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Abstract. Machine learning applications gain more and more access to highly
sensitive information while simultaneously requiring more and more computation
resources. Hence, the need for outsourcing these computational expensive tasks while
still ensuring security and confidentiality of the data is imminent.
In their seminal work, Tramèr and Boneh presented the Slalom protocol for privacy-
preserving inference by splitting the computation into a data-independent preprocess-
ing phase and a very efficient online phase. In this work, we present a new method to
significantly speed up the preprocessing phase by introducing the Carnival protocol.
Carnival leverages the pseudo-randomness of the Subset sum problem to also enable
efficient outsourcing during the preprocessing phase. In addition to a security proof
we also include an empirical study analyzing the landscape of the uniformity of the
output of the Subset sum function for smaller parameters. Our findings show that
Carnival is a great candidate for real-world implementations.
Keywords: Machine Learning · Secure Inference · Subset Sum

1 Introduction
Outsourcing of expensive computations is an important task in modern computer science.
As calculations become more complex, maintaining the required hardware for every task is
not feasible for smaller or medium-sized companies or individuals [NC23]. Furthermore,
sharing insight and data between many parties can greatly enhance the usefulness of many
applications. Different approaches on outsourcing computations are firmly established,
“computing in the cloud” is used on a daily basis.

Computing on shared resources bears inherent security and privacy risks that are not a
concern in other scenarios. Specifically, other tenants on the machine as well as the provider
may tamper with data or computation or extract data. Simply requiring the user to trust
the provider of the computation environment is not a reasonable solution, especially since
many cloud service providers also earn money with the obtained data. Different techniques
for this problem such as fully homomorphic encryption or functional encryption have been
devised to minimize the trust needed and guarantee both the integrity of the computation
and the confidentiality of data[CPTH21, HMSY21, NC23]. While these techniques provide
a sound theoretical solution, the resource costs to actually deploy them in practice are
prohibitively high. To keep resource consumption and computational overheads reasonable,
more specialized solutions have been developed for important tasks.
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One of the most resource intensive applications nowadays revolves around the field of
machine learning. It has been in the scientific and economic spotlight for over a decade
now and deep neural networks are known to require a large amount of computing power.
The two most common tasks here are the training of a neural network and the inference
or evaluation of such a trained network. As training requires extensive amounts of data
and computational resources, machine learning as a service (MLaaS) is a booming field:
Smaller parties can train models on external hardware, since training resources are only
required for a relatively short amount of time, they can utilize other parties data in shared
learning, or simply utilize a readily trained model to run inference on their data [DFH+24].
However, outsourcing computation may raise ethical or legal issues depending on the
processed data. It is easy to see why data sets such as health data, credit statements, or
a companies intellectual property are not suitable to be processed on a shared, insecure
machine without further protection. Both privacy preserving training and inference are
active research fields, working to protect the training and inference data as well as the
model and the output [LFFJ20, NC23, DFH+24, ZLT+24, ELD24].

In this work, we focus on the problem of hardware-assisted secure outsourced inference
for neural networks (NN). A model owner has spent resources to train and refine a model.
The neural network NN : X → Y consists of layers NNi : Xi → Yi and each layer consists of
a linear transformation Lini followed by a non-linear activation function NLini. The linear
layers are usually matrix multiplications or convolutions. As convolutions can be converted
to a matrix multiplication, we will use the matrix multiplication as the exemplary function
in this work. Furthermore, we assume that the input Xi and the output Yi are represented
by Integer vectors. The model owner uses a server S to host NN and now offers inference
as a service to clients. This has two reasons:

• The model owner does not want to share NN, which is a business asset 1.

• The client C on the other hand does not have the computational resources to infer
on the model, and might even lack the knowledge to deploy it.

The client C provides the input data x ∈ X , which is sensitive information not to be shared
with S or other tenants. The goal of the client is to compute NN(x) ∈ Y with minimal
computation costs by making use of S without revealing information about the input x or
the output NN(x) to the server or model owner. This is called input privacy and output
privacy respectively.

To achieve privacy for the client, the model owner offers a trusted execution environment
(TEE) within the server. The client can load the data into the TEE, which is then
protected from a potential malicious model owner. As usual, the code within the TEE can
be checked by the client via remote attestation and the data processed within the TEE
is constantly encrypted in memory. Inferring purely on the TEE would however create
massive performance issues, either increasing the MLaaS prices or rendering the model
owners business model useless. One approach to handle this problem is by adding a fast
processing unit (FPU) to the server. This can be a GPU or specialized hardware such as
FPGAs.

The scenario is depicted in Figure 1.
This creates the challenge for the model owner to move as much computational load as

possible to the FPU without compromising the client data. In order to protect the client’s
data, some operations still need to be computed in the TEE, which is slower than the FPU
by orders of magnitude. Hence, the main question of this line of research is to minimize
the amount of computation required in the TEE while still guaranteeing privacy to the
client.

1We note here that strong model extraction attacks exist (e.g., [CJM20, PMG+17, TZJ+16]) and thus
do not focus on model privacy in this work.
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Figure 1: Components and parties in the secure inference scenario. The server S contains
both a trusted execution environment (TEE) and a fast processing unit (FPU) such as a
GPU. The client C provides the secret input x. The network NN is known to the model
owner.

