
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 3, 37 pages.

https://doi.org/10.62056/a3c0l2isfg
Check for updates

Efficient Boolean-to-Arithmetic Mask Conversion
in Hardware

Aein Rezaei Shahmirzadi and Michael Hutter

PQShield, Oxford, UK

Abstract. Masking schemes are key in thwarting side-channel attacks due to
their robust theoretical foundation. Transitioning from Boolean to arithmetic (B2A)
masking is a necessary step in various cryptography schemes, including hash functions,
ARX-based ciphers, and lattice-based cryptography. While there exists a significant
body of research focusing on B2A software implementations, studies pertaining to
hardware implementations are quite limited, with the majority dedicated solely to
creating efficient Boolean masked adders. In this paper, we present first- and second-
order secure hardware implementations to perform B2A mask conversion efficiently
without using masked adder structures. We first introduce a first-order secure low-
latency gadget that executes a B2A2k in a single cycle. Furthermore, we propose a
second-order secure B2A2k gadget that has a latency of only 4 clock cycles. Both
gadgets are independent of the input word size k. We then show how these new
primitives lead to improved B2Aq hardware implementations that perform a B2A
mask conversion of integers modulo an arbitrary number. Our results show that
our new gadgets outperform comparable solutions by more than a magnitude in
terms of resource requirements and are at least 3 times faster in terms of latency
and throughput. All gadgets have been formally verified and proven secure in the
glitch-robust PINI security model. We additionally confirm the security of our gadgets
on an FPGA platform using practical TVLA tests.
Keywords: Secure Mask Conversion · Mixed Boolean Arithmetic (MBA) · Boolean-
to-Arithmetic (B2A) · Arithmetic-to-Boolean (A2B) · Side-Channel Analysis ·
DPA Countermeasures · Hardware Implementation · Physical Security

1 Introduction
Side-channel attacks, which exploit physical information leakage like power consumption or
electromagnetic radiation from cryptographic implementations, pose a significant security
threat. Common types of side-channel attacks include timing attacks [Koc96], which exploit
variations in execution time, EM, or power analysis attacks [KJJ99].

The standard countermeasure against these attacks is masking, where secret-shared
intermediate variables are computed, ensuring they remain independent of the secret data
manipulated by the device. The application of masking in cryptographic operations varies
based on the type of operations performed. Logical operations like XOR and shifts are
safeguarded using Boolean masking, while additions, subtractions, and multiplications
require arithmetic and multiplicative masking, respectively. However, cryptographic
algorithms often involve a combination of these operations, necessitating the conversion of
masks between Boolean and arithmetic forms to get correct results. Typical examples are
symmetric primitives such as SHA-2, Blake [AHMP10], Skein [FLS+10], XTEA [NW97],
or ChaCha20 [Ber08], which all use a moduli with a power-of-two. Other examples are

E-mail: aein.shahmirzadi@pqshield.com (Aein Rezaei Shahmirzadi), michael.hutter@pqshield.com
(Michael Hutter)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-07-09 Accepted: 2024-09-02

https://doi.org/10.62056/a3c0l2isfg
https://crossmark.crossref.org/dialog/?doi=10.62056/a3c0l2isfg&domain=pdf&date_stamp=2024-10-03
https://orcid.org/0000-0002-9549-268X
https://orcid.org/0000-0001-9769-7649
mailto:aein.shahmirzadi@pqshield.com
mailto:michael.hutter@pqshield.com
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Efficient Boolean-to-Arithmetic Mask Conversion in Hardware

lattice-based cryptographic schemes in which polynomial multiplication and addition are
preferably performed on arithmetic shares, while binomial sampling, for example, requires
Boolean masking. These schemes often use a modulus different than a power-of-two
and require additional modulo reductions. Consequently, there is a demand for efficient
techniques that facilitate the conversion between arithmetic and Boolean sharing types in
both fields of characteristic two and prime fields.

In 2001, Goubin [Gou01] introduced a highly efficient first-order secure B2A2k mask
conversion method. Notably, this solution, which remains independent of the input word
size k, has a runtime complexity of O(1). Additionally, Goubin proposed a first-order
secure A2B2k solution that used a masked Ripple-Carry Adder (RCA). Due to the carry
chain, the runtime complexity depends on k and is therefore O(k). This was further
improved by Coron et al. [CGTV15] who suggested to employ a masked carry-lookahead
adder in 2015, known as the SecAdd gadget, achieving a lower logarithmic complexity of
O(log k). This specialized gadget facilitates both additions and subtractions on Boolean
masked shares and can be used to perform both B2A2k and A2B2k mask conversions. Several
works, including [BDCU17, WH17, KSM19], analyzed different types of masked adders
and proposed additional improvements and variants of the SecAdd gadget to enhance
implementation efficiency.

The exploration of mask conversion algorithms for numbers modulo a prime p was initi-
ated by Barthe et al. [BBE+18]. They introduced a variant of the SecAdd gadget capable of
also performing modulo reduction, which is needed to mask many cryptographic schemes,
including lattice-based Post-Quantum Cryptography (PQC) schemes (e.g., ML-KEM and
ML-DSA). Additionally, Schneider et al. [SPOG19] presented an efficient B2Aq mask con-
version algorithm designed for single bits, from which a conversion of arbitrary bits can
be derived. Subsequent studies, including those by [BPO+20, BDH+21, BC22, CGMZ23],
have contributed numerous new variants and enhancements, primarily focusing on improv-
ing the performance of masked implementations of lattice-based cryptography.

The first higher-order B2A2k mask conversion algorithm with complexity independent
of k was first presented by Hutter and Tunstall [HT16, HT19]. They demonstrated the use
of Goubin’s first-order solution to construct a second-order secure B2A2k mask conversion,
requiring only 31 instructions. This concept was subsequently generalized to higher orders
in [Cor17, BCZ18] resulting in an algorithm that has an asymptotic runtime complexity
of O(2n). Recently, Coron et al. [CGTZ23] proposed a solution extending this idea also to
prime field operations.

All the aforementioned studies primarily concentrated on secure software implementa-
tions, with only a limited number focusing on efficient solutions in hardware. Among the pi-
oneering works, Schneider et al. [SMG15] proposed a hardware implementation of a Boolean
masked adder, employing a 3-share Threshold Implementation (TI) and presenting results
for both a Ripple-Carry Adder (RCA) and Kogge-Stone (KS) adder. Similar types of masked
adders were also presented in [GJM+16, BDK+21, FBR+22, BG22, CGM+23, NDKV24]
who evaluated other types of adders (e.g., Sklansky adder, Brent-Kung adder, etc.), bit-
sliced implementations, or explored different masking techniques (DOM, TI, etc.). It is
interesting to note that all of them utilized hardware implementations featuring construc-
tions resembling Boolean masked adders. To the best of our knowledge, no hardware
implementation has ever been introduced that performs a B2A mask conversion without
the need of secure adders. Our work fills this gap by presenting an approach to perform
B2A mask conversion that bypasses the complexities associated with secure adders, thus
paving the way for more efficient hardware implementations of, for instance, lattice-based
cryptography. This novel approach not only simplifies the hardware design but also offers
improved performance metrics in terms of latency and resource utilization.

Before we explicitly list our contributions, we want to emphasize that in this paper, we
aim to improve the performance of B2A hardware implementations including execution

Aein Rezaei Shahmirzadi, Michael Hutter 3

time (latency), throughput, and resource utilization. We do not aim to improve the time
complexity and theoretical upper bound on running-time growth of the underlying B2A
algorithms that were proposed in previous works. Instead, we propose new implementations
of B2A that effectively arrange and utilize hardware resources to achieve efficient and secure
mask-conversion operations. Our goal is to advance state-of-the-art B2A hardware imple-
mentations by achieving high performance while maintaining security against side-channel
analysis threats.

Our contributions. In this paper, we provide the following contributions:

− We present a first-order secure hardware gadget that performs a B2A2k mask con-
version in a single cycle. Previously, achieving this was deemed impractical, as a
single-cycle application of Goubin’s algorithm in hardware would lead to exploitable
leakage. Our low-latency 1O-SecB2A2k gadget always executes in a single cycle
independent of the input word size k. In addition, our new construction has a low
area footprint by allowing the use of unmasked additions, avoiding the need for costly
Boolean masked adders. For instance, a 32-bit B2A mask conversion requires only 76
LUTs, 94 FFs, and 1 DSP resource on a Kintex-7 FPGA, i.e., an order of magnitude
less in LUT and FF requirements compared to related masked Kogge-Stone Adder
(KSA) based solutions.

− We introduce a novel second-order secure hardware gadget (2O-SecB2A2k) capable of
conducting B2A2k mask conversion in just 4 clock cycles. Similarly to our first-order
secure solution, our gadget is agnostic to the input word size k and is designed
without the need for masked adders. Instead, we exclusively utilize unmasked adders,
enabling computation to be delegated to accessible DSPs on FPGAs (or existing
adders on ASICs). We present performance results for both pipelined and iterative
versions of the gadget, demonstrating a significant reduction in both latency and
resource requirements compared to prior works. Specifically, compared to the latest
second-order solution from [BG22], our new gadget reduces latency by a factor of 3
and requires up to 7 times fewer LUTs and 11 times fewer FFs.

− We demonstrate that our novel SecB2A2k constructions significantly enhance the
performance of mask conversion on integers modulo an arbitrary number q < 2k.
Our contribution is twofold: 1) We introduce a new SecB2Aq hardware gadget that,
unlike previous works [BBE+18, FBR+22, Cas22], is not based on SecAdds. Instead,
we utilize our low-latency SecB2A2k gadgets to securely convert from Boolean-to-
Arithmetic masks while concurrently calculating the single underflow (borrow) bit
produced during modulus subtraction, avoiding a full secure addition operation. 2)
We compare our solution with the work of Norga et al. [NDKV24]1, who reported
B2Aq performance results for the Kyber (ML-KEM) 12-bit modulus q = 3329. Our
solution outperforms that work by at least a factor of 3 in terms of speed (latency)
and throughput. Furthermore, our gadget reduces resource requirements by more
than 87 % for first-order security and over 90 % for second-order security.

− All our gadgets were proven secure in the robust probing and PINI security model.
In order to gain confidence in the security of our gadgets, we also conducted practical
DPA tests on a Xilinx Artix-7 FPGA and report the TVLA results. We further
provide the Verilog code of our B2A2k gadgets in the appendix of the paper.

Organization of the paper. The paper is organized as follows. In Section 2, we provide
some preliminaries on masking, mask conversion, state-of-the-art security notions, and the
Kogge-Stone adder. In Section 3, we discuss first-order secure B2A algorithms and propose

1In this paper, we refer to the unpublished work [NDKV24] on eprint posted on 26-Jan-2024.

4 Efficient Boolean-to-Arithmetic Mask Conversion in Hardware

a new B2A2k and B2Aq gadget which are 1-PINI secure. Section 4 focuses on second-order
secure B2A algorithms where we present novel B2A2k and B2Aq hardware gadgets which
are 2-PINI secure. Synthesis results are presented and compared with related work in
Section 5. Section 6 presents the results of our practical analysis along with the t-test
results. Section 7 concludes the paper.

2 Preliminaries

2.1 Notation
In this paper, we denote the Boolean operations AND, OR, and XOR as ∧, ∨, and ⊕. We
denote a shift of the binary representation of a variable x to the left with x ≪ i where i
represents the bit positions. Likewise, we denote a right shift by i positions with x ≫ i.
Addition and subtraction operations are represented as + and − signs. We further consider
all operations to be performed in the ring Z2k where k ∈ Z≥0 represents the bit length of
the ring.

We consider a Boolean masking scheme with security order d that splits up a sensitive
variable x ∈ Z2k into d + 1 Boolean shares (x1, ..., xd+1) such that x =

⊕d+1
i=1 xi to

fulfill the correctness property. Further note that the shares are selected randomly from
a uniform distribution to fulfill the uniformity property. A shared function f(x, y) is
considered correct if the sum of its shared component functions fi equals to f(x, y), i.e.,
f(x, y) =

⊕d+1
i=1 fi.

Throughout the work, we use the subscript to refer to the different mask shares. A
superscript is used to refer to the individual bits of the mask share. For example, x4

3 refers
the the 4th bit of the third mask share.

2.2 The Glitch-Extended Probing Model
Since the groundbreaking research by Kocher et al. [Koc96], there has been a consider-
able amount of work on understanding the foundation of Side-Channel Analysis (SCA).
Due to sound mathematical background, masking schemes stand out as one of the most
widely implemented countermeasures in practice. They have garnered extensive attention
from numerous authors in the literature, resulting in various schemes such as Boolean
masking [GP99], arithmetic masking [CG00], Inner Product masking [BFG+17], or multi-
plicative masking [GT02]. An essential aspect in the development of these masking schemes
is the consideration of adversaries’ models, which must account for physical vulnerabilities
and diverse execution environments.

The initial proposal for assessing the security of masking schemes was introduced by
Ishai et al. [ISW03], known as the “probing model”. In the dth-order probing model, an
adversary is capable of observing d intermediate wires of the circuit during cipher execution.
A circuit is deemed dth-order secure if any set of d probes remains independent of the
secret value, effectively thwarting dth-order side-channel attacks. Put differently, assurance
in this model stems from demonstrating that the stochastic values yielded by the probes
can be replicated by a simulator lacking access to the circuit’s secret inputs, whereas
both the adversary and the authentic circuit possess this information. This security is
established through the utilization of randomness generated exclusively by the simulator
and the circuit, inaccessible to the adversary. In practical terms, proving probing security
involves verifying that the probed values adhere to a random distribution unaffected by
the secret value’s selection.

While the probing model serves as an initial security model, practical hardware im-
plementations may still fall short of meeting its security requirements. This is primarily
because the model assumes the absence of data-dependent activation, which aligns well

Aein Rezaei Shahmirzadi, Michael Hutter 5

with software platforms, where instructions are executed sequentially. However, in CMOS
technologies, a common occurrence known as glitches introduces vulnerabilities. The
probing model’s failure to account for the impact of glitches results in insecure designs, as
demonstrated in [MPO05, MME10]. Specifically, the d-probing model overlooks physical
characteristics such as transitions, coupling effects, or glitches [FGP+18]. Therefore, an
extended model is necessary to address these undesired effects.

To address the impact of glitches, Reparaz et al. [RBN+15] introduced a security model
based on the probing model. In this model, a probe on a combinatorial circuit is extended
to all signals involved in the computation of the probed wire, extending up to registers or
primary inputs. This extension is known as the glitch-extended probing model. Later, Faust
et al. [FGP+18] incorporated this concept into the robust-probing model. Consequently,
it imposes a significantly stronger security requirement that must be met to ensure the
security of designs on hardware platforms. The introduction of this straightforward model
enabled relevant scientific communities to develop formal verification tools for evaluating
small circuits [KSM20] as the tool is restricted by the complexity limitations of the method
for large circuits.

