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Abstract. Broadcast Encryption (BE) allows a sender to send an encrypted message
to multiple receivers. In a typical broadcast encryption scenario, the broadcaster
decides the set of users who can decrypt a particular ciphertext (denoted as the
privileged set). Gritti et al. (IJIS’16) introduced a new primitive called Broadcast
Encryption with Dealership (BrED), where the dealer decides the privileged set. A
BrED scheme allows a dealer to buy content from the broadcaster and sell it to
users. It provides better flexibility in managing a large user base. To date, quite
a few different constructions of BrED schemes have been proposed by the research
community.
We find that all existing BrED schemes are insecure under the existing security
definitions. We demonstrate a concrete attack on all the existing schemes in the
purview of the existing security definition. We also find that the security definitions
proposed in the state-of-the-art BrED schemes do not capture the real world. We argue
about the inadequacy of existing definitions and propose a new security definition
that models the real world more closely. Finally, we propose a new BrED construction
and prove it to be secure in our newly proposed security model.
Keywords: Broadcast Encryption with Dealership · Dealer · Broadcast Encryption
· Pairing-based Cryptography

1 Introduction
Public key encryption (PKE) allows secure communication between two parties without
any shared secret key. In the PKE setting, the receiver Alice publishes her public key,
which the sender Bob uses to encrypt his message. The security of PKE ensures that none
but Alice decrypts the message. Consider a scenario where Bob wants to send a message
to a set of users. Broadcast Encryption (BE) [FN93, BGW05] addresses this problem of
efficiently sending an encrypted message to a set of users (S), called the privileged set.
Correctness of BE ensures any user from S can decrypt the ciphertext. However, the
security ensures that any user outside S cannot decrypt the message even in collaboration
with other unprivileged users.

Consider a related scenario where an organization like PayTV wants to broadcast digital
content to a large group of people. It is challenging for a single organization to maintain
such a large user base while adding reach to new users. Thus, we often see scenarios
where a broadband distributor sells OTT subscriptions. A convenient solution is that the
central organization outsource the role of managing subscriptions and adding new users
to some sub-distributors (we call them dealer in our work). Users register with a dealer
and purchase their subscription. The dealer then buys digital content rights in bulk from
the broadcaster. The dealer provides the broadcaster with a token (referred to as group
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2 Reinventing BrED

token) for the set of subscribed users. With the group token, the broadcaster encrypts the
content for the privileged set and broadcasts. This variant of BE was introduced by Gritti
et al. [GSP+16] and was named Broadcast Encryption with Dealership (BrED).

There are three major entities in a typical BrED scheme: broadcaster, dealers, and
end-users. Users who want digital content from a particular broadcaster register themselves
with the respective dealers. Among the registered users, those who have purchased a
subscription for some specific content are called privileged users (members of the set S).
The dealer buys rights of digital content for the privileged user set S by providing a token
for the set S. The dealer does not disclose the set S of users to the broadcaster for securing
his business. The broadcaster encrypts and broadcasts its digital content for users in S,
using the token provided by the dealer. The security of BrED should ensure that the
broadcaster can verify the size of the set S without getting any other information about
the set S.

In addition to the fundamental security prerequisites of BE schemes, which restrict the
decryption of encrypted broadcasts to privileged users only, BrED introduces several new
security considerations not present in conventional BE. Below, we informally outline and
justify all the security requirements for BrED.

1. The primary security requirement of BrED is that the unprivileged users cannot
decrypt the broadcasted ciphertext. This is also a requirement of BE, and in this
work, we call it message indistinguishability from unprivileged users.

2. Additionally, in BrED, the dealer chooses the set S of privileged users, and the
broadcaster creates ciphertext which can only be decrypted by users in S. However,
the dealer does not reveal the set S to the broadcaster. As for its business motive,
the dealer does not want the broadcaster to have access to its user base. Thus, the
dealer transmits the information of S to the broadcaster through a quantity called
the group token.
It is required that the group token keeps the set S hidden to the broadcaster, still
enabling the broadcaster to construct ciphertexts that can be decrypted by privileged
users in S and be secure in terms of message indistinguishability from unprivileged
users. The requirement that the group token does not reveal any information (except
the size) about the set S to the broadcaster is called group privacy.

3. As the set S is kept hidden from the broadcaster, the broadcaster is required to know
the cardinality of S. Without this knowledge, the dealer may make the broadcaster
serve more users than it is paying for. Thus, given the group token, the broadcaster
should be able to verify the cardinality of the set S which the token represents. This
requirement is called maximum user of accountability.

The above security requirements were specified in [GSP+16], later rectified by [AD16],
and followed thereafter. In Section 3, we show that the security definitions proposed
for message indistinguishability from unprivileged users in both works do not model the
practical world conclusively. In fact, there are some gaps in the security definition for
message indistinguishability from unprivileged users proposed thus far, as none of them
considered the presence of the dealer with sufficient formalization. In this paper, we
introduce a new definition which bridges the gap. We discuss these gaps and new security
definitions in Section 3.

1.1 Related Works
To our knowledge, the only works explicitly constructing broadcast encryption with
dealership are [GSP+16, AD16, AD17, KLEL17, AD21]. Gritti et al. [GSP+16] was the
first to introduce the notion of BrED and provide security definitions. In [GSP+16], a
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construction of BrED was also provided along with its security proof. It was claimed that the
group privacy of the scheme was unconditionally secure. The message indistinguishability
from unprivileged users was achieved in the semi-static setting. However, they claim that
adaptive security can be achieved using a generic technique introduced in [GW09].

[AD16] proposed some improvements over [GSP+16]. In particular, in [AD16], the
unconditional security claim of group privacy in [GSP+16] was challenged. The new
construction of [AD16] claimed to achieve group privacy against a computationally bounded
adversary. The scheme claimed to achieve message indistinguishability from users in the
selective security model.

In [AD17], some improvements over [AD16] were proposed. In particular, message
indistinguishability from the user was argued in the adaptive model. Kim et al. [KLEL17]
modified the construction of [AD17] to support recipient revocation without compromising
security. In [AD21], two more constructions were proposed, wherein one of them, the
message indistinguishability from unprivileged users, was proved in the adaptive model,
and the other claimed to achieve message indistinguishability from unprivileged users in
the selective setting. All the above constructions claim to give cryptographic proof for
maximum user of accountability. However, there is a flaw in the security argument, which
we discuss in Section 3.2.

1.2 Our Contributions
In this paper, we do a comprehensive study of BrED and our contributions to this paper
are multifold. We report concrete attacks (in Sec 3.1) on all previous constructions in their
proposed security model. We also identify some gaps in the security model proposed in
earlier works [GLR18, AD16]. We fill this gap by introducing a new security model and
following it up with a secure construction under the new security definition (in Sec 4).
Below we discuss our contributions in detail.

Attacks on previous constructions. In Section 3.1, we present concrete attacks on
the group privacy of the existing schemes [AD16, AD17, KLEL17, AD21] in the purview
of the existing security model. All the previous works claimed that their constructions
achieve the group privacy security under the standard discrete-log assumption. However,
we mount a pairing-based attack, rendering all those schemes insecure in their claimed
security model. On top of this, we also identify critical errors in the maximum user of
accountability security proof of all the existing schemes which we discuss in Section 3.2.

Formalizing definitions and introduction of new security notions. Secondly,
the previous works on BrED did not consider the presence of a dealer with sufficient
formalization. The dealer plays a significant role in BrED by selecting the privileged set
and generating the group token. The broadcaster uses the group token in the encryption
phase. Thus, the view of an unprivileged user and a dealer is quite different. All the
previous works [GSP+16, AD16, AD17, KLEL17, AD21] have omitted that the dealer
generates the group token in their message indistinguishability from unprivileged users
security game which we argue to be a flaw.

This paper first puts forward the security definition of message indistinguishability from
unprivileged users of BrED, acknowledging a dealer’s presence with necessary formalization
(see Sec 3). We propose a security model that captures an adversarial dealer and an
unprivileged user in collaboration. The adversary in our security game cpaU thus considers
both an unprivileged user and the dealer in collusion. Therefore, the definition we provide
in this paper generalizes the security requirements of BrED that were missing in earlier
works [GSP+16, AD16, AD17, KLEL17, AD21] towards capturing real-world requirements.
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In this work, we consider a semi-honest dealer for maximum user of accountability,
implying that the dealer adheres to the protocol only during group token generation
but may attempt to issue a group token for a larger group size than agreed upon and
also try to learn about the message from the ciphertext. In such cases, the broadcaster
requires a way to verify the size of the group token. The security definition of the
maximum user of accountability in [AD16, AD17] considers a semi-honest dealer, whereas
[GSP+16, KLEL17, AD21] considered a malicious dealer. Even if some of the above works
gave a maximum users of accountability security definition against malicious adversaries, we
emphasize that all the existing works [GSP+16, AD16, AD17, KLEL17, AD21] proposed
proofs of maximum users of accountability against semi-honest adversaries. Then again,
we point out a common flaw in their security model as well as in their security arguments.
We fix the model and prove maximum users of accountability of our construction in a
generic group model.

A semi-honest adversary is weak but practical as the the broadband distributor (i.e.
the dealer) often is not a cryptographer who can maliciously produce valid ciphertexts,
but they may want to squeeze in a few users in the privileged set without increasing their
committed cardinality to make a better profit. A more robust form of maximum user of
accountability would address malicious dealers who may intentionally deviate from the
protocol during group token generation. We leave this as an open problem.

Proposing a new construction. We then go on to propose the first secure construction
of BrED. We provide the first secure prime-order construction in the proposed security
model, achieving constant-size ciphertext. The security of our construction was achieved
in the generic group model. However, we manage to achieve group privacy (priv) of our
construction under the standard DDH assumption. Our construction of BrED is based on
the identity-based broadcast encryption of Gong et al. proposed in [GLR18]. We believe
this construction is a bit involved, and we give a brief technical overview of our construction
in Section 4.
To summarize, we provide a concise list of our contributions next.

1. Firstly, we show concrete attacks on all the existing schemes [AD16, AD17, KLEL17,
AD21], rendering all of them insecure in their proposed group privacy security game.

2. Then, we further show that the security proof for maximum user of accountability is
incorrect in all the previous constructions.

3. Then, we formalize the existing definition and bridge the gap in the security
requirements of message indistinguishability from unprivileged users.

4. We finally propose a construction of BrED. Our construction uses prime-order bilinear
pairing groups. We prove our scheme to be secure in the newly introduced security
definition.

1.3 Organization of Paper
In Section 2, we present the definitions and mathematical preliminaries. Next, in Section
3, we present an exposition of the vulnerabilities in the existing security definition of
BrED and propose our modified notion of security. In the same section, we also show a
concrete pairing-based attack on one of the previous works on BrED. The same attack
holds on all the previous schemes. This is then followed by Section 4 where we propose
our construction of BrED with constant-size ciphertext in a prime-order pairing group.
Then, we conclude this paper in Section 5. To make our presentation self-contained, we
have a well-marked appendix that contains some additional expositions. In particular, in
Appendix A we revisit the description of previous schemes. Appendix B discusses the flaws
we could find in the previous works. We have deferred this section to the appendix only to
avoid repetition of the flaws, as several of the previous works suffer from similar issues.
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2 Definitions and Preliminaries
We discuss some necessary tools required by the constructions in this paper.