1.1 Slalom
One solution to outsource the computational load to the FPU was presented by Tramèr
and Boneh [TB19], who developed a framework called Slalom that allows a private
computation of NN(x) if the server is equipped with a secure TEE. To do so, they use the
offline-online model inspired by very efficient MPC protocols such as BDOZ [BDOZ11] or
SPDZ [DPSZ12]. In this model, the computation is split into an offline or preprocessing
phase that is independent of the sensitive input x, where the TEE generates some masking
values and their counterparts (later referred to as unmasking values) for the client. These
values, combined with x are then used in the online phase to produce the output NN(x).

The approach taken by Slalom works well if the offline phase is not included in the
total runtime of the framework, and indeed Slalom is considered one of the milestones in
private inference and many future approaches rely on trusted hardware to build fast and
secure solutions [MSK+20, HWA22, NAA22, SBBE23, WZB+23]. It does however contain
several problems:

Total Runtime: In the Slalom setting, the entire network is evaluated on the masks
in the TEE during the preprocessing phase. As the masks have the same size as
the input, the preprocessing phase plus the online phase take more time than just
inferring the entire network on the TEE to begin with.

Implementation issues: Performing the preprocessing phase on TEEs may lead to
memory issues as enclave size needs to be appointed before the enclave is created
and swapping out the memory massively lowers the performance. In addition, it
must already be known in the offline phase how many inputs need to be processed in
the online phase for the masks precomputations.

Idle FPU: During the preprocessing phase, only the slow TEE works, while the much
more powerful FPU is idle. As the server owner bears the cost of generating the
unmasking values in the TEE during the preprocessing phase, she has an inherent
interest in an efficient use of resources.

Running out of Randomness: Slalom is only suitable for quite restricted situations
with sufficient time between the online phases that can be used to prepare sufficient
preprocessing material. If the time between two online phases is too short, Slalom
will run out of randomness, leading to a large performance penalty.

It is unclear if the authors were aware of these complications, as they did not implement
the offline phase in the TEE in their PoC, and rather chose to do it insecurely on the
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FPU2.
In this work, we design a method to perform the preprocessing phase more efficiently

using the Subset sum problem over finite fields as a randomness generator.

1.2 The Subset Sum Problem
The Subset sum problem is a well-known NP-hard problem. Given a finite field Fp and a
set S = {s1, . . . , sn} ⊆ F n

p of field elements and a function

f(k) =
∑

i

kiSi mod p

that maps a binary vector k to another field element, the goal is to reconstruct the
binary characteristic vector k. From a cryptographic perspective, f(k) is strongly believed
to be a one-way function (for appropriate choice of the parameters n and p), meaning
that there is no efficient algorithm to recover k from f(k). Furthermore, f can be used
as pseudo-randomness generator under certain conditions [IN96, Bri84, MM11], which
Carnival leverages to generate pseudo-random one time pads (OTP) as masks. We will
give a detailed description of the process in Section 4. The high-level improvement is the
swapping of matrix multiplication in the TEE for matrix additions only, which reduces
the computational complexity and runtime drastically. As an added bonus, the FPU is
utilized during the setup phase as well, leading to better resource balancing.

1.3 Contribution
The main result of our paper is a secure method to perform pre-calculations on untrusted
hardware. We use the Slalom algorithm as an example. In this work, we

• Propose Carnival, a way to use publicly performed calculations to generate secret
masks for confidential input values.

• We prove that our system is secure under the assumption that the Subset sum
problem over finite fields is a one-way function, a longstanding cryptographical
assumption.

• As a case study, we propose Slalom at the Carnival (S@C), a new variant of
Slalom with an improved preprocessing phase and an analysis of the performance
gain. Even when choosing conservative parameters, this already gives a speedup
between 2.2 and 11 in the provable scenario.

Our approach makes better use of the FPU by putting it to work during the setup phase
as well as the online phase. While we demonstrate it with the Slalom use case, the
Carnival primitive can be applied in many settings.

2 Background
This section provides the reader with background information on knapsack functions,
trusted execution environments, quantization, outsourced computations in ML settings,
and security definitions.

2This is apparent from the code and reflected in the comment "This is obviously insecure, but we
currently compute the unblinding factors outside of the enclave for simplicity" [Tra19].
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2.1 Knapsack Functions in Cryptography
The Subset sum problem is a specific variant of the knapsack problem, namely a 0-1
knapsack problem where the weights of the knapsack items equal their profit [Pis05].
Knapsack functions have a long history as cryptographic functions. Many cryptographic
systems based on this function family have been introduced [Lem79, MH78, KG11, CR88].
While knapsack functions lead to one-way functions with very useful properties [Mic07],
using them in asymmetric scenarios has been a very difficult task, as shown by many
broken systems [Odl90, Sha82, OT04]. One of the most useful such properties is the
fact that knapsack functions can be used as pseudo-random number generators or hash
functions [IN96], with a number of properties that make them interesting candidates for
various practical scenarios:

• Knapsack functions are able to generate pseudo-randomness relatively easy, using
additions only.

• The highly parallel instructions over a finite field can be implemented very efficiently
and

• Linear operations on the knapsack elements result in linear transformations of the
resulting one-time pad, making them suitable for homomorphic operations.

