
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 3, 26 pages.

https://doi.org/10.62056/ay4c3txol7
Check for updates

Leakage Model-flexible Deep Learning-based
Side-channel Analysis

Lichao Wu1 , Azade Rezaeezade2 , Amir Ali-pour3 ,
Guilherme Perin4 and Stjepan Picek5

1 Technical University of Darmstadt, Darmstadt, Germany
2 Delft University of Technology, Delft, The Netherlands

3 École de technologie supérieure, Montreal, Canada
4 Leiden University, Leiden, The Netherlands

5 Radboud University, Nijmegen, The Netherlands

Abstract. Profiling side-channel analysis has gained widespread acceptance in both
academic and industrial realms due to its robust capacity to unveil protected secrets,
even in the presence of countermeasures. To harness this capability, an adversary must
access a clone of the target device to acquire profiling measurements, labeling them
with leakage models. The challenge of finding an effective leakage model, especially
for a protected dataset with a low signal-to-noise ratio or weak correlation between
actual leakages and labels, often necessitates an intuitive engineering approach, as
otherwise, the attack will not perform well.
In this paper, we introduce a deep learning approach with a flexible leakage model,
referred to as the multi-bit model. Instead of trying to learn a pre-determined
representation of the target intermediate data, we utilize the concept of the stochastic
model to decompose the label into bits. Then, the deep learning model is used
to classify each bit independently. This versatile multi-bit model can adjust to
existing leakage models like the Hamming weight and Most Significant Bit while also
possessing the flexibility to adapt to complex leakage scenarios. To further improve
the attack efficiency, we extend the multi-bit model to profile all 16 subkey bytes
simultaneously, which requires negligible computational effort. The experimental
results show that the proposed methods can efficiently break all key bytes across four
considered datasets while the conventional leakage models fail. Our work signifies
a significant step forward in deep learning-based side-channel attacks, showcasing a
high degree of flexibility and efficiency with the proposed leakage model.
Keywords: Side-channel Analysis · Deep learning · Multi-bit model · Multi-task
learning

1 Introduction
Side-channel analysis (SCA) is a powerful tool for analyzing unintended leakages during
secret processing. Using a divide-and-conquer strategy, SCA categorizes leakage traces
to simplify the key search process. SCA in symmetric-key cryptography is commonly
divided into non-profiling and profiling attacks. Profiling attacks assume that the adversary
has complete control over a clone of the targeted device. With this clone, the adversary
can profile the side-channel behavior of the targeted device in advance and then use this
knowledge to extract secret information from the targeted device. Conversely, non-profiling
attacks assume that the adversary cannot access a duplicate of the targeted device. As
a result, the adversary must consider all measurements containing secret information

E-mail: stjepan.picek@ru.nl (Stjepan Picek)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-07-09 Accepted: 2024-09-02

https://doi.org/10.62056/ay4c3txol7
https://crossmark.crossref.org/dialog/?doi=10.62056/ay4c3txol7&domain=pdf&date_stamp=2024-09-30
https://orcid.org/0000-0002-7139-732X
https://orcid.org/0000-0002-5665-8472
https://orcid.org/0000-0002-7910-1159
https://orcid.org/0000-0003-3799-7636
https://orcid.org/0000-0001-7509-4337
mailto:stjepan.picek@ru.nl
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Leakage Model-flexible DLSCA

processing from the targeted device and then use statistical analysis to make correct
guesses of secret data.

Research in recent years has led to a remarkable leap forward in the efficacy of profiling
attacks, largely attributed to the growing role of deep learning (commonly denoting the
deep learning-based SCA as DLSCA). For instance, a dataset like the one introduced
in [BPS+20] that required significant effort to break a few years ago can now be broken
with single trace attacks [PWP22]. The effectiveness of deep learning in SCA stems from its
flexibility in identifying and characterizing leakages in the side-channel traces (originating
from the switching activities of transistors within the integrated circuit) and correlating
these leakages with variations in the data being processed. To make this happen, one
must label the collected traces based on an assumption about the underlying physical
leakage. Therefore, a function denoted as the leakage model is used for labeling the traces.
The leakage model should be selected wisely to reflect the feature of actual leakages,
thus strengthening the links between the underlying leakage and the processed data. A
more common method is to adopt pre-defined leakage models for all bits (such as the
Hamming weight or Identity) or specific bits (for instance, the most or least significant
bit) [WPP22, ZBHV19, Tim19, PWP22]. However, the existing leakage models may not
match the actual leakage, considering the diversity of actual implementations, measurement
setups, and leakage pre-processing techniques. Moreover, they impose a degree of pre-
existing conditions on bit significance, which may inadvertently reduce the flexibility of
the learning process. Stochastic models [SLP05] could be a good candidate for adapting
to the physical leakages, but they should incorporate dimension reduction techniques to
reduce the computation complexity; besides, when facing a more challenging dataset or
profiling dataset number is insufficient, their performance could be mediocre. We provide
more details in Section 4.1.

In this work, we propose a flexible leakage model, denoted as multi-bit model, that
circumvents the constraints of traditional pre-defined leakage models, allowing for dynamic
adjustment of the leakage model in real-time during the profiling phase. Our extensive
analysis underscores the potential of the multi-bit model to evolve into an optimal leakage
model that fits the physical leakages, facilitating outstanding attack performance and
effective leakage assessment. This work also makes a significant step in simplifying the
conventional profiling SCA process. Typically, SCA requires attacking each secret byte
separately to reveal the entire secret, such as in the case of AES, where 16 separate attacks
are needed. We streamline this process into a single model training session. This is
achieved through our multi-byte multi-bit model, which simultaneously targets all subkeys.
This model stands out for its capability to branch from a primary framework into multiple
sub-branches, enabling concurrent attacks on various subkeys. To our knowledge, this is
the first time in the field where all 16 secret key bytes can be attacked simultaneously,
marking a major improvement from the state-of-the-art methods that focus on individual
byte attacks in computation efficiency and attack performance. Together with the multi-bit
model that is free from the constraints of pre-defined models and assumptions, our proposed
method is a highly promising and robust solution in DLSCA.

Our main contributions are:

1. We analyze the limitations of the existing profiling attacks, then propose the multi-bit
model that allows more flexibility and gives insight into leakage assessment.

2. We propose a new attack method, multi-byte multi-bit DLSCA, that can simultane-
ously profile all subkeys (in our case, 16 AES subkeys).

3. We perform case studies to showcase our analysis, which is further validated on four
publicly available datasets and an advanced hardware AES implementation [SC23]
from CHES CTF 2023.

L. Wu, A. Rezaeezade, A. Ali-pour, G. Perin, and S. Picek 3

4. We provide a hyperparameter study on several relevant factors for the proposed
method: data augmentation, batch size, and the number of training epochs. The
results confirm the robustness of our method to diverse settings, and data augmenta-
tion is a crucial factor in mounting powerful multi-bit model-based attacks. Finally,
the multi-bit model provides a novel leakage assessment method.

The source code is available in https://github.com/lichao-wu9/MMB.
The remainder of this paper is structured as follows. We provide the necessary

background information in Section 2. Following that, Section 3 discusses related works. In
Section 4, we outline the limitations of the current methods and describe the proposed
method in detail. Section 5 provides experimental results using five different datasets.
The discussion on the proposed method is given in Section 6. Finally, we summarize our
findings and discuss potential avenues for future research in Section 7.

2 Preliminaries

2.1 Notation
We use calligraphic letters such as X to represent sets. The corresponding upper-case
letters denote random variables (X) and random vectors (X) over X . The realizations of
X and X are represented by lower-case letters (x, x), respectively.

We use T to represent a side-channel dataset, a collection of side-channel measurements.
Each measurement (side-channel trace) ti is associated with an input value (either plaintext
or ciphertext) denoted by di and a key represented as ki, or ki,j and di,j when partial key
recovery on byte j is under consideration. A key candidate is denoted by k, with its value
drawn from the key space K. The correct key is denoted by k∗. Every trace ti contains
multiple features called samples or points of interest. The dataset is partitioned into a
training (or profiling) set of size N and an attack (or test) set of size Q. In the context
of deep learning techniques, we write θ to denote the vector of parameters learned in a
profiling model (for example, the weights and biases in neural networks).

2.2 Threat Model
We assume an adversary has an open and cloned device with a target cipher, and he/she can
control the key and plaintext. The adversary could send commands to perform encryption
or decryption operations. To launch attacks, the adversary first measures multiple leakage
traces from the cloned device and builds a profiling model by mapping the leakage traces
and labels of intermediate data that is constructed based on known keys and a priori
assumption of the leakage model. Next, he/she inputs the leakage traces measured from
the attack device (unknown key) to the profiling model to recover the secret information.
This paper evaluates five datasets; besides the SMAesH dataset [SC23], we assume that
an attacker does not have knowledge of mask shares.

2.3 Profiling Side-channel Analysis
The two most prevalent types are a Gaussian template for the template attack (TA)
and machine learning (deep neural network) models for deep learning-based SCA. The
TA employs Bayes’ theorem to make predictions, dealing with multivariate probability
distributions, since the leakage over consecutive time samples is not independent [CRR03].
This attack operates under the assumption that the traces depend on the F features given
the target class. Thus, the posterior probability for each class value y can be computed as

https://github.com/lichao-wu9/MMB

4 Leakage Model-flexible DLSCA

follows:
p(Y = y|X = x) = p(Y = y)p(X = x|Y = y)

p(X = x) , (1)

where X denotes continuous measurements (i.e., ti) and Y denotes discrete class variables.
The discrete output’s number of classes c depends on the leakage model and the crypto-
graphic algorithm. As such, the discrete probability p(Y = y) equals its sample frequency,
whereas p(X = x|Y = y) reflects a density function. In practice, p(X = x|Y = y) is
generally assumed to follow a (multivariate) normal distribution and is parameterized by
the mean x̄y and covariance matrix Σy:

p(X = x|Y = y) = 1√
(2π)F |Σy|

e− 1
2 (x−x̄y)T Σ−1

y (x−x̄y). (2)

The stochastic attack utilizes linear regression instead of probability density estima-
tion [SLP05]. One critical aspect of the stochastic attack is the choice of regressors (i.e.,
base functions) [HKSS12]. A natural choice in the SCA context is the bitwise selection of
the intermediate variable.