2.1 Notation
For a, b ∈ N such that a ≤ b, we often use [a, b] to denote {a, . . . , b}. For a set X, we
write x $←− X to say that x is a uniformly random element of X. The ppt abbreviation
stands for probabilistic polynomial time. A function neg : N→ R+ is called a negligible
function if for all positive polynomial q(·), there exists x0 ∈ N such that for all x > x0,
neg(x) < 1/q(x).

2.2 Groups and Hardness Assumptions
This section discusses different types of elliptic curve groups and hardness assumptions
that we will require in this work. We next consider a set of elliptic curve groups where the
bilinear pairing function is efficiently evaluated.

Bilinear Pairing. Let G, H, GT be three commutative multiplicative groups of the
order of a large prime p. A map e : G×H→ GT is called an admissible bilinear pairing if,

• (Bilinear) For all g ∈ G and all h ∈ H, e(ga, hb) = e(g, h)ab for any a, b ∈ N.

• (Non-degenerate) e(g, h) = 1 only if g = 1 or h = 1.

• (Computable) For all g ∈ G and all h ∈ H, there is a ppt algorithm that computes
e(g, h).

Bilinear pairings are of three kinds. A bilinear pairing is called a Type-1 pairing when
G = H. Now if we have G ̸= H, but there is a known isomorphism between G and H it is
regarded as Type-2 pairing. In this work, we use Type-3 pairing where G and H have no
known isomorphism.

2.2.1 Prime Order Asymmetric Bilinear Pairing

The prime order asymmetric bilinear group generator PBGen, takes security parameter
1λ as input and outputs a septenary tuple (p, g, h,G,H,GT , e) where all of G, H and GT
are cyclic groups of order of large prime p, G = ⟨g⟩, H = ⟨h⟩ and e : G×H→ GT is an
admissible, non-degenerate asymmetric Type-3 bilinear pairing. In this work, we make use
of the following hardness assumptions.

Decisional Diffie-Hellman Assumption (DDH) [RCS12] .

Definition 1. Given PG = (p, g, h,G,H,GT , e)
$←− PBGen(1λ) and X = (PG, g, h, ga, gb)

we say that the Decisional Diffie-Hellman assumption (DDH) holds in PG if for all ppt
adversaries A the advantage AdvDDH

A,PG(λ) defined below is neg(λ).

AdvDDH
A,PG(λ) =

∣∣Pr
[
A(X , gab) = 1

]
− Pr [A(X , gc) = 1]

∣∣ ≤ neg(λ),

where the probability is taken over PG $←− PBGen(1λ); a, b, c $←− Zp and the random coins
consumed by A.
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2.2.2 DeMillo-Lipton-Schwartz-Zippel (DLSZ) Lemma [DL78, Zip79, Sch80].

If a polynomial p(x1, x2, . . . , xm) over F = GF (q) is nonzero and has total degree at most
d, then

Pr [p(a1, a2, . . . , am) ̸= 0] ≥ 1− d

q
,

where the probability is over all choices of a1, a2, . . . , am ∈ F .

2.2.3 Generic Group Model.

The generic group model was explored formally first by Shoup [Sho97]. This technique
proves the lower bounds of certain computational and decisional problems. This is explored
regarding the computational power of any generic algorithm against the targeted problems.
A generic algorithm only assumes that each group element is uniquely encoded and does
not exploit any other properties of the underlying group structure.

2.3 Broadcast Encryption with Dealership
In the introduction section, we formally define a BrED scheme and then the role of
each entity of a BrED system. The definition of BrED follows the definition provided
in [GSP+16, AD16].

Definition 2. A BrED is a tuple of six ppt algorithms BrED = (BrED.Setup,BrED.KeyGen,
BrED.GroupGen,BrED.Verify,BrED.Encrypt,BrED.Decrypt).

• (pp,msk) ← BrED.Setup(1λ, n): It takes as input the maximal size n of the set of
receivers per broadcast and the security parameter λ and outputs public parameter
pp and a master secret key msk.

• ski ← BrED.KeyGen(pp,msk, i): On invocation with pp,msk and a user identity i ∈ N,
it outputs a user secret key ski for user i.

• (ΓS , k)← BrED.GroupGen(pp, k, S): It takes as input a set of users S ⊆ [n] of size k′

and a threshold value k such that |S| = k′ ≤ k where k is the (maximum) number of
users the dealer wishes to serve. It returns a tuple (ΓS , k) where ΓS is a group token
for the set S.

• (0/1)← BrED.Verify(pp,ΓS , k): On input pp, a group token ΓS and a number k ∈ [n]
which is the (maximum) number of users for which this token is created, it verifies
whether |S| ≤ k or not.

BrED.Verify(pp,ΓS , k) =
{

1, if |S| ≤ k
0, otherwise.

• CTS ← BrED.Encrypt(pp,ΓS ,M): It takes as input the public parameter pp and a
group token ΓS and a message M and outputs a ciphertext CTS .

• M ← BrED.Decrypt(pp, ski, (S,CTS)): On input pp, ski and a ciphertext CTS for a
set S, BrED.Decrypt outputs message M if i ∈ S.

Correctness. A BrED scheme is said to be correct if (pp,msk) ← BrED.Setup(1λ, n),
for all S ⊆ [n] such that |S| ≤ k ≤ n, (ΓS , k) ← BrED.GroupGen(pp, k, S), and CTS ←
BrED.Encrypt(pp,ΓS , M) then for all i ∈ S, the following condition holds:

BrED.Decrypt(pp,BrED.KeyGen(pp,msk, i), (S,CTS)) = M.
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The major entities of BrED schemes are broadcasters, dealers, and end-users. One more
entity named the key generation centre (KGC) is also required to construct a public-key
BrED. Below, we elaborately discuss the role of each entity of a BrED scheme in light of
the Definition 2.

1. The KGC: at the beginning, a KGC runs the BrED.Setup algorithm taking as input
the security parameter 1λ and the maximal size of the users per broadcast n, and
produces (pp,msk). It publishes the public parameters pp and keeps the master
secret key msk to itself. When invoked with a join request for a user i, the KGC
computes the user’s secret key ski using the BrED.KeyGen algorithms and sends the
user’s secret key to the user via a secure channel.

2. The Dealer: it selects a group of the user S ⊆ [n], and an integer k ≤ n such that
|S| = k′ ≤ k. It generates a group token ΓS using the BrED.GroupGen algorithm and
gives it to the broadcaster along with the value k. The dealer sends S to every user
in the privileged set via a secure channel.

3. The Broadcaster: it verifies the group token with the BrED.Verify algorithm and
upon verification generates the ciphertext CTS using ΓS for the set S and broadcasts
CTS .

4. An End-User: i-th user decrypts the ciphertext CTS using their secret key ski if
i ∈ S.

2.4 Security Definition of BrED
In the introduction section, we have mentioned the security requirements of a BrED system
informally. This section recalls the formal definition of those security notions considered
in the literature. We will mainly follow the definition given by [AD16]. In the next
section (Section 3), we will discuss the flaw or incompleteness of the security requirements
of [AD16].

2.4.1 Group Privacy.

In the BrED model, the dealer selects the privileged set and provides a group token for
this set to the adversarial broadcaster. To maintain the dealer’s business, the group token
must secure the confidentiality of the members of a privileged set. Specifically, from the
group token ΓS , the broadcaster should not be able to infer any meaningful information
about the underlying set S ⊆ [n] other than its size. Group privacy security ensures that
the privileged set remains secret from the adversary.

In the group privacy security game, the adversary (the broadcaster) is allowed to
choose two sets of privileged users (S0, S1) of the same size. The experiment selects a
random bit β ∈ {0, 1}, generates the group token for Sβ , and sends it to the adversary.
The adversary’s task is to determine the random bit of the challenge. The formal security
definition is as follows.

A BrED scheme BrED satisfies group privacy (priv) if for all ppt adversaries A,

Advpriv
A,BrED(λ) =

∣∣∣∣12 − Pr
[
Exppriv

BrED(1λ,A) = 1
]∣∣∣∣ ≤ neg(λ),

where Exppriv
BrED(1λ,A) is defined in Figure 1.

2.4.2 Maximum User of Accountability.

As previously discussed, for the dealer’s business interests, the group privacy security
of BrED requires that the adversarial broadcaster does not gain any information about
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Game Description

Exppriv
BrED(1λ,A)

(pp,msk)← BrED.Setup(1λ, n)

(S0, S1)← A(pp) s.t. |S0| = |S1| = k

Sample β $←− {0, 1}, ΓSβ
← BrED.GroupGen(pp, k, Sβ)

β′ ← A(pp,ΓSβ
)

Return 1 if β = β′.

Figure 1: Group Privacy for BrED

the members of the privileged set from the group token, except the size of the privileged
set. So, the broadcaster must ensure that the dealer has generated a group token for a
set whose size does not exceed what the dealer has paid for. Thus, the maximum user
of accountability security model to capture that a group token (ΓS∗ , k) cannot encode a
privileged set S∗ of size k∗ bigger than a committed size k.

While defining MUA security, all the previous works on BrED formulated the adversary
to submit the privileged set S∗ along with the challenge group token ΓS∗ . The broadcaster
behaves as the challenger in Maximum User of Accountability, submitting S∗ is not inline
with the security requirement of BrED. Looking ahead, we discuss this in Section 3.2.1. In
Figure 2, we define MUA for a semi-honest dealer where the adversary is allowed to submit
the group token ΓS∗ , and the commitment for the size of the set k only. A semi-honest
dealer chooses any k < n and a set S∗ ⊆ [n] of size strictly greater than k. The adversary
then computes the group token ΓS∗ for S∗ using BrED.GroupGen and to submit (ΓS∗ , k)
as a challenge. The adversary wins only if the verification BrED.Verify outputs 1 for the
parameters (ΓS∗ , k), and |S∗| > k.

A stronger maximum user of accountability security captures a malicious dealer that may
deviate from the protocol for group token generation and submit an arbitrarily generated
group token, which is not well-formed. Dealing with such an adversary necessitates that
the challenger could verify that token ΓS∗ is really constructed for k users. In this work, we
aim at a weaker security goal with efficiency where we aim to capture that a semi-honest
dealer is not able to create a group token for a set S∗ bigger than its committed k but
still passes Verify.

Previous works on BrED [KLEL17, AD21] defined maximum user of accountability
in the malicious adversarial model but could only prove it in the semi-honest adversarial
model. We discuss those in detail in Section 3.2. Then again, the security arguments of
previous works are not entirely correct, which we report in details in Section 3.2.2. We
also mark achieving maximum user of accountability security in a malicious model as an
open problem.

A BrED scheme BrED satisfies maximum user of accountability (mua) if for all ppt
adversaries A,

Advmua
A,BrED(λ) = Pr

[
Expmua

BrED(1λ,A) = 1
]
≤ neg(λ),

where Expmua
BrED(1λ,A) is defined in Figure 2.