2.3 Masking with d + 1 Shares
Threshold Implementation (TI) [NRR06] is one of the first implementation strategies that
is secure under the glitch-extended probing model. While TI defines the number of input
shares depends on the algebraic degree of the target Boolean function, two separate studies
have endeavored to decouple the number of input shares from the algebraic degree, as cited
in [RBN+15, GMK16]. These studies introduced approaches that utilize d + 1 input shares
for dth order security, while also upholding glitch resistance on hardware platforms. These
studies introduced methods using d + 1 input shares for dth order security while ensuring
glitch resistance on hardware. Typically, these methodologies require new randomness to
ensure non-completeness, contrasting with threshold approaches that might necessitate
fresh masks for uniformity. In the d + 1 sharing technique, a masked Boolean function is
segmented into two distinct sections by a register layer to prevent glitch propagation.

Drawing from the Domain Oriented Masking (DOM) method introduced by the authors
of [GMK16], a two-share variant of a two-input AND gate f(a, b) = ab = y can be realized
as follows:

f0(a0, b0, c0, r1) = a0b0 ⊕ c0 ⊕ r1 → y′
0

f1(a0, b1, r0) = a0b1 ⊕ r0 → y′
1 y′

0 ⊕ y′
1 = y0

f2(a1, b0, r0) = a1b0 ⊕ r0 → y′
2 y′

2 ⊕ y′
3 = y1

f3(a1, b1, c1, r1) = a1b1 ⊕ c1 ⊕ r1 → y′
3

, (1)

In the given equation in black, denoted as 1O-DomAnd(a0, a1, b0, b1) henceforth, a0, a1, b0, b1
stand for input shares, r0 is a single-bit of fresh randomness, and y0, y1 are the output
shares. The functions fi are referred to as component functions. While it is imperative to
store y′

1 and y′
2 in registers, it is optional to do so for y′

0 and y′
3. The segment responsible

for producing output shares through XOR operations on the register outputs is termed
the compression layer. We can implement the first-order secure mask variant of the
AND-XOR function f(a, b, c) = ab ⊕ c by incorporating the shares of c, which are c0 and
c1, into the first and last component functions, as indicated in blue in Equation 1. This
variant is referred to as 1O-DomAndXor(a0, a1, b0, b1, c0, c1) in this paper. By introducing an
additional random bit r1 as shown in red in Equation 1, we can refresh all the component
functions. Henceforth, we will refer to first-order secure AND and AND-XOR functions with
all component functions being refreshed as 1O-DomAndRefresh and 1O-DomAndXorRefresh
throughout the paper. Note that we have omitted mentioning the randomness in the input

6 Efficient Boolean-to-Arithmetic Mask Conversion in Hardware

list of these gadgets for the sake of simplicity. Likewise, the second-order secure masked
AND gate can be realized with the Domain Oriented Masking (DOM) methodology, denoted
as 2O-DomAnd(a0, a1, a2, b0, b1, b2), requiring only three random bits to mask cross-domain
products as follows:

f0(a0, b0, c0, r3, r4) = a0b0 ⊕ c0 ⊕ r3 ⊕ r4 → y′
0

f1(a0, b1, r0, r3) = a0b1 ⊕ r0 ⊕ r3 → y′
1 y′

0 ⊕ y′
1 ⊕ y′

2 = y0

f2(a0, b2, r1, r5) = a0b2 ⊕ r1 ⊕ r5 → y′
2

f3(a1, b0, r0, r4) = a1b0 ⊕ r0 ⊕ r4 → y′
3

f4(a1, b1, c1, r6, r7) = a1b1 ⊕ c1 ⊕ r6 ⊕ r7 → y′
4 y′

3 ⊕ y′
4 ⊕ y′

5 = y1

f5(a1, b2, r2, r6) = a1b2 ⊕ r2 ⊕ r8 → y′
5

f6(a2, b0, r1, r8) = a2b0 ⊕ r1 ⊕ r8 → y′
6

f7(a2, b1, r2, r7) = a2b1 ⊕ r2 ⊕ r7 → y′
7 y′

6 ⊕ y′
7 ⊕ y′

8 = y2

f8(a2, b2, c2, r5, r8) = a2b2 ⊕ c2 ⊕ r5 ⊕ r6 → y′
8

(2)

By placing the shares of c in Equation 2, as marked in blue, we can realize a 2nd-order secure
version of the AND-XOR function, which we name 2O-DomAndXor(a0, a1, a2, b0, b1, b2, c0, c1, c2)
in this paper. Similarly, we can refresh all component functions in a circular approach as
discussed in [RBN+15] with nine random bits in total as denoted in red in Equation 2,
creating 2O-DomAndRefresh and 2O-DomAndXorRefresh. For further information on the
second-order masked AND gate, we refer to the original publication [GMK16] to keep this
section concise.

2.4 Security Notions
While the glitch-extended probing model allows for the evaluation of a given circuit, it falls
short in guaranteeing the secure composability of gadgets. In practical circuits, masking
an entire cipher or circuit poses significant challenges, necessitating a modular divide-and-
conquer strategy. Consequently, rather than tackling the entire circuit at once, we break it
down into smaller building blocks and construct a protected circuit by assembling these
smaller protected units. This approach requires meeting a set of criteria to ensure the
security of the composed circuit under the glitch-extended probing model. These small
building blocks can be simple logic gates like AND and XOR, or larger circuits, which we
refer to as gadgets in this paper. The theoretical framework for achieving composability
and security through these gadgets is referred to as composability notions, which establish
the conditions for ensuring the secure interconnection of the gadgets. Over time, several
composability notions have been introduced, incorporating conservative assumptions to
ensure that glitch-extended probing security remains assured regardless of how these
gadgets are interconnected.

One of the earliest notions, introduced in [BBD+15], is known as Non-Interference (NI).
It aims to limit probe propagation within the gadget to ensure security in composition. Put
simply, this notion seeks to guarantee that any probe within the gadgets only extends into
a restricted set of input shares. In this notion, any set of t ≤ d probes observes a maximum
of t input shares. However, it has been demonstrated that ensuring secure composition
of gadgets requires more than just the NI notion. Consequently, a new notion called
Strong Non-Interferenc (SNI) [BBD+16] has been introduced, which imposes additional
restrictions, making the implementation costs higher. For example, in Boolean masking,
applying linear functions straightforwardly to each share individually is not feasible under
this notion. Extra care must be taken to ensure compliance with SNI, usually achieved by
introducing additional fresh masks, which adds more overhead to the design.

Aein Rezaei Shahmirzadi, Michael Hutter 7

Algorithm 1: Carry-vector calculation using a Kogge-Stone adder
Input: Integers a, b where a, b ∈ Z2k

Output: Carry vector c = (a + b)⊕ a⊕ b with c ∈ Z2k+1

1 g0 ← a0 ∧ b0

2 p0 ← a0 ⊕ b0

3 for i := 1 to k − 1 do
4 gi ← (bi−1 ∧ ai−1 ∧ ai)⊕ (bi ∧ ai)⊕ (bi−1 ∧ bi ∧ ai−1)
5 pi ← (bi−1 ⊕ ai−1) ∧ (bi ⊕ ai)
6 end
7 for j := 2 to w = ⌈log2(k − 1)⌉ − 1 do
8 β ← 2j−1

9 g ← g ⊕ (p ∧ (g ≪ β))
10 p← p ∧ (p≪ β)
11 end
12 β ← 2w

13 g ← g ⊕ (p ∧ (g ≪ β))
14 c← g ≪ 1
15 return c

This issue was addressed in [CS20], where the notion of Probe-Isolating Non-Interferenc
(PINI) was introduced. This notion carries some similarity with DOM [GMK16] as the
author also introduced share domains. In general, under this notion, any probe placed
on a gadget is restricted to propagating within a specific single share domain, and it is
not allowed to observe different domains with the same probe. If the probe is positioned
at the output shares, it must be limited to propagating within the same share domain as
the output share on which the probe was placed. Hence, this notion has the advantage
of the trivial realization of linear functions in Boolean masking reducing the overhead of
implementations compared to SNI. As we mainly focus on PINI notion, we restate the
definition of PINI below borrowed from [Kni23].

Definition 1 (d-Probe Isolating Non-Interference (PINI)). Let PI be a set of t1 internal
probes and PO be a set of t2 output wire probes, where IO is the index set associated with
the probes on the output wires. A masked circuit G is d-PINI iff for every P = PI ∪ PO

with t1 + t2 ≤ d, there exists a set II of circuit indices with |II | ≤ t1 such that P can be
perfectly simulated by input shares with indices drawn only from II ∪ IO.

Drawing from the insights presented in [CGLS21] and leveraging the refresh-then-
multiply technique outlined therein, refreshing one of the input variables before passing it
through the DOM multiplication forms a PINI gadget, referred to as Hardware Private
Circuits 1 (HPC1). In this paper, we also employ refresh-then-multiply technique to ensure
PINI security of our designs.

2.5 Kogge-Stone Adder
The Kogge-Stone Adder (KSA) is a parallel prefix adder used in digital circuit design for
performing fast addition [KS73]. One of the key features of the Kogge-Stone adder is its
efficient carry propagation mechanism. Unlike Ripple Carry Adders (RCA), where the
carry must propagate sequentially through each bit position, the Kogge-Stone adder uses
a parallel carry network that enables simultaneous carry computation across multiple bit
positions. Note that the Kogge-Stone adder exhibits excellent scalability. As the number
of bits in the operands increases, the depth of the binary tree grows logarithmically rather
than linearly, resulting in a more efficient use of resources and improved performance.

8 Efficient Boolean-to-Arithmetic Mask Conversion in Hardware

Figure 1: The structure of the carry generation for two 8-bit inputs using a Kogge-Stone
Adder (KSA). Operations specifically related to the last carry bit are highlighted in red.

In this algorithm, the carry bits for two k-bit inputs a and b are computed by a
pre-processing step and a prefix-computation step. In the pre-processing, the initial pi

and gi values are calculated as

gi = ai ∧ bi, pi = ai ⊕ bi, (3)

where ai and bi are the ith bit of the input values a and b. In the prefix-computation step,
the carry bits are computed in log2(k) stages. In each stage, the group carry propagate
pi:j and group generate signals gi:j are generated for i > j as

gi:j = gi ⊕ (gj ∧ pi), pi:j = pi ∧ pj . (4)

After log2(k) stages, all carry bits can be derived as

c1 = g0, ci∈{2...k} = gi−1:0. (5)

In this paper, we combine the pre-processing step and the first stage of the prefix-
computation. Hence, the output of the first stage can be calculated directly as follows:

gi =
{

ai ∧ bi if i = 0
(bi−1 ∧ ai−1 ∧ ai) ⊕ (bi ∧ ai) ⊕ (bi−1 ∧ bi ∧ ai−1) otherwise

pi =
{

ai ⊕ bi if i = 0
(bi−1 ⊕ ai−1) ∧ (bi ⊕ ai) otherwise

(6)

The remaining calculations proceed as previously described, employing Equation 4
and Equation 5, as depicted in Figure 1 for two 8-bit inputs. Algorithm 1 outlines the
algorithm for computing all carry bits, i.e., the carry vector.

If only the overflow bit, i.e., the most significant carry bit ck+1 of the carry vector
c ∈ Z2k , is needed, we can trivially simplify the computation, as not all intermediate values
contribute to the overflow bit ck+1. For instance, if we are only interested in determining
whether X > Y , we can simply calculate X − Y and check the overflow bit.

As an example, let’s consider k = 23. As demonstrated in Figure 1, highlighted in red,
only a few nodes need to be computed. In fact, only half of the nodes need to be computed
using Equation 6 in Step 1, two nodes need to be computed in Step 2, and 1 node in Step
3. That means, in general, for k = 2n, the number of nodes that need to be computed in
Step i is defined as k

2i . Algorithm 2 shows the algorithm to calculate only the overflow bit
of an integer addition.

Aein Rezaei Shahmirzadi, Michael Hutter 9

Algorithm 2: Carry-bit calculation using a Kogge-Stone adder
Input: Integers a, b where a, b ∈ Z2k

Output: Carry bit c = (((a + b)⊕ a⊕ b)≫ k) with c ∈ F2

1 for i := 1 to k − 1 by 2 do
2 gi ← (bi−1 ∧ ai−1 ∧ ai)⊕ (bi ∧ ai)⊕ (bi−1 ∧ bi ∧ ai−1)
3 pi ← (bi−1 ⊕ ai−1) ∧ (bi ⊕ ai)
4 end
5 for j := 2 to log2(k)− 1 do
6 α← k ; β ← 2j−1

7 for i := 1 to k
2j do

8 m← α− 1
9 l← α− β − 1

10 t← pm

11 pm ← t ∧ pl

12 gm ← gm ⊕ (t ∧ gl)
13 α← α− 2β

14 end
15 end
16 c← gk−1 ⊕ (pk−1 ∧ gk/2−1)
17 return c

3 First-order Secure B2A Mask Conversion
We will now discuss and present first-order secure Boolean-to-Arithmetic (B2A) mask
conversion algorithms. First, we discuss mask conversions applied on integers over Z2k

(B2A2k). We propose a novel gadget that can perform the conversion efficiently in hardware.
After that, we propose a new hardware gadget that performs a mask conversion on integers
modulo an arbitrary number q < 2k (B2Aq).

3.1 Goubin’s Solution
In 2001, Goubin proposed an efficient method of converting a Boolean mask to an arithmetic
mask that is first-order probing secure [Gou01]. The method is independent of the input
word size k and requires a constant number of instructions.

The essential observation of Goubin was that the function

ΦZ(a, b) : Z2 −→ Z : a, b 7−→ (a ⊕ b) + b (7)

is affine over F2. That means that (Φ(a, b) ⊕ Φ(a, 0)) is linear for any b ∈ Z. We can
further note that the same function is applicable in the field (Z2k , ⊕, +), for any k ∈ Z≥0.
We can therefore define the function as follows:

Φ(a, b) : (Z2k , ⊕, +)2 −→ (Z2k , ⊕, +) (8)
a, b 7−→ (a ⊕ b) + b

for some k ∈ Z≥0.
We can now use this affine function to perform a secure mask conversion. Let’s consider

x′ = x ⊕ r, where x, r ∈ (Z2k , ⊕, +) and x′ represents the Boolean masked secret x and r
represents a random value taken from Z2k . We wish to be able to remove the Boolean
mask and replace it with an arithmetic mask instead by applying the function to x′, i.e.,
Φ(x′, r) = (x′ ⊕ r) + r = x′′, where x′′ = x + r represents the arithmetically masked secret
x. However, this operation would reveal information on x through some side channels. To

10 Efficient Boolean-to-Arithmetic Mask Conversion in Hardware

Algorithm 3: Goubin’s 1st-Order Secure B2A2k Mask Conversion
Input: x′ = x⊕ r, the mask r, a random integer γ, where x, r, γ ∈ (Z2k ,⊕, +)
Output: x′′ = x + r

1 t← x′ ⊕ γ
2 t← t + γ
3 t← t⊕ x′

4 γ ← γ ⊕ r

5 z ← x′ ⊕ γ
6 z ← z + γ
7 z ← z ⊕ t

return z

avoid this, we can mask the computation by adding an additional random value γ ∈ Z2k

and compute
Φ(x′, γ ⊕ r) = (x′ ⊕ (γ ⊕ r)) + (γ ⊕ r) , (9)

which can then be followed by an unmasking step using

Φ(x′, γ) = (x′ ⊕ γ) + γ . (10)

Therefore, we can perform a secure Boolean-to-arithmetic mask conversion as follows:

x′′ = x′ ⊕ Φ(x′, γ) ⊕ Φ(x′, γ ⊕ r)
= x′ ⊕ [(x′ ⊕ γ) + γ] ⊕ [(x′ ⊕ (γ ⊕ r)) + (γ ⊕ r)] . (11)

One can implement this conversion using 7 instructions: 2 additions and 5 XOR operations
as shown in Algorithm 3. In the following, we aim to construct an efficient hardware
implementation of Goubin’s B2A algorithm.