For DLSCA, deep learning is used to model p(Y = y|X = x). Based on the data
and labeling, such algorithms train a model fθ to predict labels on previously unseen
data. Most of the supervised learning methods follow the Empirical Risk Minimization
(ERM) framework, where the model parameters θ are obtained by solving the optimization
problem:

arg min
θ

1
N

N∑
i

L(fθ(ti), yi), (3)

where L is the loss function. The trained model fθ is then used to predict classes y (more
precisely, the probabilities that a certain class would be predicted) based on the previously
unseen set of traces x of size Q. It is worth noting that while the template attack requires
the assumption of a particular distribution of the traces, DLSCA does not require such
assumptions, giving it more flexibility to handle complex leakages. However, DLSCA
may require more computational resources and profiling traces, which might limit its
applicability in some scenarios (while, in practice, this should not be a problem due to
GPU support for deep learning algorithms).

2.4 Evaluating the Attack Performance
Upon completing a profiling attack, the result is presented as a two-dimensional matrix with
dimensions equivalent to Q× c. A common practice is to use the maximum log-likelihood
distinguisher to create a cumulative sum S(k) for each key candidate k:

S(k) =
Q∑

i=1
log(pi,y). (4)

Here, pi,y denotes the probability vector given a key k and input di, the resulting class is
y ∈ Y. The class y is derived from the key and input through a cryptographic function
and a leakage model (e.g., the Hamming weight of the Sbox output).

The output of an attack is a key guessing vector g = [g1, g2, . . . , g|K|], which is computed
for Q traces in the attack phase. This vector arranges the key candidates in descending
order of probability, with g1 being the most likely candidate and g|K| being the least likely.

Guessing entropy (GE), the average position of k∗ within the key guessing vector g, is
usually employed to estimate the effort required to uncover the secret key k∗ [SMY09]. In
this paper, if an attack method reaches the key rank of zero (meaning that the correct key
ranks first), we calculate the required number of attack traces for this key rank to provide
us a precise estimation of the attack performance, denoted as TGE0.

L. Wu, A. Rezaeezade, A. Ali-pour, G. Perin, and S. Picek 5

3 Related Work
The side-channel analysis domain has been immersed in the study of profiling attacks
for over two decades. Chari et al. pioneered this area by introducing the concept of the
template attack (TA), which is considered the most powerful approach from an information-
theoretic perspective [CRR03]. Schindler et al. proposed stochastic models, also known as
linear regression-based profiling attacks, where the authors approximated the real leakage
function within a suitable vector subspace [SLP05]. To address the issue of insufficient
measurements per class for TA, pooling all covariance matrices into a single one is a viable
solution [JW02]. Choudhary and Kuhn, for example, investigated the pooled template
attack and achieved performance improvements in secret recovery and computational
cost [CK13]. A feature engineering phase is often necessary to reduce the number of points
of interest, thus avoiding the need to profile with complicated templates. This can be
achieved using machine learning-based feature selection [PHJB19], dimensionality reduction
methods such as Principal Component Analysis (PCA) [WEG87, APSQ06, BHvW12],
Linear Discriminant Analysis (LDA) [SA08], or Sum of Squared Pairwise T-differences
(SOST) [GLRP06], or a combination of these techniques [CDSU23].

The landscape of profiling attacks has evolved significantly by incorporating machine
learning (ML) techniques. Initial ML methodologies incorporated techniques such as
random forest [LMBM13], support vector machines [HGM+11] and naive Bayes [PHG17].
The performance of these techniques often outperformed (or at least matched) that of
the template attack and stochastic models, laying the groundwork for the advent of more
complex ML approaches. The focus of the SCA community began to pivot toward deep
learning in 2016, following the seminal work of Maghrebi et al. [MPP16]. Incorporating deep
learning alleviated some challenges related to countermeasures and feature engineering, yet
it also introduced difficulties associated with tuning deep learning algorithms. Despite this,
early research by Cagli et al. [CDP17] and Kim et al. [KPH+19] highlighted the potential
of convolutional neural networks (CNNs) in breaking protected targets. Techniques for
improving attack performance using regularization were also explored [KPH+19, RB24,
HK18]. Subsequent works [ZBHV19, WAGP20, PWP22] delved deeper into the design
methodologies for CNNs, achieving unprecedented attack performance on datasets secured
by masking and hiding countermeasures. Unfortunately, most of studies discussed so
far employ pre-defined leakage models to label leakage traces. These may not necessarily
align well with the target dataset. For example, Perin et al. failed to use the Identity
leakage model to break the CHES_CTF dataset [PWP22]. Wu et al. pointed out that
the different fixed keys in the training and validation sets for the CHES_CTF dataset
result in the inefficiency of the Identity leakage model [WWK+23], then incorporated
label distribution into the profiling phase to address this limitation. Besides, the leakage
modeling was explored with the stochastic model [SLP05]. Stochastic models assume
that the leakage function can be formed as the sum of a deterministic component and a
random one. During the profiling phase, these two components of the leakage function are
approximated independently. Building on this work, Zaid et al. developed a conditional
variational autoencoder methodology for stochastic attacks [ZBC+23]. This approach
mitigates the black-box aspect of deep learning and facilitates a more straightforward
process for architectural design. Recently, Zhang et al. introduced a multi-label deep
learning-based SCA that treats each bit in a byte as a separate label [ZXF+20]. Then
use all these labels separately as a single-bit leakage model to decide about a byte of
intermediate value. Their main contribution is leveraging an ensemble using multiple
labels. However, the reasoning behind the application and the method of usage is different
from ours. Finally, the performance improvement is insignificant (detailed in Section 6).

So far, the predominant focus of the research has been treating the optimization of the
labeling function (leakage model) as a task distinct from training the profiling model. This
leaves a research gap as the unification of the profiling model and labeling function has not

6 Leakage Model-flexible DLSCA

been properly addressed. Moreover, the performance enhancements over methods based
on pre-defined leakage models are unclear, particularly for complex datasets incorporating
countermeasures. For details about DLSCA and challenges to be addressed, we refer
readers to [PPM+23].

4 Leakage Model-flexible DLSCA
4.1 Physical Leakages Estimation
Let us consider a leaking device with a secret key byte k∗. The cryptographic operations
involve ki and (plain or cipher) text byte di (or ki,m and di,m when byte m is attacked),
taken as an n-bit word (typically n = 8 in related works as most of DLSCA considers AES,
which is a byte-oriented cipher). In this case, the real and unknown leakage function ψ
applies to intermediate data y = f(ki, di) and some additive noise Z, modeled as a normal
random variable Z ∼ N (0, σ2). Eq. (5) gives the resulting leakages.

ti = ψ(f(ki, di)) + Z. (5)
The goal of an adversary is to learn the function ψ, which maps the finite set Fn

2 = {0, 1}n

to the set of real numbers R. In DLSCA, the output variables are represented by sensitive
operations, such as Sbox input or output of the AES cipher. Then, we can rewrite Eq. (3)
as Eq. (6):

θ = arg min
θ

1
N

N∑
i

L(fθ(ti), ψ̂(f(ki, di)), (6)

where ψ̂ denotes the labeling function that estimates the physical leakages involving
f(ki, di). Since ψ̂ constructs the true label for a profiling model, it is critical for the
effectiveness of an attack. There are two ways to estimate the physical leakages: numerical
approximation or making hypotheses.

The numerical approximation of the leakage model closely adheres to the principles of
stochastic attacks. Specifically, stochastic attacks strive to find an approximate function,
ψ̂, that is as close as possible to the unknown true function, ψ. Assuming ψ as a pseudo-
boolean function, it can be constructed as a linear combination of monomial basis vectors
u ∈ Fn

2 . Consequently, a set of real number coefficients au exists such that for a given
sensitive intermediate value Y ∈ Fn

2 , the leakage model can be reformulated as:

ψ̂(y) =
∑

u∈F2n

au · gu(y), au ∈ R, (7)

where gu signifies the base function of the intermediate data. The prevalent assumption is
that the leakage bytes rely on the 8 bits. Therefore, the base functions become [1, y[1],
y[2], · · · , y[8]], with y[j] representing the jth bit of y. Thus, ψ can be approximated as a
multivariate polynomial in the bit-coordinate y[j] with coefficients belonging to R. The
typical method for calculating the coefficient au involves employing the ordinary least
squares (OLS) method [CK15, SKS09].

However, Eq. (7) also unveils the core limitations of the stochastic attack. This model
approximates the linear portion of ψ using base functions but fails to encompass non-linear
parts. Furthermore, it neglects potential multivariate key-dependent noise terms. These
two constraints limit the discriminative power when identifying different leakages, leading
to mediocre performance when, for instance, dealing with low numbers of side-channel
traces [GLRP06].

The leakage model hypothesis, widely used in academia and industry, involves modeling
leakages based on certain hypotheses of bit coefficients following Eq. (7). For instance, the
following leakage models are commonly used to construct ψ̂:

L. Wu, A. Rezaeezade, A. Ali-pour, G. Perin, and S. Picek 7

• Hamming distance (HD) and Hamming weight (HW) model posit that real
power consumption is proportional to the number of bit transitions or varies when
storing 1 and 0, assuming each bit equally contributes to the leakage variation.

• Identity (ID) model uses intermediate values as labels to differentiate power traces.
This model assumes different importance of bits.

• Most/Least Significant Bit model assumes the Most/Least Significant Bit
(MSB/LSB) is the only factor in leakage changes.

Depending on the leakage model being used, the architecture of deep learning differs,
especially the output layer. Figure 1 shows different characterizations of the output model,
where a representation of a sub-byte (HW or ID) is attacked directly, and the bit model,
where a single bit is attacked. The state-of-the-art DLSCA relies on a good estimation of
leakage models, but the current forms of DLSCA do not attempt to characterize/assess
the leakage directly as they were constructed based on assumptions about the true leakage
model, such as the HW model or ID model. For instance, DLSCA cannot answer the
question: “Is bit 2 of target data leaking?”. With an imperfect leakage model as the
label of a deep learning model, one can hardly reach the optimal attack performance,
meaning that the estimated leakage model used for labeling and the true leakage model in
the targeted cryptographic operation match with high probability. A common practice
is brute-forcing possible leakage models and selecting the best ones to report. Such an
approach is problematic because of its time-consuming nature. Meanwhile, conventional
profiling SCA relies on, for instance, setting a fixed key on the profiling device to assess each
leakage model, potentially leading to stronger attack assumptions. Although evaluation
metrics, such as loss, accuracy, or SCA metrics [GBTP08, BHM+19, ZZN+20, WWK+23],
could be an option to assess the black-box attack, the result is not as indicative as, for
instance, guessing entropy, which directly represents the attack performance [PHJ+18].

