
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 3, 19 pages.

https://doi.org/10.62056/anjbhey6b
Check for updates

Implicit Factorization with Shared Any Bits
Chunzhi Zhao, Junqi Zhang, Jinzheng Cao , Qingfeng Cheng and

Fushan Wei

Information Engineering University, Zhengzhou, China

Abstract. At PKC 2009, May and Ritzenhofen proposed the implicit factorization
problem (IFP). They showed that it is undemanding to factor two h-bit RSA moduli
N1 = p1q1, N2 = p2q2 where q1, q2 are both αh-bit, and p1, p2 share uh > 2αh the
least significant bits (LSBs). Subsequent works mainly focused on extending the
IFP to the cases where p1, p2 share some of the most significant bits (MSBs) or
the middle bits (MBs). In this paper, we propose a novel generalized IFP where p1
and p2 share an arbitrary number of bit blocks, with each block having a consistent
displacement in its position between p1 and p2, and we solve it successfully based
on Coppersmith’s method. Specifically, we generate a new set of shift polynomials
to construct the lattice and optimize the structure of the lattice by introducing a
new variable z = p1. We derive that we can factor the two moduli in polynomial
time when u > 2(n + 1)α(1 − α

1
n+1) with p1, p2 sharing n blocks. Further, no matter

how many blocks are shared, we can theoretically factor the two moduli as long as
u > 2αln(1/α). In addition, we consider two other cases where the positions of the
shared blocks are arbitrary or there are k > 2 known moduli. Meanwhile, we provide
the corresponding solutions for the two cases. Our work is verified by experiments.
Keywords: RSA · Implicit factorization problem · Coppersmith’s method

1 Introduction
In 1978, Rivest, Shamir, and Adleman [RSA78] proposed the famous public-key crypto-
graphic algorithm RSA, whose security is based on the difficulty of factoring the integers
N = pq, where p, q are two different large prime numbers. In general, to break RSA,
we have to factor N directly, which is believed to be almost impossible to achieve with
traditional computers for large N . However, if we are informed about the RSA system in
part through other sources which are called side channels, we may crack it in an effective
time. One of the most powerful tools for studying the security of RSA in side channels is
lattice theory. In 1996, Coppersmith [Cop96] first proposed the idea of using lattice to
attack RSA where he equates recovering the entire plaintext to solving a single-variable
modular equation with some MSBs of the plaintext known. In detail, we need to construct
a lattice and find a short vector in the lattice through the LLL algorithm [LLL82] for
transforming the modular equation into an equation over the integers. Finally, we only
need to solve this equation over the integers using numerical methods (e.g., Gröbner basis)
to recover the whole information. After that, this method has gained further development

The work of Qingfeng Cheng (Corresponding Author) was supported by the National Natural Science
Foundation of China under Grant Nos. 62472438 and 62172433, and the Natural Science Foundation of
Henan Province under Grant No. 242300421414. The work of Fushan Wei was supported by the Science
Foundation for the Excellent Youth Scholars of Henan Province under Grant No. 222300420099.

E-mail: zhaochunzhi2022@126.com (Chunzhi Zhao), zhangjunqi001@126.com (Junqi Zhang),
caojinzheng@126.com (Jinzheng Cao), qingfengc2008@sina.com (Qingfeng Cheng), weifs831020@163.com
(Fushan Wei)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-06-26 Accepted: 2024-09-02

https://doi.org/10.62056/anjbhey6b
https://crossmark.crossref.org/dialog/?doi=10.62056/anjbhey6b&domain=pdf&date_stamp=2024-09-25
https://orcid.org/0000-0001-9168-2438
https://orcid.org/0000-0001-6149-4807
https://orcid.org/0000-0003-2790-7254
mailto:zhaochunzhi2022@126.com
mailto:zhangjunqi001@126.com
mailto:caojinzheng@126.com
mailto:qingfengc2008@sina.com
mailto:weifs831020@163.com
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Implicit Factorization with Shared Any Bits

[Cop97, BM03, JM06, MNS22]. We collectively refer to such methods as Coppersmith’s
method.

At PKC 2009, May and Ritzenhofen [MR09] proposed the IFP for RSA. This problem
is demonstrated as follows. Let N1 = p1q1, N2 = p2q2 be two different h-bit RSA moduli
where q1, q2 are both αh-bit, and p1, p2 share uh LSBs. Now we need to factor N1, N2
efficiently. May et al. indicated that we can factor N1, N2 in polynomial time when
u > 2α. Their work shows that the RSA system can be cracked with only an implicit
hint, and this work can be naturally used to construct the backdoored RSA moduli, which
is of great interest for studying the security of RSA. In 2010, Faugère et al. [FMR10]
studied a variant of the IFP that p1, p2 share some MSBs or MBs. They constructed a
low-dimensional lattice based on the algebraic relation q2N1 − q1N2 = q1q2(p1 − p2) and
used the LLL algorithm to reduce the lattice to obtain q1, q2, which in turn factors N1,
N2. They showed that for the case of shared MSBs, we can factor N1, N2 efficiently when
u > 2α, and for the case of shared MBs, we can efficiently factor N1, N2 when u > 4α.
The works of May et al. and Faugère et al. are both non-Coppersmith lattice-based. At
PKC 2023, Heninger et al. [HR23] gave a solution to a variant of the hidden number
problem with small unknown multipliers, and they applied it to the IFP. Their approach is
also non-Coppersmith lattice-based but can solve the IFP with a lower dimensional lattice
than the prior non-Coppersmith approaches.

Table 1: Previous bounds and our result to the IFP
Case LSBs MSBs MBs Any bits

[MR09] 2α - - -
[FMR10] - 2α 4α -

[SM11, LZL13] 2α − α2 2α − α2 - -
[SLH14] - - - 7α

[PHL+15] - - 4α − 3α2 -
[LPZ+16] 2α − 2α2 2α − 2α2 - -

[WQLF17, FNP24] - - 4α − 4α2 -
Our work 2α − 2α2 2α − 2α2 4α − 4α2 2αln 1

α

In 2011, Sarkar and Maitra [SM11] transformed the IFP into an extended partially
approximate common divisor problem (EPACDP) with p1, p2 sharing MSBs, LSBs or
both MSBs and LSBs. They solved this problem using Coppersmith’s method, and they
indicated that we can factor N1, N2 in polynomial time when u > 2α − α2. Furthermore,
they extended the analysis to the case of k > 2 moduli. In 2013, Lu et al. [LZL13] used
different shift polynomials to construct the lattice, which improves the bounds on the three
cases in [SM11] to 1 − (1 − α)

k
k−1 . Their results are the same as [SM11] when k = 2, 3,

but better than [SM11] when k > 3. In 2014, with the method [HM08] for solving linear
equations modulo unknown divisors, Peng et al. [PHX+14] improved the bound on the
cases where p1, p2 share LSBs or MSBs to 4 − 4α − 4(1 − α) 3

2 . In 2014, Shi et al. [SLH14]
extended the IFP to the case where p1, p2 share an arbitrary number of bit blocks which
are aligned in p1 and p2. They derived that N1, N2 can be factored in polynomial time as
long as u > 7α. In 2015, Peng et al. [PHL+15] used the method in [SM11] to reanalyze
the case where p1, p2 share MBs. They showed that we can factor N1, N2 in polynomial
time when u > 4α − 3α2. Meanwhile, Nitaj et al. [NA15] proposed a variant of the IFP
that a1p1, a2p2 share some MSBs or LSBs where a1, a2 are both integers. Furthermore,
they extended this problem to k > 2 moduli and successfully solved the problem using
the continued fraction algorithm. In 2016, Lu et al. [LPZ+16] reanalyzed the three cases
in [SM11] by introducing a new variable z = p2 to reduce the determinant of the lattice,
and they presented a better bound u > 2α − 2α2. They also extended their work to k > 2
moduli. In 2017, Wang et al. [WQLF17] gave a better bound on the case of shared MBs

