
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 3, 23 pages.

https://doi.org/10.62056/aey4fbn2hd
Check for updates

Tweakable ForkCipher from Ideal Block Cipher
Sougata Mandal

Institute for Advancing Intelligence, TCG CREST, Kolkata, India
Ramakrishna Mission Vivekananda Educational and Research Institute, Belur, India

Abstract. In ASIACRYPT 2019, Andreeva et al. introduced a new symmetric
key primitive called the forkcipher, designed for lightweight applications handling
short messages. A forkcipher is a keyed function with a public tweak, featuring
fixed-length input and fixed-length (expanding) output. They also proposed a specific
forkcipher, ForkSkinny, based on the tweakable block cipher SKINNY, and its security
was evaluated through cryptanalysis. Since then, several efficient AEAD and MAC
schemes based on forkciphers have been proposed, catering not only to short messages
but also to various purposes such as leakage resilience and cloud security. While
forkciphers have proven to be efficient solutions for designing AEAD schemes, the
area of forkcipher design remains unexplored, particularly the lack of provably secure
forkcipher constructions.
In this work, we propose forkcipher design for various tweak lengths, based on a
block cipher as the underlying primitive. We provide proofs of security for these
constructions, assuming the underlying block cipher behaves as an ideal block cipher.
First, we present a forkcipher, F̃1, for an n-bit tweak and prove its optimal (n-bit)
security. Next, we propose another construction, F̃2, for a 2n-bit tweak, also proving
its optimal (n-bit) security. Finally, we introduce a construction, F̃r, for a general
rn-bit tweak, achieving n-bit security.

1 Introduction
Forkcipher [ALP+19] was introduced as a keyed function with an optional public tweak,
taking an n-bit input and producing a 2n-bit output. The security of a tweakable
forkcipher is defined in terms of indistinguishability from two independently chosen
tweakable permutations on the same tweak space and input space {0, 1}n. For the remainder
of this work, we will focus on forkciphers with a tweak, i.e., tweakable forkciphers. At
times, we will simply refer to them as forkciphers. In [ALP+19], a concrete forkcipher
called ForkSkinny, based on the tweakable block cipher SKINNY, was proposed. This work
also introduced three provably secure AEAD schemes (PAEF, RPAEF, SAEF) for short
messages, achieving better efficiency than the best SKINNY-based AEAD modes. SAEF
has also been shown to be OAE [FFL12] and INT-RUP [ABL+14] secure [ABV21,BAV24].
In [ABPV21], a variant of forkcipher called multi-forkcipher (MFC) was introduced
for larger output lengths. This work also presented a generic CTR mode of called
GCTR, based on MFC, achieving better efficiency than traditional CTR-based encryption
schemes. In [BPA+23], the Eevee family of three AEAD schemes—Umbreon, Jolteon,
and Espeon—was proposed based on forkcipher. These schemes are highly parallelizable,
suitable for IoT devices, and efficient in MPC for distributed decryption. They achieved cost
improvements over SKINNY-based schemes by using ForkSkinny as the underlying primitive
family. Additionally, in [AW23], a Forkcipher-Based Pseudo-Random Number Generator
called FCRNG was proposed, based on two forkcipher-based CTR style modes: FCTR-c

E-mail: sougata.mandal@tcgcrest.org (Sougata Mandal)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-07-09 Accepted: 2024-09-02

https://doi.org/10.62056/aey4fbn2hd
https://crossmark.crossref.org/dialog/?doi=10.62056/aey4fbn2hd&domain=pdf&date_stamp=2024-09-20
https://orcid.org/0009-0006-2357-0198
mailto:sougata.mandal@tcgcrest.org
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Tweakable ForkCipher from Ideal Block Cipher

and FCTR-t. A wide range of pseudorandom function constructions based on forkcipher
were proposed in [DGL22]. In [DDML24], an efficient MAC scheme called LightFork, a
forkcipher variant of LightMAC, was introduced. Furthermore, in [DDLM24], a leakage-
resilient two-pass AEAD scheme, called FEDT, was proposed. This scheme demonstrated
competitive performance rates compared to those based on tweakable block ciphers. More
recently, in [BSL24], two additional leakage-resilient AEAD schemes, ForkDTE1 and
ForkDTE2, were introduced, utilizing forkciphers. Notably, FEDT, ForkDTE1, and
ForkDTE2 all make use of forkciphers with a large tweak.

These recent works illustrate that, although forkcipher was originally introduced for
AEAD schemes targeting short messages, its utility extends beyond that. Forkcipher has
become an important primitive for various applications.

1.1 Design approach for Forkcipher
Although the forkcipher is becoming an important cryptographic primitive, the design of
secure and efficient forkciphers has not been thoroughly explored. Authors of [ALP+19]
have used the iterate-fork-iterate paradigm to realize a forkcipher. In which the plain text is
encrypted by r1 rounds of the cipher. Then the output is “forked” along two parallel paths
with r2 rounds. Half of the output is considered as the cipher text, while the other half is
considered authenticating the message. To the best of our knowledge, there are two existing
dedicated forkcipher constructions: ForkAES [ARVV18] and ForkSkinny [ALP+19]. Both
of these design follows the iterate-fork-iterate paradigm. The security of both designs relies
on heuristic cryptanalytic results. ForkAES leverages the key schedule and round function
of AES-128. Furthermore, it operates as a tweakable block cipher by integrating principles
from KIASU-BC [JNP14]. While the authors believe that the security of ForkAES can be
reduced to the security of the AES and KIASU ciphers, [BBJ+19] mounted some attacks
on ForkAES. Subsequently, [BDL20] presented an improved attack on the full 10 rounds
of ForkAES.

ForkSkinny processes a 128-bit plaintext x, a 64-bit tweak J , and a 128-bit secret
key k, and produces two 128-bit ciphertext blocks c0 and c1. The initial 21 rounds of
ForkSkinny closely mirror those of Skinny, differing primarily in the constant added to the
internal state. After these rounds, the encryption splits, with a branch constant XORed
into the internal state to facilitate the computation of the two n-bit outputs c0 and c1.
Post-forking, two separate 27-round iterations of Skinny are executed to derive the final
128-bit outputs (c0, c1). The security of ForkSkinny is primarily argued from the security
of SKINNY. In [BDL20], it was shown that the best attacks on SKINNY could be extended
by one round for most ForkSkinny variants and up to three rounds for ForkSkinny-128-256.
While these attacks do not compromise the full-round ForkSkinny, they indicate a security
degradation between ForkSkinny and the underlying block cipher.

While forkciphers are developed within the iterate-fork-iterate (IFI) framework, the
question of their provable security remains unexplored. The first provably secure forkcipher
design was introduced by Kim et al. in [KLL20]. They detailed a method for constructing
a forkcipher utilizing public permutations as core elements. This method essentially applies
the IFI paradigm to the tweakable Even-Mansour cipher framework. They established that
a (1, 1)-round FTEM cipher (where a single-round TEM is first applied to the plaintext,
followed by two separate single-round TEM processes) achieved 2n/3-bit security in the
context of the ideal permutation model. However, their security bound is affected by an
imbalance between the number of ideal cipher queries and construction queries. Specifically,
to allow 2n ideal cipher queries, the number of construction queries needs to be limited to
around 2n/2. From a practical standpoint, this becomes problematic when the number of
ideal cipher queries significantly exceeds the number of construction queries.

Despite ForkSkinny’s efficiency and the lack of successful full-round attacks, the observed
security degradation raises an important question: can we design an optimally (n-bit)

Sougata Mandal 3

secure forkcipher with a provable security? For a secure tweakable forkcipher, for each
key and tweak, the functions from the input (X) to each half of the output (M → C0
and M → C1) should be a permutation, and the corresponding family should be a secure
tweakable block cipher (TBC). To address this, we first examine the existing design
approaches for TBCs. There are three main approaches: the Dedicated Approach, the
Standard Model, and the Ideal-Cipher Model.

Designing TBCs from Block Ciphers in the Standard Model. In this approach,
TBCs are designed from underlying block ciphers, with security argued under the assump-
tion that the block cipher is a pseudorandom permutation. This method was introduced
by Liskov et al. in [LRW02]. Over the years, several constructions have been proposed,
leading to improved security proofs [Rog04,LS13,JKNS24,DDDM23].

Designing TBCs from Block Ciphers in the Ideal-Cipher Model. In this approach,
TBCs are designed from block ciphers, assuming the underlying block ciphers function
as ideal ciphers. Mennink [Men15a] first formally addressed this by proposing two TBC
constructions from a block cipher with n-bit tweak, n-bit key, and n-bit data, called F̃ [1]
and F̃ [2], claiming 2n/3 bit security and optimal security, respectively. Later, Wang et
al. [WGZ+16] pointed out a birthday attack on F̃ [2]. Later, Mennink prevents this attack
by a constant multiplication of the key in [Men15b]. Wang et al. [WGZ+16] also proposed
32 efficient TBC constructions with n-bit tweak, n-bit key, and n-bit data, achieving
optimal security with two block cipher calls. They also mentioned 24 other schemes
that achieve optimal security. Additionally, they noted that these schemes are similar
to some of the 32 schemes that involve pre-computing a subkey. The F̃ [2] construction
from [Men15b] corresponds to one of the 24 schemes in the framework for the specific
parameter values: a11 = 1, a12 = 0, b11 = 0, b12 = 1, a22 = 1, a21 = 2, a23 = 0, b24 =
1, b21 = 0, b31 = 0, b34 = 1. Shen and Standaert [SS23] extended this research by studying
TBCs with 2n-bit tweaks, n-bit key, and n-bit data. They demonstrated that achieving
beyond birthday bound security for 2n-bit tweaks requires more than two block cipher
calls and proposed an optimally secure construction using three calls. They conjectured
that to build an n-bit secure TBC with tn-bit tweaks where t > 2, at least (t + 1) block
cipher calls are needed.