25
5

25
410

Byte model (ID)

… …

Byte model (HW)

H
W

 0

H
W

 1

H
W

 2

H
W

 3

H
W

 4

H
W

 5

H
W

 6

H
W

 7

H
W

 8

Bit model
B

it
X

Figure 1: Conventional DLSCA models.

Acknowledging the limitations of the aforementioned methods, an ideal profiling model
would require two core capabilities: 1) learning both linear and non-linear aspects of
leakage features and 2) enhanced flexibility in learning leakages, avoiding rigid adherence
to a pre-defined leakage model. In light of these requirements, a more innate resolution
emerges, which involves harnessing the potential of deep learning models. These models,
noted for their adeptness in drawing out both linear and non-linear features, can be tailored
to ascertain the importance of each bit independently, thus adequately fulfilling both
requirements.

4.2 Multi-bit Model
The multi-bit model disassembles a byte into separate bits, where each bit is learned
individually. Formally, assuming byte m is attacked, the learning objective is:

θm = arg min
θ

1
N

N∑
i

L(fθ(ti), b(f(ki,m, di,m))), (8)

8 Leakage Model-flexible DLSCA

where function b binarizes an intermediate data to a finite set Fn
2 = {0, 1}n; ki,m and

di,m stand for the m-th byte in a key vector ki and a plaintext vector di, respectively.
Therefore, Eq. (8) can be rewritten as:

θm =

arg minθm

1
N

∑N
i L(fθm

(ti), b(f(ki,m, di,m))[0]),
arg minθm

1
N

∑N
i L(fθm

(ti), b(f(ki,m, di,m))[1]),
· · ·
arg minθm

1
N

∑N
i L(fθm(ti), b(f(ki,m, di,m))[n]).

(9)

Given a probability of each bit with a leakage trace ti, the probability of intermediate
data y can be represented by:

p(y|ti) =
n∏
j

p(b(f(ki,m, di,m))[j]|ti; θm). (10)

Eq. (9) and Eq. (10) are illustrated in Figure 2. The multi-bit model can be considered
a concatenation of bit models that cover all n bits from a side-channel perspective (here, we
assume n = 8, targeting a single byte). Thanks to its ability to learn each bit, the proposed
multi-bit model embodies characteristics shared with both byte (e.g., HW and ID) and bit
models (e.g., LSB and MSB) discussed in the previous section: it bears similarities to byte
models in that all bits within a byte are taken into account, and akin to bit mode, the bits
are treated individually.

On the other hand, the distinguishing features render the multi-bit model particularly
advantageous for DLSCA. Indeed, unlike byte models, the multi-bit model does not enforce
any pre-conditions on bit importance. The multi-bit model offers flexibility to DLSCA
in learning and weighing each bit, thus, sharing more similarity to the stochastic model
discussed in Section 4.1. It can easily adapt to any of the existing leakage models, such as
the Hamming weight model, where the probability of each bit should be above 50% with
the same value, or the LSB leakage model, where only p(b(ki,m, di,m)[0]|ti; θm) moving
beyond 50%, while the rest remains unchanged.

B
it

0

B
it

1

B
it

2

B
it

3

B
it

4

B
it

5

B
it

6

B
it

7

Multi-bit model

B
it

0

B
it

1

Bit model

B
it

7

…

…

Figure 2: Multi-bit model.

To demonstrate the effectiveness of the multi-bit model, we present attack results with
a simulated dataset comprising different leakages following Eq. (11).

leakage =

Case1 : y
Case2 : hw(y)
Case3 :

∑5
i=2 b(y)[i]

Case4 :
∏3

i=0 b(y)[i] +
∏7

i=4 b(y)[i]

+ Z, (11)

where y represents the target sensitive data y = Sbox(di ⊕ k∗), di ∈ D; di and k∗ denote
a random plaintext byte and a fixed key byte, respectively. Function b is a binarization
function. Noise Z is added to all features with Z ∼ N (0, σ2). To ensure the noise has the

L. Wu, A. Rezaeezade, A. Ali-pour, G. Perin, and S. Picek 9

same effect on each test case, the leakage is normalized between 0 and 1. A total of 10 000
traces were simulated for each test case.

Template attack is used for the benchmark thanks to its interpretable nature. The
multi-bit profiling model is constructed by building a Gaussian template on each bit
separately1; the bit predictions form the probability of a byte following Eq. (10).

We first test the flexibility of the multi-bit model in generalizing to leakage that only
leaks ID and HW (cases 1 and 2 in Eq. (11)). σ is set to 0.1 for the low noise setting. The
accuracy of each bit is shown in Table 1. Aligned with our expectations, the HW leakages
lead to similar accuracy of each bit, indicating the equal contribution to the actual leakage;
bit7 of the ID leakage model has the highest accuracy; the rest follows descending order.
These observations confirm the ability of the multi-bit model to adjust to different leakage
models. Moreover, this result confirms our claim that the commonly used leakage models,
including HW and ID, have assumptions on the leakages of each bit.

Table 1: Bit accuracy for ID (case 1) and HW (case 2) leakages.
bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

ID 0.93 0.60 0.55 0.51 0.50 0.51 0.50 0.50

HW 0.61 0.60 0.60 0.60 0.60 0.60 0.60 0.61

Then, we consider a more realistic scenario for cases 3 and 4, where leakage comes from
only specific bits or a combination of bits. Additionally, σ is increased to 0.4 to simulate
the realistic noise effect, increasing the attack difficulties. The attack result is shown in
Figure 3. Here, the flexibility of the multi-bit model allows it to outperform the HW
and ID leakage models, with the leakage models becoming non-ideal in case 3 and case 4.
Especially when the real leakage is modeled complexly, as in case 4, the performance gap
between the multi-bit and byte models becomes larger. Indeed, the results thus clearly
show the advantage of using a multi-bit model in adjusting and extracting complex features.

12 0 --------------------------------
I
I
I

-·-·

100 --------------+-------------- :----- __

>-
c..

0

Byte model (HW)
Byte model (ID)
Multi-bit model

.b 80 ------------------ ------------
I

_______________________________ J_ ______________ _

C
Q) I

g' 60
·-
l/1
l/1

QJ
:J

�

I

I

300
Number of traces

I
I
I
I
I
I

I

400 500

(a) Case 3.

�

c..

+-'
C

QJ

0)
C
·-
l/1
l/1
QJ
:J

�

120 ----------------------------------- Byte model (HW)

Byte model (ID)

Multi-bit model

-·-·

80--

20-.---

0
0 100 200 300 400

Number of traces
500

(b) Case 4.

Figure 3: Guessing entropy for case 3 and case 4.

4.3 Multi-byte Multi-bit DLSCA
From a deep learning perspective, the multi-bit model compresses multiple bit models
into one model. This method aligns with multi-task learning (MTL), where multiple tasks
(bit classification) are learned simultaneously. MTL is a well-studied machine learning
technique that trains several learning tasks in parallel [Car97, Rud17]. Formally, given

1Note that all bits can be modeled with one profiling model with deep learning.

10 Leakage Model-flexible DLSCA

m learning tasks {Ti}m
i=1 where all the tasks or a subset of them are related, multi-task

learning aims to learn the m tasks together to improve the learning of a model for each task
Ti by leveraging information that result from the training of related tasks [Car97, ZY21].

From an SCA perspective, the side-channel leakages from a target device primarily
stem from the switching activities of transistors within the integrated circuit. Considering
that the modern CPU/crypto co-processor has at least an 8-bit bus width, different bit
classification tasks share a common feature representation based on the original features
corresponding to byte processing. multi-bit mode ensures a more powerful representation
learned for all the tasks. Meanwhile, the shared representation learned by the related tasks
during the training step spares the learning of redundant training parameters, improving
the model’s generalization performance.

Formally, Eq. (8) can be extended to Eq. (12) to attack n bytes.

θ =

arg minθ

1
N

∑N
i L(fθ(ti), b(f(ki,0, di,0))),

arg minθ
1
N

∑N
i L(fθ(ti), b(f(ki,1, di,1))),

· · ·
arg minθ

1
N

∑N
i L(fθ(ti), b(f(ki,n, di,n))).

(12)

We denote the deep learning model following Eq. (12) as multi-byte multi-bit DLSCA,
the corresponding leakage model is referred to as multi-byte multi-bit model (MMB).
MMB provides multiple advantages. First, the profiling model can better generalize new,
unseen leakages by sharing information across multiple bytes. When a profiling model
learns to perform multiple tasks, it can lead to capturing common underlying patterns
and features beneficial for all tasks. This characteristic makes MMB act as a form of
regularization and avoid overfitting to specific patterns or noise. Besides, It can help when
individual tasks have limited data. By jointly training on multiple tasks, the profiling
model can leverage the data from one task to improve its performance on another, leading
to more efficient use of available data.

One can take two approaches in constructing a multi-byte multi-bit DLSCA targeting
b bytes: 1) a single model with b ∗ 8 output nodes, and 2) a tree structure with a main
branch and b subbranches responsible for the classification of bits in each byte. Recall
that in a single n-bit multi-bit model, leakages for different bits may be found at the same
time, given that in the target operation, the n bits are processed simultaneously (e.g., n
= 8, considering a byte as the basic block). When extending to multiple bytes, we can
assume that the bits of each block are processed separately (fits the target software AES
implementations used in this paper). In that case, the second approach fits better, wherein
a dedicated model (a subbranch) is assigned to each sub-byte to handle its bits separately.
We acknowledge that the shared representation of different bytes could still exist. Thus,
the main branch is introduced to extract the general features useful for all subbranches.

The proposed architecture is shown in Figure 4. The main branch is responsible for
leakage processing and extraction of general features. After the main branch, several
multi-bit DLSCAs construct the subbranch for each target byte. The multi-byte multi-bit
DLSCA inherits the advantages of multi-bit model, namely, the flexible leakage model. In
addition, it brings several benefits. First, learning different tasks ensures that the main
branch only learns useful features for all subbranches. Moreover, it is computationally
efficient since the entire model has only n ∗ 8 output nodes, while the model in [Mag20]
would require n ∗ 256 outputs when attacking all sub-bytes. Knowing that the dimension
of the output layer could influence the hyperparameter tuning of a model, our approach
reduces the model size, thus increasing the learning efficiency.