Chunzhi Zhao et al. 3

by introducing a new variable that is similar to [LPZ+16]. They improved the bound to
u > 4α(1 −

√
α). In 2019, Sun et al. [SZZ+19] resolved the variant of the IFP proposed

by Nitaj et al. [NA15] using Coppersmith’s method. With k = 2 moduli and relatively
small a1, a2, they improved the result in [NA15]. And their result is generally better than
[NA15] when k > 3. In 2023, Feng et al. [FNP24] proposed a generalized IFP in which
p1, p2 share some bits at different positions. They successfully solved the problem using
Coppersmith’s method with the same technique for reducing the determinant of the lattice
as [LPZ+16], which yields a bound consistent with [WQLF17]. Moreover, Zheng [Zhe23]
proposed a generalized implicit-key attack on RSA which can be considered as a variant of
the IFP. Table 1 briefly summarizes the pre-existing bounds and our result on the IFP for
different cases.
Our contributions. In this paper, we propose a new generalized IFP in which the
two factors p1, p2 share n ≥ 2 bit blocks where each block has one fixed displacement
between its positions in p1 and p2, i.e. if we denote posi1 and posi2 as the position of the
i-th shared block in p1 and p2, respectively, then all the posi1 − posi2 are equal. We solve
this problem based on Coppersmith’s method. To be specific, we generate a new set of
shift polynomials based on one basic algebraic relation and construct the lattice with the
technique of introducing a new variable z = p1 which is proposed by Lu et al. We derived
that we can factor the two moduli in polynomial time when u > 2(n + 1)(α − α

n+2
n+1) for n

shared blocks. And restricted to the three cases LSBs, MSBs, and MBs, our approach is
the same as the corresponding current optimal approach. Further, no matter how many
bit blocks p1, p2 share, we can theoretically factor the two moduli in polynomial time as
long as u > 2αln(1/α).

Moreover, based on the simple situation described above, we consider two other cases
where the positions of the shared blocks in p1, p2 are arbitrary or there are k > 2 moduli.
For the former case, we give a solution for solving a system of modular equations that
share one common variable; For the latter case, we solve the problem using a method
similar to Wang et al.’s. Both methods use the technique of introducing new variables to
optimize the structure of the lattice, which leads to a lower determinant.
Motivation of our work. Because information intercepted in the real world usually
has a discrete and random structure, especially for some secret information, researchers
are committed to adapting side-channel attacks to these conditions. For instance, at
Asiacrypt 2008, Herrmann and May [HM08] extended the problem of factoring with high
bits known to n (n ≥ 1) unknown blocks; at Indocrypt 2011, Sarkar [Sar11] extended
partial key exposure attacks on RSA to n (n ≥ 1) leaked blocks. Certainly, the principle
also applies to the IFP. Related work includes the studies of Shi et al. [SLH14] and Feng
et al. [FNP24], which extended the IFP to the cases of multiple blocks and different block
positions, respectively. Our work has been inspired by these prior papers.

There are several potential applications for research on generalizing the IFP. May et
al. [MR09] described an attack where the attacker can fix certain registers of an RSA
public key generator, allowing the attacker to gather RSA moduli whose factors share some
LSBs. However, practical limitations may prevent the attacker from controlling registers
at will, leading to a decentralized structure of controlled bits. Our study provides a useful
framework for such scenarios. Further, when storing numerous RSA private keys, one
can reduce storage requirements by fixing certain bits in the factors. By storing only the
randomly generated bits (excluding the fixed ones), the storage footprint is minimized.
Generally, the more blocks there are, and the more randomly they are placed, the more
challenging it becomes to factor the moduli. Thus, to enhance the security, users can
divide the fixed bits into several blocks, with their positions within the factors being
arbitrary, rather than locking a single large block of consecutive bits. The only additional
overhead is storing the positions of the blocks within the factors, which requires minimal
space. Unfortunately, the attacker could still recover the factors using our method in such

4 Implicit Factorization with Shared Any Bits

a scenario. Furthermore, our work offers a novel approach to constructing backdoored
RSA moduli, which, due to their decentralized structure and arbitrary bit positions, are
more sophisticated than previous ones. This poses a serious risk, as attackers could create
backdoors that align with our extensions, reducing the likelihood of detection.

In summary, research on generalizing the IFP will not only help mitigate security
risks associated with RSA but also provide insights into the construction and analysis of
backdoored RSA moduli. Therefore, it is natural and necessary to develop algorithms for
analyzing the IFP in more general cases.
Organization of the paper. This paper is organized as follows. In Section 2, we recall
some basic theories. In Section 3, we demonstrate our work in detail, including the main
conclusion and its proof process. In Section 4, we experimentally verify the validity of our
method. In Section 5, we give a brief overview of our work.

2 Preliminaries
For any integers a, b (a ≤ b), we let [a : b] denote the set {a, a + 1, ..., b}. Lattice is a
discrete subgroup of Rn. To be specific, a lattice is the set of all integer linear combinations
of basis vectors (linearly independent).

Definition 1 (Lattice). Let v1, v2, ..., vm (m ≤ n) be m linearly independent vectors in
Rn, then we call L the lattice spanned by {v1, v2, ..., vm} if

L =
{

m∑
i=1

zi · vi

∣∣∣ zi ∈ Z, for i ∈ [1 : m]
}

.

How to efficiently find short vectors in a lattice is what researchers have been investigat-
ing. The most widely used algorithms for finding short vectors within a lattice are known
as lattice basis reduction algorithms. These algorithms involve a sequence of integer linear
transformations applied to the initial lattice basis, resulting in a new basis with shorter
vectors. As one of the most widely used lattice reduction algorithms, the LLL algorithm
can find an approximate shortest vector in polynomial time. The following conclusion is
about the length of vectors the LLL algorithm outputs.

Theorem 1 (see [May03]). Let L be an integer lattice of dimension ω. The LLL algorithm
outputs a reduced basis spanned by {v1, v2, ..., vω} with

∥v1∥ ≤ ∥v2∥ ≤ ... ≤ ∥vi∥ ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i ,

for i ∈ [1 : ω] in polynomial time,where ∥ · ∥ denotes the ℓ2 norm.

Coppersmith’s method is a powerful tool for solving modular equations. The core
of Coppersmith’s method is transferring the modular equations into equations over the
ring of integer using the LLL algorithm and finally solving the equation with numerical
methods such as Newton iteration method, Gröbner basis, etc.

Figure 1: The main process of Coppersmith’s method

Howgrave-Graham [HG97] established a sufficient condition for transforming modular
roots into roots over the integers, leading to the following theorem.

Chunzhi Zhao et al. 5

Theorem 2. Let g(x1, ..., xn) ∈ Z[x1, ..., xn] be an integer polynomial consisting of no
more than ω monomials, where x1, ..., xn are algebraically independent. Assuming that x0

i

and Xi are constants for all i ∈ [1 : n], if
1. g(x0

1, ..., x0
n) = 0 mod W m for |x0

1| ≤ X1, |x0
2| ≤ X2, ..., |x0

n| ≤ Xn,
2. ∥g(x1X1, ..., xnXn)∥ < W m

√
ω

,
then g(x0

1, ..., x0
n) = 0 holds over the integers.

To solve for the small roots successfully, we give the following proposition.

Proposition 1. The lattice constructed in this paper yields algebraically independent
polynomials. The common roots of these polynomials can be efficiently computed using
techniques like Gröbner basis.

It is worth noting that Proposition 1 may sometimes fail, depending on the structure
of the initial polynomial for generating the lattice.

