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Abstract. Salient in many cryptosystems, the exponent-inversion technique began
without randomization in the random oracle model (SCIS ’03, PKC ’04), evolved
into the Boneh-Boyen short signature scheme (JoC ’08) and exerted a wide influence.
Seen as a notable case, Gentry’s (EuroCrypt ’06) identity-based encryption (IBE)
applies exponent inversion on a randomized base in its identity-based trapdoors.
Making use of the non-static q-strong Diffie-Hellman assumption, Boneh-Boyen
signatures are shown to be unforgeable against q-chosen-message attacks, while a
variant q-type decisional assumption is used to establish the security of Gentry-IBE.
Challenges remain in proving their security under weaker static assumptions.
Supported by the dual form/system framework (Crypto ’09, AsiaCrypt ’12), we
propose dual form exponent-inversion Boneh-Boyen signatures and Gentry-IBE, with
security proven under the symmetric external Diffie-Hellman (SXDH) assumption.
Starting from our signature scheme, we extend it into P-signatures (TCC ’08), resulting
in the first anonymous credential scheme from the SXDH assumption, serving as a
competitive alternative to the static-assumption construction of Abe et al. (JoC ’16).
Moreover, from our Gentry-IBE variant, we propose an accountable-authority IBE
scheme also from SXDH, surpassing the fully secure Sahai-Seyalioglu scheme (PKC ’11)
in efficiency and the generic Kiayias-Tang transform (ESORICS ’15) in security.
Collectively, we present a suite of results under static assumptions.
Keywords: Dual form signature · Dual system encryption · Exponent inversion
· P-Signatures · Anonymous credentials · Identity-based encryption · Black-box
accountability · Static assumptions · Symmetric eXternal Diffie-Hellman

1 Introduction
Given a public key (g, gα), a commonly used signature form for a message M is σ = g

1
α+M ,

which appears in various schemes analyzed in the random oracle model, from the identity-
based encryption (IBE) scheme of Sakai and Kasahara [SK03] to the short signature
scheme of Zhang, Safavi-Naini, and Susilo [ZSS04] in the random oracle model. This paper
focuses on achieving adaptive security in the standard model, specifically referencing the
Boneh-Boyen short signature scheme [BB08] to highlight their randomization techniques
for achieving such security. This “inversion in the exponent” structure underpins a wide
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range of signature schemes, such as Boneh-Boyen-Shacham (BBS) signatures [BBS04],
their extension BBS+ (enabling the signing of multiple messages with randomness in-
corporated) [ASMC13], structure-preserving signatures, and blind signatures [AFG+10],
among others. It can also be used as a “second-tier” secret, such as the user signing keys of
group signatures [BBS04, Gro07], decryption keys of dynamic threshold decryption [DP08],
identity-based (user) secret keys (or trapdoors) of IBE [Gen06], identity-based broadcast
encryption [Del07, CCH+12], hierarchical IBE with polynomially many levels [GH09], and
more. Last but not least, this structure also appears in other cryptographic primitives like
verifiable random function [DY05], accumulator [Ngu05, ACN13], etc. [CY11].

The security of the Boneh-Boyen signature is based on the q-strong Diffie-Hellman
(SDH) assumption — for α randomly selected from Zp, we have:

Given g, gα, gα2
, . . . , gαq

∈ G, it is hard to output (c, g 1
α+c ), where c ∈ Zp.

The number q is polynomially bounded in the security parameter λ (while p, the order
of the group G, is exponential in λ). These q elements of G are used to simulate (q − 1)
signing oracle queries. This reliance makes q-SDH a non-static assumption, also called a
q-type assumption, in contrast to the traditional static ones like computational DH.

1.1 Technical Overview
1.1.1 Dual Form Boneh-Boyen (or Gentry/Exponent-Inversion) Signatures

Dual form signatures is a framework from Gerbush et al. [GLOW12] for proving security
based on static assumptions. The “form B” signatures can only be generated by an
algorithm SignB but not the regular signing algorithm SignA. The security proof involves a
sequence of transformations, transitioning from using SignA to SignB in answering signing
oracle queries. It also involves a challenge signature that can take either form, depending on
its randomness, but remains indistinguishable to adversaries. There are a few instantiations
using composite-order groups, none of which involve the exponent-inversion structure.

In this paper, we propose the dual form Boneh-Boyen signatures, proving their security
via dual form signatures using static assumptions. We then demonstrate how it helps
eliminate non-static assumptions from a number of higher cryptographic applications.
Simply instantiating the Boneh-Boyen signature in a composite-order group GN for
N = p1p2p3 does not work. Consider randomizing the main structure in Gp1 = ⟨g1⟩ as in
the randomized Boneh-Boyen signatures [BB08]: (g1/(α+M+βr)

1 , r), where (α, β) ∈ (ZN )2 is
the secret key, and r ∈ ZN . It is unclear how the signing oracle can simulate this structure
for multiple M ’s without embedding powers of α in g1 to enable inversion in the exponent.

We consider an alternative randomization of the Gp1 component, which applies the
exponent inversion on a random base element rather than exponentiating a fixed base by
a randomized inversion. We start with a signature similar to the key structure of Gentry-
IBE [Gen06]: (σ′

1 = (h1g
−r
1 ) 1

α−M , σ′
2 = r), where h1 ∈ Gp1 comes from the public key.

Given this root, we could refer our resulting scheme as dual form Gentry signatures or,
more broadly, dual form exponent-inversion signatures. We still need a few more changes.
First, we use h1 as a private signing key, without relying on gα2

, . . . , gαq for signing oracle
simulation (cf., [BB08]). The public key now includes ê(g1, h1). Second, the hard problem
instances used in typical dual form schemes [LW10, GLOW12] do not allow the leakage of
the randomness r directly. One could set σ′

2 = gr
1 instead. Still, gr

1, gα
1 from the public

key, and message M uniquely determine (g−r
1 ) 1

α−M in σ′
1. So, such randomization does

not suffice for enabling dual forms. Our final changes are introducing randomness in
Gp3 = ⟨g3⟩ and breaking the direct determination of (g−r

1 ) 1
α−M in σ′

1 by replacing it with
(u−r

1 ) 1
α−M using another generator u1 ∈ Gp1 . Our signature on M thus becomes:

(σ1 = (h1u
−r
1 ) 1

α−M gx1
3 , σ2 = gr

1g
x2
3 ),
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where r, x1, x2 are randomly chosen from ZN . The signing oracles are simulated by using
h1 or h1X2 for some random X2 ∈ Gp2 . This gives rise to the dual forms with different
exponents mod p2 depending on the problem instance used in different security games.

The partial secrecy of α remains crucial in the transition between two forms of signature
simulation. We only give gα

1 to the adversary, which contains information about α mod p1,
but this is not correlated to α mod p2 due to the Chinese remainder theorem. Such an
information-theoretic argument ensures an indistinguishable simulation to adversaries.

1.1.2 Dual Form Gentry-IBE

Apart from exponent inversion, commutative blinding forms another major family of
pairing-based IBE in the standard model [Boy07]. Typical reductions for this family incur
a loss by a factor of q while using static assumptions. Gentry-IBE [Gen06], using exponent
inversion in the keys, has a tight security reduction but relies on a q-type assumption.

Dual system encryption, developed by Waters [Wat09], is a framework aimed at
constructing adaptively secure IBE schemes from static assumptions. It is later applied for
hierarchical IBE [LW10] and other security features, such as security against related-key
attacks [YZC22]. Existing IBE schemes based on dual system encryption [Wat09, LW10]
are from the commutative blinding family.

This paper firstly presents an IBE scheme with a key structure based on exponent
inversion but also the commutative blinding property across the key and the ciphertext for
the session key derivation1 (in the form ê(g, h1)s, where h1 is a part of the master secret key
in our case). It is secure in the standard model under static assumptions. We refer to our
scheme as dual form Gentry-IBE, as it is based on dual system encryption [Wat09, LW10].
It is similar to Lewko-Waters IBE [LW10] in the commutative blinding framework, and
hence shares similar efficiency with it. Specifically, their identity-based secret keys contain
the master secret key as a fixed factor, whereas ours are obtained from exponent inversion.

Our result leads to an adaptively secure anonymous IBE scheme in composite/prime-
order groups, which remains competitive with the “optimal” IBE scheme of Wee [Wee16],
a candidate prime-order scheme without a security proof.

1.1.3 P-Signatures and Anonymous Credentials

We stress that our signature and IBE proposals serve not as an endpoint but as a
foundation for the multitude of possibilities they can unlock. An important application is
P-signatures [BCKL08]. P-signatures integrate with a commitment scheme and provide:
(1) an interactive protocol for obtaining a signature on a committed (hidden) value, and
(2) a non-interactive proof system for proving that a commitment contains a signed value.
The commitment scheme needs to support proofs that two commitments correspond to
the same value. Our signature scheme enables an anonymous credential system featuring
non-interactive credential proof [BCKL08] without using any q-type non-static assumptions.

In more detail, one can use Groth-Sahai non-interactive zero-knowledge (NIZK) proof
system [GS12] to prove the possession of structure-preserving signatures (SPS) or P-
signatures as an anonymous credential.2 To our knowledge, the most efficient SPS based
on standard assumptions is the one by Abe et al. [ACD+16]. The signature size of their
SXDH-based instantiation is 11 group elements, while ours is 8.

1The session key of an exponent-inversion IBE is usually computed from the public parameters only.
2Gerbushet al. [GLOW12] showed how to prove the security of a variant of Camenisch-Lysyanskaya

signatures [CL04] with static assumption. However, whether this scheme can be used in anonymous
credentials is unclear since their SignA and SignB algorithms handle the message differently, which should
be hidden in a commitment and associated with NIZK proof when used in an anonymous credential. In
particular, the message appears in the signature produced by SignA algorithm twice but just once in SignB .
We see no immediate simple solution without changing the scheme or the proof.
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Table 1: Comparison of Accountable-Authority IBE

Scheme Malicious PKG Ciphertext Size Traceability
Libert-Vergnaud [LV11] Weak black-box O(1) Private
Sahai-Seyalioglu [SS11] Black-box O(λ) Private
Lai-Deng-Zhao-Weng [LDZW13] Weak black-box O(1) Public
Kiayias-Tang-I [KT15] Weak black-box O(1) Private
Kiayias-Tang-III [KT15] Weak black-box O(1) Public
Ours Black-box O(1) Private

Our signature scheme also serves as an alternative instantiation for higher-level appli-
cations, including other signature notions such as group signatures (in Section 1.2.2).

1.1.4 Accountable-Authority IBE

An aim of studying our IBE construction is to inherit the promising properties of Gentry-
IBE for higher applications. We focus on accountable-authority IBE (A-IBE) [Goy07, LV11].
A-IBE features a tracing algorithm that can determine if a decryption key (“white-box”) or
a decoder box (“black-box”) was created by the (malicious) private key generator (PKG),
so any party who leaks a key can be held accountable and proven guilty of key leakage.3

In Gentry-IBE, the identity-based secret key has a field element r generated solely
by the PKG, which the user cannot re-randomize after key issuance. This locked-in
randomness property is critical for key tracing, as it ensures that the secret key remains
fixed and tied to a particular user. In the event of key leakage, the unchangeable r value
allows tracing the leaked key back to its original user. If re-randomization were possible,
users could modify their keys to evade detection, undermining accountability.

Our dual form Gentry-IBE scheme incorporates anonymity, interactive key generation
protocol, and tracing algorithm to enable a fully secure black-box A-IBE scheme. The only
existing scheme with this security level [SS11] relies on dummy identities to support black-
box tracing with full security, incurring a multiplicative overhead of O(λ) for both key and
ciphertext sizes. Our dual form Gentry-IBE supports decryption oracle queries by using
semi-functional keys without this extra overhead. Previous A-IBE constructions based on
Gentry-IBE or generic (white-box traceable) constructions [KT15] are, at most, weakly
black-box traceable [LV11] and do not allow decryption in arguing dishonest PKG security.

Table 1 compares existing schemes, with size measured by the number of group elements.

