
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 3, 39 pages.

https://doi.org/10.62056/aee0fhbmo
Check for updates

Quantum Procedures for Nested Search Problems
with Applications in Cryptanalysis

André Schrottenlohera, 1 and Marc Stevens2

1 Univ Rennes, Inria, CNRS, IRISA, Rennes, France
2 CWI, Amsterdam, The Netherlands

Abstract. In this paper we study search problems that arise very often in cryptanal-
ysis: nested search problems, where each search layer has known degrees of freedom
and/or constraints. A generic quantum solution for such problems consists of nesting
Grover’s quantum search algorithm or amplitude amplification (QAA) by Brassard
et al., obtaining up to a square-root speedup on classical algorithms. However, the
analysis of nested Grover or QAA is complex and introduces technicalities that in
previous works are handled in a case-by-case manner. Moreover, straightforward
nesting of ℓ layers multiplies the complexity by a constant factor (π/2)ℓ.
In this paper, we aim to remedy both these issues and introduce a generic framework
and tools to transform a classical nested search into a quantum procedure. It improves
the state-of-the-art in three ways: 1) our framework results in quantum procedures
that are significantly simpler to describe and analyze; 2) it reduces the overhead
factor from (π/2)ℓ to

√
ℓ; 3) it is simpler to apply and optimize, without needing

manual quantum analysis. We give generic complexity formulas and show that for
concrete instances, numerical optimizations enable further improvements, reducing
even more the gap to an exact quadratic speedup.
We demonstrate our framework by giving a tighter analysis of quantum attacks on
reduced-round AES.
Keywords: Quantum search · Nested search · Quantum cryptanalysis · Amplitude
amplification · Symmetric cryptanalysis.

1 Introduction
The potential advent of large-scale quantum computing devices has prompted the crypto-
graphic community to evaluate the quantum security of cryptographic schemes; that is,
against an adversary capable of quantum computations. Among the foundational results
of quantum cryptanalysis, Shor’s period-finding algorithm [Sho94] showed that public-key
schemes based on the classical hardness of the factoring and Discrete Logarithm problems
would be irremediably broken in the quantum setting. This has led to a massive effort
aiming at replacing these schemes by quantum-secure ones, which is embodied by the
NIST post-quantum standardization process [AAC+22] which selected in 2022 its first set
of future standards.

Quantum Search. The second most well-known quantum algorithm impacting crypt-
analysis is Grover’s quantum search [Gro96], generalized into the framework of quantum
amplitude amplification (QAA) [BHMT02]. Grover’s algorithm generically speeds up any
black-box search procedure. By black-box, we mean that the problem is entirely defined by

E-mail: andre.schrottenloher@inria.fr (André Schrottenloher), marc.stevens@cwi.nl (Marc
Stevens)

aPart of this work was done while the author was at CWI.

This work is licensed under a “CC BY 4.0” license.
Received: 2024-07-01 Accepted: 2024-09-02

https://doi.org/10.62056/aee0fhbmo
https://crossmark.crossref.org/dialog/?doi=10.62056/aee0fhbmo&domain=pdf&date_stamp=2024-09-23
https://orcid.org/0000-0002-1329-8630
https://orcid.org/0000-0002-7091-2924
mailto:andre.schrottenloher@inria.fr
mailto:marc.stevens@cwi.nl
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Quantum Procedures for Nested Search Problems

c1,6

c1,6, 0

c1,5

c1,5, 1

c1,4

c1,4, 0

c1,3

c1,3, 0

c1,2

c1,2, 0

c1,1

c1,1, 1
Filter c1

Choose c1 ∈ C1

Figure 1: Exhaustive search with a single level.

c1,4

c1,4, 1

c1,4, c2,2

c1,4, c2,2, 0

c1,4, c2,1

c1,4, c2,1, 1

c1,3

c1,3, 0

c1,2

c1,2, 0

c1,1

c1,1, 1

c1,1, c2,2

c1,1, c2,2, 0

c1,1, c2,1

c1,1, c2,1, 0
Filter (c1, c2)

Choose c2 ∈ C2

Filter c1

Choose c1 ∈ C1

Figure 2: Nested search with two levels.

two algorithms: sampling at random from a given search space, and testing an element of
this search space. Classical black-box search iterates both these algorithms until the test
is passed. Quantum search reduces asymptotically the average number of iterations to its
square-root. In particular, it accelerates the exhaustive search of a secret key of length |K|
from O

(
2|K|) trial encryptions to O

(
2|K|/2) applications of a quantum encryption circuit.

Because of its generic nature, quantum search is very often used as a building block
of more complex quantum algorithms. In asymmetric cryptography, generic decoding
algorithms based on information set decoding [Ber10, KT17] gain most of their quantum
speedup from a Grover search. It is also a subroutine of sieving algorithms for the Shortest
Vector Problem in lattices [LMvdP15, Laa15, KMPM19].

In symmetric cryptanalysis, most quantum attacks rely to some extent on quantum
search, except some dedicated attacks like [KM10, KLLN16a]. For example, the differential
and linear attacks in [KLLN16b] and the rebound attacks in [HS20] rephrase a classical
cryptanalysis as a nested search problem, and then replace the search steps by Grover’s
search or QAA.

Nested Search Problems. Informally, an exhaustive search problem explores a space of
choices C1; choices are sampled at random and evaluated using a filtering function, which
maps c1 ∈ C1 to {0, 1}, where “0” indicates a bad choice to be discarded, and “1” indicates
a solution. This situation is pictured in Figure 1, where C1 := {c1,1, c1,2, c1,3, c1,4, c1,5, c1,6}
is the set of choices. It corresponds to the exploration of a tree with one level.

We can also allow the filtering function to explore another search space C2 internally.
Typically, the first filter will reduce the possibilities for c1 ∈ C1, so that we do not have
to check all the couples (c1, c2) ∈ C1 × C2 for the second filter. This corresponds to
the exploration of a tree with two levels (Figure 2, where C1 := {c1,1, c1,2, c1,3, c1,4} and
C2 := {c2,1, c2,2}). A solution is a path from the root to the last level where all filters
evaluate to 1. The complexity of the search depends on the expected number of nodes on
each level that need to be explored before finding the solution path.

If we have quantum algorithms to implement the “choosing” and “filtering” steps,
then a search such as in Figure 1 can be turned into a quantum search. While both can

André Schrottenloher, Marc Stevens 3

be simple algorithms such as picking a candidate secret key, they can also embed other
quantum searches. This leads to the folklore fact that any classical nested search such as
in Figure 2 admits a corresponding nested quantum search, generally built over the QAA
framework, which reaches up to a quadratic speedup.

Computing the Complexities. Both in asymmetric and symmetric cryptanalysis, we
would like to estimate precisely the quantum complexity of our attacks. However, the
analysis of nested quantum searches raises the following problems, which previous works
overcome on a case by case basis:

Overhead factor per level: Applying QAA naively results in a multiplicative overhead
factor of π/2 per nesting level, see e.g. [DNS24]. Thus, the quantum time complexity
of a nested search procedure deviates from the square root of the classical complexity.
With 4 or 5 nesting levels, this deviation may become significant with respect to the
total complexity: this can be seen in the quantum key-recovery attack on 8-round
AES-256 of [BNS19].

Probability of error: Most of the time, QAA does not produce exactly the uniform
superposition of solutions. Previous works often try to reduce the probability of error
to negligible, leading to more complex procedures and overestimated complexities.

Fixed number of iterates: In a classical nested search like Figure 2, the probability to
pass the second filter can depend on the choice made at the first level. This is no
concern for a classical time complexity analysis, because we only need to bound the
total number of nodes explored at each level. But QAA runs in superposition over
all choices and needs to use a fixed number of iterates for each level.

Contributions and Organization. In this paper, we provide a generic framework to
transform a nested search procedure into a quantum procedure. For any attack that fits in
our framework, there exists a corresponding quantum algorithm whose complexity and
success probability can be generically computed. We provide a formula and explain how
numerical optimization can achieve slightly better results.

The search problem that we consider is formally detailed in Section 3, and depicted
in Figure 3. It corresponds to the exploration of a search tree with multiple levels. Each
node in the tree corresponds to certain choices and includes a certain internal state. Each
search layer i comprises three sub-steps: (1) select a random choice ci ∈ Ci; (2) apply
a filtering function Ai that decides whether the current choices (c1, . . . , ci) form a valid
subsolution or not; (3) post-process the current internal state using a function Di. At the
final layer ℓ, Dℓ decides if the whole path is good, thus yielding a solution to the search
problem. We assume that the tree contains only one solution.

In Section 4, we present a quantum procedure for this problem, which performs a search
with backtracking. It corresponds to a depth-first exploration of the tree. Our generic
complexity analysis handles the three problems identified earlier, and in particular, reduces
the constant overhead factor from (π/2)ℓ to O

(√
ℓ
)

.
In Section 5, we showcase our framework by re-analyzing three attacks on reduced-round

AES from [BNS19] and [DNS24]. We show that the quantum complexity analysis can be
entirely outsourced to our framework, and that we can gain up to a factor 24 in the time
complexity.

In Appendix A, we present a different framework of search with early aborts, whose
analysis is very similar but which has different applications: it considers the case of a
single choice and several filters of different complexities. Such applications are given later
on, including a simple algorithm for amplitude amplification of variable-time algorithms.

4 Quantum Procedures for Nested Search Problems

c1,3

c1,3, 1

c1,3

c1,3, c2,2

c1,3,
c2,2, 1

c1,3, c2,2

c1,3, c2,2,
c3,2, 0

c1,3, c2,2,
c3,1, 0

c1,3, c2,1

c1,3,
c2,1, 0

c1,2

c1,2, 0

c1,1

c1,1, 1

c1,1

c1,1, c2,2

c1,1,
c2,2, 0

c1,1, c2,1

c1,1,
c2,1, 1

c1,1, c2,1

c1,1, c2,1,
c3,2, 0

c1,1, c2,1,
c3,1, 1

Choose c3 ∈ C3

Post-process

Filter (c1, c2)

Choose c2 ∈ C2

Post-process

Filter c1

Choose c1 ∈ C1

Figure 3: Example of the generic search problem that we want to solve: we look for
(c1, c2, c3) ∈ C1 × C2 × C3 which evaluates to 1 at the last step.

The code of our optimizations is available at:

https://github.com/AndreSchrottenloher/quantum-search

Related Work. Over the time, there has been a few attempts at formalizing the
correspondence between classical and quantum nested search algorithms. This is the case
of the filter framework of [BNS19]. Our framework contains the filter framework, and
also provides a generic complexity analysis, contrary to [BNS19]. In [DNS24], the authors
studied generically the case of impossible differential attacks, which corresponds to the
setting of Figure 3 without filtering layers. Contrary to us, they use Exact Amplitude
Amplification, which gives a success probability 1, but yields the “naive” multiplicative
overhead factor (π/2)ℓ. Also in the context of cryptanalysis, precise complexity analyses
were done for a fixed number of nested searches, e.g., ℓ = 2 for the search with two oracles
in [DP20, KLL15].

Montanaro [Mon18] designed a generic quantum tree search algorithm, but its setting
is different from ours. Indeed, the main advantage of Montanaro’s algorithm is that the
tree structure can be discovered on the fly, and does not need to be known entirely in
advance. This is the case of the trees explored in lattice enumeration, where this algorithm
was applied in [ANS18]. In contrast, our framework is based on nested QAAs and requires
knowledge of the filtering and success probabilities of each step. Conversely, the main
disadvantage of Montanaro’s tree search is that it does not amortize the cost of the different
filtering algorithms, while this situation is very common in cryptanalysis: some of them,
which cost less, are computed more often (e.g., the last search layer in the tree); others,
which cost more, are computed less often (e.g., the first search layer in the tree).

Ambainis [Amb10, Amb12] studied the problem of variable-time amplitude amplifica-
tion, which can be seen as a special case of a search with early aborts. In this problem,
one does a search for a good element among N of them, when being “good” is evaluated
in time ti for element number i. Ambainis showed that the solution could be found in
time Õ

(√
t21 + . . .+ t2N

)
even when the ti are unknown. However, his solution relied on

Quantum Amplitude Estimation. The framework of Appendix A yields a solution for

https://github.com/AndreSchrottenloher/quantum-search

André Schrottenloher, Marc Stevens 5

this problem, with the same asymptotic complexity as Ambainis’. Our algorithm is much
simpler since it contains only nested QAAs. Ambainis also showed in this context that the
naive factor (π/2)ℓ with ℓ levels of nesting could be reduced to O(

√
ℓ), but his complexity

analysis was only asymptotic.
Concurrently and independently, Ambainis et al. [AKV23] proposed a new algorithm

for variable-time QAA with essentially the same algorithmic structure as the one given
in Appendix A. Their complexity analysis improves upon the polynomial factor in the Õ
w.r.t. Ambainis’ and ours, but the improvement is specific to this special case problem
and is unlikely to generalize to the whole framework.

2 Preliminaries
In this section, we first cover some preliminaries of quantum algorithms (complexities,
memory models, QAA). The formal definition of a nested search problem will be given
in Section 3. The analysis of quantum search requires some bounds for sin and arcsin:

∀x ≥ 0 : x
(
1− x2/6

)
≤ sin x ≤ x, and x2 (1− x2/3

)
≤ sin2 x ≤ x2 (1)

∀0 ≤ x ≤ 1 : x ≤ arcsin x ≤ (π/2)x =⇒ x2 ≤ arcsin2 x ≤ (π2/4)x2 (2)

2.1 Quantum Algorithms.
We refer to [NC16] for an introduction to quantum computing and the quantum circuit
model. We assume knowledge of the notion of qubits, the ket notation |·⟩, and basic
quantum gates, e.g., the Hadamard gate H, X, CX and CCX gates (also known as NOT,
CNOT and Toffoli), phase-flip and controlled phase-flip Z and CZ.

We use G(U) to denote the “gate count” of a quantum circuit U , which is the main
metric we are interested in. We use a rather abstract definition which allows to focus on
specific gates or on a specific gate set. For example, if we are interested only in the number
of Toffoli gates we can set G(CCX) = 1 and G(U) = 0 for any other basic gate U . We use
S(U) for the width of the circuit, i.e., the number of qubits on which it acts, including
ancilla qubits.

Any quantum algorithm U without measurement is reversible. The reverse U† is the
“uncomputation” of U . Both admit the same gate count.

In symmetric cryptanalysis, time complexity estimates are often expressed relatively to
the cost of a cryptographic function. For example, the exhaustive key search of a 128-bit
block cipher is estimated as 2128 evaluations of the cipher. This principle remains true
in quantum cryptanalysis. We can consider the evaluation of a quantum circuit for the
cipher to be the benchmarking operation, or alternatively, as in [BNS19], we can single
out some costly component of the cipher (like an S-Box) and consider only the number of
evaluations of this component.

