
» “uid,i,Q uideu7i€[k]\(fu{i“‘d})

r T
( C%:,A)ie[k]\z

Ci.Q)icn\z
6T

,alt) |
Dég )=

T ~ .
where (Cuid7i7p, Cuid,i,Q) , € are uniformly

wp (€a) gz (<he)
uidel i€ [k]\(ZU{iuia }) " ielk\T "/ ie[k\T
random.
We observe that the above implies a PPT distinguisher G for the following distributions

Dféalt),l)géalt), given which Dg?éalt) and Défﬁah) can be efficiently simulated respectively:

(Bi)ie[k]\l ’ (rAi)ie[k}\I P, Q, (kuid, Kuid)uideu yu
(siPkuig + eUidvivP)uidelx{,ie[k]\(IU{Zuid})
DI = (STA, + ) 4)ici\z (19)
(STQ+€10)icpuz
e’ =Y cppzsiPte’

(Bl)ze[k]\z ) (FAi)iE[k]\I 9 Pa Q» (kuidv Kuid)uidez,{ ,u
Cuid,i,P)uideu,ie[k]\(m{iuid})
T

(rci,A)ie[k]\I (20)

T
(G i€[k]\T
éT

c,alt)
DL
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which are almost identical to DE?’;M) and Déf’;lt) respectively, except that s]QKyia+ejy ; o

T )

respectively Cyid,i,q are omitted. To simulate Dg?éalt) from Dﬁ’;h

, one computes
(51Q + € o) Kuid + €yig i @ = 5 QKuid + €] Kuid + €yia i ¢ ~ 5] QKuia + € ;.o mod ¢
where the last & follows from noise flooding, since
X 2 XWX xa) Xy = 20 lel o - Kl

When sjQ + e]  is replaced by uniformly random ¢l ; o, then the simulation becomes
also uniformly random.

But by Lemma 9 the existence of G is not possible®® under LWE,, ,y2m.q.x,, and
LWEm,poly(n).,q,xa),xmv thus we have a contradiction. The proof is completed.

Lemma 8. If there exists a PPT A that distinguishes Hybgfialt) and Hybl(f;lt) defined
in the proof of Theorem J with non-negligible probability, then there exists a PPT B that
distinguishes the distributions Dfialt) and Dé?ialt) defined in Eq. (15) and Eq. (16) with
non-negligible probability. /

Proof. Given such a PPT A, we construct such a PPT B.

Reduction. On input a sample from either D{** or Déf’lalt) defined in Eq. (15)

and Eq. (16) respectively, let B proceed as follows: 7
o Parse P, Q,u from the input sample, let public parameters be pp := (P, Q,u).
e To generate the authority public and secret keys:

— For corrupt authorities i € Z, generate (apk;, ask;) «<— AuthSetup(pp).
— For honest authorities i € [k] \ Z:

* Parse "A;, B; from the input sample.

* Sample uniformly random matrix A; < Zy* ™ and a random low-norm

matrix R «s$ X?Sgcxm” Also sample a matrix T; € Zy~*™ with a

trapdoor tdr, using TrapGen.
* Let

A (A AN _ (A 0\ (T RY_(A AR .
T\A; A \A;, T;J\0 I/ (A, AR+T, moead:
* Set apk; == (A;,B;).

e All key queries for the corrupt authorities i € Z are answered as in the scheme, using
tda,. For each honest authority key query (uid,,x) with ¢ € [k] \ Z:
— Parse vyqg,; = rA;I(Pkuid) and Xiq; = rA;l(QKmd) from the input sample.

— Sample Wyig; = T; ' (= A;viiai) and Y, = T;  (Buiai @ kuia — A Xuiai)
using tdr,.

— Answer with

U = I R\ (Vudi Xuidi) _ (Vuidi — BWuidi  Xuidi — RYuid i
uid, @ 0 I Wuid,i Yuid,i Wuid, i Yuid,i .

20Lemma 9 is almost identical to Lemma 7, except that A; is replaced by "A;. For completeness we
provide Lemma 9.
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Note that it holds that

‘A; A U — (Pkuid QK.ig mod
A, A,) e Buiai ® kuig B

o To generate the ciphertext, sample random s < Z;™ and random s; < Z; for all
i €7, and:

mic+mye

— For i € Z, compute ¢j = (s; | s)A; + €] 4 where e; 4 =8 X7}
— For i € [k]\ Z, parse rci 4 from the input sample, and:
* Compute f{ := rC;A +sTA; + e] 4 mod g where e; 4 < X?{SC-
* Compute f] = I_czAR +s"(A;R +T;) +e,j , mod g where e,; 4 X?I)T
* Let cf = (£7 | £1).

