
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 3, 24 pages.

https://doi.org/10.62056/a6qj5w7sf
Check for updates

Optimizing c-sum BKW and Faster Quantum
Variant for LWE

Jinzheng Cao1 , Qingfeng Cheng1 and Jian Weng2

1 Information Engineering University, Zhengzhou, China
2 Jinan University, Guangzhou, China

Abstract. The Learning with Errors (LWE) problem has become one of the most
prominent candidates to base PQC on, offering promising potential to meet the
challenge of quantum computing. From a theoretical perspective, optimizing BKW
algorithms to solve LWE is a vital task for the analysis of this cryptographic primitive.
In this paper, we propose a fine-grained time/memory trade-off method to analyze
c-sum BKW variants for LWE in both classical and quantum models, then offer new
complexity bounds for multiple BKW variants determined by modulus q, dimension
k, error rate α, and stripe size b. Through our analysis, optimal BKW parameters
can be found for various LWE instances to minimize time and memory complexities.
Furthermore, we enhance the performance of c-sum BKW by adopting the quantum
Meet-in-the-Middle c-sum solver, which is exponentially faster than existing c-sum
algorithms.
Keywords: LWE · BKW algorithm · Quantum algorithm · Time/memory tradeoff

1 Introduction
The BKW algorithm [BKW03] is an important combinatorial algorithm for solving LWE.
The generic BKW algorithm, initially proposed to solve the Learning Parity with Noise
(LPN) problem, consists of two main phases, the sample reduction phase and the dis-
tinguisher phase. In particular, the reduction phase of BKW reorganizes the samples
to produce a new instance with reduced dimension and slightly larger errors. The dis-
tinguisher phase of BKW searches for the secret vector of the new instance, which is a
partial solution to the original problem. The BKW algorithm was improved by applying
the fast Walsh-Hadamard transformation method [LF06]. Guo et al. further modified
BKW for LPN with a covering-codes-based procedure [GJL14], and extended it to LWE
[GJS15]. The BKW algorithm was then improved by Zhang et al. [ZJW16] and Bogos
et al. [BTV16] in a series of works. Although the original BKW algorithm and various
improvements perform well in speed, its memory consumption grows dramatically on large
LWE instances. To improve BKW’s performance in real cryptographic circumstances,
the balance of BKW’s time/memory costs has become a topic of interest. Esser et al.

The work of Qingfeng Cheng (Corresponding Author) was supported by the National Natural Science
Foundation of China under Grant Nos. 62472438 and 62172433, and the Natural Science Foundation of
Henan under Grant No. 242300421414. The work of Jian Weng was supported by National Key Research
and Development Plan of China under Grant No. 2020YFB1005600, Major Program of Guangdong Basic
and Applied Research Project under Grant No. 2019B030302008, National Natural Science Foundation of
China under Grant No. 61825203, Guangdong Provincial Science and Technology Project under Grant
Nos. 2017B010111005 and 2021A0505030033, National Joint Engineering Research Center of Network
Security Detection and Protection Technology, and Guangdong Key Laboratory of Data Security and
Privacy Preserving.

E-mail: caojinzheng@126.com (Jinzheng Cao), qingfengc2008@sina.com (Qingfeng Cheng), cryptj
weng@gmail.com (Jian Weng)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-06-26 Accepted: 2024-09-02

https://doi.org/10.62056/a6qj5w7sf
https://crossmark.crossref.org/dialog/?doi=10.62056/a6qj5w7sf&domain=pdf&date_stamp=2024-09-30
https://orcid.org/0000-0001-9168-2438
https://orcid.org/0000-0001-6149-4807
mailto:caojinzheng@126.com
mailto:qingfengc2008@sina.com
mailto:cryptjweng@gmail.com
mailto:cryptjweng@gmail.com
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Optimizing c-sum BKW and Faster Quantum Variant for LWE

[EHK+18] discussed utilizing c-sum algorithms in BKW, which combines c samples at a
time instead of only two, then further proposed a Dissection technique to iteratively divide
the sample reduction task into smaller groups. Recently, Liu et al. [LY22] analyzed the
time-space trade-off of BKW without additional heuristics.

The studies of BKW algorithm for LWE follow a similar route of research. Solving
LWE with BKW has been suggested by Regev [Reg05] when initiating the problem. A
systemic description of the LWE version of BKW was then proposed [ACF+15]. Following
the initiation of BKW, a lazy modulus switching technique was discussed as a sample
reduction technique [AFFP14]. The naive distinguishing phase is based on exhaustive
search, and an FFT-based distinguisher was introduced in [DTV15]. The distinguisher
was further improved in [GJMS17, KF15]. Esser et al. [EHK+18] discussed extending the
c-sum BKW to solve LWE, and gave a complexity analysis. Liu et al. [LY22] introduced a
complexity trade-off method for the initial form of BKW reduction as well as experimental
analysis under relaxed conditions. In the quantum model, different versions of BKW for
LPN/LWE have been studied in a series of works [KF15, NPS20]. From the perspective of
attackers with access to quantum computers, one of the crucial tasks is to find efficient
quantum sample reduction subroutines of BKW. A quantum c-sum BKW variant has been
proposed by Esser et al. [EHK+18], who used a quantum c-sum algorithm with Grover’s
search in the BKW’s sample reduction phase for solving LPN.

Our contributions. We now introduce our contributions in more detail. First, we
propose an optimized time/memory complexity trade-off model of classic and quantum
c-sum BKW variants for LWE. While previous results rely on a particular stripe size b,
our analysis inspires us to find optimal parameters and reach lower complexities for given
c. Second, we further improve the c-sum solver with Meet-in-the-Middle approach, and
implement it as a subroutine in BKW. By partitioning and precomputing, this method
can accelerate the sample reduction phase of BKW. We will also discuss its quantum
complexity through the trade-off formula we develop.
Organization of the paper. The rest of the paper is organized as follows. Section 2
describes the preliminaries about the LWE problem and the BKW algorithm. Section 3
presents the first part of our work, a new complexity analysis of c-sum BKW algorithm
for LWE. Section 4 introduces a quantum augmented BKW variant which uses Meet-in-
the-Middle techniques for reduction, along with its complexity trade-off. We conclude the
paper in Section 5.

2 Preliminaries
We will use the following notations throughout the paper. When N ∈ N, let [±N] denote
set {±1,±2, . . . ,±N}. For a set S and integer c ≤ |S|, let

(
S
c

)
denote the set of all c-size

subsets of S, and
([±N]

c

)
is the set of all c-size subsets of [±N]. When a list L ∈ Sn is

presented as L = (l1, . . . , ln), we have l−i = −li.

2.1 LWE
We briefly review basic concepts about the LWE problem. Suppose we have a list of
samples (ai, bi), i = 1, · · · , m with bi = ⟨ai, si⟩+ ei ∈ Fq. The error eis are sampled from
χ. The search-LWE problem is to compute secret vector s ∈ Fk

q . The decision-LWE is to
decide whether e is sampled from χ or from the uniform distribution. We denote α = σ/q
as the error rate.

In the study of the BKW algorithm for LWE, we often resort to the Independence
Heuristic, which assumes that although sums of LWE samples (ai1 ± . . . ± aic) are
stochastically dependent after a sample reduction operation, such dependency does not

Jinzheng Cao, Qingfeng Cheng, Jian Weng 3

affect the reduction of the next stripe. Under the Independence Heuristic, these new
samples can be treated as independent samples. The correctness of the assumption has
been verified in [EHK+18].

2.2 Statistics
We use Berp to denote the Bernoulli distribution where X ∼ Berp if Pr[X = 1] =
1− Pr[X = 0] = p. Adding up n random variables X1, X2, . . . , Xn from Berp produces an
X following binomial distribution with parameters n, p. We denote the distribution by
Binn,p. Suppose N (µ, σ2) be the Gaussian distribution of mean µ and standard deviation
σ. In LWE, we need a Gaussian distribution over Zq. We discuss two kinds of discrete
Gaussian variants over Zq. The first, rounded Gaussian distribution, was suggested by
[Reg05]. Consider a wrapped Gaussian distribution Ψσ,q with probability density p(θ; σ, q)
given by p(θ; σ, q) =

∑∞
k=−∞

1
σ
√

2π
exp

[
−(θ+kq)2

2σ2

]
, θ ∈ [− q

2 , q
2]. The distribution is obtained

by sampling from Ψσ,q then rounding to the nearest integer in [− q
2 , q

2]. The distribution is
denoted by Ψ̄σ,q, whose probability mass function is defined as

Pr[x← Ψ̄σ,q] =
∫ x+ 1

2

x− 1
2

p(θ; σ, q) dθ, x ∈ [−q

2 ,
q

2].

The other Gaussian distribution over Zq is the discrete Gaussian distribution, which
is the most commonly used in LWE applications. For integer x in [− q

2 , q
2], the discrete

Gaussian distribution Dσ,q is defined as

Pr[x← Dσ,q] = exp(−x2/(2σ2))∑
k∈[− q

2 , q
2] exp(−K2/(2σ2)) .

2.3 Quantum computing
Our quantum BKW algorithm is based on the Grover’s quantum search. Given a set of
objects indexed by [1, 2, . . . , N], we setup an identifier oracle O such that in the classical
setting, O(i) = 1 (O|i⟩ = −|i⟩ in the quantum setting) when i is a target, and O(i) = 0
(O|i⟩ = |i⟩ in the quantum setting) when i is not. The search algorithm aims to find a
target j ∈ 1, 2, . . . , N by making queries to oracle O. While in the classical algorithm
we need O(N) queries, the quantum search solves the problem with only O(

√
N) queries.

The quantum circuit model evaluates the time complexity as the circuit size, or the total
number of elementary quantum gates.