Memory Models. Given an array of M qubit registers, any fixed location can be
queried in polynomial time in the circuit model, as it amounts only to apply quantum
gates to pairs of qubits: |x⟩ |y1, . . . , yM ⟩

Accessi7−−−−→ |yi⟩ |y1, . . . , yi−1, x, yi+1, yM ⟩ . However,
accessing a variable memory location (random access) can a priori be done only by
performing a sequence of Õ(M) such queries, which gives a cost Õ(M) for the operation:
|i⟩ |x⟩ |y1, . . . , yM ⟩

Access7−−−−→ |i⟩ |yi⟩ |y1, . . . , yi−1, x, yi+1, yM ⟩ . In the QRAQM1 model, we
assume that Access can be performed in polynomial time. In practice, we will consider
its cost to be comparable to a block cipher or an S-Box evaluation. If the memory M

contains only classical data, the operation of access can be implemented as: |i⟩ |x⟩ CAccess7−−−−→
1Quantum random-access quantum memory, following the terminology from [Kup13].

6 Quantum Procedures for Nested Search Problems

|i⟩ |x⊕ yi⟩ . Assuming that it can be done in polynomial time is the (weaker) QRACM2

model.
In the following, we will separately consider classical and quantum memory costs and

specify if we use QRAQM / QRACM (otherwise we are in the “plain” quantum circuit
model).

Probability of Success. We consider quantum algorithms with varying probabilities of
success, and all our results will be statements of the form:

there exists a quantum algorithm with (exact or average) gate count com-
plexity G, (classical and/or quantum) memory complexity S, and success
probability ≥ p.

2.2 Amplitude Amplification.
Quantum amplitude amplification [BHMT02], abbreviated QAA in this paper, increases
the success probability of any measurement-free quantum algorithm by iterating it. Let U
be a quantum circuit such that

U |0⟩ = √p |ψG⟩ |1⟩+
√

1− p |ψB⟩ |0⟩ , (3)

where p is the success probability of U , |ψG⟩ and |ψB⟩ are two orthogonal quantum states
corresponding to the good outcomes and bad outcomes of U respectively. Our goal is to
produce a state close to |ψG⟩. Let O0 be the inversion around zero operator, which flips
the phase of the basis vector |0⟩: O0 = I − 2 |0⟩ ⟨0| ; and O be the operator which flips the
phase of all basis vectors |x, b⟩ such that b = 1. The QAA computes a sequence of states
|ψi⟩ , 0 ≤ i ≤ t, defined by the following iterative process:

1. Start from |ψ0⟩ = U |0⟩

2. For i = 1 to t:

3. |ψi+1⟩ = −UO0U†O |ψi⟩

Let θ = arcsin(√p). As shown in [BHMT02], at each iteration, the amplitude of good
outcomes increases as follows:

|ψi⟩ = sin((2i+ 1)θ) |ψG⟩ |1⟩+ cos((2i+ 1)θ) |ψB⟩ |0⟩ . (4)

This implies that after t =
⌊
π/(4 arcsin√p)

⌋
iterations, the value (2t+ 1)θ approaches π

2 .
The success probability is at least 1 − p. Though there exists an exact variant of QAA
(also given in [BHMT02]), which increases this probability to 1 if we know p exactly in
advance, it is not particularly helpful for us since we typically prefer to under-amplify the
QAAs.

In quantum search, and in the algorithms presented in this paper, the only computa-
tional overhead with respect to the iterations of U comes from the implementation of O0
and O (the latter is a CZ gate). We implement O0 with a single ancilla qubit by a method
of Gidney [Gid15], which requires slightly less than 6n Toffoli gates when the input has n
bits.

Lemma 1. The O0 operator on n qubits can be implemented with:

S(O0,n) = n+ 1, G(O0,n) = 6nG(CCX) + 2nG(X) + 2G(H) (5)

The O operator can be implemented with 1 ancilla qubit and G(O) = 2G(H) +G(CX).

We define G0(n) := G(O0,n) +G(O).
2Quantum random-access classical memory.

André Schrottenloher, Marc Stevens 7

Nesting Many QAAs. Since each iterate contains two calls to U (one reversed), a
QAA needs approximately π/(2√p) calls to succeed with probability close to 1, thus with
overhead factor π/2 compared to 1/√p. With ℓ nested QAAs (U calls a QAA, etc.), this
accumulates into an overhead factor (π/2)ℓ.

Recall that sin x ≃ x when x is small, so the probability of success of the QAA initially
grows almost as (2i + 1)2p: it increases quadratically. The π

2 factor only appears if we
want to make it close to 1. Thus, and perhaps counter-intuitively, to avoid piling up these
factors we must keep the success probability of the QAAs artificially low. This fact is
well-known (see Lemma 9 in [AA05]) but rarely taken into account in cryptanalysis.

Unknown Success Probability and “Overcooking”. In this paper, we will often
encounter the situation where we only have a lower bound pmin on p, and we want to find a
solution with constant success probability. This can be done in expected time O(1/√pmin),
by Theorem 3 in [BHMT02]. We settle for a simple method which consists in running a
QAA with a random number of iterates.

Lemma 2. Let M =
⌈
1.21/√pmin

⌉
. Let U be defined as in Equation 3, operating on n

qubits. There exists a quantum procedure that returns a good outcome with probability ≥ 1
2

and average gate count:

(2M + 2)G(U) + (M − 1)G0(n) . (6)

Proof. We run the following procedure:

1. Do twice: Execute U and measure its output flag. If it is “1” then exit and return
the measurement result.

2. Do twice: Choose an integer i ≤ M − 1, where M =
⌈
1.21/√pmin

⌉
, uniformly at

random, and execute a QAA with i iterates. If a “1” flag is measured then exit and
return the measurement result.

First of all, the average number of calls to U and U† is:

2
M

M−1∑
i=0

(2 + 2 · i) = 4 + 4 · (M − 1)M
2

1
M

= 4 + 2(M − 1) = 2M + 2 .

And the average number of additional gates is: (M − 1)G0(n).
Next, we compute the probability that at least one of the substeps obtains a good

outcome. Using standard trigonometric formulas, we obtain:

1
M

M−1∑
i=0

sin2 ((2i+ 1)θ) = 1
2 −

1
2M

sin(2Mθ) cos(2Mθ)
sin(2θ)

≥ 1
2 −

1
4M sin θ cos θ = 1

2 −
1

4M
√
p(1− p)

.

Since we only run step 2 if step 1 fails, which occurs with probability 1 − p by the
structure of U , the whole operation fails (i.e., measures a bad outcome) with probability
at most:

(1− p)
(

1/2 + 1/(4M
√
p(1− p))

)
≤ 1/2 + 1/(4M√pmin) .

Next, we combine two such procedures. By choosing M =
⌈
1.21/√pmin

⌉
, we can upper

bound the failure probability as: (1/2 + 1/(4 · 1.21))2 ≤ 1/2.

8 Quantum Procedures for Nested Search Problems

3 Nested Search Problems
In this section, we define the nested search problem that we want to solve, and introduce
all necessary notations for the building blocks of our algorithms. We use 0r and 1r to
denote bit-strings of zeroes (resp. ones) of length r.

3.1 Preliminaries
Choice Set. A “choice set” is just a set C identified with a set of bit-strings. We consider
its size |C| to be a power of 2. If not, we increase its size artificially by adding choices
that always lead to a bad outcome. When choosing from C classically, we select c ∈ C
uniformly at random. The corresponding quantum algorithm is a Hadamard transform H
that maps |0log2 |C|⟩ to 1√

|C|

∑
c∈C |c⟩.

Basic Algorithms. We consider classical reversible algorithms noted with uppercase
letters (A,D . . .). Such an algorithm applies in-place to a set of bit-strings of given length
(the workspace), modifying part of the input and leaving the rest unchanged. We can
think for example of an oracle for a boolean function f : X → {0, 1}, implemented as
the mapping (x, b) 7→ (x, f(x)⊕ b). We pair such a classical algorithm A with a quantum
algorithm A, which implements A in superposition.

If A is implementable as a classical reversible circuit using G(A) gates, then we can
implement A as a quantum circuit using the same number of gates. Making a classical
algorithm reversible is not always easy. A naive way, which we will use by default, is to
track all intermediate computations into the workspace (at the expense of the memory
complexity only).
Remark 1. We assumed thatA implements exactly the function x 7→ A(x), i.e., ∀x,A(|x⟩) =
|A(x)⟩. This can be relaxed into an implementation up to some error ε: ∀x, ∥A(|x⟩) −
|A(x)⟩ ∥ ≤ ε. Then, assuming that A is not called more than O(1/ε) times, a standard
argument ensures that the final state of the algorithm deviates from the case of a perfect
A by less than a constant error; and so, the probability of success remains constant. This
is used e.g. in [BHN+19]. The situation is more favorable if the errors raised by A can be
detected, because in that case, whether A errs or not defines an early-abort layer, which
can be added to our search framework.

3.2 Definition of the Problem and Parameters
Let ℓ ≥ 1 be an integer. Let C1, . . . , Cℓ be choice sets, which are sets of bit-strings of
respective lengths n1, . . . , nℓ, totaling n = n1 + . . . + nℓ. Let W be a set of bit-strings
of length w. Let F1 = . . . = Fℓ+1 = {0, 1} be flags. We define the workspace of our
algorithms as F × C ×W , where C = C1 × · · · × Cℓ, and F = F1 × · · · × Fℓ+1. We use
a corresponding Hilbert space F ⊗ C ⊗ W spanned by all workspace states. Since we
represent our algorithms as circuits, we think of a workspace element as a set of registers:
flag registers, choice registers and the work register. By abuse of notation, we name these
registers like the sets in which they take their values: Fi, Ci,W .

We consider ℓ algorithms A1, . . . , Aℓ (filtering functions) and ℓ algorithms D1, . . . , Dℓ

(post-processing functions). All of them act on the workspace F ×C×W with the following
restrictions:

• Ai can only modify the work register W and the i-th flag Fi. Its result depends only
on the current choices and state of the work register;

• Di can only modify the work register W , and in addition Dℓ can modify the flag
Fℓ+1;

André Schrottenloher, Marc Stevens 9

• For i ≥ 2, if the (i− 1)-th flag is 0, then Ai never flips the i-th flag, and if the ℓ-th
flag is 0, Dℓ never flips the ℓ+ 1-th flag.3

Remark 2. Ancilla qubits used in the quantum implementation of the Ai and Di are
counted in the work register.
Remark 3. While the separation of Di from Ai might seem anecdotal, it will help to save
computation time if Di is noticeably more expensive than Ai. Also, Dℓ acts as the final
test which determines if the choices c1, . . . , cℓ are good.
Remark 4. If all Ai and Di have the same complexity, there is no need for nesting, and the
analysis of this paper will not be of particular help (one would do a single search in the
space C1 × . . .× Cℓ). However, they typically have different complexities, and the more
costly ones must be performed less times.

Since our problem can be viewed as a tree search, a tuple of choices (c1, . . . , ci) that
passes the first i − 1 filtering steps is called a path. The i-th flag indicates if the path
(c1, . . . , ci) passes the i-th filter, and the ℓ-th flag indicates if it is a solution. We will
use the notation |flag i for extracting the value of the i-th flag. We assume that a single
solution (cg1, . . . , c

g
ℓ) exists. Our search problem can thus be formulated as:

Find the path (cg1, . . . , c
g
ℓ) ∈ C1 × · · · × Cℓ such that:

(Dℓ ◦Aℓ) ◦ · · · ◦ (D1 ◦A1)(0ℓ, cg1, . . . , c
g
ℓ , 0w)|flag ℓ+1 = 1.

Here 0ℓ and 0w represent zeroed starting states in the flags and workspace. For all i, we
let Ai and Di be quantum implementations of Ai and Di, of gate complexities G(Ai) and
G(Di).

Filtering and Success Probabilities. We define the filtering probability α′2
i as the

probability that, starting from the good subpath (cg1, . . . , c
g
i−1), a uniformly random ci

passes the i-th filter:

α′2
i = Pr

ci

$←−Ci

(
(Di ◦Ai) ◦ · · · ◦ (D1 ◦A1)(0ℓ, cg1, . . . , c

g
i−1, ci, 0w)|flag i = 1

)
. (7)

We define the success probability α2
i as the probability that, after passing the filtering

at step i, a subpath (cg1, . . . , c
g
i−1, ci) is actually the good subpath (cg1, . . . , c

g
i). By our

assumption that there is a single good path:

∀i, α2
iα

′2
i = 1

|Ci|
=⇒ ∀i, α2

i = 2−ni

α′2
i

. (8)

Limitations of the Framework. In order to use our search framework, it is up to the
algorithm designer to determine the sequence of algorithms Ai, Di and the parameters
αi, α

′
i, Ci.

• If the tree structure is not known, then we will not know how many layers of QAA
need to be performed, and the quantum algorithm cannot be designed;

• If no bounds on the filtering (α′2
i) and success (α2

i) probabilities along the solution
path are known, then we cannot estimate how many iterates of QAA need to be
performed;

3A simple way to implement this is to first write the result of Ai or D in a separate bit, then compute
the AND with the previous flag using a Toffoli gate.

10 Quantum Procedures for Nested Search Problems

• If there is more than one solution, our analysis may still apply, but only if the
solutions have locally the same parameters αi, α′

i. This happens for example if the
tree is regular and if there is no filtering (α′

i = 1). Otherwise we cannot guarantee
that the solution sub-paths are correctly amplified at each level, and our analysis
breaks down.

Fortunately, in cryptanalytic applications (especially symmetric cryptography), these
assumptions are often satisfied. Indeed, most classical attacks have a pre-determined
structure (as we detail in Subsection 3.3); the classical complexity analysis is often sufficient
to estimate αi, α′

i; and often, there are no false positives.

3.3 Applications to Cryptanalysis
While its applications are more general, the definition of our framework is motivated by the
occurrences of such search problems in symmetric cryptanalysis, specifically key-recovery
attacks on block ciphers. While specific examples will be covered in Section 5, we give
here a high-level overview.

Let EK be a block cipher with key K. Most key-recovery attacks start from a
distinguisher, i.e., an algorithm that distinguishes r rounds of the cipher from a random
permutation. These r rounds are extended by several key-recovery rounds.

Given access to the black-box cipher EK , one can guess the key material k involved in
these additional rounds, reduce the cipher to r rounds, and run the distinguisher: if k is
guessed correctly, it returns 1, otherwise it should return 0. Thus, the naive attack is an
instance of a single-level exhaustive search.

Most of the time, this single-level search is improved by separating k into subkey
guesses k = k1| . . . |kℓ. In our framework, these ki correspond to choice sets. At each new
guess, one performs intermediate computations which amortize the cost of computing the
entire distinguisher. Let us take a few examples.