3 Implicit Factorization Problem for n blocks
In this section, we demonstrate our main work. Firstly, we introduce a new variant of
the IFP in Subsection 3.1 where the two factors p1, p2 share n ≥ 2 continuous bit blocks
where each block has one fixed displacement between its positions in p1 and p2. We solve
this problem using Coppersmith’s method where we introduce a new variable z = p1 to
optimize the structure of the lattice which is similar to [LPZ+16]. Then we extend this
problem to the case where the positions of the shared bit blocks are arbitrary, and give the
solution in Subsection 3.2. Further, we consider this problem in the case of k > 2 moduli
and give the solution in Subsection 3.3.

3.1 Analysis of Ordered Position Case for Two RSA Moduli
In this subsection, we focus on a generalized IFP where N1 = p1q1, N2 = p2q2 are two
h-bit RSA moduli where q1, q2 are both αh-bit numbers, and p1, p2 share n ≥ 2 continuous
bit blocks. Each shared block has one fixed displacement between its positions in p1 and
p2 (see Fig. 2). Now we try to factor N1, N2.

Figure 2: Shared bits of p1 and p2

Theorem 3. Let N1 = p1q1, N2 = p2q2 be two h-bit RSA moduli where q1, q2 are both
αh-bit, and p1, p2 share n (n ≥ 2) continuous bit blocks. Each shared block has one fixed
displacement between its positions in p1 and p2. Under Proposition 1, one is able to factor
N1, N2 in polynomial time if

u > 2(n + 1)α(1 − α
1

n+1),

where uh is the number of all the bits shared by p1 and p2, which is the cumulative count
of bits present in either prime.

Proof. Under the presentation of Fig. 2, we let

M = M1 · 2a1h + M2 · 2a2h + · · · + Mn · 2anh,

M ′ = M1 · 2a′
1h + M2 · 2a′

2h + · · · + Mn · 2a′
nh,

6 Implicit Factorization with Shared Any Bits

where aih and a′
ih are the positions of the lowest bit of Mi in p1 and p2, respectively, for

i ∈ [1 : n]. Then we can write

p1 = xn+1 + xn · 2tnh + xn−1 · 2tn−1h + · · · + x1 · 2t1h + M,

p2 = yn+1 + yn · 2t′
nh + yn−1 · 2t′

n−1h + · · · + y1 · 2t′
1h + M ′,

where tih and t′
ih are the positions of the lowest bit of xi and yi, respectively, for i ∈ [1 : n].

Without loss of generality, we assume that ti ≥ t′
i for i ∈ [1 : n]. According to the given

condition, it is clear that ti − t′
i = tj − t′

j = ai − a′
i for i, j ∈ [1 : n], therefore we set

∆ = ti − t′
i = ai − a′

i for i ∈ [1 : n]. Then we have

2h∆p2 − p1 =
n∑

j=1
2tjh(yj − xj) + 2h∆yn+1 − xn+1. (1)

Multiply both sides of Eq. (1) by q1, there is

2h∆p2q1 = N1 +
(n∑

j=1
2tjh(yj − xj) + 2h∆yn+1 − xn+1

)
q1. (2)

Let θi = yi − xi (i ∈ [1 : n]), θn+1 = 2h∆yn+1 − xn+1, then

N1 +
(
θ1 · 2t1h + θ2 · 2t2h + · · · + θn · 2tnh + θn+1

)
q1 ≡ 0 mod 2h∆p2.

We define f(#»r) = N1 + (r1 · 2t1h + r2 · 2t2h + · · · + rn · 2tnh + rn+1)rn+2, and it is clear
that #»

θ is a root of f(#»r) mod 2h∆p2. Here, #»r and #»

θ denote vectors (r1, r2, ..., rn+2) and
(θ1, ..., θn+1, q1), respectively. Given integer parameters m and t, we consider the following
cluster of polynomials

g⃗i,k(#»r) = 2(m−k)h∆
n∏

j=1
(rjrn+2)ij fk(#»r)Nmax{t−k,0}

2 ,

where ij , k ∈ [0 : m] such that k +
∑n

j=1 ij ≤ m and #»
i denotes the vector (i1, i2, ..., in).

Moreover, t = ⌊τm⌉ (0 < τ < 1) will be optimized later. According to Eq. (2), f(#»

θ) =
2h∆p2q1. Therefore, it is clear that

g⃗i,k(#»

θ) ≡ 2(m−k)h∆fk(#»

θ)Nmax{t−k,0}
2

n∏
j=1

(θjq1)ij

≡ 2hm∆q
k+

∑n

j=1
ij

1 p
k+max{t−k,0}
2 q

max{t−k,0}
2

n∏
j=1

θ
ij

j

≡ 0 mod 2hm∆pt
2.

Generally, we directly use the g⃗i,k(#»r)’s to construct the lattice. However, we can
optimize the structure of the lattice by introducing a new variable z = p1. To be specific,
we multiply each polynomial g⃗i,k(#»r) by zl and replace each occurrence of the monomial
zrn+2 by N1, then eliminate it by multiplying E = N−1

1 mod 2hm∆N t
2. As a result, we

can obtain

g′
i⃗,k

(r⃗, z) = 2(m−k)h∆ET zl
n∏

j=1
(rjrn+2)ij fk(#»r)Nmax{t−k,0}

2 ,

Chunzhi Zhao et al. 7

where l = ⌊σm⌉ (0 < σ < 1) will be optimized later, and T = min{l, k +
∑n

j=1 ij}.
Meanwhile, there is

|θi| < 2max{b(yi),b(xi)1} = Xi (i ∈ [1 : n + 1]), |q1| < 2αh = Xn+2, |p1| < 2(1−α)h = Z,

where Xi (i ∈ [1 : n + 1]) and Z are defined.

To construct the lattice, we define the monomials’ order:
(∏n

j=1 r
ij

j

)
rk

n+1r
k+

∑n

j=1
ij

n+2 zl ≺(∏n
j=1 r

i′
j

j

)
rk′

n+1r
k′+

∑n

j=1
i′

j

n+2 zl if and only if k < k′ or k = k′, in < i′
n or · · · or k = k′, in =

i′
n, in−1 = i′

n−1, · · · , i2 = i′
2, i1 < i′

1. Under this, the leading monomial of g′
i⃗,k

(r⃗, z) is

rk
n+1r

k+
∑n

j=1
ij−min

{
l,k+

∑n

j=1
ij

}
n+2 zl−T .

Sort the leading monomials of all g′
i⃗,k

(r⃗, z) in the order specified above, yielding a list of
monomials represented by the column vector χ. We consider the polynomials g′

i⃗,k
(#»

X)’s,
where #»

X denotes the vector (r1X1, ..., rn+2Xn+2, zZ). These g′
i⃗,k

(#»

X)’s are arranged in
the order of their leading monomials. Subsequently, from each g′

i⃗,k
(#»

X), we sequentially
extract the coefficients of all monomials in χ to form row vectors (if a monomial does
not appear in g′

i⃗,k
(#»

X), its coefficient is considered to be 0). We utilize these row vectors
to assemble the lattice basis matrix B, meaning that the lattice is generated by this
set of vectors. Table 2 demonstrates an example of the basis matrix B. The dimension
of B is d =

(
n+m+1

m

)
. As shown in Table 2, the basis matrix we constructed is lower

triangular. Therefore, the determinant of matrix B is equal to the product of its diagonal
entries. Let det(B) denote the determinant of matrix B, and we can write det(B) =(
2h∆)s∆ ·

∏n+1
i=1 Xsi

i · X
sn+2
n+2 · N

sN2
2 · Zsz . For this, we have

s∆ =
m∑

k=0
(m − k)

(
m − k + n

m − k

)
= m

(
m + n + 1

m

)
−

(
m + n + 1

m − 1

)
,

si =
m∑

k=0
k

(
m − k + n

m − k

)
=

(
n + m + 1

m − 1

)
, for i ∈ [1 : n + 1],

sn+2 =
m∑

k=l+1
(k − l)

(
k + n

k

)
= (m − l)

(
m + n + 1

m

)
−

(
m + n + 1

m − 1

)
+

(
l + n + 1

l − 1

)
,

sz = dl −

[
m∑

k=0
k

(
k + n

k

)
− sn+2

]
=

(
l + n + 1

l − 1

)
,

sN2 =
t−1∑
k=0

(t − k)
(

m − k + n

m − k

)
= t

(
m + n + 1

m

)
−

(
m + n + 1

m − 1

)
+

(
m − t + n + 1

m − t − 1

)
.

