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Abstract. We analyze Layered ROLLO-I, a code-based cryptosystem published in
IEEE Communications Letters and submitted to the Korean post-quantum cryptog-
raphy competition. Four versions of Layered ROLLO-I have been proposed in the
competition. We show that the first two versions do not provide the claimed security
against rank decoding attacks and give reductions to small instances of the original
ROLLO-I scheme, which was a candidate in the NIST competition and eliminated
there due to rank decoding attacks. As a second contribution, we provide two efficient
message recovery attacks, affecting every security level of the first three versions of
Layered ROLLO-I and security levels 128 and 192 of the fourth version.
Keywords: Post-quantum cryptography · code-based cryptography · rank-metric
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1 Introduction
The advancement of research in quantum technologies poses an increasing threat to, e.g.,
the daily security of communications. For example, Shor’s algorithm [Sho94] enables
a quantum computer to solve the classically hard problems underlying current widely
adopted asymmetric cryptography. A new area of cryptographic research, called post-
quantum cryptography [BBD09], is active in developing cryptosystems that can resist such a
threat. One branch of post-quantum cryptography, called code-based cryptography, studies
cryptosystems which base their security on hard problems coming from the theory of
error-correcting codes. For an up-to-date survey of code-based cryptography, we refer the
reader to [WGR22]. The very first proposal of such a cryptosystem has been described in
1978 by Robert J. McEliece [McE78] which uses Goppa codes [Gop70]. Despite more than
45 years of analysis the cryptosystem essentially still maintains the same security, however,
the system imposes huge public keys which are prohibitive for applications that frequently
send public keys. Many attempts have been made to decrease the key size, mainly by
replacing Goppa codes with families of structured linear codes, but promptly being proved
insecure shortly after.

Another strategy to tackle the key size issue is that of considering codes endowed
with the rank metric, which allows a more compact representation of codes. Rank
metric codes were introduced to cryptography by Gabidulin, Paramonov, and Tretjakov at
Eurocrypt’91 [GPT91] but attacked and broken 10 years later by Overbeck in several papers,
covered in [Ove08]. In 2017, the NIST competition on post-quantum cryptography saw a
revival of rank-metric codes in rounds 1 and 2 until some new algebraic attacks [BBB+20,
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BBC+20] were found near the end of round 2. These attacks did not completely break the
systems and larger parameters were proposed that would resist the new attacks, but the
attacks showed that rank-metric codes were not mature enough to be used. Furthermore,
the larger parameters would have hurt the performance of the systems. Consequently,
NIST deselected all rank-metric-based designs from advancing to round 3.

In this paper, we analyze a blockwise interleaved ideal low-rank parity-check (BII-
LRPC) code-based KEM, which was proposed by Kim, Kim, and No in [KKN23d] and
submitted to the Korean post-quantum Cryptography (KpqC) competition under the
name Layered ROLLO-I [KKN22]. Layered ROLLO-I is a modified version of the NIST
candidate ROLLO [ABD+19], and particularly of ROLLO-I. Layered ROLLO-I adds
additional structure to increase the length of the codewords that an attacker is faced with
while at the same time permitting the legitimate receiver, using the secret key, to peel off
this layer of structure and then to perform rank decoding with parameters which are even
smaller than in ROLLO-I, thus increasing performance.

In this paper, we describe attacks on four versions of Layered ROLLO-I that have been
released subsequently to the communication of our analyses on the KpqC bulletin. We
show how to reduce every instance of the first two versions to an instance of the original
ROLLO-I at the smaller parameter size that Layered ROLLO-I uses internally. This shows
that the additional structure does not add any security. As a consequence, the parameter
sets proposed for Layered ROLLO-I offer less security than the parameter sets for the
corresponding levels in the original ROLLO-I. After these two reduction attacks, we show a
message recovery attack that works very efficiently for all parameter sets in the first three
versions and for two out of three levels for the fourth version. For the message recovery
attacks, we interpret modular polynomial multiplications, i.e. multiplications in quotient
rings, as weak encryptions of the McEliece scheme in the Hamming metric. We thus use
tools coming from the Hamming metric cryptanalysis to break such encryptions.

We emphasize that the message recovery attack applies to all versions and thus is the
more powerful attack. We chose to present our results in this order to build up to the
more devastating attack and included both approaches because possible fixes would need
to target different aspects of the system and in part have mitigated the attacks.

This paper is organized as follows. The next section is dedicated to the needed notation
and background along with the description of ROLLO-I and the most relevant approaches
to Rank Syndrome Decoding (RSD). For the sake of simplicity, we will refrain from
introducing the entire framework of (ideal and blockwise interleaved ideal) low-rank parity
check (LRPC) codes, since these notions will not be directly used in the attacks and
analysis. In Section 3.1, we give the specification of Layered ROLLO-I [KKN22, KKN23d]
and propose an attack reducing Layered ROLLO-I to ROLLO-I and recalculate costs
of RSD attacks following the improvements in [BBB+23, BBC+20, BBB+20] (covered
in Section 2). In Section 3.2, we describe the first Modified Layered ROLLO-I (MLR1)
system [KKN23a]. We then show that we can adapt the attack in Section 3.1 to reduce
this system to ROLLO-I, again with smaller parameters, and further improve on RSD
attacks complexities. Section 4 introduces two message recovery attacks. In Section 4.1,
we describe the second modified Layered ROLLO-I (MLR2) [KKN23b] that resists the
reduction attacks presented in Section 3. We propose an efficient message recovery attack
that can be applied to all the versions of Section 3 and MLR2. Finally, in Section 4.3 we
introduce the third modified Layered ROLLO-I (MLR3) [KKN23c] and a message recovery
attack. This attack recovers messages efficiently for security levels 128 and 192 of MLR3.

2 Notation and background
This section gives the necessary background on rank-metric codes for the rest of the paper.
Let {α1, . . . , αm} be a basis of Fqm over Fq. Write v ∈ Fqm uniquely as v =

∑m
i=1 Viαi,

https://groups.google.com/g/kpqc-bulletin
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Vi ∈ Fq for all i. So v can be represented as (V1, . . . , Vm) ∈ Fm
q . We will call this the

vector representation of v. Extend this process to v = (v1, . . . , vn) ∈ Fn
qm defining a map

Mat : Fn
qm → Fm×n

q by:

v 7→


V11 V21 . . . Vn1
V12 V22 . . . Vn2

...
... . . . ...

V1m V2m . . . Vnm

 .

Definition 1. The rank weight of v ∈ Fn
qm is defined as wtR(v) := rkq(Mat(v)) and the

rank distance between v, w ∈ Fn
qm is dR(v, w) := wtR(v − w).

Remark 2. It can be shown that the rank distance does not depend on the choice of the
basis of Fqm over Fq. In particular, the choice of the basis is irrelevant for the results in
this document.