• Differential cryptanalysis: a differential distinguisher tests if a given difference of
plaintexts maps to a given difference of ciphertexts with larger probability than for
a random permutation. A differential key-recovery attack starts from a large set
of pairs (P,C = EK(P)), (P ′, C ′ = EK(P ′)) and tries to find, for each choice of k,
how many pairs (P, P ′), (C,C ′) satisfy the internal differential property, by partially
encrypting or decrypting them. However, at each new guess of ki, the number of pairs
which can still satisfy the differential is reduced; computing this new set corresponds
to our algorithm Di.

• Impossible differential cryptanalysis (see Section 5): the situation is similar, except
that the right key is the one for which no pair has remained valid after all the sieving
steps.

• Partial sums technique and integral attacks (see Section 5): an integral distinguisher
takes a sum (of one or several output bits) over a structured set of inputs of the
cipher, which should be 0. To compute this sum for all choices of k, we separate it
into several parts, and count how many times these parts take a given value. Each
new guess of key material leads to a recomputation of the table of counters.

4 Search with Backtracking
In this section, we present a quantum algorithm to solve the search problem defined
in Section 3, which uses a backtracking approach.

In general, a backtracking algorithm explores a search space by making partial choices
for partial values of the solution and being able to check whether a partial solution may

André Schrottenloher, Marc Stevens 11

lead a full solution. Classically this can be seen as a depth-first tree search where it
recognizes whether the current node can lead to a solution, and if it doesn’t, returns to
the parent node.

This section is organized as follows. In Subsection 4.1, we start by giving a classical
backtracking algorithm with several nested loops. The nesting structure is the same in
the quantum algorithm, which is given in detail in Subsection 4.2. We give here a general
result on the success probability (Lemma 3). Afterwards in Subsection 4.3 and later we
analyze the algorithm, and show how to choose the number of iterates and how to compute
its complexity. We prove in these computations that with ℓ levels of nesting, the “naive”
overhead factor (π/2)ℓ can be optimized into

√
ℓ.

4.1 Classical Backtracking Algorithm
We start by explaining how to solve the problem with a classical tree search.

Recall that we have a sequence of filtering functions A1, . . . , Aℓ and of post-processing
functions D1, . . . , Dℓ acting in place on the workspace F × C ×W . From them, we define
a sequence of algorithms A′

i (Algorithm 1) and Bi (Algorithm 2) that also work in place.
From a given node in the tree (i.e., a path of choices c1, ...ci−1), A′

i will sample new choices
ci passing the filter Ai, and Bi will write 1 in the flag Fℓ+1 if (c1, . . . , ci−1) = (cg1, . . . , c

g
i−1)

(i.e., if the path extends to the solution) and 0 otherwise. Furthermore, when it writes
1, the choice registers contain the good path. Each Bi calls Bi+1 recursively, Bℓ+1 does
nothing, and B1 solves the problem.

Algorithm 1 A′
i: finds the next choice that passes the filter at step i.

Workspace: F1, . . . , Fℓ+1, C1, . . . , Cℓ, W
Modifies: Ci, Fi,W

1: repeat
2: Increment the value ci stored in register Ci
3: Compute Ai in place ▷ Overwrites w, fi
4: until fi = 1 or the choice register overflows

Algorithm 2 Bi: given a partial path of choices (c1, . . . , ci−1) (i.e., a node in the tree),
finds whether (c1, . . . , ci−1) = (cg1, . . . , c

g
i−1), and in that case, completes the solution path.

Workspace: F1, . . . , Fℓ+1, C1, . . . , Cℓ, W
Modifies: all registers

1: Initialize a counter in register Ci to value 0
2: repeat
3: Compute A′

i in place ▷ Overwrites ci, w, fi
4: if fi = 1 then ▷ A new path to explore
5: Compute Di in place ▷ Overwrites w and possibly fℓ+1
6: Compute Bi+1 in place ▷ Overwrites all registers from i+ 1 to ℓ
7: end if
8: until fi = 0 or fℓ+1 = 1

▷ If fℓ+1 = 1, we found the solution path (cg1, . . . , c
g
ℓ), so we must stop here and the

choice registers (c1, . . . , cℓ) will contain this path. If fi = 0, we stopped because there
wasn’t any path left to explore.

Note that we use a counter to explore the choice sets Ci, that makes the search
deterministic (the register Ci is initialized to 0). This is one of the key differences between
classical and quantum search, where quantum search instead may be seen as sampling
choices at random.

12 Quantum Procedures for Nested Search Problems

4.2 Description of the Algorithm
Similarly to the classical backtracking, we define a sequence of quantum algorithms Bi
(1 ≤ i ≤ ℓ) such that each Bi calls Ai and Bi+1 as a subroutine. Intuitively, each
Repeat-Until loop that we wrote in Algorithm 1 and Algorithm 2 will now become a
QAA.

These algorithms act on the same Hilbert space F ⊗ C ⊗W as the Ai and Di. Each of
them only modifies a subset of the registers. They are parameterized by two sequences
of integers (k1, . . . , kℓ) and (k′

1, . . . , k
′
ℓ) that we will choose afterwards, which are the

numbers of QAA iterates performed at each level, for Bi and A′
i respectively. The complete

algorithm, which is intended to solve our search problem, is B1. It starts from a workspace
initialized to zeroes.

Intuitively, Bi is an amplified version of the sequence of steps from i to ℓ; if it starts
from the good subpath (cg1, . . . , c

g
i−1), it returns the complete solution; otherwise it fails.

We start from Bℓ+1 = I, and then the definition of the algorithms is given in Algorithm 3
and Algorithm 4.

Algorithm 3 A′
i: filters the choices at step i.

Workspace: F , C1, . . . , Cℓ, W
Modifies: Ci, Fi,W

1: Apply a Hadamard transform H on Ci
2: Repeat k′

i times
3: Compute Ai
4: Flip the phase if the i-th flag qubit Fi is 1
5: Uncompute Ai
6: Apply H, −O0, and another H, all on Ci
7: EndRepeat
8: Compute Ai

Algorithm 4 Bi: performs a QAA on the algorithm Bi+1 ◦ Di ◦ A′
i.

Workspace: F , C1, . . . , Cℓ, W
Modifies: all registers (Fi, Ci, W) numbered from i to ℓ

1: Compute Bi+1 ◦ Di ◦ A′
i

2: Repeat ki times
3: Flip the phase if the ℓ+ 1-th flag qubit is 1
4: Uncompute Bi+1 ◦ Di ◦ A′

i

5: Apply −O0 on the registers Ci, Ci+1, . . . , Cℓ
6: Compute Bi+1 ◦ Di ◦ A′

i

7: EndRepeat

Remark 5. The reason why we need to apply O0 only to the choice registers at Step 5
in Algorithm 4 is not obvious. It follows from the fact that among the registers numbered
from i to ℓ + 1, on which Bi acts, only the choice registers are non-zero at this point.
Indeed, the uncomputation of Bi+1 ◦Di ◦A′

i brought back W to 0 and erased Fi, . . . , Fℓ+1.
By definition, a qubit that is always 0 can be removed from O0 without effect.

Success Probability. The analysis of B1 starts with an expression of its success proba-
bility as a function of its parameters ki, k′

i and the parameters of the problem α2
i , α

′2
i . In

the following, we omit to write the work register, and focus only on the flag and choice
registers; we also omit the trailing zeroes of an incomplete path of choices. One should
note that the state of the work register is a deterministic function of the choice registers.

André Schrottenloher, Marc Stevens 13

Besides, the definition of our algorithms ensures that we always apply the algorithms in
the right order, i.e., we apply Ai when the current work register contains a valid output of
Di−1, and Di when it contains a valid output of Ai. In order to simplify the notation, we
define the projectors P 0

i , P
1
i which project a quantum state in F ⊗ C ⊗W on the i-th flag

0 or 1. We define the success probability ν2
i of Bi as the probability that, starting from

the good subpath cg1, . . . , c
g
i−1, Bi will output the complete good path. By definition ν2

1 is
the success probability of our complete algorithm. We have:{

∀i ≥ 2, νi = ∥P 1
ℓ Bi |1i−10ℓ−i+2⟩ |cg1, . . . , c

g
i−1⟩ ∥

ν1 = ∥P 1
ℓ+1B1 |0ℓ0c⟩ ∥

(9)

Lemma 3. Let νℓ+1 = 1 by convention, then for all i ≤ ℓ:

νi = sin [(2ki + 1) arcsin [νi+1αi sin((2k′
i + 1) arcsin(α′

i))]] . (10)

Proof. We do a descending recursion on the value of i, starting from i = ℓ. We will also
verify during this recursion that for all i, if we start Bi on a wrong subpath, we obtain
only zero flags, i.e.:

∀i,∀(c1, . . . , ci−1) ̸= (cg1, . . . , c
g
i−1), ∥P 1

ℓ+1Bi |1i−10ℓ−i+2⟩ |c1, . . . , ci−1⟩ ∥ = 0 .

We start by analyzing the behavior of A′
i, assuming that we start from the good path

(cg1, . . . , c
g
i−1). After a Hadamard layer and a call to Ai (i.e., before amplification), we

obtain the state:

AiH |1i−10ℓ−i+2⟩ |cg1, . . . , c
g
i−1⟩ |0⟩

= α′
i |1i0ℓ−i+1⟩ |cg1, . . . , c

g
i−1⟩

1√
2niα′

i

∑
ci∈Ci

passes the filter

|ci⟩

︸ ︷︷ ︸
:=|ψi⟩

+
√

1− α′2
i |1i−10ℓ−i+2⟩ |cg1, . . . , c

g
i−1⟩

1
√

2ni

√
1− α′2

i

∑
ci∈Ci

does not pass the filter

|ci⟩

︸ ︷︷ ︸
:=|χi⟩

,

where |ψi⟩ and |χi⟩ are two normalized quantum states. Therefore, after amplification
(using Equation 4), A′

i produces:

A′
i |1i−10ℓ−i+2⟩ |cg1, . . . , c

g
i−1⟩ |0⟩

= sin((2k′
i + 1) arcsinα′

i) |1i0ℓ−i+1⟩ |ψi⟩+ cos((2k′
i + 1) arcsinα′

i) |1i−10ℓ−i+2⟩ |χi⟩ .

In the state |ψi⟩, which is a uniform superposition over all ci passing the filter, we single
out the good choice cgi . Since we have 1√

2niα′
i

= αi, we see that the output of A′
i is

a superposition of flags and paths where (cg1, . . . , c
g
i−1, c

g
i) has amplitude: αi sin((2k′

i +
1) arcsinα′

i).
Then, we apply Bi+1 ◦ Di. For i = ℓ, Bℓ+1 = I does nothing, but Dℓ flags the good

subpath. Otherwise Di does not modify any flag, but we use the recurrence hypothesis on
Bi. In both cases the good subpath (cg1, . . . , c

g
i−1, c

g
i) is flagged with probability ν2

i+1, so
we have:

∥P 1
ℓ+1Bi+1DiA′

i |1i−10ℓ−i+2⟩ |cg1, . . . , c
g
i−1⟩ |0⟩ ∥ = νi+1αi sin((2k′

i + 1) arcsinα′
i) .

Using Equation 4 again, we obtain the wanted formula for ν2
i . If we start from a wrong

path, A′
i produces a superposition of wrong paths. Going through Bi+1, the last flag

written is always zero, so even after amplification this remains the case.

14 Quantum Procedures for Nested Search Problems

4.3 Choosing the Iteration Numbers
We have to determine the iteration numbers ki and k′

i to maximize the success probability
given by Lemma 3. For this, we do not need to know αi and α′

i exactly, but only two
intervals of the form: {

l′2i ≤ α′2
i ≤ u′2

i

l2i := 1
u′2

i
|Ci| ≤ α

2
i ≤ 1

l′2
i

|Ci| := u2
i

(11)

where the second is deduced from the first by α2
iα

′2
i = 1

|Ci| . More generally, the case
li = ui happens when αi and α′

i are known exactly, for example where there is no filtering
(α′
i = 1).

First, we remark that such intervals are enough as long as we keep the iteration numbers
sufficiently low.

Lemma 4. Assume that: ∀i, ki ≤ π
4

1
arcsinui

− 1
2 and ∀i < ℓ, k′

i ≤ π
4

1
arcsinu′

i
− 1

2 . Let νli
(lower bound) and νui (upper bound) be obtained by replacing the αi and α′

i by li and l′i,
and by ui and u′

i, respectively, in the formulas of Lemma 3. Then we have: νu1 ≥ ν1 ≥ νl1.

Proof. These upper bounds on ki ensure that, regardless of the exact value of αi, all inputs
to sin stay in the interval [0;π/2] where the function is increasing. The bounds on ν1 then
follow by a simple induction.

Our strategy is now as follows: instead of bounding the true ν1, which depends on
parameters that we do not know, we will bound νl1 depending on parameters that we know
(li, l′i, ui, u′

i). To simplify the notation, we write ν instead of νl in what follows.
In order to bound ν1, we first unfold the recursive formula of Lemma 3 into lower and

upper bounds on the νi. The proof is almost the same as Lemma 10, except that the order
of indices has changed, and new factors intervene due to the intermediate QAAs A′

i.

Lemma 5. Let νℓ+1 = 1. Let si = (2ki + 1)2l2i and s′
i = sin2 [(2k′

i + 1) arcsin(l′i)]. Then
for all i ≤ ℓ we have:

sis
′
iνi+1

2 (1− sis′
iνi+1

2) ≤ νi2 ≤ sis′
iνi+1

2 . (12)

Proof. We start from Equation 10, where we have replace αi, α′
i by li, l′i. We have νℓ+1 = 1

and for all i ≤ ℓ:

νi = sin
[
(2ki + 1) arcsin

[
νi+1li sin((2k′

i + 1) arcsin(l′i))︸ ︷︷ ︸
:=
√
s′

i

]]
.

For the upper bound, we use the inequality:

| sin [(2ki + 1)x] | ≤ (2ki + 1)| sin x| ,

which leads to |νi| ≤ (2ki + 1)li|νi+1|
√
s′
i . For the lower bound, we use the bounds on

sin, then on arcsin:

ν2
i ≥ (2ki + 1)2 arcsin2(li

√
s′
iνi+1)

[
1−

(2ki + 1)2 arcsin2(li
√
s′
iνi+1)

3

]

≥ (2ki + 1)2
(
li
√
s′
iνi+1

)2
[
1− 1

3
π2

4 (2ki + 1)2(li
√
s′
iνi+1)2

]
,

and the bound follows from 1/3 · π2/4 ≤ 1.

We now state our main theorem, which follows entirely from Equation 12.