3.2 First-order Secure Realization of B2A2k in Hardware
Let x′ = x ⊕ r and r be the Boolean sharing of the sensitive variable x. In a first step, we
need to refresh the input shares with two random variables γ and β to achieve composable
security. We can define an initial sharing a = x with three shares (a1, a2, a3) as follows:

a1 = x′ ⊕ γ, a2 = r ⊕ γ ⊕ β, a3 = β.

The uniformly distributed shares are then stored in separate registers. Then, we can define
an intermediate sharing b with shares (b1, b2, b3), i.e.,

b1 = Φ(a1, a3) ⊕ a1 = ((a1 ⊕ a3) + a3) ⊕ a1,

b2 = Φ(a1, a2) = ((a1 ⊕ a2) + a2),
b3 = a2 ⊕ a3.

Finally, we can compute the arithmetically masked output z using 2 shares (z1, z2) where

z1 = b1 ⊕ b2,

z2 = b3,

and x = z1 − z2. Gadget 1 shows a hardware description of this mask-conversion
solution. It is compatible with any input word size k and requires a fixed number of 2
clock cycles to perform a mask conversion operation. Two fresh random variables γ and
β are needed for the beginning. Note that the solution can process inputs in each cycle
and therefore supports pipelining. We now analyze our gadget in terms of side-channel
resistance security.

Aein Rezaei Shahmirzadi, Michael Hutter 11

Gadget 1: 1-PINI Secure B2A2k Mask Conversion based on Goubin’s Solution
Input: Shares x′ = x⊕ r, the mask r, two random integers γ and β, where

x, r, γ.β ∈ (Z2k ,⊕, +)
Output: z = (z1, z2) where x = z1 − z2

Cycle 1:
2 a1 ← x′ ⊕ γ
3 a2 ← r ⊕ γ ⊕ β
4 a3 ← β

Cycle 2:
6 b1 ← ((a1 ⊕ a3) + a3)⊕ a1

7 b2 ← ((a1 ⊕ a2) + a2)
8 b3 ← a2 ⊕ a3

Outputs:
10 z1 ← b1 ⊕ b2
11 z2 ← b3

return z = (z1, z2)

Theorem 1. Gadget 1 is first-order glitch-robust PINI.

Proof. As discussed in Section 2.4 and Definition 1, proving the security of the gadgets
under PINI notions requires demonstrating that any probe on the intermediate values
(internal probes) extends only into a single arbitrary share domain, and any probe on the
output wires propagates at most to the same share domain as the probed output. Probing
any initial sharing ai would reveal information about only one share domain. Probing b1
would yield information about a1 and a3, where the former is blinded by γ and the latter is
the fresh randomness β. Probing b2 would provide information about a1 and a2, which are
blinded by γ and β, respectively. Probing b3 would result in information about a2 and a3,
which are also blinded by γ and β, respectively. Hence, probing any intermediate values
bi satisfies the 1-PINI requirements. The probe placed on the output share z2 results in
information about b3 which is completely blinded by γ. Probing the output share z1 would
result in revealing information about b1 and b2. Each bit of b2 can be calculated as:

bi
2 =

{
a0

1 if i = 0
ai

1 ⊕ fi({aj
1, 0 ≤ j ≤ i − 1}, {aj

2, 0 ≤ j ≤ i − 1}) otherwise

where the function fi(.) has the algebraic degree of i + 1. Note that all bi are stored in a
register, so the extended probe to bi

2 can reveal information at most about ai
1. In other

words, it can be interpreted that each function fi(.) is masked by ai
1 in the computation of

bi
2 as ai

1 is not in the fi(.) input lists. b1 is a function of a1 and a3, and since the extended
probe on bi

2 reveals information about ai
1, it is possible to gain information about some

bits of a3. As defined in the beginning of this section, a3 is simply the random value β,
and a1 is blinded by γ. Hence, as previously mentioned, a1 and a3 are independent of each
other, with a1 being blinded by γ. Thus, probing the output share z1 fulfills the 1-PINI
requirements. Since all internal probes and probes placed on output shares meet 1-PINI
requirements, Gadget 1 is 1-PINI secure. □

We also verified the security of Gadget 1 in the PINI security model using the formal
verification tool SILVER [KSM20]. SILVER is designed to check hardware designs against
formal proofs, eliminating the need to manually write proofs for each design. It evaluates the
gate-level netlist of a hardware design and reports results based on security notions defined
in various studies, such as [MBR19]. Since SILVER does not perform any simplifications,
its analysis results are reliable and free of false positives or negatives. To this end, we
synthesized the HDL code of our gadget and provided SILVER with the resulting netlist
for evaluation. As a result, SILVER confirmed that the gadget is first-order glitch-robust
PINI.

12 Efficient Boolean-to-Arithmetic Mask Conversion in Hardware

3.3 A Low-Latency First-Order Secure B2A2k Gadget Proposal
We can reduce the complexity of our composable secure Boolean-to-arithmetic mask
conversion from the previous subsection as follows.

Let’s recall the computation of the arithmetic output sharing z = (z1, z2), i.e.,

z1 = b1 ⊕ b2 = Φ(a1, a3) ⊕ a1 ⊕ Φ(a1, a2)
= [Φ(x′ ⊕ γ, β) ⊕ x′ ⊕ γ] ⊕ [Φ(x′ ⊕ γ, r ⊕ γ ⊕ β)] ,

z2 = b3 = a2 ⊕ a3 = r ⊕ γ.

It is evident that z2 remains independent of the secret x, allowing for secure computation
within a single cycle. However, for z1, directly computing Φ(a1, a2) would compromise x’s
secrecy, necessitating a latency increase by 1 to flop one input before the computation.
Additionally, computing b1 ⊕ b2 simultaneously would result in a first-order leak because
all three shares of a would get combined in the same share domain. Thus, an additional
register layer is required before determining the output share z1. Consequently, this gadget
requires a minimum latency of two clock cycles for computation.

In order to perform the mask conversion in a single cycle, we propose to eliminate one
of the Φ computations. Let’s define new intermediate values (a1, a2, a3, a4) as follows:

a1 = x′, a3 = r + γ,

a2 = x′ ⊕ γ, a4 = r ⊕ γ.

Then, we can directly compute the output sharing z, i.e.,

z1 = Φ(a4, a1) ⊕ a3 ⊕ a4,

z2 = a2,

with x = z1 − z2 and z1 = x + (x′ ⊕ γ) and z2 = x′ ⊕ γ. Note that our new gadget
does only contain one secret-value dependent Φ computation. Further note that the terms
a3 and a4 only depend on the random values r and γ and can be calculated in the same
share domain.

It is important to note that the computation of z1 will leak information of x when the
output of the term Φ(a4, a1) gets XORed with the remaining term a3 ⊕ a4. This is because
the term a3 ⊕ a4 represents the carries cr+γ produced by the addition of r + γ, i.e.,

cr+γ = a3 ⊕ a4 = (r + γ) ⊕ r ⊕ γ

and the carries, which depend on bits of r and γ, will unmask x during the computation of
Φ(a4, a1) = Φ(r ⊕γ, x′) = r ⊕γ ⊕x′ +x′ = x⊕γ +x⊕ r. However, we can observe that the
term a4 is used twice in the computation of z1. Thus, we can eliminate this term during
calculation of Φ(a4, a1), which pleasantly also avoids unmasking the sensitive variable x.

Gadget 2 shows our proposed mask-conversion solution. First, we compute all shares
ai for i = 1...4 (Line 1) and store the results in registers. Second, we calculate z1 securely
(Lines 2-13) using a modified Ripple-Carry Adder (RCA). The construction does eliminate
the terms a4 from the carry-chain computation and therefore does not cause any leakage
of x. Note that z1 can be computed in the same share domain and therefore in a single
clock cycle. The Verilog code based on this algorithm is provided in Appendix B.

Theorem 2. Gadget 2 is first-order glitch-extended PINI (1-PINI).

Proof. Similar to Theorem 1, we first demonstrate that any internal probe propagates
to at most one input share. Examining Line 1 in Gadget 2, we observe that placing any

Aein Rezaei Shahmirzadi, Michael Hutter 13

Gadget 2: 1O-SecB2A2k: 1-PINI Secure B2A2k Mask Conversion
Input: Shares x′ = x⊕ r, the mask r, a random integer γ, where x, r, γ ∈ (Z2k ,⊕, +)
Output: z = (z1, z2) where x = z1 − z2 with z1 = x + (x⊕ r ⊕ γ) and z2 = x⊕ r ⊕ γ

1 a1 ← x′ ; a2 ← x′ ⊕ γ ; a3 ← r + γ ; a4 ← r ⊕ γ
2 z0

1 ← a0
3 ; z1

1 ← a1
3 ⊕ (a0

1 ∧ ¬a0
4)

3 for i := 2 to k − 1 do
4 zi

1 ← ai
3 ⊕ (ai−1

1 ∧ ¬ai−1
4)

5 for d := 3 to i + 1 do
6 j ← i + 1− d

7 t← aj
1 ∧ ¬aj

4
8 for m := d− 2 to 1 do
9 t← t ∧ aj+m

4
10 end
11 zi

1 ← zi
1 ⊕ t

12 end
13 end
14 z2 ← a2
15 return z = (z1, z2)

probe on the calculation of intermediate values ai extends to at most one input share, thus
satisfying the 1-PINI requirements. Next, we show that any probe on output shares would
result in propagation of the probe with same share domain. Let us assume that x′ and z1
are in the share domain A and r and z2 are in the share domain B. Looking at Lines 2 to 13
in Gadget 2, we can conclude that probing zi

1 would result in gaining information about ai
3,

{aj
1, 0 ≤ j < i}, and {aj

4, 0 ≤ j < i}. Further note that ai
3 is blinded by γi, {aj

4, 0 ≤ j < i}
are blinded by {γj , 0 ≤ j < i}, and {aj

1, 0 ≤ j < i} are basically revealing information
about the input share x′ which is in the same domain as z1, fulfilling the requirements of
1-PINI. Showing the security of probing z2 is trivial as it revealed information about a2
which is blinded by γ. Hence, Gadget 2 is first-order glitch-robust PINI (1-PINI). □

In addition to the theoretical proof, we verified the first-order glitch-robust PINI
security of Gadget 2 using the formal verification tool SILVER [KSM20].

3.4 A Novel First-Order Secure B2AqGadget Proposal
Many cryptographic algorithms require to perform a B2A mask conversion in the field of
integers modulo an arbitrary number q < 2k. That means that the Boolean masked secret
x must be reduced modulo q before it gets arithmetically shared. One way to perform the
modulo reduction is to select either x − q in case x − q ≥ 0 or x in the case x − q < 0, i.e.,

x mod q =
{

x − q if x − q ≥ 0
x if x − q < 0.

This method was first proposed by Barthe et al. [BBE+18]. They proposed to add the
two’s complement of q to x with the help of a Boolean masked adder (SecAdd) gadget.
The generated carry bit is then used to select the output of a masked multiplexer, which
can be constructed using two SecAnd gadgets.

Instead of using a Boolean masked adder, we propose to use our 1O-SecB2A2k gadget
in combination with a novel gadget, further called 1O-KSABorrowBitGen. This gadget
securely calculates the borrow bit of a subtraction operation using a Boolean masked carry
chain. However, in contrast to a classical Boolean masked adder, only the masked borrow
bit is output instead of the full Boolean masked sum of the inputs. This allows for an
optimized implementation as only the underflow bit (the borrow) needs to be computed.

14 Efficient Boolean-to-Arithmetic Mask Conversion in Hardware

Gadget 3 outlines the general structure of calculating the borrow bit b in a masked
format. We utilize the refresh-then-multiply technique to ensure the gadget’s 1-PINI
security as discussed in [CGLS21]. The gadget takes the Boolean shares of x = (x0, x1)
and the constant value q. Looking at Lines 2 and 3 in Algorithm 2, we notice that the
calculations of pi and gi are quadratic, as the second operand of the adder is a constant.
Moreover, only the odd bits of pi and gi are necessary, each being a function of two
adjacent input bits, i − 1 and i. Therefore, we refresh only the even bits of (x0, x1) using
the Refresh gadget, XORing a single-bit fresh mask to each bit, as shown in Lines 1-3
in Gadget 3. More precisely, the Refresh gadget takes two shares (xi

0, xi
1) and refresh

them with a single bit fresh masks r0 generating output shares (xi
0 ⊕ r0, xi

1 ⊕ r0). Then,
we compute x − q = x + (2k − q) = x + u to generate the desired borrow bit based on
Algorithm 2. As mentioned before, the functions to initialize p and g are quadratic and
we can make use of the DOM approach to realize first-order secure masked variation in
the first step. We employ 1O-DomAnd, described in Subsection 2.3, to generate (p0, p1),
requiring a single-bit fresh mask for each output bit. We utilize 1O-DomAndRefresh to
generate (g0, g1), which requires 2-bit randomness for each output bit. Note that ui and
ui−1 are constant bits, thus there is no need to share them. They are provided to the
1O-DomAndRefresh gadget solely for calculating the correct output. Both 1O-DomAnd
and 1O-DomAndRefresh are performed in a single cycle and we do not place any register
after the compression layer. Hence, it is necessary to refresh all component functions in
the calculation of (gi

0, gi
1) using 1O-DomAndRefresh to meet 1-PINI requirements when

the output shares are given to the next masked function. Likewise, we follow the same
approach in the calculation of next steps outlined in Lines 12 to 24 since all functions in
the next steps are quadratic. More precisely, we use 1O-DomAnd to generate (p0, p1) and
1O-DomAndXorRefresh to calculate (g0, g1) in the next steps. We should highlight that
the calculation of (g0, g1) is in the form of AND-XOR function and hence we have to use
1O-DomAndXorRefresh (see Line 12 in Algorithm 2).

Using these gadgets, the mask conversion can be performed as follows:

1. We compute a B2A mask conversion of the Boolean input x′ = x⊕r using 1O-SecB2A2k
and obtain the two arithmetic shares t1 = x + (x′ ⊕ γ) and t2 = (x′ ⊕ γ), where
x = t1 − t2.

