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Abstract. In order to maintain a similar security level in a post-quantum setting,
many symmetric primitives should have to double their keys and increase their
state sizes. So far, no generic way for doing this is known that would provide
convincing quantum security guarantees. In this paper we propose a new generic
construction, QuEME, that allows one to double the key and the state size of a block
cipher in such a way that a decent level of quantum security is guaranteed. The
QuEME design is inspired by the ECB-Mix-ECB (EME) construction, but is defined
for a different choice of mixing function than what we have seen before, in order to
withstand a new quantum superposition attack that we introduce as a side result:
this quantum superposition attack exhibits a periodic property found in collisions
and breaks EME and a large class of its variants. We prove that QuEME achieves
n-bit security in the classical setting, where n is the block size of the underlying block
cipher, and at least (n/6)-bit security in the quantum setting. We finally propose
a concrete instantiation of this construction, called Double-AES, that is built with
variants of the standardized AES-128 block cipher.
Keywords: block cipher · length doubler · superposition attacks · Double-AES ·
cryptanalysis · post-quantum security.

1 Introduction
For a long time, it was accepted that symmetric primitives only needed to double their key
length in order to stay resistant to quantum attackers. Although new attacks in powerful
models [KM12,KM10,KLLN16a] have shown that a more in-depth study is needed and
that some particular scenarios are dangerous, for the majority of symmetric primitives,
the best quantum attacks indeed achieve at most a square-root speed-up compared to
the classical one. Consequently, most of these attacks would indeed be infeasible against
primitives with a double-sized key.

Nevertheless, no generic, simple, and efficient way for doubling the key size of a
primitive is known. For the particular case of block ciphers, arguably the most logical
target in light of the standardized and widely used AES-128 [DR02], existing constructions
fail to achieve an appropriate level of security against quantum attacks. Most notably,
the FX construction [KR01] was proven to be insecure with respect to quantum attacks
in the superposition model [LM17], though it has been shown to fare better in weaker
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2 Block Cipher Doubling for a Post-Quantum World

models [JST21]. Other key-extension modes like the two-key Even-Mansour [ABKM22]
could also be shown secure only in weaker models.

However, key size is not the only problem for block cipher use cases: the block size
too plays a limiting factor in the security of the most widely used overlying modes of use.
In the quantum setting, Chailloux et al. [CNS17] demonstrated that attacks on modes
exploiting internal collisions, i.e., that depend on the internal size of the primitives, might
also render the primitives weaker against quantum adversaries. In these cases, doubling
the key length might not be enough, and the internal size of the primitive should also be
increased as well.

Thus, we are left with the need of block ciphers with (ideally) doubled key and block
size. A new post-quantum symmetric family of primitives—Saturnin [CDL+20]—was
proposed to address this concern. The block cipher which forms the core of this family
has a key size and state size of 256 bits, allowing much more reasonable security claims
regarding all types of quantum attacks. However, despite their effort, Saturnin is ultimately
a novel family of primitives. The question of having a generic way of extending the security
of any block cipher, such as AES-128 [DR02], is not solved. Note that this is a particular
problem of high relevance and general interest, as it would allow one to reuse previous
knowledge and implementation advantages by using well-known primitives, and to leave
the choice of the block cipher to the application.

An earlier result in this direction is by Hosoyamada and Iwata [HI19], who proved that
the 4-round Luby-Rackoff construction (LR4) is a quantum PRP. However, in order to
build secure post-quantum constructions, we need also to take into account the decryption
direction, and Ito et al. [IHM+19] showed that LR4 permits an efficient quantum attack
when we allow both encryption and decryption queries. A natural candidate for resisting
this attack would be LR5, i.e., 5-round Luby-Rackoff. Unfortunately, with the proof
techniques available at present, proving the quantum security of LR5 is very challenging.
It is not possible to use the same database technique as in the proof of Hosoyamada
and Iwata [HI19], since there is no known way yet of generalizing database oracles to
permutations, and the equations governing the internal variables are quite complex with
many variables, making ad-hoc techniques difficult to apply. Moreover, LR5 could achieve
(k/2) log n bits of security at best, where n is the size of the input to the round function,
and k the size of one round key, in light of the quantum attack of Dong and Wang [DW18].

