TACR Communications in Cryptology https://doi.org/10.62056 /ay4fbn2hd

ISSN 3006-5496, Vol. 1, No. 3, 25 pages. R) Chock for updates

Memory adds no cost to lattice sieving for
computers in 3 or more spatial dimensions

Samuel Jaques

University of Waterloo, Waterloo, Canada

Abstract. The security of lattice-based crytography (LWE, NTRU, and FHE)
depends on the hardness of the shortest-vector problem (SVP). Sieving algorithms
give the lowest asymptotic runtime to solve SVP, but depend on exponential memory.
Memory access costs much more in reality than in the RAM model, so we consider a
computational model where processors, memory, and meters of wire are in constant
proportions to each other. While this adds substantial costs to route data during
lattice sieving, we modify existing algorithms to amortize these costs and find that,
asymptotically, a classical computer can achieve the previous RAM model cost of
20-2925d+0(d) ¢4 gieve a d-dimensional lattice for a computer existing in 3 or more
spatial dimensions, and can reach 20-3113d+o(d) 1) 9 spatial dimensions, where “spatial
dimensions” are the dimensions of the physical geometry in which the computer
exists.

Since this result implies an increased cost in 2 spatial dimensions, we make several
assumptions about the constant terms of memory access and lattice attacks so that
we can give bit security estimates for Kyber and Dilithium. These estimates support
but do not increase the security categories claimed in the Kyber and Dilithium
specifications, at least with respect to known attacks.

1 Introduction

Major families of modern cryptography — learning-with-errors, NTRU, and current fully
homomorphic encryption — rely on the hardness of lattice problems. While these lattice
problems are asymptotically hard, we need explicit parameters to resist current and future
attacks by powerful adversaries. Two of the new standards for post-quantum cryptography
from the National Institute for Standards and Technology (NIST), Kyber and Dilithium
(aka ML-KEM [Nat23b] and ML-DSA [Nat23c]) attempt a precise security analysis based
on the hardness of an attack using the shortest vector problem (SVP) [ABD*21, BDK*21].
In particular, they estimate the cost based on sieving algorithms, which require
exponentially large memory, and measure costs in the RAM model. The true cost of large
scales of memory is a contentious topic with a long history of debate. In this paper we
take the position that the RAM model is inappropriate for large-scale algorithms. Large
memories create extra costs in terms of signal latency to travel across the memory device,
the energy to send such signals, the construction cost for the wires to carry those signals,
the construction cost for the bits of memory, and the opportunity cost for all of the above.
To account for these costs, we make the following basic assumptions:

Assumption 1. Computing machines should have constant ratios of processors to memory
to wires.

11
372,
contained within a radius r contains at most r51°1) processors.

Assumption 2. There is a constant A € [z, 5] such that any machine that is physically

E-mail: sejaques@uwaterloo.ca (Samuel Jaques)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-06-23 Accepted: 2024-09-02

https://doi.org/10.62056/ay4fbn2hd
https://crossmark.crossref.org/dialog/?doi=10.62056/ay4fbn2hd&domain=pdf&date_stamp=2024-10-03
https://orcid.org/0000-0003-0966-8114
mailto:sejaques@uwaterloo.ca
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Memory adds no cost to sieving in 3+ dimensions

The first assumption is something of folklore in the community, expressed succinctly in
[BL13]: “[A chip with many transistors idle] is obviously highly suboptimal: for essentially
the same investment in chip area one can build a much more active chip that stores the
same data and that at the same time performs many other useful computations.” It is a
natural consequence of the area-time model of computation (see [BL13, BK81, Tho80])
and we explore this in more detail in Section 2.

The second point is trivially true because we live in three-dimensional space, implying
A > % In many practical instances this can be ignored because the constant factors
(hidden in the o(1)) make it irrelevant, but we claim that at cryptographic lattice sieving
scales, we cannot ignore this term. We particularly focus on A = % as the most realistic
case, where computers are fundamentally two-dimensional objects because of the need for
heat dissipation. A value between % and % represents an architecture where the computer
is mostly contained to 2 dimensions, but can still grow somewhat in the other dimension
(albeit more slowly).

In the RAM model, the best classical sieve uses 20-20754+o(@) memory and has a cost
of 20:2925d+0(d) Najvely applying the constraints implied by our two assumptions, we
might assume each operation includes a memory access of cost 20-20754d+0(d) anqd arrive
at a total cost of 20-396d+0(d) in two dimensions. However, existing lattice sieves were
designed and parameterized for the RAM model. As pointed out in [Ber05] and applied to
isogeny cryptography in [LWS21], improvements to parallel and serial algorithms need not
correspond to each other. If we account for the memory costs in the algorithm design, can
we avoid these costs?

In [BGJ15] they construct a recursive sieve, and using one level of recursion it costs
20:349d+0(d) i the RAM model, which [Duc18] conjectured to be achievable with a local
architecture. Indeed, for the hardware, implementation, and parameter range of the GPU-
based implementations in [DSv21], they found that one level of the [BGJ15] algorithm was
more effective than the algorithm which is best in the RAM model [BDGL16]. Both sieves
involve two key steps: sort vectors into “filter buckets”, then exhaustively search pairs in
the filter buckets. It is somewhat clear that this can be spatially local if the size of each
filter bucket is the square root of the size of the overall list: if the list has size L, the time
to sort it on a two-dimensional architecture is L'/2T°() but this is also the time for a
fully parallelized exhaustive search of all pairs of vectors in a bucket of size L'/2. Thus,
the sort adds no time asymptotically.

Recent comments [Nat23a, Sch23] make this observation, and [Nat23a] note that
adjusting the parameters of [BDGL16] and [BGJ15] can give similar strategies for d-
dimensional architectures.

1.1 Contributions

Asymptotic Results. We extend the ideas of these recent observations by combining
the random product codes from [BDGL16] with the recursive strategy of [BGJ15]. Without
the recursion, this captures the result of [Nat23a], and we show that this is the optimal
parameterization of [BDGL16] under these memory constraints.

With the recursive strategy, we can go further and reach a cost of

1LA N d+o(d)
max {\/§ \/Z } _ 9max{0.2925,0.2075(1+A)}(d+o(d)) ~ 90.3113d+0(d) (1)
2’V 3 -

In particular, this is 20-31134+0(d) i two dimensions and 20-2925¢+0(d) iy three dimensions.
This “cost” is in area-time (or higher-dimensional analogues of area), and with 20-2075d+o(d)
processors this implies a runtime of 2max{0.085,0.2075A}d-+o(d)

We argue that this is essentially optimal: the RAM model cost of 20-2925d+0(d) and
the cost of 20-2075(1+A)d+o(d) 14 gort the list of vectors, should act as lower bounds on

Samuel Jaques 3

the cost of a sieve in area-time. Without a more fundamental breakthrough in sieving
algorithms, we should not expect to beat the RAM model cost, and the layout of vectors
in memory ought to be random enough that a sieve requires at least one sort’s worth of
data movement.

Security of Kyber and Dilithium. We then modify the scripts from [AGPS20]
to estimate the costs of the new recursive algorithm in 2 dimensions'. Here we directly
optimize the parameters (namely, filter bucket strength) instead of relying on the asymptotic
analysis. The resulting costs are greater than the estimates used in [ABD 21, BDK*21]
by 3, 8, and 23 bits for Kyber 512, 768, and 1024, respectively. This suggests security was
slightly underestimated, though the estimates from [ABD*21, BDK'21] do not include
the advances in [MAT22], which we include thanks to an update to [AGPS20]?. Compared
to the RAM model estimates from the updated estimator, memory adds a cost of about
10-31 bits, depending on the lattice size.

Specifically, we estimate 242 instead of 2137 for the cost of the sieving subroutine of the
primal attack against Kyber-512, suggesting the full primal attack will cost 2'%® operations
(if no other aspect of the attack changes). This is almost exactly equal to NIST’s estimate
of 2169 [Nat23a].

These estimates are based on a cost of 27128 N3/2 to route or sort N bits of data. The
constant 27128 is fairly arbitrary, so we also ran cost estimates with a constant of 1. The
resulting costs were about 16-29 bits higher, depending on the dimension of the lattice.

Overall, our analysis increases the bit security of the existing parameter choices, but
not enough to change the NIST security category for any parameter set.

Disclaimer. We also emphasize that these conclusions apply based on an analysis of
memory in current lattice sieves. Future work may find better algorithms for the shortest-
vector problem, and the security of LWE in general is much more complex; lattice sieving
is just one step. Rather, this work is better seen as an upper bound on the overhead
of memory in lattice sieving: asymptotically only 2°0-9194+o(@) and only 10-31 bits for
cryptographically relevant sizes.

1.2 Open problems

This paper only analyzes 2-sieves, but these can be generalized to k-sieves [HK17, HKL18],
which have a higher cost in the RAM model but use less memory. One point on the time-
memory tradeoff for 3-sieving in the RAM model is 0.305d + o(d) time with 0.1907d + o(d)
memory [CL23]. If we can reach the same conclusion as for 2-sieving — that the cost
exponent is the maximum of the RAM model time exponent, and (1+A) times the memory
exponent — then this would be cheaper than 2-sieving. A similar analysis could be done
for quantum k-sieves [KMPM19].

An orthogonal advance in LWE attacks is in [Ber23], based on improved meet-in-the-
middle attacks. We suspect that our improved memory-aware sieving can be combined
straightforwardly with these techniques.

Giving concrete estimates for these attacks is a computational challenge itself, and we
had to cut some corners to make the estimation computations feasible. Better optimization
of parameters might reduce the concrete bit security slightly, while incorporating the
non-randomness overhead from [Duc22] might increase bit security slightly.