2. We calculate u = (x′ ⊕ γ) + q by adding the modulus q to the second output share t2.

3. We compute the masked borrow bit b = b1⊕b2 that is generated during the subtraction
of x − p using a masked borrow-bit generator gadget (1O-KSABorrowBitGen) that is
based on a simplified carry-lookahead adder.

4. The first output share z1 is set to t1. The second output share is selected as follows:
depending on the masked borrow bit b, we either take t2 or u as the second output
share z2, i.e.,

z2 =
{

t2 = x′ ⊕ γ if b = 0
t3 = (x′ ⊕ γ) + q if b = 1.

The final output sharing z is then composed of the two arithmetic shares z1 and z2
where x = z1 − z2 and x ∈ [0, q − 1].

Gadget 4 shows a hardware description of the proposed solution. It makes use of the
composable gadgets Gadget 2 (1O-SecB2A2k) and Gadget 3 (1O-KSABorrowBitGen). We
denote by b̃ the extension of the bit b to the entire k-bit word. These bits get used in the
masked multiplexer (Lines 4-5). In terms of performance, since all gadgets that we used
including 1O-DomAnd, 1O-DomAndRefresh, and 1O-DomAndXorRefresh are performed in a
single cycle the latency of Gadget 3 for k-bit input variables is log2(k) + 1. Note that, one
extra cycle is required for refreshing the input and log2(k) is needed to calculate the borrow

Aein Rezaei Shahmirzadi, Michael Hutter 15

Gadget 3: 1O-KSABorrowBitGen: 1-PINI Secure Borrow-Bit Generator
Input: Shares x = (x0, x1), where x0, x1 ∈ Z2k , modulus q < 2k.
Output: Borrow bit b = (b0, b1) generated during x− q where b0, b1 ∈ F2

1 for i := 0 to k − 2 by 2 do
2 (ai

0, ai
1)← Refresh(xi

0, xi
1)

3 end
4 for i := 1 to k − 1 by 2 do
5 (ai

0, ai
1)← (xi

0, xi
1)

6 end
7 u← 2k − q
8 for i := 1 to k − 1 by 2 do
9 (pi

0, pi
1)← 1O-DomAnd(ai

0 ⊕ ui, ai
1, ai−1

0 ⊕ ui−1, ai−1
1)

10 (gi
0, gi

1)← 1O-DomAndRefresh(ai
0, ai

1, ai−1
0 , ai−1

1 , ui, ui−1)
11 end
12 for j := 2 to log2(k)− 1 do
13 α← k

14 β ← 2j−1

15 for i := 1 to k
2j do

16 m← α− 1
17 l← α− β − 1
18 (t0, t1)← (pm

0 , pm
1)

19 (pm
0 , pm

1)← 1O-DomAnd(t0, t1, pl
0, pl

1)
20 (gm

0 , gm
1)← 1O-DomAndXorRefresh(t0, t1, gl

0, gl
1, gm

0 , gm
1)

21 α← α− 2β

22 end
23 end

24 (b0, b1)← 1O-DomAndXorRefresh(pk−1
0 , pk−1

1 , g
k
2 −1

0 , g
k
2 −1

1 , gk−1
0 , gk−1

1)
25 return (b0, b1)

bit. The latency of Gadget 2 is 1, therefore our Gadget 4 has a complexity of O(log k) and
needs log2(k) + 2 clock cycles to perform the mask conversion, i.e., 7 cycles for a 32-bit
B2A. The gadget is pipelineable and needs 48 bits of fresh randomness in each cycle.

Theorem 3. Gadget 4 is first-order glitch-robust PINI (1-PINI).

Proof. We first discuss the 1-PINI security of the 1O-KSABorrowBitGen gadget. We use the
refresh-then-multiply technique as mentioned in [CGLS21]. In short, this technique involves
using the DOM methodology with one input being refreshed, which is shown to be PINI
secure. We follow this technique in Gadget 3 as well. In Line 2, we refresh one of the inputs
to the DOM AND gates in Lines 9 and 10. We use 1O-DomAndRefresh to generate (gi

0, gi
1)

to ensure that one of the AND inputs is refreshed in Line 20, where 1O-DomAndXorRefresh
is used to keep (gi

0, gi
1) always refreshed. Note that using 1O-DomAndRefresh is not

necessary to calculate (pi
0, pi

1) in Lines 9 and 19, as the refreshing in Line 2 is sufficient
to satisfy 1-PINI requirements in the entire design. Namely, since one of the inputs to
the 1O-DomAnd gadget is already refreshed in Line 2, any probe in calculating the (pi

0, pi
1)

tree in the KSA algorithm is always expanded to the same share domain, thereby ensuring
1-PINI security. We confirmed the 1-PINI security of 1O-KSABorrowBitGen using SILVER
as well.

Since both 1O-SecB2A2k and 1O-KSABorrowBitGen are 1-PINI secure, it is enough to
show that probing Line 2 and Lines 4-7 meets 1-PINI requirements in Gadget 4. Since q is
a constant, probing u would reveal the same information as t2. As t2 is the output of a
1-PINI secure gadget, proving the 1-PINI security is trivial. Probing Line 4 (w1) would

16 Efficient Boolean-to-Arithmetic Mask Conversion in Hardware

Gadget 4: 1O-SecB2Aq: 1-PINI Secure B2Aq Mask Conversion
Input: Shares x′ = x⊕ r, the mask r, where x, r ∈ Z2k , modulus q < 2k.
Output: z = (z1, z2) where x = z1 − z2 with x ∈ [0, q − 1]

1 (t1, t2)← 1O-SecB2A2k(x′, r)
2 u← t2 + q
3 (b1, b2)← 1O-KSABorrowBitGen(x′, r, q)
4 w1 ← (b̃1 ∧ (t2 ⊕ u))⊕ t2

5 w2 ← (b̃2 ∧ (t2 ⊕ u))
6 z1 ← t1
7 z2 ← w1 ⊕ w2
8 return z = (z1, z2)

reveal information about b1 and t2 (u has the same information as t2). Similarly, probing
Line 5 (w2) would reveal information about b2 and t2. Since (t1, t2) and (b1, b2) are output
shares of two different 1-PINI gadgets, we can conclude that ti and bi are independent of
each other and hence probing either Line 4 and 5 meets 1-PINI requirements. The probe
on Line 7 would propagate to the registered values w1 and w2 revealing some information
about t2 and b2. As noted before, they are independent of each other and both are the
output of two independent 1-PINI gadgets and hence meeting all requirements for 1-PINI.
Consequently, Gadget 4 is first-order robust probing and 1-PINI secure. □

Note that we have confirmed the 1-PINI security of Gadget 4 using the formal verification
tool SILVER [KSM20].

4 Second-order Secure B2A Mask Conversion
In this section, we discuss second-order secure Boolean-to-Arithmetic mask conversion
algorithms applied on integers over Z2k (standard) and over a prime field with modulus q.
We first revisit existing solutions and then make a proposal on how to implement such
algorithms efficiently in hardware.

4.1 Hutter-Tunstall’s Solution
The most efficient solution to perform a standard second-order secure Boolean-to-Arithmetic
mask conversion is due to Hutter and Tunstall [HT16, HT19]. Similarly to Goubin’s
algorithm, they proposed a solution which is independent of the register size k and
therefore has a complexity of O(1). Note that the solution was adopted and extended
to higher-order security in [Cor17, BCZ18] but the explicit 2nd-order secure algorithm
in [HT19] still remains the fastest solution with being 28% faster (and requiring only 5
instead of 7 random variables) than reported in [BCZ18].

Let’s consider a Boolean masked input x′ = x ⊕ r1 ⊕ r2, where x, r1, r2 ∈ (Z2k , ⊕, +),
and an arithmetically masked output x′′ = x + s1 + s2, where s1, s2 ∈ (Z2k , ⊕, +). Given
x′, we want to compute x′′ securely, i.e., without revealing any information about x in a
side channel.

The secure mask conversion can then be performed in three steps:

1. We compute (x + (r1 ⊕ r2 ⊕ α)) + s1 for some random values α, s1 ∈ Z2k .

2. We compute s2 − (r1 ⊕ r2 ⊕ α) for some random s2 ∈ Z2k .

3. We add the results of Steps 1 and 2 together which results in x′′ = x + s1 + s2.

Aein Rezaei Shahmirzadi, Michael Hutter 17

Note that the algorithm can be executed using three first-order secure B2A mask conversions.
Two are needed in Step 1 and one is needed in Step 2. The explicit instructions are provided
in Appendix A.

4.2 A New Second-Order Secure B2A2k Gadget Proposal
In the following, we propose a first and second-order secure sharing in hardware that fulfills
the requirements of the PINI security model. We first discuss the sharing needed for Step
1 of the algorithm. The sharing for Step 2 is discussed afterwards. Finally, we combine
the results in Step 3.

4.2.1 Step 1

Let’s recall the computation in which we want to compute (x + (r1 ⊕ r2 ⊕ α)) + s1 for
some random values α, s1 ∈ Z2k . This can be done by first performing a secure B2A mask
conversion to compute (x + (r1 ⊕ r2 ⊕ α)) ⊕ s1, followed by a second B2A mask conversion
to produce (x + (r1 ⊕ r2 ⊕ α)) + s1. We now present a hardware gadget that performs
those conversions in 4 clock cycles.

Cycle 1. Given the three input shares (x′ = x ⊕ r1 ⊕ r2, r1, r2), we can define the
intermediate value a using three additional fresh random variables α, γ1, and γ2 as follows:

a1 = x′ a3 = r1 ⊕ γ1 a5 = (x′ ⊕ α ⊕ γ1) + γ1

a2 = α a4 = r2 ⊕ γ2 a6 = (x′ ⊕ α ⊕ γ2) + γ2

Cycle 2. We can define a set of shares b and use one output share s1 that was chosen
randomly from a uniform distribution, i.e.,

b1 = a1 ⊕ a3 ⊕ a4 b3 = s1 ⊕ a5 ⊕ a3 b5 = s1

b2 = a2 ⊕ a3 ⊕ a4 b4 = a6 ⊕ a3

All shares represent terms that are needed for the first B2A mask conversion, i.e.,

(x + (r1 ⊕ r2 ⊕ α)) ⊕ s1 = Φ(x′ ⊕ α, γ1) ⊕ Φ(x′ ⊕ α, γ2) ⊕
Φ(x′ ⊕ α, γ1 ⊕ γ2 ⊕ r1 ⊕ r2 ⊕ α) ⊕ s1 , (12)

where b1 + b2 = Φ(x′ ⊕ α, γ1 ⊕ γ2 ⊕ r1 ⊕ r2 ⊕ α), a5 = Φ(x′ ⊕ α, γ1), and a6 = Φ(x′ ⊕ α, γ2).
Note that we need to add s1 to share b3 to avoid first-order leakage and also need to add a
mask to a5 and a6 to avoid second-order leakage. We re-used variable a3 for that purpose
which does not further unmask the sensitive variable x.

Cycle 3. Now, we can define the set of shares c as follows:

c1 = (b1 + b2) ⊕ b3 c3 = δ c5 = (b5 ⊕ δ) + β

c2 = b4 ⊕ δ c4 = b5 c6 = β

with

c1 = Φ(x′ ⊕ α, γ1) ⊕ Φ(x′ ⊕ α, γ1 ⊕ γ2 ⊕ r1 ⊕ r2 ⊕ α) ⊕ s1 (13)
c2 = Φ(x′ ⊕ α, γ2) ⊕ δ (14)

18 Efficient Boolean-to-Arithmetic Mask Conversion in Hardware

where c1 ⊕c2 ⊕c3 = (x + (r1 ⊕ r2 ⊕ α))⊕s1. Note that we add a fresh random variable δ to
the term c2 to avoid leakage in the subsequent B2A mask conversion applied in the next cycle.

Cycle 4. Now, we have all terms to compute (x + (r1 ⊕ r2 ⊕ α)) ⊕ s1 securely, we can
apply another first-order secure B2A to obtain (x + (r1 ⊕ r2 ⊕ α)) + s1. We can define the
set of shares d, i.e.,

d1 = (c1 ⊕ c2 ⊕ c4) + c5 d3 = ((c1 ⊕ c2) + c3) ⊕ c2 d5 = c6

d2 = c1 ⊕ c3 d4 = c4

where d1 = Φ((x + (r1 ⊕ r2 ⊕ α)) ⊕ s1, δ ⊕ s1) + β, d2 = (x + (r1 ⊕ r2 ⊕ α)) ⊕ s1 ⊕ c2,
and d3 = Φ((x + (r1 ⊕ r2 ⊕ α)) ⊕ s1, δ) ⊕ c2. Note that we needed to add a fresh random
variable β to the term c5 to avoid second-order leakage. This arithmetic mask gets then
removed by a subtraction in the next cycle.

Output. The output of Step 1 can finally be computed by adding the shares d2, d3, and
(d1 − d5) together, i.e., z1 = d2 ⊕ d3 ⊕ (d1 − d5) = (x + (r1 ⊕ r2 ⊕ α)) + s1.

4.2.2 Step 2

We want to compute s′′
2 = s2 − (r1 ⊕ r2 ⊕ α) given a Boolean masked input share

s′
2 = s2 ⊕ r1 ⊕ r2 ⊕ α securely using a B2A mask conversion. Let’s consider the sharing m

as follows:
m1 = s2 ⊕ r1 m3 = s2 m5 = α ⊕ r2 ⊕ s2

m2 = α ⊕ r2 m4 = r1

then we can compute the second set of intermediate variables n, i.e.,

n1 = m1 − m2 n3 = m1 ⊕ m3 n5 = m5 − m4

n2 = m2 ⊕ m3 n4 = m3

followed by
o1 = n2 ⊕ n3 ⊕ δ o3 = n1

o2 = n5 ⊕ δ o4 = n4

where o1 corresponds to s′
2 ⊕ δ, o2 corresponds to Φ̄(s′

2, r1) ⊕ δ, and o3 corresponds to the
term Φ̄(s′

2, r2 ⊕ α), with Φ̄ performing a subtraction instead of an addition, i.e., a function
that uses an addition with the additive inverse of an operand. We can define it as follows:

Φ̄(a, b) : (Z2k , ⊕, +)2 −→ (Z2k , ⊕, +) (15)
a, b 7−→ (a ⊕ b) − b

for any k ∈ Z≥0. Using these three shares, one can then securely compute:

s′′
2 =

⊕3
i=1 oi = o1 ⊕ o2 ⊕ o3 = s2 − (r1 ⊕ r2 ⊕ α).

Note that a mask δ was added to o1 and o2 to avoid leakage when combining the three
shares. We can re-use the same δ as used in Step 1 for that purpose without causing
additional leakage. Also note that o4 is not needed for calculating s′′

2 but it is used as the
final arithmetic output share z3 in Step 3.