1.2 Related Works
We review related developments that generally have different goals from ours.

1.2.1 Accountable-Authority IBE

Lai et al. [LDZW13] and Kiayias and Tang [KT15] consider public traceability but operate
under a weak black-box setting, which is less robust than ours. Additionally, Kiayias and
Tang proposed generic transformations that add accountability to any IBE scheme by
leveraging identity-reuse, a specific feature that allows users to request multiple keys for
the same identity. Refer to Table 1 for a comparison of the major features.

3Dishonest PKG security of A-IBE [Goy07] does not mean that the PKG cannot generate a valid key
for a user, but cannot identify which specific key family the user obtained a key from, due to the secret
input of the user during the key request. This is different from other escrow-free notions, e.g., anonymous
ciphertext indistinguishability [Cho09, YZCL13].
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Table 2: Comparison of Our Signature Scheme with Randomizable Schemes

Scheme Assumption Signature Size
Libert-Mouhartem-Peters-Yung [LMPY16] SXDH 4|G|
Pointcheval-Sanders [PS16] Interactive 2|G|
Pointcheval-Sanders [PS18] q-type 2|G|
Chatterjee-Kabaleeshwaran [CK19] SXDH 4|G|
Ours (Optimized) SXDH 4|G|

1.2.2 Randomizable Signatures and Group Signatures

Many randomizable signature schemes have been proposed, with some (eventually) proven
secure under static assumptions. The scheme by Libert et al. [LMPY16] is based on the
symmetric external Diffie-Hellman (SXDH) assumption. The scheme by Chatterjee and
Kabaleeshwaran [CK19] is also based on the SXDH assumption. Similar to our work, they
first proposed a composite-order group scheme based on the subgroup-hiding assumption
and then its prime-order variant. Unlike us, both works aim for public rerandomizability.
Pointcheval and Sanders [PS16] proposed a short randomizable signature scheme based on
an interactive assumption, later improved [PS18] with a security proof under a variant of
the q-SDH assumption. See Table 2 for a comparison, where the signature size counts the
number of group elements without accounting for differences between the two base groups
G1 and G2, such as size or efficiency when instantiated with different curves.

In some applications, such as cryptocurrency or blockchain, strong existential unforge-
ability is desired, and public randomizability can be harmful. Additionally, strongly-
unforgeable BBS+ signatures [ASMC13], featuring the exponent-inversion structure, are
one of the mainstreams in privacy-enhancing primitives. Secure multi-party computation
techniques over this structure have been proposed [DKL+23, WMC24] for threshold signing.

Recall that the original Boneh-Boyen signature was utilized to build two-level hierar-
chical signatures and eventually group signatures (notably, [BBS04]). Here, we highlight
two examples that benefit from dual form signature schemes based on static assumptions.
Chow et al. [CZZ17] propose a concurrently secure “real hidden” identity-based signature
scheme without random oracles. This class of group signature schemes enables anonymity
revocation without requiring any form of membership list “for real”: even implicitly, such as
a table indexed for storing discrete logarithm solutions needed to identify specific members.
Chatterjee and Kabaleeshwaran [CK18] have further explored the application of dual form
signatures, resulting in a dual form two-level hierarchical signature scheme and, eventually,
a dual form group signature scheme under static assumptions.

1.2.3 More on Pairing-Based IBE and Other IBE Schemes

Pairing-based IBE fully secure in the standard model can be classified into two fami-
lies [Boy07]: commutative blinding and exponent inversion. Roughly speaking, commuta-
tive blinding creates blinding factors from two secret coefficients in a way that makes them
“commute” (i.e., not depend on the application order) using pairings. In exponent-inversion
IBE, the recipient’s ID is embedded in the exponent via a secret function f , while keeping
gf(ID) publicly computable. Consider a ciphertext having (gf(ID))s; decryption is done by
pairing it with a private key of the form ĝ1/f(ID) to get a session key ê(g, ĝ)s.

Boyen [Boy07] proposed a framework capturing the properties of the exponent-inversion
IBE (including Sakai-Kasahara IBE [SK03] and the second IBE scheme of Boneh-Boyen),
referred to as linear IBE. It enables the construction of hierarchical IBE, fuzzy IBE, and
attribute-based encryption [Boy07]. In our dual form Gentry-IBE, although its identity-
based secret keys have an exponent-inversion structure, the ciphertext session key is
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ê(g1, h1)s, where h1 is part of the master secret key. This resembles the commutative
blinding family (a function of the master secret key and s) and does not belong to the
linear IBE family.

Exponent-inversion IBE studied in this paper has a unique structure: its identity-
based secret key is probabilistically generated but not publicly randomizable. We observe
that this property, though not explicitly mentioned, plays a key role in leakage-resilient
IBE [CDRW10]. In particular, the last scheme of Chow et al. [CDRW10] can be seen
as extending their prior IBE schemes with this structure for attaining leakage resilience.
Gentry-IBE is also the only IBE scheme in the standard model to achieve anonymous
ciphertext indistinguishability, as shown in Chow’s study [Cho09, Cho10].

We remark on the existence of alternative construction paradigms in IBE, such as
lattice-based schemes (e.g., [ABB10, CHKP12]) and non-black-box constructions [BLSV18,
DG21, WC23], which provide diverse approaches and security guarantees.

1.2.4 Equivalence with q-SDH or Reduction to Boneh-Boyen Signatures

The Boneh-Boyen signature scheme is provably secure in the standard model under the q-
SDH assumption [BB08]. The converse is also true [JY09], therefore, forging Boneh-Boyen
signatures is equivalent to solving the q-SDH problem. However, we cannot reduce the
security of our dual form Boneh-Boyen signatures to either the original scheme [BB08]
or the q-SDH problem. This is because our scheme includes gr as part of the signature,
whereas the original scheme [BB08] only outputs r. In addition, our security proof requires
the secrecy of both h1 and α, while the q-SDH problem only guarantees the secrecy of α.

1.3 Revisiting q-Type Assumptions
Transitioning from q-type to static assumptions holds philosophical significance for remov-
ing the reliance of the assumption on adversarial actions. We see our work as an orthogonal
approach to the Déjà Q frameworks of Chase et al. [CM14, CMM16]. Chase and Meikle-
john [CM14] reduced a number of q-type assumptions to the subgroup-hiding assumption
in composite-order groups. Their reduction can be adapted to the Boneh-Boyen signatures.
Compared to our work, theirs provides a more generic approach by working directly on the
assumption, and hence can prove the security of some deterministic algorithms, such as the
(modified) Dodis-Yampolskiy pseudorandom function [DY05] under static assumptions.

Specifically, they require the use of asymmetric pairings, with all secret parameters
crucial to the assumption confined to one side of the pairing. Their reduction requires
a decisional assumption regarding the base group elements. This rules out Gentry-IBE,
with security relying on the q-augmented decisional bilinear Diffie-Hellman inversion
problem [Gen06], which involves distinguishing a target group element from random.

In contrast, our study focuses on the scheme level, which is less generic but still covers
an important class of pairing-based schemes, namely, the exponent-inversion framework.
Specifically, we can now replace the use of decisional q-type assumptions involving secret
values on both sides of the pairing and prove the security of our variant of Gentry-
IBE and our A-IBE scheme based on static assumptions, which have not been achieved
before [CM14]. Although our description starts with the composite-order group setting for
an easier understanding of the essence, they can be instantiated by prime-order groups
under the SXDH assumption. In general, prime-order-group instantiations are more
efficient than their composite-order group counterparts.

Finally, we remark that the improved Déjà Q frameworks of Chase et al. [CMM16]
cover more assumptions, particularly those over symmetric pairing groups, albeit requiring
tailored efforts, namely, sorting out the dependency of graphs that reflect the usage of all
values in the source groups and how they interact with each other and with the pairing.
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2 Background
2.1 Notations, Pairing Groups, and Complexity Assumptions

Composite-Order Groups. Let G be a composite-order bilinear group context generator
that takes a security parameter 1λ as input, where λ ∈ N, and outputs a description of
bilinear group (N = p1p2p3,G,GT , ê), where p1, p2, p3 are distinct λ-bit primes. G and
GT are cyclic groups of order N , and ê : G×G→ GT is a symmetric bilinear map such
that ∀g, h ∈ G and a, b ∈ ZN , ê(ga, hb) = ê(g, h)ab. ê(g, g) generates GT if g is a generator
of G. All group operations, ê, and G run in probabilistic polynomial time (PPT).

For i ∈ {1, 2, 3}, let Gpi denote the subgroup of order pi in G. Let gi be a generator
of Gpi

. For all hi ∈ Gpi
and hj ∈ Gpj

, if i ̸= j, then ê(hi, hj) = 1. We also use Gp2p3 to
denote the subgroup of order p2p3 in G. For all T ∈ Gp2p3 , T can be uniquely expressed as
the product of an element from Gp2 and an element from Gp3 . We refer to these elements
as the “Gp2 part of T ” and the “Gp3 part of T ” respectively. We also use similar notations,
e.g., for Gp1p2 and G = Gp1p2p3 . Finally, we assume G also outputs generators for certain
subgroups of G, namely, g1, g3, and g2,3 for Gp1 , Gp3 , and Gp2p3 , respectively.
Prime-Order Groups. Let G be a prime-order bilinear group context generator
that takes a security parameter 1λ as input and outputs a description of bilinear group
(p,G1 = ⟨g1⟩,G2 = ⟨g2⟩,GT , ê) and generators g1, g2, where p is prime. G1,G2, and GT

are cyclic groups of order p, and ê : G1 ×G2 → GT is an asymmetric bilinear map.
For a fixed dimension n, we choose two random bases B := (−→b1 , . . . ,

−→
bn) and B∗ :=

(−→b∗
1 , . . . ,

−→
b∗

n)) of Zn
p , subject to the constraint that they are “dual orthonormal” [OT08].

This means that −→bi ·
−→
b∗

j = 0 mod p for all i ̸= j, and −→bi ·
−→
b∗

i = ψ for all i, where ψ is picked
uniformly at random from Zp and a⃗ · b⃗ denotes the inner product of vectors a⃗ and b⃗.

We define ên as the product of the component-wise pairings for the vectors −→v =
(v1, . . . , vn), −→w = (w1, . . . , wn):

ên(g
−→v
1 , g

−→w
2 ) :=

n∏
i=1

ê(gvi
1 , g

wi
2 ) = ê(g1, g2)

−→v ·−→w .

Choosing random dual orthonormal bases (B,B∗) is equivalent to randomly choosing a
basis B and a vector −→b∗

1 , subject to the constraint that it is orthogonal to −→b2 , . . . ,
−→
bn. Then

−→
b∗

2 is chosen so that it is orthogonal to −→b1 ,
−→
b3 , . . . ,

−→
bn, and has dot product with −→b2 equal

to −→b1 ·
−→
b∗

1 , which is defined as ψ, and so on.
For a given dimension n and prime p, we define (B,B∗)← Dual(Zn

p ) to represent the
selection of random dual orthonormal bases B and B∗ of Zn

p .
Symmetric External Diffie-Hellman (SXDH) Assumption. First, we define the
decisional Diffie-Hellman (DDH) assumption in G1 as follows. Given a prime-order bilinear
group context generator G, we define the following distribution:

(p,G1,G2,GT , ê)
R← G(1λ), g1

R← G1, g2
R← G2, a, b, c

R← Zp,

T0 := gab
1 , T1 := gab+c

1 , D := (p,G1,G2,GT , ê, g1, g2, g
a
1 , g

b
1),

where R← denotes sampling uniformly at random or assignment of a random output from
an algorithm. Assume that for any PPT algorithm A with output in {0, 1}, the advantage

AdvG,A := |Pr[(D,T0) = 1]− Pr[(D,T1) = 1]| = negl(λ).