According to Theorem 2, in order to recover the small root #»

θ , it needs

2
d(d−1)

4(d−n−1) · det(B)
1

d−n−1 <
2hm∆
√

d
.

Substituting det(B) = (2h∆)s∆ ·
∏n+1

i=1 Xsi
i · X

sn+2
n+2 · N

sN2
2 · Zsz into the above equation

and simplifying the equation gives

2
d(d−1)

4 d
d−n−1

2 2h∆s∆

n+1∏
i=1

Xsi
i X

sn+2
n+2 N

sN2
2 Zsz < 2hm∆(d−n−1) · p

t(d−n−1)
2 . (3)

1b(x) represents the number of bits of x

8 Implicit Factorization with Shared Any Bits

Ta
bl

e
2:

T
he

ba
sis

m
at

rix
w

ith
n

=
2,

m
=

2,
l

=
2,

t
=

1

g i
1
,i

2
,k

z
2

r 1
z

r2 1
r 2

z
r 1

r 2
r2 2

r 3
z

r 1
r 3

r 2
r 3

r2 3

g 0
,0

,0
22h

∆
N

2Z
2

g 1
,0

,0
22h

∆
N

2X
1Z

g 2
,0

,0
22h

∆
N

2X
2 1

g 0
,1

,0
22h

∆
N

2X
2Z

g 1
,1

,0
22h

∆
N

2X
1X

2
g 0

,2
,0

22h
∆

N
2X

2 2

g 0
,0

,1
*

*
*

2h
∆

X
3Z

g 1
,0

,1
*

*
*

2h
∆

X
1X

3
g 0

,1
,1

*
*

*
2h

∆
X

2X
3

g 0
,0

,2
*

*
*

*
*

*
*

*
*

X
2 3

“*
”

de
no

te
s

no
n-

ze
ro

en
tr

ie
s;

bl
an

k
el

em
en

ts
de

no
te

ze
ro

en
tr

ie
s.

Chunzhi Zhao et al. 9

For the convenience of analysis, we assume that N2 = 2h. We know that N2 is an h-bit
number, which means that 2h−1 ≤ N2 < 2h. Therefore, if Eq. (3) holds for N2 = 2h,
then it also holds naturally for N2 taking the real value. In other words, we assume that
N2 = 2h will not affect the result in this proof. Meanwhile, because 1 < 2h/N2 < 2, the
error caused by this assumption is very limited. Specifically, let 2h/N2 = 2, and at this
point, the error in the power of 2 into which the left side of Eq. (3) is transformed reaches
its maximum value of about 1/h. Given that RSA moduli are generally set to be large,
the error 1/h can be neglected. Further, we can calculate that

∏n+1
i=1 Xi ≈ 2[(1−α)−u+∆]h,

then we simplify Eq. (3) to

2h
[(

l+n+1
l−1

)
−(2α+u)

(
m+n+1

m−1
)

+con1

(
m+n+1

m

)
+

(
m−t+n+1

m−t−1
)]

· 2

(
m+n+1

m

)2
−
(

m+n+1
m

)
4

< 2[hm∆+t(1−α)h]
((

m+n+1
m

)
−n−1

)/(
m+n+1

m

)(
m+n+1

m

)
−n−1

2 ,

where con1 = (∆ + α)m + t − αl. On the other hand, we know(
m+n+1

m

)
= (m + n + 1)!

m!(n + 1)! ,
(

l+n+1
l−1

)
= (l + n + 1)!

(l − 1)!(n + 2)! ,(
m+n+1

m−1
)

= (m + n + 1)!
(m − 1)!(n + 2)! ,

(
m−t+n+1

m−t−1
)

= (m − t + n + 1)!
(m − t − 1)!(n + 2)! ,

then after simplification, we have

2h(con1+con2+con3)+
(m+n+1)!
m!(n+1)! −1

4 <
2h[m∆+t(1−α)]

(
1− (n+1)(n+1)!m!

(m+n+1)!

)
(

(m+n+1)!
m!(n+1)!

) 1
2 − (n+1)(n+1)!m!

2(m+n+1)!

,

where con2 = (l+n+1)!m!−(l−1)!(m+n+1)!(2α+u)m
(l−1)!(m+n+1)!(n+2) , con3 = (m−t+n+1)!m!

(m−t−1)!(m+n+1)!(n+2) . Compar-
ing the powers of 2 on both sides of the above equation and removing negligible small
items, we can obtain[

(l+n+1)!
(l−1)! + (m−t+n+1)!

(m−t−1)! − (2α + u)m
]
(m − 1)!

(n + 2)(m + n + 1)! + (1 + τ − σ)α < 0, (4)

after simplification. Based on the fundamental inequality n
√

x1 · · · xn ≤ x1+···+xn

n , we can
rewrite

(l + n + 1)!(m − 1)!
(l − 1)!(m + n + 1)! = σ

m+n+1∏
s=m+1

(
1 + l − m

s

)
≤ σ

(
1 + l − m

n + 1 ·
m+n+1∑
s=m+1

1
s

)n+1
. (5)

Here are two facts: Firstly, for any positive integers I1 > I2, the integral
∫ I1

I2
1/x dx

is greater than the sum
∑I1

i=I2+1 1/i, i.e. ln(I1/I2) = ln(I1) − ln(I2) =
∫ I1

I2
1/x dx >∑I1

i=I2+1 1/i. Secondly, for any positive x, the natural logarithm satisfies ln(1 + x) < x.
Therefore, we can obtain(

1 + l − m

n + 1 ·
m+n+1∑
s=m+1

1
s

)n+1
<

(
1 + (σ − 1)m

n + 1 · ln
(

1 + n + 1
m

))n+1
≤ σn+1,

and combining Eq. (5), there is

(l + n + 1)!(m − 1)!
(l − 1)!(m + n + 1)! < σn+2. (6)

10 Implicit Factorization with Shared Any Bits

Similarly, we can obtain

(m − t + n + 1)!(m − 1)!
(m − t − 1)!(m + n + 1)! < (1 − τ)n+2. (7)

Substituting Eq. (6) and Eq. (7) into Eq. (4), after simplification, we have

u > σn+2 + (1 − τ)n+2 + [(1 + τ − σ)(n + 2) − 2]α.

Let σ and τ take the optimized value σ0 = α
1

n+1 and τ0 = 1 − α
1

n+1 , respectively, then we
have

u > 2(n + 1)α(1 − α
1

n+1).

This terminates the proof.