Most of the asymmetric knapsack cryptosystems devised so far use a specially con-
structed set S as the public key and additional information about S as private key. In these
systems k is the plaintext and f(k) is the ciphertext [Lem79, MH78]. As usual in public
key crypto systems, the ciphertext can only be deciphered efficiently with the private key,
namely the additional information about S. Hence, the trapdoor information is concealed
in S [LO85].

In contrast, we do not use S to conceal any information, but use k as the key to
generate an OTP which is then used to encrypt the message, generating a symmetric
cryptosystem or masking scheme.

2.2 Trusted Execution Environments
TEEs provide a secure environment on untrusted hardware by offering hardware-sealed,
attested enclaves. In these, everything from a small subroutine to a whole VM can run
securely, undisturbed even by a compromised operating system or hypervisor. Com-
mon TEEs are Intel Software Guard Extensions (SGX) [MAB+13, CD16, Int21], AMD
Secure Encrypted Virtualization (SEV) [Kap16], and Sanctum [CLD16]. The ARM Con-
fidential Compute Architecture (CCA) [LLD+22] and Intel Trust Domain Extensions
(TDX) [SMF21] are still in development. TEE offers memory isolation and attestation
for both the data and the code deployed within a specific enclave. This allows multi-
ple mutually distrustful parties to compute on untrusted hardware while using sensitive
data [CB19]. While there has been some discussion about the future relevance of TEEs
after Intel discontinued SGX on consumer devices, the efforts of both Intel and other
vendors to build alternatives is evidence that TEEs will be an important feature in the
future.

2.3 Quantization
ML models usually have floating point weights, biases, intermediate values and sometimes
input values, and GPUs also work on these values. However, to guarantee perfect security,
masking only works on values of a finite field. Hence, floating point values need to
be transformed into such integer values, then masked and re-transformed into floating
point values constantly during both Slalom ’s and Carnival’s runtime, a process called
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quantization. We used the same quantization as Slalom , which is derived from Gupta
et al. [GAGN15]: Floating point numbers x are converted to integers as x̂ = FP(x; l) :=
round(2l · x). A linear layer L with kernel W and bias b is thus quantized with the
parameters Ŵ = FP(W, l) and b̂ = FP(b, 2l). After inferring L on input x, the output
needs to be scaled by 2−l and rounded to an integer again. For more details, we refer
to [TB19].

2.4 Secure Outsourced Computation
Outsourcing computations to shared machines is a natural and sensible way to use resources:
not every party can (and should) have the resources for any necessary computation on
premise, maintaining a lot of different specialized hardware is not practical and efficient,
and using optimized implementations on shared machines is beneficial. In the field of
machine learning, models are usually trained by one party and then used by others, and
classification tasks may not come in at a steady flow but in bursts. This means that it
makes sense to outsource the classification tasks to a MLaaS server holding the model.
This scenario (also depicted in Figure 1) offers no inherent protection of the input values
provided by the clients. There are three main possibilities to add this protection, all of
which come with a performance penalty and sometimes also affect accuracy:

Homomorphic Encryption (HE) As linear network layers such as convolutional
or fully connected layers can be seen as a series of multiplications by a constant and
additions, which are homomorphic operations, they can be calculated with relatively little
overhead [GDL+16, CBL+18]. The non-linear activation layers like softmax or ReLu layers
however are not easy to calculate using homomorphic encryption. They are usually ap-
proximated with low-degree polynomials [CKKS17] or adapted cosine functions [WMW23]
in fully homomorphic approaches. Both approximations come at an accuracy loss and
sometimes require extensive retraining of the network. The scheme of choice for machine
learning is currently the Cheon-Kim-Kim-Song (CKKS) scheme, which works on polyno-
mial quotient rings and supports batch evaluation [CKKS17, NLDD23]. The inaccuracy
caused by the approximated activation functions grows with the network depth: The
largest neural network evaluated using purely HE on the CIFAR-10 dataset is a net with
10 convolutional layers [NLDD23].

Secure Multiparty Computation (SMPC) Usually, a form of oblivious transfer (OT),
garbled circuits (GCs) or secret sharing is implemented in SMPC based schemes. Mohassel
and Zhang [MLS+20] developed SecureML in 2017, where two untrusted servers train a
model using 2-party MPC techniques. Just as the HE approaches, they approximate the
activation functions sigmoid and softmax to reduce complexity, but they also use GCs to
further speed up these functions. ABY3 [MR18] is a variant of SecureML for three servers.
The scheme Minionn combines secret sharing with GCs in a one server setting, again
with approximated activation functions. Both these schemes and Deepsecure [RRK18],
which uses binary circuits for garbling and oblivious transfer for non-linear layers, work on
networks with few layers, but suffer from the huge overhead each activation layer adds. In
the end, they can all only work with networks with 3 layers or less. Gazelle improved on
this boundary by using HE in the linear layers and GCs in the activation layers [JVC18]
while optimizing packaging and encryption between the layers. The techniques from this
scheme where adapted to the GPU by the Delphi scheme [MLS+20]. The HE computations
are moved to an offline phase again, which is also included in the performance analysis.
The offline phase uses up the vast majority of the runtime. Recent approaches such
as Dash in 2023 or Piranha in 2022, add usability as a distinguishing feature as well
as performance [SBBE23, WWP22]. Dash allows both model owners and clients a low-
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threshold entry to efficient garbled circuits by enabling model loading from standard
files, without deep knowledge of GCs. The Piranha platform follows a similar approach
and enables developers of secret-sharing-based MPC schemes to leverage a GPU without
knowledge of GPU programming. In both cases models do not need to be retrained.