By reversing the roles of G1 and G2 above, we obtain the DDH assumption in G2. The
symmetric external Diffie-Hellman (SXDH) assumption holds if the DDH problems are
intractable in both G1 and G2.
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(k, n)-Decisional Subspace Assumption (in G1) [CLL+12]. Given a prime-order
bilinear group context generator G, we define the following distribution:

(p,G1,G2,GT , ê)
R← G(1λ), (B,B∗)← Dual(Zn

p ),

g1
R← G1, g2

R← G2, τ1, τ2, µ1, µ2
R← Zp,

U1 := g
µ1

−→
b∗

1 +µ2
−−→
b∗

k+1
2 , U2 := g

µ1
−→
b∗

2 +µ2
−−→
b∗

k+2
2 , . . . , Uk := g

µ1
−→
b∗

k+µ2
−→
b∗

2k
2 ,

V1 := gτ1
−→
b1

1 , V2 := gτ1
−→
b2

1 , . . . , Vk := gτ1
−→
bk

1 ,

W1 := g
τ1

−→
b1+τ2

−−→
bk+1

1 , W2 := g
τ1

−→
b2+τ2

−−→
bk+2

1 , . . . , Wk := gτ1
−→
bk+τ2

−→
b2k

1 ,

D := (p,G1,G2,GT , ê, g
−→
b∗

1
2 , . . . , g

−→
b∗

k
2 , g

−−−→
b∗

2k+1
2 , . . . , g

−→
b∗

n
2 , g

−→
b1
1 , . . . , g

−→
bn
1 , U1, . . . , Uk, µ2).

Assume that for any PPT algorithm A with output in {0, 1}, the advantage

AdvG,A := |Pr[(D,V1, . . . , Vk) = 1]− Pr[(D,W1, . . . ,Wk) = 1]| = negl(λ).

By reversing the roles of G1 and G2 above, we obtain the subspace assumption in G2. The
SXDH assumption implies the decisional subspace assumption [CLL+12].

2.2 Formal Model of Identity-Based Encryption
An IBE scheme consists of four PPT algorithms:

• Setup: On input of a security parameter 1λ, it outputs a system parameter param and
a master public/private key pair (mpk,msk). The public parameter param implicitly
defines an identity space I and a message spaceM. It is treated as an implicit input
of all other algorithms, and is omitted for simplicity.

• Extract: On msk and an identity ID ∈ I, it outputs an identity-based secret key skID.

• Enc: On input of mpk, ID, and a message M ∈M, it outputs a ciphertext C.

• Dec: On input of mpk, skID, and C, it outputs a message M or ⊥ for failed decryption.

Correctness. For all M ∈ M, ID ∈ I; M = Dec(mpk, skID,Enc(mpk, ID,M)), where
(mpk,msk)← Setup(1λ) and skID ← Extract(msk, ID).
Confidentiality. A PPT adversary A plays the indistinguishability-based game below to
launch adaptive chosen-identity and plaintext attacks (IND-ID-CPA) [BF03].

1. Setup. The challenger C runs (mpk,msk)← Setup(1λ) and gives mpk to A.

2. Query 1. A can adaptively query the following oracles:

• Extraction Oracle KEO(ID): On input of an identity ID ∈ I, it returns an
identity-based secret key skID ← Extract(msk, ID).

3. Challenge. A sends two messages M∗
0 ,M

∗
1 ∈ M, and an identity ID∗ ∈ I to C. C

picks a random bit b′, computes C∗ ← Enc(mpk, ID∗, M∗
b′), and sends C∗ to A.

4. Query 2. A is allowed to query the above oracles adaptively.

5. Output. A returns a guess b∗ for b′.

A wins the game if b′ = b∗ with no KEO(ID∗) query was issued. The advantage of A is
the probability of winning the game minus 1/2. An IBE scheme is IND-ID-CPA secure if
there is no PPT A with a non-negligible advantage.
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2.3 Formal Model of Accountable-Authority IBE
An A-IBE scheme consists of five PPT algorithms:

• Setup: On input of a security parameter 1λ, it outputs a system parameter param and
a master public/private key pair (mpk,msk). The public parameter param implicitly
defines an identity space I and a message space M. It is treated as an implilcit
input of all other algorithms, and is omitted for simplicity.

• Extract: On input of msk and an identity ID from the identity space I, it engages
in an interactive protocol with the user. The user receives an identity-based secret
key skID in the end. Note that the issuer may not know the exact key that the user
obtains.

• Enc: On input of mpk, ID, and a message M ∈M, it outputs a ciphertext C.

• Dec: On input of mpk, skID, and C, it outputs a message M or ⊥ if decryption fails.

• TraceD: On input of mpk, skID, and black-box accesses to an ϵ-useful decoder box D
(defined below) for an identity ID, the algorithm determines if D was created by the
PKG or the user ID.

Correctness. For all M ∈ M, ID ∈ I; M = Dec(mpk, skID,Enc(mpk, ID,M)), where
(mpk,msk)← Setup(1λ) and skID ← Extract(msk, ID). Some A-IBE schemes only require
correctness to hold with an overwhelming probability [SS11].
Usefulness of Decoder. For non-negligible ϵ, a PPT algorithm D is an ϵ-useful decoder
box for an identity ID if Pr[M ←M : D(Enc(mpk, ID,M)) = M ] ≥ ϵ.
Confidentiality. We consider the following indistinguishability-based game against
adaptive chosen-identity and chosen-ciphertext attacks (IND-ID-CCA).

1. Setup. The challenger C runs (param,mpk,msk) ← Setup(1λ), withholds msk, and
gives (param,mpk) to the adversary A.

2. Query 1. A can adaptively query the following oracles:

• Extraction Oracle KEO(ID): On input of an identity ID ∈ I, it returns an
identity-based secret key skID ← Extract(msk, ID).

• Decryption Oracle DO(ID, C): On input of an identity ID ∈ I and a ciphertext
C, it returns the decryption result Dec(mpk,Extract(msk, ID), C).

3. Challenge. A sends two messages M∗
0 ,M

∗
1 ∈ M, and an identity ID∗ ∈ I to C. C

picks a random bit b′, computes C∗ ← Enc(mpk, ID∗, M∗
b′), and sends C∗ to A.

4. Query 2. A is allowed to query the above oracles adaptively.

5. Output. A returns a guess b∗ for b′.

A wins the game if b′ = b∗. We require that there was no KEO(ID∗) or DO(ID∗, C∗) query
was made. The advantage of A is the probability of winning the game minus 1/2. An
A-IBE scheme is IND-ID-CCA secure if there is no PPT A with a non-negligible advantage.
Dishonest User Security. We consider the ComputeNewKey(-CCA) game against
adaptive chosen-identity attacks (and chosen-ciphertext attacks) below.

1. Setup. The challenger runs (param,mpk,msk)← Setup(1λ), withholds msk, and gives
(param, mpk) to the adversary A.

2. Query. A can adaptively query the following oracles:
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• Extraction Oracle KEO(ID): On input of an identity ID ∈ I, it returns an
identity-based secret key skID ← Extract(msk, ID).

• Decryption Oracle DO(ID, C): On input of an identity ID ∈ I and a ciphertext
C, it returns the decryption result Dec(mpk,Extract(msk, ID), C).

3. Output. Adversary A outputs an ϵ-useful decoder box D∗ and a key skID∗ for ID∗.

Adversary A wins the game if TraceD∗
(mpk, skID∗ , ϵ) = ‘PKG’. An A-IBE scheme is said

to be ComputeNewKey-CCA secure if there is no PPT adversary A with a non-negligible
advantage in winning the game above. The extra decryption oracle given to A may help it
create a decoder box D∗ since D∗ mimics the function of a decryption oracle. Thus, the
ComputeNewKey-CCA model is stronger than its CPA variant.
Dishonest PKG Security. We consider the FindNewKey game against adaptive
chosen-ciphertext attacks (FindNewKey-CCA) [SS11].

1. Initialize. The challenger gives param to the adversary A.

2. Setup. A gives the master public key mpk and an identity ID∗ ∈ I to the challenger.
The challenger aborts if they are not well-formed.

3. Extract. The challenger and A engage in the extract protocol for ID∗. If neither
party aborts, the challenger receives skID∗ as output.

4. Query. A can adaptively query the following oracles:

• Decryption Oracle DO(C): On input of a ciphertext C, it returns the decryption
result M/⊥ ← Dec(mpk, skID∗ , C).

5. Output. Adversary A outputs an ϵ-useful decoder box D∗.

Adversary A wins the game if TraceD∗
(mpk, skID∗ , ϵ) = ‘User’. An A-IBE scheme is

FindNewKey-CCA secure if no PPT adversary A can win with a non-negligible advantage.

2.4 Formal Model of Non-interactive P-signatures
A non-interactive P-signature scheme extends a signature scheme (KG,Sign,Verify) and a
non-interactive commitment scheme (Setup,Commit) with the algorithms below [BCKL08].

• Setup: On input of a security parameter 1λ, it generates public parameters param.
These include parameters for the signature and commitment schemes.

• ObtainSig↔ IssueSig: These two interactive algorithms execute a signature-issuing
protocol between a user and an issuer. The user takes as input (param, pk,M,C,Open)
such that the value C = Commit(param,M,Open) and obtains a signature σ as output.
The issuer takes (param, sk, C) as input and gets nothing as output.

• Prove: On input (param, pk,M, σ), it outputs comm = Commit(param,M,Open) and
π as a proof of knowledge of a signature σ on M . This algorithm is non-interactive.

• VerifyPf: On input of a commitment to a message M and a proof π that the message
has been signed by the owner of public key pk, it outputs 1 if π is a valid proof of
knowledge of F (M) and a signature on M where F is a given function; 0 otherwise.

• EqCommProve: On input of a message and two commitment opening values, it
outputs a proof π that comm = Commit(M,Open) is a commitment to the same
value as comm′ = Commit(M,Open′).
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• EqCommVerify: On input of two commitments comm, comm′ and a proof π, it outputs
1 if π is a proof that comm, comm′ commit to the same value; 0 otherwise.

Correctness. VerifyPf(comm, π) = 1, for all λ ∈ N+, (param, pk, sk)← Setup(1λ), C ←
Commit(param,M,Open), σ ← ObtainSig(param, pk,M,C,Open)↔ IssueSig(param, sk, C),
(comm, π)← Prove(param, pk,M, σ).
Signer Privacy. A P-signature scheme has signer privacy if there exists a simulator
SimIssue such that no PPT A can obtain any non-negligible advantage in the game below:

1. Setup. The challenger runs (param, pk, sk)←Setup(1λ) and gives (param, pk, sk) to A.

2. Challenge. A sends a message M and an opening Open to the challenger. The
challenger picks a random bit b′ and computes C ← Commit(param,M,Open). If
b′ = 0, the challenger runs IssueSig(param, sk, C) with A; otherwise, computes
σ ← Sign(param, sk,M) and runs SimIssue(param, C, σ) with A.

3. Output. A returns a guess b∗ for b′. The advantage of A is the absolute difference
between the probability of b∗ = b′ and 1/2.

User Privacy. A P-signature scheme has user privacy if there exists a simulator SimIssue
such that no PPT adversary A can obtain any non-negligible advantage in the game below:

1. Setup. The challenger runs (param, ·, ·)← Setup(1λ) and gives param to adversary A.

2. Challenge. A sends a public key pk, a message M , and an opening Open to the
challenger. The challenger computes C ← Commit(param,M,Open) and picks a
random bit b′. If b′ = 0, the challenger runs ObtainSig(param, pk,M,C,Open) with A;
otherwise, it runs SimObtain(param, pk, C) with A.

3. Output. A returns a guess b∗ for b′. The advantage of A is the absolute difference
between the probability of b∗ = b′ and 1/2.

Zero-knowledge. A P-signature scheme is zero-knowledge if there exists a simulator
(SimSetup,SimProve,SimEqComm) such that, for all PPT adversaries A, under parameters
output by SimSetup, Commit is perfectly hiding and
(1) the parameters output by SimSetup are indistinguishable from those output by Setup,
but SimSetup also outputs a special auxiliary string aux,
(2) when param is generated by SimSetup, outputs of SimProve(param, aux, pk) are indistin-
guishable from those of Prove(param, pk,M, σ) for all (pk,M, σ) where σ ∈ σpk(M), and
(3) if param is generated by SimSetup, outputs of SimEqComm(param, aux, comm, comm′)
are indistinguishable from those of EqCommProve(param,M,Open,Open′), ∀M , Open, and
Open′ such that comm = Commit(param,M,Open) and comm′ = Commit(param,M,Open′).
Unforgeability. A P-signature scheme is unforgeable if there exists a PPT extractor
(ExtractSetup,Extract) and a bijective function F such that, for all PPT adversaries A,
(1) the output of ExtractSetup(1λ) is indistinguishable from the output of Setup(1λ), and
(2) A cannot output a proof π that VerifyPf outputs 1, but from which we extract F (M)
and σ such that either (a) σ is not a valid signature on M , (b) C is not a commitment to M ,
or (c) A has never previously queried the signing oracle on M .