André Schrottenloher, Marc Stevens 15

Theorem 1. Assume that ∀i,
∏ℓ
j=i(sjs′

j) ≤ 1
2ℓ . Then: ν2

1 ≥ 1
2
∏ℓ
j=1(sjs′

j) .

Proof. We start by unfolding recursively the upper bound in Equation 12: ∀i, ν2
i ≤∏ℓ

j=i sjs
′
j . Then we replace this in the lower bound:

∀i, ν2
i ≥ sis′

iν
2
i+1

1−
ℓ∏
j=i

sjs
′
j

 , (13)

and we unfold it recursively:

ν2
1 ≥

(
ℓ∏
i=1

sis
′
i

)
ℓ∏
i=1

1−

 ℓ∏
j=i

sjs
′
j

 . (14)

Since by assumption:
∏ℓ
j=i(sjs′

j) ≤ 1, we can use the generalized Bernoulli’s inequality4

to simplify the lower bound:

ν2
1 ≥

(
ℓ∏
i=1

sis
′
i

)1−
ℓ∑
i=1

 ℓ∏
j=i

sjs
′
j

 . (15)

The bound
∏ℓ
j=i sjs

′
j ≤ 1

2ℓ allows to obtain: ν2
1 ≥ 1

2

(∏ℓ
i=1 sis

′
i

)
, which proves the

theorem.

Thus, by keeping the success probability of Bi inverse-linear in ℓ, we ensure that the
nested QAAs amplify without any multiplicative factor in the complexity. However, the
final probability of success remains inverse-linear in ℓ. We need to combine the procedure
with an “overcooked” QAA (Lemma 2) with

√
ℓ iterates to obtain a constant probability.

Overall, we have replaced the naive overhead factor (π/2)ℓ by
√
ℓ.

4.4 Analytic Complexity Formula
We give the gate and space complexities of the algorithm depending on ki and k′

i. Recall
that we use G(A) to denote the gate count of A and S(A) the number of qubits on which
it acts.

For the space complexity, we count all the registers and add the two ancilla qubits
required by O0 and O:

∀i, S(Bi) = ℓ+ 3 + w +
∑

1≤i≤ℓ

ni . (16)

The gate complexity of Bi is given by the recursive formula:

(2ki+1)
(
G(Bi+1)+G(Di)+(2k′

i+1) (G(Ai) + niG(H))+k′
iG0(ni)

)
+kiG0(ni+. . .+nℓ) ,

where G(Bℓ+1) = 0 since Bℓ+1 does nothing. We simplify it into:

G(Bi) ≤ (2ki+1)
(
G(Bi+1)+G(Di)+(2k′

i+1)
(
G(Ai) + niG(H) + 1

2G0(ni)
)

+1
2G0(n)

)
.

(17)
Finally, we choose the maximal iteration numbers such that the condition of under-

amplification (Theorem 1 and Lemma 5) is satisfied. We deduce the success probability of
B1 and its gate count. This completes the “analytic” study. Note that this is a guaranteed
strategy, but not the optimal one.

4We are using the same technique as in [AKV23, Appendix A].

16 Quantum Procedures for Nested Search Problems

Theorem 2. Choose:
kℓ = max

(⌊
1

2
√

2ℓ
1
uℓ
− 1

2

⌋
, 0
)

∀i < ℓ, ki = max
(⌊

1
2

1
ui
− 1

2

⌋
, 0
)

∀i ≤ ℓ, k′
i = max

(⌊
π

4 arcsin(u′
i
) −

1
2

⌋
, 0
) (18)

Then the probability of success of B1 is lower bounded by:

ν2
1 ≥

1
2
∏
i

(2ki + 1)2l2i
∏
i

sin2 ((2k′
i + 1) arcsin(l′i)) , (19)

and its gate count is upper bounded by:

ℓ∑
i=1

 ℓ∏
j=i

(2kj + 1)

(G(Di)+(2k′
i+1)

(
G(Ai) + niG(H) + 1

2G0(ni)
)

+ 1
2G0(n)

)
. (20)

Proof. We check that the iteration numbers satisfy the conditions of Lemma 4, especially
the choice of ki. If a step has no filtering, then l′i = u′

i = 1, in which case we take k′
i = 0

and the term sin2 ((2k′
i + 1) arcsin(l′i)) is 1.

Indeed we have for all x, arcsin x ≤ π
2x, so:

ki ≤
π

4

(
arcsin

(
1

l′i
√
|Ci|

))−1

− 1
2 ≤

π

4 arcsin ui
− 1

2 .

Next, we have: ∀i, (2ki + 1)2l2i ≤ (2ki + 1)2u2
i ≤ 1 and (2kℓ + 1)2l2ℓ ≤ (2kℓ + 1)2u2

ℓ ≤
1
2ℓ so we can use Theorem 1 to conclude. The gate count is obtained by recursively
unfolding Equation 17.

As in Theorem 3, the constraint on kℓ (which is necessary for Theorem 1 to hold)
creates an inverse-linear lower bound in ℓ. Consequently, in order to bring the probability
of success of B1 to a constant, we need to use a QAA with O(

√
ℓ) iterates. This is why

the (π/2)ℓ overhead factor is replaced by
√
ℓ. In our applications, we compute this exactly

using an “overcooked” QAA (Lemma 2).

4.5 Optimizing the Complexity Numerically
For practical applications, especially when ℓ is not too large, we will obtain better results
with a direct optimization. We bypass Theorem 2 and directly focus on the value of νl1,
the lower bound of the success probability, which as we recall, is obtained by the following
recursion: {

νlℓ = sin [(2kℓ + 1) arcsin (lℓ)]
∀i, νli = sin

[
(2ki + 1) arcsin

[
νli+1li sin((2k′

i + 1) arcsin l′i)
]]

.
(21)

We simplify our optimization problem by setting k′
i =

⌊
π
4

1
arcsin(u′

i
) −

1
2

⌋
(intuitively we

do not gain anything by postponing the early-abort step). Then, by simply running B1
repeatedly, a solution is found with average time complexity 1

(νl
1)2G(B1). Thus, given the

formula for the gate complexity of B1, as a function of the iteration numbers, our goal is
to:

minimize
(
G(B1)/(νl1)2

)
under the constraints: ∀i, ki ≤ π

4
1

arcsinui
− 1

2 .

We can observe, as it was done in [JNRV20], that this direct optimization actually leads
to lower probabilities of success, e.g. between 70% and 80%. In our code, we increased the
exponent on νl1, in order to naturally bring the success probability closer to 1.

André Schrottenloher, Marc Stevens 17

4.6 Analysis of the Memory
When turning a classical nested search into a quantum one, using our framework, some
conversion of the memory model is needed (see Subsection 2.1 for an overview of quantum
memory models):

• All registers Fi, Ci,W , since they will be overwritten by one of the Ai or Di, are
qubits.

• If one of the Ai needs fast read/write access to one of the previous work registers (e.g.,
reading from a table in memory), then the QRAQM model is required. Otherwise,
performing sequential access, or accessing cells of fixed (global constant) position
can be done with the standard quantum circuit model.

• If one of the Ai needs fast read-only access to a table that was initialized before the
first step, then the QRACM model is required. The data in this table will remain
classical, but the indices accessed will be put in superposition. Otherwise, performing
sequential access, or accessing cells of fixed (global constant) position can be done
with the standard quantum circuit model, and no QRACM would be required (only
a classical memory).

5 Applications to AES Cryptanalysis
In this section, we demonstrate our framework by improving the algorithms and complexity
of several quantum attacks on the AES block cipher given in [BNS19] and [DNS24]: a
Square attack, a Demirci-Selçuk Meet-in-the-middle attack (DS-MITM) and an Impossible
Differential attack (ID).

Preliminaries on AES. The AES [DR02] is a substitution-permutation network (SPN)
operating on a 4×4 matrix of bytes. An AES round applies the operations AddRoundKey
(ARK, XORs the current round key to the state), SubBytes (SB, applies the S-Box S
to each byte individually), ShiftRows (SR, permutes the bytes), MixColumns (MC,
applies a linear function to each column).

The states of round i after ARK, SB, SR and MC are denoted respectively as xi, yi, zi, wi,
and ki is the round key of round i. The bytes of these states are numbered from xi[0] to
xi[15] (top to bottom, left to right in the byte matrix).

In these attacks, we are given classical chosen-plaintext access to a black-box EK
implementing a reduced-round AES with a secret key K. The attacks recover some key
material, i.e., bytes of some round keys ki. A valid quantum attack must outperform the
exhaustive search with Grover’s algorithm. Since the AES S-Box S is the only nonlinear
component, it dominates the cost of quantum circuits, and the complexity can be estimated
by counting S-Box circuits5.

5.1 Workflow and Results
Our strategy to turn a classical attack into a quantum attack is the following.

1. We write the attack algorithm as a search problem in multiple levels as defined
in Subsection 3.2. We define the filtering functions Ai, the post-processing functions
Di and the choice sets Ci at each level. We determine the size of the choice sets
and lower and upper bounds on the success probability of each Ai along the solution
path (if there is no filtering, then the probability of success is simply 1).

5We keep this metric for simplicity despite the cases when we consider QRAQM / QRACM, where the
S-Box could be also implemented by a (quantum) table lookup.

18 Quantum Procedures for Nested Search Problems

Table 1: Estimation of attack complexities, in number of S-Box circuits. “Analytic”:
using Theorem 2. “Optimized”: using numerical optimization as per Subsection 4.5.
“Normalized Time”: time complexity divided by the success probability.

Attack [BNS19] Analytic Optimized
AES Time 244.73 248.24 244.81

Square Success prob. 1 0.5 0.98
(6 rounds) Normalized Time 244.73 249.24 244.84

AES-256 Time 2136.17 2133.71 2132.05

DS-MITM Success prob. 0.73 0.5× 0.73 0.92× 0.73
(8 rounds) Normalized Time 2136.62 2135.16 2132.62

Attack [DNS24] Analytic Optimized
AES Time 2101.5 2103.41 2100.78

ID Success prob. 1 0.5 0.97
(7 rounds) Normalized Time 2101.5 2104.41 2100.82

2. We define the corresponding quantum algorithms Ai and Di and determine their
space and gate complexities. Often, this simply consists in checking that Ai and Di

can be implemented reversibly.

3. The nested quantum search algorithm is then generically defined by our framework.
It remains to find the number of iterates of each QAA (ki, k′

i appearing in Algorithm 3
and Algorithm 4). We use either the analytic complexity formula (Theorem 2) or
numerical optimization of the total gate count (Subsection 4.5).

4. We return the corresponding gate count and lower bound on the probability of
success. If we used the analytic complexity formula, we use the “overcooked” QAA
to bring the probability to 0.5 (Lemma 2).

Results. Our results are summarized in Table 1. The memory usage remains identical
to the previous works: approximately 225 qubits with QRAQM access, and 236 classical
memory without QRACM access for the Square attack; 288 classical memory without
QRAQM / QRACM for the DS-MITM attack (with a small number of qubits); 278.5

QRAQM for the ID attack. Overall, we obtain only marginal improvements in the time
complexity. This was expected, since we improve only the constant factors.

We can observe that for the 6-round quantum Square attack, there is no benefit with
respect to the previous approach. This is because the nested search terms (and piling-up
constants) do not dominate here. The only advantage of our approach was to externalize
the quantum algorithm design and complexity analysis.

For the DS-MITM attack, already the analytic formula performs better than the
previous analysis, despite the loss in success probability (as can be seen on the ratio of
cost over probability of success). The optimized variant wins a factor 24 at practically no
loss in success probability.

The ID attack is an intermediate case in which the analytic formula performs worse,
but the numerical optimization allows to gain a small factor. A byproduct of our result is
to subsume the generic analysis done in [DNS24] for these attacks.

5.2 Square Attack on AES
The Square attack on 6-round AES using the partial sums technique [FKL+00] is a good
example of a simple backtracking algorithm. Its quantum version is given in Appendix A.2

André Schrottenloher, Marc Stevens 19

of [BNS19]. The path of the attack is reproduced in Figure 4. It is based on the following
3-round integral distinguisher.

Lemma 6. Let (p0, . . . , p255) be a set of 28 plaintexts which take all values in byte 0 (said
to be active, all other bytes remaining equal), called a δ-set. Let E be the encryption
through 3 full rounds of AES. Then for any byte position 0 ≤ j ≤ 15:

⊕
iE(pi)[j] = 0.

The output byte j is said to be balanced.

For 6-round AES, we consider a few structures defined as follows: each structure
contains 232 plaintext-ciphertext pairs (pi, ci)0≤i≤232−1, such that the first diagonal of pi
(diagonal in the state x0 in Figure 4) is active: it takes all 232 possible values, while the
other bytes are constant. A structure maps to 224 δ-sets through the first round, and after
the distinguisher, byte x4[0] should be balanced. This distinguishes the 4-round reduced
AES from a random permutation.

For a given guess of key bytes u5[0] and k6[0, 1, 2, 3] (• on the picture), we can compute
backwards two rounds on each ciphertext ci to reach the value of the byte x4[0]. By taking
the sum of all these values, we check whether x4[0] is balanced over the whole structure.
This sum is expressed as:⊕

0≤i≤232−1

S−1(u5[0]⊕ a0S
−1(ci[0]⊕ k6[0])⊕ a1S

−1(ci[1]⊕ k6[1])

⊕ a2S
−1(ci[2]⊕ k6[2])⊕ a3S

−1(ci[3]⊕ k6[3])
)
, (22)

for known constants a0, a1, a2, a3 coming from MixColumns. We want to find the choice
of k6[0, 1, 2, 3] and u5[0] for which this sum is equal to 0 for all structures. Instead of
having to do 232 computations per key guess, Algorithm 5 amortizes this cost thanks to
intermediate tables: this is a common technique in integral cryptanalysis.

ARK

k0

SB

x0

SR

y0

MC

z0 w0

3 rounds distinguisher

SB

x4

?
SR MC

MC

u5

•

ARK

k5

SB

x5 y5

ARK

k6
•
•
•
•

Ciphertexts ci

Figure 4: Path of the AES Square attack. Active bytes in the integral distinguisher are
represented by hatched boxes, subkey guesses by •. ⋆ is the balanced byte (sum equal to 0
when we encrypt the 232 inputs).

20 Quantum Procedures for Nested Search Problems

Our formalization in the framework of Section 3 is the following: for each key byte
k6[0, 1, 2, 3], u5[0] we have a choice set of size 28. There is no filtering: we must make
a choice for all key bytes before computing the final sum, and checking whether our
choice was good or not. Therefore, each algorithm Ai has success probability 1, and no
post-processing layer is needed: Di = I at all layers. In Ai, given the new key guess, we
must construct the table for the next step. We notice that the classical computation of
a table, i.e., computing T3 from T2 (resp. T2 from T1) is a reversible process, as long as
we keep the previous table in memory: we just need to perform a series of increments
on the counters, and in the reverse operation, we decrement instead. This is detailed
in Algorithm 6.