Trusted Hardware As mentioned above, TEEs are a viable tool to protect privacy
on shared hardware. The main drawbacks are the need for specialized hardware and
resource limitations e.g. through paging mechanisms. The code within the enclave is
obviously victim to any vulnerabilities in the enclave code or concept itself. Another
interesting problem is the verification of the attested code: Depending on the problem
at hand, the client may not be able to fully verify the code within the enclave. This
can be circumvented by passing out intermediate results and verifying them on a ran-
dom sample basis. Conceptually, TEEs provide code confidentiality and integrity as
well as remote attestation capabilities through logic isolation and cryptographic pro-
tection [CD16, Int24]. Over the years, the research community has demonstrated a
variety of different side-channel attacks on current implementations of TEEs, especially on
SGX [XCP15, BMD+17, BPS17, MIE17, BMW+18, MOG+20]. Note that side channel
attacks are implementation attacks. Just as cryptographic implementations, TEE-based
implementations may need hardening against these attacks. If the implementation is not
hardened, it will be insecure, whether it is a cryptographic implementation or a TEE-
protected implementation [WRPE24]. More recent proposals such as Keystone [LKS+20]
and Intel TDX [Int24] also take hardware-based side-channels into account, while other
potential weaknesses need to be addressed by hardening implementation, e.g. through
constant-time implementation approaches [BBG+20]. Therefore, SGX, combined with
traditional software-based efforts, can significantly raise the bar for successful attacks.

Some approaches use a combination of the above, trying to overcome the challenges
of one approach by using another. For example, CrypTFlow is a TEE-MPC hyrbrid
solution [KRC+20]. Indeed, the masking operation in S@C can be considered a form of
homomorphic encryption, while the mask generation is performed in the TEE.

Formal Definitions We will consider outsourcing the computation of g(x) for a sensitive
value x and a publicly known function g to a non-trusted party. We follow and extend
the definitions by Tramèr and Boneh [TB19]. A secure outsourcing scheme for a function
g : X → Y between a client C and a server S consists of three algorithms Setup, Preproc, and
Online. The algorithm Setup is called a single time and produces some public parameters
param. Given these parameters, Preproc can be used by C to produce some data-independent
state state. Finally, Online is an interactive protocol between C providing the inputs param,
state, and the sensitive information x ∈ X such that at the end of the protocol, C receives
a value y ∈ Y or aborts the protocol. We denote the result of Online obtained by C when
using inputs param, state, and x and running S by OnlineC,S(param, state, x). Such a scheme
needs to fulfill several important properties such as:

Correctness: For any param produced by Setup, any state produced by Preproc(param),
any x ∈ X , and any y = OnlineC,S(param, state, x), we have y = g(x)3.

Privacy: For any param produced by Setup, any state produced by Preproc(param), any
x ∈ X , any x′ ∈ X , and any probabilistic polynomial-time algorithm S∗, the views of
S∗ in OnlineC,S∗(param, state, x) and in OnlineC,S∗(param, state, x′) are computationally
indistinguishable.

3Similar to Slalom, to prevent a malicious server from using a different function g′ ≠ g, we could make
use of zero-knowledge proofs.
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t-Integrity: For any param produced by Setup, any state produced by Preproc(param),
any x ∈ X , and any probabilistic polynomial-time algorithm S∗, the probability that
OnlineC,S∗(param, state, x′) does lead to a value y′ ∈ Y with y′ ̸= g(x) is at most t.

3 The Baseline: Slalom in detail
Slalom is a hybrid scheme for outsourced machine learning inference that elegantly
combines homomorphic encryption using one-time pads for the linear layers and a TEE
for the non-linear layers. It guarantees the integrity of the inference and has an optional
privacy feature for input and output privacy. We only consider the privacy scenario.
Slalom works in the setting described in Figure 1. The general approach of Slalom is
illustrated in Figure 2 and can be summed up as follows:

TEE FPU

for i ∈ [1, d] do
ri ← F mi

p

ui = riWi

end for

TEE FPU

for i ∈ [1, d] do

x̂i = xi + ri x̂i ŷi = x̂iWi

yi = ŷi − ui
ŷi

assertFreivalds(yi, xi, Wi)
xi+1 = σi(yi)

end for
return yd
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Figure 2: The Slalom algorithm by Tramèr and Boneh [TB19]. Note that the marked
calculations are essentially the same. Additionally, the FPU is idle during the preprocessing
phase.

The TEE is used to perform the entire preprocessing phase, generating the random
masks and calculating the corresponding unmasking values. This means that it infers the
entire network repeatedly on random values. The FPU is idle during the preprocessing
phase. In the online phase, the client C sends their secret input x to the server S, where
it is received and masked by the TEE. The masked values are then passed to the FPU,
which calculates the linear layer. The masked result is passed back to the TEE, where
the corresponding unmasking value is used to obtain the result of the linear layer. The
following non-linear layer is then applied to this result, generating the input for the next
linear layer. This is then masked, send to the FPU and so on.

In a more formal way, the two phases work as follows:

preprocessing Phase: For each layer NNi of NN, the TEE generates a masking value
ri ∈ Xi uniformly drawn from Xi and computes the unmasking value ui = Lini · ri.
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The preprocessing phase is performed by the TEE, as it generates the masking values,
which need to be hidden from the server owner and model owner.