3 Exponent-Inversion Identity-Based Encryption
3.1 Dual Form Gentry-IBE

• Setup(1λ): The PKG runs the composite-order bilinear group context generator
G(1λ) to get (N = p1p2p3,G,GT , ê) and generators g1 ∈ Gp1 and g3 ∈ Gp3 . The
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PKG randomly picks α ∈ ZN , u1, h1 ∈ Gp1 . The master public key is mpk =
(N,G,GT , ê, g1, u1, ê(g1, h1), gα

1 ). The master secret key is msk = (α, h1, g3).

• Extract(msk, ID): The PKG randomly picks r ∈ ZN and X3, X
′
3 ∈ Gp3 , and outputs4

skID = (K1 = (h1u
−r
1 ) 1

α−IDX3, K2 = gr
1X

′
3).

• Enc(mpk, ID,M): To encrypt M ∈ GT for ID ∈ ZN\{α}, the sender randomly picks
s ∈ ZN and outputs C = (C0 = M · ê(g1, h1)s, C1 = g

s(α−ID)
1 , C2 = us

1).

• Dec(mpk, skID, C): Parse skID = (K1,K2), return M = C0/ê(C1,K1) · ê(C2,K2).

Theorem 1. Our IBE scheme is IND-ID-CPA secure under Assumptions 1, 2, and 3.

Assumptions 1, 2, and 3 and the proof are provided in Appendix A.
Prime-Order Group Version. We can convert our IBE scheme into its prime-order
version by the method of Chen et al. [CLL+12]. With the notations for dual pairing vector
spaces and dual orthonormal bases in Section 2, the prime-order version is presented below.

• Setup(1λ): The PKG runs the prime-order bilinear group context generator G(1λ)
to get (p,G1,G2,GT , ê) and generators g1 ∈ G1, g2 ∈ G2. It samples random
dual orthonormal bases (D,D∗) ← Dual(Z4

p). We let −→d1, . . . ,
−→
d4 denote the ele-

ments of D and −→d∗
1, . . . ,

−→
d∗

4 denote the elements of D∗. The PKG randomly picks
α, β ∈ Zp and computes gT = ê(g1, g2)

−→
d1·

−→
d∗

1 . The master public key is mpk =
(p,G1,G2,GT , ê, g

−→
d1
1 , g

−→
d2
1 , gα

−→
d1

1 , gβ
T ). The master secret key is msk = (g

−→
d∗

1
2 , g

−→
d∗

2
2 , g

β
−→
d∗

1
2 , α).

• Extract(msk, ID): The PKG randomly picks r ∈ Zp and outputs skID = (−→K =

g
( β−r

α−ID )
−→
d∗

1+r
−→
d∗

2
2 ).

• Enc(mpk, ID,M): To encrypt a message M ∈ GT for ID ∈ Zp, the sender randomly
picks s ∈ Zp and outputs C = (C0, C1), where C0 = M · gβ·s

T ,
−→
C1 = g

s(α−ID)
−→
d1+s

−→
d2

1 .

• Dec(mpk, skID, C): Given a ciphertext C = (C0,
−→
C1) and a secret key skID = −→K , the

recipient calculates M = C0/ê4(−→C1,
−→
K).

Theorem 2. Our prime-order IBE scheme is IND-ID-CPA secure under SXDH.

Proof. We prove this by a hybrid argument using a sequence of games. The first game
Gamereal is the IND-ID-CPA game. Let the challenge identity be ID∗. Let q be the number
of extraction oracle queries.

For k ∈ {0, . . . , q}, we define Gamek the same as Gamereal, except that the challenge
ciphertext is semi-functional (SF), and the keys used to answer first k oracle queries are
SF. We define SF key or SF ciphertext, which is distributed like their normal version −→K or
(C0,
−→
C1) but “perturbed” by −→d3,

−→
d4,
−→
d∗

3,
−→
d∗

4 in the exponent as follows.

• An SF key is in the form of −→K ′ = −→K · gγ3
−→
d∗

3+γ4
−→
d∗

4
2 , where γ3, γ4 ∈ Zp.

• An SF ciphertext is in the form of C ′
0 = C0,

−→
C1

′ = −→C1 · gδ3
−→
d3+δ4

−→
d4

1 , where δ3, δ4 ∈ Zp.

The last game is Gamefinal, the same as Gameq, except that the challenge ciphertext is
an SF encryption of a random message but not any one of the two challenge messages.

We proceed by proving the indistinguishability between these games.
4Similar to other exponent-inversion schemes, if the inverse of α − ID mod N does not exist, the

algorithm outputs ⊥. We ignore this negligible case for the rest of the paper.
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Lemma 1. We can construct an algorithm B with advantage ϵ in breaking SXDH if there
exists A such that AdvA(Gamereal)− AdvA(Game0) = ϵ.

Lemma 2. We can construct an algorithm B with advantage ϵ in breaking SXDH if there
exists A such that AdvA(Gameℓ−1)− AdvA(Gameℓ) = ϵ.

Lemma 3. For any adversary A, AdvA(Gameq)− AdvA(Gamefinal) = negl(λ).

In Gamefinal, the value of b′ is information-theoretically hidden from A. Hence, A has
no advantage in winning Gamefinal.

Proof of Lemma 1. Given D = (g
−→
b∗

1
2 , g

−→
b∗

2
2 , g

−→
b1
1 , . . . , g

−→
b4
1 , U1, U2, µ2) along with T =

(T1, T2), which is either (V1, V2) or (W1,W2) from (2, 4)-decisional subspace assumption
in G1, B can simulate Gamereal or Game0 with A. First, B chooses a random invert-
ible matrix A ∈ Z2×2

q , and implicitly sets −→d1 = −→
b1 , −→d2 = −→

b2 , (−→d3,
−→
d4) = (−→b3 ,

−→
b4)A,

−→
d∗

1 = −→b∗
1 , −→d∗

2 = −→b∗
2 , (−→d∗

3,
−→
d∗

4) = (−→b∗
3 ,
−→
b∗

4)(A−1)⊺. B chooses random α, β and computes
mpk = (g

−→
b1
1 , g

−→
b2
1 , (g

−→
b1
1 )α, g

−→
b∗

2
2 , ê(g

−→
b1
1 , g

−→
b∗

1
2 )β) and msk = (g

−→
b∗

1
2 , (g

−→
b∗

1
2 )β , α) according to Setup.

For extraction oracle queries, B answers by calculating skID using msk.
When A sends B two messages M∗

0 ,M
∗
1 , and an identity ID∗, B randomly picks a bit

b′ ∈ {0, 1}. B calculates the challenge ciphertext as:

C∗
0 = M∗

b′ · ê(T1, g
−→
b∗

1
2 )β , C∗

1 = T
(α−ID∗)
1 T2

If T = (gτ1
−→
b1

1 , gτ1
−→
b2

1 ), this is a normal ciphertext with s = τ1, and hence B simulates Gamereal.
If T = (gτ1

−→
b1+τ2

−→
b3

1 , gτ1
−→
b2+τ2

−→
b4

1 ), C∗
1 has an additional term of (τ2(α− ID∗)−→b3 + τ2

−→
b4) in its

exponent. As A is random, these coefficients are also random in the basis of −→d3,
−→
d4. B thus

simulates Game0. If A can distinguish between Gamereal and Game0, B can break SXDH.

Proof of Lemma 2. Given D = (g
−→
b1
1 , g

−→
b2
1 , g

−→
b∗

1
2 , . . . , g

−→
b∗

4
2 , U1, U2, µ2) along with T =

(T1, T2), which is either (V1, V2) or (W1,W2) from (2, 4)-decisional subspace assumption
in G2, B can simulate Gameℓ−1 or Gameℓ with A. B first chooses a random invertible
matrix A ∈ Z2×2

q , and implicitly sets −→d1 = −→b1 , −→d2 = −→b2 , (−→d3,
−→
d4) = (−→b3 ,

−→
b4)A, −→d∗

1 =
−→
b∗

1 , −→d∗
2 = −→b∗

2 , (−→d∗
3,
−→
d∗

4) = (−→b∗
3 ,
−→
b∗

4)(A−1)⊺. B chooses random α, β and computes mpk =
(g

−→
b1
1 , g

−→
b2
1 , (g

−→
b1
1 )α, g

−→
b∗

2
2 , ê(g

−→
b1
1 , g

−→
b∗

1
2 )β) and msk = (g

−→
b∗

1
2 , (g

−→
b∗

1
2 )β , α) according to Setup. When A

makes its kth distinct extraction oracle query for IDk:

• If k < ℓ, B calculates the normal key skIDk
using msk.

• If k > ℓ, B calculates the normal key skIDk
using msk. B randomly picks γ3, γ4 ∈ Zp

and calculates the SF key sk′
IDk

= skIDk
· (g

−→
d∗

3
2 )γ3 · (g

−→
d∗

4
2 )γ4 .

• If k = ℓ, B chooses random X ′
3, X

′′
3 ∈ Gp3 and calculates the key skIDℓ

:

(g
−→
b∗

1
2 )

β
α−ID · (T1)

−1
α−ID · T2.

If T = (gτ1
−→
b∗

1
2 , g

τ1
−→
b∗

2
2 ), it is a normal key with r = τ1. Hence B simulates Gameℓ−1. If

T = (gτ1
−→
b∗

1 +τ2
−→
b∗

3
2 , g

τ1
−→
b∗

2 +τ2
−→
b∗

4
2 ), then skIDℓ

has an additional term of ( −τ2
α−ID

−→
b∗

3 + τ2
−→
b∗

4 ) in
its exponent. Since A is random, these coefficients are also random in the basis of−→
d∗

3,
−→
d∗

4. Therefore, B simulates Gameℓ.
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B returns the above skID as the response to the query.
In the Challenge phase, A sends B two messages M∗

0 ,M
∗
1 , and an identity ID∗. B

chooses a random bit b′ ∈ {0, 1} and calculates the SF challenge ciphertext:

C∗
0 = M∗

b′ · ê(U1, g
−→
b∗

1
2 )β , C∗

1 = U
(α−ID∗)
1 U2.

Thus, B can break SXDH if A can distinguish Gameℓ−1 and Gameℓ.

Proof of Lemma 3. We randomly pick ζ1, ζ2 ∈ Zp and define new dual orthonormal
bases F := (−→f1, . . . ,

−→
f4) and F∗ := (−→f∗

1 , . . . ,
−→
f∗

4 ) as follows:
−→
f1−→
f2−→
f3−→
f4

 :=


1 0 0 0
0 1 0 0
ζ1 0 1 0
0 ζ2 0 1



−→
d1−→
d2−→
d3−→
d4

 ,

−→
f∗

1−→
f∗

2−→
f∗

3−→
f∗

4

 :=


1 0 −ζ1 0
0 1 0 −ζ2
0 0 1 0
0 0 0 1



−→
d∗

1−→
d∗

2−→
d∗

3−→
d∗

4

 .
It is easy to verify that F and F∗ are also dual orthonormal.

Then, the master public key (apart from public parameters (p,G1,G2,GT )), challenge
ciphertext, and queried secret keys in Gameq expressed over D and D∗ are, respectively:

mpk = (g
−→
d1
1 , g

−→
d2
1 , gα

−→
d1

1 , gβ
T ),

C = (C0 = M · gβ·s
T ,

−→
C1 = g

s(α−ID)
−→
d1+s

−→
d2+δ3

−→
d3+δ4

−→
d4

1 ),
−→
K = g

( β−r
α−ID )

−→
d∗

1+r
−→
d∗

2+γ3
−→
d∗

3+γ4
−→
d∗

4
2 ,

which can be expressed over F and F∗ as:

mpk = (g
−→
f1
1 , g

−→
f2
1 , gα

−→
f1

1 , gβ
T ),

C = (C0 = M · gβ·s
T ,

−→
C1 = gz

−→
f1+z′−→f2+δ3

−→
f3+δ4

−→
f4

1 ),
−→
K = g

( β−r
α−ID )

−→
f∗

1 +r
−→
f∗

2 +γ′
3
−→
f∗

3 +γ′
4
−→
f∗

4
2 ,

where

z = s(α− ID)− ζ1δ3, z′ = s− ζ2δ4,

γ′
3 = γ3 + ( β − r

α− ID )ζ1, γ′
4 = γ4 + rζ2.