When talking about the space spanned by v ∈ Fn
qm , denoted as ⟨v⟩, we mean the

Fq-subspace of Fm
q spanned by the columns of Mat(v).

For completeness, we introduce the Hamming weight and the Hamming distance. These
notions will be used in our message recovery attacks.

The Hamming weight of a vector v ∈ Fn
qm is defined as wtH(v) := #{i ∈ {1, . . . , n} |

vi ̸= 0} and the Hamming distance between vectors v, w ∈ Fn
qm is defined as dH(v, w) :=

wtH(v − w).
Let D = dR or D = dH . Then an [n, k, d]-code C with respect to D over Fqm is a

k-dimensional Fqm-linear subspace of Fn
qm with minimum distance

d := min
a,b∈C, a ̸=b

D(a, b)

and correction capability ⌊(d − 1)/2⌋. If D = dR (resp. D = dH) then the code C is also
called a rank-metric (resp. Hamming-metric) code. All codes in this document are linear
over the field extension Fqm .

We say that G ∈ Fk×n
qm is a generator matrix of C if its rows span C. We say that

H ∈ F(n−k)×n
qm is a parity check matrix of C if C is the right-kernel of H.

In the specifications of this paper, we will follow the notation of [KKN23d] with minor
changes. Denote by Sn

w(Fqm) the set of vectors of length n and rank weight w over Fqm :

Sn
w(Fqm) = {v ∈ Fn

qm | wtR(v) = w}.

Let w = c + e for some codeword c ∈ C and error vector e ∈ Fn
qm with wtR(e) ≤ r and

let s = wHT ∈ Fn−k
qm be the syndrome of w using a parity-check matrix H of the code.

The Rank Support Recovery (RSR(F, s, r)) algorithm is used as a decoder in the
decapsulation procedures of ROLLO-I and the follow-up designs. It recovers the support E
of (the Fq-linear subspace of Fqm generated by) the error vector e given the support F of
the dual code1, the syndrome s, and the rank r of the error. This corresponds to actually
finding the error coordinates, by solving a linear system of equations (see p. 13 of the
ROLLO specification [ABD+19]).

Let P (x) ∈ Fqm [x] be a polynomial of degree n. We can add a multiplicative structure to
the vector space Fn

qm by interpreting vectors as coefficient vectors of the ring Fqm [x]/(P (x)),
where (P (x)) is the ideal of Fqm [x] generated by P (x). Given u = (u0, . . . , un−1) ∈ Fn

qm ,
denote by u(x) ∈ Fqm [x] the polynomial u(x) =

∑n−1
i=0 uix

i. Given u, v ∈ Fn
qm , we define

their product uv as the unique vector w ∈ Fn
qm such that w(x) = u(x)v(x) mod P (x).

Similarly, we define Qu = Q(x)u(x) mod P (x) for Q(x) ∈ Fqm [x] and define u−1 for u(x)
invertible modulo P (x).

1Thus F defines the parity check for the code.
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Given two polynomials R(x), P (x) ∈ Fqm [x] the matrix representing multiplication
from the right by R(x) mod P (x) is denoted by

MR,P =


R(x) mod P (x)

R(x)x mod P (x)
...

R(x)xn−1 mod P (x)

 , (1)

where each row consists of the coefficient vector of xiR(x) mod P (x) for i = 0, . . . , n − 1.
Let A be any n × m matrix, with n, m ∈ N. We denote by A[a : b, c : d], with

1 ≤ a ≤ b ≤ n and 1 ≤ c ≤ d ≤, m, the submatrix of A consisting of the rows in the range
[a, b] and columns in the range [c, d]. We omit a and b, i.e. use A[:, c : d], to denote the
submatrix consisting of all the rows and columns in [c, d]. Similarly, for all the columns.
With this notation A = A[:, :]. If S1 ⊆ [1, n] and S2 ⊆ [1, m] we denote by A[S1, S2] the
submatrix of A consisting of rows indexed by S1 and columns indexed by S2.

2.1 ROLLO-I
We give a simple description of ROLLO-I [ABD+19], which is the core of Layered ROLLO-I.

The values (q, n, m, r, d, P ) are the system parameters, where q, n, m, r, d are integers
and P (x) ∈ Fq[x] is a primitive polynomial of degree n.

• KeyGen:

– Pick random x, y ∈ Sn
d (Fqm).

– Set h(x) = x(x)−1y(x) mod P (x).
– Return pk = h and sk = (x, y).

• Encap(pk):

– Pick random (e1, e2) ∈ S2n
r (Fqm).

– Set E = ⟨e1, e2⟩, where ⟨e1, e2⟩ denotes the Fq-vector space spanned by the
columns of e1 and e2 (interpreted as vectors in Fm

q ).
– Return K = hash(E) and c(x) = e1(x) + e2(x)h(x) mod P (x).

• Decap(sk):

– Set s(x) = x(x)c(x) mod P (x), F = ⟨x, y⟩ and E = RSR(F, s, r).
– Return K = hash(E).

ROLLO-I, and consequently Layered ROLLO-I, base their security on a special config-
uration of the Rank Syndrome Decoding problem.

Definition 3 (RSD problem). Given a matrix H ∈ F(n−k)×n
qm , an element s ∈ Fn−k

qm and a
positive integer r ∈ Z, the RSD(n, k, s, w) problem asks to compute v ∈ Fn

qm such that
vH⊤ = s and wtR(v) = r.

NIST deselected ROLLO-I in the second round of its post-quantum standardization
effort, after the development of a new algebraic attack [BBB+20] on the RSD problem.
The attack substantially associates a system of multivariate equations over Fqm to the
RSD instance and employs Gröbner basis techniques to find the solution. Among the
proposed variants of the attack, the most relevant for this paper has complexity

O
((

((m + n)r)r+1

(r + 1)!

)ω)
, (2)
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where ω = 2.3727 is the exponent for matrix multiplication.
Further improvements to algebraic attacks have been introduced shortly after in [BBC+20],

describing solving approaches specialized to the characteristic of the system of equations
associated with the RSD instance. One approach that turned out to be quite effective to
the RSD instances treated in this paper targets the case that the system of equation is
over-determined. Without going too much in the detail, the complexity of such approach
in solving RSD(n, k, s, r) is given by

O

(
m

(
n + k − 1

r

)(
n

r

)ω−1
)

. (3)

It is worth noting that one of the approaches has been proven too optimistic in a later
paper [BBB+23], hence has not been taken in consideration in our work. Nevertheless,
the latter paper proposes a further approach that conjecturally fixes the bugged strategy,
backed by experimental results. The idea is that the system associated with the RSD
instance considers both polynomials over the base field Fq as well as over the extension
field Fqm . Polynomials are then homogenized multiplying by degree-b monomials and
then the system is solved by linearization, where b is minimal such that N Fq

b ≥ MFq

b − 1,
following the notation

N Fq

b = N Fqm

b − N Fq

b,syz,

N Fqm

b =
k∑

s=1

(
n − s

r

)(
k + b − 1 − s

b − 1

)
−
(

n − k − 1
r

)(
k − b − 1

b

)
,

N Fq

b,syz = (m − 1)
b∑

s=1
(−1)(s+1)

(
k + b − s − 1

b − s

)(
n − k − 1

r + s

)
, and

MFq

b =
(

k + b − 1
b

)((
n

r

)
− m

(
n − k − 1

r

))
.