1 Available at https://github.com/sam-jaques/sieve-memory-estimates
2Available at https://github.com/jschanck/eprint-2019-1161/commit/a4d3a53fe1f428fe3b4402b
d63eel64babceb71c

https://github.com/sam-jaques/sieve-memory-estimates
https://github.com/jschanck/eprint-2019-1161/commit/a4d3a53fe1f428fe3b4402bd63ee164ba6cc571c
https://github.com/jschanck/eprint-2019-1161/commit/a4d3a53fe1f428fe3b4402bd63ee164ba6cc571c

4 Memory adds no cost to sieving in 3+ dimensions

1.3 Outline

We describe our memory assumptions in more detail in Section 2. We then describe
existing lattice sieves in Section 3, and explicitly incorporate memory access costs to this
analysis and then reparameterize them. Section 4 then gives our new recursive algorithm
which gives the lowest asymptotic costs. Finally in Section 5 we compute concrete costs
for Kyber and Dilithium.

Throughout we will extend the range of A down to 0 and derive results for A € [0, 3].
Values of A < % correspond to non-physical spatial layouts, but we do this mainly because
our methods extend straightforwardly, and this allows us to check that we match RAM

model costs as A — 0.

2 Memory Costs

Our main goal is a more realistic cost accounting than the RAM model. In the RAM model,
our computer has an instruction set that includes read and write access to fixed-length
words from a memory of unbounded size. We instead assign a cost N2 to access memory
if the memory has size N, based on the parameter A € [0, %] defined in Assumption 2.

‘There are many reasons to justify this cost, especially at the scales we will consider
where memory may be 2°° bits or more. Such reasons include:

e Latency: Each bit in memory has some physical size, implying the N bits of
memory occupy a physical space with radius at least N1/P+o(1) (if the memory is
D-dimensional). The average-case time for a signal to propagate from a random bit
of memory to a fixed location is proportional to this radius.

e Energy: Again relying on the size bounds, a signal in a wire will attenuate as it
propagates. The total energy lost will be proportional to the length of the wire.

e Area-time: The computer’s builder can decide to purchase processors instead of
memory or wires, at a fixed (albeit large) constant ratio. Thus, there is a constant
opportunity cost to use any component (e.g., fixed lengths of wires, fixed amounts of
memory, single processors) for one time step. More concretely, rather than building
a wire of length N1/2+°() we could have built N1/2+°() processors and used them
instead.

We will dwell on the area-time cost. Thinking in these terms, a sensible architecture
ought to have the number of processors, amount of memory, and amount of wires all roughly
proportional to each other. However, this raises connectivity issues: can all processors
connect to each other? With P processors, all-to-all connectivity requires P2+°(1) wires.
Limited connectivity uses fewer wires, but if each processor has on average one non-local
connection (say, length Pato(l) to reach a processor on the other side of the device), the
total length of all wires still exceeds P asymptotically.

Thus, we only meet our goal of a constant processor-to-wire ratio with local connections
between processors. This justifies a mesh architecture: we have P processors, each with
O(1) bits of memory that it can access locally, and O(1) connections to other processors
that are physically nearby. The mesh could be three-dimensional, but more likely it would
be two dimensional because of heat dissipation: heat must dissipate out of the surface area
of the machine, which only grows proportional to the square of the machine’s radius.

In this paper we will mainly think in terms of the mesh architecture. The memory
access cost is much more direct now: based on the constraint of Assumption 2, the physical
radius of the mesh will be proportional to P® (the average length of the shortest path
between two nodes), so to move memory from one part of the machine to another the signal
must pass through P2°() processors, each of which performs some computation to pass

Samuel Jaques 5

the signal along. Setting A = 0 negates these latency concerns, while A = % corresponds to

a three-dimensional architecture and A = % corresponds to a two-dimensional architecture.

2.1 Memory access by sorts.

A common technique in these mesh architectures is a memory access by a sort. Suppose
each processor has one item of a list in its local memory. Using techniques like [SS86]
or [Kun87], the machine can sort the list with P*+2+°(1) operations in time PA+°(). This
also works if each processor has O(1) items. We stretch the definition somewhat and allow
a logarithmic number of connections for A = 0, which allows sorting in poly-log time (e.g.,
with a bitonic sort). Through the rest of this paper, this sort cost will be the only cost
involving A, allowing us to easily extend the analysis to unrealistic A € [0, %)

We can use a sort so that all processors can simultaneously have random access to such
a list. The technique is straightforward: each processor j takes its request address ¢ and
creates a tuple (¢,0,request). It also takes its item ¢; from the list and creates a tuple
(4,4, mem). Then the processors sort all of these tuples by the first component, breaking
ties with the last component. This ensures that a request tuple with an address i will
be sorted to be physically near the memory tuple (i, ¢;, mem). Then the processor with
both tuples in its local memory can copy the item ¢; from one tuple to the other. Once all
processors do this (simultaneously), they reverse the sort so that all request tuples are
returned to the respective processor.

There are some complications to ensure multiple accesses to the same memory item
are handled gracefully, but this is asymptotically solved (e.g., [BBG113]).

2.2 Sort Lower Bound.

We prove a brief folklore fact about A, namely that if the amount of wire is proportional
to the number of processors P, then the radius of the mesh (the number of hops between
nodes) is proportional to the physical radius of the device. While lower bounds on sorts in
a mesh are well-known (and obvious, since it would take PA+e() hops simply to pass a
message from one side to the other), we will show that adding extra wires will not improve
the time.

This is almost identical to Theorem 1 from [Wie04], with the main difference that we
focus on the cost of a random access pattern instead of a worst-case access pattern. This
is important for lattice sieving as we expect the routing necessary to move lattices to their
filter bucket will behave like a random permutation.

Define a “parallel architecture” as a sequence of machines, each with P processors, from
P =1 to co. Each machine has a specific physical layout and connectivity. To slightly
refine the o(1) term in Assumption 2, here we define A such that in any machine, the
maximum number of processors in a radius 7 around any point is at most Car'/2 for a
constant C'a that may depend on A.

We let tg be a finite time step and suppose that each wire (i.e., a connection between
two processors) can carry one message between those processors in each time step. The
routing task we want to solve is that each processor is given a message and the address
of another processor, and we want to send all of these messages, with the promise that
each address is unique. This is at least as hard as a sort, as the method given previously
reduces this problem to sorting.

Proposition 1. Suppose we have a parallel architecture with wires whose total length is
W. Then for all but a negligible fraction of inputs, the routing task defined above requires
at least P2+ /T time steps.

Proof. At each time step, each wire in the machine carries at most one message. We can
define the distance each message travels as the sum of all lengths of wires that carry that

6 Memory adds no cost to sieving in 3+ dimensions

message at some time step. It’s clear that if a message travels from processor ¢ to j, this
value must be at least as large as the spatial distance between ¢ and 5. We can then reason
about the sum of all of these distances, denoted D.

Our first claim is that for all but a negligible fraction of address patterns for the
messages, D > P1+A+o() - Consider the set S, of all inputs such that D < P'*t2-¢ for
some € > 0. Divide the messages into two types: those that travel a distance greater than
L, and those travelling less than L. We will set L = P3, and further define Se.n as the set
of all inputs where at most n messages travel further than L. This means |S¢ | < [Se /|
for any n < n'.

Then we (over)count how many possible patterns of addresses produce this. First, we
choose which of the P messages will have lengths at least L — there are (5) choices. Then
for each of the P — n messages travelling a distance less than L, there are at most CL'/4

. P— . . .
processors it could reach. Thus, there are at most (CLl/ A) " choices for destinations
for these messages. For the remaining messages of distance at least L, they might reach
any processor, so there are at most P™ choices. Together this gives

|Sen] < (J;) P (CLYA)P—n, (2)

Since |Se,y,| increases in n, we can bound

Nmazx

P
< < Plmaz Ll/A P—nm,,,m.
|Se| > § |S€,n‘ = Nmax (nmam> (C) (3)

n=0

To find ez, we see that D > Ln, since there are at least n messages travelling a
distance L. We assumed D < P'*2~¢ and we chose L = P3, giving nmar < pA-s,

Finally, we know that there are P! possible patterns of addresses, as each one induces
a unique permutation. Thus, the fraction of messages with D < P'*2~¢ is at most

Noma (n P)‘anuz (CVLI/A)P—anC e

— = exp (S Plog P+ o(P)) (4)

using Stirling’s inequality. This decays exponentially in P.

Now we argue that WT > D. We can let L; be the sum of lengths of all wires carrying
a message at time step . Because a wire cannot carry two messages in the same time step,
we see that the sum of L; over all time steps must equal D, the total distance travelled by
all messages.

Since each L; is upper-bounded by W if we use T time steps than we get a bound of
WT > D. However, since the reasoning above shows that D > PT2+o(1) for all but a
negligible fraction of inputs, this gives the result. O

Proposition 1 shows that even if we have some long-range connections, and even if
we ignore latency, the time to pass messages arbitrarily across the network will grow
proportional to PA1t°(1) unless the machine is, asymptotically, almost entirely made of
wires. In our cost model, such a machine is suboptimal, and so the time to complete a
routing is lower-bounded by the physical radius of the machine.

3 Lattice Sieving

3.1 Background

Lattice Cryptography A lattice in R™ is a discrete subgroup of R™, or equivalently the
set of all integer linear combinations of a set of linearly independent vectors B € R™. We
call such a set a basis, and this is the typical representation of a lattice for a computer.

Samuel Jaques 7

Given a lattice L as a basis B, the shortest vector problem (SVP) asks to find the
shortest vector in L. Solving this exactly is NP-hard.

Lattice cryptography includes learning-with-errors (LWE) and NTRU, and NIST
selected two LWE schemes (Kyber [ABD"21] and Dilithium [BDK*21]) and one NTRU
scheme (Falcon [FHK™20]), for standardization. LWE cryptography relies on the hardness
of the LWE problem, which has a close connection to SVP: solving LWE reduces to
approximately solving SVP, and approximately solving SVP will solve the LWE problem
(albeit with a gap between the respective approximation factors). In fact, despite a suite of
different algorithms to attack LWE [APS15], Kyber and Dilithium both base their security
around the hardness of an attack based on solving SVP.