They are uniformly random since ζ1, ζ2, δ3, δ4 are random. In other words, the coefficients
of (D,D∗) in the −→C1 term of the challenge ciphertext are changed to uniformly random
coefficients of (F,F∗), allowing the challenge ciphertext to be viewed as an SF encryption of
a random message. Hence, the adversary cannot distinguish between Gameq and Gamefinal.

3.2 Accountable-Authority Identity-Based Encryption
In Gentry-IBE, the element r in an identity-based secret key cannot be re-randomized
by the user. To extend this into A-IBE scheme, r can be jointly computed by the user
and the PKG in such a way that the PKG does not know the final value of r in the
secret key it helps issue, while still ensuring that the user cannot re-randomize it. This
non-re-randomizability is crucial for tracing — a key is leaked by a user if and only if the
embedded element r in the key is identical to that of the user’s key [Goy07]. Our A-IBE
construction adopts this approach to ensure accountability.
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There are several modifications compared to our (prime-order) IBE scheme. Firstly,
we turn the key extraction procedure into an interactive protocol between the PKG and
user. To defend against dishonest PKG, we divide the secret key into two parts, allowing
a simulator acting as a user to issue a key in the semi-functional form without letting
the adversary (acting as PKG) know (cf., Theorem 5). Next, we apply a strong one-time
signature scheme to achieve CCA security [BCHK07]. To securely bind a verification key of
the signature scheme to the ciphertext, we introduce two more vector pairs (−→d5,

−→
d∗

5), (−→d6,
−→
d∗

6)
into our system. Note that these pairs do not introduce any additional SF components
during the proof. IND-CCA security can be proven in much the same way as for our IBE
scheme, except that decryption oracle can now be simulated [BCHK07].
Concrete Construction. We describe our (prime-order) A-IBE scheme as follows.

• Setup(1λ): The PKG runs the prime-order bilinear group context generator G(1λ)
to get (p,G1,G2,GT , ê) and generators g1 ∈ G1, g2 ∈ G2. It samples random dual
orthonormal bases (D,D∗)← Dual(Z6

p). We let −→d1, . . . ,
−→
d6 denote the elements of D

and −→d∗
1, . . . ,

−→
d∗

6 denote the elements of D∗. The PKG randomly picks α, β, v ∈ Zp,
computes gT = ê(g1, g2)

−→
d1·

−→
d∗

1 . Let (KG,Sign,Verify) be a strong one-time signature
scheme. Let (CRSGen,P,V) be an interactive concurrent zero-knowledge proof of
knowledge system [PV08]. It computes

param = (p,G1,G2,GT , ê, g
−→
d1
1 , g

−→
d2
1 , g

−→
d5
1 , g

−→
d6
1 , gT , crs1), mpk = (gα

−→
d1

1 , gv
−→
d1

1 , gβ
T ),

where crs1 ← CRSGen(1λ). The master secret key is

msk = (g
−→
d∗

1
2 , g

−→
d∗

2
2 , g

−→
d∗

5
2 , g

−→
d∗

6
2 , g

β
−→
d∗

1
2 , g

v
−→
d∗

2
2 , α).

• Extract(msk, ID): The user and the PKG interact to obtain the secret key skID as

−→
K1 = g

( β−r
α−ID )

−→
d∗

1+t
−→
d∗

5+v·t
−→
d∗

6
2 ,

−→
K2 = g

r
−→
d∗

2
2

for random r, t ∈ Zp. The interaction is as follows (which implicitly sets r = r0r1):

1. The PKG picks r1, t ∈ Zp, and sends (A1, A2) to the user, for A1 = g
r1

−→
d∗

1
2 ,

A2 = g
r1

−→
d∗

2
2 .

2. The PKG runs the concurrent zero-knowledge proof of knowledge π1 of r1 using
crs1, such that A1 and A2 are properly formed. The user continues if proof π1
is valid.

3. The user chooses some random r0, ρ ∈ Zp.
4. The user (with committed, private input (ρ,Ar0

1 )) and the PKG (with private
input (msk, r1, t)) engage in a secure two-party computation protocol, efficiently
implemented via techniques such as garbled arithmetic circuits [BHR12, AIK14],
two-party computation on committed inputs [JS07], or other secure methods
for computing such arithmetics [DKL+23, WMC24]. If the committed input is
invalid, e.g., Ar0

1 is not formed correctly using A1 with the knowledge of r0, it
outputs ⊥ and aborts. Otherwise, the PKG obtains the private outputs:

−→
K ′ = (Ar0

1 )( −ρ
α−ID )(g2)( β

α−ID )
−→
d∗

1ρ+t
−→
d∗

5ρ+v·t
−→
d∗

6ρ.

The PKG sends
−→
K ′ to the user.

5. The user outputs (−→K1 =
−→
K ′1/ρ,

−→
K2 = Ar0

2 ) if it is a valid secret key.
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• Enc(mpk, ID,M): To encrypt M to ID, the sender randomly picks s ∈ Zp and runs
(vk, sk)← KG(1λ). It outputs C = (C0, C1, σ, vk) where

C0 = M · gβ·s
T ,

−→
C1 = g

s(α−ID)
−→
d1+s

−→
d2+v·vk

−→
d5

1 , σ = Sign(sk, C0||
−→
C1).

• Dec(mpk, skID, C): Given a ciphertext C = (C0,
−→
C1, σ, vk) and a secret key skID =

(−→K1,
−→
K2), it checks Verify(vk, C0||

−→
C1, σ). If Verify returns that σ is invalid, it outputs

⊥; else it outputs M = C0/ê6(−→C1 · (g
−→
d6
1 )vk,

−→
K1 ·

−→
K2).

• TraceD(mpk, skID, ϵ): Given a valid skID = (−→K1,
−→
K2) for a user ID and an ϵ-useful

decoder box D, it checks by the following steps:

1. Initialize ctr to 0 and repeat the following steps for L = 16λ/ϵ times:
(a) Randomly choose s, s′ ∈ Zp such that s ̸= s′ and run (vk, sk) ← KG(1λ).

Set −→C1 = g
s(α−ID)

−→
d1+s′−→d2+v·vk

−→
d5

1 .
(b) Compute C0 = M · ê6(−→C1 · (g

−→
d6
1 )vk,

−→
K1 ·
−→
K2) for a random message M ∈ GT

and σ = Sign(sk, C0||
−→
C1).

(c) Provide D with (C0,
−→
C1, σ, vk). If D outputs the same M , increment ctr.

2. If ctr = 0, incriminate the PKG. Otherwise, incriminate the user.

The security proof is given in Appendix B.

4 Exponent-Inversion Signatures and More
Our dual form IBE scheme implies secure dual form signatures [GLOW12].

4.1 Dual Form Exponent-Inversion Signatures
Our dual form variant of Boneh-Boyen/Gentry signatures, referred to as DFEI, is as follows.

• Setup(1λ): It runs G(1λ) to get (N = p1p2p3,G,GT , ê) and generators g1 ∈ Gp1 ,
g3 ∈ Gp3 , and g2,3 ∈ Gp2p3 . It randomly picks α ∈ ZN , u1, h1 ∈ Gp1 . The public key
is pk = (N,G,GT , ê, g1, u1, ê(g1, h1), gα

1 ). The secret key is sk = (h1, α, g3, g2,3).

• Sign(sk,M): To sign on a message M ∈ ZN , it randomly picks X3, X
′
3 ∈ Gp3 , r ∈ ZN ,

and outputs σ = (σ1, σ2), where σ1 = (h1u
−r
1 ) 1

α−M X3, σ2 = gr
1X

′
3.

• Verify(pk, σ,M): Given σ = (σ1, σ2), it outputs ê(gα
1 · g−M

1 , σ1) · ê(u1, σ2) ?= ê(g1, h1).

The security proof is provided in Appendix C.
Prime-Order Group Version. Like our IBE scheme, we can turn our signature scheme
into one over prime-order groups using the methods of Chen et al. [CLL+12].

• Setup(1λ): It runs the bilinear group context generator G(1λ) to get (p,G1,G2,GT , ê)
and generators g1 ∈ G1, g2 ∈ G2. It samples random dual orthonormal bases
(D,D∗)← Dual(Z4

p). Let −→d1, . . . ,
−→
d4 be the elements of D and −→d∗

1, . . . ,
−→
d∗

4 represent the
elements of D∗. It randomly picks α, γ, z1, z3, y1, y3 ∈ Zp, and let gT = ê(g1, g2)

−→
d1·

−→
d∗

1 .
The public key5 is

pk = (p,G1,G2,GT , ê, g1, g2, g
−→
d1
1 , g

−→
d2
1 , gα

−→
d1

1 , gγ
T , Z = gz1

−→
d1+z3

−→
d3

1 , Y = gy1
−→
d1+y3

−→
d3

1 ).
5The elements Y and Z are only used for the proof of unforgeability of the anonymous credentials

application in Appendix D.
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The secret key is sk = (g
−→
d∗

1
2 , g

−→
d∗

2
2 , α, γ).

• Sign(sk,M): To sign on M ∈ Zp, it picks r ∈ Zp, computes −→σ1 = g
( γ−r

α−M )
−→
d∗

1
2 , −→σ2 = g

r
−→
d∗

2
2 ,

and outputs σ = (−→σ1,
−→σ2).

• Verify(pk, σ,M): The verifier randomly picks s ∈ Zp, sets −→C = g
s(α−M)

−→
d1+s

−→
d2

1 , and
returns ê4(−→C ,−→σ1 ◦ −→σ2) ?= gγs

T .

Optimized Version. The signature in our scheme includes two components designed
for use in our anonymous credential system. We can make slight modifications to our
algorithms to reduce the signature size:

Sign(sk,M): It computes the signature as −→σ = g
( γ−r

α−M )
−→
d∗

1+r
−→
d∗

2
2 .

Verify(pk, σ,M): The recipient returns ê4(−→C ,−→σ ) ?= gγs
T .

4.2 Anonymous Credentials from P-Signatures
Anonymous credentials allow a prover to demonstrate to a verifier that the prover possesses
a certificate from a credential issuer, while remaining unlinkable to both the registration
instance with the issuer for obtaining the certificate and any such demonstrations with
other verifiers. A formal definition has been detailed [BCKL08]. A P-signature scheme
is a type of signature scheme with efficient protocols for non-interactive zero-knowledge
proof of knowledge, both for requesting and showing signatures on a committed message.
Belenkiy et al. [BCKL08] show that anonymous credentials are an immediate consequence
of P-signatures. Thus, by presenting a P-signature scheme under the SXDH assumption,
we obtain a non-interactive anonymous credential scheme.

We use the prime-order version of DFEI, along with the Groth-Sahai NIZK proof system
GS = (Setup,Commit,Prove,Verify), instantiated under the SXDH assumption [GS12]. Our
P-signature scheme is presented as follows:

• Setup(1λ): It runs G(1λ) to obtain the parameters (p,G1,G2,GT , ê) for λ-bit prime p.
Using the same bilinear group parameters, it runs paramGS ← GS.Setup(1λ) and
picks a G1-generator Y and a G2-generator Z. Finally, it outputs the public system
parameters param = (p,G1,G2,GT , ê, Y, Z, paramGS).

• Sign(param, sk,M): It returns σ ← DFEI.Sign(sk,M).

• Verify(param, pk, σ,M): It returns {0, 1} ← DFEI.Verify(pk, σ,M).

• Commit(param,M,Open): It returns C ← GS.Commit(paramGS, Z
M ,Open).