The complexity of solving the system is

T (m, n, k, r) = O
(

m2N Fq

b

(
MFq

b

)ω−1
)

.

A relevant attack for our work, which is a hybrid strategy described in [BBB+23] that
combines brute force with the mentioned linearization method, has complexity

min
a≥0

(qra · T (m, n − a, k − a, r)) . (4)

3 Reduction Attacks
Layered ROLLO-I introduced a structure of layers. Due to the special structure, the
designers highlighted a performance improvement by 30-70% compared to ROLLO-I at
what they considered the same security level. In this section, we give a simple description
of Layered ROLLO-I and its variants and then show that the layer can be removed by
exploiting public information. As a result, the security of each algorithm is reduced to that
of ROLLO-I for the small parameters inside the layer, which gives far lower complexity
than was suggested in [KKN22, KKN23d].

3.1 Layered ROLLO-I
The values (q, n, m, r, d, b, P ) are the system parameters, where q, n, m, r, d, b are integers,
with n a multiple of b, and P (x) ∈ Fq[x] is a primitive polynomial of degree n/b.
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Remark 4. Note that the choice of P (x) defined over Fq[x] instead of Fqm [x] is essential
to maintain the ideal LRPC structure of the inner ROLLO-I code, see [KKN22, Section
2.3]. This is not made explicit in the Layered ROLLO-I submission, but was used in
their implementation, which took the ROLLO-I implementation and added the additional
structure without touching the definition of P (x).

For all parameter sets defined in [KKN23d] we have b = 2 and in any case b <
n/b. Layered ROLLO-I mainly works in two different polynomial rings, the small one
Fqm [x]/(P (x)) where every operation regarding the core ROLLO-I scheme is carried out,
and the large one Fqm [x]/(P (x)b) where every operation concerning the outer layer is
performed. The legitimate receiver faces decoding in the small ring. An attacker is instead
meant to deal with elements and operations in the larger ring which require a bigger
computational effort.

Elements of the two polynomial rings are transformed using the two following maps.
The map

Ψ : Fqm [x]/(P (x)) → Fqm [x]/(P (x)b)

lifts polynomials of the first quotient to the second quotient by mapping the input to the
unique polynomial of degree < n/b that is congruent to it modulo P (x)b. Similarly, the
map

Ω : Fqm [x]/(P (x)b) → Fqm [x]/(P (x))

reduces the input modulo P (x). Since P (x)b is a multiple of P (x) these maps are well-
defined.

We are now all set to describe the Layered-ROLLO-I KEM.

• KeyGen:

– Pick random x, y ∈ S
n/b
d (Fqm).

– Pick random invertible PI(x) ∈ Fqm [x]/(P (x)) of degree (b − 1).
– Pick random PO(x), PN (x) ∈ Fqm [x]/(P (x)b) of degree n − 1, with PO(x)

invertible (this last restriction is not stated but is required for functionality).
– Set z(x) = PI(x)x(x)−1y(x) mod P (x).
– Set PP (x) = PO(x)Ψ(PI(x)) mod P (x)b and PH(x) = PO(x)Ψ(z(x))+PN (x)P (x) mod

P (x)b.
– Return pk = (PP , PH) and sk = (x, y, PO, PI).

• Encap(pk):

– Pick random E = ⟨e1, e2⟩ with (e1, e2) ∈ S
2n/b
r (Fqm), each corresponding to a

polynomial of degree < n/b − b.
– Set PE1(x) = Ψ(e1(x)) and PE2(x) = Ψ(e2(x)).
– Compute

c(x) = PP (x)PE1(x) + PH(x)PE2(x) mod P (x)b.
– Return K = hash(E) and c.

• Decap(sk):

– Compute PC(x) = PO(x)−1c(x) mod P (x)b.
– Compute c′(x) = PI(x)−1Ω(PC(x)) mod P (x).
– Decode E = RSR(⟨x, y⟩, xc′, r).
– Return K = hash(E).
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We want to stress that the attacker thus faces polynomials modulo P (x)b as public key
and as ciphertexts. These correspond to vectors of length n. The decapsulation process
removes the outer layer so that the RSR step works modulo P and thus on vectors of
length n/b.

3.1.1 Reduction of Layered ROLLO-I to ROLLO-I.

We propose a new reduction of Layered ROLLO-I to ROLLO-I by using exclusively the
public key of the former. The goal is to remove the outer layer and expose the public key
and ciphertext of the inner ROLLO-I scheme.
Remark 5. Notice that PO must have an inverse modulo P b. This has not been declared
in the specification but the decapsulation process requires P −1

O . If not, decapsulation fails.
Also, PI is irreducible of degree (b − 1) < n/b = deg(P (x)), so it has an inverse modulo P
and thus Ψ(PI) is invertible modulo P b.

Algorithm ReduceLayeredROLLO-I

Input : A public key pk = (PP , PH) and a ciphertext c of Layered ROLLO-I.

Output : A public key pk′ and a ciphertext c′ of the inner ROLLO-I.

1. Compute PP inv(x) = PP (x)−1 mod P (x)b;
2. Compute pk′ = Ω(PP invPH(x));
3. Compute c′ = Ω(PP invc(x));
4. Return pk′ and c′.

Proposition 6. Given a public key and a ciphertext of Layered ROLLO-I, algorithm
ReduceLayeredROLLO-I computes the public key and the corresponding ciphertext of the
inner ROLLO-I scheme in time O(n2m2(log2(q))2).

Proof. From Remark 5, we can invert PP (x) modulo P (x)b. Hence Step 2 first computes

PP (x)−1PH(x) = (Ψ(PI(x)))−1Ψ(z(x)) + PP (x)−1PN (x)P (x) + k(x)P (x)b (5)

for some k(x) ∈ Fqm [x]. Since P divides P b, we can reduce the equation modulo P ,
obtaining

Ω(PP (x)−1PH(x)) = Ω((Ψ(PI(x)))−1Ψ(z(x)))
≡ (PI(x))−1PI(x)x(x)−1y(x)
≡ x(x)−1y(x) mod P (x),

where the second equivalence follows from that Ω(Ψ(z(x))) ≡ PI(x)x(x)−1y(x) mod
P (x) and Ω((Ψ(PI(x)))−1) ≡ PI(x)−1 mod P (x). This shows that the public key of
(q, n, m, r, d, b)-Layered ROLLO-I can be mapped efficiently to the public key of (q, n/b, m, r, d)-
ROLLO-I, validating step 2.
The same can be done for ciphertexts in step 3, by computing

PP (x)−1c(x) ≡ PP (x)−1(PP (x)PE1(x) + PH(x)PE2(x))
≡ e1(x) + y(x)x(x)−1e2(x) mod P (x),

which is exactly a ROLLO-I ciphertext.
The complexity of the algorithm is dominated by that of inverting and multiplying

polynomials in Fqm [x] which can be performed in O(n2m2(log2(q))2) taking schoolbook
multiplication in Fqm and Fqm [x].
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Therefore, it is possible to reduce an entire instance of (q, n, m, r, d, b)-Layered ROLLO-
I to an instance of (q, n/b, m, r, d)-ROLLO-I.