Several practical aspects should be emphasized when executing real-world attacks.
Like traditional DLSCA, pre-processing leakage measurements is an indispensable step
toward an effective attack. Beyond simply normalizing the data, we have identified data
augmentation (Section 5.5.1) as the crucial element that drives the success of the proposed

L. Wu, A. Rezaeezade, A. Ali-pour, G. Perin, and S. Picek 11

Subbranch
B

it
0

B
it

1

B
it

2

B
it

3

B
it

4

B
it

5

B
it

6

B
it

7

Subbranch

B
it

0

B
it

1

B
it

2

B
it

3

B
it

4

B
it

5

B
it

6

B
it

7

Main branch

… …

Byte 0 Byte 15… …
Figure 4: Multi-byte multi-bit DLSCA.

attack. Data augmentation, used as a regularization technique, helps to deter the profiling
model from focusing excessively on specific features, allowing it to concentrate instead
of global features [Mag20]. Since data leakages are confined to a few features in the
realm of SCA, such methodologies can prevent the model from overfitting to non-pertinent
features [PSK+18, WJB20]. We present a hyperparameter study on data augmentation in
Section 5.5.1.

5 Experimental Results
This section focuses on investigating the attack performance using various leakage models.
In line with Section 4.1, we consider HW, ID, LSB, and MSB. For the proposed methods,
we include both multi-bit DLSCA and multi-byte multi-bit DLSCA in the benchmark.
To facilitate a fair comparison and offer a comprehensive overview of the general attack
performance, all 16 subkeys are attacked.

We use DLSCA to highlight the attack capacity with the multi-bit model. For a fair
comparison, the deep learning model and hyperparameters remain constant across all
attack methods. We acknowledge that tailoring deep learning models (or hyperparameter
tuning) for each dataset and method may enhance attack performance. However, this
approach also introduces more variables like model complexity and training effort, which
could increase the complexity of our benchmarking process significantly. According to the
No Free Lunch theorem [HP02], the only way to know which model is best is to evaluate
them all, which is impossible. As a result, when trying to see the influence of factors other
than the model selection and hyperparameters, the effect of selecting optimal solutions
can be neglected by picking a model that works well.

Given its excellent performance in various attack environments, we utilize a convolution
neural network based on [PWP22].2 Since their neural network is one of the best-performing
architectures based on our knowledge, we use the same neural network to attack with other
leakages models, i.e., HW, ID, LSB, and MSB, for benchmarking purposes. The network
structure includes two convolution blocks, each with a convolution layer (kernel numbers:
4, 32; size: 40, 8; stride: 20, 4, for each convolution layer, respectively), an average pooling
layer (size: 2; stride: 2), and a batch normalization layer. This is followed by two dense
layers with 32 neurons and an output layer with eight neurons. We use Scaled Exponential
Linear Unit (Selu) for the layer activation [KUMH17], except for the final layer, which uses
Softmax [Bri90] that converts a vector of n real numbers into a probability distribution of

2The deep learning models were implemented using Python 3.6, with the TensorFlow library version
2.6.0. Training algorithms were executed on a Nvidia GTX 1080TI GPU, managed by Slurm workload
manager version 19.05.4.

12 Leakage Model-flexible DLSCA

n possible outcomes. The batch size is set at 512; a hyperparameter study on its influence
is given in Section 5.5.2. When the multi-byte multi-bit model is applied, the main branch
includes convolution blocks, while each subbranch contains the remaining dense layers and
output layers.

Regarding the training epochs (the number of iterations that allow a profiling model
to adjust to input data and output labels), the DL model is trained for 200 epochs for
each key guess across all test cases. An evaluation of the number of training epochs can
be found in Section 5.5.3. To ensure a fair comparison, we apply data augmentation
to all DL-based attack methods, achieved by adding a layer right after the input layer
that randomly shifts the leakage measurement within a pre-defined augmentation level
(the maximum value of random shifting) of 5. We provide a detailed analysis of data
augmentation in Section 5.5.1.

As outlined in Section 2.4, we use guessing entropy to evaluate the attack performance
for each method. If an attack fails to break the target with the given number of attack
traces, its performance is denoted with an ’x’. Otherwise, we calculate the required number
of attack traces to achieve a guessing entropy of zero (TGE0). Each attack scenario is
tested ten times independently to minimize the influence of random elements (e.g., random
weight initialization) on the attack performance. The results are averaged to represent the
general performance of an attack method.

5.1 Datasets
Our experiments consider four datasets consisting of measurements that are software
targets protected with a Boolean masking countermeasure. We target the Sbox output for
all datasets. For all datasets, each key byte is unique (no duplicated key bytes).

ASCAD_F. This dataset contains the measurements from an 8-bit AVR microcontroller
running a masked AES-128 implementation [BPS+20].

ASCAD_R. This dataset uses the same measurement setup as ASCAD_F [BPS+20].
The difference is that ASCAD_R also provides traces with random keys (for the
profiling phase), providing more sample points per trace. There are also more
profiling and attack traces in ASCAD_R compared to ASCAD_F. As shown in
Table 2, we conduct training and attack with the same number of profiling and
attack traces for ASCAD_F and ASCAD_R.

CHES_CTF This dataset refers to the CHES Capture-the-flag (CTF) AES-128 measure-
ments released in 2018 for the Conference on Cryptographic Hardware and Embedded
Systems (CHES). The traces consist of AES-128 encryption running on a 32-bit STM
microcontroller.3

eShard. This dataset contains EM leakages of a software implementation of AES-128
encryption. The targeted chip is an STM32F446 32-bit microcontroller based on
Cortex-M4, running at a clock speed of 30 MHz. A near-field EM acquisition was
made using a Langer probe RF-B 0.3-3 through the epoxy package [VTM23].

The raw side-channel measurements from ASCAD_F, ASCAD_R, and CHES CTF
comprise traces with 100,000, 250,000, and 650,000 sample points per trace, respectively.
Handling such long intervals can be time-consuming (and requiring excessively large deep
neural network architectures). Thus, we use the resampling technique with a resampling
window of 80 [PWP22]. The resampling aims to reduce the dimensionality of the traces; a
resampling window indicates the number of trace samples averaged into a single sample.
Since the eShard dataset has already been trimmed, we do not conduct any additional

3https://chesctf.riscure.com/2018/news

https://chesctf.riscure.com/2018/news

L. Wu, A. Rezaeezade, A. Ali-pour, G. Perin, and S. Picek 13

pre-processing steps. The specific attack settings for these datasets are detailed in Table 2.
We use 15% of the profiling traces for the model validation; they are not included in the
training process.

Table 2: Summary of the tested datasets.
ASCAD_F ASCAD_R CHES_CTF eShard

Protection Boolean masking

Profiling traces 50 000 50 000 80 000 30 000

Attack traces 5 000

5.2 Performance Evaluation
This section benchmarks the proposed methods with different pre-defined leakage models.
The multi-bit and multi-byte multi-bit DLSCA are denoted by MB and MMB, respectively.
The MMB attacks 16 sub-bytes simultaneously, while the rest targets each sub-byte in
sequence. The attack performance is represented by TGE0, the number of required attack
traces to each guessing entropy of zero.

The performance of the proposed attack scenarios on ASCAD_F and ASCAD_R
datasets indicates an effective approach to handling various leakage models. The perfor-
mance across all attack scenarios is similar when attacking the first two key bytes. This is
attributed to the lack of masking countermeasures on the first two bytes, allowing MMB,
MB, and pre-defined leakage models to extract relevant features and break the target.

MMB and MB models significantly outperform other leakage models when dealing with
Boolean masking, displaying superior efficiency in breaking all key bytes. For instance,
none of the pre-defined leakage models could recover the k12 of ASCAD_F, but MMB and
MB demonstrated remarkable capabilities by recovering it with just 219 and 59 traces,
respectively. Note that our DL model for MMB is very simple. An increased DL complexity
could potentially increase the attack performance. This trend is also apparent for the
ASCAD_R dataset, where only MMB and MB could break the target on the same key
byte (k12). Only 177 and 175 attack traces are required to reach a guessing entropy of
zero. These observations confirm our earlier assertion in Section 4.2 that the proposed
method can effectively handle complex leakage models. Besides, compared with LSB
and MSB leakage models that solely focus on one specific bit, attacking more bits leads
to significantly better performance. Due to the capability of the deep learning model
to combine physical leakages of mask shares, both MMB and MB break the first-order
masking effectively. Still, we note that retrieving these key bytes might be accomplished
through refined deep learning architectures or increased training effort [PWP22]. However,
it is time-consuming; the tuned model may not function on different leakages. When
considering real-world scenarios where the correct key is unknown, an adversary would
rely on a fixed model to attack different datasets (a common practice in the industry). In
this case, MMB and MB are superior choices due to their flexibility to different leakages.

When comparing MMB and MB, their performance is comparable when attacking these
two datasets. One may worry that such a simple main branch would limit the model’s
capability to learn so many tasks, but the results show that the features provided by the
main branch of the network are sufficient for all 16 tasks. This observation suggests two
conclusions. First, each sub-key shares common features and thus can be handled by MMB
at once. Second, the used network still has room to be simplified when solely focusing on
a single sub-byte.

Tables 5 and 6 show the attack results on the CHES_CTF and eShard datasets.
Aligned with the previous two datasets, MMB and MB maintain outstanding performance
compared with other pre-defined leakage models. Interestingly, one can observe that MB

14 Leakage Model-flexible DLSCA

Table 3: TGE0 of each subkey for the ASCAD_F dataset.
k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15

MMB 1 4 7 20 9 4 22 10 135 15 76 18 219 123 9 69

MB 1 4 5 19 9 7 23 17 185 6 37 35 59 67 9 51

HW 4 4 494 282 419 372 535 590 x 628 1 402 792 x x 202 x

ID 2 2 x 290 66 74 2 415 111 x 126 1 272 x x x 23 x

LSB 17 17 1 552 43 63 81 208 57 2 683 49 138 x x 1 084 44 61

MSB 27 33 x 1 351 1 079 983 984 866 x 623 x 517 x x 3 544 x

Table 4: TGE0 of each subkey for the ASCAD_R dataset.
k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15

MMB 3 5 23 76 28 9 15 35 94 14 74 15 177 110 13 48

MB 2 5 23 89 23 10 17 42 80 27 71 16 145 65 15 26

HW 5 6 1 523 1 088 357 439 1 384 1 160 3 482 808 1 081 824 x x 415 x

ID 3 2 x x 309 59 x x x x x x x x 66 x

LSB 16 11 288 118 43 55 192 98 520 39 89 116 x 391 24 54

MSB 39 60 x x 4 128 x 1 104 x x 1 698 x 296 x x 1 023 x

cannot retrieve all subkeys, while MMB can and performs better in attacking all keys.
For instance, only MMB can recover k4, k8, and k12 of the eShard dataset, while all
other methods fail. Since MMB and MB share identical main branches and subbranches
(the only difference is that MMB has more subbranches for each sub-byte), aligned with
the discussion in Section 4.3, we conclude that multi-task learning helps generalize each
task, leading to robust attack performance. One should note that some attacks/profiling
models could perform better than presented results, i.e., attacking different intermediate
data [GJS21] or using fine-tuned mode [WPP22, PWP22]. However, they do not influence
the conclusion drawn here, as MB and MMB would also benefit from these approaches.