— Parse cj g for all i € [k] \ Z from input. Compute cj o = s;Q + €] o mod g for
all i € 7 where €] ;, < X(1)- Concatenate to obtain ch=(clgl --Icto)
— Parse ¢ from input sample, compute ¢’ := &'+, 7 sTP+s"(Byu®L,)+mg".

— Let the ciphertext be (c,co,c1,...,Cg).

e Pass all terms computed above to A, then return whatever A returns.

Analysis. Below we argue that, if the input to B is Dﬁalt), then the above simulation

is statistically close to Hybz()cialt); else if the input is Défialt), the simulation is statistically

close to Hyb,(féalt) .

(c,alt
by, 1

Simulating Hy ). Suppose the input to B is Dgfialt), consider the following hybrids:

o Dj: The simulation from B as described above, that is:

A, "A;R
(Bi)iemn » (Ai)ier s <( ' ' ) mod q) ’
€[k] € A; AR+T; i€[k\Z
(tda,)iez - P, Qs (Kuid) yigeys » 0

Pk,; K. . . .
Uuid,i:Ai_l< ¢ QKua )VzeI,wdEU:zeIuid

Buid,i ® kyid
Uuid,i = (de’iv;uiiwum’i X"id7£iiY”id’i> mod ¢ Yuid € U,i € Tyig N ([k]\ T)
cl=(s]|sHA; +ef VieZ, cf=(]|f]) Vie[k\Z
CE) = (C-{,Q | o] Ci,Q)
cl=¢"+ Z siP+s"Bu®l,)+ wg'
i€

where f = rc;-r_’A +sTA;+.e] , mod g and f] = rc'f’AR—l—sT(LAl-R—i—Ti) +e,j 4 mod g.
Recall that in this case I_CZA =sT'A; + re;-iA mod q for i € [k] \ Z.

o Dj: We change the query answers for the honest authorities: For all i € [E]\Z, uid € U,
we swap

/ /
Vuid,i — RWuids  Xuid,g — RY Gidys to Viidi  Xuidi
Wid, i Yid,i Wuid,i  Yuid,i
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Mye XML

where v/, . «s x?{g“ and Xy ; <$ X(1)

" are Gaussian subject to

u

v X Pk id QK id
Ai uid,? md,z) — < ul . u mod a.

(Wuid,i Yiid,i Buid,i ® kyid e
A, "A,R

We recall A; = <LA1' AR+ T;

) mod ¢ in the above.

We have D) ~ D} by noise flooding, due to

’
uid,?

and Xuid,i — RY yia; & X|

S
Viid,i — RWyid; = v uid,

since (1) > A \2. X(0) * X(0) - Mre > MM R - wyigi|| and X(1) > Awd) o \2.
X(0) * X(0) " Mre > AW IR - Yig,i]| with overwhelming probability.

As a result all query answers are independent of R.

o Dj: We change the ciphertext component c; for the honest authorities. For all
cl = (£}, f]) where i € [k] \ Z, we swap f;, from

S-{'—Ai + re’f,A + sTLAi + Le-f,A to S-{FAi + STLAZ' + Le;{A’
and we swap f] from
T r T T T o ! i
(Si Ai n ei’A)R +s (LAz‘R + Tz) + eJi,A to S; AlR +s (LA,LR + Tz) + eJi7A.

We have D} & D), by noise flooding, due to

r T T s T rT T S T
€4+ .© AR € 4 and ei,AR +e;a~€,;a,

since X(l) Z )\w(l) A X(O) Z /\w(l) . ||rei7A|| and X(l) Z )\w(l) A X(O) ~X(0) s My Z

@) re;-r’ARH. As a result we have for i € [k]\ T

c; = (f5 [ 1) = (s] Ai +s"A; + €] 4 | sTAR+sT(AR+T) +e )
A, AR
_ T T 7 7 T T
61 (X amm,) +ehalels

= (s] | s)A; + e} mod q.

o Di: We change the apk for the honest authorities: For all i € [k] \ Z, we swap

(rAZ- ‘AR
apk; =

A AR+ T-) mod ¢ to a uniformly random A;.

We have D}y & Dj. This follows from (1) "A; and |A; are uniformly random, and
hence (2) "A;R mod ¢ and ,A;R mod q are statistically close to uniform by Lemma 4,

which applies since x(1) > w(v/log mic) and mye > 2(ng, + ny,) logq.