Using the generic formula of Theorem 2, we obtain a worse time complexity than
the one given in [BNS19]. Indeed, we must take the following number of iterates for the
successive steps: 127, 7, 7, 2, with the last one quite small to allow for a reduced probability
of success. We obtain a count of 244.24 S-Boxes for a probability of success 2−4.74. But in
the attack, the calls to A1 dominate the time complexity. In [BNS19] there are roughly
π
2 28 such calls, but in our case, we need to re-amplify the last layer with 16 calls, so we
will call A1 roughly 16× 28 times and this is not competitive.

However, the numerical optimization (see Subsection 4.5) “sees” that A1 dominates,
and amplifies the non-dominating steps to a success probability closer to 1. This results in
the numbers of iterates 186, 11, 11, 11 for a success probability 0.98 and a time complexity
of 244.81 S-Boxes.

5.3 Impossible Differential Attack on 7-round AES
We consider the quantum impossible differential (ID) attack given in [DNS24] (Section 6.2,
first attack), which targets AES-192 and AES-256. It runs in total quantum time 2101.5

(counted relatively to an S-Box) and using 278.5 QRAQM (counted relatively to the block
size).

ID attacks were introduced independently by Knudsen [Knu98] and Biham, Biryukov
and Shamir [BBS05]. They rely on an impossible differential distinguisher ∆i ↛ ∆o,
defined by an input difference ∆i which cannot propagate to the output difference ∆o

through some rounds of the cipher. Furthermore, truncated differential patterns are used,
so ∆i and ∆o should be thought of as sets of differences.

The ID attack runs in two phases:

1. Pair generation: the attacker calls the cipher as a black-box and produces many
input-output pairs satisfying a given truncated differential pattern.

2. Pair filtering: the attacker finds a subkey for which no pair propagates internally to
the impossible differential pattern. Starting from a sufficient number of pairs, it is
expected that a single guess of the subkey will be in this situation.

The attack of [DNS24] reuses a pattern from [MDRM10], which is represented in Fig-
ure 5. Guessed key bytes are represented by •, and active (non-zero) differences by .
The propagation of the differential from the input and outputs towards the internal ID
distinguisher depends on 16 bytes of key, so the set of subkeys to sieve is of size 2128.

The analysis of the pair generation step in [DNS24] shows that N = 278.5 pairs are
sufficient to ensure that a single solution exists in the pair filtering step. Furthermore,
these pairs can be obtained in quantum time 299.8 using a quantum collision algorithm.
They are stored in a table T0. In the following, we focus on the pair filtering step.

Pair Filtering Algorithm. The pair filtering algorithm follows a backtracking approach
which is very similar to the partial sums technique, and translates effortlessly into our
framework. It guesses the subkey in several groups, and each time, reduces the set of pairs

André Schrottenloher, Marc Stevens 21

Algorithm 5 Square attack on 6-round AES, using nested loops.
Input: 8 structures of 232 chosen plaintext queries
Output: guess for u5[0], k6[0, 1, 2, 3]

1: for all k6[0], k6[1] do
2: For each structure, for each ciphertext ci, compute:

(t1, t2, t3) = a0S
−1(ci[0]⊕ k6[0])⊕ a1S

−1(ci[1]⊕ k6[1]), ci[2], ci[3]
3: Build a table T1 of 224 entries that stores, for each three-byte value (t1, t2, t3),

how many times it appears
4: for all k6[2] do
5: For each entry (t1, t2, t3) in T1, compute:

(s1, s2) := (t1 ⊕ a2S
−1(t2 ⊕ k6[2]), t3)

Store in a table T2 the occurrences of each pair of bytes
6: for all k6[3] do
7: For each 2-byte value (s1, s2), compute s1 ⊕ a3S

−1(s2 ⊕ k6[3])
Store in a table T3 the number of occurrences of each byte.

8: for all u5[0] do
9: Compute the sum:

⊕
t∈T3

(T3[t] mod 2)S−1(u5[0]⊕ t)
which is equal to the sum of Equation 22.
If it is zero for all structures, Return k6[0, 1, 2, 2], u5[0]

10: end for
11: end for
12: end for
13: end for

Algorithm 6 Square attack on 6-round AES, in our framework.
Compute 8 structures of 232 classical chosen-plaintext queries

16 bits Choose k6[0], k6[1]

A1

For each structure, for each ciphertext ci, compute:
(t1, t2, t3) = a0S

−1(ci[0]⊕ k6[0])⊕ a1S
−1(ci[1]⊕ k6[1]), ci[2], ci[3].

Build a table T1 of 224 entries that stores, for each byte triple
(t1, t2, t3), how many times it appears.
This costs 232 × 8× 2 = 236 S-Boxes and uses 8× 224 × 32 = 232

qubits (we keep large 32-bit counters)
8 bits Choose k6[2]

A2

For each byte triple (t1, t2, t3), compute: t1 ⊕ a2S

−1(t2 ⊕ k6[2]), t3
by accessing T1. Build a table T2 of 216 entries that stores, for
each byte pair (s1, s2), how many times it appears.
This costs 8× 224 × 1 = 227 S-Boxes and uses 8× 216 × 32 = 224

qubits (we keep large counters).
8 bits Choose k6[3]

A3

 For each 2-byte value (s1, s2), compute s1 ⊕ a3S
−1(s2 ⊕ k6[3]).

Build a table T3 that stores how many times each byte appears.
This costs 8× 216 = 219 S-Boxes and 8× 28 × 32 = 216 qubits.

8 bits Choose u5[0]

A4 and D4

 Using the table, compute the sum.
This costs: 8× 28 × 1 S-Boxes and additional small computations,
and uses 8× 32 = 28 qubits.

22 Quantum Procedures for Nested Search Problems

by discarding those which do not follow the truncated differential path of Figure 5. We
define the following intermediate tables:

• T1(k0[0, 5, 10, 15]): the set of pairs (P, P ′) in T0 such that w0[1] = w′
0[1] and w0[3] =

w′
0[3], of expected size N2−16

• T2(k0[0, 5, 10, 15], k0[2, 7, 8, 13]): the set of pairs in T1 such that w0[9] = w′
0[9] and

w0[11] = w′
0[11], of expected size N2−32

• T3(k0, k7): the set of pairs in T2 such that MC−1(w5[0, 1, 2, 3]) is active only on byte
0, of expected size N2−32−24

• T4(k0, k1, k7): the set of pairs in T3 such that w1[0] = w′
1[0] and w1[10] = w′

1[10], i.e.,
the truncated differential path at round 1 is satisfied.

By assumption, N = 278.5 ensures that T4(k0, k1, k7) is empty only when (k0, k1, k7) is
guessed right. While the size of the intermediate tables may vary depending on the current
subkey guess, under a mild heuristic assumption, [DNS24] shows that no intermediate
table should exceed twice its expected size. The computation of each table is done by
going through the previous one, and for each pair, computing a new test function which
checks whether the new condition is satisfied. Each test function requires 8 S-Boxes.

Our backtracking algorithm has a similar structure as the attack in [DNS24], but it
has a tighter complexity analysis.

5.4 DS-MITM Attack on 8-round AES-256
We consider the Demirci-Selçuk Meet-in-the-Middle key-recovery attack on 8-round AES-
256 given in [BNS19], which is a variant of the attacks in [DFJ13]. We refer to [BNS19]
for more details on this attack.

Distinguisher. The attack uses a 5-round distinguisher which is extended forwards and
backwards by several rounds using key guesses. It uses the following property.

Lemma 7. Let E be a 5-round AES and P, P ′ be a pair of states such that: P ⊕ P ′ is
active (non-zero) only in byte 3 and E(P)⊕E(P ′) is active only in byte 5, and furthermore,
P [3], P ′[3] and E(P)⊕E(P ′)[5] are known. let (P = P0, . . . P32) be a sequence of plaintexts
obtained by changing the value of byte 3 to an arbitary constant. Then the sequence of
corresponding output differences in byte 5, named δ-sequence:

E(P1)[5]⊕ E(P0)[5], E(P2)[5]⊕ E(P0)[5], . . . , E(P32)[5]⊕ E(P0)[5]

can only take one out of 2192 possibilities (instead of 2256 for a random sequence).

We give here a sketch of the proof of this Lemma, as it is of interest for the remainder
of the attack. In the full differential path of Figure 6, this distinguisher is placed between
round 1 and round 6. The key property is that, given the differences ∆y1[3] and ∆x6[5], it
suffices to guess 24 bytes to obtain all the bytes of x2, x3, x4, x5 where the differences are
active, allowing to compute the output differences for the δ-sequence.

Indeed, each time we know a pair of differences in input and output of an AES S-Box
(the so-called S-Box differential equation) there is on average one solution. More precisely,
half of the time it has 0 solution, (almost) half of the time it has 2 solutions, and with
probability 1/128 it has 4 solutions. We can neglect this last case; with probability 2−0.45

as estimated in [BNS19], it will not happen at all during the attack.
Let us guess ∆y2[8, 9, 10, 11], ∆x4 and ∆x5[0, 4, 9, 14] (a total of 24 bytes). This allows

us to compute all differences from x1 to x6. By solving the S-Box differential equations,
we retrieve the corresponding states.

André Schrottenloher, Marc Stevens 23

P

ARK

k0
•

•
•

•

•

•
•

•

SB

x0

SR

y0

MC

z0 w0

ARK

k1
•

•

•

•
SB

x1

SR

y1

MC

z1 w1

4-rounds impossible differential

ARK

k5

SB

x5

SR

y5

MC

z5 w5

ARK

k6

SB

x6

SR

y6 z6

ARK

k7
•

•
•
•

C

Figure 5: Path of the ID attack of [MDRM10, DNS24].

Algorithm 7 ID attack on 7-round AES.
Compute the table T0 of 278.5 pairs

32 bits Choose k0[0, 5, 10, 15]

A1

{
Compute T1(k0[0, 5, 10, 15])
This costs ≤ 8× 278.5 S-Boxes and the new table is of size ≤ 263.5

32 bits Choose k0[2, 7, 8, 13]

A2

{
Compute T2(k0[0, 5, 10, 15], k0[2, 7, 8, 13])
This costs ≤ 8× 263.5 S-Boxes and the new table is of size ≤ 247.5

32 bits Choose k7[0, 7, 10, 13]

A3

{
Compute T3(k0[0, 5, 10, 15], k0[2, 7, 8, 13], k7[0, 7, 10, 13])
This costs ≤ 8× 247.5 S-Boxes and the new table is of size ≤ 223.5

32 bits Choose k1[0, 2, 8, 10]

A4 and D4

 Compute T4(k0, k1, k7)
This costs ≤ 8× 223.5 S-Boxes
If T4 is empty then this is the solution

24 Quantum Procedures for Nested Search Problems

Attack. The attack is given in Algorithm 8 and translated in Algorithm 9.
The 10 subkey bytes k6[0, 5, 10, 15], k1[3], u7[1], u8[0, 7, 10, 13] indicated by • on Figure 6

are guessed, and each guess is tested as follows. One first finds a pair of plaintexts that
satisfy the full differential path of Figure 6, i.e., with a nonzero difference only in x1[3] and
x6[5]. Next, one computes the δ-sequence, by making the value of x1[3] vary, re-encrypting
the corresponding plaintexts, and partially decrypting the corresponding ciphertexts to
obtain ∆x6[5]. Both the appropriate pair and the computation of δ-sequences can be
precomputed using a data structure with about 280 classical memory (we refer to [BNS19]
for more details).

Once the δ-sequence is obtained, all the possible δ-sequences are compared against
it. Following Lemma 7, there are 2192 sequences to enumerate. The authors of [BNS19]
reduce this amount to 2160 using four “state-key” equations which relate the state values
with the key guess. For the correct subkey, one will find the δ-sequence with certainty. For
a wrong subkey, one would find it with probability 2160−256 = 2−96 only. As the search
space is of size 280, one can expect that only the right subkey passes the test.

The enumeration of δ-sequences is done in several steps which we do not detail here
(only the pattern of guesses and deductions is given in Algorithm 9). Notably, one first
guesses enough differences to obtain ∆x3 and ∆y4. Then, ∆x4 is guessed column by
column. When there is a match, one deduces multiple possible states, which are sieved
using the state-key equations.

Algorithm 8 DS-MITM attack on 8-round AES-256, using nested loops.
1: for all values of the 10 key bytes • do
2: Find a pair P, P ′, C, C ′ such that x1 is active only in byte 3 and y6 is active only

in byte 5
3: Make the value in x1[3] assume all values 1, . . . , 32
4: Using the known key bytes, find the corresponding plaintexts P1, . . . , P32
5: Encrypt P1, . . . , P32, obtain C1, . . . , C32
6: Decrypt partially C1, . . . , C32 and obtain the δ-sequence in x6[5]
7: Check if this δ-sequence is a possible one:
8: for all possible values of the δ-sequence do
9: if there is a match then

10: return the current guess of the key bytes
11: end if
12: end for
13: end for

The complexity analysis of the algorithm relies on several estimations.

• There are 40 S-Box differential equations of the form S(x ⊕ ∆) = S(x) ⊕ ∆′ for
known ∆,∆′ in the differential path. We suppose that for the good subkey guess, all
of them have 2 solutions exactly, and not 4;

• some steps (A3 to A6 in Algorithm 9) have varying success probabilities, depending
on the current key and state guesses. It is estimated in [BNS19] that this probability
varies less than by 2−8 ;

• the computation of the state-key equations in D6 costs less than 210 S-Boxes (most
of these computations are only linear);

• at most 4 different values are found after solving the state-key equations in D6 .

Using Theorem 2, we obtain an algorithm of complexity: 2129.53 (S-Boxes) with
success probability ≥ 2−5.40. Most of this uncertainty comes from the constant factor

André Schrottenloher, Marc Stevens 25

ARK

k0
•
•
•
•

SB

x0

SR

y0

MC

z0 w0

ARK

k1

•

SB

x1

SR

y1

MC

z1 w1

ARK

k2

SB

x2

SR

y2

MC

z2 w2

ARK

k3

SB

x3

SR

y3

MC

z3 w3

ARK

k4

SB

x4

SR

y4

MC

z4 w4

ARK

k5

SB

x5

SR

y5

MC

z5 w5

ARK

k6

SB

x6

SR

y6

MC

z6 w6

MC

u7

•
ARK

k7

SB

x7

SR

y7

MC

z7 w7

MC

u8

•

•
•
•

ARK

k8 Ciphertexts

Figure 6: Path of the 8-round DS-MITM attack of [BNS19].