2.4.3 Message Indistinguishability for Unprivileged Users under CPA.

The final security requirement of BrED is that the unprivileged users can not distinguish
between two ciphertexts of the same size, even in collusion with other unprivileged users.
This security model captures that given a ciphertext CTS , no unprivileged user can get any
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Game Description

Expmua
BrED(1λ,A)

(pp,msk)← BrED.Setup(1λ, n)

(S∗, k)← A(pp), such that, k < n, S∗ ⊆ [n], and |S∗| = k∗ > k

A computes (ΓS∗ , k∗)← BrED.GroupGen(pp, k∗, S∗)

A submits (ΓS∗ , k) as a forgery

Return 1 if the following holds:

BrED.Verify(pp,ΓS∗ , k)→ 1

Figure 2: Maximum User of Accountability for BrED

Game Description Oracle Description

ExpcpaX
BrED(1λ,A) Osk(i)

Qsk ← ∅ Qsk ← Qsk ∪ {i}

(pp,msk)← BrED.Setup(1λ, n) Run ski ← BrED.KeyGen(msk, i)

(S,M0,M1)← AOsk(·)(pp) such that |S| ≤ k ≤ n Return ski
ΓS ← BrED.GroupGen(pp, k, S)

Sample β $←− {0, 1}, CTS,β ← BrED.Enc(pp,ΓS ,Mβ)

β′ ← AOsk(·)(pp,CTS,β)

Return 1 if (β = β′) and (Qsk ∩ S = ∅).

Figure 3: Adaptive Message Indistinguishability from Unprivileged Users for BrED

information about the underlying message M even if they collude. A BrED scheme BrED
satisfies message indistinguishability for unprivileged user (cpaX ) if for all ppt adversaries A,

AdvcpaX
A,BrED(λ) =

∣∣∣∣12 − Pr
[
ExpcpaX

BrED(1λ,A) = 1
]∣∣∣∣ ≤ neg(λ),

where ExpcpaX
BrED(1λ,A) is defined in Figure 3.

The above definition follows the definitions provided in [GSP+16, AD16]. The experiment
defined in Figure 3 represents the adaptive cpaX security game. In Section 3.3, we
demonstrate that this security game does not accurately reflect real-world scenarios, and
we propose a modified security definition.

3 Inadequacy of Existing Schemes
In this section, we provide a concise critique of existing works. Firstly, we present an
attack on group privacy in the existing model that makes all the existing constructions
insecure. We also discuss a critical flaw in the security argument of maximum user of
accountability of the existing works. Then, we take a look at the existing BrED security
definitions and argue the necessity of a new security definition. Finally, we formalize the
new security definition. To keep our presentation simple, we show the attack on [AD16] in
this section and defer the attack on other works [AD17, KLEL17, AD21] to Appendix B.
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3.1 Breaking BrED: Pairing-based Attack on Existing BrEDs
We observed that all existing schemes [AD16, AD17, KLEL17, AD21] argued group privacy
similarly. In particular, all claimed group privacy under the standard discrete-log problem
(DLP). However, in all four constructions, the group tokens are essentially in the span of
the public key, where the span is determined by the privileged set information S. Since all
four constructions are instantiated in the Type-1 pairing groups where DDH is easy, any
efficient adversary could easily decide β in the group privacy security model (see Figure 1).
Here, we show the exact attack for [AD16] and include the attack details of the rest of the
works [AD17, KLEL17, AD21] in Appendix B for completeness.

3.1.1 Attack on group privacy of [AD16].

Let us recall the group privacy security model in Figure 1. Informally speaking, the
adversary selects two sets S0, S1 of equal size k, to which the challenger chooses β ∈ {0, 1}
randomly and provides the adversary with group token ΓSβ

.
Let, BG = (p,G,GT , e) be a bilinear group system, where G,GT are group of prime

order p, and e : G×G→ GT is an admissible Type-1 bilinear pairing. H : {0, 1}∗ → Z∗
p is

a cryptographically secure hash function. Authors of [AD16] define the public parameter
pp and the group token ΓSβ

(w.r.t the challenge privileged user set Sβ) as following:

pp =
(
BG, g, gα, . . . , gα

n

, e(g, h), hα, H, ID
)
,

ΓSβ
= (ω1, ω2, ω3, ω4)

= (h−sα, g
sPSβ

(α)
n−k , gsPSβ

(α), e(g, h)s)

= (h−sα, gsα
n−kPSβ

(α), gsPSβ
(α), e(g, h)s)

where g and h are random generators of G, PS(x) =
∏

IDj∈Sβ⊆[n]
(x+H(IDj)), and s $←− Zp

was sampled by the challenger.
Given pp and ΓSβ

, we mount the following attack:

1. Adversary knows both S0 and S1.
2. Thus, can compute gPS0 (α) from pp as k ≤ n.
3. Adversary evaluates the following pairings,

e
(
gPS0 (α), ω1

)
= e (g, h)−sαPS0 (α)

e (ω3, h
α) = e(g, h)sαPSb

(α).

4. Adversary finally decide

β =
{

0 if e(gPS0 (α), ω1)× e(ω3, h
α) = 1

1 otherwise.
. (1)

Note that, if the random bit β chosen by the challenger is 0, e(ω3, h
α) would indeed be

e(g, h)sαPS0 (α), and the product e
(
gPS0 (α), ω1

)
×e(ω3, h

α) would be 1. Thus, the adversary
can always decide β correctly.

Hence, the construction of [AD16] could not achieve group privacy because of the use
of a Type-1 bilinear pairing group. However, inspired by the construction of [Duc10] we
instantiate our construction in Section 4 in a Type-3 bilinear pairing group which helped
us achieve group privacy.
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3.2 Issue with Maximum User of Accountability
In this section, we revisit the issues with of the MUA security model and its corresponding
proof as described in the existing literature. There are primarily two issues with the
existing works: one concerning its security framework, and the other is with the proof
technique. We discuss these issues one by one in this section.

3.2.1 Flaw in MUA Security Model

Recall that, S denotes the privileged set and k be the maximum allowed size for S. The
maximum user of accountability security ensures that a group token ΓS cannot pass the
verification stage if |S| > k. Previous constructions on BrED, precisely [GSP+16] defined
MUA security in malicious adversarial model. The authors of [AD16, AD17] defined MUA
in semi-honest adversarial model. Again [KLEL17, AD21] defined and claimed to prove
MUA in malicious model. However, all the works, the proof only captures a semi-honest
adversary. All existing works the adversary generates the challenge group token in the
MUA security proof following the actual protocol. Their security argument also had a
flaw, which we describe next.

All the previous works on BrED the adversary submits (ΓS∗ , S∗) as a forgery, where
S∗ is the group chosen by the adversary. In MUA security game, the challenger is the
broadcaster. Submitting the group S∗ violates the basic security requirement of BrED.
Therefore it is essential to not submit S∗ as the challenge security game in Figure 2.

3.2.2 Flaw in MUA Security Proof

To argue MUA security, existing works [GSP+16, AD16, AD17, KLEL17, AD21] used the
standard (f, n)-DHE assumption as defined in [GSP+16]. The (f, n)-DHE problem is the
following.

The (f, n)-Diffie-Hellman Exponent Assumption: given an instance (G, g, gα ,
. . . , gα

n) where G = (e,G, GT , p)
$←− BGen is a symmetric bilinear pairing group

system and g be a random generator of G and α $←− Zp. The problem is to find
a pair (f(x), gf(α)) where f(x) is a polynomial of degree n′ > n.

We discuss the security flaw in the security proof of [AD16] and reiterate that the other
constructions [GSP+16, AD17, KLEL17, AD21] also use a similar argument. To explain
the problem in the proof of [AD16], we give a gist of their proof below.

The proof assumes an adversary A, that breaks the maximum user of accountability
of [AD16]. Let B be another adversary trying to solve the (f, n)-DHE problem. The
adversary B uses A as a subroutine. Given the (f, n)-DHE problem instance, B simulates
the required public parameters for A (description of simulation is not required here). B
also submits challenge value k as the maximum size of the privileged set. A computes a
privileged set S∗ such that |S∗| = k′ > k and generates a group token,

ΓS∗ = (ω1, ω2, ω3, ω4)

=
(
h−sα, gsα

n−kPS∗ (α), gsPS∗ (α), e(g, h)s
)
,

where s $←− Zp, PS∗(x) =
∏

ID∈S∗
(x + H(ID)). A sends (ΓS∗ , S∗) to B. At this point,

the adversary B sets f(x) = sxn−kPS∗(x) and returns
(
f(x), gsαn−kPS∗ (α)

)
as a solution

to (f,N)-DHE problem. Note that PS∗(x) is a polynomial of degree k′. So, f(x) is a
polynomial of degree n− k + k′ > n as k′ > k.
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More precisely, the authors of [AD16] claimed that if the adversary A outputs a valid
forgery (that is the group token passes the verification), then,

(
f(x), ω̂2 = gf(α)) is the

(f,N)-DHE solution for B. So if the adversary A successfully breaks the maximum user
of accountability of their scheme, then the adversary B breaks the (f,N)-DHE problem,
which is believed to be “hard” respective to G. For a detailed proof, readers are requested
to go through [AD16].

One important thing to note here is that, the adversary submits a group token generated
using the actual protocol indicating a semi-honest dealer. The adversary (the dealer) selects
a challenge privileged set S∗ and a size k such that |S∗| > k. It then samples a secret s
from Zp. The adversary generates the group token ΓS∗ using BrED.GroupGen (indicating a
semi-honest dealer) and the sampled secret s. Finally, the adversary submits (ΓS∗ , S∗) to
the challenger which in this case is the (f, n)-DHE. Even through we allow submitting S∗

without disclosing the secret s used to generate ΓS∗ , the (f, n)-DHE adversary B cannot
compute

f(x) = sxn−kPS∗(x).

Hence, the proof does not hold. The MUA proof of [GSP+16] did submit the randomness
s along with S∗ and ΓS∗ to allow the adversary B construct a (f, n)-DHE solution, this
violates their security game.

Finally, we conclude that, if the adversary A does not submit S∗ (the privileged user
set) and/or s (the randomness) with its forgery, then the security proof does not hold.
As B cannot construct PS∗(x) as well as f(x) without knowing S∗ and/or s respectively.
Hence, the simulation they provided is incorrect.

3.3 Inadequacy of cpaX Security Model
None of the previous works on BrED [GSP+16, AD16, AD17, KLEL17, AD21] considered
the dealer as a potential adversary. In particular, the message indistinguishability from
unprivileged users under CPA security (i.e. the cpaX security described in Figure 3) does
not capture the fact that an adversarial dealer who generated the group token ΓS (for a
set S ⊆ [n]), could extract meaningful information about the plaintext M after seeing the
ciphertext CTS ← Enc(pp,ΓS ,M).