In brief, the lattice attacks on LWE work by first constructing a lattice from the
LWE instance where a moderately short vector solves LWE. A technique known as BKZ
(e.g., [CN11]) finds moderately short vectors by solving exact SVP in blocks of much
smaller dimension. In this work we only focus on the problem of solving SVP exactly in
these blocks, so-called “core-SVP”.

There are two main classes of algorithms to solve SVP: enumeration and sieving. In
the RAM model, for a lattice of dimension d, enumeration runs in time 2©(¢1°24) but with
poly(d) memory, while sieving runs in time 20(d) but uses 294 memory. We will only
consider sieving.

Lattice Sieving Modern lattice sieving is a complex process with many optimizations;
see e.g. [ADHT19, MAT22, DSv21]. In this work we are mostly interested in asymptotics,
and so we simplify the description of sieving algorithms for ease of analysis.

As a simplified explanation of the basic idea from [NVO08], all two-sieving iterates
through a series of lists of lattice vectors Lo, L1,.. ., as follows:

1. Produce an initial list £y of random lattice vectors.
2. Repeat for i =0,1,2,... until the vectors in £; are small enough:

(a) Find all reducing pairs of vectors v, w in £;: vectors such that ||[v —wl|| < v|v].

(b) For each reducing pair v, w, insert the difference v —w into £;11.

This process is parameterized by the sizes of the lists £;, and the factor 7. Since the
lengths of vectors decreases exponentially with the number of lists, the number of lists is
only polynomial in the dimension, and the dominant term in the cost is finding the close
vectors. Thus, we parameterize so that « is as close to 1 as possible.

The analysis relies on Heuristic 1, which breaks down as the vectors in the list become
smaller, but seems to hold for the initial iterations.

Heuristic 1. The vectors in L; are uniformly distributed on a (d — 1)-dimensional
hypersphere (i.e., the surface of a d-dimensional ball).

This implies that two vectors are reducing if and only if the angle between them is
less than 7/3. This means the probability of two vectors being close is sin(7/3)4To(d) =
2-0-2075d+0(d) ' Thjg fact provides some justification for the heuristic: the probability that
two vectors will be at an angle closer than 7/3 decreases exponentially in the dimension.
Thus, if a pair of vectors v and w do reduce each other, we expect ||[v — w| & 7||v| with
high probability. Hence, it seems reasonable to assume that vectors in £; all have the
same length.

Since the number of pairs of vectors in L; is (‘%‘) = |Li|2+°(1), we expect the number
of reducing pairs in £;, and hence the size of £;1, to be |£1-|2+°(1)2’0'2075d+0(d). If this is
less than |£;], the lists shrink exponentially with each round, and if it’s greater than |L£,],
they grow exponentially. Neither is effective, so we choose |L;| = 20-2075d+0(d) g4 the lists

8 Memory adds no cost to sieving in 3+ dimensions

stay at approximately the same size. We will denote this size with L. We will use £ to
refer to the list itself.

Already, this approach has a lower bound of 4) in memory and time, simply
to construct each list of vectors. All remaining design choices go into the methods to
find reducing pairs of vectors. For comparison, a brute-force search (as in the original
work [NV08]) would take time L>+°(1) = 20-415d+0(d) "and we hope to improve on this.

90.2075d+-o(

3.2 Locality Sensitive Hashing

In this section we will explain and describe the state-of-the-art algorithm from [BDGL16].
Our contribution will be an explicit accounting of the memory routing costs in each step.

Many cryptographic problems look like collision-finding algorithms, and a productive
strategy is divide-and-conquer: since the cost is quadratic to compare all pairs of elements
in a list, we are better off dividing the list into many sub-lists and looking for pairs in each
sublist. This needs to be done in such a way that collisions end up in the same sub-list.
Lattices make this difficult because we seek vectors which are geometrically close, but not
exactly equal. We need a locality sensitive hash.

Introduced to lattice sieving in [Laal5], with a locality sensitive hash we collect vectors
with the same hash, which will probably be close to each other, into smaller lists (or
“buckets”). We can generalize this to a collection of “filters” (locality sensitive functions
with boolean output), one for each bucket, so that a vector may end up in multiple buckets.
A natural type of filter is to choose another vector ¢ and put all vectors from £ which are
sufficiently close to ¢ into a bucket labelled by c.

Random product codes [BDGL16] provide an efficient method to perform this step,
and state-of-the-art classical and quantum lattice sieves use them. A random product code
defines a set C of random vectors such that the time to find all vectors ¢ € C which are
close to a fixed vector v is proportional to the number of vectors in C' which are close to
v, not the size of C itself (up to an additive subexponential factor; see [MAT22, Duc22]).

The sieve uses a filter for each codeword ¢, with parameter o. Given a codeword c, a
list vector v will pass the filter for c if |c - v| > a.

Suppose that |C] = L€ for some ¢. We assume the codewords are, like vectors in
L, uniformly distributed on the surface of a d-dimensional sphere. Thus, we can define
a such that L=¢ = (1 — a?)~ %D ig the probability that two random vectors are a-
close [BDGL16]. After iterating through £ to fill the filter buckets, we expect each bucket
to contain L - L=% = L'~ vectors on average, and each vector in £ to be placed in L°~®
buckets. This means the cost to fill all the buckets is

Lo max{re~e, oW} (5)
while the amount of memory to store all the buckets and their contents will be

Lc+1fa+o(1)' (6)

We will also want to sort the buckets in some way, so that either the vectors in each
bucket are physically close, or that we know which memory addresses correspond to which
bucket. Such a sort will thus cost [Kun87]

maX{L1+A+O(1)7L(1+A)(1+C_a)+o(1)}. (7)

The reason for the first term is that if we have ¢ — a < 0 then some vectors will not end
up in any buckets, but we will still need to sort the output from all input vectors, even if
they are not in any bucket.

Samuel Jaques 9

Finding all solutions. Broadly, we have two main approaches to find all reducing pairs
from the bucket. In a “vector-first” approach, we can iterate over each vector v in L,
decode to each codeword c close to v, then compare v to all w in the filter buckets for each
c. Alternatively, in a “bucket-first” approach, we iterate over all filter buckets and compare
all pairs of vectors in each filter bucket. In the RAM model these lead to equivalent costs,
and the vector-first approach clearly requires more long-range memory access, so we will
only consider the bucket-first approach.

We now consider how many solutions we find. Specifically, for x € [0, %] and a € [0, /K],
we want the probability that two vectors v and w satisfy (v,w) > &, given that they
are both a-close to a uniformly random codeword c¢. We define a variable ¢ (implicitly a
function of a and «) such that L™! equals this probability. From [BDGL16], it can be

expressed as:3:
—d/24+o(d
Lt (1—a?)? /2+0(d) -
(1—-k)(1+4+k—2a?) '
Whatever the method, for each codeword, we will end up checking all pairs of vectors
which are close to the codeword. That means we check

Lc+2(1—a)+o(1) (9)

pairs of vectors, so the expected number of reducing pairs is

LC+2(170.)7t+O(1). (10)

We will need L reducing pairs to replenish the list, as we want each subsequent list to have
the same size. It could be that we choose ¢ such that Let2(1=a)=t+o(l) < [in which case
we would select a different random product code and try again. Choosing codes uniformly
at random ensures that each reducing pair is independently likely to be found by each code,
so this becomes a coupon collector type of problem, with at worst a log-linear overhead
compared to the minimum number of repetitions, which will be

L 2a+t—1—c+o(1)
L2+c72a7t+o(1) =L rot. (11)

Putting this all together, the cost to sieve is
maX{l,L2a+t_l_C+o(l)} <L1+A+o(1) + L(1+A)(1+c—a)+o(l) + LCBucket)] (12)

where Bucket is the cost to search each bucket. The remainder of the paper will focus on
different approaches to search the buckets.

To clarify some points for readers familiar with “standard” lattice analyses, one can
show that in the RAM model several factors cancel out in the analysis and imply that the
cost is the same whether we use one large code or repeat the process with many small codes
(at least, within a certain range of parameters). For this reason other lattice sieve analyses
do not include a loop over multiple different codes, and assume that the initial code is
large enough to capture all solutions. This assumption increases the total memory size, so
instead we decouple these parameters, choose the filter angle and code size separately, and
repeat with new codes until we find enough solutions.

To help analyze these costs, we will use the following Lemma:

Lemma 1. With a and t defined as in Section 3.2, for A € [0,1), L+ is either non-
decreasing in o or has a local minimum in o between 0 and 1. Specifically:

e if A\ =0, L' is non-decreasing in .

30ften quoted as the probability that a codeword will be close to the two vectors of a reducing pair; a
simple application of Bayes’ rule brings it to this form.

10 Memory adds no cost to sieving in 3+ dimensions

o if k= %, then Lot > L for all c.

Proof. We can express

LAt = (Lap)T (13)
(1-r)1+k—2a?)
and simply take the derivative in terms of o. The derivative has the form
—C(20%(A— 1) + 2K — Ak — \) (14)

where C'is a non-negative function of a. We see that for A < 1, the derivative is increasing
for a > 0 with potentially one root at a = ,/%. For A <1 (specifically including

the case of A\ = 0), this root does not exist (and thus L**** is non-decreasing) if 13_—“& <A
If the root (a minimum of LA***) does exist, it is at most 1 when X < 2.
If A = 1, then the cost is non-decreasing so the minimum is at « = 0, but this is

precisely equal to (3)4/2+o(d) = L. -

3.3 Exhaustive Bucket Search

We first consider an exhaustive search, which is essentially just a reparameterization
of [BDGL16]. Each bucket has size L'~9+°() 5o it will require L2(1=®)+°() operations to
search it. We can ignore memory constraints for searching within the buckets by imagining
any arrangement of processors which admits a Hamiltonian cycle of local connections (such
as a d-dimensional mesh). Each processor holds one vector v; throughout the search, and
sends a copy of that vector to the next processor in the cycle. Once a processor compares
an incoming vector v; to its local vector v;, it sends v; to the next processor in the cycle.
After L'~oto(1) jterations, all pairs have been compared.