Online Phase: To evaluate layer NNi on secret input xi, the TEE computes x̂i = xi + ri

and sends x̂i to the server. The FPU then computes ŷi = Lini(x̂i) and sends ŷi to
the TEE. The TEE now computes yi = ŷi − ui and sends xi+1 = NLini(yi).

Using this approach, one can show the input privacy of Slalom by making use of the
observation that the masking provides information-theoretic security.

Theorem 1 (Theorem 3.2 in [TB19]). Assume that all random values are generated using
a secure PRNG with security parameter λ. Then, Slalom is a secure outsourcing scheme
guaranteeing correctness and privacy.

As mentioned in Section 1, the preprocessing phase generates several problems such
as performance-intensive calculations within the TEE while the FPU is idle, possible
implementation issues within the TEE for large networks and the possibility to run out of
masking and unmasking values if the offline times are not long enough. We would like to
stress that none of these issues affects the correctness or security of Slalom.

4 The Carnival Primitive: Building OTPs from Public
Randomness

In this section we formally define the cryptographic primitive behind Carnival. In general,
the goal is to let an untrusted entity evaluate the function g(x) := gα(x) on a private input
x and public (for both parties) parameters α. While we will discuss this task in a more
general setting, it is instructive to first consider g(x) as one layer of a neural network, i.e.,
g(x) = NLin(Lin(x)).

We will present two different approaches to select appropriate parameters. In the first
approach, we show how to obtain a provable secure version of our primitive, based on the
hardness of the Subset sum problem and the state-of-the-art attacks against it.

4.1 Masking Inputs
In order to keep x private, we first compute the value h(x, k) that masks the value x via
some secret key k. The untrusted party is then given h(x, k), computes g(h(x, k)), and
then returns this result to us. Finally, to obtain the desired result g(x), we now need to
retrieve it from g(h(x, k)).

We only consider masking functions h(x, k) that use an additive masking, i. e. h(x, k) =
x + f(k) for some function f . Now, if g(x) is linear, we have g(h(x, k)) = g(x + f(k)) =
g(x)+g(f(k)). Hence, we only need to compute g(f(k)) to obtain g(x). In the easier model
of Slalom, where the costs for preprocessing are ignored, we could compute g(f(k)) by
ourselves in the preprocessing phase, as f(k) = k here and the neural network described by
g is public. But, by choosing f(k) more carefully, we are able to reduce these preprocessing
costs drastically.

Using Subset sum: Now, suppose that f(k) is defined via a Subset sum problem.
Recall that in Section 1, we defined our Subset sum problem over a finite field Fp as a set
S = {s1, . . . , sn} ∈ F n

p of n field elements and a function

fS,p(k) := fp(k, S) =
∑

i

kisi mod p

that maps a binary vector k to another field element.
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The parameters p and S (and therefore by definition also n = |S|) are public, while k
is the private key. In order to facilitate the pseudo-randomness of the Subset sum problem,
we will first sample the set S = {s1, . . . , sn} randomly from Fp. Note that this process
can also be performed in public (as long as the random choice of S is guaranteed). Now,
we can compute ui = g(si) for i = 1, . . . , n in public (we later discuss how to verify this
computation).

In the preprocessing phase, the client can choose a new random key k and compute
r =

∑
i kisi mod p and u =

∑
i kiui mod p. Note that the preprocessing phase thus only

requires the addition of 2n field elements, but not computation of g.
In the online phase, the client only needs to calculate x + r and is given g(x) + g(f(k)),

from which it subtracts u. Applying linearity of g again, we see that for f = fS,p, we have

g(f(k)) = g(fS,p(k)) = g

(∑
i

kiSi mod p

)
=
∑

i

kig(si) mod p = u,

as ki is only a binary scalar. Hence, during the online phase, the client is able to compute
g(x) using only two additions.

One of the main advantages of our approach is the fact that we can use the same
knapsack instance, generated during the setup phase, for a large number of preprocessing
and online phases. We only need to guarantee that the preprocessing phase produces
a fresh key. Hence, a single setup with n items can be securely used for roughly 2n/2

preprocessing and online phases (at which point a key will probably repeat).

4.2 Provable Security
In this subsection, we will show that our approach is provable secure as long as the
underlying Subset sum problem is sufficiently hard. Clearly, there are two parameters
that influence the security of the Subset sum problem and thus of our approach. The first
parameter is the size of the individual field elements. In our scenario, this size is fixed by
the size of the elements of the neural network. Hence, we will focus our attention on the
second parameter, the number n of different items Si in the Subset sum instance. For
performance reasons, it is desirable to keep n as small as possible without compromising
the security of the system.

We will denote the security parameter by λ and abbreviate the term probabilistic
polynomial time by PPT. A sequence {pλ}λ is negligible if, for all c ∈ R>0, there is
λ0 = λ0(c) such that pλ < 1/λc for all λ ≥ λ0, i.e., it is smaller than the inverse of every
polynomial. We call a function ensemble {fλ}λ with fλ : Dλ → Rλ to be one-way, if fλ(x)
is computable in polynomial time and

Pr
x←Dλ

[fλ(A(fλ(x))) = fλ(x)]

is negligible for all PPT attackers A. Hence, an attacker that is given the value fλ(x) should
not be able to construct a value x′ (not necessarily identical to x) such that fλ(x′) = fλ(x).
Finally, we call such a function ensemble {fλ}λ a pseudo-random generator, if fλ(x) is
computable in polynomial time, |Rλ| > |Dλ|, and if

|Prx←Dλ
[A(fλ(x)) = 1] − Pry←Rλ

[A(y) = 1]|

is negligible for all PPT attackers A: An attacker that is either given a completely random
element from Rλ or fλ(x) for a completely random element from the smaller set Dλ should
not be able to distinguish between these scenarios.