3.1.2 Estimates for the security of Layered ROLLO-I.

Layered ROLLO-I [KKN22, KKN23d] considers an attack that removes the layer of a
BII-LRPC code using exhaustive search and applies a structural attack to an instance of
(q, n/b, m, r, d)-ROLLO-I. Their estimated cost of the attack is shown in the third column
of Table 1. However, the calculation is wrong and furthermore, the formula given in
[KKN23d] has a typo. The correct formula for the attack is given below.

S′
S =

(n

b

)3
m3q(b−1)m+d⌈ m

2 ⌉−m− n
b . (6)

While the correct formula in (6) increases attack complexity when compared to the
suggested one in [KKN23d], the accurate computation yields significantly lower complexity,
which are 65, 112, and 131 bits, respectively.

As we mentioned in Section 2.1, we consider the attacks in [BBB+23, BBC+20,
BBB+20], where we discard the options in [BBC+20] that have been proved too op-
timistic in [BBB+23]. For the parameters ranges selected for Layered ROLLO-I, the most
efficient attacks have complexities as in (3) and (4). For a concise overview of the latest
developments in rank decoding attacks, we refer the reader to [LPR24, Section 6]. Since
Layered ROLLO-I did not consider applying these three attacks on the original parameters
directly, we recompute the costs of rank decoding attacks, finding out that the proposed
parameters did not meet the requirements for the claimed security levels. The complexities
of the attacks are computed using the script provided in [LPR23], the Sage script performs
puncturing of the public code to find the optimal complexity. The costs of the most efficient
among these attacks are reported in the fourth column of Table 1. The last column reports
the cost of these attacks on the system after our reduction.

Table 1: Suggested parameters and values of the log2 of attack costs for Layered ROLLO-
I’s suggested parameters. Cost [KKN23d] refers to the cost stated in the paper introducing
the system. Cost is the cost of the attack in brackets on the full system. Cost red. is the
cost of the attack in brackets on the reduced system. Reduction reports the cost of the
actual reduction in Proposition 6.

Security (q, n, m, r, d, b) Cost [KKN23d] Cost Cost red. Reduction
128 (2, 148, 67, 3, 2, 2) 130.83 48.76 (3) 40.65 (3) 26.55
192 (2, 172, 79, 4, 3, 2) 199.19 66.21 (3) 55.16 (3) 27.46
256 (2, 212, 97, 5, 3, 2) 274.98 85.68 (3) 72.05 (3) 28.66

3.2 First Modified Layered ROLLO-I (MLR1)
This subsection extracts the description of the modified system MLR1 from [KKN23a].
The designers modified the system to overcome the reduction in Section 3.1 by replacing
the two moduli P and P b by two primitive polynomials P1 and P2 of degree n1 and n2,
respectively. Because they are primitive they are in particular irreducible and thus coprime.
In this setting, one cannot simply reduce equation (5) modulo P1 as the term k(x)P2(x)
would not vanish which seems to stop the attack.
Remark 7. For the same reasons pointed out in Remark 4 one needs P1 to be defined over
the ring Fq[x].

In this setting, Ω first lifts to Fqm [x] choosing the unique polynomial of degree less than
n2 and then reduces modulo P1, Ψ similarly lifts to Fqm [x] choosing the unique polynomial
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of degree less than n1 and then considers this polynomial modulo P2. Given that n2 > n1
no reduction is needed.

The values (q, n1, n2, dI , m, r, d), where dI < n1 < n2 are the system parameters. The
two polynomials P1 and P2 are primitive of degrees n1 and n2 respectively. These are not
stated among the system parameters but are needed for the functioning of the system. In
the following, we assume that P1 and P2 are part of the system parameters.

• KeyGen:

– Pick random x, y ∈ Sn1
d (Fqm).

– Pick random invertible PI(x) ∈ Fqm [x]/(P1(x)) of degree dI .
– Pick random PO(x) ∈ Fqm [x]/(P2(x)).
– Set z(x) = PI(x)x(x)−1y(x) mod P1(x).
– Set PP (x) = PO(x)Ψ(PI(x)) mod P2(x) and PH(x) = PO(x)Ψ(z(x)) mod

P2(x).
– Return pk = (PP , PH) and sk = (x, y, PO, PI).

• Encap(pk):

– Pick random E = ⟨e1, e2⟩ with (e1, e2) ∈ S2n2
r (Fqm) each corresponding to a

polynomial of degree < n2 − n1 − dI .
– Set PE1 = e1(x) and PE2 = e2(x).
– Compute c(x) = PP (x)PE1(x) + PH(x)PE2(x) mod P2(x).
– Return K = hash(E) and c.

• Decap(sk):

– Compute c′′(x) = PO(x)−1c(x) mod P2(x).
– Compute c′(x) = PI(x)−1Ω(c′′(x)) mod P1(x).
– Decode E = RSR(⟨x, y⟩, xc′, r).
– Return K = hash(E).

Note that all polynomials are invertible modulo P1(x) and modulo P2(x) because those
are irreducible.
Remark 8. Note also that the coprime moduli and choosing e1, e2 ∈ Sn2

r (Fqm) (rather than
in Sn1

r (Fqm) as required in the RSR computation) might make it seem like decapsulation
cannot recover E. The KEM works around this problem by reducing the degrees of e1(x)
and e2(x) to < n2 − n1 − dI which by Table 2 is < n1 for all chosen parameters, so that
Ω(PEi

(x)) = PEi
(x). This property is essential for decapsulation to work.

Decapsulation works because

c′′(x) = PO(x)−1(PP (x)PE1(x) + PH(x)PE2(x))
= PO(x)−1(PO(x)Ψ(PI(x))PE1(x) + PO(x)Ψ(z(x))PE2(x))
= Ψ(PI(x))PE1(x) + Ψ(z(x))PE2(x) mod P2(x)

and the degree of Ψ(PI(x))PE1(x) + Ψ(z(x))PE2(x) is < n2 by the choice of the error
vectors. Hence, c′′(x) = Ψ(PI(x))PE1(x) + Ψ(z(x)PE2(x) in Fqm [x] i.e., without reduction,
and thus the reduction modulo P1(x) preserves the factors PI(x) which can then be divided
out. Finally, by Remark 8, Ω(PEi(x)) = PEi(x).
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3.2.1 Reduction of MLR1 to ROLLO-I.