In our quantum algorithm, we still need to access classical data. To this end, we adopt
the quantum random-access memory (QRAM), specifically, we use the classical memory
with quantum random access [Kup13]. It is possible to implement QRAM using a universal
quantum gate set at a considerable cost. Given classical registers |x0, . . . , xr−1⟩, [KP20]
proves that QRAM can be constructed in time O(r). The query of data from register xi

in the form |i⟩|y⟩ 7→ |i⟩|y ⊕ xi⟩ has polylogarithmic depth.

3 New c-Sum BKW Complexity Trade-off and Opti-
mization

Our work focuses on the improvement and analysis of the BKW algorithm for LWE,
especially one of its versions called c-sum BKW. Generally, the BKW algorithm consists of
two phases – the reduction phase and the distinguisher phase. The sample reduction phase
of original BKW looks for pairs of input LWE samples (ai1 , bi1), (ai2 , bi2) such that they

4 Optimizing c-sum BKW and Faster Quantum Variant for LWE

add to zero in a block of b entries (called a stripe), e.g., ai1 ± ai2 = (0, . . . , 0,︸ ︷︷ ︸
b-size stripe

∗, . . . , ∗).

It thus produces combined samples (a′
i, b′

i) = (ai1 ± ai2 , bi1 ± bi2) which in fact form a new
LWE instance whose dimension is reduced by b, and secret s1 is a (k − b)-block of original
secret vector s. By iteratively running the process for (a− 1) times, the sample reduction
phase obtains a list of new LWE samples with lower dimension k′ = k − (a− 1)b. In the
distinguisher phase, we run majority vote or FFT on the new samples to recover the new
LWE secret vector, which forms partial entries of the original secret s. The procedure to
recover other entries of s is likewise.

3.1 Review of c-sum algorithm
Esser et al. [EHK+18] proposed the first BKW variant with support for time/space trade-
off, called the c-sum BKW. Instead of always combining 2 samples, the c-sum technique
combines c ≥ 2 samples that add to zero on a stipe, i.e. (ai1 , bi1), (ai2 , bi2), . . . , (aic

, bic
)

such that ai1 ± ai2 ± . . .± aic︸ ︷︷ ︸
c

= (0, . . . , 0,︸ ︷︷ ︸
b-size stripe

∗, . . . , ∗). Formally, the c-sum problem for

LWE is defined as follows.

Definition 1 (The c-Sum Problem, c-SPb). Given b, c, N ∈ N with c ≥ 2, q is a prime.
Let L = (l1, . . . , lN) be a list with li sampled from UFb

q
for all i, and let t ∈ Fb

q be a target.
A single-solution of the c-SPb is a c-size set L ∈

([±N]
c

)
such that∑

j∈L
lj = t.

A solution of the c-SPb is a set of N or more distinct single-solutions. The c-sum
problem consists of finding a solution given L, t and a fixed c.

The reduction from sample reduction phase in CC-BKW to an instance of c-sum
problem (c-SPb) is natural: When we aim to find c LWE samples which add to 0b on a
b-size stripe, we first project the samples to this stripe. Then, we find these collisions on
the projected stripe by c-sum solver. Finally, we sum up the corresponding samples. Note
that a solution of the c-SPb consists of N or more distinct single-solutions. Therefore,
the sample reduction phase uses the output of previous c-sum subroutines as input for a
new c-sum instance, allowing us to move from one stripe to the next while keeping the
number of input samples. A basic c-sum solver is described in Algorithm 1 by extending
the LPN version of c-sum in [EHK+18].

Algorithm 1 Basic c-SPb solver
Require: sorted list L = (l1, . . . , lN) ∈ (Fb

q)N , target vector t ∈ Fb
q

Ensure: list S or ∅
for all ν = {i1, . . . , ic−1} ∈

(
[±N]
c− 1

)
do

for all ic ∈ [±N] \ν satisfying t = lic +
(∑

i∈ν li
)

do
S ← S

⋃
{{i1, . . . , ic}}

if |S| = N then
return S

end if
end for

end for
return ∅

Jinzheng Cao, Qingfeng Cheng, Jian Weng 5

Algorithm 2 c-sum-BKWLW E

Require: dimension k, sample number m, modulus q, N ≥ q
logq (q

q−1)+c·logq (c/2)+b

(c−1) , ϵa > 0
Ensure: secret s ∈ Fk

q

set number of stripe a > 0, stripe size b := k(1+ϵa)
a , m := b · e

2π2σ2ca

q2

for i← 1, . . . , m do
set list of samples Ssum = ∅
generate N LWE samples stored in L
for j ← 1, . . . , a− 1 do

project vectors in L onto their j-th stripe to obtain a list L′
j

solve the c-sum problem instance c-SP(L′
j , 0b) with Algorithm 1, to obtain a solution

S
sum up the vectors in L as specified in S, and rewrite list L as the list of these
vector sums

end for
if L = ∅ then

return ∅
end if
Ssum ← Ssum

⋃
L

end for
run FFT distinguisher on S to find k′ components of secret vector s
determine other components of s iteratively
return s

We will prove that the c-sum solver in Algorithm 1 runs in time Õ
(
N c−1) and memory

Õ(N) in Lemma 1. Compared with analogues in LPN, the algorithm considers adding ±li
for every li ∈ L. Equipped with this c-sum algorithm, we describe the c-sum BKW for
k-dimensional LWE in Algorithm 2. By calling this c-sum solver, c-sum BKW combines c
independent samples to produce a new LWE instance of reduced dimension k′ = k−(a−1)·b,
while the new secret key is composed of the first k′ components of original secret s. Then
the secret is recovered by FFT in the distinguishing phase. On the basis of c-sum BKW,
[EHK+18] proposes the Dissection BKW. This variant is equipped with a time-optimized
Dissection c-sum solver. The complexities of these BKW variants will be discussed in the
following subsection.

3.2 New complexity trade-off in classical model
We now provide a novel model to analyze the performance of c-sum BKW. Based on the
complexity analysis, we discuss its applications in cryptanalysis of LWE. The analysis
begins with the classical model, and will then extend to the quantum complexities. The
analysis will follow 3 steps.

• First, we consider the complexities of individual c-sum operations and total amount
of operations in BKW, summarized in Lemma 1 and Lemma 2.

• Second, we construct the trade-off model for the whole c-sum BKW algorithm
through Lemma 4, 3 and summarize the result in Theorem 1.

• Finally, we choose the optimal parameters for c-sum BKW in Corollary 1, and
compare its efficiency with previous works. We also extend our model to other cases
such as Dissection BKW.

6 Optimizing c-sum BKW and Faster Quantum Variant for LWE

3.2.1 Analyzing cost of c-sum solver

First, we give an analysis of the c-sum solver which underlies the BKW algorithm. Our
analysis depends on estimating the success probability of c-sum subroutines. For simplicity,
we adopt the Independence Heuristic: The dependency of c-sums

∑
j∈L lj only mildly

affect the performance of BKW algorithms. So in the following analysis, we can still treat
the c-sums of samples as independent vectors. We begin with the condition of success for
the classical c-sum solver:

Lemma 1. Let (L, t) be a c-SP instance with

|L| = N, N = q
logq(q

q−1)+c logq(c/2)+b

c−1 .

Under the Independence Heuristic, (L, t) has at least N single solutions with probability
1− exp

(
− N

2q(q−1)

)
.

Proof. We define an indicator XL such that XL = 1⇔
∑

j∈L lj = t for every L ⊆ [±N]
with |L| = c. Under the Independence Heuristic, XL follows Bin(N

c),q−b , and E[X] =
2c ·

(
N
c

)
· q−b ≥ 2c ·

(
N
c

)c · q−b. Taking logarithms, we have

logq E[X] ≥ c(logq 2 + logq N − logq c)− b

≥ c

(
logq(q

q−1) + c logq(c
2) + b

c− 1 + logq 2− logq c

)
− b

=
c logq(q

q−1) + cb + c logq(c)− c logq(2)
c− 1 − b

=
logq(q

q−1) + c logq(c)− c logq(2) + b

c− 1 + logq(q

q − 1)

= logq(N) + logq(q

q − 1).

Therefore, our N value ensures that E[X] ≥ q
q−1 · N . We are able to estimate the

probability of having fewer than N single solutions with the Chernoff bound: [Cry06],
Pr[X < Nα] ≤ Pr

[
X < q

q−1E[X]
]
≤ exp

(
−E[X]

2q2

)
≤ exp

(
− N

2q(q−1)

)
. Further, the proba-

bility of existing at least N single solutions is 1− exp
(
− N

2q(q−1)

)
.

The reduction phase of c-sum BKW produces new LWE samples, where Algorithm
1 is used as the c-sum solver. To analyze the complexity of BKW, we first study the
time/memory cost of the c-sum algorithm. We assume the list of samples L is first sorted,
which requires time Õ(N). Specifically, the target vector for c-sum is an all-zero block 0b

in the context of BKW, so the combination {i1, . . . , ic} and {−i1, . . . ,−ic} are considered
the same. As a result, the algorithm can only search a half of the space, and the time
complexity is Õ(2c−2N c−1). Therefore, the complexity of the c-sum subroutine is estimated
as follows.

Lemma 2. c-sum-q recovers a solution of c-SPb in time Õ((2N)c−1) and memory Õ(N).

Proof. The correctness of c-sum-q can be proven by [EHK+18, Lemma 4.1]. For the
time cost, the outer for loop of Algorithm 1 iterates all

(
N

c−1
)

possible {i1, . . . , ic−1} sets,
and for every index ij , ±ij are considered separately. Therefore,

(
N

c−1
)
· 2c−1 ≤ (2N)c−1

combinations are searched. In a sorted L, each solution is found in O (log N) = Õ(1). This
adds up to a run time of

(
N

c−1
)
· 2c−1 ≤ (2N)c−1. The algorithm returns at most N single

solutions, so the memory consumption is Õ(max(N, |S|)) = Õ(N).