From a purely asymptotic point of view, there is a very close relation between the
one-wayness of the knapsack function and its pseudo-randomness, already established by
Impagliazzo and Naor [IN96].
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Theorem 2 (Theorem 2.2 in [IN96]). If the Subset sum function ensemble {fp}p with
fp : F n

p × {0, 1}n → F n
p with log(p) ≥ (1 + ϵ)n for some ϵ > 0 is one-way, then it is also a

pseudo-random generator4.

This is already sufficient to prove the security of Carnival, following the security
definitions of Tramèr and Boneh.

Theorem 3. Let Carnival be the above protocol to compute a linear function g. Assume
that all random values are generated using a secure PRNG with security parameter λ and
that the knapsack function f = fp,S is a one-way function chosen with security parameter λ.
Then, Carnival is a secure outsourcing scheme guaranteeing correctness and privacy.

Proof. The correctness follows easily from our discussion above. Theorem 2 implies that
the one-wayness of f also guarantees pseudo-randomness. Then, the pseudo-randomness
of f means that we can replace f(k) by a completely random value r. This implies
privacy, as the runs of OnlineC,S∗(param, state, x + r) and OnlineC,S∗(param, state, x′+ r) are
identical.

Example: Outsourced Matrix Multiplication We illustrate the primitive with
the following scenario: A client wants to multiply a private vector x with a matrix W .
Since this is computationally expensive, the client would like to outsource the matrix
multiplication to a server. The input vector should of course remain private. In this
scenario, g(x) = x · W . Since g(x + m) = g(x) + g(m) it is possible to let the server
generate many random masking vectors mj and calculate the corresponding g(mj). The
masks mi are then used as S to generate the OTP r and the unmasking value u for the
OTP is calculated accordingly.

Figure 3 shows the entire preprocessing phase including outsourced generation of a
set Sm of masking and a corresponding set Su of unmasking values by the server and the
required processing step by the client to obtain the secret OTP for masking and unmasking.
Note that the client only has to perform additions. After the preprocessing, the client
would add an OTP to the input value x and send the masked input to the server. Once
the client receives the masked result, it subtracts the corresponding unmasking value to
obtain the result.

Choice of Parameters While the above result already implies the security of our
construction, it only gives an asymptotic bound that might not be meaningful for smaller,
practically relevant parameters. Furthermore, the reduction from one-wayness to pseudo-
randomness relies on the Goldreich-Levin theorem [GL89], which has a large running time
and is thus probably not tight.

In the following, we thus discuss the choice of practically relevant security parameters
that take the best known attacks into consideration. To the best of our knowledge,
the current state-of-the-art attack against the Subset sum problem is due to Bonnetain
et al. [BBSS20] and runs in time Õ(20.283n) for field size p ≈ 2n. Hence, in order to
obtain 128-bit security by using 2, we need n ≥ 453. Using this parameter, we obtain a
cryptographically secure protocol.

We stress here that using smaller parameters of n only show that the attack of Bonnetain
et al. [BBSS20] is able to break the one-wayness of the Subset sum problem. This however
does not imply that the distribution generated by the Subset sum instance is far from
uniform. Consider, e.g., the field elements S = {s0, . . . , sn−1} with si = 2i and p ≈ 2n.
For a random key choice k, the value fS,p(k) is clearly uniformly distributed, although the
underlying Subset sum problem is trivial (as the solution can be directly deduced from the
single bits of fS,p(k)).

4As [IN96] does not consider one-way functions with public parameters, the function should also output
S, but we ignore this here for the sake of readability.
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TEE FPU

for j ∈ [1, n] do

Sm[j]← F |x|
p

Sg(m)[j] = Sm[j]W
end for

TEE FPU

Sm, Su

for i ∈ [1, b] do
k ← [0, 1]n

r =
∑

j

Sm[j]k mod p

u =
∑

j

Sg(m)[j]k mod p

end for

Se
tu

p
Pr

e-
pr
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sin
g

Figure 3: Illustration of the setup phase and one corresponding preprocessing phase in
Carnival: Note that the FPU is generating most of the randomness and the communica-
tion is unilateral. Furthermore, a single setup phase can correspond to many preprocessing
phases. One preprocessing phase is required for each of the b expected batches, but they
can all be computed ahead of the online phase.
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5 Slalom at the Carnival: Integration in Slalom Frame-
work

We consider an inference-as-a-service scenario where clients send inputs and get the
corresponding results. The inputs x and the results NN(x) are supposed to stay private
while the machine learning model NN consisting of the network architecture, the weights
W and the activation functions σ are known to the FPU. In this scenario, the client has to
cover the cost of the precomputation phase. Thus, an expensive offline phase will directly
result in cost for the client. We focus on the Slalom framework devised by Tramèr and
Boneh for private inference [TB19]. While the Slalom approach is very efficient in the
online-phase, the preprocessing phase generating the unmasking values is very expensive.