Theorem 1. Including the costs for memory movement, the optimal reparameterization
of the sieve of [BDGL16] achieves a cost of

JREEY d/2+o0(d)
() (15)

31+2A 4 — 4232A + 121+A

or 2r(A)d+o(d) yhere r(0) = 0.2925, r(3) = 0.3294, and r(4) = 0.3495. These costs are

obtained at o = /1 — (%)I—A and ¢ — min{(%)d/2+o(d) Jal.

Proof. Substituting a cost of L?~24+°(1) for Bucket in Equation (12) gives

max{LHAJrO(l), L(1+A)(1+c7a)+o(1)’ LC+272&+0(1)}. (16)

The middle term grows fastest in ¢ and is increasing in ¢, so we should take ¢ <
max{a, 252 (1 — a)} to ensure that the middle term is not the largest cost. On the
opposite end, if ¢ < 2a +t — 1 and we use multiple codes, the cost is non-increasing in ¢ so
we should take the maximum allowable ¢ in this regime. If ¢ > 2a 4+t — 1 and we use one
code, the cost is non-decreasing in ¢ so we should take the minimum allowable c¢. Thus, we
should set ¢ = 2a +t — 1 unless 2a + t — 1 > max{a, 252 (1 — a)}, noting that Lemma 1
implies that 2a + ¢ — 1 > a for any parameters.

If we assume 2a +t — 1 < 122(1 — a), setting ¢ = 2a + ¢ — 1 gives a total cost of
maX{Ll"'A"'O(l), L1+t+0(1) }

Otherwise, we set ¢ = %(1 —a), but then the cost is also max{L1TA+e() pl+t+o()]

If ¢ = a, the cost is L' Tt+A+o(1) This cost is greatest, so we want to avoid this regime,
but doing so requires a < %(1 —a),ora<1-—A.

Samuel Jaques 11

In all cases, the cost depends on ¢ but not a, so by Lemma 1, we want to take the
maximum possible a to minimize it. Under the constraint that a <1 — A, this gives us

a=1/1-(3)"% (17)

Substituting in these values for «, ¢, and k = % gives the main result. O

As expected, when A = 0 this matches the behaviour of the vector-first sieve and the
RAM model cost. However, the costs diverge for larger A. For A = %, the optimal « gives
buckets whose size is LzT°(1) which matches the size from [BGJ15]. For A = + for k > 2,
the costs and the algorithm itself match precisely what [DSv21] propose. That is, the
optimal parameters for sieving with GPUs were the same as the asymptotically optimal
parameters for sieving with memory constraints. This result is also in [Nat23a], and our
result shows that this is the optimal strategy for the sieve of [BDGL16].

4 Recursive Algorithm

Theorem 1 shows that the optimal buckets are exponentially large for A > 0, and thus a
recursive strategy will be more effective than it would be for the polynomial-sized buckets
in the RAM model parameterization. We can define the following problem:

Problem 1 (SphereFind(n,d, k). Let N be a list of N = n%/? vectors randomly distributed
on the surface of a sphere of d dimensions. Find all pairs of vectors v,w € N such that
(v, w) > K.

We say that a SphereFind problem is sparse if n < ﬁ This criteria ensures the
total number of solutions does not exceed N, so that we do not need extra memory to
store all the solutions.

The core subroutine of lattice sieving is solving SphereFind(%, d, %) We defined n such
that N = n%2 to avoid square roots in the notation.

We will use random products as in [BDGL16], but use a recursive strategy to search
each bucket as in [BGJ15], with renormalization as in [HKL18]. This is expressed in
Algorithm 1, which is essentially the same as Algorithm 3 in [BGJ15] except we specifically
analyze random product codes and re-order the steps to minimize memory movement.

The parameter ¢ controls how deep the recursion goes, and we will determine this later.

Strictly speaking, Algorithm 1 is not correct, because the solutions returned at each
step are pairs of projections of vectors. To fix this, we imagine each vector is stored with a
data structure that also contains some “original vector”, from the first recursive call. In
the final exhaustive search, these original vectors are compared and returned. This makes
Algorithm 1 trivially correct, i.e., all solutions returned will be reducing pairs.

Completeness. Completeness is easy to show in an asymptotic sense by noting that
there is some non-zero probability that two reducing pairs will be captured by all the
layers of filters. To bound the runtime more carefully, we consider the probability that
two vectors in an a-filter will be close to the surface of this cap.

More precisely, for two vectors v and w in a single filter bucket around a codeword c,
we can let v = a,c+ /1 — a2v’ and w = ayc + /1 — a2 w’ for unit vectors v/ and w’.
The assumption underlying Algorithm 1 is that (v,w) > & if and only (v/,w') > 'f:g:‘
Neither direction is exactly true; however, the problems only arise when (v, w) < k or a,
or «, are significant smaller than . If o, = o and «,, = « for all vectors in the filter
bucket, then Lemma 3 from [HKL18] shows that this condition is true. Because the surface
of a hyperball is exponentially larger than its interior, this is true for almost all of the
vectors in the bucket.

12 Memory adds no cost to sieving in 3+ dimensions

Algorithm 1 SphereFilter

1: Parameters: A maximum depth ¢ > 0, a filter angle « € (0, 1)

2: Input: A list N of d-dimensional vectors, dimension d, parameter x € (0, %), an
integer depth (default value 1)
Output: A list of all pairs (v, w) € N'? such that (v,w) > k.
if depth ==/ then

Exhaustively search N and return
end if
Solutions « ()

/2
while |Solutions| < (I) do

1—k2
Select a random product code C of size (1 — a?)~%/2+o(d)
10: Decode each v € A to all codewords ¢ that it is a-close to
11: Sort all pairs (v, c) by c; let B, be the set of all vectors paired with ¢
12: for all B, with ¢ € C do

© P DG W

13: Construct B, = {v — proj.(v) : v € B} and normalize all vectors in B
14: Add SphereFilter(B.,d — 1, ’f:—o‘)‘;, depth + 1) to Solutions

15: end for

16: Remove all pairs (v, w) from Solutions with (v, w) < &.
17: end while

18: Return Solutions

However, if we expand the relevant inner products, we find
(V, W) — iy
V(I -a?)(1-a3)

A “false negative” (a reducing pair that will not be found by the recursive step) would

= (v, w') (18)

imply that (v,w) =k + € but (v, w') < ’{”:Z; . If this is the case then we can rearrange
the equation above (substituting ag = /@,ay and oy = O‘”*%, the geometric and

arithmetic means) to obtain

—_ A2) 1—a2
ﬂ;—e aC; = < n a2 S a?te— S < o (19)
VI@—-a2)2—40% —4aZ 1-a I

That is, we need a? < a2 for this to hold, which implies that v and/or w are in the
interior of the filter bucket. However, the amount by which they need to be in the interior
is proportional to €, the “extra” closeness between v and w. It is exponentially unlikely for
the vectors to be in the interior of the filter buckets, but it is also exponentially unlikely
for the two vectors to be extra close to each other.

To decide if these two phenomenon cancel out such a way that Algorithm 1 succeeds,
we numerically compute the probability of false negatives in dimension 375 and find the
probability is at least 0.5 (see appendix for details), and make the following heuristic
assumption:

Heuristic 2. Given three random unit vectors v, w, and ¢ with {v,w) > K, (v, ¢) > a,
2
and (w, ¢) > «, then with v' and w' defined as above, (v, w') > {=55 with probability (1)
ind.
More intuitively, we can recall from Equation (8) that the probability that two vectors
in a single filter bucket are reducing is

<((1—a?)? >—d/2+o(d) (20)

1-k)(14+ kK —2a?)

Samuel Jaques 13

2 .
T—oz-close is

5\ 2\ 4/2+0(d)
e
1-— 21
((=)) 1)
and these are the same up to subexponential factors. Thus, the expected number of false
positives and false negatives should be subexponential in d.

and from [BDGL16] that the probability that two random unit vectors are £=2;

Parameter Choice. Starting with a fixed (ng, ko), if we choose a particular o2 € (0, 1)
2
Kog—«&

=".In

then the subproblem is SphereFind(n,d — 1, k) where n = (1 — a?)ng and k =
fact, if we recurse, these are the only parameters we will encounter:

Lemma 2. Given an instance of SphereFind(ng, ko), all sub-problems encountered in
recursive calls of Algorithm 1 are instances of SphereFind(n,d’ k) for d < d and (n,k)

such that n = (1 — x)ng and k = P=" for x € [0,min{1 — nio, Ko}l

Proof. We prove inductively, with the trivial base case being (ng, ko).

Suppose it holds up to m recursive calls, and the current problem has parameters
(n,k) = (no(1 — x), P=7). For the m + 1 call, we make filter buckets with parameter
a € [0,1], so the new n is n(1 — a?) = no(1 — z)(1 — a?) = no(1l — (z + a® — za?)). We
thus take 2’ = x + a? — za?.

The new & is

. k—a? B a? ko — (x+a? —xa?) ko —2' (22)
K = = = =
1—a? 1—a? 1—(z+ a? —za?) 1—a'

giving the result. O

Corollary 1. Any recursive subproblem of a sparse SphereFind instance is also sparse.

Proof. Recall that we defined sparse to mean n < 171,("2 . Thus, when we have n’ = (1 —x)n

-z 1 1
and k = &'(1 =) + 2 we can show n' = (1 —z)n < =5 = e <1==. O

This corollary ensures that the total number of solutions of each sub-problem does not
exceed the list size, so no sub-problem needs more than a constant factor of extra memory.
Cost analysis.

Theorem 2. For any € > 0, SphereFilter (Algorithm 1) can solve SphereFind(n,d, k) with
cost

(Inax{n”ré‘“7 L(n, m)ne})d/2+o(d) , (23)
where +1
K
I = 24
(n, k) k+2n-1-1 (24)

Proof. The choice of code size ensures that the total memory in all filter buckets is the
same for each recursive instance. By Corollary 1, the total number of solutions in any
filter bucket will not exceed the size of the filter bucket, so total memory use is |A/|' ().