In this work, we will focus on the question that Can we design optimally (n-bit) secure
Tweakable Forkcipher from ideal block cipher?

1.2 Contributions
In this work, we propose the first provable secure forkcipher designs with optimal (n-bit)
security based on ideal block ciphers whose inputs and outputs are of size n bits.

• Forkcipher with n-bit Tweak (F̃1):

– We introduce a forkcipher design with an n-bit tweak, denoted as F̃1.

– F̃1 employs three block ciphers: the first block cipher uses the master key to
process the tweak, and the final two parallel block ciphers use derived subkeys
to produce a 2n-bit output.

– We have proved that F̃1 achieves optimal security of n-bits.

• Forkcipher with 2n-bit Tweak (F̃2):

– We propose another forkcipher design with a 2n-bit tweak, denoted as F̃2.

4 Tweakable ForkCipher from Ideal Block Cipher

Table 1: Comparison of TBC/TFC construction from ideal Block Cipher. TBC/TFC =
tweakable block cipher/tweakable forkcipher. TDK = Tweak dependent key

Tweak length Security Block Cipher TDK
F̃ [2] [Men15a] n n-bit 2 1

Ẽ1, · · · , Ẽ32 [WGZ+16] n n-bit 2 1
F̃1 [This work] n n-bit 3 2

G̃2 [SS23] 2n n-bit 3 1
F̃2 [This work] 2n n-bit 4 2

– F̃2 uses four block ciphers: the first two block ciphers use different keys derived
from the master key to process the tweak, and the final two parallel block
ciphers use derived subkeys to produce a 2n-bit output.

– We have also demonstrated that F̃2 achieves optimal security of n-bits.

• Forkcipher with Arbitrary Length Tweak (rn-bit) (F̃r):

– For an arbitrary length tweak of rn-bits, we propose a design using (r + 2) block
ciphers, denoted as F̃r.

– In F̃r, the first r parallel block ciphers process the tweak, and the final two
parallel block ciphers, using derived subkeys, produce a 2n-bit output.

– F̃r also achieves optimal security of n-bits.

It is important to note that for n-bit and 2n-bit tweaks, our constructions require only
one more block cipher than the optimal secure tweakable block cipher (TBC) constructions.
Additionally, previous works [Men15a,WGZ+16,SS23] have shown that these TBC designs
are minimal in terms of block cipher usage. Although no optimal secure TBC designs
exist for large tweaks (rn), where r ≥ 3, [SS23] conjectures that a minimum of r + 1
block ciphers is necessary for an optimal secure TBC with an rn-bit tweak. Our design
requires only r + 2 block ciphers for an rn-bit tweak forkcipher, and the extra block cipher
is parallelizable. Moreover, our designs exhibit a similar level of parallelization as TBC
designs, demonstrating that our forkciphers are more efficient than two TBCs with the
same length tweak.

2 Preliminaries
Notation: An adversary A is an algorithm. The notation y ← A(x1, x2, . . . , xi) means
that A runs on inputs x1, . . . , xi and produces output y. For a set X, the notation X

∪←− x
means that x is added to X. For bit strings x and y, x∥y denotes their concatenation. The
notation [X]x represents the encoding of a non-negative integer X < 2x as its x-bit binary
representation. For any set X, x

$←− X denotes that x is chosen uniformly random from X.
When an adversary A interacts with an oracle O, the output is written as AO. After

this interaction, it returns a bit b ∈ {0, 1}. We write AO → b to indicate that A outputs
b after interacting with O. The time complexity of the adversary is defined using the
standard RAM (random-access machine) model of computation (see, e.g., [Ost90]).
P(M) denote the set of all permuatation over M. And let P̃(T ,M) denote the family

of all functions f̃ : T × M → M such that for each J ∈ T , the function f̃(J, ·) is a
permutation on M. P(n) and P̃(T , n) denote the case where M = {0, 1}n.

Sougata Mandal 5

Block Cipher: A block cipher E is a keyed function E : K × {0, 1}n → {0, 1}n. The key
space is K, and both the domain and range are {0, 1}n. For each key k ∈ K, Ek

∆= E(k, .)
gives a unique permutation over {0, 1}n.

We define the PRP security of E based on indistinguishability from a random per-
mutation P $←− P(n). The block cipher E is called a (q, t, ϵ)-secure pseudorandom per-
mutation(PRP) if any adversary with running time at most t cannot distinguish Ek (for
k

$←− K) from a random permutation P after making at most q queries. The probability
of the adversary distinguishing them is at most ϵ. Formally, for any adversary A, the
PRP-advantage of A is defined as:

AdvE
PRP(A) ∆=

∣∣∣Pr[k $←− K : AEk(·) → 1]− Pr[P $←− P(n) : AP → 1]
∣∣∣

Similarly, strong pseudo-random permutation (SPRP) security is defined by its indis-
tinguishability from a random permutation P when the adversary also has access to the
inverse oracle (E−1

k or P−1) along with the forward oracle(Ek or P). The block cipher
E is called a (q, t, ϵ)-secure SPRP if any adversary with running time at most t cannot
distinguish (Ek, E−1

k) (for k
$←− K) from (P, P−1) after making at most q queries, with a

probability of success exceeding ϵ. Formally, for any adversary A, the SPRP-advantage of
A is defined as:

AdvE
SPRP(A) ∆=

∣∣∣Pr[k $←− K : AEk(·),E−1
k

(·) → 1]− Pr[P $←− P(n) : AP(·),P−1(·) → 1]
∣∣∣ .

We denote BC(K, n) as the set of all possible SPRP secure block ciphers with keyspace K
and {0, 1}n as the input space.

2.1 Forkciphers
A tweakable forkcipher (TFC) [ALP+19] F̃ : K × T × {0, 1}n → {0, 1}2n is a family of
tweakable keyed functions with key space K and tweak space T . It comprises a pair of
deterministic algorithms (F̃+, F̃−), defined as follows:

The encryption algorithm

F̃+ : K × T × {0, 1}n × {0, 1, 2} −→ {0, 1}n ∪ ({0, 1}n × {0, 1}n)

takes a key k ∈ K, a tweak J ∈ T , a message m ∈ {0, 1}n, and a selector bit s ∈ {0, 1, 2}
as inputs. It outputs:

F̃+(k, J, m, s) =


c0, if s = 0
c1, if s = 1
(c0, c1), if s = 2

where the ciphertext is c = (c0, c1). Here, c0 represents the left ciphertext block, and c1
represents the right ciphertext block.

The decryption algorithm

F̃− : K × T × {0, 1}n × {0, 1} × {0, 1, 2} −→ {0, 1}n ∪ ({0, 1}n × {0, 1}n)

accepts a key k ∈ K, a tweak J ∈ T , a ciphertext block cb, and a bit b ∈ {0, 1} indicating
whether cb is the left or the right ciphertext block, along with a selector bit s ∈ {0, 1, 2}.
It outputs:

F̃−(k, J, cb, b, s) =


m if s = 0
c1−b, if s = 1
(m, c1−b), if s = 2

6 Tweakable ForkCipher from Ideal Block Cipher

Algorithm 1 STFP Game.
Real world

function Initialize
k

$←− K

function Oracle F̃+
k (J, x, s)

return F̃+(k, J, x, s)

function Oracle F̃−
k (J, x, b, s))

return F̃−(k, J, x, b, s)

Ideal world
function Initialize

P0, P1
$←− P̃(T , n)

function Oracle $+(J, x, s)

return


P0(J, x) if s = 0
P1(J, x) if s = 1
(P0(J, x), P1(J, x)) if s = 2

function Oracle $−(J, y, b, s)

return


P−1

b (J, y) if s = 0
P1⊕b(J, P−1

b (J, y)) if s = 1
((P−1

b (J, y), P1⊕b(J, P−1
b (J, y)) if s = 2

where m denotes the plaintext block.
The correctness of a forkcipher asserts that for any key k ∈ K, tweak J ∈ T , plaintext

m ∈ {0, 1}n, and bit b ∈ {0, 1}, the following conditions must hold:

1. F̃−(k, J, F̃+(k, J, m, b), b, 0) = m,

2. F̃−(k, J, F̃+(k, J, m, b), b, 1) = F̃+(k, J, m, 1− b),

3. F̃−(k, J, x, b, 2) = (F̃−(k, J, x, b, 0), F̃−(k, J, x, b, 1)), and

4. F̃+(k, J, x, 2) = (F̃+(k, J, x, 0), F̃+(k, J, x, 1)).

For nonempty sets K, T , and B, we define TFC(K, T ,B) as the set of all tweakable
forkciphers with key space K, tweak space T , and input space B.

STFP Security of Forkciphers: The security of a Tweakable Forkcipher (TFC) is
defined by the traditional notion of indistinguishability between a real oracle (TFC) and
an ideal oracle (tweakable forked permutation). A tweakable forked permutation $ ∆=
{$+(P0, P1), $−(P0, P1)} is constructed of two independent permutations P0, P1

$←− P̃(T , n)
as described in algorithm 1. A formal description of STFP security of a TFC is in algorithm
1.