• ObtainSig(param, pk,M,C,Open)↔ IssueSig(param, sk, C):

1. The user chooses random ρ1, ρ2 ∈ Zp.
2. The issuer chooses a random r ∈ Zp.
3. The user (with private input (M,ρ1, ρ2,Open)) and the issuer (with private

input (sk, r)) engage in a secure two-party computation protocol to compute the
private outputs below, using techniques such as those suggested in Section 3.2
(e.g., by securely computing (α −M)ρ1). If all private inputs are honestly
committed, in particular, C = GS.Commit(paramGS, Z

M ,Open), the issuer uses
sk = (g

−→
d∗

1
2 , g

−→
d∗

2
2 , α, γ) and obtains private outputs:

−→
σ′

1 = g
( γ−r

(α−M)ρ1
)
−→
d∗

1
2 ,

−→
σ′

2 = g
r

−→
d∗

2ρ2
2 .
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Otherwise, the issuer aborts. Finally, the issuer sends (
−→
σ′

1,
−→
σ′

2) to the user.

4. The user outputs (−→σ1 =
−→
σ′

1
ρ1 ,−→σ2 =

−→
σ′

2
1/ρ2) if it is a valid signature.

• Prove(param, pk,M, σ): It forms the following GS commitments:

MZ = GS.Commit(paramGS, Z
M ,OpenZ),MY = GS.Commit(paramGS, Y

M ,OpenY ),
Σi,j = GS.Commit(paramGS, σi,j ,OpenΣi,j

) for i ∈ [1, 2], j ∈ [1, 4],

where σi,j is the j-th component of −→σi , and all openings OpenZ , OpenY , and
{OpenΣi,j

} are freshly generated. It then computes the proof π as follows:

GS.Prove{(M,σ) : ê4(gs(α−M)
−→
d1+s

−→
d2

1 ,−→σ1 ◦ −→σ2) = ê(g1, g2)γ
−→
d1·

−→
d∗

1s},

using the commitments MZ , MY , and −→Σ i = (Σi,1, . . . ,Σi,4) for some randomly
chosen s ∈ Zp. It outputs comm = (MZ ,MY ,

−→Σ 1,
−→Σ 2) and π.

• VerifyPf(param, pk, comm, π): It outputs 1 if π is a valid NIZK proof for comm and
the language above; 0 otherwise.

• EqCommProve(param,M,Open,Open′): It forms the GS commitments below:

comm1 = GS.Commit(paramGS, Z
M ,Open),

comm2 = GS.Commit(paramGS, Z
M ,Open′),

and compute the following proof:

π = GS.Prove{(M,Open,Open′) : M1 = GS.Commit(paramGS, Z
M ,Open)

∧ M2 = GS.Commit(paramGS, Z
M ,Open′)},

which can be done by the existing zero-knowledge proof of equality of committed
exponents [BCKL08]. The final outputs contain comm1, comm2, and π.

• EqCommVerify(param,Open,Open′, π): It outputs 1 if π is a valid NIZK proof for
comm1 and comm2 above; 0 otherwise.

Theorem 3. Our P-signature scheme is secure under the SXDH assumption and the
security of the two-party computation.

The proof is provided in Appendix D.

5 Conclusion
We present dual form exponent-inversion signature schemes in the standard model under
static assumptions. By extending them via P-signatures, we obtain an anonymous credential
scheme that is more efficient than upgrading previous “simple-assumption-relying” works.
We also provide dual system encryption variants of Gentry-IBE [Gen06] under static
assumptions, from which we build a fully secure black-box accountable-authority IBE
scheme with constant key and ciphertext sizes.

Our work offers an orthogonal approach to the Déjà Q frameworks [CM14, CMM16].
While their focus is on assumption-level transformations, our study emphasizes the scheme
level, covering a representative class of schemes built upon exponent inversion.

A conceptual contribution of our study is the insights it provides into transforming
exponent-inversion-based schemes to rely on static assumptions. This exploration also raises
the question of whether the distinction between the exponent-inversion and commutative
blinding families is as significant as perceived, suggesting avenues for further research.
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A Security Proof for Our Identity-Based Encryption
A.1 Complexity Assumptions
We first review three complexity assumptions [LW10].
Assumption 1. Given a bilinear group context generator G, which picks λ-bit primes
p1, p2 and p3 and outputs (G,GT ) of order N = p1p2p3, we define the distribution below:

(N = p1p2p3,G,GT , ê)
R← G(1λ), g

R← Gp1 , X3
R← Gp3 ,

T0
R← Gp1p2 , T1

R← Gp1 , D := (N,G,GT , ê, g,X3).

For any PPT algorithm A1 with output in {0, 1}, the advantage

AdvG,A1 := |Pr[(D,T0) = 1]− Pr[(D,T1) = 1]| = negl(λ),

where negl(λ) denotes the class of negligible function in λ.
Assumption 2. Given a bilinear group context generator G, we define the distribution:

(N,G,GT , ê)
R← G(1λ), g,X1, Z1

R← Gp1 , Xi, Yi, Zi
R← Gpi(i = 2, 3),

T0 = Z1Z3, T1 = Z1Z2Z3, D := (N,G,GT , ê, g,X1X2, X3, Y2Y3).

For any PPT algorithm A2 with output in {0, 1}, the advantage

AdvG,A2 := |Pr[(D,T0) = 1]− Pr[(D,T1) = 1]| = negl(λ).

Assumption 3. Given G, we define the following distribution:

(N,G,GT , ê)
R← G(1λ), α, s R← ZN , g

R← Gp1 , X2, Y2, Z2
R← Gp2 , X3

R← Gp3 ,

T0 := ê(g, g)αs, T1
R← GT . D := (N,G,GT , ê, g, g

αX2, g
sY2, Z2, X3).

For any PPT algorithm A3 with output in {0, 1}, the advantage

AdvG,A3 := |Pr[(D,T0) = 1]− Pr[(D,T1) = 1]| = negl(λ).

A.2 Security Proof
Under the dual system encryption paradigm [Wat09], we define the semi-functional (SF)
structures used only in the security proof. These SF structures are like their normal version
in the actual scheme but “perturbed” by a Gp2 generator, denoted by either ḡ2 or ĝ2 below.

An SF secret key (or simply SF key) takes the form of (K ′
1 = K1 · ḡγ

2 ,K
′
2 = K2 · ḡ2), where

γ ∈ ZN , and (K1,K2) is a normal secret key.

An SF ciphertext is in the form of (C ′
0 = C0, C

′
1 = C1 · ĝ2, C

′
2 = C2 · ĝδ

2), where δ ∈ ZN

and (C0, C1, C2) is a normal ciphertext.
Decryption involving SF structures succeeds if an SF key is used to decrypt a normal

ciphertext, or a normal key is used to decrypt an SF ciphertext. However, decrypting an
SF ciphertext using an SF secret key will result in a message “blinded” by ê(ḡ2, ĝ2)−(γ+δ).

In case the exponents in these extra blinding factors are zeros, decryption still works,
leading to the notion of nominally semi-functional (NSF) secret keys. An NSF secret key
is a special kind of SF key that can successfully decrypt the corresponding SF ciphertext,
namely, γ + δ = 0. If an SF secret key is not nominally semi-functional, it is truly
semi-functional.
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Theorem 1. Our IBE scheme is IND-ID-CPA secure under Assumptions 1, 2, and 3.

Proof. We prove this through a hybrid argument involving a sequence of games. The first
game Gamereal is the IND-ID-CPA game. Let the challenge identity be ID∗. The second
game Gameres is the same as Gamereal, except that the adversary cannot ask for the secret
key of identity ID = ID∗ mod p2. Subsequent games will retain this restriction. Let q be
the number of extraction oracle queries. For k ∈ {0, . . . , q}, we define Gamek as follows.

Gamek: It is the same as Gameres, except that the challenge ciphertext is semi-functional
and the keys used to answer first kth oracle queries are semi-functional. The keys for the
rest of the queries are normal. Thus, in Game0, all keys are normal, and the challenge
ciphertext is semi-functional. In Gameq, everything is semi-functional.

The last game is Gamefinal, identical to Gameq, except that the challenge ciphertext is
a semi-functional encryption of a random message instead of a challenge message.

We proceed by proving the indistinguishability between these games.

Lemma 4. We can construct an algorithm B with a non-negligible advantage in breaking
Assumption 1 or 2 given A such that AdvA(Gamereal)− AdvA(Gameres) is non-negligible

The proof of Lemma 4 is easy and similar to the one in [LW10] and hence omitted.

Lemma 5. We can construct an algorithm B with advantage ϵ in breaking Assumption 1
if there exists an adversary A such that AdvA(Gameres)− AdvA(Game0) = ϵ.

Lemma 6. We can construct an algorithm B with advantage ϵ in breaking Assumption 2
if there exists A such that AdvA(Gameℓ−1)− AdvA(Gameℓ) = ϵ.

Lemma 7. We can construct an algorithm B with advantage ϵ in breaking Assumption 3
if there exists A such that AdvA(Gameq)− AdvA(Gamefinal) = ϵ.

In Gamefinal, the value of b′ is information-theoretically hidden from A. Thus, A has
no advantage in winning Gamefinal. If Assumptions 1, 2, and 3 hold, given the proofs of
the above lemmas, Gamereal is indistinguishable from Gamefinal. Hence, the attacker has
a negligible advantage in winning Gamereal. So, our scheme is IND-ID-CPA secure.

Proof of Lemma 5. Given (g,X3, T ) from Assumption 1, B can simulate Gameres or
Game0 with A. B chooses random β ∈ ZN and h1 ∈ Gp1 ; sets g1 = g, u1 = gβ , g3 = X3;
and generates the rest of mpk and msk = (α, h1, g3) according to Setup. For extraction
oracle queries, B answers by computing skID using msk.

When A sends B two messages M∗
0 ,M

∗
1 , and an identity ID∗, B randomly picks a bit

b′ ∈ {0, 1}. B computes the challenge ciphertext as:

C∗
0 = M∗

b′ · ê(T, h1), C∗
1 = Tα−ID∗

, C∗
2 = T β .

If T = gs, this is a normal ciphertext and hence B simulates Gameres. If T = gsY2,
this is an SF ciphertext with ĝ2 = Y α−ID∗

2 , ĝδ
2 = Y β

2 ; and hence B simulates Game0 with
δ = β/(α − ID∗). By the Chinese remainder theorem, the values of α, β mod p2 are not
correlated with the values of α and β modulo p1. If A can distinguish between Gameres
and Game0, B can then break Assumption 1.

Proof of Lemma 6. Given (g,X1X2, X3, Y2Y3, T ) from Assumption 2, B can simulate
Gameℓ−1 or Gameℓ with A. B picks random α, β ∈ ZN , h1 ∈ Gp1 , sets g1 = g, u1 = gβ ,
and g3 = X3; and generates the rest of mpk and msk = (α, h1, g3) as Setup. For the kth

distinct extraction oracle query on IDk:

• If k < ℓ, B computes the normal key skIDk
using msk.
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• If k > ℓ, B computes the normal key skIDk
= (K1,K2) using msk. B randomly picks

γ1, γ2 ∈ ZN and returns the SF key:

K ′
1 = K1 · (Y2Y3)γ1 , K ′

2 = K2 · (Y2Y3)γ2 .

This is a semi-functional key. By the Chinese remainder theorem, the values of γ1, γ2
modulo p2 and those modulo p3 are not correlated.

• If k = ℓ, B chooses random X ′
3, X

′′
3 ∈ Gp3 and computes the key skIDℓ

:

K1 = h
1

α−IDℓ
1 · T

β
α−IDℓ ·X ′

3, K2 = T ·X ′′
3 .

If T = Z1Z3, it is a normal key (for Z1 = gr). Hence, B simulates Gameℓ−1. If

T = Z1Z2Z3, it is an SF key with ḡγ
2 = Z

β
α−IDℓ
2 and ḡ2 = Z2. Thus, B simulates

Gameℓ. The value of γ mod p2 is not correlated with the values of α and β modulo p1.

In the Challenge phase, A sends B two messages M∗
0 ,M

∗
1 , and an identity ID∗. B

chooses a random bit b′ ∈ {0, 1} and computes the challenge ciphertext:

C∗
0 = M∗

b′ · ê(X1X2, h1), C∗
1 = (X1X2)α−ID∗

, C∗
2 = (X1X2)β .