Jinzheng Cao, Qingfeng Cheng, Jian Weng 7

3.2.2 Analyzing number of samples based on FFT distinguisher

We now try to estimate the complexity of the c-sum BKW algorithm as a whole. In
particular, the analysis of c-sum BKW faces two primary questions. First, the cost of
the c-sum solver; Second, how many c-sum subroutines are required in the entire BKW
algorithm. The first question is answered by the previous subsection. In this subsection,
we estimate the required number m of new k′-dimensional samples to solve LWE.

Before this task, we need to explain the basic qualities of the FFT distinguisher, which
determines the number of required input samples. After obtaining a k′-dimensional LWE
instance (A′, b′) by sample reduction, we write the function

f(x) =
m∑

j=1
I(A′

j = x)θbj
q , x ∈ Zk

q ,

where θq is the primitive root. The FFT distinguisher computes the FFT of f , i.e.

f̂(s′) =
m∑

j=1
θ

−(⟨A′
j ,s′⟩−cj)

q =
m∑

j=1
θ

−(νj,1±···±νj,ca−1)
q ,

where νj,l are independent samples from the original LWE oracle. When there are sufficient
samples, then the correct secret vector s′ will give the maximum value of Re(f̂(s′)). With
the notations, we are able to analyze the FFT process.

We define

Rσ,q,χ :=

q

π
sin
(

π

q

)
e−2π2σ2/q2

X ∼ Ψ̄σ,q

1− 2π2σ2

q2 X ∼ Dσ,q.

The following lemma states its property.

Lemma 3. E
[
Re(f̂(s′))

]
≥ m · (Rσ,q,χ)ca−1 .

Proof. Through the independence of νj,l and E[θ±νj,l
q] = E[cos(2πνj,l/q)], we get

E
[
Re(f̂(s′))

]
= Re

 m∑
j=1

E
[
θ

−(νj,1±···±νj,ca−1)
q

]
= Re

 m∑
j=1

E
[
cos
(

2π

q
νj,1

)]ca−1
 .

(1)

Lemma 4 (Lemma 10, 11 in [DTV15]). For q an odd integer, if X ∼ Ψ̄σ,q and Y ∼ 2πX/q,
then E[cos(Y)] ≥ q

π sin
(

π
q

)
e−2π2σ2/q2

,E[sin(Y)] = 0. If X ∼ Dσ,q, then E[cos(Y)] ≥
1− 2π2σ2

q2 ,E[sin(Y)] = 0.

We get E [cos(2πνj,l/q)] ≥ Rσ,q,χ based on Lemma 4. Combined with Lemma 3,
we have E

[
Re(f̂(s′))

]
≥

m∑
j=1

(Rσ,q,χ)ca−1
= m · (Rσ,q,χ)ca−1

. Based on this result, the

probability that FFT distinguisher finds the correct s′ is 1− qk′ · exp
(
−m

8 · (Rσ,q,χ)ca
)

.
The detailed analysis can be found in [DTV15]. Therefore, we estimate the required m to

8 Optimizing c-sum BKW and Faster Quantum Variant for LWE

recover the correct s′. For the c-sum BKW procedure in Algorithm 2 and a given failure
probability ϵ that s′ is not found, we need

ϵ = Pr
[
∃α ̸= s′ : Re(f̂(α)) ≥ Re(f̂(s′))

]
< qk′

· exp
(
−m

8 · (Rσ,q,χ)ca−1)
.

(2)

Solving the inequality for m, we get

mca

≥

8k′ log

(q

ϵ

) q

π
sin
(

π

q

)
e

−2π2σ2

q2 , X ∼ Ψ̄σ,q

8k′ log
(q

ϵ

)(
1− 2π2σ2

q2

)
, X ∼ Dσ,q.

(3)

3.2.3 Complexity trade-off of c-sum BKW for LWE

Putting the results of Subsection 3.2.1 and Subsection 3.2.2 together, we achieve the main
result about the c-sum BKW’s time and memory costs under the Independence Heuristic.
We take the c-sum BKW variant in the classic computing model as an example, and present
the key result in Theorem 1. We will later extend to more BKW variants in Theorem 2
and Theorem 4.

Theorem 1 (Classical trade-off for c-sum BKW). For given c ∈ N, ϵ > 0, c-sum-BKWLW E

solves the k-dimensional LWE instance in time T = 2ϑ(1+ϵ) and memory M = 2µ(1+ϵ) ,
where ϑ = log(k) + 2π2σ2 log(e)

q2 · ck/b + log(q) · b, µ = log(b) + 2π2σ2 log(e)
q2 · ck/b + log(q) · b

c−1 .

Proof. Let N = q
logq(q

q−1)+c logq(c/2)+b

c−1 . Lemma 1 ensures the success probability of c-
sum subroutines. From Lemma 2, we denote the time and memory cost of c-sum-q by
Tc,N = Õ((2N)c−1), Mc,N = Õ(N). When analyzing the run time of BKW, we neglect the
overhead caused by failures of c-sum algorithm. For Tc,N ≥ N , an iteration of m outer
for-loops has time complexity Õ(max{N, (a−1) ·Tc,N}) = Õ(a ·Tc,N). Hence, to recover m

samples, we need time Õ(m·a·Tc,N) = Õ(m·a·(2N)c−1) = Õ(m·a·qb) for a constant c. So
the c-sum-BKWLW E has time complexity T = m · a · qb(1+o(1)). From Lemma 4, Lemma 3,
and Equation (3), we summarize that m = Õ

(
b · e

2π2σ2ca

q2

)
. Since we set the stripe width

b =
⌊

k
a

⌋
, we get the time complexity 2ϑ(1+ϵ), whereϑ = log(k) + 2π2σ2 log(e)

q2 · ck/b + log(q) · b.

Similarly, we estimate the memory cost. M = m ·Mc,N = m ·
(

q
b

c−1

)1+o(1)
= 2µ(1 + ϵ),

where µ = log(b) + 2π2σ2 log(e)
q2 · ck/b + log(q) · b

c−1 .

For given q, σ and constant c, this result shows how BKW’s time/memory complexity
changes with the stripe size b. With error rate α = σ/q, the result is simplified as

ϑ = log(k) + 2π2α2 log(e) · ck/b + log(q) · b,

µ = log(b) + 2π2α2 log(e) · ck/b + log(q) · b

c− 1 .

Figure 1 compares our time/memory trade-off with previous results. By adjusting the
values of parameter b, we get different time/memory complexities, corresponding to the
curves in the figure. We also mark the results of Esser et al. [EHK+18], Liu et al. [LY22],
and the plain BKW, which rely on a given b value which is not necessarily optimal.

Jinzheng Cao, Qingfeng Cheng, Jian Weng 9

90 125 160 195
Time

40

80

120

M
em

or
y

plain BKW

et al.
et al.

(a) k = 50, α = 0.03

150 250 350 450
Time

60

100

140

180

M
em

or
y

plain BKW

et al.
et al.

(b) k = 100, α = 0.01

Figure 1: BKW time/memory trade-off and optimized complexity results

3.2.4 Optimal b choice

Theorem 1 has indicated the connection between c-sum BKW’s complexity and stripe size
b. Through the trade-off formula, we choose proper b to minimize time complexity. By
evaluating dϑ

db = 2π2α2 log(c) ·ck/b · −k
b2 +log(q), dµ

db = 1
b ln(2) +2π2α2 log(c) ·ck/b · −k

b2 + log(q)
c−1 ,

theoretically optimal b values can be found by choosing b that makes dϑ
db = 0 or dµ

db = 0.
The results are shown in Corollary 1.

Corollary 1 (Optimal parameters for minimized complexity). For given c, when b satisfies
2π2α2 log(c) · ck/b · k

b2 = log(q), c-sum BKW has minimized time complexity. When b

satisfies 2π2α2 log(c) · ck/b · k
b2 = 1

b ln(2) + log(q)
c−1 , c-sum BKW has minimized memory

complexity.

Examples of optimal parameters are also illustrated in Figure 1. For each curve which
represents the time/memory costs for an LWE instance, the integer point most close to the
origin point is marked to illustrate the minimum computation cost. By choosing proper b
values, we can achieve the optimized BKW performance. Note that in the BKW algorithm,
b should be integers. Therefore, we find valid b values by rounding to the closest integer
in practical circumstances. In Figure 1, we mark the parameter settings that lead to
minimized time complexities for different instances. It is obvious in the figure that our
new complexity results have lower time and memory costs than previous works.

3.2.5 Complexity trade-off of Dissection BKW for LWE

Our analysis can be extended to estimate the complexity of the Dissection approach. The
method is proposed by Esser et al. [EHK+18] to reduce the running time of the c-sum
solver. With existing results about the complexity of Dissection subroutine, we give the
complexity trade-off of Dissection BKW in Theorem 2.

Theorem 2 (Classical trade-off for Dissection BKW). For given ci ∈ N, ϵ > 0, c−1 =
1, ci = ci−1 + i + 1, when using Dissect method to solve SP, BKW finds the k-dimensional
LWE key in time T = 2ϑ(1+ϵ) and memory M = 2µ(1+ϵ) , where ϑ = log k + 2π2α2 log e ·
c

k
b + log(q) · (1− i

ci−1) · b, µ = log(b) + 2π2σ2 log(e)
q2 · ck/b + log(q) · b

c−1 .

Proof. Let N = q
logq(q

q−1)+ci logq(ci/2)+b

ci−1 . According to [EHK+18], the Dissection method
solves ci-SP in time Tci,N = Õ(N ci−1), memory Mc,N = Õ(N). Further, ci = ci−1 + i + 1.