26 Quantum Procedures for Nested Search Problems

Algorithm 9 DS-MITM attack on 8-round AES-256, with our framework.
80 bits Choose k0[0, 5, 10, 15], k1[3], u7[1], u8[0, 7, 10, 13]
A1 (Empty)

D1

Find a pair satisfying the differential path (253 S-Boxes)
Compute the δ-sequence (< 288 S-Boxes)
(Both are done by accessing a precomputed table)
Compute ∆x2[4− 7] and ∆y5[3, 4, 9, 14]

64 bits Choose ∆y2[4− 7],∆x5[3, 4, 9, 14]

A2

{
Match ∆y2[4−7],∆x5[3, 4, 9, 14]
with ∆x2[4−7], ∆y5[3, 4, 9, 14]

Success: 2−8 Stop if no match

D2

 Compute the possible states; Compute ∆x3 and ∆y4
(Here we have assumed that the S-Box differential
equations yield only two solutions)

32 bits Choose ∆x4[0− 3]
A3

{
Match ∆x4[0− 3] with ∆x3 and ∆y4

Succ.: 2−8(1±2−8) Stop if no match
32 bits Choose ∆x4[4− 7]
A4

{
Match ∆x4[4− 7] with ∆x3 and ∆y4

Succ.: 2−8(1±2−8) Stop if no match
32 bits Choose ∆x4[8− 11]
A5

{
Match ∆x4[8− 11] with ∆x3 and ∆y4

Succ.: 2−8(1±2−8) Stop if no match
32 bits Choose ∆x4[12− 15]
A6

{
Match ∆x4[12− 15] with ∆x3 and ∆y4

Succ.: 2−8(1±2−8) Stop if no match

D6

Using all the known states, write the state-key equations
Determine the values of x3, x2[4− 7], x4[0− 7, 10, 11, 15]
(Here we assume that at most 4 different values are found,
which leaves 29 choices in total at the next step.)

9 bits Choose one of 29 choices for x4[8, 9, 12, 13, 14], x5[4, 9, 14]
A7 and D7

{
Compute the expected δ-sequence (25 × 40 S-Boxes)

Success: 2−9 Check if it equals the expected sequence

André Schrottenloher, Marc Stevens 27

and the reduction of the success probability that ensures the correctness of our algorithm.
Using Lemma 2, we find that with on average 18 calls to this procedure and its inverse,
we can bring the success probability to 1/2. This already improves over [BNS19].

By running a numerical optimization instead, we obtain a complexity of 2132.05 S-Boxes
with a success probability ≥ 0.92, which gives an average complexity 2132.17 to reach a
success. The attack has then a 27% chance of failure, which is the same for all procedures.

Acknowledgments. A.S. would like to thank Xavier Bonnetain and Ronald de Wolf for
helpful discussions on quantum search and variable-time amplitude amplification. This
work has been partially supported by ERC-ADG-ALGSTRONGCRYPTO (project 740972)
and by the French National Research Agency through the DeCrypt project under Contract
ANR-18-CE39-0007, and through the France 2030 program under grant agreement No.
ANR-22-PETQ-0008 PQ-TLS.

References
[AA05] Scott Aaronson and Andris Ambainis. Quantum search of spatial regions.

Theory Comput., 1(1):47–79, 2005. URL: https://doi.org/10.4086/toc.
2005.v001a004, doi:10.4086/TOC.2005.V001A004.

[AAC+22] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John
Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene Peralta, et al.
Status report on the third round of the NIST post-quantum cryptography
standardization process. US Department of Commerce, NIST, 2022. doi:
10.6028/NIST.IR.8413-upd1.

[AKV23] Andris Ambainis, Martins Kokainis, and Jevgenijs Vihrovs. Improved al-
gorithm and lower bound for variable time quantum search, 2023. doi:
10.4230/LIPICS.TQC.2023.7.

[Amb10] Andris Ambainis. Quantum search with variable times. Theory Comput. Syst.,
47(3):786–807, 2010. URL: https://doi.org/10.1007/s00224-009-9219-1,
doi:10.1007/S00224-009-9219-1.

[Amb12] Andris Ambainis. Variable time amplitude amplification and quantum al-
gorithms for linear algebra problems. In STACS, volume 14 of LIPIcs,
pages 636–647. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012.
doi:10.4230/LIPICS.STACS.2012.636.

[ANS18] Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen. Quantum lattice enumer-
ation and tweaking discrete pruning. In ASIACRYPT (1), volume 11272 of
LNCS, pages 405–434. Springer, 2018. doi:10.1007/978-3-030-03326-2_
14.

[BBS05] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of skipjack reduced
to 31 rounds using impossible differentials. J. Cryptol., 18(4):291–311, 2005.
URL: https://doi.org/10.1007/s00145-005-0129-3, doi:10.1007/S001
45-005-0129-3.

[Ber10] Daniel J. Bernstein. Grover vs. mceliece. In PQCrypto, volume 6061 of Lecture
Notes in Computer Science, pages 73–80. Springer, 2010. doi:10.1007/97
8-3-642-12929-2_6.

[BHMT02] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum
amplitude amplification and estimation. Contemporary Mathematics, 305:53–
74, 2002. doi:10.1090/conm/305/05215.

https://doi.org/10.4086/toc.2005.v001a004
https://doi.org/10.4086/toc.2005.v001a004
https://doi.org/10.4086/TOC.2005.V001A004
https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.4230/LIPICS.TQC.2023.7
https://doi.org/10.4230/LIPICS.TQC.2023.7
https://doi.org/10.1007/s00224-009-9219-1
https://doi.org/10.1007/S00224-009-9219-1
https://doi.org/10.4230/LIPICS.STACS.2012.636
https://doi.org/10.1007/978-3-030-03326-2_14
https://doi.org/10.1007/978-3-030-03326-2_14
https://doi.org/10.1007/s00145-005-0129-3
https://doi.org/10.1007/S00145-005-0129-3
https://doi.org/10.1007/S00145-005-0129-3
https://doi.org/10.1007/978-3-642-12929-2_6
https://doi.org/10.1007/978-3-642-12929-2_6
https://doi.org/10.1090/conm/305/05215

28 Quantum Procedures for Nested Search Problems

[BHN+19] Xavier Bonnetain, Akinori Hosoyamada, María Naya-Plasencia, Yu Sasaki,
and André Schrottenloher. Quantum attacks without superposition queries:
The offline simon’s algorithm. In ASIACRYPT (1), volume 11921 of LNCS,
pages 552–583. Springer, 2019. doi:10.1007/978-3-030-34578-5_20.

[BNS19] Xavier Bonnetain, María Naya-Plasencia, and André Schrottenloher. Quantum
security analysis of AES. IACR Trans. Symmetric Cryptol., 2019(2):55–
93, 2019. URL: https://doi.org/10.13154/tosc.v2019.i2.55-93,
doi:10.13154/TOSC.V2019.I2.55-93.

[CGJ19] Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. The power
of block-encoded matrix powers: Improved regression techniques via faster
hamiltonian simulation. In ICALP, volume 132 of LIPIcs, pages 33:1–33:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPI
CS.ICALP.2019.33.

[DFJ13] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved key recovery
attacks on reduced-round AES in the single-key setting. In EUROCRYPT,
volume 7881 of Lecture Notes in Computer Science, pages 371–387. Springer,
2013. doi:10.1007/978-3-642-38348-9_23.

[DNS24] Nicolas David, María Naya-Plasencia, and André Schrottenloher. Quantum
impossible differential attacks: applications to AES and SKINNY, 2024. URL:
https://doi.org/10.1007/s10623-023-01280-y, doi:10.1007/S10623-0
23-01280-Y.

[DP20] James H. Davenport and Benjamin Pring. Improvements to quantum search
techniques for block-ciphers, with applications to AES. In SAC, volume 12804
of LNCS, pages 360–384. Springer, 2020. doi:10.1007/978-3-030-81652-0
_14.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Information Security and Cryptography.
Springer, 2002.

[FKL+00] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay,
David A. Wagner, and Doug Whiting. Improved cryptanalysis of Rijndael. In
FSE, volume 1978 of LNCS, pages 213–230. Springer, 2000. doi:10.1007/
3-540-44706-7_15.

[Gid15] Craig Gidney. Constructing large controlled nots. https://algassert.co
m/circuits/2015/06/05/Constructing-Large-Controlled-Nots.html,
2015.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In
STOC, pages 212–219. ACM, 1996. doi:10.1145/237814.237866.

[HS20] Akinori Hosoyamada and Yu Sasaki. Finding hash collisions with quantum
computers by using differential trails with smaller probability than birthday
bound. In EUROCRYPT (2), volume 12106 of Lecture Notes in Computer
Science, pages 249–279. Springer, 2020. doi:10.1007/978-3-030-45724-2
_9.

[JNRV20] Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia.
Implementing grover oracles for quantum key search on AES and LowMC.
In EUROCRYPT (2), volume 12106 of Lecture Notes in Computer Science,
pages 280–310. Springer, 2020. doi:10.1007/978-3-030-45724-2_10.

https://doi.org/10.1007/978-3-030-34578-5_20
https://doi.org/10.13154/tosc.v2019.i2.55-93
https://doi.org/10.13154/TOSC.V2019.I2.55-93
https://doi.org/10.4230/LIPICS.ICALP.2019.33
https://doi.org/10.4230/LIPICS.ICALP.2019.33
https://doi.org/10.1007/978-3-642-38348-9_23
https://doi.org/10.1007/s10623-023-01280-y
https://doi.org/10.1007/S10623-023-01280-Y
https://doi.org/10.1007/S10623-023-01280-Y
https://doi.org/10.1007/978-3-030-81652-0_14
https://doi.org/10.1007/978-3-030-81652-0_14
https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1007/3-540-44706-7_15
https://algassert.com/circuits/2015/06/05/Constructing-Large-Controlled-Nots.html
https://algassert.com/circuits/2015/06/05/Constructing-Large-Controlled-Nots.html
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-030-45724-2_9
https://doi.org/10.1007/978-3-030-45724-2_9
https://doi.org/10.1007/978-3-030-45724-2_10

André Schrottenloher, Marc Stevens 29

[KLL15] Shelby Kimmel, Cedric Yen-Yu Lin, and Han-Hsuan Lin. Oracles with costs.
In TQC, volume 44 of LIPIcs, pages 1–26. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2015. doi:10.4230/LIPICS.TQC.2015.1.

[KLLN16a] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and María Naya-Plasencia.
Breaking symmetric cryptosystems using quantum period finding. In CRYPTO
(2), volume 9815 of Lecture Notes in Computer Science, pages 207–237.
Springer, 2016. doi:10.1007/978-3-662-53008-5_8.

[KLLN16b] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and María Naya-Plasencia.
Quantum differential and linear cryptanalysis. IACR Trans. Symmetric Cryp-
tol., 2016(1):71–94, 2016. URL: https://doi.org/10.13154/tosc.v2016.
i1.71-94, doi:10.13154/TOSC.V2016.I1.71-94.

[KM10] Hidenori Kuwakado and Masakatu Morii. Quantum distinguisher between the
3-round feistel cipher and the random permutation. In ISIT, pages 2682–2685.
IEEE, 2010. doi:10.1109/ISIT.2010.5513654.

[KMPM19] Elena Kirshanova, Erik Mårtensson, Eamonn W. Postlethwaite, and Sub-
hayan Roy Moulik. Quantum algorithms for the approximate k-list problem and
their application to lattice sieving. In ASIACRYPT, volume 11921 of LNCS,
pages 521–551. Springer, 2019. doi:10.1007/978-3-030-34578-5_19.

[Knu98] Lars Knudsen. DEAL - a 128-bit block cipher. Technical Report 151, Depart-
ment of Informatics, University of Bergen, Feb 1998.

[KT17] Ghazal Kachigar and Jean-Pierre Tillich. Quantum information set decoding
algorithms. In PQCrypto, volume 10346 of Lecture Notes in Computer Science,
pages 69–89. Springer, 2017. doi:10.1007/978-3-319-59879-6_5.

[Kup13] Greg Kuperberg. Another subexponential-time quantum algorithm for the
dihedral hidden subgroup problem. In TQC, volume 22 of LIPIcs, pages 20–34.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013. doi:10.4230/LIPI
CS.TQC.2013.20.

[Laa15] Thijs Laarhoven. Search problems in cryptography. PhD thesis, PhD thesis,
Eindhoven University of Technology, 2015.

[LMvdP15] Thijs Laarhoven, Michele Mosca, and Joop van de Pol. Finding shortest lattice
vectors faster using quantum search. Des. Codes Cryptogr., 77(2-3):375–400,
2015. doi:10.1007/s10623-015-0067-5.

[MDRM10] Hamid Mala, Mohammad Dakhilalian, Vincent Rijmen, and Mahmoud
Modarres-Hashemi. Improved impossible differential cryptanalysis of 7-round
AES-128. In INDOCRYPT, volume 6498 of Lecture Notes in Computer Science,
pages 282–291. Springer, 2010. doi:10.1007/978-3-642-17401-8_20.

[Mon18] Ashley Montanaro. Quantum-walk speedup of backtracking algorithms. Theory
Comput., 14(1):1–24, 2018. URL: https://doi.org/10.4086/toc.2018.v01
4a015, doi:10.4086/TOC.2018.V014A015.

[NC16] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum
information (10th anniversary edition), 2016.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In FOCS, pages 124–134. IEEE Computer Society, 1994.
doi:10.1109/SFCS.1994.365700.

https://doi.org/10.4230/LIPICS.TQC.2015.1
https://doi.org/10.1007/978-3-662-53008-5_8
https://doi.org/10.13154/tosc.v2016.i1.71-94
https://doi.org/10.13154/tosc.v2016.i1.71-94
https://doi.org/10.13154/TOSC.V2016.I1.71-94
https://doi.org/10.1109/ISIT.2010.5513654
https://doi.org/10.1007/978-3-030-34578-5_19
https://doi.org/10.1007/978-3-319-59879-6_5
https://doi.org/10.4230/LIPICS.TQC.2013.20
https://doi.org/10.4230/LIPICS.TQC.2013.20
https://doi.org/10.1007/s10623-015-0067-5
https://doi.org/10.1007/978-3-642-17401-8_20
https://doi.org/10.4086/toc.2018.v014a015
https://doi.org/10.4086/toc.2018.v014a015
https://doi.org/10.4086/TOC.2018.V014A015
https://doi.org/10.1109/SFCS.1994.365700

30 Quantum Procedures for Nested Search Problems

Appendix

A Quantum Search with Early Aborts
Search with early aborts (Figure 7) is a different case of tree search in which a single choice
is made at the beginning of the search, but multiple layers of filtering are applied. These
filters have typically increasing complexities. This situation is represented in Figure 7.

c6

c6, 1

c6, 1, 0

c5

c5, 1

c5, 1, 0

c4

c4, 0

c3

c3, 0

c2

c2, 1

c2, 1, 0

c1

c1, 1

c1, 1, 1

c1, 1, 1, 1

c1, 1, 1, 1, 1
Compute A4

Compute A3

Compute A2

Compute A1

Choose c ∈ C

Figure 7: Search with early aborts, with a single choice c ∈ C, and 4 successive filters
A1, A2, A3, A4.