Observe Dj £ Hyb,(fialt). Thus we conclude B statistically simulates Hyb,()cialt).

(c,alt (c,alt)

Simulating Hyb; 5 ). Suppose the input to B is Dy 1, consider the following hybrids:

o D{: The simulation output by B as described. Recall that in this case rc;-r’ A s
uniformly random for i € [k] \ Z.
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o Dj: We change the query answers for the honest authorities: For all i € [E]\Z, uid € U,

we swap
/ /
Vuid,i — RwWyidi  Xyid,i — RY uidi to Viidi  Xuid,i
Wid, i Yid,i Wuid,i  Yuid,i
/ my / Mpe XML . .
where v ; <$ X1y and Xy ; < X(1)° are Gaussian subject to

A Viidi Xiai) _ (Pkuid QK.id
A (Wuid,i Yidi) Buid.i © Kyig mod g.

We have D) ~ D} by the same argument as in the previous case.

o Dj: We change apk; and the ciphertext component c¢; for the honest authorities: For

all i € [K]\ Z, we swap apk; = (ilﬁ A-?{iET-

rC;{AR +s'(A;R + T;) + e, 4) to uniformly random.

T__ (T T T
)andci_(ci7A—|—s,_Ai—|—Lei7A

We have D} & D). This follows from (1) "A;, A; and rcz 4 are uniformly random,
and hence (2) "A;R mod ¢, A;R mod ¢ and rc;-{ 4R mod ¢ are statistically close to
uniform by Lemma 4, which applies since x (o) > w(v/Iogmyc) and mye > 2(ng +
npr + 1) logq.

Observe Df 2 Hybl()céalt). Thus we conclude B statistically simulates Hyb,()céalt). This
completes the proof. O

Lemma 9. For the distributions Dgféalt) and Dé?éalt) defined in Eq. (19) and Eq. (20),

(c,alt) ¢ y(c,alt) .
we have Dy 577 =Dy 3 assuming

LWEn,n+2m,q,X(1> and LWEm,Poly(n)7q7x<z),X(1>'

Proof. Continue with the notation in the proof of Theorem 4, where we have let i* € [k]\Z
be an arbitrarily fixed honest authority (which exists because [k] # Z), and for each
uid € U, we have let iyq € [k] \ Z be an honest authority where uid is not queried by the
adversary (which exists by design of security experiment).

We define the following sequence of hybrid distributions:

. Dﬁ;alt) as in Eq. (17).

o Dy 3.1: For each uid € U, if i* # fuid, then do the following:

We swap sl Pkyig + €+ uid,p t0

Z siP+e’ | kyg — Z s;PKyid + €uid,i,p | + €ix uid, P
i€R\T €K\ Trizi

We have Dgféalt) & Dj 3.1 by noise flooding, which is due to the equality

stPkia= | Y sIP|kia— Y. siPkya.
i€[k\T i€ [k]\T:ii"
and that
i uid, P ~ € Kyig — Z €uid,i,P + €i* uid,Ps

i€\ Trizi*
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since

X(3) = Aw(l)(>\2x%1)m + Akx(2)) = XDl ekyig — Z €uid,i,P||-
i€ [k)\Trigti*

s . o s . T r T T T
Notice that in Dy 31 the remaining terms involving s;- are s;. A+ €. 4, s P+ej. p,
and s;. Q +ej. .

e Di392: We swap

T T T T T T
Si» Aix + € 4, s;-P+e.p and s;»Q+ e g

to uniformly random.
We have Dq 3,1 = D1 ,3,2 by the LWEn,n+2m,q,X(1); assumption.

Notice that as a result € is also uniformly random.
o Dy33: Foralluid e, alli€ [k]\ (ZU{i*}), we swap
s; Pkyid + €uid.i.p to (5iP + €lig.i p)Kuid + €uid,i,p

where €iq;, p <3 X?{y

We have D 39 A Dy ,3,3 by noise flooding, due to éEid’i,Pkuid + €yidi,p 2 Cuidq.p Since
X 2 MONx ) xym 2 308y k]|

e Dy34: Foralluid e, alli e [k]\ (ZU{i*}), we swap

T AT T
(s; P + &yiq,i,p)Kuid + €uid,i,P to byia,i, pKuid + €uid,i, P
where bl . p is uniformly random, and we also swap

siQ+ejg and sTA; + re;r, A
to uniformly random.
We have Dj 33 = D1,3,4 by the LWEn}n+2m’q’X(1), assumption.
o Di35: Foralluid e, all i € [k]\ (ZU{i*}), we swap
ba;d,i,pkuid + euid,i,P

to uniformly random.