Aein Rezaei Shahmirzadi, Michael Hutter 19

Gadget 5: 2O-SecB2A2k: 2-PINI Secure B2A2k Mask Conversion (pipelineable)
Input: Shares x′ = x⊕ r1 ⊕ r2, the masks r1 and r2, random integers

s1, s2, γ1, γ2, α, β, δ, where all variables are ∈ Z2k

Output: z = (z1, z2, z3) where x = z1 − z2 − z3

Cycle 1:
2 a1 ← x′

3 a2 ← α
4 a3 ← r1 ⊕ γ1
5 a4 ← r2 ⊕ γ2
6 a5 ← (x′ ⊕ α⊕ γ1) + γ1
7 a6 ← (x′ ⊕ α⊕ γ2) + γ2
8 m1 ← s2 ⊕ r1
9 m2 ← α⊕ r2

10 m3 ← s2
11 m4 ← r1
12 m5 ← α⊕ r2 ⊕ s2

Cycle 2:
14 b1 ← a1 ⊕ a3 ⊕ a4
15 b2 ← a2 ⊕ a3 ⊕ a4
16 b3 ← s1 ⊕ a5 ⊕ a3

17 b4 ← a6 ⊕ a3
18 b5 ← s1
19 n1 ← m1 −m2
20 n2 ← m2 ⊕m3
21 n3 ← m1 ⊕m3
22 n4 ← m3
23 n5 ← m5 −m4

Cycle 3:
25 c1 ← (b1 + b2)⊕ b3
26 c2 ← b4 ⊕ δ
27 c3 ← δ
28 c4 ← b5
29 c5 ← (b5 ⊕ δ) + β
30 c6 ← β
31 o1 ← n2 ⊕ n3 ⊕ δ
32 o2 ← n5 ⊕ δ

33 o3 ← n1
34 o4 ← n4

Cycle 4:
36 d1 ← (c1 ⊕ c2 ⊕ c4) + c5
37 d2 ← c1 ⊕ c3
38 d3 ← ((c1 ⊕ c2) + c3)⊕ c2
39 d4 ← c4
40 d5 ← c6
41 p1 ← o1 ⊕ o2 ⊕ o3
42 p2 ← o4

Outputs:
44 z1 ← d2 ⊕ d3 ⊕ (d1 − d5)
45 z2 ← d4 − p1
46 z3 ← p2

return z = (z1, z2, z3)

4.2.3 Step 3

We can combine the results from Step 1 and Step 2 to obtain the arithmetic sharing z, i.e.,

z1 = d2 ⊕ d3 ⊕ (d1 − d5) = (x + (r1 ⊕ r2 ⊕ α)) + s1

z2 = d4 − (o1 ⊕ o2 ⊕ o3) = s1 − s′′
2 = s1 − (s2 − (r1 ⊕ r2 ⊕ α))

z3 = o4 = s2

where x = z1 − z2 − z3.
Gadget 5 shows the hardware description of our solution. Note that this version is

fully pipelinable and can accept new inputs in each clock cycle. The latency of the gadget
is 4 clock cycles and it is therefore independent of the input word size k, i.e., it has a
complexity of O(1). In total, the gadget needs 7 fresh random variables in total, e.g., 224
bits for a 32-bit B2A. The proposed gadget is second-order probing secure and composable
in the PINI and SNI security models and was verified using SILVER. The Verilog code
based on this algorithm is provided in Appendix C.

Theorem 4. Gadget 5 is second-order glitch-extended PINI (2-PINI).

Proof. All intermediate values in Cycle 1 are masked by a random value except those that
are used to store an input share that is needed in other cycles, e.g., a1 and m4. The gadget
is designed in a way that probing any two intermediate values (internal probes) in Cycles
1 to 4 would leak information about only two share domains at most. Since p1, p2, and d1
to d5 are all can be perfectly simulated with random inputs {s1, s2, γ1, γ2, α, β, δ}, we can
conclude that any set of 2 probes on output shares (z1, z2, z3) would leak no information
about the input shares. As a result, Gadget 5 meets all requirements for 2-PINI security
notion. □

Besides the theoretical proof, we confirmed the second-order glitch-robust PINI security
of Gadget 5 using the formal verification tool SILVER [KSM20].

20 Efficient Boolean-to-Arithmetic Mask Conversion in Hardware

Gadget 6: 2O-KSABorrowBitGen: 2-PINI Secure Borrow-Bit Generator
Input: Shares x = (x0, x1, x2), where x0, x1, x2 ∈ Z2k , modulus q < 2k.
Output: Borrow bit b = (b0, b1, b2) generated during x− q where b0, b1, b2 ∈ F2

1 for i := 0 to k − 2 by 2 do
2 (ai

0, ai
1, ai

2)← Refresh(xi
0, xi

1, xi
2)

3 end
4 for i := 1 to k − 1 by 2 do
5 (ai

0, ai
1, ai

2)← (xi
0, xi

1, xi
2)

6 end
7 u← 2k − q
8 for i := 1 to k − 1 by 2 do
9 (pi

0, pi
1, pi

2)← 2O-DomAnd(ai
0 ⊕ ui, ai

1, ai
2, ai−1

0 ⊕ ui−1, ai−1
1 , ai−1

2)
10 (gi

0, gi
1, gi

2)← 2O-DomAndRefresh(ai
0, ai

1, ai
2, ai−1

0 , ai−1
1 , ai−1

2 , ui, ui−1)
11 end
12 for j := 2 to log2(k)− 1 do
13 α← k

14 β ← 2j−1

15 for i := 1 to k
2j do

16 m← α− 1
17 l← α− β − 1
18 (t0, t1, t2)← (pm

0 , pm
1 , pm

2)
19 (pm

0 , pm
1 , pm

2)← 2O-DomAnd(t0, t1, t2, pl
0, pl

1, pl
2)

20 (gm
0 , gm

1 , gm
2)← 2O-DomAndXorRefresh(t0, t1, t2, gl

0, gl
1, gl

2, gm
0 , gm

1 , gm
2)

21 α← α− 2β

22 end
23 end
24 m← k − 1
25 l← k

2 − 1
26 (b0, b1, b2)← 2O-DomAndXorRefresh(pm

0 , pm
1 , pm

2 , gl
0, gl

1, gl
2, gm

0 , gm
1 , gm

2)
27 return (b0, b1, b2)

4.3 A Novel Second-Order Secure B2Aq Gadget Proposal

We now present a second-order secure hardware gadget to perform a B2A mask conversion
over integers modulo an arbitrary modulus q < 2k. We consider the main idea described
in Section 3.4 but replace all first-order secure with second-order secure gadgets. We first
explain how we extend Gadget 3 (the borrow bit of x − q) to second-order security, which
is outlined in Gadget 6. Since second-order security is desired, we need 3 shares to perform
the computation. Similar to first-order gadget, we need to refresh all even input shares. To
do so, the Refresh gadget takes the even bits of input shares (x0, x1, x2) and generate the
refreshed outputs (x0 ⊕ r0 ⊕ r1, x1 ⊕ r1 ⊕ r2, x2 ⊕ r2 ⊕ r0). The rest of the calculation is
performed by employing second-order secure gadgets described in Subsection 2.3 all of which
are executed in a single cycle. The randomness complexity of 2O-DomAnd is 3 fresh masks
per gadget call. For 2O-DomAndRefresh and 2O-DomAndXorRefresh, the randomness
requirement increases to 9 bits per gadget call. The latency of 2O-KSABorrowBitGen is
also similar to 1O-KSABorrowBitGen, where one cycle is needed for refreshing the input
shares and log2(k) cycles to perform the calculations.

Gadget 7 shows the proposed algorithm for performing B2Aq. It operates with a com-
plexity of O(log k) and requires max{5, log2(k) + 2} clock cycles to execute B2Aq. The
B2A2k operation necessitates at least 4 clock cycles, whereas multiplexing only requires 1
cycle. Thus, the minimum latency is 5 clock cycles. For k > 8, 2O-KSABorrowBitGen be-
comes the bottleneck, determining the latency as log2(k) + 2. The randomness requirement

Aein Rezaei Shahmirzadi, Michael Hutter 21

Gadget 7: 2O-SecB2Aq: 2-PINI Secure B2Aq Mask Conversion
Input: Shares x′ = x⊕ r1 ⊕ r2, r1 and r2, where x, r1, r2 ∈ Z2k , modulus q < 2k.
Output: z = (z1, z2, z3) where x = z1 − z2 − z3 with x ∈ [0, q − 1]

1 (t1, t2, t3)← 2O-SecB2A2k(x′, r1, r2)
2 u← t3 + q
3 v ← t3 ⊕ u
4 (b1, b2, b3)← 2O-KSABorrowBitGen(x′, r1, r2, q)

5 α
$←− F

k
2
2

6 w1 ← (b̃1 ∧ v)⊕ t3

7 w2 ← (b̃2 ∧ v)⊕ α

8 w3 ← (b̃3 ∧ v)⊕ α
9 w4 ← w1 ⊕ w2

10 (y1, y2)← 1O-SecB2A2k(w4, w3)
11 z1 ← t1 + y2
12 z2 ← t2
13 z3 ← y1
14 return z = (z1, z2, z3)

of the gadget is 7k bits per cycle for a k-bit input.

Theorem 6. Gadget 7 is second-order glitch-extended PINI (2-PINI).

Proof. We first discuss the 2-PINI security of the 2O-KSABorrowBitGen gadget, where
refresh-then-multiply technique is used similar to the first-order secure version. In
Line 2 of Gadget 6, we refresh one of the inputs to the DOM AND gates. We use
2O-DomAndRefresh to generate (gi

0, gi
1, gi

2) while being refreshed for further use. Note that
using 2O-DomAndRefresh is not necessary to calculate (pi

0, pi
1, pi

2) in Lines 9 and 19, as the
refreshing in Line 2 is sufficient to satisfy 2-PINI requirements for the entire design similar
to the first-order version, as one of the inputs to the 2O-DomAnd gadget is already refreshed
in Line 2. We confirmed the 2-PINI security of 2O-KSABorrowBitGen using SILVER as
well.

Since 2O-SecB2A2k and 2O-KSABorrowBitGen are 2-PINI secure, bi and ti are totally
independent of each other. Examining Line 2, we observe that u carries the same infor-
mation as t3 since it results from an addition with a constant. Additionally, all values of
wi are random. Specifically, w1 is randomized by t3, while w2 and w3 are randomized by
the fresh mask α. Probing w4 in Line 9 would reveal information about the registered
values w1 and w2. Hence, the extended probe on w1 would reveal information about t3
while the extended probe on w2 would reveal information about α. Hence, probing any
other intermediate values cannot violate 2-PINI notion. Particularly, probing w3 and w4
would reveal information about b3 at most due to the use of the fresh mask α and hence is
2-PINI. In Line 10, we use our 1-PINI 1O-SecB2A2k gadget to obtain arithmetic shares
(y1, y2) where y2 − y1 = w1 ⊕ w2 ⊕ w3. 1O-SecB2A2k is 1-PINI and hence any probe in this
gadget reveal information about either w3 or w4 by definition so to gain information about
both w3 and w4 (or y1 and y2) the adversary needs to use two probes and as stated above
it reveals information only about b3 and hence is 2-PINI. yi and ti are totally independent
of each other and having information about both y1 and y2 can only reveal b3. As a result,
probing any set of two output shares cannot violate the 2-PINI security of the gadget. As
a result, Gadget 7 meets all requirements for 2-PINI security notion. □

In addition to the theoretical proof, we verified the second-order glitch-extended PINI
security of Gadget 7 using the formal verification tool SILVER [KSM20].

22 Efficient Boolean-to-Arithmetic Mask Conversion in Hardware

Table 1: Performance comparison of 1st-order secure B2A232 mask conversions.

FPGA Performance
Design Type Arch. Lat. Rand Freq TP Resources Device

[cycles] [bits]a [MHz] [Mbits/s] LUTs FFs DSPs

[SMG15]
se

cA
DD

/m
as

ke
d

ad
de

r
ba

se
d

TI RCA 32 4 101 101 227 223 0 Spartan-6
TI KSA 6 31 62 330 937 1,330

[BG22] HPC2 KSA 12 249 176 469 2,936 3,981 0 Spartan-6
TI KSA 6 31 228 1,216 873 1,416

[FBR+22] TI KSA 6 160b 454 2,421 2,464 1,323 0 Artix-7
[NDKV24]c HPC3 KSA 10 283 150 4,800 1,638 2,874 0 Kintex-7

Ours (F) affine property 1 32 502 16,064 188 126 0 Kintex-7
Ours (S) 285 9,120 76 94 1

aThe column displays the random bit requirements per cycle.
bThe random bits/cycle are estimated from the paper.
cThe reported numbers in [NDKV24] are for k = 13, not k = 32. Therefore, a direct comparison is not

feasible, and the performance is expected to be significantly lower than reported in this table.

5 Results and Comparison with Related Work
In this section, we present implementation results of our proposed hardware gadgets and
compare it with related work. Performance numbers have been obtained from synthesis on
a Kintex-7 XC7K160T FPGA using Vivado. Each gadget was embedded in a testbench that
flopped the inputs and outputs. The maximum frequency was determined by increasing
the frequency until occurrence of a timing violation. We didn’t allow the compiler to
flatten the hierarchy and applied a dont_touch directive on each gadget module boundary
to prevent synthesis from optimization. To enforce use of DSPs, we applied the use_dsp
directive, as additions and subtractions are implemented with logic instead of with DSP
blocks per default.

5.1 B2A2k Mask Conversion Performance
Table 1 shows the implementation results of our 1O-SecB2A2k gadget and compares the
results with related work. We first compare only solutions protecting against first-order
attacks and consider k = 32 bits as used in previous works. To the best of our knowledge,
all previous works propose to implement a masked adder chain to perform an addition
over Boolean shares or to realize a secure B2A or A2B mask conversion.

One of the first proposals of such masked adders was made by Schneider, Moradi, and
Güneysu [SMG15] in 2015. They proposed a Ripple-Carry Adder (RCA) and Kogge-Stone
Adder (KSA) that is masked using a 3-share Threshold implementation. Their RCA-based
solution needs 32 clock cycles and requires 227 LUTs and 223 FFs on a Spartan-6 FPGA.
Their KSA-based design needs only 6 cycles but requires more resources, i.e., 937 LUTs
and 1,330 FFs. Similar results were also reported by Bache et al. [BG22] in 2022. They
evaluated different types of adder structures and applied a 2-share masking scheme based
on the 1-PINI-secure HPC1 AND gadgets. Their TI-based KSA adder improves the work
of [SMG15] in terms of LUT resource requirements and critical path. Their KSA-based
adder needs 12 clock cycles and 2,936 LUTs and 3,981 FFs. In the same year, Fritzmann et
al. [FBR+22] proposed a similar KSA-based solution and reported numbers on an Artix-7
FPGA.

Hardware synthesis numbers of Boolean masked adders were also reported by Cassiers et
al. [CGM+23] and Knichel et al. [KMMS22]. They proposed and discussed the generation

Aein Rezaei Shahmirzadi, Michael Hutter 23

Table 2: Performance comparison of 2nd-order secure B2A232 mask conversions.