STFP Security of forkciphers in Ideal cipher model: This work will focus on
modular designs of TFC F̃ using a block cipher E as the only underlying primitive. For
the security of these designs, we will consider the distinguisher having access to either
(F̃+, F̃−) in real oracle or ($+(P0, P1), $−(P0, P1)) in ideal oracle along with access to the
underline block cipher E for both the real and ideal oracle, where P0, P1

$←− P̃(T , n) and
tries to distinguish between real and ideal oracle. Moreover, we will consider that these
distinguishers have limited resources, such as a maximum q many queries. Finally, for any
such distinguisher D, we define the STFP advantage of D against TFC F̃ as follows:

AdvF̃
STFP(D) ∆=

∣∣∣Pr[DF̃+
k

,̃F−
k

,E±
→ 1]− Pr[D$+(P0,P1),$−(P0,P1),E±

→ 1]
∣∣∣ (1)

where the probabilities are taken over the random choices of k
$←− K, E $←− BC(K, n), and

P0, P1
$←− P̃(T , n). We say that F̃ is (q, ϵ)-secure STFP, if the maximum STFP advantage

of F̃ is ϵ, where the maximum is taken over all distinguisher that makes at most q many
queries.

Sougata Mandal 7

H-Coefficient technique: Consider a computationally unbounded deterministic distin-
guisher D that interacts with either the real-world oracle Ore or the ideal-world oracle
Oid. The set of all queries made by D and the respective responses received form the
transcript τ . In some scenarios, additional internal information might be revealed to D
after completing all its interactions with the oracle but before making its final decision.
Let Xre and Xid denote random variables representing the probability distributions of
the transcripts τ generated by the real and ideal oracles, respectively. The probability of
observing a particular transcript τ under the ideal oracle, denoted by Pr[Xid = τ], is called
the ideal interpolation probability. Similarly, the real interpolation probability is defined
for the real oracle. A transcript τ is considered attainable by D if Pr[Xid = τ] > 0. We
denote the set of all attainable transcripts by τ.

The main theorem of the H-coefficient technique, as detailed in [Pat08], is presented
below:

Theorem 1. Let D be a deterministic distinguisher with access to either the real oracle
Ore or the ideal oracle Oid. Let τ = τg ⊔ τb (disjoint union) be a partition of the set of all
attainable transcripts of D. Assume there exists ϵgood ≥ 0 such that for any τ ∈ τg,

Pr[Xre = τ]
Pr[Xid = τ] ≥ 1− ϵgood,

and there exists ϵbad ≥ 0 such that Pr[Xid ∈ τb] ≤ ϵbad. Then,

AdvOid

Ore
(A) := |Pr[AOre = 1]− Pr[AOid = 1]| ≤ ϵgood + ϵbad.

3 Designing TFC with n-bit tweak using three Block
Cipher

EJ

k

u

Ex ⊕

u

2k ⊕ J

y⊕

u

Ex ⊕

u

2k ⊕ J ⊕ 1

z⊕

u

Figure 1: F̃1 : n-bit tweak TFC from 3 BC

This section presents a modular design approach for a tweakable forkcipher (TFC)
using an ideal block cipher E. We propose a construction called F̃1, which takes an n-bit
key k, an n-bit tweak J , and an n-bit input x, producing a 2n-bit output y∥z. This
construction follows a similar design approach as the construction F̃ [2] of [Men15b].

The construction uses a block cipher with the master key as the key and the tweak as
input to obtain an internal value. This internal value is then used to derive the keys for

8 Tweakable ForkCipher from Ideal Block Cipher

two parallel block ciphers, producing the final 2n-bit output together. Formally, we define
the construction F̃1 as follows:

F̃1(k, J, x) ∆= {E(2k ⊕ J, x⊕ E(k, J))⊕ E(k, J)}∥{E(2k ⊕ J ⊕ 1, x⊕ E(k, J))⊕ E(k, J)}.

This function is illustrated in Figure 1. The following theorem demonstrates that this
construction achieves n-bit security.

Theorem 2. Let D be a distinguisher making at most qc construction queries and qp ideal
cipher queries. Then,

AdvF̃1
STFP(D) ≤ 4qc

2n
+ qp

2n
+ 4qcqp

22n
. (2)

Proof. Let k
$←− {0, 1}n, E $←− BC({0, 1}n, n), and P0, P1

$←− P̃({0, 1}n, n). Let D be a
distinguisher with access to one of the following oracles: (F̃1, E) in the real world and
($(P0, P1), E) in the ideal world. Note that $(P0, P1) behaves exactly as described in
algorithm 1. Moreover, D can make both forward and backward queries. The distinguisher
D makes at most qc construction queries to Oc ∈ {F̃1, $(P0, P1)}. We assume the adversary
receives a 2n-bit output regardless of the distinguisher’s choice of selector bit s during the
query. This implies that the distinguisher will receive an extra n-bit value along with the
desired part, which can only increase the distinguisher’s success probability.

We store these construction queries in a transcript as follows:

τc = {(J1, x1, y1∥z1), (J2, x2, y2∥z2), . . . , (Jqc
, xqc

, yqc
∥zqc

)},

where either F̃1(k, Ji, xi) = yi∥zi or P0(Ji, xi) = yi and P1(Ji, xi) = zi for all i =
1, 2, . . . , qc.

We also consider D making qp queries to the ideal cipher oracle Op = E. We store these
queries in a transcript as

τp = {(l1, a1, b1), (l2, a2, b2), . . . , (lqp
, aqp

, bqp
)},

where E(li, ai) = bi for all i = 1, 2, . . . , qp.
After completing all queries to Oc and Op, before the decision bit, we reveal the master

key k (a randomly chosen fake key k for the ideal world). We also release a tuple (k, J, u)
corresponding to each construction query. We store them as

τint = {(k, J1, u1), (k, J2, u2), . . . , (k, Jq′
c
, uq′

c
)},

where E(k, Ji) = ui for all i = 1, 2, . . . , q′
c. Here, q′

c is the number of distinct tweaks in τc,
and thus q′

c ≤ qc. Note that this additional information can only increase the advantage of
the distinguisher. Thus, the complete transcript is

τ = {k, τc, τp, τint}.

Bad transcript: Definition and Bounds: Next, we will define some bad transcripts
that allow the distinguisher to easily distinguish between the real and ideal worlds. The
conditions are as follows:

• Collision with the master key

– Bad1: ∃ (Ji, xi, yi∥zi) ∈ τc such that 2k ⊕ Ji = k or 2k ⊕ Ji ⊕ 1 = k. This
condition occurs when, for some query, any one of the derived keys of the final
two block ciphers matches with the master key.

Sougata Mandal 9

– Bad2: ∃ (li, ai, bi) ∈ τp such that li = k. This condition occurs when the
distinguisher queries the ideal cipher with the master key, i.e., the distinguisher
can successfully guess the master key k.

• Collision with ideal cipher query

– Bad3: ∃ (Ji, xi, yi∥zi) ∈ τc, (lj , aj , bj) ∈ τp, (k, Ji, ui) ∈ τint such that 2k ⊕ Ji =
lj ∧ xi ⊕ ui = aj . This condition occurs when the (key, input) pair of a
certain ideal cipher query matches the (key, input) pair of the final block cipher,
producing the first n bits of the output for a particular construction query.

– Bad4: ∃ (Ji, xi, yi∥zi) ∈ τc, (lj , aj , bj) ∈ τp, (k, Ji, ui) ∈ τint such that 2k ⊕ Ji ⊕
1 = lj ∧ xi ⊕ ui = aj . This condition occurs when the (key, input) pair of a
certain ideal cipher query matches the (key, input) pair of the final block cipher,
producing the second n bits of the output for a particular construction query.

– Bad5: ∃ (Ji, xi, yi∥zi) ∈ τc, (lj , aj , bj) ∈ τp, (k, Ji, ui) ∈ τint such that 2k ⊕ Ji =
lj ∧ yi ⊕ ui = bj . This condition occurs when the (key, output) pair of a certain
ideal cipher query matches the (key, output) pair of the final block cipher,
producing the first n bits of the output for a particular construction query.

– Bad6: ∃ (Ji, xi, yi∥zi) ∈ τc, (lj , aj , bj) ∈ τp, (k, Ji, ui) ∈ τint such that 2k ⊕ Ji ⊕
1 = lj ∧ zi ⊕ ui = bj . This condition occurs when the (key, output) pair of
a certain ideal cipher query matches the (key, output) pair of the final block
cipher, producing the second n bits of the output for a particular construction
query.

• Collision between internal block ciphers

– Bad7: ∃ (Ji, xi, yi∥zi), (Jj , xj , yj∥zj) ∈ τc and (k, Ji, ui), (k, Jj , uj) ∈ τint such
that 2k ⊕ Ji = 2k ⊕ Jj ⊕ 1 ∧ xi ⊕ ui = xj ⊕ uj . This condition occurs when
the (key, input) pair of the final block cipher, producing the first n bits of the
output for one construction query, matches the (key, input) pair of the final
block cipher, producing the second n bits of the output for another construction
query.

– Bad8: ∃ (Ji, xi, yi∥zi), (Jj , xj , yj∥zj) ∈ τc and (k, Ji, ui), (k, Jj , uj) ∈ τint such
that 2k ⊕ Ji = 2k ⊕ Jj ⊕ 1 ∧ yi ⊕ ui = zj ⊕ uj . This condition occurs when the
(key, output) pair of the final block cipher, producing the first n bits of the
output for one construction query, matches the (key, output) pair of the final
block cipher, producing the second n bits of the output for another construction
query.

We will call a transcript "Bad" if it satisfies any one of the above eight conditions. Let
τb denote the set of all Bad transcripts. In the following lemma, we will show that the
probability of these Bad conditions occurring in the ideal world is low.