Our main goal is to solve the problem of designing a novel symmetric cryptographic
scheme with doubled key and doubled state size that provides n-bit security both in the
classical and quantum setting, where n is the block size of the underlying block cipher. In
other words, we want to design a scheme providing the same resistance to all attacks as an
ideal block cipher with 2n-bit block and key size would provide against all possible quantum
adversaries. We aim at providing provable guarantees for this, but the state-of-the-art on
quantum security proofs make this goal very difficult. We therefore settle the more realistic
goal to provide an extension construction achieving n-bit security against all adversaries,
with a classical proof matching this bound, and a quantum proof that guarantees a decent
level of post-quantum provable security (i.e., that guarantees that there are no problems
with Simon-based attacks, unlike for LR4). In addition, we set as side goal to provide a
practical instantiation using AES-128.

1.1 Encrypt-Mix-Encrypt, Generalizations, and Quantum Attack
The starting point of our quest is the Encrypt-Mix-Encrypt construction. In this construc-
tion, one starts with an encryption layer, followed by a mixing layer, and then followed
by another encryption layer. The two encryption layers could be ECB based on an n-bit
block cipher, and the mixing layer can be based on that block cipher as well. A notable
construction following this design is the ECB-Mix-ECB (EME) construction of Halevi
and Rogaway [HR04]: it is a highly parallelizable mode that in its general form extends
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Figure 1: The EME construction on 2n-bit data blocks (Figure 1a) and the QuEME
construction (Figure 1b). Here, E1, . . . , E5 denote five secretly keyed block ciphers and E
an a priori unkeyed block cipher that takes its key input from the right.

the domain of a block cipher to arbitrary lengths (see Figure 1a for the construction on
2n-bit data blocks). ECB layers above and below make it a suitable candidate for resisting
quantum attacks, since most Simon-like attacks rely on some part of the input passing
through only one block cipher call or being XOR-ed directly to the state, and the ECB
layers ensure that every part of the input passes through at least two block cipher calls
during both the encryption and decryption routines. We take this general construction,
with arbitrary mixing layer, as starting point for our key and block doubler in Section 3.

However, as our first contribution, we show in this paper that the quantum security
of this construction is highly dependent on the choice of mixing layer. In particular, we
propose a new quantum superposition attack that works on any instantiation of the mixing
layer with a single evaluation of a keyed block cipher (such as in the case of EME of
Figure 1a [HR04]), and that recovers any of the keys used in the ECB layers in around 2n/2

quantum time. The attack is described in Section 3.2, and exhibits a periodic property
found in internal collisions. In more detail, our attack uses the uniform superposition of
collisions to tailor the target scheme to a simpler-to-analyze function, exposing a period
only for the correct key.

1.2 QuEME: Proposal for Quantum Secure Doubler

The general impossibility result on ECB-Mix-ECB of Section 3.2 demonstrates that one
either must choose a mixing layer based on more than one primitive evaluation, making it
more expensive, or one using a compressing primitive. For this, one can use the underlying
block cipher where both the data and the key input depend on the outputs of the first
ECB layer. Even this layer construction must be done with care, but we eventually found
a mixing layer that does not fall victim to the attack of Section 3.2, leading to our new
construction QuEME. The construction is depicted in Figure 1b and formally described in
Section 4. In a nutshell, the mixing layer adds both data paths coming from the first ECB
layer (basically having this layer functioning as a sum of permutations and thus yielding
uniform random outputs [BKR98,Luc00,Pat08a,Pat10a,DHT17]) and uses it as key input
to the block cipher. One of the data paths will be transformed using that block cipher
evaluation and the output will be added to the other data path.
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1.3 Classical Security
Although our eventual goal is to propose an actual doubling scheme, a first step is to
analyze the generic security of the QuEME mode, starting with security in the classical
setting. First, to understand the potential that QuEME has, we derive in Section 5 a
generic attack in 2n queries, that in a nutshell exhausts the entropy of the keyed block
ciphers in the encryption layers and relies on the observation that for all these evaluations
(L, R) 7→ (S, T ),

E1(L)⊕ E2(R) = E−1
3 (S)⊕ E−1

4 (T )

(see Figure 1b). (Note: this relation also holds for EME and other similar constructions,
which means that our attack also works for these.) Then, in Section 6 we derive our positive
result that the QuEME construction, in fact, achieves security up to 2n evaluations.
The proof is modular and gives an exposition of a new security property of the underlying
primitive that we employ, namely random access SPRP security.