More precisely, in Figure 3, an adversary (with access to the secret key oracle) submits a
challenge (S,M0,M1). The challenger generates group token ΓS in response. The challenger
then selects a bit β ← {0, 1}, and encrypts Mβ with the help of ΓS , and generates the
challenge ciphertext CTS,β ← BrED.Enc(pp,ΓS ,Mβ). Finally, the challenger only provides
the challenge ciphertext to the adversary and nothing else. This essentially models an
honest dealer. Also, the group token is sent from the dealer to the broadcaster via a public
channel. So everyone has access to that. The security game in Figure 3 does not capture
this either, as we only provide the adversary with the ciphertext CTS and not the group
token ΓS . This, in our opinion, does not correctly model a practical scenario as if a dealer
can extract the underlying plaintext M (or any related information), it could easily sell it
to more users without the broadcaster’s knowledge.

3.4 cpaU : A Stronger Security Model for BrED
It may seem that providing access to group tokens to the adversary of cpaX may fix the
security definition. Unfortunately, this is not the case. A crucial point that was missed
in all the previous works was that the dealer is never a part of the privileged set. This
way, a dealer is also an unprivileged user. A more striking fact is that the dealer in a
BrED system generates the group token and provides it to the broadcaster. The security
requirements for a BrED scheme should ensure that the dealer who forms the group token
does not infer any information about the message from the ciphertext.
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Below, we formally introduce the modified security definition. Henceforth, we call this
as message indistinguishability from unauthorized users (cpaU ) i.e. both the dealer and
the unprivileged users. In the new security definition, upon seeing the public parameter,
we allow the adversary to select a privileged set S ⊆ [n] of size k and two messages M0
and M1 of equal size. The adversary with access to the secret key oracle then computes
the group token ΓS using BrED.GroupGen and provides (ΓS , k,M0,M1) as its challenge.
Here again, we consider a semi-honest adversary, as it honestly computes the group token.
The challenger then selects a random bit β ∈ {0, 1} and provides the adversary with the
ciphertext w.r.t. Mβ . To which the adversary has to guess β.

This security game correctly models the dealer and unprivileged users in collusion
in a semi-honest setting. As the adversary is allowed to select the privileged set, the
message, and generates the group token by itself, which will then be used in the ciphertext
generation. A BrED scheme BrED satisfies message indistinguishability from unauthorized
users (cpaU ) if for all ppt adversary A,

AdvcpaU
A,BrED(λ) =

∣∣∣∣12 − Pr
[
ExpcpaU

BrED(1λ,A) = 1
]∣∣∣∣ ≤ neg(λ),

where ExpcpaU
BrED(1λ,A) is defined in Figure 4.

Game Description Oracle Description

ExpcpaU
BrED(1λ,A) Osk(i)

Qsk ← ∅ Qsk ← Qsk ∪ {i}

(pp,msk)← BrED.Setup(1λ, n) Run ski ← BrED.KeyGen(msk, i)

(ΓS , k,M0,M1)← AOsk(·)(pp), for S ⊆ [n] and |M0| = |M1| Return ski
where ΓS ← BrED.GroupGen(pp, k, S)

Sample β $←− {0, 1}, CTS,β ← BrED.Enc(pp,ΓS ,Mβ)

β′ ← AOsk(·)(pp,CTS,β)

Return 1 if (β = β′) and (S ∩Qsk = ∅).

Figure 4: Adaptive Message Indistinguishability from Unauthorized Users of BrED

Intuitively cpaU is a strictly stronger security requirement than cpaX as the cpaU
adversary can generate the group token and do secret key queries of unprivileged users.
We prove this in two steps:

1. For all ppt adversary A against cpaX , there exists a ppt adversary B against cpaU
s.t.

AdvcpaX
A,BrED(λ) ≤ AdvcpaU

B,BrED(λ).

2. There exists a BrED scheme that achieves cpaX security but is not secure in cpaU .

This ensures that the following theorem is indeed correct.

Theorem 1. cpaU is a strictly stronger security requirement than cpaX .

Proof. Theorem 1 follows from the following two lemmas.

Lemma 1. For all ppt adversary A against cpaX , there exists a ppt adversary B against
cpaU s.t. AdvcpaX

A,BrED(λ) ≤ AdvcpaU
B,BrED(λ).

Proof. Given an efficient adversary A for cpaX we construct an efficient adversary B for
cpaU .
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• Setup: The cpaU challenger runs (pp,msk)← Setup gives pp to B who forwards it
to A.

• Challenge: A gives (S,M0,M1) to B as its challenge. B runs ΓS ← GroupGen(pp, S)
and forwards (ΓS ,M0,M1) to the cpaU challenger who samples β $←− {0, 1} and
returns ct← Encrypt(pp,ΓS ,Mβ) to B. B forwards the challenge ciphertext ct to A.

• Guess: When A outputs guess bit β′, B forwards it to the cpaU challenger.

It is easy to see that if A guesses β correctly, so does B. Thus, any BrED scheme that is
secure in the cpaU model, is also secure in the cpaX model.

Lemma 2. There exists a BrED scheme that is secure in cpaX but is not secure in cpaU .

To show this, we construct a BrED scheme that is cpaX secure but not cpaU secure.
This pathological construction is done using a modified BE scheme. This modified version
of BE is basically a standard BE with an additional algorithm Verify that takes a ciphertext
ct and a number k, returns 1 when the size of the privileged set w.r.t. ct is |S| ≤ k. There
exists public key BE constructions [Del07, GW09, GLR18] (where ct provides S in plain)
and anonymous BE schemes [LG18] (where |ct| depends on |S|), which could support an
additional algorithm Verify to check if |S| ≤ k.

Proof. Here, we assume existence of a variant of broadcast encryption (BE) = (BE.Setup,
BE.KeyGen,BE.Verify, BE.Enc,BE.Dec) where the ciphertext ct = (HdrS , κS) where HdrS
is header and κS is session key and given a ciphertext Verify can check the size of the set
that is encrypted. We construct a BrED as follows:

• Setup(1λ, n): (pp,msk)← BE.Setup(1λ, n).

• KeyGen(msk, i): ski ← BE.KeyGen(msk, i).

• GroupGen(pp, S): ΓS = (HdrS , κS)← BE.Enc(pp, S, 1) where BE.Enc encrypts message
1 for the set S.

• Verify(pp,ΓS , k): b← BE.Verify(pp,ΓS , k).

• Enc(pp,ΓS ,M): CTS = (HdrS ,M · κS).

• Dec(pp, ski, (S,CTS)): M ← BE.Dec(ski, (S,CTS)).

It is easy to see that the above BrED is cpaX secure due to ind-cpa security of the underlying
BE. We now show that the above BrED is not cpaU secure. Indeed, that is true since
the cpaU adversary who computed ΓS = (HdrS , κS) can easily retrieve M from the given
ciphertext CTS = (HdrS ,M · κS).

Thus we conclude that cpaU is a strictly stronger security requirement than cpaX .

4 Constant BrED: Constant-size Ciphertext and Key
In this section, we propose our construction of broadcast encryption with dealership
protocol. This construction uses the core idea of the broadcast encryption of [GLR18] but
makes clever modifications to accomodate a dealer. Looking ahead, we have proved our
construction secure in the generic group model. We refer to this construction as BrED.
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4.1 Construction
We present our construction next. Similar to the construction of [GLR18], BrED achieves
constant-size secret key and constant-size ciphertext. However, BrED achieves adaptive
secure message indistinguishability from unprivileged users in the generic group model.
Informally speaking, the generic model of security helped us modify the construction
of [GLR18] to use a prime order pairing group and also helped us in achieving adaptive
message indistinguishability.

Setup(1λ, n)
1: PG = (p,G,H,GT , g, h, e)← PBGen(1λ)
2: α, γ

$←− Zp s.t. ui = hα
i for i ∈ [n].

3: msk = (α, γ, g, h)
4: Publish pp = (g, gα, . . . , gαn

, gγ , u1, . . . , un, e(g, h)γ)

KeyGen(msk, xi)

1: skxi
= h

γ
(α+xi)

GroupGen(pp, S, k)
1: Parse S = {ID1, . . . , IDk′} where k′ ≤ k ≤ n
2: Define PS(z) =

∏
y∈S

(z + y) = b0 + b1z + . . .+ bk′zk
′

3: s
$←− ZN

4: Output (k,ΓS) = (k, ω1, ω2, ω3, ω4) where
ω1 = gγs ω2 = gsPS(α)

ω3 = gα
n−ksPS(α) ω4 = e(g, h)γs

Verify(pp,ΓS , k)
1: If e(ω2, h

αn) = e(ω3, h
αk ), output 1

2: Otherwise output 0

Enc(pp,ΓS ,M)

1: r
$←− ZN

2: Output CTS = (ct1, ct2, ct0) = (ωr1, ωr2,M · ωr4)

Dec(pp, (sk, x), (CTS , S))
1: Parse CTS = (ct1, ct2, ct0) = (gγt, gtPS(α),M · e(g, h)γt).
2: Compute PS\{x}(z) =

∏
y∈S\{x}

(z + y) = a0 + a1z + . . .+ ak−1z
k−1.

3: Compute A = e(ct2, sk) · e
(

ct1,
∏

i∈[1,k−1]
uai
i

)−1

.

4: Output ct0

A
a

−1
0

.

Figure 5: Our BrED construction

Correctness. We parse CTS = (ct1, ct2, ct0) = (gγt, gtPS(α),M · e(g, h)γt) where t = s.r
for s being the randomness used in GroupGen and r is used by Enc to re-randomize the
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group token ΓS . Next we evaluate the correctness of the Dec algorithm. To do so, we first
evaluate the value of A in the Dec algorithm.

e(ct2, sk) = e
(
gtPS(α), h

γ
(α+x)

)
= e(g, h)γtPS\{x}(α)

e

ct1,
∏

i∈[1,k−1]

uai
i

 = e

ct1,
∏

i∈[1,k−1]

haiα
i

 = e(gγt, hPS\{x}(α)−a0)

= e(g, h)γtPS\{x}(α)e(g, h)−a0γt

Thus, A = e(g, h)a0γt and ct0

A
a

−1
0

= M ·e(g,h)γt

e(g,h)γt = M .

4.2 Technical Overview
Our type-3 pairing-based BrED construction is inspired by Gong et al.’s broadcast
encryption scheme [GLR18]. We use a pairing map e : G × H → GT , where g and
h are generators of G and H respectively. For a user x, the secret key is defined as
sk = h

γ
(α+x) , utilizing h from the public key and α, γ from the master secret key. The

group token ΓS = (ω1, ω2, ω3, ω4) contains an encryption of the message 1 with respect to a
privileged set S, following [GLR18]. Importantly, the encryption function is randomizable
and multiplicatively homomorphic with respect to messages. Our BrED encryption
randomizes the group token to ΓrS = (ωr1, ωr2, ωr4) and then homomorphically multiplies the
message, resulting in a ciphertext aligned with [GLR18]. Decryption follows the procedure
defined in [GLR18].