Lemma 1. Let τb denote the set of all bad transcripts and Xid denotes the random variable
of transcript τ induced in the ideal world. Then, we have the following:

Pr[Xid ∈ τb] ≤ 6qc

2n
+ qp

2n
+ 8qcqp

22n
. (3)

Proof. Let us denote the event Bad =
∨8

i=1 Badi. To bound the probability of the event
Bad, we will first individually bound each Badi conditioned on the complement of all the
previous Badj’s. Then, we will apply the union bound for the final result.

10 Tweakable ForkCipher from Ideal Block Cipher

• Bounding Bad1: This occurs if, for some i ∈ [1, qc], Ji = 2k ⊕ k or Ji = 2k ⊕ k ⊕ 1.
The probability of choosing such a tweak for any i is at most 1/2n due to the
randomness of the key k. Hence, for at most qc choices of i, we have:

Pr[Bad1] ≤ 2qc

2n
. (4)

• Bounding Bad2: This occurs if the distinguisher D can guess the master key k
among all the ideal cipher queries. Given the randomness of the key and at most qp

ideal cipher queries, we have:

Pr[Bad2] ≤ qp

2n
. (5)

• Bounding Bad3 | (Bad1 ∧ Bad2): This occurs if there exist i ∈ [1, qc] and j ∈ [1, qp]
such that:

E1 : 2k = Ji ⊕ lj

E2 : ui = xi ⊕ aj

From Bad1, each ui is independent of all y∥z values. From Bad2, the ui’s are
independent of all ideal cipher query outputs. So, ui’s are chosen uniformly randomly
from a set of at least 2n − qc many elements. Hence, from at most qcqp choices of
(i, j) and the randomness of k and ui, we have:

Pr[Bad3 | (Bad1 ∧ Bad2)] ≤ qcqp

2n(2n − qc) ≤
2qcqp

22n
. (6)

• Bounding Badi | (Bad1 ∧ Bad2) for i = 4, 5, 6: Following a similar argument as the
previous case, we have for i = 4, 5, 6:

Pr[Badi | (Bad1 ∧ Bad2)] ≤ 2qcqp

22n
. (7)

• Bounding Bad7 | (Bad1 ∧ Bad2): This occurs if:

1) 2k ⊕ Ji = 2k ⊕ Jj ⊕ 1,

2) xi ⊕ ui = xj ⊕ uj

The first equation shows that for any i ∈ [1, qc], only one possible value exists for
Jj . Thus, the total number of (i, j) pairs satisfying the first equation is at most qc.
Given the randomness of ui, we have:

Pr[Bad7 | (Bad1 ∧ Bad2)] ≤ qc

2n − qc
≤ 2qc

2n
. (8)

• Bounding Bad8 | (Bad1 ∧ Bad2): Following a similar argument as the previous case,
we have:

Pr[Bad8 | (Bad1 ∧ Bad2)] ≤ 2qc

2n
. (9)

Now, from the union bound and using equations (4) to (9), we have:

Pr[Bad] ≤ 6qc

2n
+ qp

2n
+ 8qcqp

22n
. (10)

Sougata Mandal 11

Good Transcript analysis: We will denote all the transcripts that are not "Bad"
as "Good" and let τg be the set of all Good transcripts. Let Yre denote the random
variable of transcript τ induced in the real world. In this section, we will compute
Pr[Yre ∈ τg]/ Pr[Xid ∈ τg]. Now, we will group all the transcripts based on distinct tweaks
and keys as follows. For J ∈ [0, 2n−1] and l ∈ [0, 2n−1], we have

αJ = |{(J ′, x′, y′∥z′) ∈ τc | J ′ = J}| , ∀J ∈ [0, 2n − 1]
βl = |{(l′, a′, b′) ∈ τp ⊔ τint | l′ = l}| , ∀l ∈ [0, 2n − 1]

Note that due to Bad2, τp∩ τint = ϕ. We use the notation βl to denote the number of block
cipher calls with key l, and αJ to denote the number of construction queries with tweak J .
Note that, any construction query with tweak 2k ⊕ l′ corresponds to two unique (due to
Bad) block cipher computations with key l′ and l′ ⊕ 1. Now, let γl = α2k⊕l + α2k⊕l⊕1 + βl.
Clearly, γl gives the number of total block cipher calls with key l in real-world.

First, we will compute Pr[Yre ∈ τg]:

Pr[Yre ∈ τg] = |CompY|
|AllY|

,

where CompY is the set of possible transcripts from the real-world oracle compatible with
τg, and AllY is the set of all possible transcripts from the real-world oracle. Note that, |AllY|
is equal to the number of all possible choices of key k and corresponding ideal cipher block
cipher. Hence, |AllY| = 2n × (2n!)2n , where the first 2n represents the choice of key and
the second term represents the number of all possible block ciphers. So, we have the total
number of block ciphers compatible with τg in the real world, |CompY| =

∏2n−1
l=0 (2n − γl)!.

Hence,

Pr[Yre ∈ τg] = |CompY|
|AllY|

=
∏2n−1

l=0 (2n − γl)!
2n × (2n!)2n (11)

Similarly, for the ideal world we will compute |AllX| and |CompX|. For the ideal world,
we have to compute possible choices for P0, P1, and E. Clearly, |AllX| = 2n × (2n!)2n ×
(2n!)2n × (2n!)2n . Here, the first 2n corresponds to possible choice of key and the rest each
(2n!)2n terms correspond to the choice of P0, P1, and E. For CompX, we will have already
decided αJ (input, output) pair of P0 corresponding to construction queries with tweak J .
Moreover, each αJ (input, output) pair is distinct. So, the possible choice of P0 compatible
to τg is

∏2n−1
J=0 (2n − αJ)!. Following a similar argument, we have a possible choice of P1

compatible to τg is
∏2n−1

J=0 (2n − αJ)!. Also, following a similar argument and βl be the
number of block cipher queries with key l, we have the number of possible choices for the

12 Tweakable ForkCipher from Ideal Block Cipher

underlying block cipher E is
∏2n−1

l=0 (2n − βl)!. So, combining all these we have:

|CompX| =
2n−1∏
J=0

(2n − αJ)! ·
2n−1∏
J=0

(2n − αJ)! ·
2n−1∏
l=0

(2n − βl)!

=
2n−1∏
J=0

(2n − α2k⊕J)! ·
2n−1∏
J=0

(2n − α2k⊕J⊕1)! ·
2n−1∏
l=0

(2n − βl)!

=
2n−1∏
l=0

(2n − α2k⊕l)! · (2n − α2k⊕l⊕1)! ·
2n−1∏
l=0

(2n − βl)!

[1]
≤

2n−1∏
l=0

2n! · (2n − α2k⊕l − α2k⊕l⊕1)! ·
2n−1∏
l=0

(2n − βl)!

= (2n!)2n
2n−1∏
l=0

(2n − α2k⊕l − α2k⊕l⊕1)! · (2n − βl)!

[2]
≤ (2n!)2n

× (2n!)2n
2n−1∏
l=0

(2n − α2k⊕l − α2k⊕l⊕1 − βl)!

= (2n!)2n

× (2n!)2n
2n−1∏
l=0

(2n − γl)!

[1] and [2] follows from the fact: (2n − δ)!× (2n − µ)! ≤ (2n − δ − µ)!× 2n!. So we have

Pr[Xid ∈ τg] ≤ |CompX|
|AllX|

= (2n!)2n × (2n!)2n ∏2n−1
l=0 (2n − γl)!

2n × (2n!)2n × (2n!)2n × (2n!)2n (12)

Then combining 11 and 12 we have,

Pr[Yre ∈ τg]
Pr[Xid ∈ τg] = |AllX| × |CompY|

|AllY| × |CompX|

≥
2n × (2n!)2n × (2n!)2n × (2n!)2n ×

∏2n−1
l=0 (2n − γl)!

2n × (2n!)2n × (2n!)2n × (2n!)2n ×
∏2n−1

l=0 (2n − γl)!
≥ 1 (13)

Finally, applying theorem 1, lemma 1 and 13 we have the theorem 2.

4 Designing TFC with 2n-bit tweak using four Block
Cipher

This section presents a construction called F̃2, which takes an n-bit key k, an 2n-bit tweak
J = J1∥J2, and an n-bit input x, producing a 2n-bit output y∥z. The construction first
uses two block ciphers with key k, and 2k respectively, taking input J1, and J2 respectively.
Then, the output of these two ideal block ciphers is used to derive the input and key of the
final two block ciphers outputting the final 2n-bit output. This design follows a similar
approach as the construction G̃2 of [SS23]. Formally, we define the construction F̃2 as
follows:

F̃2(k, J1∥J2, x) ∆= E(k ⊕ J1 ⊕ E(2k, J2), x⊕ E(k, J1))⊕ E(k, J1) ∥
E(2k ⊕ J2 ⊕ E(k, J1), x⊕ E(2k, J2))⊕ E(2k, J2).

This function is illustrated in Figure 2. The following theorem demonstrates that this
construction achieves n-bit security.

Sougata Mandal 13

EJ1

k

u1

EJ2

2k

u2

Ex ⊕

u1

k ⊕ J1 ⊕ u2

y⊕

u1

Ex ⊕

u2

2k ⊕ J2 ⊕ u1

z⊕

u2

Figure 2: F̃2 : 2n-bit tweak TFC from 4 BC

Theorem 3. Let D be a distinguisher making at most qc construction queries and qp ideal
cipher queries. Then,

AdvF̃2
STFP(D) ≤ 10qc

2n
+ 2qp

2n
+ 24q2

c

22n
+ 8qcqp

22n
.