After the basis matrix B is LLL-reduced, a new basis matrix B′ is obtained. Generally,
B′[i] is converted into a polynomial ζi(r⃗, z) by multiplying it with χ, for i ∈ [1, n + 3],
where B′[i] is the i-th row vector of B′. Then, let ξi(r⃗, z) = ζi(r1/X1, ..., rn+2/Xn+2, z/Z)
for i ∈ [1, n + 3], and ξi(θ⃗, p1) = 0 (i ∈ [1, n + 3]) hold over the integers. According
to Proposition 1, we can recover the small roots #»

θ by solving the system of equations
ξi(r⃗, z) = 0 (i ∈ [1, n + 3]). Unfortunately, Proposition 1 usually fails for the lattice
we construct. In detail, the polynomials obtained after the LLL-reduction are generally
algebraically independent over Z[rn+2] but related over Z. This may be because each
occurrence of rj is accompanied by an occurrence of rn+2 in the monomials so that we
can consider rjrn+2 as one variable for j ∈ [1 : n + 1]. As a result, these polynomials
are related to rn+2. In this case, we can’t obtain the desired solution with the general
method. For this, we give another method to factor N1, N2. Specifically, we can utilize
the structure of the lattice we have constructed to reduce the number of variables so that
we may solve the equations successfully. Based on the structure of the lattice, we know
that each monomial of ξi(r⃗, z) has a form of

rk
n+1r

k+
∑n

j=1
ij−T

n+2 zl−T
n∏

j=1
r

ij

j . (8)

Meanwhile, we know that rn+2z = N1, so multiplying Eq. (8) with rl
n+2, we can get

rk
n+1r

k+
∑n

j=1
ij+l−T

n+2 zl−T
n∏

j=1
r

ij

j = rk
n+1r

k+
∑n

j=1
ij

n+2 (rn+2z)l−T
n∏

j=1
r

ij

j

= rk
n+1r

k+
∑n

j=1
ij

n+2 N l−T
1

n∏
j=1

r
ij

j

=
(n∏

j=1
(rjrn+2)ij

)
(rn+1rn+2)kN l−T

1 .

Let ci = rirn+2 for i ∈ [1 : n + 1], then we get new monomials with n + 1 variables:
ci1

1 ci2
2 · · · cin

n ck
n+1N l−T

1 . Let ξ̃i(c⃗) = rl
n+2ξi(r⃗, z), we can get the root #»

C of ξ̃i(c⃗) using
Gröbner basis, for i ∈ [1 : n + 1], where #»

C and #»c denote vectors (C1, C2, ..., Cn+1)
and (c1, c2, ..., cn+1), respectively. In experiments, we can almost 100% obtain the small
roots in this way. In reality, we obtained the small roots with appropriate parameter
m for all experiments. However, during the experiments, we sometimes failed to obtain
the desired roots due to m being set too small. For instance, in the experiment with
n = 4, h = 2000, α = 0.11, ∆ = 100, the algorithm failed when m was set to 3, but
succeeded when m was increased to 4. Generally, the more unknowns and the larger their

Chunzhi Zhao et al. 11

values, the larger m must be. Consequently, careful selection of the parameter m is crucial.
After getting #»

C , we can get q1 = GCD(N1, C1), then according to Eq. (2), there is

N1 + C1 · 2t1h + C2 · 2t2h + · · · + Cn · 2tnh + Cn+1 = 2h∆p2q1.

The left side of the above equation and q1 are both known, therefore we are able to recover
p2 implying that we can factor N1, N2.

Interestingly, as n tends to infinity, the bound in Theorem 3 tends to be 2αln(1/α).
This means that we can factor N1, N2 with an arbitrary number of shared blocks as
long as u > 2αln(1/α). The time complexity of our algorithm mainly depends on the
time complexity of the LLL algorithm, and the L2 algorithm [NS05], a floating-point
variant of the LLL algorithm, is widely used for lattice basis reduction in practice. The
time complexity of the L2 algorithm is O(d5(d + B)B) where d is the dimension of
the lattice, and B is the maximal bit-size of an entry in the lattice. In our algorithm,
d =

(
m+n+1

m

)
= O(mn+1/(n + 1)!) = O(1/ϵn+1) (ϵ > 0 is a parameter to be determined),

and B ≈ d · logN2. Therefore, the time complexity of our algorithm is about

O
(

(1/ϵ)7(n+1) (1 + h) h
)

,

which means that our algorithm runs in polynomial time for a given n. However, it could
be hard to factor N1, N2 as n is large. Intuitively, when the total amount of information
remains constant, the more the shared blocks are, the more distinct the information
becomes, and at the same time, the more variables need to be solved for, thus leading
to an increase in the algorithm’s complexity. Specifically, consider two scenarios with
different numbers of blocks, n1 and n2, where n1 > n2. Moreover, with a fixed parameter
m, the lattice dimension corresponding to n1 is d1 = O(mn1+1/(n1 + 1)!), and the lattice
dimension corresponding to n2 is d2 = O(mn2+1/(n2 + 1)!). As the number of shared
bits approaches the lower bound in Theorem 3, m must be larger. Consequently, we are
typically interested in cases where the number of shared bits is close to this lower bound,
leading to m ≫ n1 > n2. In this case, the ratio d1/d2 = O(mn1−n2), indicating that the
runtime of the algorithm for n1 blocks is about mn1−n2 times that of the algorithm for n2
blocks. This implies that the runtime of the algorithm increases exponentially with the
number of shared blocks.

3.2 Analysis of Arbitrary Position Case for Two Moduli
In this subsection, we discuss the case where p1, p2 share n ≥ 2 continuous bit blocks
where each block has different displacement between its positions in p1 and p2 (see Fig. 3).
Suppose that the RSA moduli N1 = p1q1 and N2 = p2q2 are both h-bit numbers.

Figure 3: Shared bits of p1 and p2

In this case, we can’t use one equation to represent the complete algebraic information.
Accordingly, we make an algebraic equation for each shared bit block. Let xi, x′

i, yi, y′
i

(i ∈ [1 : n]) be the unknown variables presented in Fig. 3. Set ∆i = ti − t′
i (i ∈ [1 : n]),

where tih and t′
ih are the positions of the lowest bit of xi and yi, respectively, for i ∈ [1 : n].

12 Implicit Factorization with Shared Any Bits

Without loss of generality, we assume that ∆i ≥ 0 for i ∈ [1 : n] (if not, the equation will
be p2 − 2−h∆ip1 = (yi − xi)2t′

ih + (y′
i − 2−h∆ix′

i), which exhibits the same structure to the
equation 2h∆ip2 − p1 = (yi − xi)2tih + (2h∆iy′

i − x′
i) encountered when ∆i ≥ 0, thus it has

no impact on the subsequent analysis). Consequently, we can obtain the following system
of equations 

2h∆1p2 − p1 = (y1 − x1)2t1h + (2h∆1y′
1 − x′

1),
2h∆2p2 − p1 = (y2 − x2)2t2h + (2h∆2y′

2 − x′
2),

· · ·
2h∆np2 − p1 = (yn − xn)2tnh + (2h∆ny′

n − x′
n),

Multiplying both sides of each equation in the above system of equations by q1, we have
2h∆1p2q1 = N1 + 2t1hr1q1 + r′

1q1,

2h∆2p2q1 = N1 + 2t2hr2q1 + r′
2q1,

· · ·
2h∆np2q1 = N1 + 2tnhrnq1 + r′

nq1.

where ri = yi − xi, r′
i = 2h∆iy′

i − x′
i (i ∈ [1 : n]). Let ri, r′

i (i ∈ [1 : n]), and r = q1 be the
variables, we can obtain a set of modular polynomials as follows

f1 = N1 + 2t1hr1r + r′
1r ≡ 0 mod 2h∆1p2,

f2 = N1 + 2t2hr2r + r′
2r ≡ 0 mod 2h∆2p2,

· · ·
fn = N1 + 2tnhrnr + r′

nr ≡ 0 mod 2h∆np2.

To solve the above system of modular equations, we can also use the technique of
introducing a new variable z = p1 to reduce the determinant of the lattice. Specifically, we
define a cluster of shift polynomials for ij ∈ [0 : mj] such that ij ≤ mj − kj for j ∈ [1 : n]
as follows.

g #»
ik = 2

∑n

j=1
(mj−kj)h∆j

(n∏
j=1

(rjr)ij f
kj

j

)
zlNT1

2 ET2 ,

where T1 = max{t −
∑n

j=1 kj , 0}, T2 = min{l,
∑n

j=1 (ij + kj)}, and t = ⌊τ
∑n

j=1 mj⌉ (0 <

τ < 1), l = ⌊σ
∑n

j=1 mj⌉ (0 < σ < 1) with mj being the parameters to be determined.