First notice that by Heuristic 2, the solutions in each subroutine have (1) false
negatives. This means each level of recursion must repeat a constant number of times.
Altogether this implies a 29 time overhead, but we will find that this is constant in d.

Similarly, we may obtain some false positives from each recursive call, but by the
same reasoning as that following Heuristic 2, the overhead from this will be at most
subexponential in d.

14 Memory adds no cost to sieving in 3+ dimensions

Thus, up to o(d) factors in the exponent, we can assume that the recursive calls have
neither false positives nor false negatives.

Given this assumption, let SF(n, k) be the cost of SphereFilter with an input list of
size n%? and k. Letting N, be the necessary number of repetitions (i.e., the number of
codes), letting C' be the size of each code, and noting that each filter bucket will have size
(n(1 — a?))¥/?+e(@ "if SphereFilter recurses it will have cost

2
SF(n,x) = N, (n(1+A)(d/2+o(d) +C-SF (n(l —a?), IT;)) . (25)
The first term is the sort cost (since the list has size n%/2+°(4)) and the second term is the
cost of solving all the recursive subproblems.
If SphereFilter does not recurse it has cost SF(n,x) = (n?)#¥2+°(4) via a quadratic
exhaustive search.
To analyze N., recall:

o Weset C = (1 —?)~4/2+o(d),
o There are (n?(1 — x?))%/2+°(@) expected solutions.

(1-a2)?)fd/2+o(d)

e Each pair of vectors in each filter bucket has a probability (m

of being reducing.

This means the expected number of solutions from each filter bucket is

2 2\\d/240(d) (1-0a?)? /@
1-— ° 2
(n°(1 = a%)) ((1—5)(1+n—2a2)> (26)
1— C¥2 —d/2+o(d)
= 2
(nQ(l—fz)(l—i—H—QaQ)) 27)
This gives a total number of codes we must try as
_ (n?(1 — k%)) Ho@ _ (1+r)(1-a?) (28)
c= o2 —d/2+o(d) 14 g — 202
c (nz(lfn)(l+ﬁ72a2)>

Substituting into Equation 25 and ignoring subexponential factors gives a cost of

14+ kK — 202

2/d
SF(n, /{)2/‘1 :—(1 +r)(1—a?) max {nHA, (1—a?)"!SF (n(l —a?), % : Zz) } (29)

The rest of the proof is simply solving this recursion.
Because we repeat this process using the same « to define the filter buckets at each
step, then if n; and k; are the parameters in the ith step, we can show inductively that
k+(1—a?)i—1

Ki = 1= a2) ,n; =n(l—a”)’ (30)

by noting that x; 11 = and n;41 = n;(1 —a?).

1 oc2
After ¢ recursions, we stop and the cost is SF(ny, #¢) = (n2)%/2+°(@_ Substituting this
gives the following total cost, letting kg = k and ng = n:

max max

1+k;
A1 1+z(1+A) .
0<i<i—1 (- H

1—|—f£J—2a2

)

-1
1+k
n?(2£ j
31
H1+f<aj—2a2 (31)

Samuel Jaques 15

We can then use our formula for x; to show that

1+k; k+201-0?)'—1 (32)
I+k;—2a2 Kk+2(1—a2)itl —1
and this means all intermediate terms in this product cancel out:
i
1 ; 1
[[— - AR (33)
1+kj—2a2 K+2(1—a?)tl -1

J=0
giving us a cost of

o\14i(1+A)
1+A(1 a®) (k+1) 2 2\2¢ k+1
_ 1- 34
rmax {ogr?gf_l {” s T e o e el LU G o ey G)

In the middle term, one can show that the cost either increases in ¢ or has a local minimum,;
in either case, the maximum will be found at either ¢ = 0 or ¢ = /¢, giving a cost of

oL a (/i + 1)(1 . a2) e (,{ + 1)(1 B a2)1+(571)(1+A)
14+Kk—2a2 "’ k+2(1 —a2)f—1 ’

2 212 k+1
n(l—a)gn+2(1_+a2)e_1} (35)

Let € > 0. Let a2 > 0 be small enough such that
< nc. (36)

which is always possible as the left term converges to 1. Then choose ¢y as the minimum

A
value such that n% < n¢. Finally, choose a < g and £ > ¢y such that (1 — 042)[<n 1
Substituting these values gives the desired result:

1+A+e K+ 1 €
—_— 37
max{n ’/<;—|—2n1—1n} (37)

with the final term in Equation 35 being less than the middle term.

Finally, we note that ¢ and « depend only on k, n, and €, not on d. This means
we are free to replace the actual runtimes with their asymptotic expressions: since the
number and form of these expressions does not depend on d, we can simply choose the
maximum dimension d such that all the asymptotic expressions hold. We also see that all
the overhead terms that depend on £ or € (e.g., the memory overhead) can be included in
the o(d) term in the exponent. O

Corollary 2. For any A € [0, %], there is an algorithm to solve SVP at cost

2111ax{0.2925,0.20752(1+A) }Yd+o(d) < 9031 13d+o(d) (38)

Proof. Using the previous theorem, one can show that F(%, %) = %, and since logz(\/g) <

0.2925, the result follows. The truncated decimal expansion hides the factor of € > 0. [

The unusual conclusion is that for A < 0.4094 (or dimension at least 2.45), all the
latency costs can be amortized away with such a recursive algorithm.

The second requirement on £ is that n? < n¢. This means that the number of recursions
increases with A, and in fact it immediately shows that when A = 0 we need only one
recursion, precisely capturing the existing result of [BDGL16] in the RAM model.

In Figure 1, we show how the exponent decreases as a function of the number of levels
of recursion by numerically optimizing o.

16 Memory adds no cost to sieving in 3+ dimensions

Recursion Depth
—_— 1
. 034 i 5
<
—
ot
g 0.32 1 8
g 16
O 32
0.3} N 64
—_— 128
| |

| | | |
0 0.1 0.2 0.3 0.4 0.5

Connectivity parameter A

Figure 1: The leading exponent ¢ in the cost 2¢¢+°(4) for the recursive sieve as a function
of the connectivity parameter A. Each curve is a different depth of recursion (“£” in
Algorithm 1); 1 is the approach from Section 3.3. The lines in the graph are in the same
order as the lines in the legend.

4.1 Discussion

To explain somewhat more intuitively, the choice of filter strength gives a trade-off: stronger
filters are easier to search because the buckets are smaller, but are less likely to catch
any given reducing pair. In our memory-constrained regime the size of any one code is
limited (since we do not want the memory for all filter buckets to exceed the original list),
so stronger filters require more codes.

The problem with more codes is that we need to re-sort the list for each code. With
high memory costs, this sorting is the expensive step. Hence, we parameterize so that we
have weaker filters and use fewer codes.

As shown in Lemma 2, recursive weak filtering produces buckets which are identical to
the buckets obtained after one strict filter. What advantage do we gain from using the
layered filter structure? The key difference is the arrangement of the buckets themselves in
memory. That is, in the [BDGL16] sieve, the memory layout of filter buckets is effectively
randomized. Sorting buckets in a reasonable way would be hard because it echoes the
fundamental problem of lattice sieving: there is no total order on d-dimensional vectors.

However, the layered filtering means in each level of recursion, the code vectors are all
close to each other (as vectors in R?) because they are in the same filter from the previous
level. They are also physically close to each other in memory because they are in the same
filter. Thus, code vectors which are close as vectors also end up close in memory. That
way, the buckets can be merged together and re-filtered with a new code with minimal
data movement.

In fact, an implementation of this strategy could decode a vector to all filters simulta-
neously, then with one sort, all vectors would be in the correct filter buckets at the lowest
level of recursion. If we label codewords by a hash of length O(log |C|), then this is a small
amount of extra memory per vector.

5 Concrete Costs

5.1 Optimizing parameters

The previous sections gave asymptotically optimal parameters; however, for fixed problem
sizes, the precise parameters (filter angles, code sizes, product code structure, etc.) are

Samuel Jaques 17

more difficult to optimize, especially for the recursive approach.

We adapt the code from [AGPS20] to account for memory costs and permit a recursive
strategy, and use the following techniques to efficiently find optimal parameters®. This code
also accounts for the subexponential costs that were ignored in the asymptotic analysis.
We added to the code an explicit computation of the false negative rate of Heuristic 2 with
an approach detailed in Appendix A.

There are three main costs to the sieve: the “query cost” to decode all vectors into
their respective filter buckets; the “routing cost” to route the vectors in the same filter
buckets to contiguous regions of memory, and the “search cost” to find all reducing pairs
in one filter bucket. All of these costs are multiplied by the expected number of codes.

If the cost to search a bucket of size N is N7 for 1 + A <~ < 2, then the costs are:

e Query: max{l,LzaH*l*HO(l)} LIt
 Routing: max{1, L2ett—1-cto()} . (Li+A+o(l) 1 [(1+A)(A+e=a)to(l))
o Search: max{1, L2¢tt—1-cto()} . pet(i=a)yto(l)

We start by optimizing c. For one code, all terms increase in ¢ except the query cost and
the routing cost for just the original list of vectors. Thus, if either of those terms are the
greatest cost, then the cost would decrease with a larger code (since we would need to
repeat fewer times). If any of the other costs are greatest, the cost would decrease with a
smaller code. This gives us criteria to check for a binary search to find the optimal c.

As in the asymptotic case, the optimal ¢ is roughly of order a. This means the search
cost is lower than the query cost.

The query cost hides a hard-to-compute extra factor: the random product codes are not
perfectly random. Recall that a random product code is defined by m lists of B random
unit vectors of dimension approximately d/m, so that the code consists of all products of
all vectors in these lists. The cost to decode includes a factor of ©(mB), and since we need
B™ = L¢, the cost actually includes a factor of mL®/™+°(1) We see that as m decreases,
the cost becomes exponential. However, if m increases, the code becomes less random.
This may add several bits of difficulty in practice [Duc22].