The difference lies in the fact that Gong et al. [GLR18] used the component of the
master secret key γ for achieving selective security (using the Deja Q framework of [Wee16]),
whereas we use it for group privacy. Specifically, the DDH instance (g, gγ , gs, gγs) allows
us to simulate components of a group token without revealing the privileged set, ensuring
group privacy (see Theorem 2). To ensure that the privileged set is upper bounded by
the declared value k (i.e., |S| ≤ k ≤ n), our verification function checks if (gαn−k

, ω3) is
in the span of (g, ω2). Using {hαi ∈ H}i∈[n], our verification function precisely checks if
e(ω2, h

αn) = e(ω3, h
αk ). We achieve maximum user accountability by ensuring that gαn+i

for i ≥ 1 is unavailable. Finally, we modify the CPA security of [GLR18] to ensure that no
collaboration between unprivileged users and the dealer can retrieve any new information
about the encrypted message.

4.3 Security
In this section, we prove that our construct BrED described in Figure 5 achieves all three
security notions described in this work.

4.3.1 Group Privacy

Theorem 2. Let there exists a ppt adversary A breaking the group privacy of BrED
with a non-negligible advantage, then there is a ppt adversary B which has a non-
negligible advantage in solving the Decisional Diffie-Hellman problem in G, where PG =
(p, g, h,G,H,GT , e)← PBGen(1λ) such that G = ⟨g⟩ and H = ⟨h⟩.

Proof. We are given a ppt adversary A of priv security, and we want to construct a
ppt adversary B for DDH that uses A as a subroutine. Given a DDH problem instance
(g, h, ga, gab, Z) for a, b $←− Zp, where Z is either gb or any random element form G, B does
the following:
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• Samples α $←− Zp.
• Implicitly sets γ = a and s = b.
• Publishes the public key pp = (g, gα, . . . , gαn

, ga, hα , . . . , hα
n

, e(g, h)a).
• Given pp, A outputs two sets (S0, S1) such that |S0| = |S1| = k′ < n.

• B then chooses β $←− {0, 1}, and returns the token ΓSβ
= (ω1, ω2, ω3, ω4) as following:

ω1 = gab

ω3 = Zα
n−kPSβ

(α)
ω2 = ZPSβ

(α)

ω4 = e(ω1, h)
.

• A outputs β′.
• If β′ = β, then B outputs 1 else 0.

As α is chosen uniformly at random, the public key pp is properly distributed. Notice that
if Z = gb then ΓSβ

is a valid group token to A, and if Z is chosen uniformly random, then
both ω2 and ω3 are just two random elements of G.

Then, the advantage of B in the DDH game is the same as that of adversary A guessing
β with the probability of anything other than guessing randomly. So, if adversary A can
win and break the group privacy of BrED, then adversary B can win the DDH game. Thus,
breaking the group privacy is equivalent to breaking the DDH assumption in G.

4.3.2 Maximum User of Accountability

Let us consider three random encoding functions σG : G→ {0, 1}mG , σH : H→ {0, 1}mH

and σT : GT → {0, 1}mT w.l.o.g. mG ≤ mH ≤ mT .

Theorem 3. Let A be a ppt algorithm that acts as an adversary for the maximum user
of accountability security of BrED in the generic group model. Let m be a bound on the
total number of group elements A receives from queries it makes to the oracles computing
the group actions in G, H, GT and the bilinear map e. Then that the advantage of A in
the maximum user of accountability security game of BrED is at most O(m2

p ).

Proof. Let C denote an algorithm that simulates the generic bilinear group for A. To
answer to oracle queries, C maintains three lists,

LG = {(fG,i, σG,i) : i ∈ [0, ψG − 1]}
LH = {(fH,i, σH,i) : i ∈ [0, ψH − 1]}
LT = {(fT,i, σT,i) : i ∈ [0, ψT − 1]}

such that at each step ψ of the game, the relation ψG +ψH +ψT = ψ+ 2n+ 3 holds. Here,
f∗,∗ are multivariate polynomials over 3 variables α, γ, s and σb,i are strings from {0, 1}mb ,
where b ∈ {G,H, T}. In this proof, we use b ∈ {G,H, T} in the subscript to denote the
respective groups.

Simulating pp. At the beginning of the game i.e., ψ = 0, the lists are initialized by
setting ψG = (n+ 2), ψH = n and ψT = 1. The polynomials,

• for the group G,

– 1, α, . . ., αn and γ are assigned to fG,0, fG,1, . . ., fG,n, fG,n+1,

• for the group H,

– α, . . ., αn are assigned to fH,1, fH,2, . . ., fH,n,

• for the group GT ,
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– γ is assigned to fT,0,

respectively. A uniform random string σb,ψb
is chosen from {0, 1}mb without repetition for

each fb,ψb
, and the pair (fb,ψb

, σb,ψb
) is appended to the list Lb, where b ∈ {G,H, T}. The

simulator C publishes all the σb,ψb
chosen as the public key so far (in appropriate order).

We assume that the adversary A queries the oracles on strings previously obtained from
C. Naturally, C can obtain the index of a given string σb,i in the list Lb. The oracles are
simulated as follows.

Group Actions in G, H and GT . We describe this for the group G. We note that the
group actions in H and GT are simulated similarly. If A submits two strings σG,i and σG,j
and a sign bit indicating multiplication or division, C finds fG,i and fG,j corresponding
to σG,i and σG,j respectively in LG and computes fG,ψG

= fG,i ± fG,j . If there exists
an index k ∈ [0, ψG − 1], such that fG,ψG

= fG,k, C sets σG,ψG
= σG,k; otherwise C sets

σG,ψG

$←− {0, 1}mG \ {σG,0, σG,1, . . . , σG,ψG−1}, adds (fG,ψG
, σG,ψG

) to LG, returns σG,ψG

to A and increments ψG by one.

Bilinear Map. If A submits two strings σG,i and σH,j , C first finds fG,i in LG
corresponding to σG,i and fH,j in LH corresponding to σH,j respectively and computes
fT,ψT

= fG,i · fH,j . If there exists an index k ∈ [0, ψT − 1], such that fT,ψT
= fT,k, C

sets σT,ψT
= σT,k; otherwise C sets σT,ψT

$←− {0, 1}mT \ {σT,0, σT,1, . . . , σT,ψT −1}, adds
(fT,ψT

, σT,ψT
) to LT , returns σT,ψT

to A and increments ψT by one.

Simulating group token ΓS∗ . At this point, A produces a challenge (k, σ′
G, σ

′′
G, σ

′′′
G , σ

′
T )

such that (f ′
G, σ

′
G), (f ′′

G, σ
′′
G), (f ′′′

G , σ
′′′
G ) ∈ LG, and (f ′

T , σ
′
T ) ∈ LT . Here, k is the maximal

size of the privileged set S∗, that is |S∗| = k′ ≤ k ≤ n. Observe that, (f ′
G, f

′′
G, f

′′′
G , f

′
T ) are

polynomials of α, γ and s, where α, γ will be sampled by C and s by A. Precisely,
f ′
G = γs

f ′′′
G = sαn−kPS∗(α)

f ′′
G = sPS∗(α)
f ′
T = γs.

Here, PS∗(α) =
∏
y∈S∗

(α+ y) is a polynomial of degree at most n. The generic group model

ensures that C can verify

f ′
T = f ′

G

f ′′′
G = f ′′

G · αn−k

f ′′
G · γ · f ′

T
−1 ∈ Span(fG,0, fG,1, . . . , fG,n).

Let v = (α, γ) denote the vector consisting of variables over which the polynomials are
defined. Now the simulator chooses at random α∗, γ∗ $←− Zp. Let v∗ = (α∗, γ∗). C assigns
v∗ to the variables of v. The simulation provided by C is perfect unless for some i, j any
of the following holds.

1. fG,i(v∗)− fG,j(v∗) = 0 or some i ̸= j but fG,i ̸= fG,j .

2. fH,i(v∗)− fH,j(v∗) = 0 or some i ̸= j but fH,i ̸= fH,j .

3. fT,i(v∗)− fT,j(v∗) = 0 or some i ̸= j but fT,i ̸= fT,j .

We use Bad to denote the event that at least one of the above holds, and we will try to
bound the probability of Bad. The simulation is perfect if Bad does not happen. Let us
assume A has generated his challenge for the set S∗, with |S∗| > k. We argue if Bad does
not happen, A has no advantage in generating ΓS∗ from the queries it made. Now in the
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polynomial f ′′′
G the highest possible degree of α is n if |S∗| ≤ k. If A tries to simulate any

group token where |S∗| > k, then in the polynomial f ′′′
G , the highest degree of α shall be

greater than n. Notice that, αn+i for i ≥ 1 is independent of (1, α, . . . , αn). Also, A does
not have access to gαn+i , which is outside the span of pp. Thus, it only has the option
to do it on its own. The probability that it guesses f ′′′

G having no info about gαn+i is
negligible.

We want to bound the Bad probability. This is where we utilize the DLSZ-lemma
(see Section 2.2.2). Roughly speaking, the result states that for an n-variate polynomial
F (x1, . . . , xn) ∈ Zp[X1, . . . , Xn] of degree d, a random assignment x1, . . . , xn

$←− Zp make
the polynomial F evaluate to zero with probability at most d/p. For fixed i, j, (fG,i− fG,j)
is a polynomial of degree at most n+ 1, hence the polynomial becomes zero at random v∗

with probability at most (n+ 1)/p. For fixed i, j, fH,i − fH,j is a polynomial of degree at
most n. Hence, the polynomial becomes zero at random v∗ with probability at most n/p.
For fixed i, j, fT,i − fT,j is a polynomial of degree at most (2n+ 1), hence the polynomial
becomes zero at random v∗ with probability at most (2n+ 1)/p.

There are totally
(
ψG

2
)
,
(
ψH

2
)
,
(
ψT

2
)

pairs of polynomials from LG, LH and LT
respectively. Note that, A is allowed to make at most m queries. Thus, ψG + ψH + ψT ≤
m+ 2n+ 3. Then,

Pr[Bad] ≤
(
ψG

2
) n+ 1

p
+
(
ψH

2
) n
p

+
(
ψT

2
) 2n+ 1

p

≤ (m+ 2n+ 3)2 · 4n+ 2
2p

≤ (m+ 2n+ 3)2 · 2n+ 1
p

.

So if Bad does not happen then A “knows” nothing about those possible values where
any two fb,i(x) = fb,j(x) happen for 1 ≤ i < j ≤ ψb. Considering all this together the
probability that A wins is at most O(m2/p).

Now to complete the proof, let E be an event that A produces ΓS∗ st |S∗| > k, and M
be an event that Verify(ΓS∗ , k) outputs 1. So, Pr[E ∧M ] ≤ Pr[E] ≤ (m+ 2n+ 3)2 · 2n+1

p .
Thus,

Pr[Verify(ΓS∗ , k)→ 1 ∧ |S∗| > k] ≤ (m+ 2n+ 3)2 2n+ 1
p

= O(m2/p).

Remark 1. We here justify the generic group model for the security proof of Maximum
User of Accountability. We chose to give the proof in such an idealized model as simulation
of the group-token turned out to be quite difficult if S∗ is not available. This situation
is in keeping with the security definition of maximum user of accountability in Section
2.4.2 unlike the existing works where the adversary gave away S∗ contradicting their own
definitions. We give the complete discussion in Appendix 3.2.