FPGA Performance
Design Type Arch. Lat. Rand Freq TP Resources Device

[cycles] [bits] [MHz] [Mbits/s] LUTs FFs DSPs

[SMG15]
m

as
ke

d
ad

de
r

TI RCA 65 8 107 52 388 387 0 Spartan-6
TI KSA 12 128 63 168 4,223 5,509

[BG22] HPC2 KSA 12 747 148 395 3,915 8,001 0 Spartan-6
[NDKV24]a HPC3 KSA 19 1,080 125 4,000 7,946 18,032 0 Kintex-7

Ours (F) affine pipelined 4 224 515 16,480 912 992 0

Kintex-7Ours (S) prop. 392 12,544 555 704 10
Ours (F) affine iterative 4 128 434 3,472 968 333 0
Ours (S) prop. 322 2,576 900 330 2

aThe reported numbers in [NDKV24] are for k = 13, not k = 32. Therefore, a direct comparison is not
feasible, and the performance is expected to be significantly lower than reported in this table.

of Boolean masked adder logic using automated tools such as AGEMA and COMPRESS. No
explicit FPGA results were reported but their solution is also based on efficient masked
adder structures (e.g., KSA-based) and have therefore similar performance expectations as
previous works.

Recently, Norga et al. [NDKV24] presented a new B2A solution that is based on the
SecAdd architecture proposed by [CGV14]. They improved performance by eliminating
the pre-and post-processing stages needed in the SecAdd-based B2A mask conversion. It
is important to note that they reported numbers for k = 13 only, which makes a fair
comparison with other solutions using k = 32 impossible. However, we can observe that
their 13-bit B2A solution has a latency requirement of 10 clock cycles and consumes 1,638
LUTs and 2,874 FFs.

As opposed to previous work, our 32-bit 1O-SecB2A2k gadget needs only 1 clock cycle of
latency and outperforms previous works by a factor of 6. It is not based on a masked-adder
structure but exploits the affine property of Goubin’s solution to securely add the needed
carries without the need of a masked carry chain. We report performance numbers of our
gadget using two different target configurations: a fast (F) configuration that uses no DSPs
and a small (S) configuration that enforces the compiler to use the available DSP48 slices.
Note that one of the major advantages of using non-masked adders is that additions and
subtractions, respectively, inside the gadget can be outsourced into DSPs, which is usually
not possible using masked adders. Our results show that the use of DSPs reduces LUT and
FF requirements but will also increase the net delay due to the longer wiring from and to
the DSP units. In our experiments, the synthesizer outsourced the addition of r and γ (see
Line 3 of Gadget 2) into a DSP48. Our fast configuration achieves a maximum frequency
of 502 MHz and a throughput of 16 Gbits/s and is therefore 3 times faster than the fastest
reported solution from [NDKV24]. Our small configuration can be clocked at 363 MHz
but the lowest resource requirements were identified when clocking up to a frequency of
285 MHz where it requires only 76 LUTs, 94 FFs, and 1 DSP. It is therefore more than 2.5
times smaller than the smallest solution from [SMG15]. In addition, both configurations
are more than a magnitude times smaller compared to all reported KSA-based designs.

Table 2 shows the performance numbers of our 2O-SecB2A2k gadget and compares
the result with other second-order secure implementations. For the comparison we again
assume k = 32 bits. As opposed to related work, our solution needs a fixed latency of
4 cycles for any value of k. We implemented a pipelined and an iterative version of our
gadget. The pipelined version is able to receive and output words in each clock cycle. The

24 Efficient Boolean-to-Arithmetic Mask Conversion in Hardware

Table 3: Performance results of our B2Aq mask conversion gadgets.

Gadget Sec. FPGA Performance
Name Order qa Latency Rand Freq TP Resources

t [bits] [cycles] [bits/Cy] [MHz] [Mbits/s] LUTsb FFs DSPs

1

4 4 6 606 2,424 62 (47) 58 2
8 5 12 588 4,704 132 (106) 126 2

1O-SecB2Aq 12c 6 18 600 7,200 211 (166) 187 2
(pipelined) 16 6 24 555 8,880 298 (236) 262 2

23d 7 34 500 11,500 398 (310) 362 2
32 7 48 454 14,528 653 (458) 536 2

2

4 7 28 434 1,736 179 (141) 192 13
8 7 56 434 3,472 389 (310) 404 13

2O-SecB2Aq 12c 8 84 408 4,896 597 (497) 607 13
(pipelined) 16 8 112 400 6,400 815 (659) 828 13

23d 9 155 370 8,510 1,079 (945) 1,176 13
32 9 224 350 11,200 1,395 (1,307) 1,676 13

aq is a k-bit prime number, with results reported for different values of k, as shown in the table.
bNumbers in brackets show the LUT requirements when the gadget is clocked at 200 MHz.
cWe used the 12-bit ML-KEM (Kyber) modulus, i.e., q = 3329.
dWe used the 23-bit ML-DSA (Dilithium) modulus, i.e., q = 8380417.

iterative version can accept new inputs only every 4 clock cycles and re-uses the registers
and adders to lower the resource requirements. In fact, 10 registers are needed in total
which get re-used and overwritten in each cycle. As only 2 adders are required per cycle
(see Gadget 5), we opted to recycle them and incorporated multiplexers accordingly. We
further report performance numbers using a fast (F) and small (S) configuration.

Our pipelined solution achieves a throughput of 16.48 Gbits/s and needs 912 LUTs
and 992 FFs. We can trade throughput for a lower resource requirement by using available
DSPs. In this case, 10 DSPs are used (according to the number of total additions needed
for 2O-SecB2A2k). Our small configuration, in contrast, reduces the LUT requirement
by 40 % and FF requirements by 30 %, i.e., 555 LUTs and 704 FFs. Our iterative version
shows a significant reduction in FF requirements as expected. Only 333 FFs are needed,
which is a reduction by 67 % (without DSPs) and 52 % (with DSPs) compared to the
pipelined version. Inferring DSPs does not impact QoR by a lot in our experiments as
there are only 2 adders needed in the construction. Still a LUT count reduction of 68 was
achieved.

The presented numbers show that our gadgets outperform all related works that are
based on masked Kogge-Stone adders. Compared to masked Ripple Carry Adders (RCA),
our solution requires more resources than [SMG15] but reduces the latency requirements
by a factor of 16. Our iterative solution can accept new inputs every 4 clock cycles and
therefore offers a lower throughput of 3,472 Mbits/s. But it effectively trades throughput
for lower register requirements: only half of fresh random bits are needed in each cycle
and the number of flip flops got reduced by at least a factor of 2.

5.2 B2Aq Mask Conversion Performance
Table 3 shows the implementation results of our 1O-SecB2Aq and 2O-SecB2Aq gadgets. It
lists the performance data for word sizes k = 4, 8, 12, 16, 23, and 32. Please note that the
numbers provided are for our pipelinable gadgets, indicating potential for further reductions
in resource requirements if pipelining is not needed.

Our 1O-SecB2Aq gadget has a latency of log2(k)+2. The 1O-KSABorrowBitGen gadget

Aein Rezaei Shahmirzadi, Michael Hutter 25

Table 4: Performance comparison of pipelined B2Aq mask conversions with modulus
q = 3329 (ML-KEM), i.e., k = 12 bits., on the Kintex-7 XC7K160T.

Security FPGA Performance
Design Order Latency Rand Freq TP Resources

t [cycles] [bits] [MHz] [Mbits/s] LUTs FFs DSPs

[NDKV24] 1 19 527 150 1,800 1,638 2,874 0
2 37 2,056 125 1,500 7,946 18,032 0

1O-SecB2Aq 1 6 18 600 7,200 211 187 2
2O-SecB2Aq 2 8 84 408 4,896 597 607 13

requires log2(k) + 1 cycles and 1 cycle is needed for the secure multiplexing. Our gadget
needs 3k/2 bits of randomness in each cycle. For k = 32, 1O-SecB2Aq needs 653 LUTs and
536 FFs when clocked at the maximum frequency of 454 MHz. Note that 2 DSPs can be
used if available: one to outsource the addition of r + γ inside the 1O-SecB2A2k gadget,
and one to outsource the addition of t2 + q in Line 2 of Gadget 4. We also synthesized the
gadget at a lower frequency of 200 MHz and report the LUT count reduction in brackets.
At this frequency the 1O-SecB2Aq gadget needs only 458 LUTs and 536 FFs, where 276
LUTs and 312 FFs are consumed by the 1O-KSABorrowBitGen gadget and the remaining
182 LUTs and 224 FFs are due to 1O-SecB2A2k and the logic for the masked multiplexer.

Our 2O-SecB2Aq gadget has a latency requirement of max{7, log2(k) + 4}. At least
4 clock cycles are required for the B2A operation, while 3 cycles are necessary for the
multiplexing. For k > 8, the 2O-KSABorrowBitGen gadget becomes the bottleneck. For
k = 32, our gadget needs 1,395 LUTs and 1,676 FFs when clocked at a maximum frequency
of 350 MHz. 13 DSPs were inferred in our experiments: 10 for all the additions/subtractions
inside the 2O-SecB2A2k gadget, 1 for the addition of t3 + q (see Line 2 in Gadget 7), one
addition inside the 1O-SecB2A2k gadget, and one addition to generate the output share z1.
Note that when DSPs are not inferred, this gadget needs 1,885 LUTs and 2,160 FFs and
achieves a maximum frequency of 500 MHz. Compared to masked Kogge-Stone adders,
this is an improvement by a factor of ≥ 3 in terms of resource and latency requirements.

Finally, we compare our results with the work of [NDKV24], who report B2Aq perfor-
mance numbers for the Kyber (ML-KEM) modulus q = 3329, i.e., k = 12 bits. Their
first-order solution needs 19 clock cycles and 527 bits of randomness. Our solution needs
6 clock cycles and 18 random bits. This is more than 3 times faster in terms of clock
cycles, and more than a magnitude times better in terms of randomness requirements. Our
achieved throughput is 4 times higher than reported by [NDKV24]. In terms of resource
requirements, their first-order solution needs 1, 638 LUTs and 2, 874 FFs. Our solution
needs 211 LUTs, 187 FFs, and 2 DSPs. This is a LUT count reduction by about 87 %, and
a FF count reduction by about 93 %. Their second-order solution needs 7, 946 LUTs and
18, 032 FFs, whereas our solution needs only 597 LUTs, 607 FFs, and 13 DSPs. This is a
LUT count reduction by about 92 %, and a FF count reduction by about 97 %.

6 Practical Security Analysis

In this section, we present the practical results of our security analysis for our first- and
second-order B2A mask conversion gadgets. We conducted a series of tests to evaluate their
resilience against side-channel attacks, ensuring comprehensive validation of our security
claims.

26 Efficient Boolean-to-Arithmetic Mask Conversion in Hardware

(a) Mean power trace (b) PRNG Off

(c) 1st-order t-test (d) 2nd-order t-test

Figure 2: TVLA results of our 1O-SecB2A2k gadget with 10 million traces.

6.1 Setup

We implemented our gadgets expressed in Section 3 and Section 4 on the target Xilinx
Artix-7 FPGA of the CW305 NewAE board [New]. We collected power consumption
traces by monitoring the voltage drop over a shunt resistor placed in the V dd path of the
target FPGA using a digital storage oscilloscope (Picoscope 6424E) at a sampling rate of
1.25 GS/s and a bandwidth of 500 MHz. During the measurements, the target FPGA were
supplied by a stable clock source at the frequency of 50 MHz. The target FPGA receives
masked input (plaintext) and issues output (ciphertext) also in the same sharing form.
The fresh mask bits are generated in the PC and sent over to the board. We provided a
trigger signal for the oscilloscope to indicate the start and end of a B2A mask conversion
operation.

6.2 TVLA Results

We evaluated our implementations using non-specific fixed-vs-random t-tests [GJJR11]. In
these tests, two sets of data are collected: one with fixed input values and the other with
random input values. The power traces from these sets are then analyzed to calculate the
t-score, which measures the difference between the means of the two sets normalized by
their variance, which is also known as a first-order univariate t-test. If the t-statistic exceeds
a certain threshold, typically ±4.5 sigma, it indicates a significant difference between the
fixed and random sets (a confidence of roughly 99.999%), suggesting potential leakage
of sensitive information. This test is widely used because it does not require detailed
knowledge of the implementation or the specific leakage model, making it a general-purpose
tool for evaluating the security of cryptographic devices.

Aein Rezaei Shahmirzadi, Michael Hutter 27

(a) Mean power trace (b) PRNG Off

(c) 1st-order t-test (d) 2nd-order t-test

Figure 3: TVLA results of our 2O-SecB2A2k gadget with 10 million traces.

6.2.1 1st Order T-test Result of 1O-SecB2A2k

We first analyzed the security of our 1O-SecB2A2k gadget that is running on our target
FPGA. We decided to test a 16-bit, i.e., k = 16 mask conversion operation and stored the
two input shares together with 2 additional random values (masks) in one 64-bit register.
The mean power trace is shown in Figure 2(a). For this gadget, we collected 100,000 traces
following the strategy explained in [GJJR11] to conduct a reliable fixed-versus-random
t-test. We performed the ordinary t-test on each sample point individually to compute
first-order t-test values, with setting the PRNG off (meaning setting all mask bits to zero) to
demonstrate the setup’s ability to detect such leakage, with the corresponding result shown
in Figure 2(b). There is a significant peak around µs, which corresponds to the actual
execution time of the mask-conversion process. We then enabled the countermeasure and
collected 10 million power traces. We then performed the same test, where corresponding
result shown in Figure 2(c) confirming its first-order security as expected.

We also performed a second-order t-test to confirm leakage. For this, we followed
the techniques presented in [SM15] to efficiently compute the higher-order t-statistics. In
particular, we made the traces mean-free for each group of fixed and random individually.
Each mean-free sample point was then squared before calculating the t-statistics for
univariate second-order t-tests. The corresponding result, shown in Figure 2(d), exhibiting
a clear second-order leakage as anticipated.

We also performed the same tests using our 1O-SecB2Aq gadget and couldn’t identify
any significant leakages. We decided to omit those results in this paper to maintain
conciseness.

6.2.2 2nd Order T-test Result of 2O-SecB2A2k

We now report the t-test results of our second-order secure 2O-SecB2A2k gadget. The
mean power consumption trace is depicted in Figure 3(a). Note that we can observe a
slightly higher mean power consumption at around 2.2 µs which is due to the fact that the

28 Efficient Boolean-to-Arithmetic Mask Conversion in Hardware

second-order secure gadget consists of more logical gates and consumes more power than
the first-order secure gadget. The rest of the trace looks very similar as in Figure 2(a)
because we used the same hardware wrapper to test both gadgets and the wrapper waits
for a fixed period of 8 clock cycles to finish a mask conversion operation.