We will describe a reduction of MLR1. Along the way we compute PI and PO, meaning
that the system leaks parts of the private key.

The idea of the reduction remains the same, observing that PH(x)/PP (x) cancels the
term PO. However, because of the coprimality of the moduli, we cannot proceed directly
from there to reducing modulo P1. Note that PH(x)/PP (x) ≡ Ψ(z(x))/Ψ(PI(x)) mod P2
and that the polynomials on the right have both low degrees. We can use this knowledge to
define a subsystem of linear equations which will allow us to compute Ψ(PI) and Ψ(z(x)).

Algorithm ReduceMLR1

Input : A public key pk = (PP , PH) and a ciphertext c of MLR1.

Output :pk′ and c′ of degree < n1 satisfying c′ = e1 + e2pk′.

1. Compute R(x) = PH(x)/PP (x) mod P2(x);
2. Compute matrix MR,P2 as in (1);
3. Put MR = MR,P2 [1 : dI + 1, n1 + 1 : n2];
4. Solve vMR = 0 for nonzero v;
5. Compute P ′

O(x) = PP (x)v(x)−1 mod P2(x);
6. Compute z′(x) = PH(x)P ′

O(x)−1 mod P2(x);
7. Compute pk′ = Ω(z′(x)v(x)−1 mod P2(x));
8. Compute c′ = Ω(c(x)P ′

O(x)−1 mod P2(x))v(x)−1 mod P1(x);
9. Return pk′ and c′.

Step 4 is computed by taking a (dI + 1) × dI submatrix MR[:, J ] of MR, with #J = dI ,
because the left kernel of that is typically no larger than that of MR. If the kernel has
dimension larger than 1, more columns of MR are included.

Our experiments have not encountered a case where rk(MR) < dI .

Proposition 9. Given a public key and a ciphertext of MLR1, algorithm ReduceMLR1
takes time O(dIn2

2m2(log(q))2) and outputs polynomials pk′ and c′ of degree < n1 satisfying
c′ = e1 + e2pk′ for some e1, e2.

If rk(MR) = dI these are the public key and the corresponding ciphertext of the inner
ROLLO-I scheme.

Proof. Since R(x) is computed modulo P2(x) we have deg(R(x)) < n2 and R(x) =
Ψ(z(x))/Ψ(PI(x)) mod P2(x) where deg(z(x)) < n1 and deg(PI(x)) = dI are small. Note
that the division might cancel common factors of PI and z, however, given the degrees
this is unlikely.

The polynomial P2 is irreducible and thus Fqm [x]/(P2(x)) defines a field. Note that
multiplication by R ̸= 0 defines a bijective map, hence the associated n2 × n2 matrix
MR,P2 has full rank n2. Also, note that any submatrix of MR,P2 consisting of a subset of
the rows of MR,P2 must have full rank. In particular, MdI +1 = MR,P2 [1 : dI + 1, :] has
rank dI + 1. Let

π : Fn2
qm → FdI +1

qm

(v1, . . . , vn2) 7→ (v1, . . . , vdI +1)

be the projection of an element of Fn2
qm onto its first dI + 1 coordinates. Consider

π(Ψ(PI(x)))MdI +1 = Ψ(z(x)) (7)
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as a linear system of equations in the coefficients of Ψ(PI) and Ψ(z), where in this case
we view Ψ(z) as an element of Fn2

qm consisting of the unknown coefficients of Ψ(z) and
n2 − n1 trailing zeroes as a result of its degree. Note that π does not induce any loss of
information due to the degree of Ψ(PI). Since deg(Ψ(PI(x))) + n1 = dI + n1 < n2, the
system has a solution corresponding to the representatives of PI and z modulo P1 (here
we remove the Ψ notation as the solutions will have degree lower than n1).

We can actually compute PI from a subset of the equations defined by (7). Thanks
to the presence of n2 − n1 trailing zeroes in Ψ(z), we know that π(Ψ(PI)) lies in the left
kernel of MR = MR,P2 [1 : di + 1, n1 + 1 : n2]. Hence, that kernel is non-trivial and the
submatrix has rank at most dI .

The algorithm proceeds to compute v satisfying vMR = 0 where from (7) we know
that PI satisfies

π(Ψ(PI(x)))MR = 0. (8)

If rk(MR) = dI the kernel is one-dimensional and v(x) = λΨ(PI(x)) for some constant
λ ∈ Fqm . We will now show that it is not a problem that we can recover PI only up to
such a constant factor. Step 6 computes P ′

O(x) = PP (x)/v(x) = PO(x)/λ and step 7 then
computes

z′(x) = PH(x)/P ′
O(x) = λΨ(PI(x)x(x)−1y(x)),

and finally Ω(z′(x)/v(x)) = x(x)−1y(x) which corresponds to a ROLLO-I public key.
Similarly, for the ciphertext, we compute

c(x)/P ′
O(x) = λΨ(PI(x))PE1(x) + λΨ(z(x))PE2(x) mod P2(x).

Since λ is constant, the degree of the right-hand side is below n2, so we can reduce modulo
P1. Given the degrees, v(x) = λPI(x) (without Ψ) and Step 8 divides by λPI(x) to
get PE1(x) + x(x)−1y(x)PE2(x), matching the ROLLO-I ciphertexts, where we use that
Ω(PEi(x)) = PEi(x), see Remark 8.

If rk(MR) < dI the polynomials still satisfy the same equations but there is no guarantee
that the choice of v leads to a z that is the ratio of low-rank vectors, so it need not be a
valid public key.

The complexity of the algorithm is dominated by that of inverting and multiplying poly-
nomials of degree bounded by n2 in Fqm [x], which can be performed in O((n2

2m2 log2(q))2)
taking schoolbook multiplication in Fqm and Fqm [x], and by computing the left kernel of
the (dI + 1) × n2 matrix MR over Fqm which can be done in O(d2

In2m2(log(q))2) using
schoolbook multiplication. From dI < n2 the complexity is in O(dIn2

2m2(log(q))2).

Our experiments show that the time to compute v is split roughly equally between
the costs of polynomial division modulo P2 to obtain R on the one side and the costs of
computing the matrix MR and computing the left kernel of MR[:, J ] on the other side,
where the choice of J as the last dI columns of MR typically succeeds.

3.2.2 Estimates for the security of MLR1.

The proposed parameters for MLR1 along with the claimed attack costs are displayed in
Table 2. The complexities of the attacks are again computed using the script provided
in [LPR23]. For each security level, the costs of the attacks on the proposed parameters
are shown in the third column of Table 2, and those of reduced Layered ROLLO-I along
are in the fourth column of Table 2. The time in seconds to compute the public key
transformation is described in Algorithm ReduceMLR1 using SageMath on a Linux Mint
virtual machine, is stated in the fifth column of Table 2. See this Github repository for
the code listing.

https://github.com/rexos/breaking-layered-rollo
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Remark 10. All the timings of the software supporting this paper has been ran on the
same virtual machine with the following specifications.