Table 5: TGE0 of each subkey for the CHES_CTF dataset.
k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15

MMB 89 96 58 100 227 76 48 43 114 55 50 46 3 211 50 59 35

MB 72 57 43 53 78 51 55 56 53 73 40 54 582 40 53 26

HW 2 058 x 803 1 157 x 1 369 1 715 1 121 x 3 013 1 330 4 558 x x 1 535 1 473

ID x x x x x x x x x x x x x x x x

LSB 509 812 140 395 387 501 576 228 266 482 439 267 x 533 581 371

MSB 607 486 1 360 x 2 040 3 164 758 x x 813 2 257 327 x x 499 x

Finally, aligned with the previous observation, MB and MMB lead to better attack
performance than LSB and MSB. Specifically, when attacking the eShard dataset, attacking
a single bit seems non-functional; one should combine multiple bits to recover the secret.
In this case, MB and MMB are the optimal choices for this task.

5.3 Leakage Assessment with the Multi-bit Model
Besides the key recovery, the proposed method provides insight into leakage assessment.
Previous results [WPP22, PWP22] show that the CHES_CTF dataset is only breakable

L. Wu, A. Rezaeezade, A. Ali-pour, G. Perin, and S. Picek 15

Table 6: TGE0 of each subkey for the eShard dataset.
k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15

MMB 119 504 858 248 1103 691 488 949 2 162 340 106 953 1 503 541 417 470

MB 1 173 942 908 299 x 1 706 1 894 1 085 x 876 2 420 1 459 x 1 269 1 880 1 304

HW 1 690 2 626 1 279 922 x 976 973 783 x 1 742 1 370 1 051 x 1 208 1 557 1 176

ID x x x x x x x x x x x x x x x x

LSB x x 4 592 2 321 x x x 4 640 x x x x x x x x

MSB x x x x x x x x x x x x x x x x

via the HW leakage model, which our results confirm. None of the key bytes can be
retrieved via the ID leakage model. Interestingly, the MSB leakage model also leads to
mediocre performances. The reasoning for the poor attack performance can be explained
from two perspectives. Recall in Section 4.2 when the simulated data has only the ID
leakage, MSB is the most significant contributor to actual leakages (see Table 1). However,
based on the attack results in Tables 5 and 6, these two datasets contains limited MSB
leakages, potentially leading to the failure of the ID leakage model.

The observations can be validated with an evaluation metric. We illustrate the validation
accuracy for each bit (256) of the multi-byte multi-bit model in Figure 5. The mean and
standard deviation are represented by the blue line and shaded blue areas, respectively.
Some studies [KPH+19, WPP22] suggest that validation accuracy may be unreliable when
working with pre-defined leakage models. However, their conclusion is drawn from the
HW and ID leakage model; the bit model we used is unexplored. On the other hand, other
evaluation metrics, such as precision and recall, could also evaluate each bit’s prediction.
However, since the two classes, 0 and 1, are balanced for each bit, validation accuracy
could be considered a good metric for this task.

(a) ASCAD_F. (b) ASCAD_R. (c) CHES_CTF. (d) eShard.

Figure 5: Validation bit accuracy for each dataset.

As shown in Figure 5, for ASCAD_F and ASCAD_R, there is a sharp rise in the
standard deviation, indicating a broader distribution of bit validation accuracy. The top
five bits yielding the highest accuracy are either b7 (MSB) or b6 of a byte. This observation
aligns with the results in Tables 3 and 4, indicating that the ID leakage model functions
well for some bytes. On the other hand, when examining CHES_CTF and eShard, the
accuracy of each bit increases relatively uniformly, as evidenced by their small standard
deviation. This supports the observation of the HW accuracy made in Section 4.2 and
also corroborates the earlier discussion about the mediocre performance of the ID model.

It is clear that the ASCAD_R and CHES_CTF datasets are prone to overfitting,
a phenomenon we explore in detail in Section 5.5.3. Additionally, for the CHES_CTF
dataset, one might observe that some bits emerge as ’outliers’ during the early stages
of training. All these outlier bits are associated with sub-byte 12, suggesting that they
exhibit distinct leakage features compared to the other sub-bytes. Still, one can observe a
steady increase in the validation bit accuracy of the corresponding bits, indicating that
our multi-byte multi-bit model is generalized to features that all tasks can share.

16 Leakage Model-flexible DLSCA

5.4 Case Study of the SMAesH Challenge
The previous experimental results evaluate the performance of MB and MMB on 8-bit
intermediate values. Next, we assess their performance on a more advanced implementation,
SMAesH, used as the target for the Capture The Flag challenge in CHES 2023. SMAesH is
a hardware implementation of the AES block cipher that uses masking as a countermeasure
against side-channel attacks [SC23]. The masking technique in use, Hardware Private
Circuits (HPC) [CGLS21], is a glitch-resistant hardware-specialized implementation that
can compose arbitrary higher-order masking. The SMAesH dataset on Artix-7 FPGA has
224 traces with random keys for profiling and 224 traces with a fixed key for the attack.
There are two versions of the dataset enabling or disabling the knowledge of mask share
during the profiling phase. We consider the former dataset in this section. Specifically,
the plaintexts and their shares, the keys and their shares, and the random seed (the
random number generator output for each cryptography operation) are given along with a
simulation package that allows the generation of desired intermediate values [SC23].

Implementation-wise, the data is processed in 32-bit format. Besides, two intermediate
shares are processed simultaneously. These characteristics complicate the leakage scenario,
as a single-time sample of the trace carries information of multiple shares and bytes. In
this case, using multi-task learning and the MB model is a good match. The reasons
are twofold: first, learning multiple tasks simultaneously that share information across
multiple intermediate values helps to avoid overfitting and learning unrelated noise patterns.
Second, using deep learning and a bit model as the last layer of the neural network makes
it possible to learn the complex leakage in the case of SMAesH implementation from
the bit level. Specifically, aligned with the previous experimental setting, we apply two
multi-bit models to attack the Sbox input and output shares, respectively.4 Then, soft
analytical side-channel analysis (SASCA) [VGS14] is applied for the key recovery.5 The
attack works under the same assumptions as profiling attacks. First, we need to profile
every intermediate value we are attacking. Then, in the attack phase, we exploit the
outcome probabilities for all intermediate values over multiple traces. The last step is
combining the exploited information with output probabilities (acquired utilizing the
profiles) employing belief propagation and factor graphs as introduced by SASCA. For
the attack setting, we started by attacking 8 bits (a single byte) for each intermediate
data, resulting in 16 binary outputs for each model (because we have two 8-bit shares).
Then, we increased the number of attacked bits to 16, 32, and 128 key bits. Furthermore,
to validate our method with different DL architectures, we employed a simple multilayer
perceptron (MLP) model to attack this target.

Table 7: The best rank of the keys attacking the SMAesH dataset.
Attacked key size 8 bits 16 bits 32 bits 128 bits

Best key rank/total key space 25.12/28 29.2/216 217.98/232 266.90/2128

Attack traces 5 000 000

Table 7 shows the key rank results we reached after the attack using 5 000 000 attack
traces. The key rank of the full key (128 bits) is 266.9, which is better than the attack
reported by “Morningstar-1.3” [Cry24]. We compare our attack with theirs because it
is the closest attack to our approach.6 They employed multi-task learning with the ID
leakage model to exploit the information spread over the Sbox input, Sbox output, and the
transition leakage on the Sbox input wires. In their attack, they could reach the key rank

4We have also performed attacks on unmasked intermediate data, but the performance is mediocre.
5SASCA includes attacking multiple cryptography operations and their input and output intermediate

values simultaneously.
6Still, we acknowledge there are better attacks for this dataset. We refer interested readers to [SC23]

for more details on these attacks.

L. Wu, A. Rezaeezade, A. Ali-pour, G. Perin, and S. Picek 17

of 268 for recovering the whole 128 bits of the key using 5 000 000 traces. With our attack,
we can reduce the key space to less than half of the key space they reached. Considering
that we did not make any extra effort to optimize the neural network used to attack
the SMAesH dataset, the results are surprisingly good, resulting from learning the most
accurate leakage model from the bit level. One can observe a relatively lower key space
when involving more intermediate data in our model. The key rank is around 25.13 when
the target is only one key byte. Assuming each byte leads to the same attack performance,
the remaining key space for 16 bytes is 282.08. Following the same assumption, we would
expect that the key space was around 273.60 when we attacked 16 bits and around 271.92

when we attacked 32 bits. Therefore, we conclude that using multi-task learning and seeing
all the outputs simultaneously is helpful for the neural network to characterize the input
leakages better and extract critical and shared features that may overlap in the same time
stamp.

5.5 Hyperparameter Study
In this section, we explore the influence of various hyperparameters on the DL model with
the multi-bit model. Instead of focusing on one sub-byte, the multi-byte multi-bit DLSCA
is used for benchmarking, and all sub-bytes are considered. For a fair comparison, the
attack results on 16 sub-bytes are averaged to demonstrate the influence of hyperparameter
changes.

5.5.1 Data Augmentation

As discussed in Section 4.3, the role of data augmentation is crucial for the multi-bit
DLSCA. Consequently, we conduct a hyperparameter study specifically focusing on data
augmentation, aiming to assess the impact of the augmentation level on the attack
performance. The findings from this study are comprehensively presented in Table 8.