Similar to our previous experiment on 1O-SecB2A2k, we first disabled the countermea-
sure and used 100,000 traces to proof that our setup is working as expected. Figure 3(b)
shows the t-score trace which shows significant leakage at multiple points in time. The
maximum t-value reaches almost 40 sigma. As a next step, we collected 10 million traces
with countermeasure being enabled and performed first- and second-order T-tests to
evaluate the security of our gadget. Figure 3(c) shows the 1st-order results and Figure 3(d)
shows the 2nd-order results. As expected, no leakage was identified throughout the mask
conversion operations.

Finally, we conducted the same tests using our 2O-SecB2Aq gadget and, as expected,
confirmed that there was no significant leakage. The detailed results are omitted to keep
this section concise.

6.2.3 Summary of Practical Analysis

Our tests included the application of both first-order and second-order TVLA to our
hardware gadgets, designed for secure Boolean-to-Arithmetic (B2A) mask conversion
operations. The results from these tests validate the robustness and security of our
gadgets under the tested conditions. This supports our claims of the gadgets’ security
and demonstrates their ability to resist side-channel attacks in practical scenarios. It
also supports the claims made from our formal proofs that our gadgets are PINI secure.
Therefore, we demonstrate the security of our gadgets not only from a theoretical standpoint
but also through practical validation.

7 Conclusions

In this work, we revisited existing hardware implementation approaches to perform Boolean-
to-Arithmetic (B2A) mask conversion efficiently. B2A is needed in many cryptographic
systems including ARX-based designs, hash functions (e.g., SHA-2), Arithmetic Logic Units
(e.g., in CPUs), or lattice-based cryptography (e.g., in Kyber or Dilithium). Previous work
propose to use Boolean masked adders because they can be used to either perform B2A and
A2B using a single hardware instance. However, those solutions suffer from 1) a long latency
due to the masked adder chain delay, 2) a high resource requirement usually consuming
> 1000 LUTs for a single 32-bit mask conversion, and 3) have the disadvantage that they
are inefficient in case only B2A operations are needed or in cases when B2A and A2B need
to be performed in parallel, e.g., in low-latency applications. Due to these reasons, we
proposed an alternative solution that does not rely on Boolean masked adders. First, we
presented a novel low-latency gadget that performs a B2A2k in a single cycle. Then, we
proposed a (pipelined) second-order secure B2A2k that has a latency of 4 clock cycles and
is independent of the input word size k. We also first present novel gadgets that perform
B2Aq mask conversion efficiently in hardware. Overall, our results show that our gadgets
are more than a magnitude times smaller on a Kintex-7 FPGA compared to previously
reported fast adder-based designs. All gadgets have been proven secure in the robust PINI
model, and we have conducted practical TVLA tests to confirm our security claims.

Acknowledgments. The authors would like to thank Niels Samwel for helping out with
the practical DPA testing and Graeme Hickey for his support throughout the project.

Aein Rezaei Shahmirzadi, Michael Hutter 29

References
[AHMP10] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan.

SHA-3 Proposal BLAKE, December 2010. https://131002.net/blake.

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, and Pierre-Yves Strub. Verified Proofs of Higher-Order Mask-
ing. In EUROCRYPT 2015, volume 9056 of LNCS, pages 457–485, Sofia,
Bulgaria, April 2015. Springer, Heidelberg. doi:10.1007/978-3-662-46800
-5_18.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong Non-
Interference and Type-Directed Higher-Order Masking. In CCS 2016, pages 116–
129, Vienna, Austria, October 2016. ACM. doi:10.1145/2976749.2978427.

[BBE+18] Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Benjamin
Grégoire, Mélissa Rossi, and Mehdi Tibouchi. Masking the GLP Lattice-
Based Signature Scheme at Any Order. In EUROCRYPT 2018, volume
10821 of LNCS, pages 354–384, Tel Aviv, Israel, April 2018. Springer, Cham.
doi:10.1007/978-3-319-78375-8_12.

[BC22] Olivier Bronchain and Gaëtan Cassiers. Bitslicing Arithmetic/Boolean Masking
Conversions for Fun and Profit with Application to Lattice-Based KEMs. IACR
Transactions on Cryptographic Hardware and Embedded Systems (TCHES),
2022(4):553–588, 2022. doi:10.46586/TCHES.V2022.I4.553-588.

[BCZ18] Luk Bettale, Jean-Sébastien Coron, and Rina Zeitoun. Improved High-Order
Conversion From Boolean to Arithmetic Masking. IACR Transactions on
Cryptographic Hardware and Embedded Systems (TCHES), 2018(2):22–45,
2018. doi:10.13154/TCHES.V2018.I2.22-45.

[BDCU17] Alex Biryukov, Daniel Dinu, Yann Le Corre, and Aleksei Udovenko. Optimal
First-Order Boolean Masking for Embedded IoT Devices. In CARDIS 2017,
volume 10728 of LNCS, pages 22–41, Lugano, Switzerland, November 2017.
Springer. doi:10.1007/978-3-319-75208-2_2.

[BDH+21] Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann,
and Michiel Van Beirendonck. Attacking and Defending Masked Polynomial
Comparison for Lattice-Based Cryptography. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems (TCHES), 2021(3):334–359, 2021.
doi:10.46586/TCHES.V2021.I3.334-359.

[BDK+21] Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep
Balasch, and Ingrid Verbauwhede. A Side-Channel-Resistant Implementation
of SABER. ACM Journal on Emerging Technologies in Computing Systems
(JETC), 17(2):1–26, 2021. doi:10.1145/3429983.

[Ber08] Daniel J. Bernstein. ChaCha, a Variant of Salsa20. In State of the Art of
Stream Ciphers Workshop (SASC), pages 3–5, Lausanne, Switzerland, Februar
2008. URL: https://cr.yp.to/chacha.html.

[BFG+17] Josep Balasch, Sebastian Faust, Benedikt Gierlichs, Clara Paglialonga, and
François-Xavier Standaert. Consolidating Inner Product Masking. In ASI-
ACRYPT 2017, volume 10624 of LNCS, pages 724–754, Hong Kong, China,
December 2017. Springer. doi:10.1007/978-3-319-70694-8_25.

https://131002.net/blake
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1007/978-3-319-78375-8_12
https://doi.org/10.46586/TCHES.V2022.I4.553-588
https://doi.org/10.13154/TCHES.V2018.I2.22-45
https://doi.org/10.1007/978-3-319-75208-2_2
https://doi.org/10.46586/TCHES.V2021.I3.334-359
https://doi.org/10.1145/3429983
https://cr.yp.to/chacha.html
https://doi.org/10.1007/978-3-319-70694-8_25

30 Efficient Boolean-to-Arithmetic Mask Conversion in Hardware

[BG22] Florian Bache and Tim Güneysu. Boolean Masking for Arithmetic Additions
at Arbitrary Order in Hardware. Applied Sciences, 12(5), 2022. URL: https:
//doi.org/10.3390/app12052274.

[BPO+20] Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider, and Tim
Güneysu. High-Speed Masking for Polynomial Comparison in Lattice-based
KEMs. IACR Transactions on Cryptographic Hardware and Embedded Systems
(TCHES), 2020(3):483–507, 2020. doi:10.13154/TCHES.V2020.I3.483-507.

[Cas22] Gaëtan Cassiers. Composable and Efficient Masking Schemes for Side-channel
Secure Implementations. PhD thesis, Université Catholique de Louvain, June
2022. URL: http://hdl.handle.net/2078.1/264203.

[CG00] Jean-Sébastien Coron and Louis Goubin. On Boolean and Arithmetic Masking
against Differential Power Analysis. In Cryptographic Hardware and Embedded
Systems (CHES), volume 1965 of LNCS, pages 231–237, Worcester, MA, USA,
August 2000. Springer, Heidelberg. doi:10.1007/3-540-44499-8_18.

[CGLS21] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier
Standaert. Hardware Private Circuits: From Trivial Composition to Full
Verification. IEEE Transactions on Computers, 70(10):1677–1690, 2021.
doi:10.1109/TC.2020.3022979.

[CGM+23] Gaëtan Cassiers, Barbara Gigerl, Stefan Mangard, Charles Momin, and Rishub
Nagpal. Compress: Reducing Area and Latency of Masked Pipelined Circuits.
IACR Cryptology ePrint Archive, Paper 2023/1600, 2023. URL: https:
//eprint.iacr.org/2023/1600.

[CGMZ23] Jean-Sébastien Coron, François Gérard, Simon Montoya, and Rina Zeitoun.
High-order Polynomial Comparison and Masking Lattice-based Encryp-
tion. IACR Transactions on Cryptographic Hardware and Embedded Systems
(TCHES), 2023(1):153–192, 2023. doi:10.46586/TCHES.V2023.I1.153-192.

[CGTV15] Jean-Sébastien Coron, Johann Großschädl, Mehdi Tibouchi, and Praveen Ku-
mar Vadnala. Conversion from Arithmetic to Boolean Masking with Logarith-
mic Complexity. In FSE 2015, volume 8731 of LNCS, pages 130–149, Istanbul,
Turkey, March 2015. Springer, Heidelberg. doi:10.1007/978-3-662-48116
-5_7.

[CGTZ23] Jean-Sébastien Coron, François Gérard, Matthias Trannoy, and Rina Zeitoun.
Improved Gadgets for the High-Order Masking of Dilithium. IACR
Transactions on Cryptographic Hardware and Embedded Systems (TCHES),
2023(4):110–145, 2023. doi:10.46586/TCHES.V2023.I4.110-145.

[CGV14] Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala.
Secure Conversion between Boolean and Arithmetic Masking of Any Order. In
Cryptographic Hardware and Embedded Systems (CHES), volume 8731 of LNCS,
pages 188–205, Busan, South Korea, September 2014. Springer, Heidelberg.
doi:10.1007/978-3-662-44709-3_11.

[Cor17] Jean-Sébastien Coron. Higher-Order Conversion from Boolean to Arithmetic
Masking. In Cryptographic Hardware and Embedded Systems (CHES), volume
10529 of LNCS, pages 93–114, Taipei, Taiwan, September 2017. Springer.
doi:10.1007/978-3-319-66787-4_5.

https://doi.org/10.3390/app12052274
https://doi.org/10.3390/app12052274
https://doi.org/10.13154/TCHES.V2020.I3.483-507
http://hdl.handle.net/2078.1/264203
https://doi.org/10.1007/3-540-44499-8_18
https://doi.org/10.1109/TC.2020.3022979
https://eprint.iacr.org/2023/1600
https://eprint.iacr.org/2023/1600
https://doi.org/10.46586/TCHES.V2023.I1.153-192
https://doi.org/10.1007/978-3-662-48116-5_7
https://doi.org/10.1007/978-3-662-48116-5_7
https://doi.org/10.46586/TCHES.V2023.I4.110-145
https://doi.org/10.1007/978-3-662-44709-3_11
https://doi.org/10.1007/978-3-319-66787-4_5

Aein Rezaei Shahmirzadi, Michael Hutter 31

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and Efficiently
Composing Masked Gadgets With Probe Isolating Non-Interference. IEEE
Transactions on Information Forensics and Security, 15:2542–2555, 2020. doi:
10.1109/TIFS.2020.2971153.

[FBR+22] Tim Fritzmann, Michiel Van Beirendonck, Debapriya Basu Roy, Patrick Karl,
Thomas Schamberger, Ingrid Verbauwhede, and Georg Sigl. Masked Accelera-
tors and Instruction Set Extensions for Post-Quantum Cryptography. IACR
Transactions on Cryptographic Hardware and Embedded Systems (TCHES),
2022(1):414–460, 2022. doi:10.46586/TCHES.V2022.I1.414-460.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable Masking Schemes in the Presence
of Physical Defaults & the Robust Probing Model. IACR Transactions on
Cryptographic Hardware and Embedded Systems (TCHES), 2018(3):89–120,
2018. doi:10.13154/TCHES.V2018.I3.89-120.

[FLS+10] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare,
Tadayoshi Kohno, Jon Callas, and Jesse Walker. The Skein Hash Function
Family, October 2010. https://www.schneier.com/wp-content/uploads/2
015/01/skein.pdf.

[GJJR11] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A Testing
Methodology for Side-Channel Resistance Validation. https://csrc.nist.go
v/csrc/media/events/non-invasive-attack-testing-workshop/docume
nts/08_goodwill.pdf, 2011. Non-Invasive Attack Testing (NIAT) Workshop.

[GJM+16] Hannes Groß, Manuel Jelinek, Stefan Mangard, Thomas Unterluggauer, and
Mario Werner. Concealing Secrets in Embedded Processors Designs. In
CARDIS 2016, volume 10146 of LNCS, pages 89–104, Cannes, France, Novem-
ber 2016. Springer. doi:10.1007/978-3-319-54669-8_6.

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-Oriented Masking:
Compact Masked Hardware Implementations with Arbitrary Protection Order.
In Workshop on Theory of Implementation Security (TIS), Vienna, Austria,
October 2016. ACM. doi:10.1145/2996366.2996426.

[Gou01] Louis Goubin. A Sound Method for Switching between Boolean and Arithmetic
Masking. In Cryptographic Hardware and Embedded Systems (CHES), volume
2162 of LNCS, pages 3–15, Paris, France, May 2001. Springer, Heidelberg.
doi:10.1007/3-540-44709-1_2.

[GP99] Louis Goubin and Jacques Patarin. DES and Differential Power Analysis.
In Cryptographic Hardware and Embedded Systems (CHES), volume 1717 of
LNCS, pages 158–172, Worcester, MA, USA, August 1999. Springer. doi:
10.1007/3-540-48059-5_15.

[GT02] Jovan Dj. Golic and Christophe Tymen. Multiplicative Masking and Power
Analysis of AES. In Cryptographic Hardware and Embedded Systems (CHES),
volume 2523 of LNCS, pages 198–212, San Francisco, USA, August 2002.
Springer. doi:10.1007/3-540-36400-5_16.

[HT16] Michael Hutter and Michael Tunstall. Constant Time Higher-Order Boolean-
to-Arithmetic Masking. IACR Cryptology ePrint Archive, Paper 2016/1023,
2016. https://eprint.iacr.org/2016/1023.

https://doi.org/10.1109/TIFS.2020.2971153
https://doi.org/10.1109/TIFS.2020.2971153
https://doi.org/10.46586/TCHES.V2022.I1.414-460
https://doi.org/10.13154/TCHES.V2018.I3.89-120
https://www.schneier.com/wp-content/uploads/2015/01/skein.pdf
https://www.schneier.com/wp-content/uploads/2015/01/skein.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://doi.org/10.1007/978-3-319-54669-8_6
https://doi.org/10.1145/2996366.2996426
https://doi.org/10.1007/3-540-44709-1_2
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/3-540-36400-5_16
https://eprint.iacr.org/2016/1023

32 Efficient Boolean-to-Arithmetic Mask Conversion in Hardware

[HT19] Michael Hutter and Michael Tunstall. Constant-Time Higher-Order Boolean-
to-Arithmetic Masking. Journal of Cryptographic Engineering, 9(2):173–184,
2019. doi:10.1007/S13389-018-0191-Z.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private Circuits: Secur-
ing Hardware against Probing Attacks. In CRYPTO 2003, volume 2729 of
LNCS, pages 463–481, Santa Barbara, California, USA, August 2003. Springer,
Heidelberg. doi:10.1007/978-3-540-45146-4_27.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In CRYPTO 1999, volume 1666 of LNCS, pages 388–397, Santa Barbara,
California, USA, August 1999. Springer, Heidelberg. doi:10.1007/3-540-4
8405-1_25.