In addition, our proof is based on a variant of the mirror theory. The mirror theory
itself has quite a long history [Pat08a,Pat10b,CLP14], but only recently has a proof of its
main variant been published [CDN+23]. In our work, however, we will employ a slightly
different variant (see Section 6.1, Conjecture 1). In support of this variant, we present
low-scale computer simulations that confirm it (see Supplementary Material C). These
simulations, although restrictive, could be of interest not only for our variant but also for
the main variant of the mirror theory.

1.4 Quantum Security
The next step is a quantum analysis of our construction. In Section 7 we show that
QuEME achieves at least n/6 bits of quantum PRP security. In order to prove
this bound, we exploit the fact that the construction starts with two encryption layers
and relate the quantum security to the classical security using Zhandry’s quantum lower
bounds on small range functions. We admit that n/6 is not close to the classical n-bit
security, but this bound is on par with, for example, the qPRF security of LR4 [HI19].
More importantly, this bound, in conjunction with the fact that QuEME does not fall
victim to our new attack of Section 3.2, shows that there is no collapse in the qSPRP
security as can happen in certain other constructions like LR3 [KM10] and LR4 [IHM+19].
We stress that we are not even aware of any quantum attack that would perform better
than the classical distinguisher (of Section 5) that operates in 2n evaluations. Therefore, it
is reasonable to believe that our bound is not tight, and in Section 7.1 we discuss potential
improvements of our results. A natural way of doing so may be to use Zhandry’s technique
of recording quantum queries [Zha19] using random permutations instead of functions but
this is notoriously hard and arguably not mature enough.

The generic security of QuEME, and its comparison with FX, LR4, EME, and LR5, is
summarized in Table 1.

1.5 Heuristic Instantiation: Double-AES
In Section 8, we propose our final contribution, namely some concrete instantiations of
our construction when using (reduced-round versions of) the widely employed AES-128 as
building block. Concretely, we propose Double-AES, where the blocks are slightly tweaked
versions (constant-wise) of the full 10-round AES. We additionally propose Double-AES-7,
where the number of rounds is reduced to 7 in all blocks, and Double-AES-5-MC, a variant
with 5 rounds but that includes the last MC transformation in E1, E2, and E. We provide a
preliminary quantum and classical cryptanalysis (in Section 8.3) that supports our security
claim of n-bit security, and an estimated implementation evaluation (in Section 8.4). The
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Table 1: Comparison of the generic security of different extension constructions using a
block cipher of block size n and key size k, with k = n. We note that AES-256, with a
state n = k/2, provides a much worse level of security when used in modes and when
considering attacks on the size of the state (up to 2n/3 = 242.6 quantumly when applying
the best known quantum collision search algorithms allowing QRAM).

Construction Classical Quantum Classical Quantum Expected
bound bound (Q2) attack attack (Q2) security

FX 2n [KR01] — 2n [Din15] 2n/2 [LM17] 2n/2

LR4 2n/2 [Pat04] — 2n/2 [Pat04] n [IHM+18] —
EME 2n/2 [HR04] — 2n (Sec. 5) 2n/2 (Sec. 3.2) 2n/2

LR5 2n [Pat04] — 2n [Pat04] 2n/2 [DW18] 2n/2

QuEME 2n (Sec. 6) 2n/6 (Sec. 7) 2n (Sec. 5) 2n (Sec. 5) 2n

security claim is, for the first time to the best of our knowledge, unified, as we claim a
unique security level against all adversaries, regardless of whether they are classical or
quantum.