Where qc ≤ 2n−1.

Proof. Let k
$←− {0, 1}n, E $←− BC({0, 1}n, n), and P0, P1

$←− P̃({0, 1}2n, n). Let D be a
distinguisher with access to one of the following oracles: (F̃2, E) in the real world and
($(P0, P1), E) in the ideal world. Note that $(P0, P1) behaves exactly as described in
algorithm 1. Moreover, D can make both forward and backward queries. The distinguisher
D makes at most qc construction queries to Oc ∈ {F̃2, $(P0, P1)}. We assume the adversary
receives a 2n-bit output regardless of the distinguisher’s choice of selector bit s during
the query. This implies that the distinguisher will receive an extra n-bit value along with
the desired part, which can only increase the distinguisher’s success probability. We store
these construction queries in a transcript as follows:

τc = {(J1
1∥J1

2 , x1, y1∥z1), (J2
1∥J2

2 , x2, y2∥z2), . . . , (Jqc

1 ∥J
qc

2 , xqc , yqc∥zqc)},

where either F̃2(k, J i
1∥J i

2, xi) = yi∥zi or P0(J i
1∥J i

2, xi) = yi and P1(J i
1∥J i

2, xi) = zi for all
i = 1, 2, . . . , qc.

We also consider D making qp queries to the ideal cipher oracle Op = E. We store these
queries in a transcript as

τp = {(l1, a1, b1), (l2, a2, b2), . . . , (lqp , aqp , bqp)},

where E(li, ai) = bi for all i = 1, 2, . . . , qp. After completing all queries to Oc and Op,
and before making the decision, we reveal the master key k (or a randomly chosen fake
key k in the ideal world). Additionally, we release two tuples (k, J1, u1) and (2k, J2, u2)
corresponding to each construction query with tweak J = J1∥J2. We store them as:

τ1
int = {(k, J1

1 , u1
1), (k, J2

1 , u2
1), . . . , (k, J

q′
c

1 , u
q′

c
1)},

τ2
int = {(2k, J1

2 , u1
2), (2k, J2

2 , u2
2), . . . , (2k, J

q′′
c

2 , u
q′′

c
2)},

where E(k, J i
1) = ui

1 for all i = 1, 2, . . . , q′
c and E(2k, Jj

2) = uj
2 for all j = 1, 2, . . . , q′′

c . Here,
q′

c and q′′
c are the numbers of tweaks with distinct values in the left and right n-bits of τc,

14 Tweakable ForkCipher from Ideal Block Cipher

respectively, and both satisfy q′
c, q′′

c ≤ qc. Note that this additional information can only
increase the advantage of the distinguisher. Thus, the complete transcript is

τ = {k, τc, τp, τ1
int, τ2

int}.

Bad transcript: Definition and Bounds: Next, we will define some bad transcripts
that enable the distinguisher to differentiate between the real and ideal worlds easily. The
conditions are as follows:

• Collision with ideal cipher query

– Bad1: There exists (li, ∗, ∗) ∈ τp such that li is equal to k or 2k. This occurs
when the distinguisher correctly guesses the master key for an ideal cipher
query.

– Bad2: There exist (J i
1∥J i

2, xi, yi∥zi) ∈ τc, (k, J i
1, ui

1) ∈ τ1
int, and (2k, J i

2, ui
2) ∈

τ2
int, as well as an entry (lj , aj , bj) ∈ τp, such that k⊕J i

1⊕ui
2 = lj and xi⊕ui

1 = aj .
This arises when the (key, input) of internal block cipher generating the first n
bits of the final output during a construction query matches that of an ideal
cipher query.

– Bad3: There exist (J i
1∥J i

2, xi, yi∥zi) ∈ τc, (k, J i
1, ui

1) ∈ τ1
int, (2k, J i

2, ui
2) ∈ τ2

int,
and (lj , aj , bj) ∈ τp such that k ⊕ J i

1 ⊕ ui
2 = lj ∧ yi ⊕ ui

1 = bj . This arises when
the (key, output) of internal block cipher generating the first n bits of the final
output during a construction query matches that of an ideal cipher query.

– Bad4: There exists (J i
1∥J i

2, xi, yi∥zi) ∈ τc, (k, J i
1, ui

1) ∈ τ1
int, (2k, J i

2, ui
2) ∈ τ2

int,
and (lj , aj , bj) ∈ τp such that 2k ⊕ J i

2 ⊕ ui
1 = lj and xi ⊕ ui

2 = aj . This arises
when the (key, input) pair of internal block cipher generating the second n bits
of the final output during a construction query matches that of an ideal cipher
query.

– Bad5: ∃(J i
1∥J i

2, xi, yi∥zi) ∈ τc, (k, J i
1, ui

1) ∈ τ1
int, (2k, J i

2, ui
2) ∈ τ2

int, and
(lj , aj , bj) ∈ τp such that 2k ⊕ J i

2 ⊕ ui
1 = lj ∧ zi ⊕ ui

2 = bj . This arises when the
(key, output) pair of internal block cipher generating the second n bits of the
final output during a construction query matches that of an ideal cipher query.

• Collision between master key and internal key

– Bad6: ∃(J i
1∥J i

2, xi, yi∥zi) ∈ τc, (k, J i
1, ui

1) ∈ τ1
int, (2k, J i

2, ui
2) ∈ τ2

int such that
k ⊕ J i

1 ⊕ ui
2 = k or 2k ⊕ J i

2 ⊕ ui
1 = k. This happens if, for some construction

query, one of the two derived subkeys collides with the master key.
– Bad7: ∃(J i

1∥J i
2, xi, yi∥zi) ∈ τc, (k, J i

1, ui
1) ∈ τ1

int, (2k, J i
2, ui

2) ∈ τ2
int such that

k ⊕ J i
1 ⊕ ui

2 = 2k or 2k ⊕ J i
2 ⊕ ui

1 = 2k. This happens if, for some construction
query, one of the two derived subkeys collides with 2k.

• Collision between keys of final two block cipher(same construction query)

– Bad8: ∃(J i
1∥J i

2, xi, yi∥zi) ∈ τc, (k, J i
1, ui

1) ∈ τ1
int, (2k, J i

2, ui
2) ∈ τ2

int such that
k ⊕ J i

1 ⊕ ui
2 = 2k ⊕ J i

2 ⊕ ui
1. This occurs if two keys correspond to the final

two block ciphers producing the output of a construction query, resulting in a
collision.

• Collision between key, input, output of final two block cipher(different
construction query)

Sougata Mandal 15

– Bad9: ∃(J i
1∥J i

2, xi, yi∥zi) ∈ τc, (k, J i
1, ui

1) ∈ τ1
int, (2k, J i

2, ui
2) ∈ τ2

int and ∃(Jj
1∥J

j
2 ,

xj , yj∥zj) ∈ τc, (k, Jj
1 , uj

1) ∈ τ1
int, (2k, Jj

2 , uj
2) ∈ τ2

int such that (k ⊕ J i
1 ⊕ ui

2 =
k ⊕ Jj

1 ⊕ uj
2) ∧ (xi ⊕ ui

1 = xj ⊕ uj
1). This occurs if the (key, input) pair of

the block cipher producing the first n-bits of the output correspond to two
construction query matches.

– Bad10: ∃(J i
1∥J i

2, xi, yi∥zi) ∈ τc, (k, J i
1, ui

1) ∈ τ1
int, (2k, J i

2, ui
2) ∈ τ2

int and
∃(Jj

1∥J
j
2 , xj , yj∥zj) ∈ τc, (k, Jj

1 , uj
1) ∈ τ1

int, (2k, Jj
2 , uj

2) ∈ τ2
int such that

(k⊕J i
1⊕ui

2 = k⊕Jj
1 ⊕uj

2)∧ (yi⊕ui
1 = yj⊕uj

1). This occurs if the (key, output)
pair of the block cipher producing the first n-bits of the output correspond to
two construction query matches.

– Bad11: ∃(J i
1∥J i

2, xi, yi∥zi) ∈ τc, (k, J i
1, ui

1) ∈ τ1
int, (2k, J i

2, ui
2) ∈ τ2

int and
∃(Jj

1∥J
j
2 , xj , yj∥zj) ∈ τc, (k, Jj

1 , uj
1) ∈ τ1

int, (2k, Jj
2 , uj

2) ∈ τ2
int such that

(2k ⊕ J i
2 ⊕ ui

1 = 2k ⊕ Jj
2 ⊕ uj

1) ∧ (xi ⊕ ui
2 = xj ⊕ uj

2). This occurs if the
(key, input) pair of the block cipher producing the second n-bits of the output
correspond to two construction query matches.

– Bad12: ∃(J i
1∥J i

2, xi, yi∥zi) ∈ τc, (k, J i
1, ui

1) ∈ τ1
int, (2k, J i

2, ui
2) ∈ τ2

int and
∃(Jj

1∥J
j
2 , xj , yj∥zj) ∈ τc, (k, Jj

1 , uj
1) ∈ τ1

int, (2k, Jj
2 , uj

2) ∈ τ2
int such that

(2k ⊕ J i
2 ⊕ ui

1 = 2k ⊕ Jj
2 ⊕ uj

1) ∧ (zi ⊕ ui
2 = zj ⊕ uj

2). This occurs if the
(key, output) pair of the block cipher producing the second n-bits of the output
correspond to two construction query matches.