• Host machine: Microsoft Windows 10 Enterprise, RAM 32 GB, Intel(R) Core(TM)
i7-8750H CPU @ 2.20GHz 2.21 GHz;

• Guest machine: Ubuntu (64-bit) Linux Mint 15, base memory 17423 MB, 6 processors.

It is worth highlighting that the third column of Table 2 shows that even without our
reduction, the security is still lower for these parameters than the targeted security levels,
even though the designers were now aware of the attacks in [BBC+20].

Note that here we use PI with deg(PI(x)) = dI as stated in [KKN23a]. The parameters
file in the implementation package provided by the designers instead uses deg(PI(x)) = 4
for all security levels.

Table 2: Values of the log2 of attack costs for MLR1’s suggested parameters. Cost is the
cost of the attack in brackets on the full system. Cost red. is the cost of the attack in
brackets on the reduced system. Reduction reports the cost of the actual reduction in
Proposition 9. Time reports the timing in seconds of our reduction software.

Security (q, n1, n2, dI , m, r, d) Cost Cost red. Reduction Time (s)
128 (2, 37, 61, 11, 67, 6, 2) 103.83 (4) 96.95 (4) 27.45 1.85
192 (2, 43, 71, 15, 79, 7, 3) 185.52 (2) 156.16 (4) 28.81 2.42
256 (2, 53, 103, 20, 97, 7, 3) 187.91 (4) 151.11 (4) 30.89 4.21

4 Message Recovery Attacks

We describe the two message recovery attacks that we mounted against Layered ROLLO-I.
The first one breaks all the versions described so far and MLR2 [KKN23b] (see Section 4.1).
The second one applies to security levels 128 and 192 of MLR3 [KKN23c] (see Section 4.3).
The modular equation in the encapsulation per se gives rise to a heavily underdetermined
system of linear equations. Both of the attacks take advantage of the low degree of the
polynomials PEi

for i = 1, 2. The attack idea is to exploit the knowledge of zero positions
of the error vectors to identify a subsystem which has a unique solution to solve the bigger
system. For the first three system this subsystem is immediate after some steps akin to
those in the previous section. For the last attack further effort is needed and we deviate
from the presentation style in the other sections to motivate the choice of which columns
to take in the respective matrices. An algorithmic presentation is given by the Sage code
posted here.

In the following, we first describe another modification MLR2 the designers made which
changes the structure of the public key to counter the attacks described in the previous
section. This and both previous versions use the same equation for encapsulation, albeit
with different constraints on the degrees of the PEi

. The message recovery attack works
solely with this equation and thus applies to all these versions, hence we put the attack
after the description of MLR2 to demonstrate the range of applicability, but want to stress
that it applies already to the journal version [KKN23d] and is not a byproduct of the
designers’ patches. Finally, we describe and then attack a third modified version MLR3
which the designers posted.

https://github.com/rexos/breaking-layered-rollo/blob/main/message-recovery-MLR3.sage


Chee, Jeong, Lange, Lee, Pellegrini, and Ryu 13

4.1 Second Modified Layered ROLLO-I (MLR2)
In this subsection, we describe the system from [KKN23b]. The new version of Layered
ROLLO-I, which we denote by MLR2, uses polynomial masking techniques in order to
avoid the reduction to ROLLO-I described in Section 3.2. To this end, the new system
patch introduces an auxiliary polynomial PN of small degree and modifies the PP -part of
the public key.

The values (q, n1, n2, nI , m, r, d), where nI < n1 < n2 are the system parameters.
There is also a primitive polynomial P2 of degree n2 which is a system parameter. We will
report here only the key generation procedure, as the rest is the same as for MLR1 except
for the degree of the error polynomials. The key generation procedure of the new system
works as follows.

• KeyGen:

– Pick random x, y ∈ Sn1
d (Fqm).

– Pick random primitive P1(x) ∈ Fq[x] of degree n1.
– Pick random PI(x) ∈ Fqm [x]/(P1(x)) of degree nI .
– Pick random PO(x), PN (x) ∈ Fqm [x]/(P2(x)), with deg(PN (x)) = nN .
– Set z(x) = PI(x)x(x)−1y(x) mod P1(x).
– Set PP (x) = PO(x)(Ψ(PI(x)) + PN (x)P1(x)) mod P2(x) and

PH(x) = PO(x)Ψ(z(x)) mod P2(x).
– Return pk = (PP , PH) and sk = (x, y, PO, PI , P1).

The encapsulation mechanism with updated error weights is equivalent to that of
MLR1 except that the random vectors e1, e2 should each correspond to a polynomial of
degree nE < n2 − n1 − nI − nN .

4.2 Message recovery attack on all versions described so far
We first give the algorithm of our attack and then show its correctness.

Recall that the public key is pk = (PP , PH) and the degree of the error polynomials
PEi

is limited to nE to permit decapsulation. For all versions of Layered ROLLO-I,
encapsulation computes the ciphertext as

c(x) = PE1(x)PP (x) + PE2(x)PH(x) mod P2(x),

where we put P2 = P b for the first version to unify notation. It is the very small limit nE

on the degree of the error polynomials that makes this attack work.

Algorithm MsgRecovery

Input : A public key pk = (PP , PH) and a ciphertext c of Layered-ROLLO-I, MLR1, or
MLR2.

Output : The shared secret K corresponding to c.

1. Compute c̄ = c(x)PH(x)−1 mod P2(x);
2. Compute R(x) = PP (x)PH(x)−1 mod P2(x);
3. Compute matrix MR = MR,P2 [1 : nE + 1, :];
4. Pick random subset J ⊂ [nE + 2, n2] with #J = nE + 1;
5. Put MRinv = MR[:, J ];
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6. If rk(MRinv) < nE + 1, go to step 4;
7. Compute ē1 = c̄[J ]M−1

Rinv;
8. Compute ē2 = c̄[1 : nE + 1] − ē1MR[:, 1 : nE + 1];
9. Put e1 = ē1||(0, 0, . . . , 0) and e2 = ē2||(0, 0, . . . , 0);

10. Compute K = hash(⟨e1, e2⟩);
11. Return K.

Proposition 11. Given a public key pk and a ciphertext c of Layered-ROLLO-I, MLR1,
or MLR2, algorithm MsgRecovery outputs the shared secret K encapsulated in c to pk.

Proof. If P2 is irreducible then PH is invertible modulo P2. In Layered-ROLLO-I z(x) is
invertible modulo the irreducible P1 and thus also modulo P2 = P b

1 , and, as stated earlier,
PO is required to be invertible modulo P2 to permit decapsulation. Hence, PH is invertible
in all variants.