4.3.3 Message Indistinguishability from Unauthorized Users

Let us consider three random encoding functions σG : G→ {0, 1}mG , σH : H→ {0, 1}mH

and σT : GT → {0, 1}mT w.l.o.g. mG ≤ mH ≤ mT .

Theorem 4. Let A be a ppt adversary against the message indistinguishability from
the unauthorized user security game of BrED in the generic group model. Let n be any
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natural number that is the maximal size of the set of receivers per broadcast. Let A make ℓ
many secret key queries. Also, let m be a bound on the total number of group elements A
receives from queries. Then the advantage of A in the message indistinguishability from
unauthorized users security game of BrED is at most

AdvcpaU
A,BrED ≤ (m+ ℓ+ 2n+ 3)2 · 2n+ 3

2p .

Proof. We first make slight changes to the original security game of cpaU . In cpaU security
game, the adversary provides two messages M0,M1 and the challenge ciphertext has a
component M0 · e(g, h)γsr or M1 · e(g, h)γsr. For ease of proving, we modified the security
game, and the adversary has to decide whether the challenge ciphertext is M · e(g, h)γsr

or e(g, h)θ, for some θ $←− Zp. Instead of sampling β $←− {0, 1} and providing the adversary
Mβ ·e(g, h)γsr like in cpaU security game, we provide adversary yβ , where y0 = M ·e(g, h)γsr
and y1 = e(g, h)θ. The adversary outputs his guess β′. The adversary wins if β′ = β. It is
easy to see that these two games are identical. This kind of technique has commonly been
used in literature [BSW07]. So we prove our security in the modified setting.

Let C denote an algorithm that simulates the generic bilinear group for A. To answer
oracle queries, C maintains three lists,

LG = {(fG,i, σG,i) : i ∈ [0, ψG − 1]}
LH = {(fH,i, σH,i) : i ∈ [0, ψH − 1]}
LT = {(fT,i, σT,i) : i ∈ [0, ψT − 1]}

such that at each step ψ of the game, the relation ψG + ψH + ψT = ψ + ℓ+ 2n+ 3 holds.
Here f∗,∗ are multivariate polynomials over 5 variables α, γ, s, r, θ and σb,i are strings
from {0, 1}mb , where b ∈ {G,H, T}. In this proof, we use b ∈ {G,H, T} in the subscript
to denote the respective groups.

Simulating pp. At the beginning of the game i.e., ψ = 0, the lists are initialized by
setting ψG = (n+ 2), ψH = n and ψT = 1. The polynomials,

• for the group G,

– 1, α, . . ., αn and γ are assigned to fG,0, fG,1, . . ., fG,n, fG,n+1,

• for the group H,

– α, . . ., αn are assigned to fH,1, fH,2, . . ., fH,n,

• for the group GT ,

– γ is assigned to fT,0,

respectively. A uniform random string σb,ψb
is chosen from {0, 1}mb without repetition for

each fb,ψb
, and the pair (fb,ψb

, σb,ψb
) is appended to the list Lb, where b ∈ {G,H, T}. The

simulator C publishes all the σb,ψb
chosen as the public key so far (in appropriate order).

We assume that the adversary A queries the oracles on strings previously obtained from
C. Naturally, C can obtain the index of a given string σb,i in the list Lb. The oracles are
simulated as follows.
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Group Actions in G, H and GT . We describe this for the group G. We note that the
group actions in H and GT are simulated similarly. If A submits two strings σG,i and σG,j
and a sign bit indicating multiplication or division, C finds fG,i and fG,j corresponding
to σG,i and σG,j respectively in LG and computes fG,ψG

= fG,i ± fG,j . If there exists
an index k ∈ [0, ψG − 1], such that fG,ψG

= fG,k, C sets σG,ψG
= σG,k; otherwise C sets

σG,ψG

$←− {0, 1}mG \ {σG,0, σG,1, . . . , σG,ψG−1}, adds (fG,ψG
, σG,ψG

) to LG, returns σG,ψG

to A and increments ψG by one.

Bilinear Map. If A submits two strings σG,i and σH,j , C first finds fG,i in LG
corresponding to σG,i and fH,j in LH corresponding to σH,j respectively and computes
fT,ψT

= fG,i · fH,j . If there exists an index k ∈ [0, ψT − 1], such that fT,ψT
= fT,k, C

sets σT,ψT
= σT,k; otherwise C sets σT,ψT

$←− {0, 1}mT \ {σT,0, σT,1, . . . , σT,ψT −1}, adds
(fT,ψT

, σT,ψT
) to LT , returns σT,ψT

to A and increments ψT by one.

Simulating sk. On receiving secret key query for xi the simulator C assigns the
polynomials, γ(α+ xi)−1 to fH,ψH

, samples a string σH,ψH

$←− {0, 1}mH \ {σH,0, σH,1, . . . ,
σH,ψH −1}, adds (fH,ψH

, σH,ψH
) to LH , returns σH,ψH

to A and increments ψH by one. The
simulator also adds (xi, (fH,ψH

, σH,ψH
)) to Qsk. For each secret key query, the adversary

A gets one string from the group H. So if A makes at most ℓ-many secret keys queries,
then it gets ℓ many elements from H. So ψH = ℓ+ n.

Simulating challenge ciphertext CTS∗ At this point, A produces a challenge (k, σ′
G, σ

′′
G,

σ′′′
G , σ

′
T ) such that (f ′

G, σ
′
G), (f ′′

G, σ
′′
G), (f ′′′

G , σ
′′′
G ) ∈ LG, and (f ′

T , σ
′
T ) ∈ LT . Here, k is

the maximal size of the privileged set S∗, that is |S∗| = k′ ≤ k ≤ n. Observe that,
(f ′
G, f

′′
G, f

′′′
G , f

′
T ) are polynomials of α, γ and s where α, γ will be sampled by C and s by A.

Precisely,
f ′
G = γs

f ′′′
G = sαn−kPS∗(α)

f ′′
G = sPS∗(α)
f ′
T = γs.

Here PS∗(α) =
∏
y∈S∗

(α+y) is a polynomial of degree at most n. Due to natural restrictions

all y ∈ S; (y, ·) /∈ Qsk, and generic group model allows the simulator C to check that PS∗(α)
does not involve any user y for which secret key has been queried. The generic group
model ensures that C can verify

f ′
T = f ′

G

f ′′′
G = f ′′

G · αn−k

f ′′
G · γ · f ′

T
−1 ∈ Span(fG,0, fG,1, . . . , fG,n).

Finally, C samples β $←− {0, 1} and computes f̃ ′
G = f ′

G · r, f̃ ′′
G = f ′′

G · r and f̃ ′
T = yβ , where

y0 = f ′
T · r and y1 = θ. C then adds (f̃ ′

G, σ̃
′
G), (f̃ ′′

G, σ̃
′′
G) ∈ LG, and (f̃ ′

T , σ̃
′
T ) ∈ LT following

the above rules on group actions. At this point, C returns (σ̃′
G, σ̃

′′
G, σ̃

′
T ) to A who returns

β′.
Let v = (α, γ, r, θ) denote the vector consisting of variables over which the polynomials

are defined. Now the simulator chooses at random α∗, γ∗, r∗, θ∗ $←− Zp. Let v∗ =
(α∗, γ∗, r∗, θ∗). C assigns v∗ to the variables of v. The simulation provided by C is
perfect unless for some i, j any of the following holds.

1. fG,i(v∗)− fG,j(v∗) = 0 or some i ̸= j but fG,i ̸= fG,j .

2. fH,i(v∗)− fH,j(v∗) = 0 or some i ̸= j but fH,i ̸= fH,j .
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3. fT,i(v∗)− fT,j(v∗) = 0 or some i ̸= j but fT,i ̸= fT,j .

We use Bad to denote the event that at least one of the above holds and give the
argument for the security proof in steps. First of all, if Bad does not happen, the adversary
A will have no advantage in winning the game over a random guess. Precisely, for a
β

$←− {0, 1}, if A produces β′ then Pr[β = β′ : ¬Bad] = 1/2. To see this, observe that all
variables except yβ and y1−β are independent of the bit β. Recall A has access to all the
lists (LG, LH , LT ) and gets (σ̃′

G, σ̃
′′
G, σ̃

′
T ) as its challenge where (f̃ ′

G, σ̃
′
G), (f̃ ′′

G, σ̃
′′
G) ∈ LG,

and (f̃ ′
T , σ̃

′
T ) ∈ LT . Observe that, f̃ ′

G, f̃
′′
G, f̃

′
T are respectively γ∗sr∗, γ∗sr∗· PS∗(α∗) and

γ∗sr∗, where f̃ ′
T = γ∗sr∗ in group GT is our target polynomial.

It is clear that f̃ ′
T is a three-degree polynomial defined in the group GT . To compute

such f̃ ′
T , we mention that A can use the polynomial lists LG, challenge polynomials f̃ ′

G,
f̃ ′′
G, and the polynomials from group token f ′

G, f ′′
G to pair with the polynomials of LH .

The list of polynomials available to A is the following.

• Polynomials from group G,

– 1, α∗, . . ., (α∗)n and γ∗ (from public parameters),
– γ∗s, γ∗sPS∗(α∗) (from the group token),
– γ∗sr∗, γ∗sr∗PS∗(α∗) (from the challenge cipher-text).

• Polynomials from group H,

– (α∗), . . ., (α∗)n (from public parameters),
– γ∗(α∗ + xi)−1,∀(xi, ·) ∈ Qsk (from secret key queries).

Note that (α∗ + xi) does not divide PS∗(α∗) due to natural restrictions.

• Polynomials from group GT ,

– γ∗ (from public parameters).

The only three-degree polynomials that can be constructed combining one polynomial
from LG and one from LH are (α∗)3, (α∗)2γ∗, α∗γ∗s and any linear combinations of these
three polynomials. All the above-mentioned polynomials that can be constructed for the
group GT do not involve the challenge polynomial γ∗sr∗. Thus, the best A can do is to
output its guess β′ at random and subsequently Pr[β = β′ : ¬Bad] = 1/2.

We would like to bound the probability of Bad. Here we use DLSZ-lemma (see
Section 2.2.2). Roughly speaking, the result states that for an n-variate polynomial
F (x1, . . . , xn) ∈ Zp[X1, . . . , Xn] of degree d, a random assignment x1, . . . , xn

$←− Zp, the
polynomial F evaluate to zero with probability at most d/p. For fixed i, j, fG,i − fG,j is a
polynomial of degree at most n+ 3. Hence, the polynomial becomes zero at random v∗

with probability at most (n+ 3)/p. For fixed i, j, fH,i − fH,j is a polynomial of degree at
most n. Hence, the polynomial becomes zero at random v∗ with probability at most n/p.
For fixed i, j, fT,i − fT,j is a polynomial of degree at most (2n+ 3), hence the polynomial
becomes zero at random v∗ with probability at most (2n+ 3)/p. There are totally

(
ψG

2
)
,(

ψH

2
)
,
(
ψT

2
)

pairs of polynomials from LG, LH and LT respectively. Note that, A is
allowed to make at most m queries we have. Thus, ψG +ψH +ψT ≤ m+ ℓ+ 2n+ 3. Then,

Pr[Bad] ≤
(
ψG

2
) n+ 3

p
+
(
ψH

2
) n
p

+
(
ψT

2
) 2n+ 3

p

≤ (m+ ℓ+ 2n+ 3)2 · 4n+ 6
2p

≤ (m+ ℓ+ 2n+ 3)2 · 2n+ 3
p

.
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Now, a simple argument shows that,

Pr [β = β′] = Pr [β = β′|¬Bad] Pr [¬Bad]
+ Pr [β = β′|Bad] Pr [Bad]
≤ Pr [β = β′|¬Bad] (1− Pr [Bad]) + Pr [Bad]

= 1
2 + 1

2Pr [Bad]

Also,

Pr [β = β′] ≥ Pr [β = β′|¬Bad] (1− Pr [Bad])

= 1
2 −

1
2Pr [Bad] .