For a more accurate estimate, we should estimate the non-randomness overhead as
in [Duc22], but this is computationally intensive and we leave this for future work. For
m = 2 it may add little overhead, though it will be more for m = 8. It is also true that if
there is a multiplicative overhead of f(m;) for the ith level of recursion, the total overhead
will be f(mq)f(m2)f(ms) (and so on). Thus, we attempt to set m as small as possible.

[BDGL16] set m to be poly-logarithmic in d to obtain subexponential decoding. How-
ever, our situation is more similar to [DSv21], wh o note that on GPUs, it was more
efficient to use completely random codes as in [BGJ15], equivalent to m = 1: since the
memory and search costs are so much greater, we can afford to make the decoding (and
thus the query cost) more expensive. What we notice is that m = 1 is not the optimal
choice when memory operations are cheaper by constant factors. Instead, we choose the
smallest m such that the query cost is at most 1/4 the routing cost. The factor of % was a
choice made arbitrarily so that the query cost does not increase the bit security by more
than a small fraction. This results in relatively small m: we will find m = (2,3, 8) for a
3-level recursive sieve. In [DSv21] they note that larger m would be efficient, even with
memory bottlenecks, for larger lattice problems, which is roughly what we see here.

With the code size and m optimized, our script then optimizes the filter angle. Applying
Lemma 1 with A = 2 — ~, the search cost either has a local minimum in « or is increasing.
We thus assume the entire cost has a local minimum between o = 0 and o = v/k, and we
use a divide-and-conquer search to find it.

4Code available at https://github.com/sam-jaques/sieve-memory-estimates.

https://github.com/sam-jaques/sieve-memory-estimates

18 Memory adds no cost to sieving in 3+ dimensions

This approach worked reasonably well for dimension up to 576, but gave unusually large
results for higher dimensions. Thus, we also tried the asymptotic approach of Section 4,
with the same filter angle at each level of recursion, and exhaustively checked filter angles
between 3 and 5. We took the smaller estimate from the two approaches. Using the same
filter angle also allowed us to check higher depths of recursion, since the binary search
approach has a runtime exponential in the recursion depth; however, it restricted the

solution space and thus might not be exactly optimal.

5.2 Concrete memory costs

The arguments in Section 2 apply asymptotically, but in practice small memory operations
are substantially cheaper than other kinds of bit operations.

To represent this, we fix A = % and assign a memory cost of Cys - N3/2 to route N
bits of data, where IV is the number of bits in memory and C}; is a fixed constant. That
is, we are only considering a two-dimensional memory. This could represent the cost to
sort or route on a two-dimensional architecture, or the lower bounds based on wire costs.

It is also reasonable to assume that small blocks of memory can be sorted or routed
without consideration of memory costs, and only at larger sizes is it necessary to resort to
low-connectivity sorts like a mesh sort (as in [Sch23]). However, this can still be modelled in
the same way. That is, suppose memory up to size My can be sorted at cost O(Mylog My)
(for example), after which blocks of memory of size My are sorted on a mesh. Then the cost
of this mesh sort, with N total bits of memory, will grow as C; - (%)3/2 + O(My log My),

where C) is the memory constant. From here, we can set C), = CM/M{?/2 as a new
memory constant, and the cost of memory access has the same form for N large enough
that the O(Mplog My) term is irrelevant.

It thus remains to decide on a reasonable value for C;. We will proceed here by
attempting to balance wire costs to memory and processor costs. The following analysis
will appear more precise than it really is; our goal is to create a reasonable best guess, but
this is inherently speculative and unlikely to perfectly match reality.

The nVidia GeForce RTX 4090 has 576 tensor cores (hence 16384 cuda cores), 24 GB
of memory, runs at 2.235 GHz, and costs USD1600 MSRP in 2023 [NVI23]. We will take
a tensor core as the unit of processor-like object. Each core has 41.7 MB of memory.

Currently, one meter of 100 Gb/s fiber optic cable costs USD550 in 2023 [L¢23]. Since
the time for a signal to propagate 1 meter is negligible compared to 1 second, this means
the cable can handle 100 gigabit-meters/second of physical data movement. Matching the
cost of cabling and processors means 2289 bit-meters/processor-second.

Assume this large-scale lattice computer grows with a density comparable to the Frontier
supercomputer. Frontier has 8335360 “compute units” in an area of 680 m? [Cho22]; this
suggests 27136 m? per compute unit. The average distance between two random points on

a disk of radius r is 142587:; asymptotically, the extra distance from the height is negligible.

Thus, with P cores they take a radius of 2~ 761/P meters, and thus the average distance
between them is 2~7-8y/P meters.

With P processors we have 2283 P bits of memory. The sort must thus move a total
distance of 220-5 P3/2 bit-meters. The cabling gives us 2259 P bit-meters per second, giving
2-144/P seconds for a sort.

Each GPU can theoretically do 82.6 terraFLOPS (246-2); divided by the 576 cores,
that’s 237! FLOPS/core. Multiplying the total number of FLOPS over the machine
(2371 P) by the time for a sort (2-144\/P), gives 2227 P3/2 operations for a sort. Since the
total memory count is N = 2253 P, we have 27198 N3/2 floating point operations per sort.
Finally, we can estimate 128 bit operations per FLOP as a rough equivalence for 64-bit
floats, and claim a cost of 27123 N3/2 bit operations per sort.

Compared to a rough estimate of 1.39N Ig N bit ops for a sort in the RAM model (based

Samuel Jaques 19

Table 1: Cost estimates for the sieve from Section 4 with memory costs, all at recursion
depth 3 except Kyber-1024 and Dilithium-5 at depth 4. The sieve cost is based on
Algorithm 1. The primal attack cost is extrapolated from [ABD 21, BDK*21] by assuming
that all other aspects of the attack are unchanged, but the sieving step of the core-SVP
subroutine changes to the cost in this table. Costs are in log base 2.

Sieve Sieve Cost Primal Change from | Change from
Scheme Dimension Attack Cost | [ABD'21] [AGPS20]

[BDK*21] update
Kyber-512 375 141.5 154.5 + 3.0 +10.1
Kyber-768 586 210.2 223.6 + 8.5 +15.9
Kyber-1024 829 273.6 310.2 +22.9 +30.6
Dilithium-2 394 147.9 162.3 + 3.7 +10.8
Dilithium-3 587 210.6 225.3 + 8.6 +16.0
Dilithium-5 818 293.4 308.4 +22.0 +30.7

Table 2: Parameters and results for sieving in dimension 375. Each row is a subproblem
(finding all reducing pairs in a single filter bucket for the problem in the row above). Total
cost is the full cost of the sieve (log base 2); list size is the number of vectors in the list
to search (log base 2); filter («) is the strength of the filter around each codeword; num.
codes is the number of different codes that must be tried (log base 2); code size is the
number of code words (log base 2); m is the number of products that form the random
product code; query, memory, and search costs are the costs per code (log base 2).

Recursion | Total | List | Filter | Num. | Code | m Subroutine Costs
Level Cost | Size | (a) | Codes | Size Query | Memory | Search
1 141.5 98 0.29 10 29 2 117 130 130
2 101.5 | 70 0.27 13 21 3 82 87 87
3 65.8 | 46 0.27 9 26 8 55 56 55

on quicksort’s average case runtime and equating each operation with a bit operation), the
crossover occurs at an intuitively plausible N =15 TB.

Since recursive sieves might have lower memory requirements, we take the maximum
of Cpr - N3/2 and 1.39N 1g N as the cost to route N bits of data, using 1.39N 1g N as a
loose lower bound on bit operations.

5.3 Results

We evaluate lattices of the dimensions estimated as necessary to attack Kyber [ABD'21]
and Dilithium [BDK'21]. Table 1 summarizes the results. As expected, costs increase
from previous estimates. Memory adds a cost between 10 and 31 bits, with more in larger
dimensions. The increase in cost compared to the NIST submissions [ABD 21, BDK*21]
is smaller because their security estimates do not include the decoding advancements from
[MAT?22], which was added to the code® that we adapted. In other words, [MAT22] lowered
the claimed security while memory costs raise the claimed security, and the two effects
nearly cancel out for Kyber-512. [MAT22] gave a roughly constant-factor improvement
while memory costs grow with the dimension, so our results show greater security gains
with higher dimensional lattices.

To illustrate the parameters of the sieve, we include a summary of parameters and
data for that attack in dimension 375 in Table 2. For comparison, the optimal filter size a
in the RAM model is 0.5 and the asymptotically optimal filter size for a two-dimensional
architecture with no recursion is @ = 0.366. By Lemma 2, vectors in the final filter buckets

5Available at https://github.com/jschanck/eprint-2019-1161/commit/a4d3a53fe1f428fe3b4402b
d63eel64babceb71c

https://github.com/jschanck/eprint-2019-1161/commit/a4d3a53fe1f428fe3b4402bd63ee164ba6cc571c
https://github.com/jschanck/eprint-2019-1161/commit/a4d3a53fe1f428fe3b4402bd63ee164ba6cc571c

20 Memory adds no cost to sieving in 3+ dimensions

Table 3: Costs for sieving of Kyber dimensions under different memory assumptions.
“Memory cost” is the coefficient of N3/2 for the cost to route data; “recursion depth” is
the number of recursive calls (1 is the same as [BDGL16]).

Total Cost (log base 2)
Memory Cost | Recursion Depth Dimension 375

1 132.6

134.9

135.8

149.5

142.8

141.5

162.7

158.7

158.5

0

2712.8

WNRRWN W

for the 3-level recursive sieve are equivalent to vectors filtered once with o = 0.439. That
is, the final filtration is nearly as strong as optimal filters in the RAM model.

Since the constant for memory access is the most tenuous assumption of this analysis,
we also ran the estimates with a constant of 1, shown in Table 3. For comparison, the total
memory needed for this dimension is 2°% bits, so N3/2 = 2147 and the sieve cost is about
10-20 bits higher than just the cost to route the data. Table 3 also shows that recursion
does not improve performance in a model without memory costs, as expected.