Step 1 computes

c̄(x) = c(x)PH(x)−1 = PE1(x)R(x) + PE2(x) mod P2(x), (9)

where R(x) = PP (x)PH(x)−1 mod P2(x) by step 2.
View equation (9) in terms of Fqm vectors corresponding to the coefficient vectors of

the polynomials involved. The (nE + 1) × n2 full rank matrix MR computed in step 3,
represents the multiplication of a polynomial of degree up to nE by R modulo P2, defined
as in (1). In other words, MR generates a linear [n2, nE + 1]-code over Fqm .

With this in mind we can rewrite (9) as

c̄ = ē1MR + e2, (10)

which corresponds to a McEliece-like encryption of the “message” ē1 ∈ FnE+1
qm using e2 as

error vector. The last n2 − nE − 1 positions of e2 are 0 so that

c̄[nE + 2, n2] = ē1MR[:, nE + 2, n2] (11)

holds exactly.
Assume that the choice of J in step 4 is such that rk(MRinv) = nE + 1, i.e., that MRinv

is invertible. Then step 7 computes a length-nE + 1 vector ē1 satisfying (11).
Finally, step 8 computes ē2 = c̄[1 : nE + 1] − ē1MR[:, 1 : nE + 1] from the first nE + 1

positions of (10), and step 9 extends both vectors to e1 and e2 by appending 0s.
To finish the proof we consider the assumption that rk(MRinv) = nE + 1. The matrix

MRinv = MR[:, J ] for J a random subset of nE + 1 of the last n2 − nE − 1 columns of MR is
a square (nE + 1) × (nE + 1) submatrix of MR which is a submatrix of MR,P2 . Polynomial
R computed in step 2 is a ratio of invertible polynomials modulo P2 which have no special
structure and thus the matrix MR,P2 can be considered random, apart from having rank
n2 as R is invertible modulo P2. Similarly, the matrix MR consists of the first nE + 1 rows
of MR,P2 and has thus rank nE + 1, but apart from that can be considered random. Hence,
the chance that MRinv is invertible is no lower than that of a random (nE + 1) × (nE + 1)
matrix over Fqm which is

q−m(nE+1)2
nE∏
i=0

(qm(nE+1) − qim). (12)

For all parameter sets of all variants of Layered-ROLLO-I, this probability rounds to 1
because the field size qm is large. In the unlikely case that the first choice of J does not
succeed, step 6 catches the exception.
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Due to the high probability of finding an invertible matrix our implementation just
takes J as the last nE + 1 columns which always succeeded.
Remark 12. At first sight one could want to employ Prange’s algorithm [Pra62] as a black
box to simultaneously recover e1 and e2 from (10). This also would succeed, because the
bound on the degree of the polynomial PE2 implies that the Hamming weight of e2 is
bounded by nE + 1 which is much smaller than n2.

However, the core of Prange’s algorithm lies in finding an invertible submatrix of MR

that consists of a subset of columns corresponding to error-free positions in the ciphertext,
taking time proportional to (

n2

nE + 1

)
/

(
n2 − nE − 1

nE + 1

)
,

while for all versions of Layered-ROLLO-I we know that the last n2 − nE − 1 positions are
error-free, thus the attack avoids the most costly part of Prange’s algorithm.

Complexity of MsgRecovery. The most time-consuming steps of our attack are the
polynomial divisions in steps 1 and 2 and computing the matrix MR and M−1

Rinv. Using
only schoolbook multiplication the complexity is O(nEn2

2m2 log2(q)2).
Steps 1 – 6 and computing M−1

Rinv are independent of the ciphertext. If an attacker
breaks many ciphertexts for the same public key, this computation is done only once
requiring only O(n3

Em2 log2(q)2) per ciphertext.
We implemented this attack in SageMath, see here for the code listing. An average of the

time required, on a Linux Mint virtual machine, to recover the plaintext for the proposed
parameters of MLR2 is given in Table 3 (see Remark 10 for the system specification). It is
worth noting that in our experiments we always used error vectors of the maximum allowed
Hamming weight nE + 1 in order to simulate the worst-case scenario for our attack.

Table 3: Parameter sets for MLR2 and average time in seconds (on 50 samples for each
security level) needed to recover a plaintext.

Security (q, m, nI , n1, n2, nN ) nE Time (s)
128 (2, 67, 4, 37, 61, 1) 18 2.21
192 (2, 79, 4, 43, 71, 2) 21 3.18
256 (2, 97, 4, 53, 103, 4) 41 6.65

Remark 13. We would like to remark that this message recovery attack works for all
three versions of Layered ROLLO-I presented to so far since the degrees of e1 and e2 are
smaller than half of n2, which is relevant for the positions in MRinv not to overlap with
the positions in e2.

4.3 Third Modified Layered ROLLO-I (MLR3)
In this subsection, we describe the system from [KKN23c]. MLR3 uses polynomial masking
in the ciphertext to overcome the message recovery attack that we described in the previous
subsection. We will only display the parts in the specification of KeyGen and Encap that
differ from those in MLR2. The values (q, n1, n2, nI , nA, m, r, d), where nI = n1 < n2 and
nA = 4 are the system parameters. The updates to the key generation procedure of the
new system are as follows.

• KeyGen:

– Pick random PN,A(x), PN,B(x) ∈ Fqm [x]/(P2(x)) of degree nA

https://github.com/rexos/breaking-layered-rollo/blob/main/message-recovery-MLR2.sage
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– Set
PP (x) = PO(x)(Ψ(PI(x)) + PN,A(x)P1(x)) mod P2(x),
PH(x) = PO(x)Ψ(z(x)) mod P2(x), and
PB(x) = PO(x)PN,B(x)P1(x) mod P2(x).

– Return pk = (PP , PH , PB) and sk = (x, y, PO, PI , P1).

The updates to the encapsulation mechanism with updated error weights are as follows.

• Encap(pk):

– Compute
c(x) = PP (x)PE1(x) + PH(x)PE2(x) + PB(x)PN,C(x) mod P2(x),

where PE1 , PE2 and PN,C have degree nE < n2 − n1 − nA. The decapsulation procedure
has not been updated. It still works because

c′′(x) = PO(x)−1(PP (x)PE1(x) + PH(x)PE2(x) + PB(x)PN,C(x)) mod P2(x)
= (Ψ(PI(x)) + PN,A(x)P1(x))PE1(x) + Ψ(z(x))PE2(x) + PN,B(x)P1(x)PN,C(x)

and the degree of Ψ(PI(x))PE1(x)+Ψ(z(x))PE2(x)+P1(x)(PN,A(x)PE1(x)+PN,B(x)PN,C(x))
is < n2 by the choice of the error vectors. Hence, the reduction modulo P1(x) removes the
last term and preserves the factors PI(x) which can then be divided out. Finally, for all
parameter sets nE + 1 < n1 and thus Ω(PEi

(x)) = PEi
(x).