These two results were combined to give us

AdvcpaU
A,BrED =

∣∣∣∣Pr [β = β′]− 1
2

∣∣∣∣ ≤ Pr [Bad]
2

≤ (m+ ℓ+ 2n+ 3)2 · 2n+ 3
2p .

5 Conclusion
In this paper, we have shown the limitations of the existing works. Precisely, we found
security issues in all of them, rendering them insecure. We have shown that all previously
considered security definitions of BrED do not model the real world, and we corrected
them. We propose new constructions that are secure in the newly proposed security model.
Furthermore, we also achieve constant size ciphertext and secret key, which make our
scheme ready to be deployed in real life. In this work, we only have considered semi-honest
dealer and allowed collusion with unprivileged users. Due to the highly interactive nature
of BrED, we could only achieve some security in the generic group model. We suggest
getting standard assumption-based proof in a fully malicious dealer model as possible for
future work.
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A An Overview of Existing Works
For the convenience of readers, in this section, we describe all the existing [AD16, AD17,
KLEL17, AD21] constructions briefly. None of the Works did follow a consistent notation.
In the following, we bring them into a common notation that is consistent throughout
this work. We note that all the existing papers [AD16, AD17, KLEL17, AD21] are
instantiated in the bilinear pairing group system. Therefore, we assume the existence of
BG = (p, g,G,GT , e) be a prime order symmetric bilinear pairing group system throughout
this section, where G,GT are groups of prime order p and e : G × G → GT is the
bilinear mapping. Let n denote the maximal number of receivers per broadcast. Let
ID = {ID1, . . . , IDn} be the set of identifiers where IDi ∈ Z+ and λ is the security
parameter. The privileged user set S ⊆ ID is of size k′. Let k ≤ n be the maximum allowed
size of S. Let R be the revoked user set and v is the maximum number of revocations
possible. We have omitted the decryption function from the description as that is not
necessary for our discussion. For a more detailed description, readers are recommended to
take a look at the respective papers [AD16, AD17, KLEL17, AD21].

A.1 Brief Description of BrED Scheme of [AD16]
Authors of [AD16] presented their construction from a key encapsulation mechanism with
the dealership (KEMD). The description of their scheme is as follows.

• (pp,msk)← KEMD.Setup(1λ, n): Generate the public and private key as follows,

1. Let g, h be generators of the group G and let H : {0, 1}∗ → Z∗
p be a crypto-

graphically secure hash function.

2. Sample α $←− Zp and set master key msk = (α, h) and publish

pp =
(
BG, g, gα, . . . , gα

n

, e(g, h), hα, H, ID
)
.

• (ski)← KEMD.KeyGen(pp,msk, i) : Set user secret key as

ski = h
1

α+H(IDi)

and send it to user i via a secure channel.

• (ΓS , k)← KEMD.GroupGen(pp, S) : For a group of users S = {ID1, ID2, . . . , IDk′} ⊆
[n], generate a group token ΓS = (ω1, ω2, ω3, ω4) as,

1. Define PS(x) =
∏

IDj∈S
(x + H(IDj)) =

k′∑
i=0

Pix
i. Pi’s are functions of H(IDj)

for IDj ∈ S.

2. Sample s $←− Zp and generate ΓS = (ω1, ω2, ω3, ω4) as,
ω1 = h−sα

ω2 = g
sPS(α)
n−k

ω3 = gsPS(α)

ω4 = e(g, h)s
.

3. Set a group threshold k for group size S where k ≥ k′ = |S|.
4. Send S to users and publish (ΓS , k).

• (0/1)← KEMD.Verify(pp,ΓS , k): The verification work as following,

KEMD.Verify(pp,ΓS , k) =
{

1, if e(ω2, g
αk ) = e(ω3, g

αn)
0, otherwise.
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• (Hdr,K) ← KEMD.Encrypt(pp,ΓS): Extract (ω1, ω3, ω4) from ΓS , sample r $←− Zp
and set K = ωr4 and Hdr = (C1, C2) = (ωr1, ωr3), and then publish Hdr and keep K
secret.

A.2 Brief Description of BrED Scheme of [AD17]

The BrED construction of [AD17] by the same set of authors is as follows.

• (pp,msk)← BrED.Setup(n, 1λ) :

1. Sample α $←− Zp and set,

pp = (BG, l0, lα0 , . . . , lα
n

0 , g, gα, . . . , gα
n+1

, e(g, g), e(g, l0), ID);
msk = α,

where g is generator of G and l0 is a random non-identity element of G.

2. Keep msk secret and publish pp.

• (ski) ← BrED.KeyGen(pp,msk, i) : Sample hi
$←− G and ri

$←− Zp and generate
ski = (d1,i, d2,i, d3,i, labeli) as,

d1,i = (hi · gri)
1

α(α+IDi)

d3,i =
(
hi · l

d2,i

0

) 1
α

d2,i = ri

labeli =
(
hi, h

α
i . . . , h

αn

i

)
.

Send ski to user i through a secure channel.

• (ΓS , k) ← BrED.GroupGen(pp, S): Select a threshold value k and a group S =
{IDi1 , . . . , IDik′} ⊆ [n] of k′ many users where k′ ≤ k and generate a group token
(ΓS) as following,

1. Define PS(x) :=
∏

IDij
∈S

(x+ IDij ).

2. Sample s $←− Zp and generate a group token ΓS = (ω1, ω2, ω3, ω4, ω5) as following,

ω1 = gsαPS(α)

ω4 = e(g, g)−s
ω2 = gsα

n−k+1PS(α)

ω5 = e(g, l0)s
ω3 = g−sα.

Send S to subscribed users via a secure channel and publish (ΓS , k).

• (0/1)← BrED.Verify(pp,ΓS , k): Parse ΓS = (ω1, ω2, ω3, ω4, ω5) and checks,

BrED.Verify(pp,ΓS , k) =
{

1, if e(ω1, g
αn) = e(ω2, g

αk )
0, otherwise.

• (ct) ← BrED.Encrypt(pp,ΓS ,M): Parse ΓS = (ω1, ω2, ω3, ω4, ω5), sample r $←− Zp
and compute ciphertext as

ct = (ct1, ct2, ct3, ct4) = ((ωr1, ωr3, ωr4,M · ωr5)).
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A.3 Brief Description of BrED Scheme of [KLEL17]
The construction of [KLEL17] the acronym RR was used for recipient revocation. They
referred to their scheme as RR-BED.

• (pp,msk)← RR-BED.Setup(1λ, n): Choose α, β $←− Zp, h
$←− G and compute,

pp =(BG, h, hα, . . . , hα
n

, g, gα, . . . , gα
n

,

gαβ , . . . , gα
n+1β , e(g, g), e(g, h), ID)

msk =(α, β).

Keep msk secret and publish pp.

• (ski) ← RR-BED.KeyGen(pp,msk, i): Sample li
$←− G and ri

$←− Zp and generate
ski = (d1,i, d2,i, d3,i, labeli) as,

d1,i = (li · gri)
1

αβ(α+IDi)

d3,i =
(
lih

d2,i

i

) 1
αβ

d2,i = ri

labeli =
(
li, l

α
i . . . , l

αn

i

)
.

Send ski to user i through a secure channel.

• (ΓS)← RR-BED.GroupGen(pp, S, k, v): Select a threshold value k and a group S =
{IDi1 , . . . , IDik′} ⊆ [n] of k′ many users where k′ ≤ k and generate a group token
(ΓS) as following,

1. Define PS(x) :=
∏

IDij
∈S

(x+ IDij ).

2. Sample s $←− Zp and set ΓS = (ω1, ω2, ω3, ω4, ω5) as,

ω1 = gsαβPS(α)

ω4 = e(g, g)−s
ω2 = gsα

n−v+1βPS(α)

ω5 = e(g, h)s ω3 = [g−sαi

]1≤i≤k+1.

Send S to subscribed users via a secure channel and publish (ΓS , k).

• (0/1)← RR-BED.Verify(pp,ΓS , k): Parse ΓS = (ω1, ω2, ω3, ω4, ω5) and check,

BrED.Verify(pp,ΓS , k) =
{

1, if e(ω1, g
αn) = e(ω2, g

αk )
0, otherwise.

• (ct)← RR-BED.Encrypt(pp,ΓS ,M): Parse ΓS = (ω1, ω2, ω3, ω4, ω5), sample r $←− Zp
and compute ciphertext as

ct = (ct1, ct2, ĉt1, . . . , ĉtk+1, ct4)
= ((ωr1, ωr3, ω̂1

r
, . . . , , ω̂k+1

r
,M · ωr5)).

• (ct′) ← RR-BED.Revoke(ct, R, pp): Parse ct as (ct1, ct2, ĉt1, . . . , ĉtk+1, ct4). Let
R = {IDi1 , . . . , IDil} ⊆ S where l ≤ v. Generate ct′ = (ct′1, ct′2, ĉt

′
1, ct

′
3) as,

1. If R = ϕ, ct′ = (ct′1, ct′2, ĉt
′
1, ct

′
3) = (ct1, ct2, ĉt1, ct4).
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2. If R ̸= ϕ, it compute

∏
IDj ∈R

(x+IDj)∏
IDj ∈R

(IDj)
=

l∑
i=0

fiα
i where f0 = 1. and H =

l∏
i=2

ĉt
fi

i =

g
−t

l∑
i=2

fiα
i

. Set y = t
l∑
i=0

fiα
i where t = rs (the random coins chosen by dealer

and broadcaster) and compute,

ct1 =g
αβy

( ∏
IDj ∈G

(α+IDi)

)

ĉt1 =g−αy

ct2 =e(g, g)−y

ct3 =M · e(g, h)y.

A.4 Brief Description of BrED Scheme of [AD21]
In the [AD21], authors proposed two BrED constructions using a symmetric bilinear
pairing group where the first construction (called KEMD-I) achieves semi-static security
in the standard model and the second construction (called KEMD-II) achieves adaptive
security. The second construction is exactly the same as the construction in [AD17] with
different variable names. We find that redundant to discuss these KEMD-II construction as
the same attack that we’ll show for [AD17] in the following section would hold for KEMD-II
also. Here we give a brief description of their construction KEMD-I.