Table 8: Hyperparameter study on data augmentation (DA).
DA-0 DA-5 DA-10 DA-20

ASCAD_F 51 46 243 1 654

ASCAD_R 137 46 88 938

CHES_CTF 274 270 428 328

eShard x 716 395 450

When the level of data augmentation (the maximum value of random shifting) is set
to zero, the multi-bit DLSCA fails to break the eShard dataset. However, a significant
performance improvement is noted with the introduction of random shifts in the datasets.
Optimal results are consistently observed within the data augmentation range of DA-5
across all test scenarios. As the level of data augmentation reaches 20, there is a notable
decline in attack performance in various configurations.

From these observations, we can ascertain the critical role of data augmentation in
enhancing the effectiveness of the multi-bit DLSCA. However, employing an excessively
high level of data augmentation can have adverse effects, reducing the model’s attack
performance. This high augmentation level can increase the complexity of fitting the model
to the leakage (as the time location of the leakages becomes more random), requiring
either longer training periods or larger models, thus increasing the computation effort.

5.5.2 Batch Size

The concept of batch size in a deep learning model pertains to the number of examples
(pairings of inputs and outputs) utilized in a single training iteration. This parameter plays

18 Leakage Model-flexible DLSCA

a significant role in shaping a deep learning model’s behavior and overall performance.
Notably, a discernible generalization gap exists between small and large batch sizes. Studies
illustrate that smaller batch sizes can offer a regularizing effect, often resulting in superior
generalization performance [KMN+16, ML18]. This suggests that models trained with
smaller batches may exhibit enhanced performance on unfamiliar data. As observed in
Table 9, this aligns with our expectation that smaller batch sizes generally lead to improved
attack performance in the proposed method.

Table 9: Study on the influence of the data size.
BS-256 BS-512 BS-768 BS-1 024

ASCAD_F 44 46 112 177

ASCAD_R 26 45 65 79

CHES_CTF 157 270 165 190

eShard 875 715 695 673

While smaller batch sizes in deep learning models generally lead to better attack
performance and superior generalization, it is crucial not to overlook the implications
for computational efficiency. Larger batch sizes enable more efficient utilization of com-
putational resources, such as GPUs, which tend to perform optimally when handling
computations in larger blocks. When balancing performance against resources, one should
consider that larger batch sizes can significantly reduce training time. For instance, in our
experiments, a batch size of 1 024 could complete tests on all datasets four times faster
than a batch size of 256 (around 8 hours). Thus, in designing and training deep learning
models, careful consideration should be given to finding the optimal balance between batch
size, computational efficiency, and model performance.

5.5.3 Training Epochs

Increasing the number of training epochs does not necessarily enhance the mapping
capability of a deep learning model from input to output. On the contrary, it could
diminish the model’s ability to generalize on unseen datasets, a phenomenon known as
’overfitting’. Figure 5 clearly shows that ASCAD_R and CHES_CTF suffer from overfitting
when training with 200 epochs. Table 10 further illustrates the performance fluctuations
of the proposed method when trained with varying numbers of epochs. Indeed, training
with just 50 epochs proves to be sufficient for most configurations, while an additional 150
epochs (totaling 200) yield stable attack results except the CHES_CTF, as the attack
performance deteriorates with increased epoch training. Indeed, Figure 5c shows that
training for 30 epochs results in the peak of validation accuracy for all bytes except byte
12, after which the accuracy diminishes with additional epochs. When training with 30
epochs, excluding byte 12, the required attack traces for each byte drop to an average of
only 12 traces per byte for key recovery, surpassing the outcomes shown in Table 5. As
for the eShard dataset, there is a consistent decrease in key rank value, in line with the
observation in Figure 5d.

Table 10: Study on the influence of the training epoch.
EP-30 EP-50 EP-100 EP-200 EP-300

ASCAD_F 503 137 44 46 50

ASCAD_R 88 47 40 45 46

CHES_CTF 301 119 137 270 286

eShard x 3 889 1 081 715 761

L. Wu, A. Rezaeezade, A. Ali-pour, G. Perin, and S. Picek 19

Several strategies can be employed to mitigate overfitting. Data augmentation, as
discussed in Section 5.5.1, is one effective solution. Additionally, one could apply an early
stopping technique that halts model training if a monitored metric fails to increase over
a certain number of epochs. Our results indicate the efficacy of validation accuracy as a
metric to mitigate overfitting in the MB and MMB models.

Regarding computational efficiency, the mean training time per dataset is approximately
30 minutes. Given that both sets of 16 bytes are attacked simultaneously, the efficiency of
each byte’s attack (less than two minutes) is comparable with the state-of-the-art method,
even with careful hyperparameter tuning [ZBHV19, RWPP21].

Our analysis highlights that hyperparameter tuning, specifically adjusting the data
augmentation level, impacts the attack performance. Nonetheless, the model demonstrates
resilience to hyperparameter variations, with only one hyperparameter setting (zeroing
the data augmentation level) leading to a failed attack. It is important to note that
we employ a single model to attack all four datasets, achieving consistent performance.
This underscores the simplicity of our model’s hyperparameter tuning. Furthermore, it
emphasizes the robustness of the proposed multi-byte multi-bit approach, making it a
reliable profiling solution across varying attack scenarios.

6 Discussion
The multi-bit model effectively bridges two approaches in estimating physical leakages:
numerical approximation and leakage hypothesis. Typically, numerical approximations
decompose the target intermediate data into bits and then estimate their coefficients.
The multi-bit model follows the same approach by estimating all bits simultaneously.
Integrating deep learning enables extracting non-linear features from side-channel leakages,
potentially improving the estimation of physical leakages. Compared to relevant meth-
ods, such as stochastic models [SLP05], the multi-bit leakage model can be dynamically
adapted to various pre-defined leakage models during the profiling phase with different
implementations. This adaptability offers enhanced flexibility, allowing the profiling model
to learn more effectively from physical leakages without being constrained by suboptimal
leakage model selection. Compared with [ZXF+20] that profiles each bit individually, we
further investigate the multi-bit model’s leakage model-free characteristic. Briefly speaking,
multi-label learning is familiar to the machine learning community. From our perspective,
they reuse multi-label learning as a new architecture of DLSCA with the hope of producing
better results. However, from the original paper, the improvement is insignificant. We
put much effort into discussing the capability of the multi-bit model to adapt to different
leakage models on both the simulated and the real datasets. Based on these studies, the
reason why the multi-bit model is better for SCA is well-understood. Besides, we extend
the multi-bit model to the multi-byte multi-bit model, attacking all 16 bytes simultaneously.
This is the first paper that can recover all key bytes at once. Another notable strategy
is the One-vs-All (OvA) method, which decomposes a multi-class problem into multiple
binary classification problems. For a problem with N classes, OvA establishes N distinct
binary classifiers, each differentiating one class from the rest. Acharya et al. utilized the
OvA method to train 256 sub-models for each key byte, aggregating these models for the
final prediction [AGF22]. However, this method assumes that each intermediate value
produces distinct physical leakages that may not fit the reality. Improved label encoding,
such as using Hamming Weight, could yield better OvA results. Nonetheless, potential
class imbalances and high computational complexity, particularly for attacking all 16 bytes
(requiring training of 256*16 models), are significant challenges. From both attack and
computation perspectives, our approach demonstrates superior performance.

The multi-bit model, however, is not without its limitations. The bit decomposition
of intermediate data does not guarantee that all bits can be accurately learned, leading

20 Leakage Model-flexible DLSCA

to uncertainties in certain bits. For example, in Table 1, when the real leakage model
is ID, bit0 to bit4 exhibit low accuracy, akin to random guessing. Deep learning models,
which often employ gradient descent for loss function minimization, tend to learn easier
features first, such as the Most Significant Bit (MSB). This preference can leave complex
features, like the Least Significant Bit (LSB), less learned in the initial training stages.
Gohr et al. observed similar patterns and proposed scattershot encoding to address this
issue [GLS22]. This technique involves labeling traces with the HW of random bit subsets
and training multiple models on these varied encodings, ultimately recovering all bits.
Although effective, this approach demands significant computational resources, particularly
when attacking all 16 bytes.

Finally, the multi-bit model applies to both software and hardware implementations of
symmetric cryptography. In hardware contexts, the model can adapt to scenarios where
the power consumption of a circuit is influenced by the number of bit transitions in a
register [FYH+23]. Since hardware crypto implementations often reuse gates for round
calculations to conserve chip area [HAHH06], the proposed multi-byte multi-bit model
(MMB) is also effective in attacking hardware implementations, showcased in Section 5.4.
As mentioned, MMB can be easily adapted to different implementations. For instance,
when the data bus is 32-bit, one can adapt the output of each subbranch from 8 to 32.

7 Conclusions and Future Work

This paper introduces a novel multi-bit model that learns each bit separately. Unlike
conventional profiling attacks, our method is adaptable to any specific leakage model, which
offers increased flexibility in fitting the actual leakages. Simultaneously, we employ multi-
task learning to attack multiple sub-bytes concurrently, leading to efficient key recovery
without the need to attack each byte separately. By applying our framework to four
publicly available masked AES datasets, we obtain profiling attack results that significantly
surpass models using pre-defined leakage models for leakage labeling. Importantly, no
effort is expended in hyperparameter tuning, demonstrating its generality across different
attack scenarios.

There are several potential avenues of investigation. First, the deep learning network
could be enhanced, e.g., through residual networks, to strengthen the connection between
the input and each task. Specifically, the shortcut could directly connect with the model’s
subbranch, potentially reducing the reliance on the main branch and its feature extraction
capability. Second, while the current method treats each bit independently, exploring
methods to reinforce inter-bit connections would be worthwhile. For instance, building an
interconnection between each sub-branch could be interesting to explore. Lastly, it will be
interesting to explore the capability of the proposed method in attacks without masking
knowledge, e.g., testing on another version of the SMAesH dataset without mask shares.

Acknowledgments

This work received funding in the framework of the NWA Cybersecurity Call with project
name PROACT with project number NWA.1215.18.014, which is (partly) financed by
the Netherlands Organisation for Scientific Research (NWO). Additionally, this work was
supported in part by the Netherlands Organization for Scientific Research NWO project
DISTANT (CS.019).

L. Wu, A. Rezaeezade, A. Ali-pour, G. Perin, and S. Picek 21

References
[AGF22] Rabin Y Acharya, Fatemeh Ganji, and Domenic Forte. Information theory-

based evolution of neural networks for side-channel analysis. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, 2022. doi:
10.46586/tches.v2023.i1.401-437.