We show here a generic framework for this problem. It is actually very different
from Section 4, and the applications in cryptanalysis are also different. However, the
analysis will look similar, as it also involves ℓ nested QAAs.

The structure of this section is similar to Section 4: after a definition of the problem,
we give a classical algorithm based on nested search. Then, we give a quantum algorithm,
compute its success probability and time complexity, and explain how to optimize this
complexity numerically.

Comparison with [Amb12, AKV23]. As mentioned in the introduction, the setting
considered in this section is a generalization of variable-time quantum search, which has
been studied in other works [Amb12, AKV23]. In Appendix C we show that our framework
yields an algorithm for variable-time search simpler than the one of Ambainis [Amb12].
Concurrent work of Ambainis, Kokainis and Vihrovs [AKV23] obtained a similar algorithm
with a slightly better complexity. However, their analysis is specific to variable-time search
and does not support the full early-abort framework.

A.1 Description of the Problem
Let ℓ ≥ 1 be an integer. Let C be a choice set of bit-length n. Let W be a set of bit-strings
of length w. Let F = F1 × · · · × Fℓ be the set of flags. The workspace is defined as
F × C ×W with a corresponding Hilbert space F ⊗ C ⊗W. We use the same naming
conventions as before.

We consider ℓ algorithms A1, . . . , Aℓ acting on this workspace with the following
restrictions: • Ai only modifies W and the i-th flag; • if i ≥ 2 and the (i− 1)-th flag is 0,
Ai is the identity. Thus the quantum implementation of Ai is controlled on the (i− 1)-th
flag.

In this case, we do not need to assume that a single solution exists. Our search problem
is formulated as:

André Schrottenloher, Marc Stevens 31

Find c ∈ C such that: Aℓ ◦ · · · ◦A1(0ℓ, c, 0w)|flag ℓ = 1.

For all i, we let Ai be a quantum implementation of Ai, of gate complexity G(Ai).

Filtering Probabilities. Contrary to Subsection 3.2, we only need to define filtering
probabilities, and their definition is different:

β2
1 = Pr

c
$←−C

(A1(0ℓ, c, 0w)|flag 1 = 1) (23)

∀2 ≤ i ≤ ℓ, β2
i =

Pr
c

$←−C
(Ai ◦ · · · ◦A1(0ℓ, c, 0w)|flag i = 1)

Pr
c

$←−C
(Ai−1 ◦ · · · ◦A1(0ℓ, c, 0w)|flag i−1 = 1) , (24)

so that β2
i is the probability that c ∈ C passes the i-th step, conditioned on having passed

the (i− 1)-th step.

Difference between Backtracking and Early-Abort. The search with early aborts,
which makes a single choice and splits the testing function in several layer, is fundamentally
different from our main “backtracking” framework (Subsection 3.2), which splits the search
space into several choice sets. Both approaches could be somewhat unified by considering
a backtracking algorithm in which each testing step is separated into multiple sub-steps; it
will then embed “early abort” algorithms at each level. However, we have not found any
interest for such an algorithm.

A.2 Classical Early-Abort Algorithm
We start with a classical algorithm which will serve as inspiration for the quantum one.
We define ℓ algorithms B1, . . . , Bℓ where each Bi finds elements that pass the filters A1 to
Ai.

Algorithm 10 B1: finds an element that passes the first filter A1.
Workspace: F , C,W
Modifies: F1, C,W

1: repeat
2: Increment the value c stored in register C
3: Compute A1 in place ▷ Will update the flag f1 and the workspace
4: until F1 contains 1 or register C overflows

Algorithm 11 Bi: samples an element passing the filters A1 to Ai.
Workspace: F , C,W
Modifies: Fi, C,W

1: repeat
2: Call Bi−1
3: Compute Ai in place ▷ Will update the flag fi and the workspace
4: until Fi contains 1 or the register C overflows

In Algorithm 10, we start by sampling new values for c until we pass the first filter.
In Algorithm 11, we call Bi−1 to setup the workspace according to a new element that
passes filters A1 to Ai−1, then we evaluate Ai, and we continue until it is passed. When
Bℓ stops, either C has overflown (i.e., the whole choice set was explored without finding a
solution), or the workspace contains a solution.

32 Quantum Procedures for Nested Search Problems

Algorithm 12 B1: performs k1 iterates of QAA to filter the elements passing the first
test.

Workspace: F,C,W
Modifies: F1, C,W

1: Apply a Hadamard transform on the register C
2: Compute A1
3: Repeat k1 times
4: Flip the phase if the first flag qubit is 1
5: Uncompute A1
6: Apply a Hadamard transform on the register C
7: Apply −O0 on the register C
8: Apply a Hadamard transform on the register C
9: Compute A1

10: EndRepeat

Algorithm 13 Bi: performs ki iterates of QAA on top of Bi−1, to filter the elements
passing the i-th test.

Workspace: F,C,W
Modifies: F1, . . . , Fi, C,W

1: Compute Ai ◦ Bi−1
2: Repeat ki times
3: Flip the phase if the i-th flag qubit is 1
4: Uncompute Ai ◦ Bi−1
5: Apply −O0 on the register C
6: Compute Ai ◦ Bi−1
7: EndRepeat

A.3 Description of the Quantum Algorithm
Our quantum algorithm is analogous to Algorithm 10 and Algorithm 11, except that it
replaces the ℓ Repeat-Until loops by ℓ nested QAAs. The QAA at level i produces
a superposition of choices which, with high probability, pass the i first filters. It is not
necessary to succeed with probability 1 for these intermediate levels, and instead, the best
strategy is to maintain the current probability of success below a certain level, which is
inverse-linear in ℓ. The number of iterates of each QAA is then selected depending on our
knowledge of the filtering probabilities βi defined in Subsection A.1.

We define a sequence of algorithms Bi (1 ≤ i ≤ ℓ) where Bi calls Ai and Bi−1 as a
subroutine. Each Bi acts on the same Hilbert space F ⊗ C ⊗W as the building blocks
Ai. The complete algorithm is Bℓ, which is parameterized by the number of iterations
(k1, . . . , kℓ) chosen for each QAA.

In the definition of the algorithms (Algorithm 12 and Algorithm 13) we denote by Oi
the test oracle that simply flips the phase if the i-th flag is 1. Each Oi costs 3 Clifford
gates. Recall that O0 is the inversion around zero, which has a gate cost linear in the
number of workspace qubits.

Example 1. If we take two levels of QAA and one iterate at each level, we obtain at the
first level:

B1 = A1HO0HA†
1O1A1H ,

and by writing A′
1 = A1H, at the second level:

B2 = A2B1O0(A2B1)†O2A2B1

= A2A′
1O0A′†

1 O1A′
1O0(A2A′

1O0A′†
1 O1A′

1)†O2A2A′
1O0A′†

1 O1A′
1

André Schrottenloher, Marc Stevens 33

= (A2A′
1)O0(A′

1)†O1(A′
1)O0(A′

1)†O1(A′
1)O0(A2A′

1)†O2(A2A′
1)O0(A′

1)†O1(A′
1) .

So the algorithm looks like a QAA applied to the algorithm A2A1H, except that we stop
some of its iterations earlier. One can notice that each time O0 is applied, the work register
W and flags contain 0, which is why it is only necessary to apply it on the choice register
C.

A.4 Analysis
We do the analysis of Bℓ in three steps. First, we express its success probability as a
function of (k1, . . . , kℓ) and (β1, . . . , βℓ). Second, we express its time complexity as a
function of (k1, . . . , kℓ) and the gate complexities of Ai. Finally, we express the constraints
which allow to choose optimal values for the ki.

Success Probability. For all i, let ν2
i be the probability that after measuring Bi |0ℓ0n0w⟩,

the i-th flag qubit is projected on 1; i.e., after running Bi on input a zero state, we obtain
a choice that passes all the first i filters. By definition, ν2

ℓ is the probability of success
of the whole procedure. We show that ν2

i depends only on the parameters βi (from the
search problem) and ki (from the algorithm) as follows:

Lemma 8. Let ν0 = 1 by convention. For all i ≥ 1 we have:

νi = sin [(2ki + 1) arcsin βiνi−1] . (25)

Proof. To facilitate the notation, we introduce the projectors P 0
i , P

1
i which project a

quantum state in F ⊗ C ⊗W on the i-th flag 0 or 1, i.e.:

∀1 ≤ i ≤ ℓ, P bi = Ii−1 ⊗ |b⟩ ⟨b| ⊗ Iℓ−i−1+c+w ,

where Ir is the identity operator applied to r qubits.
Let |ψi⟩ be the uniform superposition of choices c and corresponding state of the work

register at step i, such that c passes all the filters from 1 to i included. We prove by
induction that:

Bi |0ℓ+n+w⟩ = νi |1i0ℓ−i⟩ |ψi⟩+ |χi⟩ , (26)
where |χi⟩ = P 0

i Bi |0ℓ+n+w⟩ is the part of the superposition where the i-th flag is zero. In
general, it will be a superposition of failed states from levels 1, . . . , i, with different flags
of the form |1j0ℓ−j⟩ depending on the level which failed. In other words, Bi outputs |ψi⟩
with probability ν2

i .
We start from the output of A1H, which by definition, is:

A1H |0ℓ+n+w⟩ = β1 |10ℓ−1⟩ |ψ1⟩+
(
P 0

1A1H |0ℓ+n+w⟩
)
.

Then, B1 applies k1 iterates of QAA on top of A1H, so by Equation 4, we have:

B1 |0ℓ+n+w⟩ = sin [(2k1 + 1) arcsin β1] |10ℓ−1⟩ |ψ1⟩+
(
P 0

1B1 |0ℓ+c+w⟩
)
,

where we get the definition of ν1. Next, we assume that Equation 26 is true for some i ≥ 1.
By definition, Bi+1 applies ki+1 QAA iterates to the algorithm Ai+1Bi. We first look at
the output of Ai+1Bi:

Ai+1Bi |0ℓ+n+w⟩ = Ai+1

(
νi |1i0ℓ−i⟩ |ψi⟩+

√
1− ν2

i |χi⟩
)

= νi
(
βi+1 |1i+10ℓ−i−1⟩ |ψi+1⟩+

(
P 0
i+1Ai+1(|1i0ℓ−i⟩ |ψi⟩)

))
+
√

1− ν2
i |χi⟩

= νiβi+1 |1i+10ℓ−i−1⟩ |ψi+1⟩+ P 0
i+1Ai+1Bi |0ℓ+c+w⟩ .

34 Quantum Procedures for Nested Search Problems

Indeed, since |χi⟩ has always 0 in the flag bit i, Ai+1 leaves it unchanged. By Equation 4
we have:

Bi+1 |0ℓ+n+w⟩ = sin [(2ki + 1) arcsin(νiβi+1)] |1i+10ℓ−i−1⟩ |ψi+1⟩+ P 0
i+1Bi+1 |0ℓ+c+w⟩ ,

which completes the recurrence.

A.4.1 Time Complexity.

The time complexity of Bℓ is a function of the ki and the gate counts of Ai. Recall that we
note G(Ai) the gate count of Ai, that includes the controls on the flag qubit number i− 1.

Lemma 9. The gate complexity of Bℓ(k1, . . . , kℓ) is given by:

G(Bℓ) =

 ℓ∑
i=1

 ℓ∏
j=i

(2kj + 1)

G(Ai)

+n
ℓ∏
j=1

(2kj+1)G(H)+k1

ℓ∏
j=2

(2kj+1)G0(n) . (27)

It uses ℓ+ n+ w + 2 qubits.

Proof. This is a simple induction on the number of applications of each Ai. For all i, Bℓ
contains

∏ℓ
j=i(2kj + 1) calls to Ai.

Each time O0 is called, it is applied on n qubits. By assumption, ancilla qubits used
by the Ai are counted as workspace qubits.

The total number of H gates is n times the calls to A1, i.e., n
∏ℓ
j=1(2kj + 1). Finally,

the total number of calls to O0 (resp. the Oi) is k1
∏ℓ
j=2(2kj + 1).

A.4.2 Choice of the ki.

Using approximations of the sin and arcsin functions, we transform Equation 25 into
exploitable bounds on the ν2

i . This leads to conditions on the number of iterates ki to
ensure the success of the algorithm (Theorem 3).

Lemma 10. Let ν0 = 1 by convention, and si = (2ki + 1)2β2
i . Then for all i ≥ 1 we have:

siν
2
i−1
(
1− siν2

i−1
)
≤ ν2

i ≤ siν2
i−1 . (28)

The proof is similar to Lemma 5 by replacing sis′
i by si and changing the indices.

Theorem 3. Let si = (2ki + 1)2β2
i . Assume that ∀i ≤ ℓ,

∏i
j=1 sj ≤

1
2ℓ . Then we have:

ν2
ℓ ≥ 1

2
∏ℓ
j=1 sj.

The proof is similar to Theorem 1 by replacing sis′
i by si and changing the indices.

One can remark that in order to set properly the iteration numbers, it is required
to know only the cumulative success probabilities

∏i
j=1 β

2
j , i.e., the amount of choices

passing the first i filters. This fact is important for the analysis of variable-time amplitude
amplification that we do in Appendix C.

A.5 Optimizing the Complexity Numerically
The complexity is easy to optimize if we know intervals on the β2

i of the form: β2
i ∈ [l2i ;u2

i].
Indeed, we observe that as long as we keep the iteration numbers sufficiently low, we can
bound the final success probability using these known upper and lower bounds.

Lemma 11. Assume that: ∀i, ki ≤ π
4

1
arcsinui

− 1
2 . Let νli (lower bound) and νui (upper

bound) be obtained by replacing the βi by li and ui, respectively, in the formulas of Lemma 8.
Then we have: νuℓ ≥ νℓ ≥ νlℓ.

André Schrottenloher, Marc Stevens 35

Proof. The proof is similar to Lemma 4.

Therefore, we can bypass Theorem 3 and directly express the lower bound on the
success probability ν2

ℓ of Bℓ as a function of the ki:{
νl0 = 1
∀i, νli = sin

[
(2ki + 1) arcsin

[
liν

l
i−1
]] (29)

Then, given the formula for the gate complexity of Bℓ as a function of the iteration numbers,
our goal is to:

minimize G(Bℓ)/νlℓ
2 under the constraints: ∀i, ki ≤

⌊
π
4

1
arcsinui

− 1
2

⌋
.