• (pp,msk)← KEMD.Setup
(
1λ, n

)
:

1. Sample g1, h1
$←− G and α, β, γ1

$←− Zp
2. Set ĝ1 = gβ1 and ĥ1 = hβ1

3. Set msk← (α, h1, γ1) and publish

pp←
(
BG, {gα

j

1 , ĝα
j

1 }j∈[0,n], {ĥα
k

1 }j∈[0,n], g
γ1
1 , gαγ1

1

)
.

• ski ← KEMD.GeyGen (pp,msk, i):

1. Return ski = h
γ1

α+i

1

• (ΓS , k) ← KEMD.GroupGen (pp, S): Select S = {IDi1 , IDi2 , . . . , IDk′} ⊆ [n] such
that k′ ≤ k ≤ n and compute

1. Generate A(x), A1(x), A2(x) as,

A(x) =
∏
i∈S

(x− i) =
k′∑
i=0

Aix
i,

A1(x) = A(x)−
∏
i∈S

i =
k′∑
i=1

Aix
i,

A2(x) = A1(x)
x

=
k′∑
i=1

Aix
i−1,

where coefficients Ai ∈ Zp.



30 Reinventing BrED

2. Generate B(x), B1(x), B2(x) as,

B(x) =
∏

i∈[n]\S

(x− n+ i) =
n−k′∑
i=0

Bix
i,

B1(x) = B(x)−
∏

i∈[n]\S

i =
N−k′∑
i=0

B1ixi,

B2(x) = B1(x)
x− n

=
N−k′−1∑
i=0

B2ixi,

where coefficients Bi, B1i, B2i ∈ Zp.

3. Generate P̂ (x) as,

P̂ (x) =
∏
i∈S

(x− i) ·
∏

i∈[n]\S

(x− n+ i) =
n∑
i=0

P̂ix
i,

where coefficient P̂i ∈ Zp.

4. Let Y =
∏
i∈S

i, Z =
∏

i∈[n]\S
i. Select t $←− Z∗

p and generate a group token

ΓS =
(
{ωi}i∈[1,12]

)
as following,

ω1 = ĝ
A1(α)t
1 ω2 = ĝ

A2(α)t
1

ω3 = ĝ
αn−kA1(α)t
1 ω4 = ĝY t1

ω5 = ĝα
nY t

1 ω6 = ĝ
B1(α)t
1

ω7 = ĝ
B2(α)t
1 ω8 = ĝZt1

ω9 = ĝ
P̂ (α)t
1 ω10 = ĝt1

ω11 = gγ1t
1 ω12 = gαγ1t

1

5. Send S to privileged users via secure channel and public (ΓS , k).

• (0/1) ← KEMD.Verify (pp,ΓS , k): Parse ΓS = (ω1, . . . , ω12) , k and return 1 only if
all the following equations holds else return 0.

e
(
ω1, g

αn

1

)
= e

(
ω3, g

αk

1

)
(2)

e (ω5, g1) = e
(
ω4, g

αn

1

)
(3)

e (ω2, ĝ
α
1 ) = e (ω1, ĝ1) (4)

e
(
ω7, ĝ

α−n
1

)
= e (ω6, ĝ1) (5)

e (ω4, ω8) = e

ĝ{t
∏

i∈[n]

i}

1 , ω10

 (6)

e (ω9, ω10) = e (ω1 · ω4, ω6 · ω8) (7)
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• (Hdr,K)← KEMD.Encrypt (pp,ΓS) : Sample r $←− Zp set the session key

K = e
(
ωr12, ĥ

αn−2

1

)
= e

(
g1, ĥ1

)αn−1sγ1

Hdr = (C1, C2) = (ωr9, ωr11) ,

where s = tr (say).

B Security Flaws of Existing Works
All previous works [AD16, AD17, KLEL17, AD21] followed a similar path to argue the
security of group privacy and maximum user of accountability. The fundamental idea of the
attack on group privacy is the same. However, the description of the attack changes with
every scheme. Therefore, we will address the attack on group privacy individually in the
following section. But to keep our presentation concise, we discuss the flaw in the security
argument of the maximum user of accountability of [AD16] and omit the same discussion
for [AD17, KLEL17, AD21]. In light of our discussion, readers can also appreciate the
flow in all other constructions.

B.1 Description of attack of Group Privacy on [AD16]
The attack is described in the main body of the paper (See Section 3.1.1).

B.2 Description of attack of Group Privacy on [AD17]
The construction of [AD17] suffer from similar vulnerability as found in [AD16]. Precisely,
the pp in [AD17] contains (g, gα, . . . , gαn). Here also adversary can easily compute gPS(α)

using pp as PS(x) =
∏

IDij
∈S

(x + IDij ). Description of group token in this case is ΓS =

(ω1, ω2, ω3, ω4, ω5) as following,

ω1 = gsαPS(α)

ω4 = e(g, g)−s
ω2 = gsα

n−k+1PS(α)

ω5 = e(g, l0)s
ω3 = g−sα.

Here s $←− Zp.
Proceeding similar to the attack of [AD16], the adversary chooses two privileged sets

of equal size, S0, S1 and submits to the challenger. The challenger chooses b $←− {0, 1} and
returns group token for Sb. The group token Sb contains ω1 = g−sα and ω3 = gsPSb

(α).
The adversary generates gPS0 (α) from the public parameters. Adversary proceeds by
computing the following pairings e

(
gPS0 (α), ω3

)
and e(ω1, g).

e
(
gPS0 (α), ω3

)
= e(g, g)−sαPS0 (α)

e(ω1, g) = e(g, g)sαPSb
(α)

With this adversary guesses b as,

b =
{

0 if e
(
gPS0 (α), ω3

)
× e(ω1, g) = 1

1 otherwise.
. (8)

That is, if the random bit b chosen by the challenger is 0, then the product e
(
gPS0 (α), ω3

)
×

e(ω1, g) indeed be 1. Thus the adversary can guess b correctly with overwhelming
probability.
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B.3 Description of Attack of Group Privacy on [KLEL17]

This construction uses a similar kind of idea used in [AD17] to hide the set information in
the group token. So a similar type of attack is possible for this construction as well. The
public parameters in [KLEL17] contains

pp = (BG, h, hα, . . . , hα
n

, g, gα, . . . , gα
n

, gαβ , . . . , gα
n+1β , e(g, g), e(g, h), ID).

Like previous two constructions here also adversary can compute gαβPS(α) as PS(x) =∏
IDij

∈S
(x+ IDij ). Group tokens in their construction ΓS = (ω1, ω2, ω3, ω4, ω5) as following,

ω1 = gsαβPS(α)

ω4 = e(g, g)−s
ω2 = gsα

n−v+1βPS(α)

ω5 = e(g, h)s ω3 = [g−sαi

]1≤i≤k+1.

Our attack here would be, the adversary generates gαβPS0 (α) from the public parameters.
Adversary proceeds by computing the pairings e

(
gαβPS0 (α), ω̂1

)
and e(ω1, g

α).

e
(
gαβPS0 (α), ω̂1

)
= e(g, g)−sα2βPS0 (α)

e(ω1, g
α) = e(g, g)sα

2βPSb
(α)

With this adversary guesses b as,

b =
{

0 if e
(
gαβPS0 (α), ω̂1

)
× e(ω1, g

α) = 1
1 otherwise.

. (9)

Here also, if the random bit b chosen by the challenger is 0, then the product e
(
gαβPS0 (α), ω̂1

)
·e(ω1, g

α) indeed be 1. Thus the adversary can guess b correctly with overwhelming
probability.

B.4 Description of Attack of Group Privacy on [AD21]

The authors of [AD21] has proposed two construction KEMD-I and KEMD-II. Their first
construction KEMD-I is semi-static secure, whereas the second construction KEMD-II
is adaptive secure. Now the second construction, i.e., KEMD-II is exactly the same as
the construction of [AD17]. So the attack we described for [AD17] also holds for this
construction. In this section, we describe the attack on group privacy for their first
construction, which is KEMD-I.

The public key of [AD21] contains,

pp←
(
{gα

j

1 , ĝα
j

1 }j∈[0,n], {ĥα
k

1 }j∈[0,n], g
γ1
1 , gαγ1

1

)
,

and

P̂ (x) =
∏
i∈S

(x− i) ·
∏

i∈[n]\S

(x− n+ i) =
n∑
i=0

P̂ix
i,

so ĝ1
P̂S(α) for any S ⊆ [n] can be computed using public parameters. Now, for the attack,

the adversary chooses two sets S0, S1 ⊂ [n] of equal size and submits to the challenger.
The challenger chooses b $←− {0, 1} and provide group token for ΓSb

. Recall that the group
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token consists ΓS =
(
{ωi}i∈[1,12]

)
where,

ω1 = ĝ
A1(α)t
1 ω2 = ĝ

A2(α)t
1

ω3 = ĝ
αn−kA1(α)t
1 ω4 = ĝY t1

ω5 = ĝα
nY t

1 ω6 = ĝ
B1(α)t
1

ω7 = ĝ
B2(α)t
1 ω8 = ĝZt1

ω9 = ĝ
P̂ (α)t
1 ω10 = ĝt1

ω11 = gγ1t
1 ω12 = gαγ1t

1 .

So the adversary computes e
(
ĝ1
PS0 (α), ω10

)
which is

e
(
ĝ1
PS0 (α), ĝ1

t
)

= e (ĝ1, ĝ1)tPS0 (α)
. And on the other hand adversary also computes

e (ω9, ĝ1) which is e
(
ĝ1
tPSb

(α), ĝ1

)
= e (ĝ1, ĝ1)tPSb

(α)
. So adversary checks if e

(
ĝ1
PS0 (α), ω10

)
= e (ω9, ĝ1) then b = 0 else 1.

B.5 Issue with Group Privacy Security Argument
Recall from Section 2.4.1, the group privacy security game of BrED allows an adversary
to submit two privileged sets S0 and S1 of the same size. The challenger chooses a bit
b

$←− {0, 1}, a secret s ∈ Z∗
p, and returns a group token for Sb (constructed using the secret

s). The adversary wins if it correctly guesses b.
All the previous constructions [AD16, AD17, KLEL17, AD21] argued that any adversary

could predict b correctly if and only if it can extract the randomness (the value s in line
2 of GroupGen algorithm) used to generate the challenge group token. They also argued
that predicting b by any adversary is equivalent to computing the group token ΓSb

, which
requires the knowledge of the secret used in token generation. Moreover, predicting the
secret is equivalent to computing the discrete log in G. As the discrete logarithm problem in
G is “hard”, thus the adversarially cannot win the group privacy security with significant
probability.

This security argument is incorrect. The security argument of [AD16] (similarly
in [AD17, KLEL17, AD21]) says that if an adversary can break the discrete logarithm
problems, then it can also break the BrED scheme of [AD16]. In provable security, the
argument should be the converse, i.e., if an adversary can break the group privacy security
of [AD16] then it can also break the discrete logarithm problem in the respective group.

Looking ahead, it is, in fact, easy to check from our attack that [AD16] (similarly [AD17,
KLEL17, AD21]) are not secure wrt group privacy. The attack idea is simple. The public
parameters and the group token form a DDH instance for any adversarially chosen S ⊆ [n].
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