Here, #»

ik denotes the vector (i1, ..., in, k1, ..., kn), E = N−1
1 mod 2

∑n

j=1
hmj∆j N t

2. It is easy
to verify that

g #»
ik ≡ 0 mod 2

∑n

j=1
hmj∆j · pt

2.

We have defined the corresponding monomial order ≺:

zlr

∑n

j=1
(ij+kj)

n∏
j=1

r
ij

j r′
j

kj ≺ zlr

∑n

j=1
(i′

j+k′
j)

n∏
j=1

r
i′

j

j r′
j

k′
j

if and only if k′
1 > k1 or k′

1 = k1, k′
2 > k2 or· · · or k′

1 = k1, k′
2 = k2, · · · , k′

n−1 = kn−1, k′
n >

kn or k′
1 = k1, k′

2 = k2, · · · , k′
n = kn, i′

1 > i1 or k′
1 = k1, k′

2 = k2, · · · , i′
1 = i1, i′

2 > i2
or· · · or k′

1 = k1, k′
2 = k2, · · · , i′

n−1 = in−1, i′
n > in. We define

G =
{

n∏
j=1

(rjr)ij f
kj

j

∣∣∣kj + ij ≤ mj for j ∈ [1 : n]
}

, Fj = {(rjr)ifk
j |k + i ≤ mj}.

Chunzhi Zhao et al. 13

Let L(G) be the lattice generated by G and L(Fj) be the lattice generated by Fj , for
j ∈ [1 : n]. It is clear that each polynomial in G can be uniquely decomposed into one
product of the polynomials in Fj , for j ∈ [1 : n]. Therefore, we can consider that L(G)
is the Minkowski sum lattice (introduced by [Aon13]) of L(Fj), for j ∈ [1 : n]. Further,
we know that all L(Fj) have a strictly increasing degree order, and they are all lower
triangular. So L(G) is lower triangular due to Theorem 3 in [Aon13]. Because lattice L
generated by the g #»

ik’s has the same structure as L(G), L is lower triangular too. As a
result, we can easily compute the determinant det(L) of L by multiplying the elements on
the diagonal, and compute the dimension of L as

dim(L) =
n∏

j=1

(
mj + 2

mj

)
.

We know that there are 2n + 1 variables for this case with the method in the end of
Subsection 3.1. To solve the above system of modular equations, we need the condition of
Coppersmith’s method working successfully to hold

det(L)
1

dim(L)−2n+2 < 2
∑n

j=1
hmj∆j · pt

2.

We can use this condition to determine appropriate values of mj firstly, for j ∈ [1 : n],
then carefully determine the optimal values t0 = ⌊τ0

∑n
j=1 mj⌉ and l0 = ⌊σ0

∑n
j=1 mj⌉

(0 < τ0, σ0 < 1). After selecting the appropriate parameters, we can construct a lattice
basis just as mentioned before. Next, we reduce it using the LLL algorithm. Finally, we
can obtain the solutions using numerical methods, such as Gröbner basis.

3.3 Analysis of Ordered Position Case for k RSA Moduli
In this subsection, we generalized our analysis in Subsection 3.1 from two RSA moduli to
an arbitrary number of RSA moduli.

Figure 4: Shared bits of p1, p2, ..., pk

Suppose that there are k > 2 h-bit RSA moduli N1 = p1q1,N2 = p2q2,...,Nk = pkqk,
and pi, pj are all (1 − α)h-bit prime factors which share n ≥ 2 continuous bit blocks
where each block has the same displacement ∆i,j between its positions in pi and pj , for
1 ≤ i ̸= j ≤ k. Just like Subsection 3.1, we can write

pj = xj,n+1 + xj,n · 2tj,nh + xj,n−1 · 2tj,n−1h + · · · + xj,1 · 2tj,1h + Mj ,

for j ∈ [1 : k], where Mj = M1 · 2aj,1h + M2 · 2aj,2h + · · · + Mn · 2aj,nh, and aj,ih, tj,ih are
the positions of the lowest bits of Mi, xj,i, respectively, for i ∈ [1 : n] (see Fig. 4). Without
loss of generality, we assume that t1,i ≤ tj,i for j ∈ [2 : k] and i ∈ [1 : n]. Then there is

2h∆1,j p1 − pj =
n∑

i=1
(x1,i − xj,i) · 2tj,ih + (2h∆1,j x1,n+1 − xj,n+1), (9)

14 Implicit Factorization with Shared Any Bits

for j ∈ [2 : k]. Multiplying both sides of Eq. (9) by qj , we can obtain

n∑
i=1

(x1,i − xj,i)qj2tj,ih + (2h∆1,j x1,n+1 − xj,n+1)qj + Nj ≡ 0 mod 2h∆1,j p1,

for j ∈ [2 : k]. Naturally, we have the following modular polynomials

fj(#»rj) := Nj +
n∑

i=1
ri,jrn+2,j · 2tj,ih + rn+1,jrn+2,j mod 2h∆1,j p1,

for j ∈ [2 : k], where #»rj denotes the vector (r1,j , r2,j , ..., rn+2,j). It is clear that (x1,1 −
xj,1, x1,2 − xj,2, ..., x1,n − xj,n, 2h∆1,j x1,n+1 − xj,n+1, qj) is a root of fj(#»rj) for j ∈ [2 : k].
Same as before, we introduce a new variable zj = pj to reduce qj (j ∈ [2 : k]) by
multiplying Ej = N−1

j mod 2mh·min{∆1,j}N t
1. Given parameters m, t = ⌊τm⌉, and

l = ⌊σm⌉ (0 < σ, τ < 1), we generate the following family of polynomials

g # »vw = C

k∏
j=2

zl
j

k∏
j=2

(n∏
i=1

(ri,jrn+2,j)vj,i

)
f

wj

j ,

where C = 2
(

m−
∑k

j=2
wj

)
h·min{∆1,j}·

∏k
j=2 ET

j ·N
max

{
t−

∑k

j=2
wj ,0

}
1 . Here, vj,i, wj ∈ [0 : m],∑k

j=2
(
wj +

∑n
i=1 vj,i

)
≤ m, and # »vw denotes the vector (v2,1, v2,2, ..., vk,n, w2, ..., wk). It

is easy to verify that
g # »vw ≡ 0 mod 2hm·min{∆1,j}pt

1.

We have also defined the corresponding monomial order ≺:

k∏
j=2

zl
j

k∏
j=2

(n∏
i=1

r
vj,i

i,j

)
r

wj

n+1,jr
wj+

∑n

i=1
vj,i

n+2,j ≺
k∏

j=2
zl

j

k∏
j=2

(n∏
i=1

r
v′

j,i

i,j

)
r

w′
j

n+1,jr
w′

j+
∑n

i=1
v′

j,i

n+2,j ,

if and only if wk < w′
k or wk = w′

k, wk−1 < w′
k−1 or · · · or wk = w′

k, wk−1 = w′
k−1, ..., w2 =

w′
2, vk,n < v′

k,n or wk = w′
k, wk−1 = w′

k−1, ..., w2 = w′
2, vk,n = v′

k,n, vk,n−1 < v′
k,n−1 or

· · · or wk = w′
k, wk−1 = w′

k−1, ..., w2 = w′
2, vk,n = v′

k,n, vk,n−1 = v′
k,n−1, ..., v2,2 = v′

2,2,
v2,1 < v′

2,1.
We can construct the lattice basis L by arranging the above-generated polynomials

based on the monomial order we have defined. And there are (n + 2)(k − 1) variables for
this case with the method in the end of Subsection 3.1. Let the determinant and dimension
of L be det(L) and dim(L), respectively. To recover the desired roots, based on Theorem
2, it needs

det(L)
1

dim(L)−(n+2)(k−1)+1 < 2mh·min{∆1,j}pt
1.