Slalom S@C

TEE FPU

for j ∈ [1, n] do

Sm[j]← F |x|
p

Sg(m)[j] = Sm[j]W
end for

TEE FPU

Sm, Su

for i ∈ [1, b] do
k ← [0, 1]n

r =
∑

j

Sm[j]k mod p

u =
∑

j

Sg(m)[j]k mod p

end for

TEE FPU

for i ∈ [1, d] do
ri ← F mi

p

ui = riWi

end for

TEE FPU

for i ∈ [1, d] do
x̂i = xi + ri x̂i ŷi = x̂iWi

yi = ŷi − ui ŷi

assertFreivalds(yi, xi, Wi)
xi+1 = σi(yi)

end for
return yd

Pr
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g
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e

Figure 4: Slalom pseudocode for both variants for a network with d layers. While the
preprocessing phase of our variant is longer, it significantly reduces the computational load
of the TEE by outsourcing more work to the FPU. The online phase is the same in both
protocols except the assertFreivalds step is optional in S@C if integrity is not a security
goal.

As shown in Figure 4, in the original Slalom the TEE masks the input values with
random numbers, sends the blinded values to the FPU and unblinds the result of every
layer with pre-calculated unmasking values: for each weight matrix Wi, a random vector
ri is sampled and ui = riWi is calculated in the TEE. The overall effort for the offline-
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and online-phase is thus higher than just inferring the entire model in the TEE. While
splitting the computational performance analysis into an offline- and an online phase seems
to be common practice in machine learning settings, a costly offline phase is still a relevant
factor in many settings. Slalom’s threat model assumes that NN is known to the FPU
and private inputs and outputs. So while all W and b as well as the activation functions
are public, x and y stay secret.

A second problem with the Slalom approach is that the number of unblinding factors
computed in the offline phase is limited, which directly implies that the system can run
out of unblinding factors in the online phase. This would require shutting down the system
to launch a new offline phase, which again is costly in both time and money.

Carnival can be used to overcome both of these challenges: It uses the FPU to
generate many potential masks and the corresponding unmasking values. With appropriate
scaling and buffering, the setup phase on the FPU can be parallelized for several layers,
increasing the performance further. With the public set S of possible masks, the TEE can
then pick a random key k to add up some of the masks and generate a secret one. The
corresponding unmasking values need to be summed up as well. As shown in the previous
sections, a polynomial time attacker has no efficient way of telling which of the provided
masks were used to build the final mask, and thus cannot determine the private user input
due to the pseudo-randomness of the knapsack function. The particular property of the
Carnival scheme leveraged here is the fact that linear transformations on the elements of
set S lead to linear transformed OTPs, allowing a lot of formerly secret computation to be
moved to the FPU.

5.1 Performance Analysis and Comparison
The complexity of a conventional 2D convolution is quadratic with three hyperparameters:
number of channels C, kernel size K, and spatial dimensions of the input H and W ,
and its computational complexity is O(C2K2HW ). An addition of a matrix of the same
dimensions can be performed in O(CKHW ). In S@C, the TEE needs to generate one
random n bit binary number and then perform a maximum of n additions followed by
modular reductions. The expensive operations of convolutions and the generation of large
amounts of random numbers are shifted to the FPU, and the workload of the much slower
TEE is reduced by orders of magnitude. Assuming that the FPU is f times faster than
the TEE, a performance gain is achieved if n < f . Since n is 453 in the cryptographically
secure scenario, S@C is faster than Slalom if f > 453 or, for the statistically secure
scenario, if f > 2l + 1.

As mentioned in the introduction, there is no implementation of Slalom available for
comparison. To provide a performance comparison anyway, we implemented a benchmark
consisting of a full matrix multiplication. We chose the benchmark since ML networks
usually contain convolutions or matrix multiplications in their linear layers, matrix multi-
plications being the faster of the two operations. We thus compare to the harder case. We
ran the benchmark on a GPU (Nvidia H100) and within Intel SGX (2x Intel Xeon Gold
6438Y+).

The runtime results are depicted in Figure 5. As expected, the enclave is the slowest
option regardless of matrix size, while the GPU is the fastest. We can see that the speedup
is there orders of magnitude regardless of the matrix size and ranges between f = 1 000
and f = 5 000. That means that we always have a speedup of over 1 000, meaning that
f > 1 000. In the provable secure scenario, this gives us a speedup of at least 2.2 up to 11.

5.2 Integrity Add-on
The client can check the FPU’s honesty at three points: When S = ri is generated,
when the unmasking values ui are calculated and when the results of the linear layers are
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Figure 5: Runtime comparison for a matrix multiplication within the enclave and on the
GPU

returned to the TEE. Slalom uses an error term of t = 2k and achieves t-integrity by k
repetitions of Freivalds’ algorithm per layer, as shown in the following theorem.

Theorem 4 (Theorem 3.2 in [TB19]). Assume that all random values are generated using
a secure PRNG with security parameter λ. Then Slalom provides t-integrity for t = 2k if
Freivalds’ algorithm is repeated k times per layer.

Detect FPU Cheating During Set Generation The TEE can detect a dishonest
FPU in this case if a PRNG with leap ahead property is used: The TEE can generate k
random values from S itself and compare them to the ones sent by the FPU. The hardest
case to detect would be the FPU cheating on exactly one generated value. Since n values
are generated, the probability of not detecting the one the FPU cheated on when randomly
reproducing k values is ≈ 1 − k

n .
The detection probability obviously increases drastically if the FPU cheats more than

once.