10 Optimizing c-sum BKW and Faster Quantum Variant for LWE

100 200 300 400 500 600 700

Time

0

50

100

150

200

250

300

M
em

or
y

plain BKW

et al.
et al.

Figure 2: Dissection BKW time/memory tradeoff

To recover m samples, we need time

log T =(log k + 2π2α2 log e · c k
b + log(q) · ci−1

ci − 1 · b) · (1 + ε)

=(log k + 2π2α2 log e · c k
b + log(q) · (1− i

ci − 1) · b) · (1 + ε)

for given ci. Similarly, we estimate the memory M = m ·Mci,N = m ·
(

q
b

ci−1
)1+o(1)

=

2µ(1 + ϵ), µ = log(b) + 2π2σ2 log(e)
q2 · ck/b

i + log(q) · b
ci−1 .

The trade-off formula enables us to minimize the complexities of Dissection BKW. A
comparison in k = 100, α = 0.01 can be found in Figure 2. Our chosen parameter b is close
to Liu et al. [LY22] and has an advantage over the original Dissection BKW by Esser et
al. [EHK+18].

3.3 Complexity trade-off in quantum model
For the analysis of post-quantum cryptography, we are naturally interested in how Grover’s
quantum search algorithm and other quantum oracles can contribute to the c-sum subrou-
tine in BKW. We provide a complexity evaluation for BKW in quantum computing model
in this subsection. The property of Grover’s quantum search can be described with the
amplitude amplification.

Theorem 3 (Amplitude amplification [BHMT02]). Suppose we have a set of N objects
of which some are targets. Let O be a quantum oracle that identifies the targets. Let A
be a quantum circuit using no intermediate measurements, i.e. reversible. Let a be the
initial success probability of A, that is the probability that a measurement of A|0⟩ outputs
a target. There exists a quantum algorithm that calls O(

√
1/a) times A,A−1 and O, uses

as many qubits as A and O, and outputs a target with probability greater than 1− a.

Grover’s search can be viewed as a special case of the theorem when we define that A
produces the index of a uniformly selected object. When we use Grover’s algorithm to
find x such that f(x) = 1 for function f : D → {0, 1}, we have a = |f−1(1)|

|D| . In c-sum, the
f is defined as

ft :
(

[±|L|]
c− 1

)
→ {0, 1} , ν 7−→

1 ∃ic ∈ [±|L|] \ν :

c−1∑
j=1

lij
= −lic

+ t

0 else.

Jinzheng Cao, Qingfeng Cheng, Jian Weng 11

Algorithm 3 Quantum-c-sum-q
Require: sorted list L = (l1, . . . , lN) ∈ (Fb

q)N , target vector t ∈ Fb
q

Ensure: list S or ⊥
create a QRAM OW

for every sample lj in L do
add lj to OW at index j

end for

create oracle Ô(i1, . . . , ic−1) :
get li1 , . . . , lic−1 from OW

if exists lic
such that

c−1∑
j=1

lij
= −lic

+ t then

return 1
end if
return 0
end oracle Ô(i1, . . . , ic−1)

repeat Õ(N) times:
use Grover’s search to find (i1, . . . , ic−1) such that Ô(i1, . . . , ic−1) = 1

recover ic ∈ [±N] \ν satisfying
c−1∑
j=1

lij = −lic + t,

S ← S ∪ {{i1, . . . , ic}}
if |S| = N then

return S
end if
return ⊥

Now we present the quantum version of the c-sum solver shown in Algorithm 3. In the
algorithm, we adopt the classical memory with quantum random access to access classical
data based on [Kup13].

Correctness/sample complexity: In the algorithm, function ft has domain size

|D| =
∣∣∣∣([±N]

c− 1

)∣∣∣∣ · 1
2 ≈

(
N

c− 1

)
2c−2 = O(N c−12c−2) for we only need to search half

of the space as discussed in Subsection 3.2. Since c is significantly smaller than N in
LWE’s setting, we omit the case that ljs are joint for simplicity. Therefore, we have
a = |f

−1(1)|
|D| =

√
N

Nc−12c−2 . Since Grover’s search returns a target with probability 1− a,
we estimate that Õ(N ln N) = Õ(N) searches are required to find N valid {i1, . . . , ic}.

Time/memory complexity: When L is sorted, the oracle Ô has time complexity
Õ(log N) = Õ(1). Therefore, finding a single-solution will need time complexity Õ(

√
1/a) =

Õ
(√

|D|
|f−1(1)|

)
= Õ

(√
Nc−12c−2

N

)
= Õ

(
N

c
2 −12 c

2 −1), and the total time complexity is

Õ (N · N
c
2 −12 c

2 −1) = Õ
(
N

c
2 2 c

2 −1). Similar to the classical c-sum method, the quantum
algorithm consumes memory Õ(N).

Summarizing the result above, we describe the complexity of quantum-c-sum algorithm
as follows.

Lemma 5. Quantum-c-sum-q recovers a solution of c-SPb in time Õ(N c
2 2 c

2 −1) and
memory Õ(N).

In the structure of BKW algorithm, we can utilize the quantum-c-sum-q solver to

12 Optimizing c-sum BKW and Faster Quantum Variant for LWE

75 90 105 120 135
Time

35

50

65

80
M

em
or

y
et al.

et al.

(a) k = 50, α = 0.03

120 150 180 210 240

60

90

120

150

M
em

or
y

et al.
et al.

(b) k = 100, α = 0.01

Figure 3: Quantum c-sum BKW time/memory tradeoff

construct a quantum version of c-sum-BKWLW E . Similar to method in Subsection 3.2, we
have the following result about the complexity of quantum BKW. The main complexity
trade-off formula is presented in Theorem 4.

Theorem 4 (Quantum trade-off for c-sum BKW). For given c ∈ N, ϵ > 0, quantum
c-sum-BKWLW E solves the k-dimensional LWE instance in time T = 2ϑ(1+ϵ) and memory
M = 2µ(1+ϵ) , where

ϑ = log(k) + 2π2α2 log(e) · ck/b + c log q

2(c− 1) · b,

µ = log(b) + 2π2α2 log(e) · ck/b + log(q) · b

c− 1 .

Proof. Similar to classical BKW in Theorem 1, the total run time for the algorithm is
Õ(m·a·Tc,N) for constant c. So the c-sum-BKWLW E has time complexity T = m·qb(1+o(1)).
Consider that for quantum-c-sum-q,

Tc,N = Õ(N c
2 2 c

2 −1)

= Õ(q
logq

q
q−1 +clogq(c/2)+b

c−1 · c
2 · 2 c

2 −1)

= Õ(2
c

2(c−1) ·(log q
q−1 +c log(c/2)+b) log q+ c

2 −1)

= Õ(2
c log q

2(c−1) ·b),

Mc,N = Õ (N) = Õ(q
logq

q
q−1 +clogqc+b

c−1)

= Õ(2
log q
c−1 ·b),

and m = Õ
(

b · e
2π2σ2ca

q2

)
. Then, for stripe width b = k

a , we have time complexity 2ϑ(1+ϵ),

ϑ = log(k) + 2π2σ2 log(e)
q2 · ck/b + c log q

2(c−1) · b. Similarly, we estimate the memory cost.

The trade-off results and minimized time complexities are illustrated in Figure 3. By
choosing proper parameters, the time cost is significantly lower than the classical model.
Similar to the classical model, we can choose optimal parameters to ensure minimized
complexities. In Corollary 2, we show the integer b values which minimize time complexities.

Corollary 2. For given c, when b satisfies 2π2α2 log(c) · ck/b · k
b2 = c log(q)

2(c−1) , c-sum BKW
has minimized time complexity. When b satisfies 2π2α2 log(c) · ck/b · k

b2 = 1
b ln(2) + log(q)

c−1 ,
c-sum BKW has minimized memory complexity.

Jinzheng Cao, Qingfeng Cheng, Jian Weng 13

4 Quantum Meet-in-the-Middle in BKW Algorithm
In the preceding section, we provide a new complexity analysis for basic c-sum BKW
variants. While the time and memory costs of the algorithm has been reduced by choosing
proper parameters, we still wish to find faster BKW variants, specifically in the quantum
computation model. In this section, we improve on the existing BKW variants to design a
quantum augmented BKW algorithm with Meet-in-the-Middle method as c-sum solver.
Further, we utilize and adjust the complexity trade-off formula discussed in Section 3 to
illustrate the new variant’s advantage in time/memory cost. When optimal parameters
are chosen, the new algorithm achives reduced time exponents compared with the basic
quantum BKW.

4.1 MitM c-sum solver in BKW
We now present a Meet-in-the-Middle (MitM) method as BKW’s c-sum solver, then
discuss its analogue in the quantum computing model. Meet-in-the-Middle algorithms are
discussed and used for attacking ECDSA [HGJ10] and LWE [GvVW17]. By generalizing
the method, we derive the MitM c-sum solver in Algorithm 4, where input samples are
partitioned into 4 lists. To find target vector t ∈ Fb

q, an intermediate variable τ ∈ Fγ
q is

iterated. Then from two of the lists, we run Meet-in-the-Middle (MitM) subroutines to
find two samples from each of them such that their last γ entries add up to τ . When we
use lowγ to denote the last γ entries of a vector, we search for a sum t of c/2 vectors such
that low(t)γ = τ . From the other two lists, c/2 samples are searched similarly so that their
lower blocks add up to lowγ(t)− τ .