1.6 Outline
We describe notation and security models in Section 2. This section includes our new
random access PRP security in Section 2.3. The general Encrypt-Mix-Encrypt construction
and its limitations in the quantum setting are discussed in Section 3. Our new construction
QuEME is formally described in Section 4. A generic attack in 2n queries is given in
Section 5, and a security bound up to 2n queries using a variant of the mirror theory in
Section 6. Quantum security of QuEME is given in Section 7. We describe our concrete
instantiation Double-AES, including preliminary cryptanalysis and an implementation
evaluation, in Section 8. The work is concluded in Section 9.

2 Notation
For m, n ∈ N, the set of m-to-n-bit functions is denoted func(m, n) and the set of n-bit
permutations indexed by an m-bit key is denoted perm(m, n). For m = 0, i.e., for the set
of n-bit permutations, we simply write perm(n). For a finite set A, we denote by A

$←− A
the uniform random drawing of A from A. For m ≤ n, we will write [m..n] to denote the
range {m, . . . , n}, and [n] = [1..n]. We will use the Pochhammer falling factorial power
notation

(n)m := n(n− 1) · . . . · (n−m + 1).

2.1 Distinguishers and Distinguishing Advantage
An adversary A is an algorithm that gets access to a randomized oracle O and outputs a
decision bit b ∈ {0, 1}. We denote this as AO(·) = b. If the adversarial goal is to distinguish
two different randomized oracles O and P, we denote its advantage as

AdvO;P(A) =
∣∣Pr

[
AO = 1

]
− Pr

[
AP = 1

]∣∣ .

The oracles O and P may be quantum oracles, the adversary A may be a quantum
distinguisher. This will always be specified when it is this case, or it will be clear from
context.



6 Block Cipher Doubling for a Post-Quantum World

2.2 H-Coefficient Technique
Suppose an adversary A aims to distinguish two oracles O and P. If we consider A to
be information-theoretic, meaning that its complexity is only measured by the number of
oracle calls it makes, we can without loss of generality assume that it is deterministic. We
can then use the H-coefficient technique [Pat08b] to bound the distance.

Assume that we store the entire interaction that A has with its oracle by a transcript
τ . Denote by DO the probability distribution of transcripts that can be obtained while
interacting with O, and by DP the probability distribution of transcripts coming from
interaction with P. We say that a transcript is attainable if Pr [DP = τ ] > 0. Denote by
T the set of all attainable transcripts. The H-coefficient technique states the following
about the distinguishing advantage of A.

Lemma 1 (H-coefficient technique [Pat08b]). Consider any partition of attainable tran-
scripts T into good transcripts Tgood and bad transcripts Tbad. Let ε be such that for all
τ ∈ Tgood,

Pr [DO = τ ]
Pr [DP = τ ] ≥ 1− ε. (1)

Then, for any fixed information-theoretic deterministic adversary A, we have AdvO;P(A) ≤
ε + Pr [DP ∈ Tbad].

A nice and compact proof of the technique can be found in [CS14, CLL+14]. The
H-coefficient technique allows us to partition the set of all attainable transcripts T wisely
so that both ε and Pr [DP ∈ Tbad] are small.

The transcripts τ themselves typically simply store the entire interaction thatA has with
its oracle, i.e., its query-response tuples. Sometimes, in security proofs it is convenient to
consider extended transcripts. In this setting, the adversary is given additional information,
denoted τ∗ generated by a sample S, typically at the end of the security game but before
A outputs its decision bit. Lemma 1 also applies to the setting of extended transcripts.

2.3 Pseudorandom Permutations in Quantum Setting
We adopt the well-established notions of (quantum) (S)PRPs [Zha16, HI21, HI19]. In
addition, we will use a variant that we call random access (quantum) (S)PRPs.

2.3.1 (Quantum) (S)PRPs

Let E : {0, 1}k × {0, 1}n −→ {0, 1}n be a block cipher. We denote its (quantum) pseudo-
random permutation, or (q)PRP, security against an adversary A as

Adv(q)prp
E (A) = AdvEK ;Π(A),

where K
$←− {0, 1}k and Π $←− perm(n). The “q” in the superscript denotes that we consider

the quantum setting (where EK/Π is a quantum oracle). The adversary A may be bounded
by a certain number of oracle queries q and time t.