While we have low confidence that the true memory constant is ezactly 2728, we
are confident that the true memory constant is greater than 0 and less than 1. Section 2
explains why 0 is a lower bound, while a memory constant of 1 would imply that moving a
single bit from one processor to another is just as expensive as performing a computation
on that bit. Given current costs of memory to computation ([LWS21] show that the ratio
of gates/dollar to bytes of memory/dollar has stayed roughly constant and is greater than
1), and the ability to batch data for communication, memory and communication will
likely remain cheaper than computation.

Table 4: Cost exponents for two-dimensional memory based on asymptotic analysis (i.e.,
the same as Figure 1) or a linear fit to the concrete estimates. The minimum worthwhile
dimension is the minimum dimension at which the linear model predicts that the given
recursion depth will give better performance.

Recursion Depth
1 2 3 4 5
Asymptotic Exponent | 0.349 | 0.334 | 0.328 | 0.324 | 0.322
Concrete Exponent 0.357 | 0.340 | 0.331 | 0.325 | 0.322
Mlnnm.lm quthwhlle 56 230 339 810
dimension -

Finally, we give some general results about the behaviour of the recursion. We computed
the cost for sieving in dimensions 100, 200, ..., 900, by choosing a constant filter angle for
each recursion and fitting the log of the costs with a linear model. This gave a “concrete”
cost exponent, shown in Table 4. This simple model gives a cost of ¢;2%2" for dimension n
for each recursion, with a correlation of 2 > 0.99 between dimension and log cost.

The constant ¢ increased with recursion depth, as expected. Thus we also computed
the minimum dimension n where we would expect improvement from a higher recursion
depth. The fact that it predicts 4 levels of recursion to be optimal for dimension 575, while
our experiments show that 3 levels is better, is likely just due to approximation error from
suboptimal parameterizations (see Section 5.1).

Samuel Jaques 21

Acknowledgements.

We would like to thank Léo Ducas, Thijs Laarhoven, Eamonn Postlethwaite, John Schanck,
and Dan Shepherd for both answering and asking the right questions about this work.

We acknowledge the support of the Natural Sciences and Engineering Research Council
of Canada (NSERC), funding reference number RGPIN-2024-03996.

References

[ABD+21]

[ADH*+19]

[AGPS20]

[APS15]

[BBG+13]

[BDGLI6]

[BDK+21]

[Ber05]

Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancréede Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS-Kyber (version 3.02) — submission to round 3 of the NIST
post-quantum project, 2021. URL: https://web.archive.org/web/202112
15150153/https://pq-crystals.org/kyber/data/kyber-specification
-round3-20210804.pdf.

Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Fa-
monn W. Postlethwaite, and Marc Stevens. The general sieve kernel and new
records in lattice reduction. In Yuval Ishai and Vincent Rijmen, editors, Ad-
vances in Cryptology — EUROCRYPT 2019, Part II, volume 11477 of Lecture
Notes in Computer Science, pages 717-746, Darmstadt, Germany, May 19-23,
2019. Springer, Cham, Switzerland. doi:10.1007/978-3-030-17656-3_25.

Martin R. Albrecht, Vlad Gheorghiu, Eamonn W. Postlethwaite, and John M.
Schanck. Estimating quantum speedups for lattice sieves. In Shiho Moriai
and Huaxiong Wang, editors, Advances in Cryptology — ASIACRYPT 2020,
Part II, volume 12492 of Lecture Notes in Computer Science, pages 583—613,
Daejeon, South Korea, December 7-11, 2020. Springer, Cham, Switzerland.
doi:10.1007/978-3-030-64834-3_20.

Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness
of learning with errors. Journal of Mathematical Cryptology, 9(3):169-203,
2015. doi:doi:10.1515/jmc-2015-0016.

Robert Beals, Stephen Brierley, Oliver Gray, Aram W. Harrow, Samuel
Kutin, Noah Linden, Dan Shepherd, and Mark Stather. Efficient distributed
quantum computing. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 469(2153):20120686, May 2013. doi:
10.1098/rspa.2012.0686.

Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions
in nearest neighbor searching with applications to lattice sieving. In Robert
Krauthgamer, editor, 27th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 10-24, Arlington, VA, USA, January 10-12, 2016. ACM-SIAM.
doi:10.1137/1.9781611974331.ch2.

Shi Bai, Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky,
Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium
— submission to round 3 of the NIST post-quantum project, 2021. URL:
https://pq-crystals.org/dilithium/data/dilithium-specification
-round3-20210208.pdf.

Daniel J. Bernstein. Understanding brute force. Workshop Record of ECRYPT
STVL Workshop in Symmetric Key Encryption, eSTREAM report 2005/036,
2005. URL: https://cr.yp.to/snuffle/bruteforce-20050425. pdf.

https://web.archive.org/web/20211215150153/https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://web.archive.org/web/20211215150153/https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://web.archive.org/web/20211215150153/https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-64834-3_20
https://doi.org/doi:10.1515/jmc-2015-0016
https://doi.org/10.1098/rspa.2012.0686
https://doi.org/10.1098/rspa.2012.0686
https://doi.org/10.1137/1.9781611974331.ch2
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://cr.yp.to/snuffle/bruteforce-20050425.pdf

22

Memory adds no cost to sieving in 3+ dimensions

[Ber23]

[BGJ15]

[BKS1]

[BL13]

[Cho22]

[CL23]

[CN11]

[DSv21]

[Ducl8]

[Duc22]

[FHK*20]

Daniel J. Bernstein. Asymptotics of hybrid primal lattice attacks. Cryptology
ePrint Archive, Report 2023/1892, 2023. URL: https://eprint.iacr.org/
2023/1892.

Anja Becker, Nicolas Gama, and Antoine Joux. Speeding-up lattice sieving
without increasing the memory, using sub-quadratic nearest neighbor search.
Cryptology ePrint Archive, Report 2015/522, 2015. URL: https://eprint.i
acr.org/2015/522.

R. P. Brent and H. T. Kung. The area-time complexity of binary multiplication.
J. ACM, 28(3):521-534, jul 1981. doi:10.1145/322261.322269.

Daniel J. Bernstein and Tanja Lange. Non-uniform cracks in the concrete:
The power of free precomputation. In Kazue Sako and Palash Sarkar, editors,
Advances in Cryptology — ASIACRYPT 2013, Part II, volume 8270 of Lecture
Notes in Computer Science, pages 321-340, Bengalore, India, December 1-5,
2013. Springer, Berlin, Heidelberg, Germany. doi:10.1007/978-3-642-420
45-0_17.

Charles Q. Choi. The beating heart of the world’s first exascale supercomputer.
IEEE Spectrum, 2022. URL: https://spectrum.ieee.org/frontier-exa
scale-supercomputer.

André Chailloux and Johanna Loyer. Classical and quantum 3 and 4-sieves
to solve SVP with low memory. In Thomas Johansson and Daniel Smith-
Tone, editors, Post-Quantum Cryptography - 14th International Workshop,
PQCrypto 2023, pages 225-255, College Park, USA, August 16-18, 2023.
Springer, Cham, Switzerland. doi:10.1007/978-3-031-40003-2_9.

Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates.
In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology —
ASTACRYPT 2011, volume 7073 of Lecture Notes in Computer Science, pages
1-20, Seoul, South Korea, December 4-8, 2011. Springer, Berlin, Heidelberg,
Germany. doi:10.1007/978-3-642-25385-0_1.

Léo Ducas, Marc Stevens, and Wessel P. J. van Woerden. Advanced lattice
sieving on GPUs, with tensor cores. In Anne Canteaut and Frangois-Xavier
Standaert, editors, Advances in Cryptology — EUROCRYPT 2021, Part II,
volume 12697 of Lecture Notes in Computer Science, pages 249-279, Zagreb,
Croatia, October 17-21, 2021. Springer, Cham, Switzerland. doi:10.1007/
978-3-030-77886-6_9.

Léo Ducas. Shortest vector from lattice sieving: a few dimensions for free.
Presentation at Eurocrypt, 2018. URL: https://eurocrypt.iacr.org/201
8/Slides/Monday/TrackB/01-01.pdf.

Léo Ducas. Estimating the hidden overheads in the BDGL lattice sieving
algorithm. In Jung Hee Cheon and Thomas Johansson, editors, Post-Quantum
Cryptography - 13th International Workshop, PQCrypto 2022, pages 480—
497, Virtual Event, September 28-30, 2022. Springer, Cham, Switzerland.
doi:10.1007/978-3-031-17234-2_22.

Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. Falcon: Fast-Fourier lattice-based compact sig-
natures over NTRU (specification v1.2) — submission to round 3 of the nist
post-quantum project, 2020. URL: https://falcon-sign.info/falcon.pdf.

https://eprint.iacr.org/2023/1892
https://eprint.iacr.org/2023/1892
https://eprint.iacr.org/2015/522
https://eprint.iacr.org/2015/522
https://doi.org/10.1145/322261.322269
https://doi.org/10.1007/978-3-642-42045-0_17
https://doi.org/10.1007/978-3-642-42045-0_17
https://spectrum.ieee.org/frontier-exascale-supercomputer
https://spectrum.ieee.org/frontier-exascale-supercomputer
https://doi.org/10.1007/978-3-031-40003-2_9
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-030-77886-6_9
https://doi.org/10.1007/978-3-030-77886-6_9
https://eurocrypt.iacr.org/2018/Slides/Monday/TrackB/01-01.pdf
https://eurocrypt.iacr.org/2018/Slides/Monday/TrackB/01-01.pdf
https://doi.org/10.1007/978-3-031-17234-2_22
https://falcon-sign.info/falcon.pdf

Samuel Jaques 23

[HK17]

[HKL18]

[KMPM19]

[Kun87]

[Laals)

[Lc23]

[LWS21]

[MAT22]

[Nat23a)

[Nat23b)

Gottfried Herold and Elena Kirshanova. Improved algorithms for the approxi-
mate k-list problem in euclidean norm. In Serge Fehr, editor, PKC 2017: 20th
International Conference on Theory and Practice of Public Key Cryptography,
Part I, volume 10174 of Lecture Notes in Computer Science, pages 16—40, Am-
sterdam, The Netherlands, March 28-31, 2017. Springer, Berlin, Heidelberg,
Germany. doi:10.1007/978-3-662-54365-8_2.