[APSQ06] Cédric Archambeau, Eric Peeters, F-X Standaert, and J-J Quisquater. Tem-
plate attacks in principal subspaces. In International Workshop on Cryp-
tographic Hardware and Embedded Systems, pages 1–14. Springer, 2006.
doi:10.1007/11894063_1.

[BHM+19] Olivier Bronchain, Julien M Hendrickx, Clément Massart, Alex Olshevsky,
and François-Xavier Standaert. Leakage certification revisited: Bounding
model errors in side-channel security evaluations. In Advances in Cryptology–
CRYPTO 2019: 39th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 18–22, 2019, Proceedings, Part I 39, pages 713–
737. Springer, 2019. doi:10.1007/978-3-030-26948-7_25.

[BHvW12] Lejla Batina, Jip Hogenboom, and Jasper GJ van Woudenberg. Getting more
from pca: first results of using principal component analysis for extensive
power analysis. In Topics in Cryptology–CT-RSA 2012: The Cryptographers’
Track at the RSA Conference 2012, San Francisco, CA, USA, February 27–
March 2, 2012. Proceedings, pages 383–397. Springer, 2012. doi:10.1007/97
8-3-642-27954-6_24.

[BPS+20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. Deep learning for side-channel analysis and introduction to ASCAD
database. J. Cryptographic Engineering, 10(2):163–188, 2020. doi:10.1007/
s13389-019-00220-8.

[Bri90] John S Bridle. Probabilistic interpretation of feedforward classification network
outputs, with relationships to statistical pattern recognition. In Neurocom-
puting: Algorithms, architectures and applications, pages 227–236. Springer,
1990. doi:10.1007/978-3-642-76153-9_28.

[Car97] Rich Caruana. Multitask learning. Machine learning, 28:41–75, 1997. doi:
10.1007/978-1-4615-5529-2_5.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neu-
ral networks with data augmentation against jitter-based countermeasures:
Profiling attacks without pre-processing. In Cryptographic Hardware and
Embedded Systems–CHES 2017: 19th International Conference, Taipei, Tai-
wan, September 25-28, 2017, Proceedings, pages 45–68. Springer, 2017.
doi:10.1007/978-3-319-66787-4_3.

[CDSU23] Gaëtan Cassiers, Henri Devillez, François-Xavier Standaert, and Balazs Ud-
varhelyi. Efficient regression-based linear discriminant analysis for side-channel
security evaluations: Towards analytical attacks against 32-bit implementa-
tions. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2023(3):270–293, 2023. doi:10.46586/tches.v2023.i3.270-293.

[CGLS21] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier Stan-
daert. Hardware private circuits: From trivial composition to full verification.
IEEE Trans. Computers, 70(10):1677–1690, 2021. doi:10.1109/TC.2020.30
22979.

https://doi.org/10.46586/tches.v2023.i1.401-437
https://doi.org/10.46586/tches.v2023.i1.401-437
https://doi.org/10.1007/11894063_1
https://doi.org/10.1007/978-3-030-26948-7_25
https://doi.org/10.1007/978-3-642-27954-6_24
https://doi.org/10.1007/978-3-642-27954-6_24
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/978-3-642-76153-9_28
https://doi.org/10.1007/978-1-4615-5529-2_5
https://doi.org/10.1007/978-1-4615-5529-2_5
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.46586/tches.v2023.i3.270-293
https://doi.org/10.1109/TC.2020.3022979
https://doi.org/10.1109/TC.2020.3022979

22 Leakage Model-flexible DLSCA

[CK13] Omar Choudary and Markus G. Kuhn. Efficient template attacks. In Aurélien
Francillon and Pankaj Rohatgi, editors, Smart Card Research and Advanced
Applications - 12th International Conference, CARDIS 2013, Berlin, Germany,
November 27-29, 2013. Revised Selected Papers, volume 8419 of LNCS, pages
253–270. Springer, 2013. URL: http://dx.doi.org/10.1007/978-3-319-0
8302-5_17, doi:10.1007/978-3-319-08302-5_17.

[CK15] Marios O Choudary and Markus G Kuhn. Efficient stochastic methods:
Profiled attacks beyond 8 bits. In Smart Card Research and Advanced Ap-
plications: 13th International Conference, CARDIS 2014, Paris, France,
November 5-7, 2014. Revised Selected Papers 13, pages 85–103. Springer, 2015.
doi:10.1007/978-3-319-16763-3_6.

[CRR03] Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. Template attacks. In
Cryptographic Hardware and Embedded Systems-CHES 2002: 4th International
Workshop Redwood Shores, CA, USA, August 13–15, 2002 Revised Papers 4,
pages 13–28. Springer, 2003. doi:10.1007/3-540-36400-5_3.

[Cry24] Simple Crypto. Smaesh challenge leaderboard, 2024. Accessed: 2024-07-08.
URL: https://smaesh-challenge.simple-crypto.org/leaderboard.ht
ml.

[FYH+23] Yuta Fukuda, Kota Yoshida, Hisashi Hashimoto, Kunihiro Kuroda, and
Takeshi Fujino. Profiling deep learning side-channel attacks using multi-
label against aes circuits with rsm countermeasure. IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences,
106(3):294–305, 2023. doi:10.1587/transfun.2022cip0015.

[GBTP08] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual
information analysis. In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 426–442. Springer, 2008. doi:10.1007/978-3
-540-85053-3_27.

[GJS21] Aron Gohr, Sven Jacob, and Werner Schindler. Subsampling and knowl-
edge distillation on adversarial examples: New techniques for deep learning
based side channel evaluations. In Selected Areas in Cryptography: 27th
International Conference, Halifax, NS, Canada (Virtual Event), October
21-23, 2020, Revised Selected Papers 27, pages 567–592. Springer, 2021.
doi:10.1007/978-3-030-81652-0_22.

[GLRP06] Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. Templates vs.
stochastic methods. In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 15–29. Springer, 2006. doi:10.1007/118940
63_2.

[GLS22] Aron Gohr, Friederike Laus, and Werner Schindler. Breaking masked im-
plementations of the clyde-cipher by means of side-channel analysis: A re-
port on the ches challenge side-channel contest 2020. IACR Transactions
on Cryptographic Hardware and Embedded Systems, pages 397–437, 2022.
doi:10.46586/tches.v2022.i4.397-437.

[HAHH06] Panu Hamalainen, Timo Alho, Marko Hannikainen, and Timo D Hamalainen.
Design and implementation of low-area and low-power aes encryption hardware
core. In 9th EUROMICRO conference on digital system design (DSD’06),
pages 577–583. IEEE, 2006. doi:10.1109/dsd.2006.40.

http://dx.doi.org/10.1007/978-3-319-08302-5_17
http://dx.doi.org/10.1007/978-3-319-08302-5_17
https://doi.org/10.1007/978-3-319-08302-5_17
https://doi.org/10.1007/978-3-319-16763-3_6
https://doi.org/10.1007/3-540-36400-5_3
https://smaesh-challenge.simple-crypto.org/leaderboard.html
https://smaesh-challenge.simple-crypto.org/leaderboard.html
https://doi.org/10.1587/transfun.2022cip0015
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1007/978-3-030-81652-0_22
https://doi.org/10.1007/11894063_2
https://doi.org/10.1007/11894063_2
https://doi.org/10.46586/tches.v2022.i4.397-437
https://doi.org/10.1109/dsd.2006.40

L. Wu, A. Rezaeezade, A. Ali-pour, G. Perin, and S. Picek 23

[HGM+11] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede,
and Joos Vandewalle. Machine learning in side-channel analysis: a first study.
J. Cryptogr. Eng., 1(4):293–302, 2011. doi:10.1007/s13389-011-0023-x.

[HK18] Alex Hernández-García and Peter König. Data augmentation instead of
explicit regularization. CoRR, abs/1806.03852, 2018. URL: http://arxiv.
org/abs/1806.03852, arXiv:1806.03852.

[HKSS12] Annelie Heuser, Michael Kasper, Werner Schindler, and Marc Stöttinger. A
new difference method for side-channel analysis with high-dimensional leakage
models. In Lecture Notes in Computer Science, pages 365–382. Springer Berlin
Heidelberg, 2012. doi:10.1007/978-3-642-27954-6_23.

[HP02] Yu-Chi Ho and David L Pepyne. Simple explanation of the no-free-lunch
theorem and its implications. Journal of optimization theory and applications,
115:549–570, 2002. doi:10.1023/a:1021251113462.

[JW02] Richard Arnold Johnson and Dean W. Wichern. Applied multivariate statistical
analysis. Prentice Hall, Upper Saddle River, NJ, 5. ed edition, 2002. URL: ht
tp://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+3
30798693&sourceid=fbw_bibsonomy, doi:10.1007/978-3-540-72244-1.

[KMN+16] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyan-
skiy, and Ping Tak Peter Tang. On large-batch training for deep learning:
Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836, 2016.

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan
Hanjalic. Make some noise. unleashing the power of convolutional neural
networks for profiled side-channel analysis. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, pages 148–179, 2019. doi:
10.46586/tches.v2019.i3.148-179.

[KUMH17] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.
Self-normalizing neural networks. In Advances in neural information processing
systems, pages 971–980, 2017. doi:10.5555/3294771.3294864.

[LMBM13] Liran Lerman, Stephane Fernandes Medeiros, Gianluca Bontempi, and Olivier
Markowitch. A Machine Learning Approach Against a Masked AES. In
CARDIS, Lecture Notes in Computer Science. Springer, November 2013.
Berlin, Germany. doi:10.1007/978-3-319-14123-7_5.

[Mag20] Houssem Maghrebi. Deep learning based side-channel attack: a new profiling
methodology based on multi-label classification. Cryptology ePrint Archive,
2020.

[ML18] Dominic Masters and Carlo Luschi. Revisiting small batch training for deep
neural networks. arXiv preprint arXiv:1804.07612, 2018.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
cryptographic implementations using deep learning techniques. In Interna-
tional Conference on Security, Privacy, and Applied Cryptography Engineering,
pages 3–26. Springer, 2016. doi:10.1007/978-3-319-49445-6_1.