Algorithm 4 Meet-in-the-Middle subroutine (MitM)
Require: sorted lists {Li}2

i=1 of samples, target τ ∈ Fγ
q , γ ∈ [0, b], c is a multiple of 4,

precomputed lowγ(li1 + . . . + lic/4) for all i1, . . . , ic/4 ∈ ±L1
Ensure: list S′

S′ ← ∅
for all ν =

{
ic/4+1, . . . , ic/2

}
∈
(
±L2
c/4

)
do

for all precomputed lowγ(li1 + . . . + lic/4) satisfying τ = lowγ(li1+ . . . + lic/4 +lic/4+1

+ . . . + lic/2) do
S′ ← S′⋃{{i1, . . . , ic/2

}}
return S′

end for
end for

Our c-sum solver in this section adopts the MitM algorithm as subroutines to reach
better time/memory tradeoff. By running the MitM procedure with a intermediate target,
we can select some possible solutions of the original problem, thus reducing the search
space. The c-sum algorithm with MitM subroutine is described in Algorithm 4, 5. We
now show the complexity of this algorithm in Lemma 6 and Corollary 3, then go on to
analyze the cost of BKW algorithm with the new c-sum solver in Theorem 5.

Lemma 6. For parameter γ, 4-list-c-sum-q algorithm recovers a solution of c-SPb in time
Õ(max{q c

2 λ, qλ· c
4 +γ}) and memory Õ(max{q c

2 λ−γ , qλ· c
4 , |S|}).

Proof. The MitM steps of the algorithm find elements in L′
1, L′

2, where each MitM process
has time/memory complexity Õ(2 c

4 qλ· c
4) = Õ(qλ· c

4) for constant c. After the steps, we
expect Õ((2 c

4 qλ· c
4)2

/qγ) = Õ(2 c
2 q

c
2 λ−γ) elements are stored in L′

1, L′
2. The final search for

(l′
1, l′

2) ∈ L′
1×L′

2 line takes time Õ(2 c
2 q

c
2 λ−γ) for sorted L′

1, L′
2. Since the first line iterates

14 Optimizing c-sum BKW and Faster Quantum Variant for LWE

Algorithm 5 4-list-c-sum-q
Require: sorted lists {Li}4

i=1 of qλ/4 samples each, target vector t ∈ Fb
q, parameter

γ ∈ [0, b], c is a multiple of 4
Ensure: list S

for all τ ∈ Fγ
q do

use MitM, look for li1 , . . . , lic/4 ∈ ±L1 and lic/4+1 , . . . , lic/2 ∈ ±L2 such that
lowγ

(∑c/4
j=1 lij

+
∑c/2

j=c/4+1 lij

)
= τ ; store li1 , . . . , lic/2 in a sorted list L′

1
use MitM, look for lic/2 , . . . , li3c/4 ∈ ±L3 and li3c/4+1 , . . . , lic ∈ ±L4 such that
lowγ

(∑3c/4
j=1+c/2 lij +

∑c
j=3c/4+1 lij

)
= lowγ(t) − τ ; store lic/2+1 , . . . , lic in a sorted

list L′
2

look for (l′
1, l′

2) ∈ L′
1 × L′

2 such that l′
1 + l′

2 = t, recover indices (i1, . . . , ic)
S ← S ∪ {{i1, . . . , ic}}
if |S| = 4qλ then

return S
end if

end for
return ∅

τ over Fγ
q , the total time complexity is Õ(max{q c

2 λ, qλ· c
4 +γ}), and the memory complexity

is Õ(max{q c
2 λ−γ , qλ· c

4 , |S|}).

Corollary 3. When parameter γ = c
4 · λ, 4-list-c-sum-q has minimal time cost Õ(q c

2 λ)
and memory Õ(max{qλ· c

4 , |S|}).

Adopting Algorithm 5 as the c-sum solver, we get the BKW algorithm with MitM
techniques, denoted as MitM-BKWLW E . In Theorem 5, we will analyze the cost of the
algorithm in the classical model.

Theorem 5 (Classical trade-off for MitM-BKWLW E). For given c ∈ N, ϵ > 0, and
parameter γ = c

4 · λ, MitM-BKWLW E solves the k-dimensional LWE instance in time
T = 2ϑ(1+ϵ) and memory M = 2µ(1+ϵ) , where ϑ = log(k)+2π2α2 log(e)·ck/b + c log(q)

2(c−1) ·b, µ =
log(b) + 2π2α2 log(e) · ck/b + c log(q)

4(c−1) · b.

Proof. Similar to basic BKW, sample number N = q
logq(q

q−1)+c logq(c/2)+b

c−1 is enough to
recover the secret key. The 4-list method partitions the input samples into four lists of
size qλ. In this case,

λ =
logq(q

q−1) + c logq(c/2) + b

c− 1 − logq(4).

According to Corollary 3, we set parameter γ = c
4 · λ to minimize the run time. Since

c
4 · λ < b, this setting is feasible. Thus, the time cost Tc,N of 4-list-c-sum-q is computed as

Õ(q c
2 ·λ) = Õ

(
q

c
2(c−1) ·(logq(q

q−1)+clogq(c/2)+b)− c
2 logq2

)
= Õ

(
q

c
2(c−1) ·b

)
for constant c. The run time of MitM-BKWLW E is

T = Õ(m · a · Tc,N)
= 2ϑ(1+ϵ),

Jinzheng Cao, Qingfeng Cheng, Jian Weng 15

with ϑ = log(k) + 2π2σ2 log(e)
q2 · ck/b + c log(q)

2(c−1) · b. Lemma 6 states the memory cost of
4-list-c-sum-q as Mc,N = Õ(max{qλ· c

4 , |S|}). Under the Independence Heuristic, E[|S|] =(
N
c

)c · q−b = Õ(q cb
c−1 −b) = Õ(q b

c−1), and q
c
4 λ = Õ

(
q

c
4(c−1) ·b

)
. In the 4-sum algorithms,

c ≥ 4, so the memory M = m · q
c

4(c−1) ·b = Õ
(

b · e
2π2σ2ca

q2 · q
c

4(c−1) ·b
)

= 2µ(1+ϵ), where

µ = log(b) + 2π2σ2 log(e)
q2 · ck/b + c log(q)

4(c−1) · b.

4.2 Quantum MitM-BKW algorithm
Based on the classical variant discussed above, we combine quantum speed-up techniques
with the 4-list-c-sum-q algorithm. The quantum variant of the MitM-based c-sum solver
is presented in Algorithm 6. This quantum MitM construction involves the technique of
utilizing Grover search as subroutines in loops, which is first discussed in [NPS20]. In our al-
gorithm, we set parameter γ = b, so finding one possible (i1, . . . , ic/4) and (ic/2+1, . . . , i3c/4)
is enough to recover a single solution. In our method, we first precomputed the sorted
sums lic/4+1 + . . . + lic/2 , li3c/4+1 + . . . + lic

. To find the indices (i1, . . . , ic/4), we define

ft :
([
±qλ

]
c/4− 1

)
→ {0, 1} , ν 7−→

1 ∃ic/4 ∈ [±qλ]\ν :

c/4−1∑
j=1

lij
= −lic/4 + t,

0 else,

for some t = τ −
∑c/2

j=c/4+1 lij with precomputed
∑c/2

j=c/4+1 lij , and use Grover’s search
to find the pre-image of 1. Indices (ic/2+1, . . . , i3c/4) can be found similarly. For ft,

domain size |D| =
∣∣∣∣([±qλ]

c/4− 1

)∣∣∣∣ =
(

qλ

c/4− 1

)
2c/4−1 ≤ qλ(c/4−1)2c/4−1. Therefore, finding a

collision takes time Õ
(√
|D|
)

= Õ
(√

qλ(c
4 −1)2 c

4 −1
)

= Õ
(

qλ(c
8 − 1

2)
)

. Then finding Õ(qλ)

single-solutions costs time Õ(qλ) · Õ
(√
|D|
)

= Õ
(

qλ(c
8 + 1

2)
)

. In the MitM subroutine,∣∣∣∣([±qλ]
c/4

)∣∣∣∣ = Õ(qλ· c
4) combinations are precomputed. Therefore, the memory cost is

Õ(max{qλ· c
4 , |S|}).

Summarizing the results, we obtain a theoretical analysis of quantum-4-list-c-sum-q
algorithm’s cost in Lemma 7.

Lemma 7. Quantum-4-list-c-sum-q can recover a solution of c-SPb in expected time
Õ
(

qλ(c
8 + 1

2)
)

and memory Õ(max{qλ· c
4 }, |S|).

We let quantum MitM-BKWLW E denote the BKW variant where Quantum-4-list-
c-sum-q is instantiated as the c-sum subroutine. Based on Lemma 7, we estimate the
time/memory of the algorithm in Theorem 6.

Theorem 6 (Quantum trade-off for MitM-BKWLW E). For given c ∈ N, ϵ > 0, and a
sufficiently large k, quantum MitM-BKWLW E solves the LWE instance in time T = 2ϑ(1+ϵ)

and memory M = 2µ(1+ϵ), where ϑ = log(k) + 2π2α2 log(e) · ck/b + (c+4) log(q)
8(c−1) · b, µ =

log(b) + 2π2α2 log(e) · ck/b + c log(q)
4(c−1) · b.