Then, as m tends to be infinity, we can get optimized values t0 = ⌊τ0m⌉ and l0 = ⌊σ0m⌉
(0 < σ0, τ0 < 1). These values can be substituted into the former equations to construct
lattice basis with a smaller determinant. Next, we reduce the basis using the LLL algorithm
to make the equations hold over the integers. Finally, we solve the equations using numerical
methods, such as Gröbner basis.

4 Experiments
We implemented several experiments to verify the validity of our approach. The experiments
were implemented in SAGE 9.3 over Windows 10 on a PC with 2.90 GHz Intel Core CPU
and 32 GB RAM. The code is at https://github.com/chennnnstar/Codes-for-IFP.

https://github.com/chennnnstar/Codes-for-IFP

Chunzhi Zhao et al. 15

Table 3: The experiment results for n = 2
h α ∆ m t l dim Time for LLL

500 0.16 30 6 3 3 84 235.10
500 0.14 40 4 2 2 35 1.35
1000 0.16 50 6 3 3 84 229.59
1000 0.14 90 4 2 2 35 2.97
2000 0.16 100 6 3 3 84 863.46
2000 0.14 160 4 2 2 35 8.50

The positions of the shared blocks are (190, 390, 40, 140), (300, 400, 40, 240), (460, 760, 80, 380),
(480, 780, 90, 390), (920, 1520, 160, 760), (940, 1540, 160, 760).

Table 4: The experiment results for n = 3
h α ∆ m t l dim Time for LLL

500 0.13 20 5 2 3 126 437.57
500 0.10 30 4 2 2 70 24.91
1000 0.13 40 5 2 3 126 1130.95
1000 0.10 20 4 2 2 70 48.47
2000 0.13 80 5 2 3 126 4193.38
2000 0.10 100 4 2 2 70 196.07

The positions of the shared blocks are (305, 405, 165, 265, 25, 125), (320, 420, 180, 280, 40, 140), (650,
850, 350, 550, 50, 250), (680, 880, 380, 580, 30, 230), (1240, 1640, 650, 1050, 100, 500), (1250, 1650, 700,
1100, 150, 550).

Table 5: The experiment results for n = 4
h α ∆ m t l dim Time for LLL

500 0.10 15 3 1 2 56 3.39
500 0.11 20 4 2 3 126 1148.56
1000 0.10 40 3 1 2 56 5.93
1000 0.11 30 4 2 3 126 1093.09
2000 0.10 60 3 1 2 56 16.99
2000 0.11 100 4 2 3 126 4026.71

The positions of the shared blocks are (330, 430, 210, 310, 115, 190, 20, 95), (330, 430, 210, 310, 135,
190, 25, 125), (680, 880, 540, 640, 300, 500, 60, 260), (768, 868, 532, 732, 296, 496, 50, 260), (1360, 1760,
880, 1280, 580, 780, 100, 500), (1360, 1760, 890, 1290, 510, 810, 140, 460).

According to our work, we could factor N1, N2 if u > 2(n + 1)α(1 − α
1

n+1) for the case
in Subsection 3.1. First, we generate a family of polynomials g′

i⃗,k
(#»r , z)’s to construct the

lattice basis we want, then reduce it using the LLL algorithm. After the LLL-reduction,
we convert the first n + 1 row vectors of the basis matrix to polynomials ξ̃1, ξ̃2, ..., ξ̃n+1
over the integers using the method in the end of Subsection 3.1. Finally, we can solve the
system of ξ̃1 = 0, ξ̃2 = 0, ..., ξ̃n+1 = 0 over the integers using Gröbner basis to recover p2,
q1 so that we are able to factor N1, N2.

We implemented our experiments with different parameters including the prime factors
generated randomly, and we obtained the desired roots in all experiments. The results
are shown in Table 3, Table 4 and Table 5. Meanwhile, we have compared our work with
the work of Wang et al. in the MBs case as an example of our approach is the same as

16 Implicit Factorization with Shared Any Bits

the corresponding current optimal approach in three cases LSBs, MSBs, and MBs. The
results are shown in Table 6.

Table 6: The comparison of our method with n = 1 and Wang et al.’s
h α m t l dim Time for LLL

[WQLF17] 1000 0.31 8 4 4 45 12.92
2000 0.30 7 3 4 36 11.53

Ours 1000 0.31 7 3 4 36 3.70
2000 0.30 7 3 4 36 11.31

The positions of the shared blocks are (10, 670), (60, 1360), (10, 670), (60, 1360).

In the tables, ∆ = ti − si for i ∈ [1 : n]; “dim” denotes the dimension of basis matrix
B; Time for LLL is measured in seconds. Moreover, we denote the positions of the shared
blocks as (a1h, t1h, a2h, t2h, ..., anh, tnh), and these positions are presented in the order in
which the corresponding parameter setting appears in the table.

5 Conclusion
In this paper, we present a new generalized implicit factorization problem that p1, p2
share n ≥ 2 continuous bit blocks where each block has one fixed displacement between
its positions in p1 and p2. We give a polynomial-time algorithm for the problem when p1,
p2 share more than (2αln(1/α))h bits. That is an exciting result because it seems that
we can factor N1, N2 in polynomial time as long as u > 2αln(1/α), no matter how many
blocks p1, p2 share. We have verified the correctness of our approach by experiments. In
addition, we extend the problem to arbitrary position and k > 2 moduli, respectively, and
we theoretically give the corresponding solutions based on Coppersmith’s method. How-
ever, factoring N1, N2, ..., Nk with the positions of the shared bits arbitrary still remains
unsolved. This is the direction of our future work. In summary, our work is valuable for
studying the security of RSA with various implicit hints and can support users to avoid
the corresponding security risks.

References
[Aon13] Yoshinori Aono. Minkowski sum based lattice construction for multivariate

simultaneous Coppersmith’s technique and applications to RSA. In Colin Boyd
and Leonie Simpson, editors, Information Security and Privacy, pages 88–103,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. doi:10.1007/978-3-6
42-39059-3_7.

[BM03] Johannes Blömer and Alexander May. New partial key exposure attacks on
RSA. In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, pages
27–43, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. doi:10.1007/97
8-3-540-45146-4_2.

[Cop96] Don Coppersmith. Finding a small root of a univariate modular equation.
In Ueli Maurer, editor, Advances in Cryptology - EUROCRYPT 1996, pages
155–165, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg. doi:10.1007/
3-540-68339-9_14.

https://doi.org/10.1007/978-3-642-39059-3_7
https://doi.org/10.1007/978-3-642-39059-3_7
https://doi.org/10.1007/978-3-540-45146-4_2
https://doi.org/10.1007/978-3-540-45146-4_2
https://doi.org/10.1007/3-540-68339-9_14
https://doi.org/10.1007/3-540-68339-9_14

Chunzhi Zhao et al. 17

[Cop97] Don Coppersmith. Small solutions to polynomial equations, and low exponent
RSA vulnerabilities. Journal of Cryptology, 10:233–260, 1997. doi:10.1007/
s001459900030.

[FMR10] Jean-Charles Faugère, Raphaël Marinier, and Guénaël Renault. Implicit
factoring with shared most significant and middle bits. In Phong Q. Nguyen
and David Pointcheval, editors, Public Key Cryptography - PKC 2010, pages
70–87, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. doi:10.1007/97
8-3-642-13013-7_5.

[FNP24] Yansong Feng, Abderrahmane Nitaj, and Yanbin Pan. Generalized implicit
factorization problem. In Claude Carlet, Kalikinkar Mandal, and Vincent
Rijmen, editors, Selected Areas in Cryptography - SAC 2023, pages 369–384,
Cham, 2024. Springer Nature Switzerland. doi:10.1007/978-3-031-53368
-6_18.

[HG97] Nicholas Howgrave-Graham. Finding small roots of univariate modular
equations revisited. In Michael Darnell, editor, Crytography and Cod-
ing, pages 131–142, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.
doi:10.1007/BFb0024458.