We have D; 34 ~ D; 35 by the (low-norm) LWE assumption.

m,poly(n),q,x (2):X (1)

Observe that D; 35 £ Déféalt), the proof is completed. O

B Proofs for MC-ABE

We provide the remaining proofs for the MC-ABE construction. For clarity we also restate
the theorem and lemma appeared in the main content.
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B.1 Proof of Lemma 6

Lemma 6. For the distributions DY;) and Déhz) defined in Eq. (7) and Eq. (8), we have

(h) ¢ ph) :
Dy = D; 5 assuming

LWEn,?Yn(m+2)7q,x<o> and TensorLWEm(k'H)m+1,q7x<o)7X(o>,&Q'
Proof. We define the following sequence of hybrid distributions:
. D%hz) as in Eq. (7).

e Djo1: For each cid € C, we swap stPkeg + €2.cid,p to

Z S;FP + ST(V ® Im) + e’ Keid — Z (SEPkcid + ezid,i,P)
1€[2,k] 1€[3,k]

~ [s"(A @ kao) + €faa |
T/ T T/ T T
(S (Baia*,1 ® Keid) + €cig- cia,1,8 | (8" (Beid,i ® Keid) + €cia,i, — eiﬂQKCid)iG[Q»k])

: Hvi*vxcid*,cid] : rf*
+ (0 | s"(Gr @ Keid) + €+ cid) + €1,cid, P

where ef- cid <3 X(0), Xzid*,cid = (Xgid*,l | Xzid,z | XEId,k)? (ST(Bcid,i ® Keig) +
eIid’i)B)iE[k] denotes the horizontal concatenation of ST(Bcid,i ®Keid) +ezid’i’3, freF
is any function such that f*(Xcd=.cq) = 1, and r¢« == (A | Bf+)~!(v). Note that in
the above we make use of ST(Bcid*’l ® keid) + ezid*’dd,LB7 and for ¢ € [2, k], the term

sT(]gcid*7i @ Keid) + €lig- ;. p — i oKeid is obtained from
(5] QKcig + 5" (Baiar i @ Keia) + €5+ 5.5) — (5;Q + €] ) Keia-

We have Dghg A D1 2,1 by noise flooding, which is due to the equality
s5Pkeid

= Z siP+s"(val,) | kad — Z s; Pkeig
1€[2,k] 1€[3,k]

— (sT(A @ keg) | (8"(Baia.i ® keia), (sT(Beig.s ® Keid))icf2,k)) HB, £+ xgr a0 )T+
+ (0] s'(Gry- @ kad))
and that
e2.cid.p ~ e Ked — Z €cid,i, P
1€[3,k]
- (ezid,A | (ezid*cid,l,B’ (ezid,i,B - e.’{,QKCid)iG[Z,k])HB7f*:xcid*,cid)) Ty«
+ e+ cid + €2,cid, P
because

X(@2) 2 A poly(A,m)(x%O) +kxa) + X(l)ﬂmo(d)a)
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> AW lleTk gy — Z €cid,i,P + €f* cid

1€[3,k]

- (eEM | (ezid*,cid,l,B | (ezid,i,B - e},Q)ie[z’k])HB:f*xxcid*,cid) Tps

Notice that the only remaining terms in D; 5 ; involving s, are sgég —|—é§,c, stQKgig+
s"(Beia2 ® kea) + €ha2.p5 S5Q + e o and s3P +ej p. Also, looking ahead, to argue
the above simulation is pseudorandom, it suffices to argue sT(Grf* ® keid) + efc*,cid
is.

e Dyy9: Forallcid € C, all i € [2,k], we swap

sTQKq + sT(]Ade,i ® Kkeid) + ezid,i,B
to (sIQ+ e} o)Kaa + 5" (Baia, ® keid) + €5igi -

We have Dy 23 2 D1 2,2 by noise flooding, since x(1) > A0@) L X(0) " X@©) " =

@) . He;{Q . KcidH. Now in Dj 5 the remaining terms involving sy are s3C + &3 4,
s5Q +ej o, and s;P +ej p.

. D1,2732 We swap
s5Co + €3, s5Q + €5 and s;P + e’

to uniformly random.
We have Dy 29 o~ D 2,3 by the LVVEn,zm(m+2),q,X(0) assumption.