– Bad13: ∃(J i
1∥J i

2, xi, yi∥zi) ∈ τc, (k, J i
1, ui

1) ∈ τ1
int, (2k, J i

2, ui
2) ∈ τ2

int and
∃(Jj

1∥J
j
2 , xj , yj∥zj) ∈ τc, (k, Jj

1 , uj
1) ∈ τ1

int, (2k, Jj
2 , uj

2) ∈ τ2
int such that

(k ⊕ J i
1 ⊕ ui

2 = 2k ⊕ Jj
2 ⊕ uj

1) ∧ (xi ⊕ ui
1 = xj ⊕ uj

2). This occurs if the
(key, input) pair of the block cipher producing the first n-bits of the final output
in one construction query collides with the (key, input) pair of the block cipher
producing the second n-bits of the final output in another construction query.

– Bad14: ∃(J i
1∥J i

2, xi, yi∥zi) ∈ τc, (k, J i
1, ui

1) ∈ τ1
int, (2k, J i

2, ui
2) ∈ τ2

int and
∃(Jj

1∥J
j
2 , xj , yj∥zj) ∈ τc, (k, Jj

1 , uj
1) ∈ τ1

int, (2k, Jj
2 , uj

2) ∈ τ2
int such that

(k ⊕ J i
1 ⊕ ui

2 = 2k ⊕ Jj
2 ⊕ uj

1) ∧ (yi ⊕ ui
1 = zj ⊕ uj

2). This occurs if the
(key, output) pair of the block cipher producing the first n-bits of the final
output in one construction query collides with the (key, output) pair of the block
cipher producing the second n-bits of the final output in another construction
query.

Similar to the proof of F̃1, we define a transcript as "Bad" if it satisfies any of the 14
conditions mentioned above. Let τb denote the set of all Bad transcripts. In the following
lemma, we will demonstrate that the probability of these Bad conditions occurring in the
ideal world is low.

Lemma 2. Let τb denote the set of all bad transcripts and Xid denotes the random variable
of transcript τ induced in the ideal world. Then, we have the following:

Pr[Xid ∈ τb] ≤ 9qc

2n
+ 2qp

2n
+ 20q2

c

22n
+ 8qcqp

22n
,

where qc ≤ 2n−1.

Proof. Let us denote the event Bad =
∨14

i=1 Badi. To bound the probability of the event
Bad, we will first individually bound each Badi conditioned on the complement of Bad1.
Then, we will apply the union bound to obtain the final result.

16 Tweakable ForkCipher from Ideal Block Cipher

• Bounding Bad1: This occurs if the distinguisher can guess either the key k or 2k.
Hence, considering the randomness of the master key k and at most qp ideal cipher
queries, we have:

Pr[Bad1] ≤ 2qp

2n
. (14)

• Bounding Bad2 | Bad1: Note that Bad1 ensures that each ui
1 is chosen uniformly

from a set of at least 2n− qc elements. Moreover, there are at most qc · qp pairs (i, j).
Therefore, considering the randomness of k and ui

1, we have:

Pr[Bad2 | Bad1] ≤ qc · qp

2n(2n − qc) ≤
2qc · qp

22n
. (15)

• Bounding Badl | Bad1 for l = 3, 4, 5: Following a similar argument as the previous
case, we have

Pr
[5∨

l=3
(Badl | Bad1)

]
≤ 6qc · qp

22n
. (16)

• Bounding Bad6 | Bad1: This occurs if the distinguisher can find a tweak Ji = J i
1∥J i

2
such that either (1) J i

1 ⊕ ui
2 = 0n or (2) J i

2 ⊕ ui
1 = k ⊕ 2k . Moreover, due to Bad1,

each ui
1 is chosen uniformly from a set of at least 2n − qc elements, and the same

applies to ui
2. Thus, for at most qc choices of i, we have:

Pr[Bad6 | Bad1] ≤ 2qc

2n − qc
≤ 4qc

2n
. (17)

• Bounding Bad7 | Bad1: Following a similar argument as the previous case for Bad6,
we have:

Pr[Bad7 | Bad1] ≤ 4qc

2n
. (18)

• Bounding Bad8 | Bad1: This occurs if the adversary can find a tweak value J = J i
1∥J i

2
satisfying J i

1 ⊕ ui
2 ⊕ J i

2 ⊕ ui
1 = k ⊕ 2k. So, from the randomness of key k, we have:

Pr[Bad8 | Bad1] ≤ qc

2n
. (19)

• Bounding Bad9 | Bad1: This occurs if the distinguisher can find two construction
queries (Ji = J i

1∥J i
2, xi) and (Jj = Jj

1∥J
j
2 , xj) such that: 1) J i

1 ⊕ ui
2 = Jj

1 ⊕ uj
2, and

2) xi ⊕ ui
1 = xj ⊕ uj

1.

If J i
1 = Jj

1 , J i
2 = Jj

2 , or xi = xj , the probability of this event is 0. Otherwise, from a
similar argument as before, considering the randomness of ui

2 and ui
1, we have:

Pr[Bad9 | Bad1] ≤ q2
c

(2n − qc)(2n − qc) ≤
4q2

c

22n
. (20)

• Bounding Badl | Bad1 for l = 10, 11, 12: Following a similar argument as the
previous case, we have

Pr
[12∨

l=10
Badl | Bad1

]
≤ 12q2

c

22n
. (21)

Sougata Mandal 17

• Bounding Bad13 | Bad1: This occurs if: E1 : J i
1 ⊕ ui

2 ⊕ Jj
2 ⊕ uj

1 = k ⊕ 2k, and E2 :
xi ⊕ xj = ui

1 ⊕ uj
2. Note that ui

1 is independently chosen from ui
2 and uj

2, as u1 and
u2 values are outputs of E with two different keys k and 2k respectively. Moreover,
due to Bad1, we have the randomness of ui

1, ui
2 and k. Therefore, we have:

Pr[Bad13 | Bad1] ≤ q2
c

2n(2n − qc) ≤
2q2

c

22n
. (22)

• Bounding Bad14 | Bad1: Following a similar argument as the previous case, we
have:

Pr[Bad14 | Bad1] ≤ 2q2
c

22n
. (23)

Now, from the union bound and using equations (14) to (23), we have:

Pr[Bad] ≤ 9qc

2n
+ 2qp

2n
+ 20q2

c

22n
+ 8qcqp

22n
. (24)

Good Transcript analysis: We will denote all the transcripts that are not "Bad"
as "Good" and let τg be the set of all Good transcripts. Let Yre denote the random
variable of transcript τ induced in the real world. In this section, we will compute
Pr[Yre ∈ τg]/ Pr[Xid ∈ τg]. For this, we will first define some set for partitioning all the
query responses depending on keys and tweaks as follows:

• For the master key k, let S1(k) denote the set of all revealed ideal cipher (input,
output) pairs corresponding to the key k. Formally, we define S1(k) = τ1

int.

• For the master key k, let S2(2k) denote the set of all revealed ideal cipher (input,
output) pairs corresponding to the key 2k. Formally, we define S2(2k) = τ2

int.

• Let S3(K) denote the set of all ideal cipher queries with key K. Formally, we define
S3(K) = {(l, ∗, ∗) ∈ τp | l = K} for any K ∈ {0, 1}n.

• Let S4(J) denote the set of all construction queries with the tweak J . Formally, we
define S4(J) = {(J, ∗, ∗∥∗) ∈ τc}, for all J ∈ {0, 1}2n.

• Let S5(K) denote the set of all tuples corresponding to the final two blocks that
produce the final output with the key K. Formally, we define

S5(K) = {(k ⊕ J1 ⊕ u2, x⊕ u1, y ⊕ u1) : (J1∥J2, x, y∥z) ∈ τc ∧K = k ⊕ J1 ⊕ u2} ∪
{(2k ⊕ J2 ⊕ u1, x⊕ u2, z ⊕ u2) : (J1∥J2, x, y∥z) ∈ τc ∧K = 2k ⊕ J2 ⊕ u1} .

Due to Bad1, we have the following for all K ∈ {0, 1}n:

S1(k) ∩ S3(K) = ∅
S2(2k) ∩ S3(K) = ∅

Similarly, due to Bad6 and Bad7, we have for any K ∈ {0, 1}n:

S1(k) ∩ S5(K) = ∅
S2(2k) ∩ S5(K) = ∅

Additionally, due to Bad2− Bad5, we have for any K ∈ {0, 1}n:

S3(K) ∩ S5(K) = ∅

18 Tweakable ForkCipher from Ideal Block Cipher

Moreover, due to Bad8− Bad14, S5(K) has no duplicate elements. This implies that each
construction query contributes exactly two elements to

⋃2n−1
K=0 S5(K). Therefore, we have:

2n−1∑
K=0
|S5(K)| =

22n−1∑
J=0

(|S4(J)|+ |S4(J)|) .