[HM08] Mathias Herrmann and Alexander May. Solving linear equations modulo
divisors: On factoring given any bits. In Josef Pieprzyk, editor, Advances
in Cryptology - ASIACRYPT 2008, pages 406–424, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg. doi:10.1007/978-3-540-89255-7_25.

[HR23] Nadia Heninger and Keegan Ryan. The hidden number problem with small un-
known multipliers: Cryptanalyzing MEGA in six queries and other applications.
In Alexandra Boldyreva and Vladimir Kolesnikov, editors, Public-Key Cryptog-
raphy - PKC 2023, pages 147–176, Cham, 2023. Springer Nature Switzerland.
doi:10.1007/978-3-031-31368-4_6.

[JM06] Ellen Jochemsz and Alexander May. A strategy for finding roots of multivariate
polynomials with new applications in attacking RSA variants. In Xuejia
Lai and Kefei Chen, editors, Advances in Cryptology - ASIACRYPT 2006,
pages 267–282, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. doi:
10.1007/11935230_18.

[LLL82] W Lenstra, H, K Lenstra, A, and L Lovász. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261:515–534, 1982. doi:10.1007/BF01
457454.

[LPZ+16] Yao Lu, Liqiang Peng, Rui Zhang, Lei Hu, and Dongdai Lin. Towards optimal
bounds for implicit factorization problem. In Orr Dunkelman and Liam Keliher,
editors, Selected Areas in Cryptography - SAC 2015, pages 462–476, Cham, 2016.
Springer International Publishing. doi:10.1007/978-3-319-31301-6_26.

[LZL13] Yao Lu, Rui Zhang, and Dongdai Lin. Improved bounds for the implicit
factorization problem. Adv. Math. Commun., 7:243–251, 2013. doi:10.3934/
amc.2013.7.243.

[May03] Alexander May. New RSA vulnerabilities using lattice reduction methods. PhD
thesis, Paderborn University, 2003.

[MNS22] Alexander May, Julian Nowakowski, and Santanu Sarkar. Approximate divisor
multiples – factoring with only a third of the secret CRT-exponents. In
Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology

https://doi.org/10.1007/s001459900030
https://doi.org/10.1007/s001459900030
https://doi.org/10.1007/978-3-642-13013-7_5
https://doi.org/10.1007/978-3-642-13013-7_5
https://doi.org/10.1007/978-3-031-53368-6_18
https://doi.org/10.1007/978-3-031-53368-6_18
https://doi.org/10.1007/BFb0024458
https://doi.org/10.1007/978-3-540-89255-7_25
https://doi.org/10.1007/978-3-031-31368-4_6
https://doi.org/10.1007/11935230_18
https://doi.org/10.1007/11935230_18
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/978-3-319-31301-6_26
https://doi.org/10.3934/amc.2013.7.243
https://doi.org/10.3934/amc.2013.7.243

18 Implicit Factorization with Shared Any Bits

- EUROCRYPT 2022, pages 147–167, Cham, 2022. Springer International
Publishing. doi:10.1007/978-3-031-07082-2_6.

[MR09] Alexander May and Maike Ritzenhofen. Implicit factoring: On polynomial time
factoring given only an implicit hint. In Stanisław Jarecki and Gene Tsudik,
editors, Public Key Cryptography - PKC 2009, pages 1–14, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg. doi:10.1007/978-3-642-00468-1_1.

[NA15] Abderrahmane Nitaj and Muhammad Rezal Kamel Ariffin. Implicit factor-
ization of unbalanced RSA moduli. Journal of Applied Mathematics and
Computing, 48:349–363, 2015. doi:10.1007/s12190-014-0806-1.

[NS05] Phong Q. Nguên and Damien Stehlé. Floating-point LLL revisited. In Ronald
Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, pages 215–233,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. doi:10.1007/11426639
_13.

[PHL+15] Liqiang Peng, Lei Hu, Yao Lu, Zhangjie Huang, and Jun Xu. Implicit factor-
ization of RSA moduli revisited (short paper). In Keisuke Tanaka and Yuji
Suga, editors, Advances in Information and Computer Security, pages 67–76,
Cham, 2015. Springer International Publishing. doi:10.1007/978-3-319-2
2425-1_5.

[PHX+14] Liqiang Peng, Lei Hu, Jun Xu, Zhangjie Huang, and Yonghong Xie. Further
improvement of factoring RSA moduli with implicit hint. In David Pointcheval
and Damien Vergnaud, editors, Progress in Cryptology - AFRICACRYPT
2014, pages 165–177, Cham, 2014. Springer International Publishing. doi:
10.1007/978-3-319-06734-6_11.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, feb
1978. doi:10.1145/359340.359342.

[Sar11] Santanu Sarkar. Partial key exposure: Generalized framework to attack RSA.
In Daniel J. Bernstein and Sanjit Chatterjee, editors, Progress in Cryptology
- INDOCRYPT 2011, pages 76–92, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg. doi:10.1007/978-3-642-25578-6_7.

[SLH14] Meng Shi, Xianghui Liu, and Wenbao Han. Implicit factoring with shared
middle discrete bits. In W. Eric Wong and Tingshao Zhu, editors, Computer En-
gineering and Networking, pages 255–263, Cham, 2014. Springer International
Publishing. doi:10.1007/978-3-319-01766-2_30.

[SM11] S. Sarkar and S. Maitra. Approximate integer common divisor problem relates
to implicit factorization. IEEE Trans. Inf. Theor., 57(6):4002–4013, jun 2011.
doi:10.1109/TIT.2011.2137270.

[SZZ+19] Zhelei Sun, Tianwei Zhang, Xiaoxia Zheng, Liuqing Yang, and Liqiang Peng. A
method for solving generalized implicit factorization problem. In Songlin Sun,
Meixia Fu, and Lexi Xu, editors, Signal and Information Processing, Networking
and Computers, pages 284–290, Singapore, 2019. Springer Singapore. doi:
10.1007/978-981-13-7123-3_34.

[WQLF17] Shixiong Wang, Longjiang Qu, Chao Li, and Shaojing Fu. A better bound
for implicit factorization problem with shared middle bits. Science China
Information Sciences, 61, 2017. doi:10.1007/s11432-017-9176-5.

https://doi.org/10.1007/978-3-031-07082-2_6
https://doi.org/10.1007/978-3-642-00468-1_1
https://doi.org/10.1007/s12190-014-0806-1
https://doi.org/10.1007/11426639_13
https://doi.org/10.1007/11426639_13
https://doi.org/10.1007/978-3-319-22425-1_5
https://doi.org/10.1007/978-3-319-22425-1_5
https://doi.org/10.1007/978-3-319-06734-6_11
https://doi.org/10.1007/978-3-319-06734-6_11
https://doi.org/10.1145/359340.359342
https://doi.org/10.1007/978-3-642-25578-6_7
https://doi.org/10.1007/978-3-319-01766-2_30
https://doi.org/10.1109/TIT.2011.2137270
https://doi.org/10.1007/978-981-13-7123-3_34
https://doi.org/10.1007/978-981-13-7123-3_34
https://doi.org/10.1007/s11432-017-9176-5

Chunzhi Zhao et al. 19

[Zhe23] Mengce Zheng. Generalized implicit-key attacks on RSA. Journal of Informa-
tion Security and Applications, 77:103562, 2023. doi:10.1016/j.jisa.2023.
103562.

https://doi.org/10.1016/j.jisa.2023.103562
https://doi.org/10.1016/j.jisa.2023.103562

	Introduction
	Preliminaries
	Implicit Factorization Problem for n blocks
	Analysis of Ordered Position Case for Two RSA Moduli
	Analysis of Arbitrary Position Case for Two Moduli
	Analysis of Ordered Position Case for k RSA Moduli

	Experiments
	Conclusion
	References