Gottfried Herold, Elena Kirshanova, and Thijs Laarhoven. Speed-ups and
time-memory trade-offs for tuple lattice sieving. In Michel Abdalla and Ricardo
Dahab, editors, PKC 2018: 21st International Conference on Theory and
Practice of Public Key Cryptography, Part I, volume 10769 of Lecture Notes in
Computer Science, pages 407-436, Rio de Janeiro, Brazil, March 25-29, 2018.
Springer, Cham, Switzerland. doi:10.1007/978-3-319-76578-5_14.

Elena Kirshanova, Erik Martensson, Eamonn W. Postlethwaite, and Sub-
hayan Roy Moulik. Quantum algorithms for the approximate k-list prob-
lem and their application to lattice sieving. In Steven D. Galbraith
and Shiho Moriai, editors, Advances in Cryptology — ASIACRYPT 2019,
Part I, volume 11921 of Lecture Notes in Computer Science, pages 521—
551, Kobe, Japan, December 8-12, 2019. Springer, Cham, Switzerland.
doi:10.1007/978-3-030-34578-5_19.

Manfred Kunde. Optimal sorting on multi-dimensionally mesh-connected
computers. In Franz J. Brandenburg, Guy Vidal-Naquet, and Martin Wirsing,
editors, STACS 87, pages 408419, Berlin, Heidelberg, 1987. Springer Berlin
Heidelberg. doi:10.1007/BFb0039623.

Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-
sensitive hashing. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
Advances in Cryptology — CRYPTO 2015, Part I, volume 9215 of Lecture Notes
in Computer Science, pages 3—22, Santa Barbara, CA, USA, August 1620,
2015. Springer, Berlin, Heidelberg, Germany. doi:10.1007/978-3-662-479
89-6_1.

L-com. Active optical cable QSFP28 100Gbps, 1 meter, Cisco compatible.
L-com product page, 2023. URL: https://www.l-com.com/fiber-optic-a
ctive-optical-cable-qsfp28-100gbps-1-meter-cisco-compatible.

Patrick Longa, Wen Wang, and Jakub Szefer. The cost to break SIKE: A
comparative hardware-based analysis with AES and SHA-3. In Tal Malkin
and Chris Peikert, editors, Advances in Cryptology — CRYPTO 2021, Part III,
volume 12827 of Lecture Notes in Computer Science, pages 402-431, Virtual
Event, August 16-20, 2021. Springer, Cham, Switzerland. doi:10.1007/97
8-3-030-84252-9_14.

MATZOV. Report on the security of LWE: Improved dual lattice attack, 2022.
URL: https://zenodo.org/doi/10.5281/zenodo.6412486.

National Institute of Standards and Technologies. FAQ on Kyber512, 2023.
URL: https://csrc.nist.gov/csrc/media/Projects/post-quantum-cry
ptography/documents/faq/Kyber-512-FAQ.pdf.

National Institute of Standards and Technology. Module-lattice-based digital
signature standard. Technical Report Federal Information Processing Stan-
dards Publications (FIPS PUBS) 203 (draft), U.S. Department of Commerce,
Washington, D.C., 2023. doi:10.6028/NIST.FIPS.203.1ipd.

https://doi.org/10.1007/978-3-662-54365-8_2
https://doi.org/10.1007/978-3-319-76578-5_14
https://doi.org/10.1007/978-3-030-34578-5_19
https://doi.org/10.1007/BFb0039623
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-662-47989-6_1
https://www.l-com.com/fiber-optic-active-optical-cable-qsfp28-100gbps-1-meter-cisco-compatible
https://www.l-com.com/fiber-optic-active-optical-cable-qsfp28-100gbps-1-meter-cisco-compatible
https://doi.org/10.1007/978-3-030-84252-9_14
https://doi.org/10.1007/978-3-030-84252-9_14
https://zenodo.org/doi/10.5281/zenodo.6412486
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/faq/Kyber-512-FAQ.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/faq/Kyber-512-FAQ.pdf
https://doi.org/10.6028/NIST.FIPS.203.ipd

24 Memory adds no cost to sieving in 3+ dimensions

[Nat23c] National Institute of Standards and Technology. Module-lattice-based digital
signature standard. Technical Report Federal Information Processing Stan-
dards Publications (FIPS PUBS) 204 (draft), U.S. Department of Commerce,
Washington, D.C., 2023. doi:10.6028/NIST.FIPS.204.1ipd.

[NV08] Phong Q. Nguyen and Thomas Vidick. Sieve algorithms for the shortest
vector problem are practical. Journal of Mathematical Cryptology, 2(2),
January 2008. URL: http://dx.doi.org/10.1515/JMC.2008.009, doi:
10.1515/jmc.2008.009.

[NVI23] NVIDIA Corporation. GeForce RTX 4090. NVIDIA product page, 2023. URL:
https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/
rtx-4090/.

[Sch23] John M. Schanck. When sorting your data costs more than cracking AES-128,
2023. URL: https://finiterealities.net/kyber512/.

[SS86] Claus-Peter Schnorr and Adi Shamir. An optimal sorting algorithm for
mesh connected computers. In 18th Annual ACM Symposium on Theory of
Computing, pages 255-263, Berkeley, CA, USA, May 28-30, 1986. ACM Press.
doi:10.1145/12130.12156.

[Tho80] C. D. Thompson. A Complezity Theory for VLSI. Phd thesis, Carnegie Mellon
University, 6 1980. doi:10.1184/R1/6714269.v1.

[Wie04] Michael J. Wiener. The full cost of cryptanalytic attacks. Journal of Cryptology,
17(2):105-124, March 2004. doi:10.1007/s00145-003-0213-5.

A False Negatives in Subproblems

Here we explain how we compute the fraction of false negatives from the subproblem in
Algorithm 1. In our code, we evaluate the integral expression numerically.

Lemma 3. If v, w, and ¢ are uniformly random vectors on the surface of a d-dimensional
sphere, and v/ and w' are (d — 1)-dimensional unit vectors proportional to v— proj,(v) and
w — proj,(w) respectively, then for any r € [0, 3] and a € [0, /K],

> K
>a (39)
>«

s equal to
Joo 5T Fi(d, a, s K,) p(ovy) plon) dovy dovy
foa foa F2 (da Qyyy Qyyyy ’Q)p(av)p(aw)davdaw

where p(x) is the probability density function for the probability that a random unit vector
has inner product exactly x with a fized vector,

(40)

0 71§I<;()

Cyq (max{no,%}) ko <1 (41)

Fl(d,Oév,Oéw,:‘i,Oé) = {

for Cy(x) as the probability that a random unit vector has inner product at least x with
another fized vector,
K — QlyQlyy

VI =a2)(1-az)

Ko =

(42)

https://doi.org/10.6028/NIST.FIPS.204.ipd
http://dx.doi.org/10.1515/JMC.2008.009
https://doi.org/10.1515/jmc.2008.009
https://doi.org/10.1515/jmc.2008.009
https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4090/
https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4090/
https://finiterealities.net/kyber512/
https://doi.org/10.1145/12130.12156
https://doi.org/10.1184/R1/6714269.v1
https://doi.org/10.1007/s00145-003-0213-5

Samuel Jaques 25

and
0 y Ko Z 1
C 0< ko<1
FQ(d7 O(U,Oéw,H7OZ) = 1d(l€0) yU > Ko (43)
5+ Ca(—ko) ,—1<kKo<O
1 , Ko S -1
Proof. We can Bayes’ theorem to obtain
2
<V7W> > K, <V/7W/> > H_azil
vV, W) > K Pr [I—a
Pr | (v/,w') > K—a <<v C>>>_a _ (v,c) > a, (w,c) >« (44)
’ —1—a? ’ — <V W> >k
<W7 C> > Pr ’)
- (v,e)>a, (w,c)>a

We first consider the numerator. We can express this as

0 o o1 <V/,W’> —
/0 /0 /PQQ Pr [(v,w) > k| (v,c) = a, | p(K")p(ay)p(u)drK doaydou, (45)

(W, c) = au

The probability density splits into a product like this because the vectors v/ and w’ are
independent of (v,c) and (w,c), since v/ and w’ are normalized.

For the conditional probability, we see that since v = a,c + /1 — a2v’ (similarly for
w), we have that

(v,w) = ayay, ++/(1 - a2)(1 - ad)x". (46)

That is, given ', a,, and au,, the inner product (v, w) is fixed. We can thus conclude
that this is at least « if and only if

s K — QipQlyy
T VA -a)(1-ad)

That is, the conditional probability is either 0 or 1 depending on ', a,,, and a,,. The
2

integral over £ is 0 if kg > 1. If 0 < Ko < =%, then we are simply integrating a spherical

wedge. That is, we will have

L <V/, W/> — 2
/ Pr | {(v,w) > k| (v,c) = a, | p(k)dr' = Cy <max {/{0, 12}) . (48)
r—a? — X

12 (W, c) = ay,

=! KQ-. (47)

We can similarly express the denominator as

0 e 1 v W) =K <v/7wl> —
/ / / Pr |{v,w) > k| (v,c)=a, | p| (v,c) =a, |dr'da,do, (49)
0 Jo It <W7 C> = Oy <W, C> = Qy

This is identical except that x’ can extend to —1. A similar reasoning applies, giving us
the formula for F5. O

	Introduction
	Contributions
	Open problems
	Outline

	Memory Costs
	Memory access by sorts.
	Sort Lower Bound.

	Lattice Sieving
	Background
	Locality Sensitive Hashing
	Exhaustive Bucket Search

	Recursive Algorithm
	Discussion

	Concrete Costs
	Optimizing parameters
	Concrete memory costs
	Results

	References
	False Negatives in Subproblems