Notice that as a result c is also uniformly random.
o Dyy4: Foreach i € [3,k] and all cid € C, we swap
s;Pked + €cid.i.p to (siP + ézid7i7p)kcid + €cid,i, P-

where écid,i,P —$ X(0)-
‘We have 'Dl,273 & D172,4 by noise flooding, due to ézid,i,PkCid + écid,i,P 2 +eécid,i, P
since x(1) > A*MNx(0)x(0) = XMV ||&5q s, pkeial|

o D5 Foreach i € [3,k] and all cid € C, we swap
(siP + &lq.i p)Keid + €cid,i,p to bzidyiﬁpkcid + €cid,i, P
where bzid% p is uniformly random, and we also swap
s;C; +e] and s7Q + e}’Q

to uniformly random.

We have D124 ~ Di 25 by the LWE,, 2 (m+2).4,x o) ASSUMPtion.
o Dygg: Forallcid € C, all i € [3,k], we swap

bzid,i,pkcid + €cid,i,P

to uniformly random.

We have D125 ~ D 26 by the (low-norm) LWE,. poly(n).a.x (1) x(o) @SSUmption.
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e Di7: Forall cid € C and the f* picked in D 2,1, we swap the terms

ST(Bcid,i ® keid) + ezid,i,B Vi € [2, k], ST(Bcid*,l ® keig) + ezid*,cid,l,Ba
s"(A ©Keia) + €fig.a, 8 (Grye @ Keia) + €+ cid

to uniformly random.
Note that Gry«~ mod g is statistically close to uniformly random. Then, we have

Dy ~ D127 by the TensorlWE,, (k+2)m-+1,4,x(0) X0y, @ Where the set Q contains all
queries X¢qg,; from the adversary.

Observe that Dy 07 £ DéhQ) as in Eq. (8), and the proof is completed. O

B.2 Continued proof of Theorem 6 (corruption)

Theorem 6. For parameters as in Table 5, Iy is IND-CPA-secure without missing
ciphertexts (Definition 7) assuming

LWEn’2m(m+2),q,X(o) ) LWEm,POW(n)’q’Xu)’X(o) )

TensorLWEm(;H_Q)mH X(0):6:Q EvasivelWEparam, and  EvasivelWE aram,

»d,X(0)
in the (non-programmable) random oracle model.

Proof. (Continued.) Below write J = Jeorr C [2, k] for the set of corrupt encryptors. In
this continued proof we focus on that Case (2) beorrupt security = 1 happens. That is, there
exists an honest encryptor ¢ € [2,k] \ J such that a ciphertext ctxtcg ;- x from ¢ has not
been queried.

Fix arbitrary honest encryptor i* € [k]\ J, which exists since [k] # J. For each cid € C,
denote by i¢q an arbitrarily fixed honest encryptor from whom a ciphertext on cid has not
been queried by the adversary, which exists by design of the security experiment.

We define the following sequence of hybrids:

. Hyb( °). This is the real security experiment for the scheme in Fig. 10, encrypting up,
and conditioned on that beorrupt security = 1.

Recall that in this hybrid the adversary is given the following:

‘A7 (Bi)ie[k] 9 (Ci)ie[Q,k] ) (tdCi>i6j ’ P7 Q7 (kCid7 KCid)cidGC , vV
rp=(A|By)"'(v) VfeF

. (Pkas QK.
L. — ! cd cid . . )
Udq,; = C; ( de . ® kdd> Veid € C,i € JTeig N [2, K]

=sT(A ®kqqg) +
{:sT(( -x ®G)®kdd)+e{
c = (s;|s")Ci+e] Vie[2Kk]
o= (s3] |sp)Tim1 ® Q) +eg
= Z ssP+s"(val,)+e +pu-g'
€2,k

where all terms are sampled according to the distribution as in the scheme. We
recall each ry is sampled with tda. Relative to the case in the honest model, here
the adversary is additionally given ask, = tdg, for the corrupted authorities ¢ € J.
Write ¢ = (¢3¢ | .- | €} o) where ¢} 5 =5;Q + €] .
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. Hybl()ci: Same as Hyb}()c()), except that for all ¢ € [2,k] \ J, C; is sampled uniformly
randomly and all (entries of the) corresponding preimages Ugq ; are sampled (ineffi-
ciently) from the Gaussian distribution with parameter 7, subject to

Pk.q QK.iq
C,Uiq; = < ~ .
cid, ( Buaid,;i ® Kkeig

We have Hybl(f[)) ~ Hyb,(fi by the properties of TrapGen from Section 3.3.

. Hybl(:%: Same as Hybl(:%, except:

— we sample uniformly random ¢ «s Z;",
— for each i € [2,k] \ J, we sample uniformly random c¢;, and

— for each i € [2,k] \ J, we sample the i-th chunk c¢; ¢ in ¢¢ uniformly randomly.