[KMMS22] David Knichel, Amir Moradi, Nicolai Müller, and Pascal Sasdrich. Auto-
mated Generation of Masked Hardware. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems (TCHES), 2022(1):589–629, 2022.
doi:10.46586/TCHES.V2022.I1.589-629.

[Kni23] David Knichel. Formal Verification and Automated Masking of Cryptographic
Hardware. PhD thesis, Ruhr University Bochum, Germany, September 2023.
URL: https://hss-opus.ub.ruhr-uni-bochum.de/opus4/frontdoor/ind
ex/index/docId/10666.

[Koc96] Paul Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In CRYPTO 1996, volume 1109 of LNCS, pages
104–113, Santa Barbara, California, USA, August 1996. Springer, Heidelberg.
doi:10.1007/3-540-68697-5_9.

[KS73] Peter M. Kogge and Harold S. Stone. A Parallel Algorithm for the Efficient
Solution of a General Class of Recurrence Equations. IEEE Transactions on
Computers, 22(8):786–793, 1973. doi:10.1109/TC.1973.5009159.

[KSM19] Yuichi Komano, Hideo Shimizu, and Hideyuki Miyake. Integrative Accelera-
tion of First-order Boolean Masking for Embedded IoT Devices. Journal of
Information Processing, 27:585–592, 2019. doi:10.2197/IPSJJIP.27.585.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - Statistical
Independence and Leakage Verification. In ASIACRYPT 2020, volume 12491
of LNCS, pages 787–816, Daejeon, South Korea, December 2020. Springer.
doi:10.1007/978-3-030-64837-4_26.

[MBR19] Lauren De Meyer, Begül Bilgin, and Oscar Reparaz. Consolidating Security
Notions in Hardware Masking. IACR Transactions on Cryptographic Hardware
and Embedded Systems (TCHES), 2019(3):119–147, 2019. doi:10.13154/TCH
ES.V2019.I3.119-147.

[MME10] Amir Moradi, Oliver Mischke, and Thomas Eisenbarth. Correlation-Enhanced
Power Analysis Collision Attack. In Cryptographic Hardware and Embedded
Systems (CHES), volume 6225 of LNCS, pages 125–139, Santa Barbara, Cali-
fornia, USA, August 2010. Springer. doi:10.1007/978-3-642-15031-9_9.

[MPO05] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully
Attacking Masked AES Hardware Implementations. In Cryptographic Hard-
ware and Embedded Systems (CHES), volume 3659 of LNCS, pages 157–171,
Edinburgh, Scotland, August 2005. Springer. doi:10.1007/11545262_12.

https://doi.org/10.1007/S13389-018-0191-Z
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.46586/TCHES.V2022.I1.589-629
https://hss-opus.ub.ruhr-uni-bochum.de/opus4/frontdoor/index/index/docId/10666
https://hss-opus.ub.ruhr-uni-bochum.de/opus4/frontdoor/index/index/docId/10666
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1109/TC.1973.5009159
https://doi.org/10.2197/IPSJJIP.27.585
https://doi.org/10.1007/978-3-030-64837-4_26
https://doi.org/10.13154/TCHES.V2019.I3.119-147
https://doi.org/10.13154/TCHES.V2019.I3.119-147
https://doi.org/10.1007/978-3-642-15031-9_9
https://doi.org/10.1007/11545262_12

Aein Rezaei Shahmirzadi, Michael Hutter 33

[NDKV24] Quinten Norga, Jan-Pieter D’Anvers, Suparna Kundu, and Ingrid Ver-
bauwhede. Mask Conversions for d+1 Shares in Hardware, with Appli-
cation to Lattice-based PQC. IACR Cryptology ePrint Archive, Paper
2024/114/20240126:091208, 2024. https://eprint.iacr.org/archive/
2024/114/20240126:091208.

[New] NewAE. CW305 Artix FPGA Target. https://rtfm.newae.com/Targets.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold Implemen-
tations Against Side-Channel Attacks and Glitches. In Information and Com-
munications Security (ICICS), volume 4307 of LNCS, pages 529–545, Raleigh,
NC, USA, December 2006. Springer, Heidelberg. doi:10.1007/11935308_38.

[NW97] Roger M. Needham and David J. Wheeler. TEA Extensions. https://ww
w.cix.co.uk/~klockstone/xtea.pdf, 1997. Technical Report, Computer
Laboratory, University of Cambridge.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating Masking Schemes. In CRYPTO 2015, volume
9215 of LNCS, pages 764–783, Santa Barbara, California, USA, August 2015.
Springer. doi:10.1007/978-3-662-47989-6_37.

[SM15] Tobias Schneider and Amir Moradi. Leakage Assessment Methodology - A
Clear Roadmap for Side-Channel Evaluations. In Cryptographic Hardware and
Embedded Systems (CHES), volume 9293 of LNCS, pages 495–513, Saint Malo,
France, September 2015. Springer. doi:10.1007/978-3-662-48324-4_25.

[SMG15] Tobias Schneider, Amir Moradi, and Tim Güneysu. Arithmetic Addition Over
Boolean Masking—Towards First- and Second-Order Resistance in Hardware.
In ACNS 2015, volume 9092 of LNCS, pages 559–578, St.Petersburg, Russia,
June 2015. Springer, Heidelberg. doi:10.1007/978-3-319-28166-7_27.

[SPOG19] Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Güneysu. Ef-
ficiently Masking Binomial Sampling at Arbitrary Orders for Lattice-Based
Crypto. In PKC 2019, volume 11443 of LNCS, pages 534–564, Beijing, China,
April 2019. Springer. doi:10.1007/978-3-030-17259-6_18.

[WH17] Yoo-Seung Won and Dong-Guk Han. Efficient Conversion Method from
Arithmetic to Boolean Masking in Constrained Devices. In COSADE 2017,
volume 10348 of LNCS, pages 120–137, Paris, France, April 2017. Springer.
doi:10.1007/978-3-319-64647-3_8.

https://eprint.iacr.org/archive/2024/114/20240126:091208
https://eprint.iacr.org/archive/2024/114/20240126:091208
https://rtfm.newae.com/Targets
https://doi.org/10.1007/11935308_38
https://www.cix.co.uk/~klockstone/xtea.pdf
https://www.cix.co.uk/~klockstone/xtea.pdf
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/978-3-319-28166-7_27
https://doi.org/10.1007/978-3-030-17259-6_18
https://doi.org/10.1007/978-3-319-64647-3_8

34 Efficient Boolean-to-Arithmetic Mask Conversion in Hardware

A 2nd-order Secure B2A2k Mask Conversion
Algorithm 4 shows the 2-SNI secure Boolean-to-arithmetic mask conversion algorithm
proposed by Hutter and Tunstall [HT16, HT19]. It requires 31 instructions and 5 random
values (γ1, γ2, α, s1, s2) to perform a mask conversion. The algorithm is independent of
the input word size k.

Algorithm 4: Hutter-Tunstall’s 2nd-Order Secure B2A2k Mask Conversion.
Input: x′ = x⊕ r1 ⊕ r2 with x, r1, r2 ∈ Z2k and random numbers γ1, γ2, α, s1, s2 ∈ Z2k

for some k ∈ Z≥0
Output: x′′ = x + s1 + s2

1 z ← γ1 ⊕ r1
2 z ← z ⊕ γ2
3 z ← z ⊕ r2
4 u← x′ ⊕ z
5 z ← z ⊕ α
6 u← u + z
7 v ← x′ ⊕ γ1
8 v ← v ⊕ α
9 v ← v + γ1

10 w ← x′ ⊕ γ2
11 w ← w ⊕ α

12 w ← w + γ2
13 z ← r2 ⊕ s1
14 u← u⊕ r2
15 u← u⊕ v
16 u← u⊕ w
17 v ← u⊕ s1
18 v ← v + r2
19 w ← u⊕ z
20 v ← v ⊕ w
21 w ← u + z
22 z ← v ⊕ w

23 w ← α⊕ r2
24 u← s2 ⊕ r1
25 u← u− w
26 w ← w ⊕ s2
27 v ← w ⊕ r1
28 w ← w − r1
29 u← u⊕ v
30 u← u⊕ w
31 x′′ ← z + u

return x′′

Aein Rezaei Shahmirzadi, Michael Hutter 35

B 1st-order PINI Secure B2A2k Mask Conversion
Listing 1 shows the HDL code for a k-bit 1-PINI secure B2A2k mask conversion based on
Gadget 2, which is performed in a single cycle using a k-bit fresh mask g.

Listing 1: 1st-order PINI Secure B2A2k Mask Conversion

1 module gadget_1o_b2a #(parameter K) (
2 input clk ,
3 input [K-1:0] xp , // input share 1: x’ = x XOR r
4 input [K-1:0] r, // input share 2: r
5 input [K-1:0] g, // random mask (gamma)
6 output [K-1:0] z1 , // output share 1
7 output [K-1:0] z2 // output share 2
8);
9

10 reg [K-1:0] a1 , a2 , a3 , a4 , z1;
11 reg T;
12 integer i, j, m, d;
13

14 always @(posedge clk) begin
15 a1 <= xp;
16 a2 <= xp ^ g;
17 a3 <= r + g;
18 a4 <= r ^ g;
19 end
20

21 always @(*) begin
22 z1[0] = a3[0];
23 z1[1] = a3[1] ^ (a1[0] & ~a4[0]);
24 for(i=2; i<K; i=i+1) begin
25 z1[i] = a3[i] ^ (a1[i-1] & (~a4[i-1]));
26 for (d=3; d<=i+1; d=d+1) begin
27 j = i+1-d;
28 t = a1[j] & (~a4[j]);
29 for (m=d -2; m >=1; m=m -1) begin
30 t = t & a4[j+m];
31 end
32 z1[i] = z1[i] ^ t;
33 end
34 end
35 end
36

37 assign z2 = a2;
38 endmodule

36 Efficient Boolean-to-Arithmetic Mask Conversion in Hardware

C 2nd-order PINI Secure B2A2k Mask Conversion
Listing 2 shows the HDL code for a k-bit 2-PINI secure B2A2k mask conversion based on
Gadget 5, which has a latency of 4 clock cycles.

Listing 2: 2nd-order PINI Secure B2A2k Mask Conversion

1 module gadget_2o_b2a #(parameter K) (
2 input clk ,
3 input [K-1:0] xp , // input share 1: x’ = x XOR r1 XOR r2
4 input [K-1:0] r1 , // input share 2: r1
5 input [K-1:0] r2 , // input share 3: r2
6 input [K -1:0] a, // random mask
7 input [K -1:0] g1 , // random mask
8 input [K -1:0] g2 , // random mask
9 input [K-1:0] s1 , // random mask

10 input [K-1:0] s2 , // random mask
11 input [K-1:0] d, // random mask
12 input [K-1:0] n, // random mask
13 output reg [K-1:0] z1 , // output share 1
14 output reg [K-1:0] z2 , // output share 2
15 output reg [K-1:0] z3 // output share 3
16);
17

18 reg [K-1:0] a1 , a2 , a3 , a4 , a5 , a6 , m1 , m2 , m3 , m4 , m5;
19 reg [K-1:0] b1 , b2 , b3 , b4 , b5 , n1 , n2 , n3 , n4 , n5;
20 reg [K-1:0] c1 , c2 , c3 , c4 , c5 , c6 , o1 , o2 , o3 , o4;
21 reg [K-1:0] d1 , d2 , d3 , d4 , d5 , p1 , p2 , z1 , z2 , z3;
22

23 // Cycle 1
24 always @(posedge clk) begin
25 a1 <= xp;
26 a2 <= a;
27 a3 <= r1 ^ g1;
28 a4 <= r2 ^ g2;
29 a5 <= (xp ^ a ^ g1) + g1;
30 a6 <= (xp ^ a ^ g2) + g2;
31

32 m1 <= s2 ^ r1;
33 m2 <= a ^ r2;
34 m3 <= s2;
35 m4 <= r1;
36 m5 <= a ^ r2 ^ s2;
37 end
38 // Cycle 2
39 always @(posedge clk) begin
40 b1 <= a1 ^ a3 ^ a4;
41 b2 <= a2 ^ a3 ^ a4;
42 b3 <= s1 ^ a5 ^ a3;
43 b4 <= a6 ^ a3;
44 b5 <= s1;
45

46 n1 <= m1 - m2;
47 n2 <= m2 ^ m3;
48 n3 <= m1 ^ m3;
49 n4 <= m3;
50 n5 <= m5 - m4;

Aein Rezaei Shahmirzadi, Michael Hutter 37

51 end
52 // Cycle 3
53 always @(posedge clk) begin
54 c1 <= (b1 + b2) ^ b3;
55 c2 <= b4 ^ d;
56 c3 <= d;
57 c4 <= b5;
58 c5 <= (b5 ^ d) + n;
59 c6 <= n;
60

61 o1 <= (n2 ^ n3) ^ d;
62 o2 <= (n2 - n3) ^ d;
63 o3 <= n1;
64 o4 <= n4;
65 end
66 // Cycle 4
67 always @(posedge clk) begin
68 d1 <= (c1 ^ c2 ^ c4) + c5;
69 d2 <= c1 ^ c3;
70 d3 <= ((c1 ^ c2) + c3) ^ c2;
71 d4 <= c4;
72 d5 <= c6;
73

74 p1 <= o1 ^ o2 ^ o3;
75 p2 <= o4;
76 end
77 // Output
78 always @(*) begin
79 z1 = d2 ^ d3 ^ (d1 - d5); //x + (r1 ^ r2^ a) + s1
80 z2 = d4 - p1; //s1 - (s2 - (r1 ^ r2 ^ a))
81 z3 = p2; //s2
82 end
83 endmodule

	Introduction
	Preliminaries
	Notation
	The Glitch-Extended Probing Model
	Masking with d+1 Shares
	Security Notions
	Kogge-Stone Adder

	First-order Secure B2A Mask Conversion
	Goubin's Solution
	First-order Secure Realization of B2A2k in Hardware
	A Low-Latency First-Order Secure B2A2k Gadget Proposal
	A Novel First-Order Secure B2Aq Gadget Proposal

	Second-order Secure B2A Mask Conversion
	Hutter-Tunstall's Solution
	A New Second-Order Secure B2A2k Gadget Proposal
	A Novel Second-Order Secure B2Aq Gadget Proposal

	Results and Comparison with Related Work
	B2A2k Mask Conversion Performance
	B2Aq Mask Conversion Performance

	Practical Security Analysis
	Setup
	TVLA Results

	Conclusions
	References
	2nd-order Secure B2A2k Mask Conversion
	1st-order PINI Secure B2A2k Mask Conversion
	2nd-order PINI Secure B2A2k Mask Conversion