Proof. Following the classical model, we set N = q
logq(q

q−1)+c logq(c/2)+b

c−1 , and λ = 1
c−1 (logq(q

q−1)
+c logq(c/2) + b)− logq(4). By Lemma 7, the time cost Tc,N of quantum 4-list-c-sum-q is

16 Optimizing c-sum BKW and Faster Quantum Variant for LWE

Algorithm 6 Quantum-4-list-c-sum-q
Require: sorted lists {Li}4

i=1 of qλ samples in total, target vector t ∈ Fb
q, c is a multiple

of 4
Ensure: list S or ⊥

create QRAM OW1 , . . . , OW4

for all li in ±L1 do
add li to OW1 at index i

end for
for all (lic/4+1 , . . . , lic/2) in ±L2 do

add
∑c/2

j=c/4+1 lij
to OW2 at index (ic/4+1, . . . , ic/2)

end for
for all li in ±L3 do

add li to OW3 at index i
end for
for all (li3c/4+1 , . . . , lic) in ±L4 do

add
∑c

j=3c/4+1 lij
to OW4 at index (i3c/4+1, . . . , ic)

end for

create oracle O1(i1, . . . , ic/4)
get li1 , . . . , lic/4 from OW

if exists ic/4+1, . . . , ic/2 such that
∑c/4

j=1 lij
+
∑c/2

j=c/4+1 lij
= τ then

return 1
end if
end O1(i1, . . . , ic/4)

create oracle O2(ic/2+1, . . . , i3c/4)
get lic/2+1 , . . . , li3c/4 from OW

if exists i3c/4+1, . . . , ic such that
∑3c/4

j=c/2+1 lij
+
∑c

j=3c/4+1 lij
= t− τ then

return 1
end if
end O2

create oracle Ô(τ):
use Grover’s search to find (i1, . . . , ic/4), (ic/2+1, . . . , i3c/4) such that
O1(i3c/4+1, . . . , ic/2) = 1, O2(ic/2+1, . . . , i3c/4) = 1
if (i1, . . . , ic/4), (ic/2+1, . . . , i3c/4) exist then

return 1
end if
end oracle Ô(τ)

use Grover’s search to find τ such that Ô(τ) = 1
for all (i1, . . . , ic/4), (ic/2+1, . . . , i3c/4) satisfying O1(i1, . . . , ic/4) = 1, find
(ic/4+1, . . . , ic/2), (i3c/4+1, . . . , ic) from precomputed data, S ← S ∪ {{i1, . . . , ic}}
if |S| = 4qλ then

return S
end if
return ⊥

Jinzheng Cao, Qingfeng Cheng, Jian Weng 17

Õ(q(c
8 + 1

2)·λ) = Õ
(

q
c+4

8(c−1) ·(logq(q
q−1)+clogq(c/2)+b)− c+4

4 logq2
)

= Õ
(

q
c+4

8(c−1) ·b
)

for constant c.
The run time of MitM-BKWLW E is

Õ(m · a · Tc,N) = Õ
(

k · e
2π2σ2ca

q2 · q
c+4

8(c−1) ·b
)

= 2ϑ(1+ϵ),

with ϑ = log(k) + 2π2σ2 log(e)
q2 · ck/b + (c+4) log(q)

8(c−1) · b. Since E[|S|] = Õ(q b
c−1) and q

c
4 λ =

Õ
(

q
c

4(c−1) ·b
)

, the memory complexity is M = m · q
c

4(c−1) ·b = Õ
(

b · e
2π2σ2ca

q2 · q
c

4(c−1) ·b
)

=

2µ(1+ϵ), where µ = log(b) + 2π2σ2 log(e)
q2 · ck/b + c log(q)

4(c−1) · b.

According to Theorem 6, optimal b can be chosen to minimize time/memory costs
similar with the basic c-sum BKW. The values of these parameters are presented in
Corollary 4. In practice, the parameter b should be found via integer programming since
it must be an integer. As is shown in Corollary 4, the MitM-BKW that we propose can
further benefit from selecting optimal parameters, as is illustrated in Figure 4. In the
figure, the complexity results with different b values form a list of curves, then we can
adjust the value of integer b to obtain an optimistic time/memory balances, i.e. the points
nearest to the origin point.

Corollary 4. For given c, when b satisfies 2π2α2 log(c) ·ck/b · k
b2 = (c+4) log(q)

8(c−1) , MitM-BKW
has minimized time complexity. When b satisfies 2π2α2 log(c) · ck/b · k

b2 = 1
b ln(2) + log(q)

4(c−1) ,
MitM-BKW has minimized memory complexity.

120 220
Time

100

140

M
em

or
y

plain BKW

(a) classical

70 75 80
Time

100

120

140

M
em

or
y

plain BKW

(b) quantum

Figure 4: MitM-BKW time/memory tradeoff, k = 100, α = 0.01

4.3 Performance evaluation and application
Based on the analysis above, we now evaluate the performance of BKW variants in various
LWE instances. We first summarize the time complexities T = 2ϑ and memory M = 2µ of
our algorithms in Table 1. While previous works provide complexity results by assuming
specific b values, our analysis introduces stripe size b into the trade-off formula. Through
this model, we reach proper time/memory balances and minimize the computation costs
of BKW.

To give an example, we apply the models to some simple LWE instances with parameters
k = 50, α = 0.03 and k = 100, α = 0.01. Based on the optimal parameters discussed earlier,
we compare the exponents ϑ, µ under optimal parameters for specific LWE instances in
Table 2. Under our trade-off model, the complexity exponents of c-sum BKW and MitM
BKW are significantly reduced compared with previous results. On the other hand, the

18 Optimizing c-sum BKW and Faster Quantum Variant for LWE

plain BKW is still faster, but its memory cost is dramatically higher than other algorithms.
Therefore, the c-sum BKW variants are still better in terms of time/memory trade-off.

Table 1: Complexity exponents of our BKW variants and previous results

Algorithm ϑ µ

Classical
BKW

c-sum BKW log(k) + 2π2α2 log(e) · ck/b

+ log(q) · b
log(b) + 2π2α2 log(e) · ck/b

+ log(q) · b
c−1

MitM BKW
log(k) + 2π2α2 log(e) · ck/b

+ c log(q)
2(c−1) · b

log(b) + 2π2α2 log(e) · ck/b

+ c log(q)
4(c−1) · b

Esser et al.
[EHK+18]

log(c)k
2 · logk(q)

logk(q)−logk(σ)+1/2
log(c)k
2(c−1) · logk(q)

logk(q)−logk(σ)+1/2

Liu et al.
[LY22]

log(c)k log(q)(1+ϵ)
log(k)+2 log(q)−2 log(σ)

1
c−1 · log(c)k log(q)(1+ϵ)

log(k)+2 log(q)−2 log(σ)

Quantum
BKW

Basic
quantum BKW

log(k) + 2π2α2 log(e) · ck/b

+ c log q
2(c−1) · b

log(b) + 2π2α2 log(e) · ck/b

+ log(q) · b
c−1

MitM BKW
log(k) + 2π2α2 log(e) · ck/b

+ (c+4) log(q)
8(c−1) · b

log(b) + 2π2α2 log(e) · ck/b

+ c log(q)
4(c−1) · b

Esser et al.
[EHK+18]

c log(c)
4(c−1) · k logk(q)

logk(q)−logk(σ)+1/2
log(c)k
2(c−1) · logk(q)

logk(q)−logk(σ)+1/2

Liu et al.
[LY22]

c log(c)
2(c−1) · k log(q)

log(k)+2 log(q)−2 log(σ)
1

c−1 · log(c)k log(q)
log(k)+2 log(q)−2 log(σ)

Table 2: Optimal parameters by new trade-off formula

k = 50, α = 0.03, c = 4
Algorithm ϑ µ Algorithm ϑ µ

Classical
BKW

c-sum BKW 119.3 45.8
Quantum

BKW

c-sum BKW 83.5 45.8
MitM BKW 83.5 45.7 MitM BKW 48.5 46.6

Esser et al.
[EHK+18]

156.1 52.0 Esser et al.
[EHK+18]

104.1 52.0

Liu et al.
[LY22]

167.2 55.7 Liu et al.
[LY22]

111.5 55.7

plain BKW 83.6 83.6 plain BKW 41.8 83.6
k = 100, α = 0.01, c = 4

Algorithm ϑ µ Algorithm ϑ µ

Classical
BKW

c-sum BKW 186.0 70.4
Quantum

BKW

c-sum BKW 132.6 70.2
MitM BKW 132.6 70.2 MitM BKW 74.0 71.6

Esser et al.
[EHK+18]

300.1 100.0 Esser et al.
[EHK+18]

200.1 100.0

Liu et al.
[LY22]

299.8 99.9 Liu et al.
[LY22]

199.9 100.0

plain BKW 175.8 175.8 plain BKW 87.8 175.8

As a further application of the c-sum BKW complexity model, we use it to evaluate
the concrete security of TU Darmstadt LWE challenge instances and cryptographic LWE
instances, then compare our results with BKW variants (Coded BKW [GJS15], Coded
BKW with sieving [GJMS17], FWHT BKW [BGJ+21]) and lattice-based attacks. The
complexities of previous algorithms are obtained by the lattice estimator [NPS20] and sage
[Sag]. Table 3 shows the complexity exponents, where each entry in the table represents
the complexity exponent computed following our analysis. From the results, the MitM-
BKW has lower time complexity compared with most BKW variants. In most cases, the

Jinzheng Cao, Qingfeng Cheng, Jian Weng 19

MitM-BKW is faster than the dual lattice attack, although still slightly slower than the
primal lattice attack. Especially, the advantage of MitM-BKW is more significant for larger
α, with time exponent only 25% of c-sum BKW on average. Compared with the fastest
previous variant, FWHT BKW, our algorithm is faster for smaller α. When α = 0.005,
MitM-BKW’s time exponent is about 80% of FWHT BKW.