We show in the following that Hybl(:i & Hybl(f%. Then, the theorem follows from noting

that Hybgf% £ Hybg7 since in both hybrids the component ¢ in the challenge ciphertext is
chosen uniformly randomly.
Define the distribution

(Bi)ie[/c] ) (Ci)ie[zk]\Ja P, Q, (keig, Keig)cidec,
(C»_l (Pkcid QK ))
5 Bcidj ®Keia) ) caec.ic i\ (Tu{ia))
1, (sT;rCZ + fg)ie[zk]\J
(SiQ + ei,Q)ie[Zk}\J
c’ = Zie[Z,k]\j siP el

(21)

where all terms are distributed as in Hybl(:i. We note that in the above distribution, the

LWE samples c; are w.r.t. C;, whereas the preimages are w.r.t. (the full) C;. Define also
the distribution

(Bi)icw » (Ciiep,png P, Q, (Keid, Keid)cidec,
(C-_l (Pkcid . QKcid ))
' Beig,i ® keid cideC,i€[2,k]\(TU {7 })
(E})ie[z,k]\J

€i.Q)ic.\g
CT

Dy = (22)

where all elements are distributed same as in Dﬂ, except that (€])iejz,u\g> (Ci g)icl2 b\
and ¢ are uniformly random.?!

Suppose there exists a PPT A that distinguishes Hyb,(ﬁ and Hybl()f% with non-negligible
probability, then it is easy to see that?? there exists a PPT B that distinguishes Dﬁ and

Dgci defined above with non-negligible probability.

21The distributions in Eq. (21) and Eq. (22) are respectively the same as those in Eq. (9) and Eq. (10)
from the proof of our MA-ABE scheme up to renaming: here having C; in place of A; and running
variables ¢ € [2,k] \ J in place of [k] \ J. The rest of the proof, which boils down to showing that the
two distributions are computationally close, thus follows analogously. For completeness we nevertheless
include the full proof.

22The simulation is analogous to Proposition 1 for the proof of our MA-ABE scheme. In addition, the
reduction samples v and (A, tda) itself, using which it can generate both the authority query answers
r; = (A | Bf)~!(v) and the ciphertext component &.
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Now consider a PPT Samp which on input A outputs the following;:

A=(1pmseP|L_72Q),

Pkig QKig _ ' .
= ~ Veid e U,i € |k U {ica b),
( Bcid,i ®kdd)cid6u cl ¢ [ ] \ (j {Z d})

o

where 1j5\ 7 € {0, 1}#=1=171 is the all-one vector, and aux containing (Bi)ie[k] P, Q,
(keids Keid) igers together with all random coins used.

Then, by the EvasivelWE,ram, assumption (c.f. Table 5), there exists a PPT £ that
distinguishes the distributions Dg and D;C% with non-negligible probability, where DgC%

and Dgc% are defined as follows:

(Bi)ie[k] > (Ci)iG[Q,k]\J’ P,Q, (kcid7 Kcid)cid6C7

STPKeiq + €cidi P, STQKeg + €5,
(l cid cid,i, P> zQ cid cid,i,Q cid€C,i€[27k]\(JU{%dd})

(sTC; + eg)ie[?,k]\Ja
(siQ+ ez,Q)iE[&k]\J
cl = Zie[Q,k]\j s;iP +e'
where all terms are distributed as in Dj 1, additionally e;« ¢q p <8 X (2) Where ¢* is arbitrary
in [2,k] \ J (which exists since J # [2,k]), and ecia,i,p <5 X(1), €cid,i,@ <3 X?g) for all

i€ (2, k], i # ",

Dgc% =

)

(23)

(Bi)icw  (Ciiep,png: P, Q, (Keid, Keid)cidec,

Ccid.i. P CT
cid,, id.q -
B Q) Gaeciel2 kN (T Ufiad})

(é_;)ie[zk]\ja

€i.Q)icp2 kg
cT

D) o (24)

where all (Cdd)@P, Czid,i,Q) (€)icpp\g (C;Q)ie[zk]\j and c are all

cdec.ic2k\(TU{ia})’
uniformly random.
We observe that the above implies a PPT distinguisher G for the following distributions

Dg,Dég, given which DEC% and Déc% can be efficiently simulated respectively:

(Bi)icp » (Ciieppng: P, Q, (Keid, Keid)cidec,
© (siPkeig + eid»ivp)cidec,ie[lk']\(JU{ECM})
Dy = (S%Tci + ?E)ie[z,k]\% (25)
(siQ+ ei-,Q)ie[Zlc]\j
¢ = D e I\T s;P +e'

(Bi)icw » (Cidie,png: P, Q, (Keid, Keid)cidec,
© (Ccid,i,P)cidTec,z'e[z,k]\(ju{zcid})
Dy 3 = (ETi)ie[z,k]\J, (26)

€i.Q)icp2 kg
cT

which are almost identical to Dg and Dg‘% respectively, except that sTQKeig + €5y, o

respectively cZid,i’Q are omitted. To simulate DEC% from Dg, one computes

(5iQ + €] o) Keid + €5ig.i.0 = Si QKeia + €] oKeid + €lia i o ~ 8] QKcid + €545, mod ¢
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where the last & follows from noise flooding, since
X2 = XWX x0)  x) n = AW lel - K-

When s7Q + e]  is replaced by uniformly random ¢l ; o, then the simulation becomes
also uniformly random.
But by Lemma 10 the existence of G is not possible under the LWE,; 5, (m+-2) and

»4;X(0)
LWE assumptions, thus we have a contradiction. The theorem follows. [

m,poly(n),q,X (1):X(0)
Lemma 10. For the distributions D%C% and Dgc:)g defined in Eq. (25) and Eq. (26), we have
Dgc% ~ Dgc% assuming

LWEn72m(m+2)7q,X(o> and LWEm,poly(n),mXu) X (0)

Proof. Continue with the notation in the proof of Theorem 6, where we have let i* € [k]\ J
be an arbitrarily fixed honest encryptor (which exists because [k] # J), and for each
cid € C, we have let igg € [k] \ J be an honest encryptor where cid is not queried by the
adversary (which exists by design of security experiment).

We define the following sequence of hybrid distributions:

« D) as in Eq. (23).

e Dj 3.1 For each cid € C, if i* # iqg, then do the following:
We swap sl Pkeid + €+ cid,p tO

Z siP+e' | kea — Z s; PKeig + €cid,i,p | + €i= cid,p-
i€[2,k\T 1€[2,k\ T rii*

We have Dg & D1 3,1 by noise flooding, which is due to the equality

S;r* Pkcid = Z SEP kcid — Z S}Pkcid.
i€[2,k\T i€[2,k]\ T rii*
and that
€i* cid,P X e'keq — Z €cid,i,P T €i* cid, P,
i€[2,k\ T riti*
since
X@) = MO Nmxgy) + kaxa) = XV - JleTkaa = > ecair

i€[2,k]\ T ii*

Otherwise, if * = i¢q, then do nothing. The effect of this swap is that, for all cid € C,
the term s'{*Pkcid + ecid,s, p 10 longer exists in Dy 31 (and is instead simulated by the
other terms, where the expression includes LWE samples with secret s;_ ).

As a result, the only remaining terms in Dy 3 ; involving s;« are s C;- +el., sLP+e',
T T
and s;. Q +e;. o.

e Dj39: We swap
T T T T T T
$;«Cix + €., s;-P+e.p and $;»Q+ e o

to uniformly random.
We have D1’3$1 é D1’3’2 by the LWEn72m(m+2)

result c is also uniformly random.

ax () assumption. Notice that as a
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e Dy33: Forallcid € C, alli e [2,k]\ (JU{i*}), we swap
s; PKeid + €cidi, p to (siP + éz;d,@p)kcid + €cid,i,P-

where €q i, p <5 X?&)-

We have D; 3o 2 D 3,3 by noise flooding, since égid’i,pkcid +ecid,i,P 2 €cid,i, P, because
X1y 2 A*INx0)x(0) = AW |&G i, pkeid -

o Dysy4: Forallcid e C,alli e [2,k]\ (JU{i*}), we swap
(s;P + &ciai,p)Kcid + €cid,i, P to blia.i pkeid + €cid,i,p
where bzid% p is uniformly random, and we also swap
s;Q + e; Q and siC; +el

to uniformly random.

We have D 3.3 o~ Dy 3.4 by the LWEn,QT,L(m+2)7q7X(O) assumption.

e Dy35: Forallcid e C,alli € [k]\ (J U{i*}), we swap
bZid,i,Pkdd + €cid,i, P

to uniformly random.

We have D; 34 = D; 35 by the (low-norm) LWE . poly(n),a.:x (1 x (o) ASSUIMPtion.