[PHG17] Stjepan Picek, Annelie Heuser, and Sylvain Guilley. Template attack ver-
sus bayes classifier. Journal of Cryptographic Engineering, 7(4):343–351,
September 2017. doi:10.1007/s13389-017-0172-7.

https://doi.org/10.1007/s13389-011-0023-x
http://arxiv.org/abs/1806.03852
http://arxiv.org/abs/1806.03852
https://arxiv.org/abs/1806.03852
https://doi.org/10.1007/978-3-642-27954-6_23
https://doi.org/10.1023/a:1021251113462
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+330798693&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+330798693&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+330798693&sourceid=fbw_bibsonomy
https://doi.org/10.1007/978-3-540-72244-1
https://doi.org/10.46586/tches.v2019.i3.148-179
https://doi.org/10.46586/tches.v2019.i3.148-179
https://doi.org/10.5555/3294771.3294864
https://doi.org/10.1007/978-3-319-14123-7_5
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/s13389-017-0172-7

24 Leakage Model-flexible DLSCA

[PHJ+18] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco
Regazzoni. The curse of class imbalance and conflicting metrics with machine
learning for side-channel evaluations. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2019(1):209–237, Nov. 2018. URL: https:
//tches.iacr.org/index.php/TCHES/article/view/7339, doi:10.13154
/tches.v2019.i1.209-237.

[PHJB19] Stjepan Picek, Annelie Heuser, Alan Jovic, and Lejla Batina. A systematic
evaluation of profiling through focused feature selection. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 27(12):2802–2815, 2019.
doi:10.1109/tvlsi.2019.2937365.

[PPM+23] Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and Lejla Batina.
Sok: Deep learning-based physical side-channel analysis. ACM Comput. Surv.,
55(11), feb 2023. doi:10.1145/3569577.

[PSK+18] Stjepan Picek, Ioannis Petros Samiotis, Jaehun Kim, Annelie Heuser, Shivam
Bhasin, and Axel Legay. On the performance of convolutional neural networks
for side-channel analysis. In International Conference on Security, Privacy,
and Applied Cryptography Engineering, pages 157–176. Springer, 2018. doi:
10.1007/978-3-030-05072-6_10.

[PWP22] Guilherme Perin, Lichao Wu, and Stjepan Picek. Exploring feature selection
scenarios for deep learning-based side-channel analysis. IACR Transactions
on Cryptographic Hardware and Embedded Systems, pages 828–861, 2022.
doi:10.46586/tches.v2022.i4.828-861.

[RB24] Azade Rezaeezade and Lejla Batina. Regularizers to the rescue: fighting over-
fitting in deep learning-based side-channel analysis. Journal of Cryptographic
Engineering, pages 1–21, 2024. doi:10.1007/s13389-024-00361-5.

[Rud17] Sebastian Ruder. An overview of multi-task learning in deep neural networks.
arXiv preprint arXiv:1706.05098, 2017.

[RWPP21] Jorai Rijsdijk, Lichao Wu, Guilherme Perin, and Stjepan Picek. Reinforcement
learning for hyperparameter tuning in deep learning-based side-channel anal-
ysis. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021(3):677–707, Jul. 2021. URL: https://tches.iacr.org/index.php/T
CHES/article/view/8989, doi:10.46586/tches.v2021.i3.677-707.

[SA08] François-Xavier Standaert and Cédric Archambeau. Using subspace-based
template attacks to compare and combine power and electromagnetic infor-
mation leakages. In International Workshop on Cryptographic Hardware and
Embedded Systems, pages 411–425. Springer, 2008. doi:10.1007/978-3-540
-85053-3_26.

[SC23] SIMPLE-Crypto. Smaesh: Technical documentation. https://www.simple
-crypto.org/activities/smaesh/, 2023. Accessed: 2024-07-02.

[SKS09] François-Xavier Standaert, François Koeune, and Werner Schindler. How to
compare profiled side-channel attacks? In Applied Cryptography and Network
Security: 7th International Conference, ACNS 2009, Paris-Rocquencourt,
France, June 2-5, 2009. Proceedings 7, pages 485–498. Springer, 2009. doi:
10.1007/978-3-642-01957-9_30.

https://tches.iacr.org/index.php/TCHES/article/view/7339
https://tches.iacr.org/index.php/TCHES/article/view/7339
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.1109/tvlsi.2019.2937365
https://doi.org/10.1145/3569577
https://doi.org/10.1007/978-3-030-05072-6_10
https://doi.org/10.1007/978-3-030-05072-6_10
https://doi.org/10.46586/tches.v2022.i4.828-861
https://doi.org/10.1007/s13389-024-00361-5
https://tches.iacr.org/index.php/TCHES/article/view/8989
https://tches.iacr.org/index.php/TCHES/article/view/8989
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.1007/978-3-540-85053-3_26
https://doi.org/10.1007/978-3-540-85053-3_26
https://www.simple-crypto.org/activities/smaesh/
https://www.simple-crypto.org/activities/smaesh/
https://doi.org/10.1007/978-3-642-01957-9_30
https://doi.org/10.1007/978-3-642-01957-9_30

L. Wu, A. Rezaeezade, A. Ali-pour, G. Perin, and S. Picek 25

[SLP05] Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model
for differential side channel cryptanalysis. In Cryptographic Hardware and
Embedded Systems–CHES 2005: 7th International Workshop, Edinburgh, UK,
August 29–September 1, 2005. Proceedings 7, pages 30–46. Springer, 2005.
doi:10.1007/11545262_3.

[SMY09] François-Xavier Standaert, Tal G Malkin, and Moti Yung. A unified framework
for the analysis of side-channel key recovery attacks. In Advances in Cryptology-
EUROCRYPT 2009: 28th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Cologne, Germany, April 26-30,
2009. Proceedings 28, pages 443–461. Springer, 2009. doi:10.1007/978-3-6
42-01001-9_26.

[Tim19] Benjamin Timon. Non-profiled deep learning-based side-channel attacks with
sensitivity analysis. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 107–131, 2019. doi:10.46586/tches.v2019.i2.
107-131.

[VGS14] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert.
Soft analytical side-channel attacks. In Palash Sarkar and Tetsu Iwata,
editors, Advances in Cryptology - ASIACRYPT 2014 - 20th International
Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings,
Part I, volume 8873 of Lecture Notes in Computer Science, pages 282–296.
Springer, 2014. URL: https://doi.org/10.1007/978-3-662-45611-8_15,
doi:10.1007/978-3-662-45611-8_15.

[VTM23] Aurélien Vasselle, Hugues Thiebeauld, and Philippe Maurine. Spatial de-
pendency analysis to extract information from side-channel mixtures: ex-
tended version. Journal of Cryptographic Engineering, pages 1–17, 2023.
doi:10.1007/s13389-022-00307-9.

[WAGP20] Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel. Revis-
iting a methodology for efficient cnn architectures in profiling attacks. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2020(3):147–
168, Jun. 2020. URL: https://tches.iacr.org/index.php/TCHES/artic
le/view/8586, doi:10.13154/tches.v2020.i3.147-168.

[WEG87] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.
Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987. doi:
10.1016/0169-7439(87)80084-9.

[WJB20] Yoo-Seung Won, Dirmanto Jap, and Shivam Bhasin. Push for more: On
comparison of data augmentation and smote with optimised deep learning
architecture for side-channel. In Information Security Applications: 21st
International Conference, WISA 2020, Jeju Island, South Korea, August
26–28, 2020, Revised Selected Papers 21, pages 227–241. Springer, 2020.
doi:10.1007/978-3-030-65299-9_18.

[WPP22] Lichao Wu, Guilherme Perin, and Stjepan Picek. I choose you: Automated
hyperparameter tuning for deep learning-based side-channel analysis. IEEE
Transactions on Emerging Topics in Computing, 2022. doi:10.1109/tetc.2
022.3218372.

https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.46586/tches.v2019.i2.107-131
https://doi.org/10.46586/tches.v2019.i2.107-131
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/s13389-022-00307-9
https://tches.iacr.org/index.php/TCHES/article/view/8586
https://tches.iacr.org/index.php/TCHES/article/view/8586
https://doi.org/10.13154/tches.v2020.i3.147-168
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1007/978-3-030-65299-9_18
https://doi.org/10.1109/tetc.2022.3218372
https://doi.org/10.1109/tetc.2022.3218372

26 Leakage Model-flexible DLSCA

[WWK+23] Lichao Wu, Léo Weissbart, Marina Krček, Huimin Li, Guilherme Perin, Lejla
Batina, and Stjepan Picek. Label correlation in deep learning-based side-
channel analysis. IEEE Transactions on Information Forensics and Security,
2023. doi:10.1109/tifs.2023.3287728.

[ZBC+23] Gabriel Zaid, Lilian Bossuet, Mathieu Carbone, Amaury Habrard, and Alexan-
dre Venelli. Conditional variational autoencoder based on stochastic attacks.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages
310–357, 2023. doi:10.46586/tches.v2023.i2.310-357.

[ZBHV19] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli.
Methodology for efficient cnn architectures in profiling attacks. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, 2020(1):1–36, Nov.
2019. URL: https://tches.iacr.org/index.php/TCHES/article/view/
8391, doi:10.13154/tches.v2020.i1.1-36.

[ZXF+20] Libang Zhang, Xinpeng Xing, Junfeng Fan, Zongyue Wang, and Suying Wang.
Multilabel deep learning-based side-channel attack. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 40(6):1207–1216,
2020. doi:10.1109/TCAD.2020.3033495.

[ZY21] Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE
Transactions on Knowledge and Data Engineering, 34(12):5586–5609, 2021.
doi:10.1109/TKDE.2021.3070203.

[ZZN+20] Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu, and Nenghai
Yu. A novel evaluation metric for deep learning-based side channel anal-
ysis and its extended application to imbalanced data. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, pages 73–96, 2020.
doi:10.46586/tches.v2020.i3.73-96.

https://doi.org/10.1109/tifs.2023.3287728
https://doi.org/10.46586/tches.v2023.i2.310-357
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://doi.org/10.13154/tches.v2020.i1.1-36
https://doi.org/10.1109/TCAD.2020.3033495
https://doi.org/10.1109/TKDE.2021.3070203
https://doi.org/10.46586/tches.v2020.i3.73-96

	Introduction
	Preliminaries
	Notation
	Threat Model
	Profiling Side-channel Analysis
	Evaluating the Attack Performance

	Related Work
	Leakage Model-flexible DLSCA
	Physical Leakages Estimation
	Multi-bit Model
	Multi-byte Multi-bit DLSCA

	Experimental Results
	Datasets
	Performance Evaluation
	Leakage Assessment with the Multi-bit Model
	Case Study of the SMAesH Challenge
	Hyperparameter Study

	Discussion
	Conclusions and Future Work
	References