In the real world, we have a total of |S3(K)|+ |S5(K)| (input, output) pairs of the ideal
cipher corresponding to the key K, where K ̸= k and K ̸= 2k. Additionally, we have
|S1(k)| (input, output) pairs of the ideal cipher corresponding to the key k and |S2(2k)|
(input, output) pairs of the ideal cipher corresponding to the key 2k. Therefore, we have:

Pr[Yre ∈ τg] = 1
2n
·

|S1(k)|−1∏
i=0

1
2n − i

·
|S2(k)|−1∏

j=0

1
2n − j

·
2n−1∏
K=0

|S3(K)|+|S5(K)|−1∏
l=0

1
2n − l

. (25)

Now in the ideal world, we have a total of |S3(K)| (input, output) pairs of the ideal cipher
corresponding to the key K, where K ̸= k and K ̸= 2k. Additionally, we have |S1(k)|
(input, output) pairs of the ideal cipher corresponding to the key k and |S2(2k)| (input,
output) pairs of the ideal cipher corresponding to the key 2k. Moreover, there is S4(J)
many (input, output) pair correspond to both P0 and P1 for any tweak J ∈ {0, 1}2n.
Hence,

Pr[Xid ∈ τg] = 1
2n
·

|S1(k)|−1∏
i=0

1
2n − i

·
|S2(k)|−1∏

j=0

1
2n − j

·
2n−1∏
K=0

|S3(K)|−1∏
l=0

1
2n − l

·

22n−1∏
J=0

|S4(J)|−1∏
s=0

1
2n − s

·
22n−1∏
J=0

|S4(J)|−1∏
r=0

1
2n − r

[1]
≤ 1

2n
·

|S1(k)|−1∏
i=0

1
2n − i

·
|S2(k)|−1∏

j=0

1
2n − j

·
2n−1∏
K=0

|S3(K)|−1∏
l=0

1
2n − l

·

22n−1∏
J=0

|S4(J)|+|S4(J)|−1∏
s=0

1
2n − s

[2]
≤ 1

2n
·

|S1(k)|−1∏
i=0

1
2n − i

·
|S2(k)|−1∏

j=0

1
2n − j

·
2n−1∏
K=0

|S3(K)|−1∏
l=0

1
2n − l

·

2n−1∏
K=0

|S5(K)|−1∏
s=0

1
2n − s

[3]
≤ 1

2n
·

|S1(k)|−1∏
i=0

1
2n − i

·
|S2(k)|−1∏

j=0

1
2n − j

·
2n−1∏
K=0

|S3(K)|+|S5(K)|−1∏
l=0

1
2n − l

.(26)

Here, inequalities [1], [2], and [3] follow from the facts 1, 2, and 3, respectively.

1.
∏22n−1

J=0
∏|S4(J)|−1

s=0
1

2n−s ·
∏22n−1

J=0
∏|S4(J)|−1

r=0
1

2n−r ≤
∏22n−1

J=0
∏|S4(J)|+|S4(J)|−1

s=0
1

2n−s .

2.
∏22n−1

J=0
∏|S4(J)|+|S4(J)|−1

s=0
1

2n−s ≤
∏2n−1

K=0
∏|S5(K)|−1

s=0
1

2n−s .

3.
∏|S3(K)|−1

l=0
1

2n−l ·
∏2n−1

K=0
∏|S5(K)|−1

s=0
1

2n−s ≤
∏2n−1

K=0
∏|S3(K)|+|S5(K)|−1

l=0
1

2n−l .
So, from 25 and 26 we have

Pr[Yre ∈ τg]
Pr[Xid ∈ τg] ≥ 1.

Sougata Mandal 19

5 Designing TFC with rn-bit tweak using (r+2) Block
Cipher

Let E $←− BC({0, 1}n, n) be an n-bit block cipher. The tweakable forkcipher F̃r : 0, 1n ×
0, 1rn × 0, 1n → 0, 12n, with an rn-bit tweak and using (r + 2) block cipher calls, is
constructed as follows: First, r block cipher calls are invoked in parallel to produce r masks
u1, u2, . . . , ur from the tweaks J1, J2, . . . , Jr and the master key k. By using

∑r
i=1 ui to

mask the input and output, and
∑r

i=1 2i−1ui to provide variety in the sub-key, another
block cipher call is made to encrypt the plaintext x into the left n-bit ciphertext y. Similarly,
by using

∑r
i=1 2i−1ui to mask the input and output, and

∑r
i=1 ui to provide variety in

the sub-key, another parallel block cipher call is made to encrypt the plaintext x into the
right n-bit ciphertext z. A pictorial illustration of the construction F̃r is given in Fig. 3.

EJ1

k

u1

EJ2

2k

u2

EJr

2r−1k

ur

Ex ⊕

∑r
i=1 ui

k ⊕
∑r

i=1 2i−1ui

y⊕

∑r
i=1 ui

Ex ⊕

∑r
i=1 2i−1ui

k ⊕
∑r

i=1 ui

z⊕

∑r
i=1 2i−1ui

Figure 3: F̃r : rn-bit tweak TFC from (r+2) BC

The optimal (n-bit) security of this F̃r construction is similar to Theorem 3 for the
F̃2 construction with a 2n-bit tweak. Therefore, we omit the proof.

6 Conclusion
In this work, we study the problem of building tweakable forkciphers from an n-bit block
cipher. We begin by proposing a design, F̃1, for an n-bit tweak and proving its n-bit
security. Next, we propose another design, F̃2, for a 2n-bit tweak and prove its n-bit
security. Finally, we propose a F̃r design for an rn-bit tweak, achieving n-bit security.
To the best of our knowledge, this is the first design proposal for building tweakable
forkciphers from block ciphers. We have proved the security of all these constructions by
assuming the underlying block cipher is an ideal cipher.

An interesting direction for future work is to consider designing efficient forkciphers
from block ciphers in the standard model. Another promising approach is to design
forkciphers based on other primitives, using block ciphers in hash-based designs such as
LRW2 [LRW02,LST12].

20 Tweakable ForkCipher from Ideal Block Cipher

References
[ABL+14] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha,

and Kan Yasuda. How to securely release unverified plaintext in authenticated
encryption. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology
– ASIACRYPT 2014, pages 105–125, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg. doi:10.1007/978-3-662-45611-8_6.

[ABPV21] Elena Andreeva, Amit Singh Bhati, Bart Preneel, and Damian Vizár. 1, 2, 3,
fork: Counter mode variants based on a generalized forkcipher. IACR Trans.
Symmetric Cryptol., 2021(3):1–35, 2021. URL: https://doi.org/10.46586
/tosc.v2021.i3.1-35, doi:10.46586/TOSC.V2021.I3.1-35.

[ABV21] Elena Andreeva, Amit Singh Bhati, and Damian Vizár. Nonce-misuse security
of the saef authenticated encryption mode. In Orr Dunkelman, Michael J.
Jacobson, Jr., and Colin O’Flynn, editors, Selected Areas in Cryptography,
pages 512–534, Cham, 2021. Springer International Publishing. doi:10.100
7/978-3-030-81652-0_20.

[ALP+19] Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar,
Arnab Roy, and Damian Vizár. Forkcipher: A New Primitive for Authenticated
Encryption of Very Short Messages. In Steven D. Galbraith and Shiho Moriai,
editors, ASIACRYPT II, volume 11922 of LNCS, pages 153–182. Springer,
2019. doi:10.1007/978-3-030-34621-8_6.

[ARVV18] Elena Andreeva, Reza Reyhanitabar, Kerem Varici, and Damian Vizár. Forking
a blockcipher for authenticated encryption of very short messages. Cryptology
ePrint Archive, Paper 2018/916, 2018. https://eprint.iacr.org/2018/916.
URL: https://eprint.iacr.org/2018/916.

[AW23] Elena Andreeva and Andreas Weninger. A forkcipher-based pseudo-random
number generator. In Mehdi Tibouchi and XiaoFeng Wang, editors, Applied
Cryptography and Network Security, pages 3–31, Cham, 2023. Springer Nature
Switzerland. doi:10.1007/978-3-031-33491-7_1.

[BAV24] Amit Singh Bhati, Elena Andreeva, and Damian Vizár. OAE-RUP: A strong
online AEAD security notion and its application to SAEF. In Clemente Galdi
and Duong Hieu Phan, editors, Security and Cryptography for Networks - 14th
International Conference, SCN 2024, Amalfi, Italy, September 11-13, 2024,
Proceedings, Part II, volume 14974 of Lecture Notes in Computer Science,
pages 117–139. Springer, 2024. doi:10.1007/978-3-031-71073-5_6.

[BBJ+19] Subhadeep Banik, Jannis Bossert, Amit Jana, Eik List, Stefan Lucks, Willi
Meier, Mostafizar Rahman, Dhiman Saha, and Yu Sasaki. Cryptanalysis of
forkaes. In Applied Cryptography and Network Security: 17th International
Conference, ACNS 2019, Bogota, Colombia, June 5–7, 2019, Proceedings, page
43–63, Berlin, Heidelberg, 2019. Springer-Verlag. doi:10.1007/978-3-030-2
1568-2_3.

[BDL20] Augustin Bariant, Nicolas David, and Gaëtan Leurent. Cryptanalysis of
Forkciphers. IACR Transactions on Symmetric Cryptology, 2020(1):233–265,
May 2020. URL: https://inria.hal.science/hal-03135299, doi:10.131
54/tosc.v2020.i1.233-265.

[BPA+23] Amit Singh Bhati, Erik Pohle, Aysajan Abidin, Elena Andreeva, and Bart
Preneel. Let’s go eevee! A friendly and suitable family of AEAD modes

https://doi.org/10.1007/978-3-662-45611-8_6
https://doi.org/10.46586/tosc.v2021.i3.1-35
https://doi.org/10.46586/tosc.v2021.i3.1-35
https://doi.org/10.46586/TOSC.V2021.I3.1-35
https://doi.org/10.1007/978-3-030-81652-0_20
https://doi.org/10.1007/978-3-030-81652-0_20
https://doi.org/10.1007/978-3-030-34621-8_6
https://eprint.iacr.org/2018/916
https://eprint.iacr.org/2018/916
https://doi.org/10.1007/978-3-031-33491-7_1
https://doi.org/10.1007/978-3-031-71073-5_6
https://doi.org/10.1007/978-3-030-21568-2_3
https://doi.org/10.1007/978-3-030-21568-2_3
https://inria.hal.science/hal-03135299
https://doi.org/10.13154/tosc.v2020.i1.233-265
https://doi.org/10.13154/tosc.v2020.i1.233-265

Sougata Mandal 21

for iot-to-cloud secure computation. In Weizhi Meng, Christian Damsgaard
Jensen, Cas Cremers, and Engin Kirda, editors, Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2023,
Copenhagen, Denmark, November 26-30, 2023, pages 2546–2560. ACM, 2023.
doi:10.1145/3576915.3623091.