Observe that Dy 35 £ Dgc% as in Eq. (26), the proof is completed. O

C On Stronger Security with Corruption

We discuss why it is difficult to achieve stronger security in presence of corrupt authorities.
Consider an adversary who requests a ciphertext for some function f which is independent
of the i*-th input. The adversary corrupts authority i*, and requests a secret key skyq ; «.
for each ¢ # i* such that f(x1,...,xx) = 1 for any possible x;-. An ideal MA-ABE scheme
would have security against the above attack.

Security for the above scenario, however, is difficult to achieve at least with a construc-
tion template based on LWE and homomorphic computation techniques. Consider some
ciphertext with LWE samples of the form sB where B is reserved for policy checking

via homomorphic computations. Now since multiple authorities are contributing to such
computation, the secret s is “shared” across the authorities, and as such information about
s can be leaked to an adversary via any corrupt authority. The alternative of letting the
secret individual to each authority 7 sacrifices correctness, since with components of the
form sTB, computing on both s; and B results in cross-terms across authorities which

cannot be cancelled out (due to non-interactiveness of authorities). On the other hand,
any other components independent of policy evaluation is not governed by the condition
f(x1,...,x,) =1

For our construction, the strong security mentioned in the beginning cannot be achieved
for the same reason. In particular, we observe the following. First, the adversary can
learn the LWE secrets s;= and s in the challenge ciphertext using the trapdoor of A;«,
and compute the masking terms S-{*Pkuid and s"(B Fu ® kyig). Second, the adversary can

combine sTA; in the challenge ciphertext with the top part of a secret key SKyid,ix;» 1-€-
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X;l(Pkuid | QK.id), for any x; to obtain the masking terms s] Pkyq for each i # i*. Using
the above, the adversary can recover ug'k,4, which is short if ;1 = 0.

Due to the above, we settle for the slightly weaker security notion in face of corruption,
where we require that for each uid there exists an honest authority from which the adversary
has not queried a key for uid. We remark that for any non-monotone function f which,
the attribute x;+ of any authority ¢* has influence on the final output of f regardless of
attributes from other authorities i # i*, security in our weaker model implies the stronger
one mentioned above. This is the case for a variety of typical non-monotone functions,
such as the parity function, “A and B and not C”, or more generally most low-degree
polynomials.

D Witness Encryption from MI-ABE

Witness Encryption. Recall that a witness encryption scheme (WE) for a relation R
consists of an encryption algorithm Enc which takes as input a statement 1) and a message
m and produces a ciphertext c¢. Correctness requires that Dec(w, ¢) = m if w is a witness
for ¢ being in the NP language L induced by R, i.e. R(¢,w) = 1. In turn, security
requires that when 1) ¢ Lg, then Enc(¢), m) and Enc(¢,0/™l) are indistinguishable.

MI-ABE = WE. Brakerski et al. [BJK'18] show that MI-ABE implies WE via the
following simple construction: Let R be an NP-relation and assume for simplicity that
statement size equals witness size. Given a statement v, the encryptor does the following:

¢ Spawn an authority and generate a secret key sk for the function
f(XQ, e 7XW’|+1) =1 R(¢,X2 | ce | XWH’l)

o Run Enc; (associated to an arbitrary attribute x1) to generate a ciphertext ctxt;
encrypting the message m.

o For i € [2,|¢]| + 1], run Enc; twice to generate ctxt; o and ctxt; 1 associate to the
attributes x; = 0 and x; = 1 respectively.

o Output (sky,ctxty, (ctxt; p)icf2,|p|+1],be{0,1}) as a ciphertext.

MI-ABE correctness indeed allows to decrypt when knowing a witness w using

(CtXti w, )ic[k]x 0,1}

since f(wy,...,w;) = 1@ R(¢Y,w]]..||Jwr) = 0. In turn, when there is no witness such that
R(¢,w) = 1, the MI-ABE security requires that ciphertext ¢ is indistinguishable from an
encryption of 01!, thus implying both security and correctness of witness encryption.

Given that witness encryption is a very strong cryptographic primitive, the above
implication indicates that MI-ABE schemes are very challenging to construct, let alone to
prove secure.

Ciphertext Identity. Our proof of the AYY MI-ABE scheme [AYY22] in the CID
model (cf. Section 5) circumvents the above difficulty by introducing a ciphertext identifier.
Namely, encryptors give away ciphertexts ctxtqq,; x;, for a specific ciphertext identifier cid,
and for each cid, an encryptor only gives away a key for a single attribute. In this way,
the WE construction by Brakerski et al. [BJKT 18] can no longer be implemented, while
the core MI-ABE functionality is retained.
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