Detect FPU Sending Dishonest Unmasking Values Assuming that the FPU
generated the masking values fairly, we can apply Freivalds’ algorithm to check if it also
calculated and sent honest unmasking values [Fre77]. This probabilistic test with one-sided
error checks if two j × j matrices where multiplied correctly without comparing all the
elements individually. To check, we aggregate n set elements from the masking set into an
n × n matrix M and the corresponding n unmasking vectors into an n × n matrix U . To
check if the multiplication

W · M = U

was performed honestly, we sample a random binary vector t of length n and calculate

W · (Mt)) − Ut = 0.

If we repeat this k times, the error term is bound by e ≤
( 1

22k

)
since we use binary vectors.

To achieve the desired error term of 2−40, we need k ≥ 20.
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Detect FPU Cheating During Inference Detecting if the FPU sent an honest
inference result is similar to detecting if it cheated in creating the unmasking values. Here
we build batches from the masked input values instead of the set elements, and compare
with the inference results. We still use binary vectors for t, so to achieve an error term
e ≤ 2−40 similar to Slalom, we also require at least 20 repetitions.

As opposed to Slalom, we only use random numbers from {0, 1}n. This means we can
perform Freivalds’ check without relaxing our assumptions about the TEE: Since we use a
binary vector to detect the error, we can still calculate everything using only additions
and modular reductions, at the cost of having to perform about 10 times more tests.

Equipped with this integrity test, we can conclude our main theorem.

Theorem 5. Let Carnival be the above protocol to compute NN with the integrity test.
Assume that all random values are generated using a secure PRNG with security parameter
λ and that the knapsack function f = fp,S is a one-way function chosen with security
parameter λ. Then, Carnival is a secure outsourcing scheme for NN guaranteeing
correctness, privacy, and t-integrity for t = 2k if Freivalds’ algorithm is repeated k times
per layer.

5.3 Using Existing Elements as Set Items
The pseudo-random elements in the set can be generated from existing elements such as AES
S-Boxes or program code in main memory. While these are not entirely random, [NPH18,
VKV98] showed that they can be used to generate pseudo-random elements. By e.g., using
the current software on IoT devices as randomness, the devices have a "build-in" set from
the beginning and do not need to save or receive additional randomness. Even software
updates are not a problem as long as they happen fairly simultaneously: Exchanging the
set does not generate any more effort for the participants.

6 Related Work
Securing outsourced ML inference is a very active research area and many high-quality
SoK papers have been published recently. We focus on direct follow-up works of Slalom
and efforts to improve preprocessing. For a wider overview on this drastically growing
field, we refer to the papers mentioned in Section 2.4 and to surveys such as [LXW+21,
TCBK20, QHF+23, ELD24].

Many outsourced ML approaches divide their calculations into an offline preprocessing
phase and an online phase. However, the preprocessing phase is often not included
in the performance analysis [SBBE23, WWP22] or optimization efforts: Authors argue
that it can be performed offline ahead of time and thus does not impact the total time
required for the inference. An exception are the works Muse, Delphi, Gazelle and
SIMC [LMSP21, MLS+20, JVC18, CGOS22], which all use additive HE for the linear
layers and binary GCs for the non-linear layers. The bottleneck of this architecture is
the conversion between the two, which requires extensive amounts of communication and
calculation. The earliest work is Gazelle, which has roughly 60% of its runtime and 80%
of its communication in the offline phase. With Delphi, Mishra et al. showed that they can
push 99% of their computational load to the input independent preprocessing phase and
also reduce the overall cost of a (deep) network by approximating the activation functions
instead of using ReLUs. Muse builds on Delphi and focuses on a different security
goal, leading to worse runtimes in both preprocessing and online phase. The HE and
authenticated Beaver triples used in the non-linear layers of Muse replaced by oblivious
transfer and onetime pad encryptions in SIMC, leading to a significant performance and
communication gain in the preprocessing phase while maintaining the same values in the
online phase.
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It is worth mentioning that speeding up the preprocessing of outsourced computation is
a field of research independent of machine learning, and efforts to enhance the performance
and communication of preprocessing steps are of course present in SMPC tasks. Scholl
et all. give a good overview on this topic [SSW17]. To the best of our knowledge, there
has been no prior attempt to speedup the preprocessing phase of Slalom.

Slalom uses a combination of TEE and masking to process confidential values on
an insecure GPU. It only supports inference, as the whole preprocessing phase relies on
fixed model parameters, which are not given during training. With DarKnight, Hashemi
et al. directly follow up on this issue of Slalom and add another wrapper to enable
learning as well. They do however leave the existing framework as it is and do not alter
the preprocessing phase [HWA22]. We thus expect that our performance improvements
could also be used by DarKnight.

7 Conclusion
With S@C, we developed a novel way of calculating a linear function on random variables
using the Subset sum problem over finite fields. S@C can be used in various scenarios.
We decided to showcase the improvement of the offline phase of the Slalom framework,
which generates masks for ML inputs by evaluating the linear layers on random matrices.
S@C is a step towards more practical homomorphic encryption since it drastically reduces
the computation time during offline preprocessing.
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