Table 3: Security estimations of the TU Darmstadt LWE challenge

Parameters BKW algorithms (c = 16) lattice algorithms

k q α BKW coded
BKW

sieve-coded
BKW

FWHT
BKW

c-sum
BKW

dissect
BKW MitM-BKW primal dual

40 1601 0.005 40.6 42.6 41.5 34.4 45.8 33.8 28.6 31.4 37.1
0.01 43.5 43.7 42.7 39.3 65.8 52.9 35.0 31.7 37.6

0.015 46.5 52.6 44.1 42.4 100.2 86.4 40.5 32.0 41.4
0.02 49.0 52.6 49.1 46.2 149.6 135.1 45.5 32.4 43.8

0.025 52.6 52.7 49.2 48.3 221.4 205.7 51.6 34.3 48.1
0.03 52.6 52.7 50.4 50.0 221.4 205.7 54.0 37.9 53.4

45 2027 0.005 44.1 55.2 45.0 37.7 46.7 33.4 30.9 31.6 37.4
0.01 48.8 55.2 45.3 43.5 60.2 45.5 39.2 32.0 39.9

0.015 51.8 55.2 54.7 48.3 78.9 63.4 45.0 32.5 43.9
0.02 55.4 55.2 54.8 51.2 107.0 90.4 51.3 35.7 50.7

0.025 55.7 55.3 54.8 54.1 136.8 120.1 54.2 39.9 57.1
0.03 59.7 64.1 63.3 56.3 184.9 166.9 61.2 44.2 64.1

50 2503 0.005 48.9 46.4 45.5 41.8 51.7 37.1 33.4 31.9 37.6
0.01 54.4 56.0 53.3 48.7 67.1 50.7 43.1 32.5 42.5

0.015 57.8 56.8 53.4 52.5 88.1 70.8 50.2 35.5 50.5
0.02 61.9 61.9 60.4 56.4 119.6 101.1 57.2 41.0 59.0

0.025 61.9 66.1 61.7 59.3 152.1 133.5 60.2 46.4 65.4
0.03 66.9 66.3 65.6 63.3 207.2 187.1 68.5 51.4 75.5

70 4903 0.005 66.2 62.3 62.2 62.3 83.1 63.1 51.3 34.6 49.5
0.01 72.9 67.1 70.6 73.7 147.2 125.2 63.7 47.1 66.3

0.015 77.5 73.3 72.7 75.6 255.0 231.6 73.6 57.4 81.2
120 14401 0.005 113.4 110.5 108.8 100.1 140.6 105.9 85.2 70.3 98.4

0.01 123.1 124.0 115.8 115.1 240.9 203.4 105.6 86.5 106.1
0.015 130.9 136.8 135.3 127.0 412.9 372.9 121.6 98.3 133.3

We next estimate the security of instances from real cryptosystems to present the
efficiency of different BKW variants. In particular, we compare the performance of our
BKW with other algorithms on LWE instances proposed by Regev [Reg05] and Lindner
& Peikert [LP11]. Generally, the time cost of our algorithm is close to the best previous
results, significantly faster than c-sum BKW and dissect BKW. Considering that MitM-
BKW requires less memory consumption compared with original BKW and coded BKW,
this comparison is able to demonstrate the improvement of MitM-BKW. The detailed
comparison is shown in Table 4. On average, the time exponent of MitM-BKW is 98% of
the fastest previous algorithm, FWHT BKW.

Table 4: Security estimation of LWE instances from Regev’s and Lindner-Peikert’s
cryptosystems

Parameters BKW algorithms (c = 16) lattice-based
algorithms

k q σ BKW coded
BKW

sieve-coded
BKW

FWHT
BKW

c-sum
BKW

dissect
BKW MitM-BKW primal dual

Regev’s parameters
128 16411 11.81 107.5 84.5 84.2 59.2 111.6 78.9 70.8 57.3 69.2
256 65537 25.53 200.8 145.1 130 107 204.1 142.4 126.9 103.6 121
512 262147 57.06 384.6 287.6 247.6 243.3 390.2 271.3 242.6 201.6 231.2
Lindner-Peikert’s parameters
128 2503 2.7 95.7 69.7 69.2 48.8 97.7 68.6 60.2 53.4 67.5
256 4099 3.34 167.9 123.8 112.9 98.5 171.7 120.2 108.4 95.2 112.3
512 4099 2.9 308 209.2 197.3 243.3 323.5 228.7 211.7 179 207.8

20 Optimizing c-sum BKW and Faster Quantum Variant for LWE

4.4 Discussion: Solving c-sum via collision search
As an extension of the quantum c-sum BKW, we are also interested in another possible
algorithmic technique – using quantum collision search methods as c-sum solvers, and
implementing them as subroutines in BKW-type algorithms. The reduction from c-sum
BKW’s sample reduction phase to an instance of collision search is natural: When we aim
to find c LWE samples which add to 0b on a b-size stripe, we first define a c

2 -sum function
f(i1, i2, . . . , ic/2) = li1 + li2 + . . . + lic/2 mod q with domain X =

([±N]
c/2
)
. Then, we try

to find a collision f(x) = f(y), where x = (i1, i2, . . . , ic/2), y = (ic/2+1, ic/2+2, . . . , ic).
It follows that f(x) + f(−y) = 0b, i.e. li1 + . . . + lic/2 + (−lic/2+1) + . . . + (−lic

) =
li1 + . . . + lic/2 + l−ic/2−1 + . . . + l−ic

= 0b mod q. In this way, c samples are found to
form a new LWE sample with zero stripe.

Obviously, the essential task for implementing such an algorithm lies in efficiently
solving the multiple collision search instance f(x) = f(y), with f ’s domain X =

([±N]
c/2
)
,

range size Zb
q, number of required collisions N . By the theoretical results of Liu et al.

[LZ19], we estimate its query complexity as O(q b
3 ·N 2

3). Some possible quantum collision
search methods include the Grover-based BHT collision search algorithm [BHT98], and
the quantum random walk based method [BCSS23]. While the collision search method can
accelerate the sample reduction, a possible challenge is that by defining c

2 -sum function f ,
the search space is separated. Therefore, the algorithm may require a larger N to generate
enough collisions, so the practical performance of collision-BKW is a more complicated
matter. In future work, we will further discuss the implementation and complexity of
BKW variants with collision search.

5 Conclusion
While the existing c-sum BKW variants have already benefited from previous works, there
is still a need for detailed complexity analysis and optimal parameter selection to solve
LWE instances. In this paper, we develop a generic complexity trade-off formula for c-sum
BKW for both classical and quantum variants. This trade-off is built on analyzing the
costs of c-sum solver subroutines, and can guide us in choosing the best parameters to
optimize the performance of popular BKW algorithms. Through the analysis, we offer
proper parameters to reduce the time and memory complexities of BKW compared to
previous results. Compared with works of Esser et al. and Liu et al., our analysis achieves
lower complexity bounds thanks to optimal parameters. To further improve its efficiency,
we propose a quantum augmented variant with lower complexity than the original quantum
c-sum BKW. This algorithm extends the structure of the basic c-sum BKW by utilizing a
quantum MitM subroutine as the c-sum solver. By exploiting our trade-off analysis method,
we estimate the complexity of this algorithm. Under the trade-off formula proposed in this
paper, our method reaches a lower cost than previous works, and allows achieving new
time/memory balances by adjusting the parameters.

References
[ACF+15] Martin Albrecht, Carlos Cid, Jean-Charles Faugere, Robert Fitzpatrick, and

Ludovic Perret. On the complexity of the BKW algorithm on LWE. Designs,
Codes and Cryptography, 74, 02 2015. doi:10.1007/s10623-013-9864-x.

[AFFP14] Martin R. Albrecht, Jean-Charles Faugère, Robert Fitzpatrick, and Ludovic
Perret. Lazy modulus switching for the BKW algorithm on LWE. In Hugo
Krawczyk, editor, Public-Key Cryptography – PKC 2014, pages 429–445, Berlin,

https://doi.org/10.1007/s10623-013-9864-x

Jinzheng Cao, Qingfeng Cheng, Jian Weng 21

Heidelberg, 2014. Springer Berlin Heidelberg. doi:10.1007/978-3-642-546
31-0_25.

[BCSS23] Xavier Bonnetain, André Chailloux, André Schrottenloher, and Yixin Shen.
Finding many collisions via reusable quantum walks. In Carmit Hazay and
Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023, pages
221–251, Cham, 2023. Springer Nature Switzerland. doi:10.1007/978-3-031
-30589-4_8.

[BGJ+21] Alessandro Budroni, Qian Guo, Thomas Johansson, Erik Mårtensson, and
Paul Stankovski Wagner. Improvements on making BKW practical for solving
LWE. Cryptography, 5(4), 2021. doi:10.3390/cryptography5040031.

[BHMT02] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum
amplitude amplication and estimation. Contemporary Mathematics, 305:53–74,
2002. doi:10.1090/conm/305.

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanalysis of hash
and claw-free functions. In Cláudio L. Lucchesi and Arnaldo V. Moura, editors,
LATIN’98: Theoretical Informatics, pages 163–169, Berlin, Heidelberg, 1998.
Springer Berlin Heidelberg. doi:10.1007/BFb0054319.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the
parity problem, and the statistical query model. Journal of ACM, 50(4):506–
519, jul 2003. doi:10.1145/792538.792543.

[BTV16] Sonia Bogos, Florian Tramér, and Serge Vaudenay. On solving LPN using
BKW and variants. Cryptography and Communications, 8:331–369, 2016.
doi:10.1007/s12095-015-0149-2.

[Cry06] Mary Cryan. Probability and computing: Randomized algorithms and
probabilistic analysis. Bulletin of Symbolic Logic, 12(2):304–308, 2006.
doi:10.1017/S107989860000278X.

[DTV15] Alexandre Duc, Florian Tramèr, and Serge Vaudenay. Better algorithms for
LWE and LWR. In Elisabeth Oswald and Marc Fischlin, editors, Advances
in Cryptology – EUROCRYPT 2015, pages 173–202, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg. doi:10.1007/978-3-662-46800-5_8.