4.3.1 Message recovery attack on MLR3.

We describe a fast message recovery attack on the security levels 128 and 192 of MLR3.
As mentioned before, we develop the attack here, showing how to build a system of linear
equations and then how to identify some subsystems which we can solve uniquely. For an
algorithmic description see the implementation here.

Let ℓ = n2 − n1 − nA − 1 ≥ nE + 1 denote the maximum length of the non-zero
coefficients in the error vectors.
Remark 14. The following attack will set up several systems of equations. For the
parameters of any security level, Table 4 shows that we always have 3(n2 − ℓ) > n2 where
there exist at most n2 linearly independent equations. For levels 128 and 192, we have
3ℓ < n2 ensuring a unique solution of the system, which is not the case for security level
256.

Compute the polynomials

A1(x) = PP (x)P −1
B (x), B1(x) = PH(x)P −1

B (x),
A2(x) = PP (x)P −1

H (x), C2(x) = PB(x)P −1
H (x), and

B3(x) = PH(x)P −1
P (x), C3(x) = PB(x)P −1

P (x),
(13)

and let MA1 , MB1 , MA2 , MC2 , MB3 and MC3 be the corresponding matrices representing
multiplications modulo P2(x), as in (1). Set

c1(x) = c(x)P −1
B (x) mod P2(x),

c2(x) = c(x)P −1
H (x) mod P2(x), and

c3(x) = c(x)P −1
P (x) mod P2(x).

(14)

From these values, we derive the following equations

c1 = e1MA1 + e2MB1 + p,

c2 = e1MA2 + e2 + pMC2 , and
c3 = e1 + e2MB3 + pMC3 ,

(15)

https://github.com/rexos/breaking-layered-rollo/blob/main/message-recovery-MLR3.sage
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where we denote the coefficient vector of PN,C by p.
A first key observation is that, if we restrict to the last n2 − ℓ columns of each matrix,

corresponding to the terms of degree ≥ ℓ we obtain
c1[:, ℓ : n2] = e1MA1 [:, ℓ : n2] + e2MB1 [:, ℓ : n2]
c2[:, ℓ : n2] = e1MA2 [:, ℓ : n2] + pMC2 [:, ℓ : n2]
c3[:, ℓ : n2] = e2MB3 [:, ℓ : n2] + pMC3 [:, ℓ : n2],

(16)

getting rid of one of the terms in each equation. A second key observation is that, thanks
to the size of the field Fqm we can find three sets S1, S2, S3 ⊂ [ℓ+1, n2] of cardinality ℓ such
that MA1 = MA1 [:, S1], MB1 = MB1 [:, S1], MA2 = MA2 [:, S2], MC2 = MC2 [:, S2], MB3 =
MB3 [:, S3], MC3 = MC3 [:, S3] are all invertible ℓ×ℓ matrices. This happens with probability
∼ 1 for security levels 128 and 192, see (12). Denote by c1, c2 and c3 the subvectors of
c1, c2 and c3 consisting of entries indexed by S1, S2 and S3, respectively. Replacing into
(16) we have that the equalities still hold, and write

c1 = e1MA1 + e2MB1 , (17)
c2 = e1MA2 + pMC2 , and (18)
c3 = e2MB3 + pMC3 . (19)

Moreover, from (17) we get
e1 = (c1 − e2MB1)M−1

A1
, (20)

while from (18)
e1 = (c2 − pMC2)M−1

A2
. (21)

Combining (20) and (21) we can express e2 in terms of p as

e2 = pMC2M
−1
A2

MA1M
−1
B1

− c2M
−1
A2

MA1M
−1
B1

+ c1M
−1
B1

(22)

From (19) we compute
e2 = (c3 − pMC3)M−1

B3
. (23)

Combining (22) and (23) we end up with a system of ℓ linear equations that allows us to
compute p from public data only. Formally

p(MC2M
−1
A2

MA1M
−1
B1

+ MC3M
−1
B3

) = c2M
−1
A2

MA1M
−1
B1

− c1M
−1
B1

+ c3M
−1
B3

. (24)

Once p has been recovered we can simply plug it into (21) and (22) to obtain e1 and e2
recovering the entire plaintext.

Complexity of the attack. The complexity of the attack is dominated by the complexity
of constructing and inverting the matrices MA1 , MB1 , MA2 , MC2 , MB3 and MC3 . As for
algorithms ReduceMLR1 and MsgRecovery, a safe upper bound is thus O((n2m log2(q))ω).
These computations are performed only once in case an attacker decrypts many ciphertexts.
We implemented this attack in SageMath, see here for the code listing. An average of the
time required, on a Linux Mint virtual machine, to recover the plaintext for the proposed
parameters is given in Table 4 (see Remark 10 for the system specification).

Table 4: Parameter sets for MLR3 and average time in seconds (on 50 samples for each
security level) needed to recover a plaintext.

Security (q, m, nI , n1, n2, nA) nE Time (s)
128 (2, 67, 37, 37, 61, 4) 19 11.66
192 (2, 79, 43, 43, 71, 4) 23 16.32
256 (2, 97, 53, 53, 103, 4) 45 –

https://github.com/rexos/breaking-layered-rollo/blob/main/message-recovery-MLR3.sage
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As stated above in Remark 14 the size of ℓ relative to n2 prevents our attack in the
case of security level 256. We do not see how to get enough linearly-independent equations.
Furthermore, the field is too big and there are too many positions open to attempt a
brute-force solution as we have that 3ℓ − n2 = 32. The field for this parameter set is F297 ,
hence guessing three positions already costs 2291, which is more than the security level of
this set.

5 Conclusions
In this paper, we have thoroughly analyzed Layered ROLLO-I, a rank-metric code-based
KEM published in IEEE Communications Letters and later submitted to the Korean
post-quantum cryptography competition. The results reveal significant vulnerabilities in
the four versions of Layered ROLLO-I, which do not meet the claimed security guarantees.

Our reduction attacks demonstrate that the layers in Layered ROLLO-I and MLR1 do
not enhance security but instead simplify the attack to smaller parameters of ROLLO-I.
We further identified two efficient message recovery attacks that compromise every security
level of the first three versions (Layered ROLLO-I, MLR1, and MLR2), as well as security
levels 128 and 192 of the fourth version, MLR3. These attacks highlight fundamental
weaknesses in the structure of all versions of Layered ROLLO-I.

In conclusion, despite modifications made to address these issues, our results confirm
that the security levels of MLR1, MLR2, and MLR3 remain inadequate. In particular,
the message recovery attacks demonstrate that the issues in the modified versions are not
adequately mitigated by the adjustments made. As a consequence, Layered ROLLO-I was
deselected from advancing to the second evaluation round of the Korean post-quantum
cryptography competition.
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