It is an SF ciphertext with ĝ2 = Xα−ID∗

2 and ĝδ
2 = Xβ

2 . Note that f(ID) = β/(α − ID)
is a pairwise independent function modulo p2. As long as ID∗ ̸= IDℓ, δ and γ = β/(α −
IDℓ) mod p2 will seem randomly distributed to A (again, the values of α and β modulo p2
are uncorrelated with their values modulo p1 by the Chinese remainder theorem). The case
that ID∗ = IDℓ mod p2 in which A has made an invalid key request has been excluded.

So B can break Assumption 2 if A can distinguish Gameℓ−1 and Gameℓ.

Proof of Lemma 7. Given (g, gaX2, g
sY2, Z2, X3, T ) from Assumption 3, B chooses

random α, β ∈ ZN and sets g1 = g, u1 = gβ , ê(g1, h1) = ê(g, gaX2). B implicitly sets
h1 = ga. B generates the rest of the master public key mpk honestly and sends mpk to A.
B can compute the semi-functional secret key for ID as follows. B randomly picks

r ∈ ZN , R2, R
′
2 ∈ Gp3and R3, R

′
3 ∈ Gp3 and computes:

K ′
1 = (gaX2 · u−r

1 ) 1
α−ID ·R2 ·R3, K ′

2 = gr ·R′
2 ·R′

3,

Therefore B can answer all extraction oracle queries.
In the Challenge phase, B randomly chooses b′ ∈ {0, 1} and computes the SF ciphertext:

C ′
0 = M∗

b′ · T, C ′
1 = (gsY2)α−ID∗

, C ′
2 = (gsY2)β .

If T = ê(g, g)as, then B simulates Gameq. Otherwise, B simulates Gamefinal. If A can
distinguish between these two games, B can break Assumption 3. Thus, no PPT adversary
A can distinguish between Gameq and Gamefinal.

B Security Proof for Accountable-Authority IBE
The IND-ID-CCA security of our A-IBE scheme can be proven analogously to our prime-
order IBE scheme (under the (2, 6)-decisional subspace assumption) and hence omitted. In
particular, the decryption oracle is simulated by using either the normal or semi-functional
key to decrypt normal ciphertext. The semi-functional challenge ciphertext cannot be
queried to the decryption oracle, and modifying the challenge ciphertext will not give a
valid ciphertext (by the unforgeability of the strong one-time signature scheme).
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Dishonest User Security.
Theorem 4. If SXDH holds, then no PPT adversary has a non-negligible advantage in
the ComputeNewKey-CCA game.

Proof of Theorem 4. We consider the probability the tracing algorithm increases ctr.
Lemma 8. If SXDH holds, in the ComputeNewKey-CCA game, if D∗ correctly opens
well-formed ciphertexts with non-negligible probability, then the probability of the tracing
algorithm increasing ctr is also non-negligible.
Proof. First, we define the semi-functional key and ciphertext.
An SF secret key (or just SF key) is in the form of

−→
K ′

1 = −→K1 · g
γ3

−→
d∗

3
2 ,

−→
K ′

2 = −→K2 · g
γ4

−→
d∗

4
2 ,

where γ3, γ4 ∈ Zp, and sk = (−→K1,
−→
K2) is a normal secret key.

An SF ciphertext can be computed by randomly picking s, v ∈ Zp and running (vk, sk)←
KG(1λ). It outputs C = (C ′

0,
−→
C ′

1, σ, vk) by

C ′
0 = M · gβ·s

T ,
−→
C ′

1 = g
s(α−ID)

−→
d1+s

−→
d2+v·vk

−→
d5

1 · gδ3
−→
d3+δ4

−→
d4

1 , σ = Sign(sk, C0||
−→
C1),

where δ3, δ4 ∈ Zp.
Let Gamereal be the original adaptive-ID ComputeNewKey-CCA game. Let Gameq

be the same as Gamereal, except that the ciphertext used to feed into the decoder box in
Trace and the keys used to answer queries are changed from normal to semi-functional. Let
Gameq′ be the same as Gameq, except that the ciphertext used to feed into the decoder
box in Trace is changed to a valid ciphertext s.t. s′ = s (while retaining the semi-functional
components). Let Gamefinal be the same as Gameq′ , except that the ciphertext used to
feed into the decoder box in Trace and the keys used to answer queries are changed from
semi-functional to normal.

Similar to the IND-ID-CCA proof, (Gamereal, Gameq) and (Gameq′ , Gamefinal) are
indistinguishable under SXDH. In Gamefinal, the adversary is provided normal keys and
the decoder box is fed with a well-formed ciphertext. Therefore, if D∗ is ϵ-useful, then it
increases ctr with non-negligible probability.

Next, we show that all adversaries cannot distinguish between Gameq and Gameq′ . We
randomly pick ζ1, ζ2 ∈ Zp and define new dual orthonormal bases F := (−→f1, . . . ,

−→
f6) and

F∗ := (−→f∗
1 , . . . ,

−→
f∗

6 ) as follows

−→
f1−→
f2−→
f3−→
f4−→
f5−→
f6


:=


1 0 0 0 0 0
0 1 0 0 0 0
ζ1 0 1 0 0 0
0 ζ2 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





−→
d1−→
d2−→
d3−→
d4−→
d5−→
d6


,



−→
f∗

1−→
f∗

2−→
f∗

3−→
f∗

4−→
f∗

5−→
f∗

6


:=


1 0 −ζ1 0 0 0
0 1 0 −ζ2 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





−→
d∗

1−→
d∗

2−→
d∗

3−→
d∗

4−→
d∗

5−→
d∗

6


.

It is easy to verify that F and F∗ are also dual orthonormal.
Then the public parameters, master public key, queried secret keys in Gameq, and

challenge ciphertext expressed over D and D∗ are, respectively,

(g
−→
d1
1 , g

−→
d2
1 , g

−→
d5
1 , g

−→
d6
1 , gα

−→
d1

1 , gv
−→
d1

1 , gβ
T ),

K = (−→K1 = g
( β−r

α−ID )
−→
d∗

1+t
−→
d∗

5+v·t
−→
d∗

6+γ3
−→
d∗

3
2 ,

−→
K2 = g

r
−→
d∗

2+γ4
−→
d∗

4
2 ),

C = (−→C1 = g
s(α−ID)

−→
d1+s′−→d2+v·vk

−→
d5+δ3

−→
d3+δ4

−→
d4

1 , C0 = M · ê6(−→C1 · (g
−→
d6
1 )vk,

−→
K1 ·

−→
K2), σ),
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which can be expressed over F and F∗ as

(g
−→
f1
1 , g

−→
f2
1 , g

−→
f5
1 , g

−→
f6
1 , gα

−→
f1

1 , gv
−→
f1

1 , gβ
T ),

K = (−→K1 = g
( β−r

α−ID )
−→
f∗

1 +t
−→
f∗

5 +v·t
−→
f∗

6 +γ′
3
−→
f∗

3
2 ,

−→
K2 = g

r
−→
f∗

2 +γ′
4
−→
f∗

4
2 ),

C = (−→C1 = gz
−→
f1+z′−→f2+v·vk

−→
f5+δ3

−→
f3+δ4

−→
f4

1 , C0 = M · ê6(−→C1 · (g
−→
f6
1 )vk,

−→
K1 ·

−→
K2), σ),

where

γ′
3 = γ3 + ( β − r

α− ID )ζ1, γ′
4 = γ4 + rζ2,

z = s(α− ID)− ζ1δ3, z′ = s′ − ζ2δ4,

They are uniformly random since ζ1, ζ2, δ3, δ4 are random. Similarly, the parameters in
Gameq′ can be expressed over F and F∗ with uniformly random coefficients. Thus, the
adversary cannot distinguish between Gameq and Gameq′ .

Lastly, if D∗ correctly opens well-formed ciphertexts with non-negligible probability in
Gamefinal, the probability that the tracing algorithm increases ctr is also non-negligible.

Dishonest PKG Security.

Theorem 5. If SXDH holds, then no PPT adversary has a non-negligible advantage in
the FindNewKey-CCA game.

Proof of Theorem 5. We show that the probability of increasing ctr is negligible.

Lemma 9. If SXDH holds, in the black-box FindNewKey-CCA game, one iteration of the
tracing algorithm increases ctr with negligible probability.

Proof. Given D = (g
−→
d∗

1
2 , g

−→
d∗

2
2 , g

−→
d∗

5
2 , g

−→
d∗

6
2 , g

−→
d1
1 , . . . , g

−→
d6
1 , U1, U2, µ2) along with T = (T1, T2) being

either (V1, V2) or (W1,W2) from (2, 6)-decisional subspace assumption in G1, B generates
crs1 of the concurrent zero knowledge proof of knowledge with a knowledge extractor; and
sends to A the parameters (g

−→
d∗

1
2 , g

−→
d∗

2
2 , g

−→
d∗

5
2 , g

−→
d∗

6
2 , g

−→
d1
1 , g

−→
d2
1 , g

−→
d5
1 , g

−→
d6
1 , crs1) in the Initialize phase.

A chooses the master secret key and sends the master public key mpk and a challenge
identity ID∗ to B.

During the Extract phase for ID∗, A sends (A1, A2) and a proof π1 to B in Steps 1 and 2.
B uses the knowledge extractor with respect to crs1 to get r1 s.t. A1 = g

r1
−→
d∗

1
2 , A2 = g

r1
−→
d∗

2
2 .

In Step 3, B picks some random r′
0, ρ and implicitly sets r0 = r′

0 · µ1 and (with private
input ρ,A1, U

r′
0r1

1 ) interacts with A in a secure two-party computation protocol. A obtains
the output

−→
K ′ and sends

−→
K ′ to B. B then computes

−→̃
K1 =

−→
K ′1/ρ,

−→̃
K2 = U

r′
0r1

2 . Note that
the correct values of −→K1 and −→K2 are not known by B. Instead, B only has an SF key

(
−→̃
K1 = g

(
β−r′

0r1µ1
α−ID )

−→
d∗

1−
r′

0r1µ2
α−ID

−→
d∗

3+t
−→
d∗

5+v·t
−→
d∗

6
2 ,

−→̃
K2 = g

r′
0r1µ1

−→
d∗

2+r′
0r1µ2

−→
d∗

4
2 ),

where U1 = g
µ1

−→
d∗

1+µ2
−→
d∗

3
2 , U2 = g

µ1
−→
d∗

2+µ2
−→
d∗

4
2 . Nevertheless, B can still answer all decryption

oracle queries using the SF key. It is because A has not seen any g
−→
d3
1 , g

−→
d4
1 elements so far

and cannot produce an SF ciphertext.
Finally, A outputs an ϵ-useful decoder box D∗. If the tracing algorithm increases ctr,

D∗ must decrypt any ciphertext as if using the real skID∗ . B randomly picks s, v ∈ Zp,
M ∈ GT ; runs (vk, sk)← KG(1λ); and computes

C0 = M · gβs
T ,

−→
C1 = g

s(α−ID∗)
−→
d1+v·vk

−→
d5

1 · T2,
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and σ = Sign(sk, C0||
−→
C1). B submits C = (C0,

−→
C1, σ, vk) to the decoder box D∗. Note that

D∗ (generated by the dishonest PKG) may be able to recognize invalid ciphertexts in the
tracing stage. However, assuming D∗ is stateless, it cannot shut down or self-destruct
when detecting a tracing attempt. D∗ tries to decrypt such invalid ciphertexts in the
same way as the owner of the identity-based secret key skID∗ , and outputs a decrypted
message M∗. Observe that D∗ should not output ⊥ since σ is a valid strong one-time
signature. If this iteration of the tracing algorithm increases ctr with probability ϵ, then
with the same probability,

M∗ = C0/[ê6(−→C1 · (g
−→
d6
1 )vk,

−→
K1 ·

−→
K2)]

corresponding to the correct key (−→K1,
−→
K2). With M∗ stated above, B can break the

(2, 6)-decisional subspace assumption. Specifically, B computes

T ′ = C0

M∗ · [ê6(−→C1 · (g
−→
d6
1 )vk,

−→̃
K1 ·

−→̃
K2)]

.

If T2 = g
τ1

−→
b∗

2
2 , then the above equation equals 1. If T2 = g

τ1
−→
b∗

2 +τ2
−→
b∗

4
2 , then the above equation

gives a non-one value ê(g1, g2)s′
0s1µ2τ2

−→
b4

−→
b∗

4 . Therefore, if D∗ successfully decrypt with non-
negligible probability, the (2, 6)-decisional subspace assumption can be broken.