We first optimize this numerically, then take the floor of the values ki obtained (in
order to avoid going above the bounds). This last rounding is, in practice, insignificant for
the complexity.

In Appendix B, we study the problem of a search with independent tests, in which we
first use Theorem 3 for the asymptotic case, then the optimization method for practical
cases.

B Search with Independent Tests
In this section, we tackle the problem of search with many independent tests, which arises
in several cryptographic applications. It corresponds to a search with early aborts as given
in Appendix A.

Problem 1 (Sequence of independent tests). Let f1, . . . , fm be m functions: fi : {0, 1}n →
{0, 1}. Let Xi = {x ∈ {0, 1}n,∀j ≤ i, fj(x) = 1}, with X0 = {0, 1}n. Clearly we have
∀i,Xi+1 ⊆ Xi. Assume that the fi are all independent random boolean functions, which
can be evaluated in time t. Sample from Xm.

B.1 Search with Independent Tests (Asymptotic)
Typically we will have m ≤ n+ 3 since with the assumption of independence, this ensures
that |Xm| = 1 with a large probability. For intermediate values of i, |Xi| does not deviate
too much from its average due to the multiplicative Chernoff-Hoeffding bound:

∀δ ≥ 0,Pr(|Xi| ≥ 2n−i(1 + δ)) ≤ e−2n−iδ2/(2+δ) ≤ e−2n−iδ2/2 ,

where we take δ = 2−(n−i)/3 to obtain:

∀i,Pr(|Xi| ≥ 2n−i + 22(n−i)/3) ≤ e−2(n−i)/3−1
.

Using a union bound, we can ensure that most of the Xi are close to their average size:

Pr(∃i ≤ n− 9, |Xi| ≥ 2n−i + 22(n−i)/3) ≤
n−9∑
i=0

e−2(n−i)/3−1
≤

∞∑
i=9

(
e−1)2i/3−1

≤ e−4
∞∑
i=0

e−i ≤ 0.029 ,

where we noticed that 2i/3−1 > i− 5 for i ≥ 9.
In particular |Xi| ≤ 2n−i 9

8 , which simplifies the asymptotic computations. We will now
cut the sequence f1, . . . , fn into a variable-time algorithm Aℓ ◦ · · · ◦ A1 (note that ℓ is a

36 Quantum Procedures for Nested Search Problems

different parameter than the number of tests m; in particular ℓ < m). Each Ai will run
mi successive functions fi, so that in total m1 + . . .+mℓ = n− 9. A final search will be
performed for the remaining conditions, but it will only add a constant overhead. Due to
the Chernoff bounds, we know that the cumulative probabilities of success of the Ai are
upper bounded by:

∏i
j=1 β

2
j ≤ 2−

∑i

j=1
mj+1. So we can take for the number of iterates

ki:

k1 =
⌊

1
2
√

9/8× 2ℓ
√

2m1 − 1
2

⌋
,∀i ≥ 1, ki =

⌊
1
2
√

2mi − 1
2

⌋
,

which are sufficient to ensure the conditions of Theorem 3:

∀i ≥ 1,
i∏

j=1
(2kj + 1)2 ≤ 1

2ℓ2m1+...+mi
8
9 =⇒

i∏
j=1

(2kj + 1)2β2
j =

i∏
j=1

(2kj + 1)2 |Xi|
2n ≤

1
2ℓ .

By Equation 27 the complexity of the full procedure is upper bounded by:

ℓ∑
i=1

 ℓ∏
j=i

(2kj + 1)

mi ≤

(
ℓ∑
i=2

√
2mi+...+mℓmi

)
+
√

2m1+...+mℓ

√
4
9ℓm1

≤
√

2n−9

(√
4
9ℓm1 + m2

2m1/2 + m3

2(m1+m2)/2 + . . .+ mℓ

2(m1+...+mℓ−1)/2

)
.

It appears clearly that when n is very large, we can minimize the complexity by choosing
m2,m3, . . . ,mℓ as follows:

mℓ = n− 9−
⌊
log√

2 n
⌋
,∀i,mℓ−i =

⌊
log(i)√

2 n
⌋
−
⌊
log(i+1)√

2 n
⌋
,m1 =

⌊
log(ℓ−1)√

2 n
⌋

where we have used an iterated logarithm in base
√

2. As long as all these numbers are
strictly positive, we have for all i ≥ 1 :

mi

2(m1+...+mi−1)/2 ≤ 1

and so the time complexity is upper bounded by 2(n−9)/2
(√

4
9ℓ log(ℓ−1)√

2 n+ ℓ
)

. We are

still free to choose ℓ under the condition k1 ≥ 1 i.e.
√

4
9ℓ
√

2m1 ≥ 3
2 . It can be remarked

that ℓ = O(log∗√
2 n), and the complexity (after the final amplification) to have a success

probability 1
2 is O

(
(log∗√

2 n)3/22n/2
)

.

B.2 Search with Independent Tests (Exact)
For cryptographically relevant parameters, we estimate that cutting the independent tests
in three groups should be enough. We select two parameters m1,m2; we first perform m1
tests, then m2 tests, then the remaining m−m1 −m2 where m = n+ 3 to ensure a single
solution. We count the complexity in number of tests:

m1(2k1 + 1)(2k2 + 1)(2k3 + 1) +m2(2k2 + 1)(2k3 + 1) + (m−m1 −m2)(2k3 + 1) .

Since the tests are independent, the probabilities of success of the three steps, β2
1 =

|Xm1 |
2n , β2

2 = |Xm1 ∩Xm1+m2 |
|Xm1 | , β2

3 = 1
2nβ2

1β
2
2
, can be bounded using Chernoff-Hoeffding bounds.

André Schrottenloher, Marc Stevens 37

There are on average 2n−m1 elements passing the first step and 2n−m2−m1 elements passing
the second. We have for all ε1 and ε2:Pr (||Xm1 | − 2n−m1 | ≥ ε12n−m1) ≤ 2 exp

(
−ε2

12n−m1

3

)
Pr (||Xm1 ∩Xm1+m2 | − 2n−m1−m2 | ≥ ε22n−m1−m2) ≤ 2 exp

(
−ε2

22n−m1−m2

3

) (30)

Therefore, assuming that n−m1−m2 ≥ 12, we can take both ε1 = ε2 = 2−4 and these
two events occur with overwhelming probability. This gives bounds:

β2
1 ∈

[
2−m1(1− ε1);u2

1 := 2−m1(1 + ε1)
]

β2
2 ∈

[
2−m2 1−ε2

1+ε1
;u2

2 := 2−m2 1+ε2
1−ε1

]
β2

3 ∈
[
2−n+m1+m2 1

1+ε2
;u2

3 := 2−n+m1+m2 1
1−ε2

] (31)

Thus, after choosing values for m1 and m2, we can follow the approach of Subsection A.5:
we optimize the complexity as a function of k1, k2, k3 (counting the total number of
individual tests performed) under the constraints:

k1 ≤
⌊
π

4
1

arcsin u1
− 1

2

⌋
, k2 ≤

⌊
π

4
1

arcsin u2
− 1

2

⌋
, k3 ≤

⌊
π

4
1

arcsin u3
− 1

2

⌋
. (32)

We can then try with different m1 and m2 and see which ones perform best. For
cryptographic parameters, n usually does not exceed 210, and we expect m1 to be quite
small, so there are not many parameters to try.

C Variable-time Amplitude Amplification without Am-
plitude Estimation

In this section, we show how the framework of Appendix A allows to solve the problem
of amplitude amplification with a variable-time algorithm [Amb10, Amb12, CGJ19]. In
order to fit in our framework, we consider the amplified algorithm to be classical; however,
our method would still apply for any quantum algorithm, with proper definitions of the
average time complexity and probability of success of each layer.

A similar algorithm was proposed in a concurrent and independent work by Ambainis,
Kokainis and Vihrovs [AKV23]. Their algorithm also performs a layered QAA with one
iteration per level. With a dedicated complexity analysis (rather than our generic bound),
they obtained a slightly better complexity that reduces the logarithmic factor from a power
3/2 to a power 1.

Setting. A variable-time algorithm A operates on a workspace {0, 1}×C ×W , where C
is an initial choice set and W a work register. We assume that together W and C have a
size of w bits. The algorithm runs for a variable number of steps, and either: • stops with
a flag bit 1, which indicates a good choice; • stops with a flag bit 0, which indicates a bad
choice. We let tmax be the maximal runnning time of A on inputs from the choice set C,
and assume that a flag bit 1 can only be returned at the very last step.

For each input c ∈ C, we let 0 < t(c) ≤ tmax be the running time of A on input c. We
define the average time complexity of A (in L2) as:

T2 :=
√

1
|C|

∑
c∈C

t(c)2 . (33)

Furthermore, we let p be the success probability of A, i.e., the proportion of c ∈
C which return a flag 1. Ambainis showed [Amb10] that even if the running times

38 Quantum Procedures for Nested Search Problems

t(c) are not known, there exists a quantum algorithm that finds a good c in time
O
(
tmax
√
tmax + T2√

p (log tmax)3/2
)
. In other words, this algorithm is capable of aver-

aging the evaluation times of the individual elements (but in L2 norm). His method is a
nested QAA which stops A at certain times. Amplitude Estimation is used to estimate
the times t(c) on the fly, and find out how many iterations are necessary at each layer.

New Method. Our method relies on a simple quantum search with early aborts. For now,
assume that T2, tmax and p are known. We introduce a sequence of algorithms A1, . . . , Aℓ
which simply run some substeps of A, and at specific points, copy the current flag register
to a new flag. We choose the following times: ti = 3i where 1 ≤ i ≤ ℓ = ⌈log3 tmax⌉. So,
A1 runs the first t1 steps of A, then A2 runs the next t2 − t1 steps, and so on. When A
has finished, Aℓ continues to run dummy computing steps until it reaches tℓ.

Obviously, the corresponding search problem is equivalent to finding a good output
of A. Now it remains to analyze the resulting search with early aborts. The key to our
approach is to estimate, for all i ≤ ℓ − 1, the quantity

∏i
j=1 β

2
i only depending on T2,

thanks to Markov’s inequality. Then, we will be able to set iteration numbers in order to
use Theorem 3.

By definition,
∏i
j=1 β

2
i is the probability that a uniform random c ∈ C passes the tests

1 to i included. We can relate this to t(c), as follows: if all these tests are passed, it means
that A runs in strictly more time steps than ti−1. Thus:

i∏
j=1

β2
i ≤ Pr

c
$←−C

(t(c) > ti−1) ≤ Pr
c

$←−C

(
t(c)2 ≥ t2i−1

)
≤ T 2

2
t2i−1

.

Besides, it can be noticed that by definition of p:
∏ℓ
i=1 β

2
i = p. So, in order to

use Theorem 3, we will try to satisfy the condition:

∀i ≤ ℓ,

 i∏
j=1

(2kj + 1)2

 T 2
2

t2i−1
≤ 1

2ℓ .

In that case we will obtain a resulting success probability greater than p
2

(∏ℓ
j=1(2kj + 1)2

)
for the nested QAA procedure.

Success Probability. We will now set the iteration numbers for the ℓ steps. We start
with ki = 0 for i = 1, . . . , im for some well chosen im, then ki = 1 for i = im + 1, . . . ℓ− 1,
then kℓ = 0. The value of im is determined using the known value of T2. Indeed:

im ≥ log3

[
3
√

2ℓT2

]
=⇒ 3im ≥ 3

√
2ℓT2 =⇒ 1

2ℓ ≤
T 2

2
t2im−1

,

and the inequalities for bigger i follow immediately. Thus we use

im =
⌈
log3

[
3
√

2ℓT2

]⌉
and lower bound the success probability of the nested QAA as:

P := p

2

ℓ∏
j=1

(2kj + 1)2 = p

232(ℓ−im−1) ≥ 32ℓ−6 p

4ℓT 2
2
.

André Schrottenloher, Marc Stevens 39

Complexity. The gate complexity is given by Equation 27. If w is the number of qubits
in the workspace of A, we can bound it simply as follows:

ℓ∑
i=1

 ℓ∏
j=i

(2kj + 1)

 (ti − ti−1) + (44(w + ℓ))
ℓ∏
j=1

(2kj + 1)

≤
im∑
i=1

3ℓ−im−1(3i − 3i−1) +
ℓ∑

i=im+1
3ℓ−i(3i − 3i−1) + 44(w + ℓ)3ℓ−im−1

≤ (ℓ− im)3ℓ + 3im3ℓ−im−1 + 44(w + ℓ)3ℓ−im−1 .

The term w (the number of qubits used in the workspace of A) is problematic here, as a
priori, A can use up to 3ℓ qubits. However we can remark that each O0 operator only needs
to act on the qubits that are currently non-zero. Even if A uses 3ℓ qubits, when calling
O0 at level i, it needs to act at most on 3i qubits (the number of time steps performed by
Ai · · · A1). Thus, the second term is also dominated by O

(
ℓ3ℓ
)
.

At this point, we can directly use Lemma 2, since we have a lower bound on the
success probability: a solution is found, with probability 1

2 , after a procedure that applies
O
(

1/
√
P
)

QAA iterates. This gives a final time complexity of order:

O
(
ℓ3ℓ√
P

)
= O

(
1
√
p
ℓ3/2T2

)
= O

(
(log tmax)3/2 T2√

p

)
. (34)

A priori, we need to know T2, tmax and p to define this algorithm. However an upper
bound on tmax can be obtained from T2 and p by: tmax ≤ T2/

√
p, so we only need T2 and

p. As for T2, we only need to know an upper bound, because in that case the computed
values of im, P and tmax which determine the algorithm remain good. So we take as
bounds increasing powers of 3 until we find a solution. The asymptotic complexity remains
unchanged. Note that Lemma 2 needs only a lower bound on P , and so, only a lower
bound estimate of p is necessary.

	Introduction
	Preliminaries
	Quantum Algorithms.
	Amplitude Amplification.

	Nested Search Problems
	Preliminaries
	Definition of the Problem and Parameters
	Applications to Cryptanalysis

	Search with Backtracking
	Classical Backtracking Algorithm
	Description of the Algorithm
	Choosing the Iteration Numbers
	Analytic Complexity Formula
	Optimizing the Complexity Numerically
	Analysis of the Memory

	Applications to AES Cryptanalysis
	Workflow and Results
	Square Attack on AES
	Impossible Differential Attack on 7-round AES
	DS-MITM Attack on 8-round AES-256

	References
	Quantum Search with Early Aborts
	Description of the Problem
	Classical Early-Abort Algorithm
	Description of the Quantum Algorithm
	Analysis
	Optimizing the Complexity Numerically

	Search with Independent Tests
	Search with Independent Tests (Asymptotic)
	Search with Independent Tests (Exact)

	Variable-time Amplitude Amplification without Amplitude Estimation