[EHK+18] Andre Esser, Felix Heuer, Robert Kübler, Alexander May, and Christian
Sohler. Dissection-BKW. In Hovav Shacham and Alexandra Boldyreva,
editors, Advances in Cryptology – CRYPTO 2018, pages 638–666, Cham, 2018.
Springer International Publishing. doi:10.1007/978-3-319-96881-0_22.

[GJL14] Qian Guo, Thomas Johansson, and Carl Löndahl. Solving LPN using covering
codes. In Tetsu Iwata and Palash Sarkar, editors, Advances in Cryptology
- ASIACRYPT 2014, volume 8873, pages 1–20, Germany, 2014. Springer.
doi:10.1007/s00145-019-09338-8.

[GJMS17] Qian Guo, Thomas Johansson, Erik Mårtensson, and Paul Stankovski. Coded-
BKW with sieving. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances
in Cryptology – ASIACRYPT 2017, pages 323–346, Cham, 2017. Springer
International Publishing. doi:10.1007/978-3-319-70694-8_12.

[GJS15] Qian Guo, Thomas Johansson, and Paul Stankovski. Coded-BKW: Solving
LWE using lattice codes. In Rosario Gennaro and Matthew Robshaw, editors,
Advances in Cryptology – CRYPTO 2015, pages 23–42, Berlin, Heidelberg,
2015. Springer Berlin Heidelberg. doi:10.1007/978-3-662-47989-6_2.

https://doi.org/10.1007/978-3-642-54631-0_25
https://doi.org/10.1007/978-3-642-54631-0_25
https://doi.org/10.1007/978-3-031-30589-4_8
https://doi.org/10.1007/978-3-031-30589-4_8
https://doi.org/10.3390/cryptography5040031
https://doi.org/10.1090/conm/305
https://doi.org/10.1007/BFb0054319
https://doi.org/10.1145/792538.792543
https://doi.org/10.1007/s12095-015-0149-2
https://doi.org/10.1017/S107989860000278X
https://doi.org/10.1007/978-3-662-46800-5_8
https://doi.org/10.1007/978-3-319-96881-0_22
https://doi.org/10.1007/s00145-019-09338-8
https://doi.org/10.1007/978-3-319-70694-8_12
https://doi.org/10.1007/978-3-662-47989-6_2

22 Optimizing c-sum BKW and Faster Quantum Variant for LWE

[GvVW17] Florian Göpfert, Christine van Vredendaal, and Thomas Wunderer. A hybrid
lattice basis reduction and quantum search attack on LWE. In Tanja Lange
and Tsuyoshi Takagi, editors, Post-Quantum Cryptography, pages 184–202,
Cham, 2017. Springer International Publishing. doi:10.1007/978-3-319-5
9879-6_11.

[HGJ10] Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard
knapsacks. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT
2010, pages 235–256, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.
doi:10.1007/978-3-642-13190-5_12.

[KF15] Paul Kirchner and Pierre-Alain Fouque. An improved BKW algorithm for
LWE with applications to cryptography and lattices. In Rosario Gennaro
and Matthew Robshaw, editors, Advances in Cryptology – CRYPTO 2015,
pages 43–62, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg. doi:
10.1007/978-3-662-47989-6_3.

[KP20] Iordanis Kerenidis and Anupam Prakash. Quantum gradient descent for
linear systems and least squares. Phys. Rev. A, 101:022316, Feb 2020. doi:
10.1103/PhysRevA.101.022316.

[Kup13] Greg Kuperberg. Another subexponential-time quantum algorithm for the
dihedral Hidden Subgroup Problem. In Simone Severini and Fernando
Brandao, editors, 8th Conference on the Theory of Quantum Computa-
tion, Communication and Cryptography (TQC 2013), volume 22 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 20–34, Dagstuhl,
Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.TQC.2013.20.

[LF06] Éric Levieil and Pierre-Alain Fouque. An improved LPN algorithm. In
Roberto De Prisco and Moti Yung, editors, Security and Cryptography for
Networks, pages 348–359, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.
doi:10.1007/11832072_24.

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-
based encryption. In Topics in Cryptology – CT-RSA 2011, pages 319–339,
Berlin, Heidelberg, 2011. Springer. doi:10.1007/978-3-642-19074-2_21.

[LY22] Hanlin Liu and Yu Yu. A non-heuristic approach to time-space tradeoffs
and optimizations for BKW. In Shweta Agrawal and Dongdai Lin, editors,
Advances in Cryptology – ASIACRYPT 2022, pages 741–770, Cham, 2022.
Springer Nature Switzerland. doi:10.1007/978-3-031-22969-5_25.

[LZ19] Qipeng Liu and Mark Zhandry. On finding quantum multi-collisions. In Yuval
Ishai and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT
2019, pages 189–218, Cham, 2019. Springer International Publishing. doi:
10.1007/978-3-030-17659-4_7.

[NPS20] María Naya-Plasencia and André Schrottenloher. Optimal merging in quantum
k-xor and k-sum algorithms. In Anne Canteaut and Yuval Ishai, editors,
Advances in Cryptology – EUROCRYPT 2020, pages 311–340, Cham, 2020.
Springer International Publishing. doi:10.1007/978-3-030-45724-2_11.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Proceedings of the Thirty-Seventh Annual ACM Symposium
on Theory of Computing, STOC 2005, pages 84–93, New York, NY, USA, 2005.
Association for Computing Machinery. doi:10.1145/1060590.1060603.

https://doi.org/10.1007/978-3-319-59879-6_11
https://doi.org/10.1007/978-3-319-59879-6_11
https://doi.org/10.1007/978-3-642-13190-5_12
https://doi.org/10.1007/978-3-662-47989-6_3
https://doi.org/10.1007/978-3-662-47989-6_3
https://doi.org/10.1103/PhysRevA.101.022316
https://doi.org/10.1103/PhysRevA.101.022316
https://doi.org/10.4230/LIPIcs.TQC.2013.20
https://doi.org/10.4230/LIPIcs.TQC.2013.20
https://doi.org/10.1007/11832072_24
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-031-22969-5_25
https://doi.org/10.1007/978-3-030-17659-4_7
https://doi.org/10.1007/978-3-030-17659-4_7
https://doi.org/10.1007/978-3-030-45724-2_11
https://doi.org/10.1145/1060590.1060603

Jinzheng Cao, Qingfeng Cheng, Jian Weng 23

[Sag] SageMath. Accessed on June 10, 2024. URL: https://www.sagemath.org/i
ndex.html.

[ZJW16] Bin Zhang, Lin Jiao, and Mingsheng Wang. Faster algorithms for solving LPN.
In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology –
EUROCRYPT 2016, pages 168–195, Berlin, Heidelberg, 2016. Springer Berlin
Heidelberg. doi:10.1007/978-3-662-49890-3_7.

A Evaluation of c-sum solver

1 2 3 4

stripe stripe

0

10

20

1 2 3

10

20

30

40

Figure 5: Distribution of errors

We present experimental results to verify the basic assumptions to support our analysis.
While we have discussed using c-sum solver for LWE by combining multiple samples
and proposed a time-memory trade-off to evaluate its efficiency, an important basis of
the algorithms is the Independence Heuristic. In studies of LPN, the heuristic is often
recognized, and the dependent samples after previous c-sum stripes do not explicitly affect
the behavior of elements of samples in the next stripe. In the LWE problem, we also
need this assumption to ensure the success probability and input sample size are correctly
estimated. Furthermore, we need to verify the overall success probability after a few
stripes, and expect that different stripes present similar success rates as a result of the
Independence Heuristic.

Table 5: Success rate of BKW reduction
q = 23, a = 4, b = 4, c = 3 q = 31, a = 4, b = 4, c = 3

stripe success rate prediction stripe success rate prediction

N = 660
1 0.85

0.8 N = 1200
1 0.92

0.92 0.74 2 0.85
3 0.79 3 0.93
4 0.81 4 0.86

N = 650
1 0.54

0.5 N = 1180
1 0.45

0.52 0.55 2 0.61
3 0.58 3 0.55
4 0.56 4 0.46

N = 640
1 0.22

0.2 N = 1170
1 0.29

0.32 0.23 2 0.38
3 0.20 3 0.21
4 0.21 4 0.32

We first implement the c-sum algorithm in sage [Sag], and test the probability of
recovering solutions in multiple stripes. A solution consists of a list of N single solutions.
We run a BKW sample reduction process to test the assumption. For each parameter
setting, we repeat 200 tests. The frequencies of finding enough single solutions in different

https://www.sagemath.org/index.html
https://www.sagemath.org/index.html
https://doi.org/10.1007/978-3-662-49890-3_7

24 Optimizing c-sum BKW and Faster Quantum Variant for LWE

stripes are listed in Table 5. The experimental results match with the predicted success
probability in most cases. We also find that success rates in different stripes are all similar
to the theoretical value, indicating that the generated samples by c-sum solver can be
treated as independent. This agrees with the Independence Heuristic.

We also verify the behavior of error terms in the process of BKW sample reduction. In
theory, the variant of errors σ grows to

√
cσ in every c-sum stripe. Our experiment set the

initial error rate α = 0.05, and monitor the new error after every stripe. The input sample
size is 2000. In our experiments, the error terms still follow the claim for more than one
stripes. We can assume that the dependency in the reduced samples has a relatively small
impact on the error terms. The results are shown in Figure 5.

	Introduction
	Preliminaries
	LWE
	Statistics
	Quantum computing

	New c-Sum BKW Complexity Trade-off and Optimization
	 Review of c-sum algorithm
	 New complexity trade-off in classical model
	Complexity trade-off in quantum model

	Quantum Meet-in-the-Middle in BKW Algorithm
	MitM c-sum solver in BKW
	Quantum MitM-BKW algorithm
	 Performance evaluation and application
	 Discussion: Solving c-sum via collision search

	Conclusion
	References
	Evaluation of c-sum solver