[BSL24] Francesco Berti, François-Xavier Standaert, and Itamar Levi. Authenticity in
the presence of leakage using a forkcipher. Cryptology ePrint Archive, Paper
2024/1325, 2024. URL: https://eprint.iacr.org/2024/1325.

[DDDM23] Nilanjan Datta, Shreya Dey, Avijit Dutta, and Sougata Mandal. Cascading
four round LRW1 is beyond birthday bound secure. IACR Trans. Symmetric
Cryptol., 2023(4):365–390, 2023. URL: https://doi.org/10.46586/tosc.v2
023.i4.365-390, doi:10.46586/TOSC.V2023.I4.365-390.

[DDLM24] Nilanjan Datta, Avijit Dutta, Eik List, and Sougata Mandal. FEDT: Forkcipher-
based leakage-resilient beyond-birthday-secure AE. IACR Communications in
Cryptology, 1(2), 2024. doi:10.62056/akgyl86bm.

[DDML24] Nilanjan Datta, Avijit Dutta, and Cuauhtemoc Mancillas-López. LightMAC:
Fork it and make it faster, 2024. URL: https://www.aimsciences.org/ar
ticle/id/63b67a33aa1db67769a19b81, doi:10.3934/amc.2022100.

[DGL22] Avijit Dutta, Jian Guo, and Eik List. Forking sums of permutations for
optimally secure and highly efficient PRFs. Cryptology ePrint Archive, Paper
2022/1609, 2022. https://eprint.iacr.org/2022/1609. URL: https:
//eprint.iacr.org/2022/1609.

[FFL12] Ewan Fleischmann, Christian Forler, and Stefan Lucks. Mcoe: A family of
almost foolproof on-line authenticated encryption schemes. In Anne Canteaut,
editor, Fast Software Encryption - 19th International Workshop, FSE 2012,
Washington, DC, USA, March 19-21, 2012. Revised Selected Papers, volume
7549 of Lecture Notes in Computer Science, pages 196–215. Springer, 2012.
doi:10.1007/978-3-642-34047-5_12.

[JKNS24] Ashwin Jha, Mustafa Khairallah, Mridul Nandi, and Abishanka Saha. Tight
security of TNT and beyond - attacks, proofs and possibilities for the cascaded
LRW paradigm. In Marc Joye and Gregor Leander, editors, Advances in
Cryptology - EUROCRYPT 2024 - 43rd Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Zurich, Switzerland,
May 26-30, 2024, Proceedings, Part I, volume 14651 of Lecture Notes in
Computer Science, pages 249–279. Springer, 2024. doi:10.1007/978-3-031
-58716-0_9.

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block
ciphers: The TWEAKEY framework. In Palash Sarkar and Tetsu Iwata,
editors, Advances in Cryptology - ASIACRYPT 2014 - 20th International
Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings, Part
II, volume 8874 of Lecture Notes in Computer Science, pages 274–288. Springer,
2014. doi:10.1007/978-3-662-45608-8_15.

[KLL20] Hwigyeom Kim, Yeongmin Lee, and Jooyoung Lee. Forking tweakable even-
mansour ciphers. IACR Trans. Symmetric Cryptol., 2020(4):71–87, 2020. URL:
https://doi.org/10.46586/tosc.v2020.i4.71-87, doi:10.46586/TOSC.
V2020.I4.71-87.

https://doi.org/10.1145/3576915.3623091
https://eprint.iacr.org/2024/1325
https://doi.org/10.46586/tosc.v2023.i4.365-390
https://doi.org/10.46586/tosc.v2023.i4.365-390
https://doi.org/10.46586/TOSC.V2023.I4.365-390
https://doi.org/10.62056/akgyl86bm
https://www.aimsciences.org/article/id/63b67a33aa1db67769a19b81
https://www.aimsciences.org/article/id/63b67a33aa1db67769a19b81
https://doi.org/10.3934/amc.2022100
https://eprint.iacr.org/2022/1609
https://eprint.iacr.org/2022/1609
https://eprint.iacr.org/2022/1609
https://doi.org/10.1007/978-3-642-34047-5_12
https://doi.org/10.1007/978-3-031-58716-0_9
https://doi.org/10.1007/978-3-031-58716-0_9
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.46586/tosc.v2020.i4.71-87
https://doi.org/10.46586/TOSC.V2020.I4.71-87
https://doi.org/10.46586/TOSC.V2020.I4.71-87

22 Tweakable ForkCipher from Ideal Block Cipher

[LRW02] Moses D. Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable block
ciphers. In Moti Yung, editor, Advances in Cryptology - CRYPTO 2002, 22nd
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 18-22, 2002, Proceedings, volume 2442 of Lecture Notes in Computer
Science, pages 31–46. Springer, 2002. doi:10.1007/3-540-45708-9_3.

[LS13] Rodolphe Lampe and Yannick Seurin. Tweakable blockciphers with asymptoti-
cally optimal security. In Shiho Moriai, editor, Fast Software Encryption - 20th
International Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised
Selected Papers, volume 8424 of Lecture Notes in Computer Science, pages
133–151. Springer, 2013. doi:10.1007/978-3-662-43933-3_8.

[LST12] Will Landecker, Thomas Shrimpton, and R. Seth Terashima. Tweakable
blockciphers with beyond birthday-bound security. In Reihaneh Safavi-Naini
and Ran Canetti, editors, Advances in Cryptology - CRYPTO 2012 - 32nd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012.
Proceedings, volume 7417 of Lecture Notes in Computer Science, pages 14–30.
Springer, 2012. doi:10.1007/978-3-642-32009-5_2.

[Men15a] Bart Mennink. Optimally secure tweakable blockciphers. In Gregor Leander,
editor, Fast Software Encryption - 22nd International Workshop, FSE 2015,
Istanbul, Turkey, March 8-11, 2015, Revised Selected Papers, volume 9054
of Lecture Notes in Computer Science, pages 428–448. Springer, 2015. doi:
10.1007/978-3-662-48116-5_21.

[Men15b] Bart Mennink. Optimally secure tweakable blockciphers. Cryptology ePrint
Archive, Paper 2015/363, 2015. URL: https://eprint.iacr.org/2015/363.

[Ost90] Rafail Ostrovsky. Efficient computation on oblivious rams. In Harriet Ortiz,
editor, Proceedings of the 22nd Annual ACM Symposium on Theory of Com-
puting, May 13-17, 1990, Baltimore, Maryland, USA, pages 514–523. ACM,
1990. doi:10.1145/100216.100289.

[Pat08] Jacques Patarin. The "coefficients h" technique. In Roberto Maria Avanzi,
Liam Keliher, and Francesco Sica, editors, Selected Areas in Cryptography, 15th
International Workshop, SAC 2008, Sackville, New Brunswick, Canada, August
14-15, Revised Selected Papers, volume 5381 of Lecture Notes in Computer
Science, pages 328–345. Springer, 2008. doi:10.1007/978-3-642-04159-4
_21.

[Rog04] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and re-
finements to modes OCB and PMAC. In Pil Joong Lee, editor, Advances in
Cryptology - ASIACRYPT 2004, 10th International Conference on the Theory
and Application of Cryptology and Information Security, Jeju Island, Korea,
December 5-9, 2004, Proceedings, volume 3329 of Lecture Notes in Computer
Science, pages 16–31. Springer, 2004. doi:10.1007/978-3-540-30539-2_2.

[SS23] Yaobin Shen and François-Xavier Standaert. Optimally secure tweakable block
ciphers with a large tweak from n-bit block ciphers. IACR Trans. Symmetric
Cryptol., 2023(2):47–68, 2023. URL: https://doi.org/10.46586/tosc.v2
023.i2.47-68, doi:10.46586/TOSC.V2023.I2.47-68.

[WGZ+16] Lei Wang, Jian Guo, Guoyan Zhang, Jingyuan Zhao, and Dawu Gu. How
to build fully secure tweakable blockciphers from classical blockciphers. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology - ASI-
ACRYPT 2016 - 22nd International Conference on the Theory and Application

https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/978-3-662-43933-3_8
https://doi.org/10.1007/978-3-642-32009-5_2
https://doi.org/10.1007/978-3-662-48116-5_21
https://doi.org/10.1007/978-3-662-48116-5_21
https://eprint.iacr.org/2015/363
https://doi.org/10.1145/100216.100289
https://doi.org/10.1007/978-3-642-04159-4_21
https://doi.org/10.1007/978-3-642-04159-4_21
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.46586/tosc.v2023.i2.47-68
https://doi.org/10.46586/tosc.v2023.i2.47-68
https://doi.org/10.46586/TOSC.V2023.I2.47-68

Sougata Mandal 23

of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part I, volume 10031 of Lecture Notes in Computer Science, pages
455–483, 2016. doi:10.1007/978-3-662-53887-6_17.

https://doi.org/10.1007/978-3-662-53887-6_17

	Introduction
	Design approach for Forkcipher
	Contributions

	Preliminaries
	Forkciphers

	 Designing TFC with n-bit tweak using three Block Cipher
	Designing TFC with 2n-bit tweak using four Block Cipher
	Designing TFC with rn-bit tweak using (r+2) Block Cipher
	Conclusion
	References