C Proof for Our Exponent-Inversion Signatures
We first review the definitions of dual form signatures:

• Setup: Given a parameter 1λ, generate a public/private key pair (pk, sk).

• SignA: Given sk and a message M , output a signature σ. This is a signing algorithm
used in the real construction.

• SignB : Given sk and a message M , output a signature σ. This is a signing algorithm
used only in the proofs.

• Verify: Given pk, a signature σ, and a message M , output 1 or 0.

Forgery Class. Let V denote the set of signature-message pairs for which the Verify
algorithm outputs 1. Let VI and VII be two disjoint subsets of V , such that V = VI ∪ VII .
Signatures from these sets are referred to as Type I and Type II forgeries, corresponding
to two types of forgeries received from an adversary in our security proof. Type I forgeries
will be related to signatures output by the SignA algorithm, and Type II forgeries will be
related to those by the SignB algorithm. The precise relationships between the forgery
types and the signing algorithms are explicitly defined by the following set of security
properties for the dual form system.

Security Properties. We briefly review the following properties of dual form signa-
tures [GLOW12], where the adversary is given only pk for (pk, sk)← Setup(1λ).

• A-I Matching. If an attacker is only given a signing oracle that returns outputs from
SignA, then it is hard to create anything but a Type I forgery.

• B-II Matching. If an attacker is only given a signing oracle that returns outputs from
SignB , then it is hard to create anything but a Type II forgery.
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• Dual Oracle Invariance. The attacker A is given oracle accesses to SignA and SignB.
At some point, A outputs a challenge message M . The challenger returns a challenge
signature on M from either SignA or SignB with equal probability. Finally, A outputs
a forgery pair (M∗, σ∗), where M∗ was not asked to any oracle. The probability
that A produces a Type I forgery when the challenge signature is from SignA is
approximately the same as when the challenge signature is from SignB .

A dual form signature scheme is secure if it satisfies all these properties.

Theorem 6 ([GLOW12]). If (Setup,SignA,SignB ,Verify) is a dual form signature scheme,
(Setup,SignA,Verify) is existentially unforgeable under adaptive chosen message attacks.

Theorem 7. Our dual form Boneh-Boyen signature is existentially unforgeable under an
adaptive chosen message attack if Assumptions 1, 2, and 3 hold.

Let SignA be the original signing algorithm, and define its dual form, SignB , as follows.

SignB(sk,M): The signer randomly picks r ∈ ZN , X2,3, X
′
2,3 ∈ Gp2p3 and computes the

signature σ = (σ1, σ2), where:

σ1 = (h1u
−r
1 ) 1

α−M X2,3, σ2 = gr
1X

′
2,3.

The A-I and B-II matching properties can be proven similarly to the security proof
of the IBE scheme. Specifically, the challenger can compute some verifying parameters
(counterparts to the challenge ciphertexts in IBE proofs) with the underlying assumptions.
Once a PPT adversary A creates a Type-II/I forgery in A-I/B-II matching, the verification
result of the forgery with the verifying parameters allows the challenger to break the
assumptions. We show that our scheme has the dual oracle invariance property with
Lemma 10. Above all, our scheme is existentially unforgeable with Theorem 6.

Lemma 10. If Assumption 2 holds, our scheme satisfies dual oracle invariance.

Proof. Given (g,X1X2, X3, Y2Y3, T ) from Assumption 2, B chooses random b, α ∈ ZN ,
h1 ∈ Gp1 . B sets g1 = g, u1 = gb, g2,3 = Y2Y3, and g3 = X3. B generates the rest of pk
and the secret key sk = (h1, α, g3, g2,3) according to Setup.

For the oracle queries to SignA, B randomly picks r, w, v ∈ ZN and uses sk to compute
the signature σ = (σ1 = (h1u

−r
1 )1/(α−M)Xw

3 , σ2 = gr
1X

v
3 ).

For the oracle queries to SignB, B randomly picks r, w, v ∈ ZN and computes the
signature σ = (σ1, σ2), where:

σ1 = (h1u
−r
1 ) 1

α−M (Y2Y3)w, σ2 = gr
1(Y2Y3)v.

By the Chinese remainder theorem, the values of v and w modulo p2 and those modulo
p3 are uncorrelated. Finally, A queries B with a challenge message M . B chooses some
random w, v ∈ ZN , and computes the signature:

σ1 = h
1

α−M

1 · T
−b

α−M ·Xw
3 , σ2 = T ·Xv

3 .

If T = Z1Z3, it is a signature from SignA. If T = Z1Z2Z3, it is from SignB. Note that b
modulo p2 is not revealed at any point during the Query phase. So the Gp2 part of σ∗

1 is
randomly distributed from the view of A.

Once A returns the forgery, (σ∗,M∗), B must first check that A has not previously
seen a signature for M∗ before and that (σ∗,M∗) passes verification. If either of these
checks fails, B will guess randomly. If both pass, B determines what forgery class (σ∗,M∗)
belongs to in order to determine what subgroup T is in, via a backdoor verification test
similar to that in the previous proof. B sets: C∗

0 = ê(X1X2, h1), C∗
1 = (X1X2)α−M∗ ,
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C∗
2 = (X1X2)b. Parse σ∗ = (σ∗

1 , σ
∗
2). B proceeds with a backdoor verification test by

returning:
C∗

0
?= ê(C∗

1 , σ
∗
1) · ê(C∗

2 , σ
∗
2).

If it holds, B flips a coin b′ ∈ {0, 1} and returns b′. Otherwise, B outputs 1.
If A returns a Type I forgery, it also passes the backdoor verification test since it passes

the real signature verification. If A returns a Type II forgery, suppose the Gp2 parts of σ∗
1

and σ∗
2 are ĝδ1

2 and ĝδ2
2 respectively, for some ĝ2 ∈ Gp2 , δ1, δ2 ∈ ZN and either δ1 or δ2 is

non-zero modulus p2. Then the backdoor verification equation proceeds by returning:

ê(C∗
1 , σ

∗
1)ê(C∗

2 , σ
∗
2) = C∗

0 ê(ĝδ1
2 , X

α−M∗

2 )ê(ĝδ2
2 , X

b
2) = C∗

0 ê(ĝ2, X2)δ1(α−M∗)+δ2b ?= C∗
0 .

Thus, if the forgery fails the test, it is a Type II forgery with probability 1. Any forgery
passing the test can be either Type I or Type II. A Type II forgery might also pass the
additional verification test, but only with negligible probability. To see, for such a Type II
forgery, we have δ1(α−M∗) + δ2b = 0 mod p2. Consider:

1. If δ1 = 0 mod p2 and δ2 ̸= 0 mod p2, it implies b = 0 mod p2. It happens with
negligible probability since b is randomly chosen by B from ZN .

2. If δ1 ̸= 0 mod p2, we rewrite the equation as (α −M∗) + δb = 0 mod p2, where
δ = δ2/δ1. To create such a Type II forgery, an adversary must implicitly determine
(α−M∗)/b modulo p2. The adversary only knows b/(α−M) modulo p2 from the
challenge signature if T = Z1Z2Z3. As long as M ̸= M∗ modulo p2, the adversary
has only a negligible probability of achieving the correct value of δ modulo p2.

We now consider the information obtained by adversary A. In the challenge signature,
α and b modulo p2 are only included in the first element. Thus, A can only derive the
single value b

α−M modulo p2. However, this single equation has two unknowns α and b

modulo p2, and it is not possible to determine their unique values. Moreover, b
α−M is a

pairwise independent function of M modulo p2 (except with negligible probability that
α = M mod p2). Therefore, A cannot achieve the correct value of b

α−M∗ mod p2 as long as
M ̸= M∗ mod p2, except with negligible probability. It is possible that M = M∗ modulo
p2, but M ̸= M∗ modulo N . If this occurs with non-negligible probability, B can extract
a non-trivial factor of N as the greatest common divisor of N and M −M∗, and use it to
break Assumption 2 with non-negligible advantage. So, if a forgery passes the additional
verification test, with a high probability, it is a Type I forgery.

Security Proof for Our Prime-Order Version and its F -unforgeability. The
proof for our prime-order signature scheme largely follows by adapting the changes from
our composite-order dual form Gentry-IBE to its prime-order counterpart, but starting
from our composite-order dual form Boneh-Boyen signatures. Namely, the forgery classes
Type-I and Type-II are based on whether the signature has the −→d3 and −→d4 components.

Additionally, to construct a P-signature scheme from our signature scheme, we require
an F -unforgeability property, where the adversary is only asked to output (σ∗, F (M∗))
instead of (σ∗,M∗) as the forgery for some bijective function F .

Theorem 8. Let F (x) = (Y x, Zx), where Y,Z are in the span of
−→
d1,
−→
d3 in the exponent.

Our prime-order signature scheme is F -unforgeable under an adaptive chosen-message
attack if SXDH holds.

The proof largely follows the proof of standard unforgeability. The additional elements
Y and Z in the public key enable the backdoor verification test when the adversary returns
(σ∗, F (M∗)) as the F -forgery for F (x) = (Y x, Zx).
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D Security Proof for Our Anonymous Credentials
Theorem 3. Our P-signature scheme is secure under the SXDH assumption and the
security of the two-party computation.

Proof. Signer Privacy. We construct the algorithm SimIssue(param, C,−→σ1,
−→σ2) to simulate

the adversary’s view. Firstly, SimIssue invokes the simulator of the two-party computa-
tion protocol, and extracts the input of the adversary, which is (ρ1, ρ2,M,Open) in this
case. SimIssue checks if C ?= GS.Commit(paramGS, Z

M ,Open); if it is not, it terminates.
Otherwise, it sends

−→
σ′

1 = −→σ1
1/ρ1 ,

−→
σ′

2 = −→σ2
ρ2 to the adversary A. If A can detect that it is

interacting with a simulator, it breaks the security of the two-party computation.
User Privacy. We construct the algorithm SimObtain(param, pk, C) to simulate the
adversary’s view. Firstly, SimObtain invokes the simulator of the two-party computation
protocol, and extracts the input of the adversary, which is (sk′, r) in this case (where sk′ is
not necessarily the valid secret key used). The simulator picks random ρ1, ρ2 ∈ Zp and
computes

−→
σ′

1,
−→
σ′

2 using (sk′, r) and M . It proceeds to interact with the adversary such
that if the adversary completes the protocol, its output is (

−→
σ′

1,
−→
σ′

2, C). If the adversary
can detect that it is interacting with a simulator, it breaks the security of the two-party
computation.
Zero-knowledge/Witness Indistinguishability. From the security of the Groth-Sahai
proof system, the simulator can run a setup simulation for param′

GS. The distribution
of param′

GS is computationally indistinguishable from the real paramGS. Using param′
GS,

commitments are perfectly hiding. The simulator can compute the output (comm, π) using
a simulation algorithm SimProve on param′

GS. It is witness indistinguishable from the real
proof of the Prove algorithm with input (M,σ). Similarly, the output of EqCommProve
can also be simulated by SimProve via the composable zero-knowledge property.
Unforgeability. Suppose an adversary A can break the unforgeability of our P-signatures,
then we construct an algorithm B to break the F -unforgeability of the underlying DFEI
signature, where F (x) = (Y x, Zx). Firstly, B obtains pk′ from the challenger of the DFEI
signature. By the security of the Groth-Sahai proof system, B can run a setup simulation
for param′

GS and obtain an extraction trapdoor td. The distribution of param′
GS is identical

to the real paramGS. B gives param and pk to A using pk′ and param′
GS. For all signing

oracle queries on message M , B forwards the query to its challenger to answer it.
Finally, if A can output a proof π that VerifyPf outputs 1, then the simulator can use

td to extract (ZM , Y M , σ) from the commitments comm. If A wins the security game by:

1. σ is not a valid signature on M , or comm is not a commitment to M , it breaks the
soundness of the Groth-Sahai proof system.

2. A has never queried the signing oracle on M , then B returns (σ, F (M) = (Y M , ZM ))
as the forgery to the DFEI signature.

Therefore, if A can break the unforgeability of our P-signature scheme, we can break
SXDH.
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