We likewise denote its (quantum) strong pseudorandom permutation, or (q)SPRP,
security against an adversary A as

Adv(q)sprp
E (A) = AdvE±

K
;Π±(A),

where K
$←− {0, 1}k and Π $←− perm(n). The “±” in the superscript denotes that we

consider two-sided access.
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We will also consider the above models in the ideal model. Assume that E is based
on a random primitive P selected from some finite set P. In this case, the adversary gets
additional access to P :

Advi-(q)(s)prp
E,P (A) = AdvE±

K
,P ;Π±,P (A),

where K
$←− {0, 1}k, Π $←− perm(n), and P

$←− P , and where the ± only applies to (q)SPRP
security. If P is an invertible primitive, A by default has two-sided access to P . In this
case, the adversary A is only bounded by the number of oracle queries: construction
queries q and primitive queries q′.

2.3.2 Random Access (Quantum) (S)PRPs

In our QuEME construction, we have 4 keyed block ciphers E1, . . . , E4 as well as an inner
unkeyed block cipher E which takes its key from part of the outputs of the other block
ciphers. We could have added an additional key to E and study all these functions in
the ideal cipher model. We want, however, to provide more ambitious security claims
where we do not add such a key. This increases the efficiency of the construction but
brings theoretical challenges. In order to prove security in this setting and to avoid the
ideal cipher model, we will require a different type of block cipher security, which we dub
random access (quantum) (S)PRP, or ra-(q)(S)PRP, security.

More concretely, let E : {0, 1}k × {0, 1}n −→ {0, 1}n be a block cipher. The idea of
ra-(q)(S)PRP security is that the attacker has freedom in the selection of both the data
and key input to E, but only in a restricted fashion. The definition is, admittedly, tailored
towards the use of E in our mode, but on the upside, it prevents us from resorting to the
ideal cipher model that would be a strictly (see Lemma 2) stronger assumption.

Formally, ra-SPRP security of E against an adversary A is defined as

Advra-sprp
E (A) = AdvRA[p,E]±;RA[p,Π̃]±(A),

where p = (p1, . . . , p4) $←− perm(n)4 and Π̃ $←− perm(n, n), and the oracle RA[p, F ] for
F ∈ {E, Π̃} operates as follows: on a forward query (A, B) it outputs (K, X, Y ) =
(p1(A)⊕ p2(B), p1(A), F (K, X)), and on an inverse query (A, B) it outputs (K, Y, X) =
(p3(A)⊕p4(B), p3(A), F −1(K, Y )). The adversary is only allowed to make offline evaluations
of E before making its queries. This is justified by the fact that, in our use case, we will
use ra-SPRP in a non-adaptive setting anyway (in fact the adversary will never even learn
the outputs, similar to, e.g., security proofs using protected hash function evaluations).
There may be an issue if the adversary makes accidentally colliding forward and inverse
evaluations, but this issue is captured in the security reduction. Naturally, ra-PRP is
defined for adversaries that only have forward access to the oracle and ra-q(S)PRP security
for adversaries if we consider the quantum setting. However, even in the quantum setting,
we only consider classical queries to RA[p, F ] and its inverse, which will be enough for
our proof.

We can also evaluate ra-SPRP security in the ideal model, where E is an ideal cipher.
In this case, we consider an adapted model where the adversary gets additional two-sided
access to E:

Advi-ra-(q)(s)prp
E (A) = AdvRA[p,E]±,E±;RA[p,Π̃]±,E±(A),

where p = (p1, . . . , p4) $←− perm(n)4, E
$←− perm(n, n), and Π̃ $←− perm(n, n). As before,

the adversary is only allowed to make offline evaluations of E before making its queries.
The adversary A is only bounded by the number of oracle queries: construction queries q
and primitive queries q′, and the security game is purely probabilistic and can be analyzed.
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In detail, we have the following result, which basically confirms that ra-SPRP security is a
strictly weaker model than the ideal cipher model.

Lemma 2. For any classical i-ra-SPRP adversary A, making q construction queries and
q′ primitive queries, we have

Advi-ra-sprp
E (A) ≤ qq′

22n
.

For any quantum i-ra-qPRP adversary A,

Advi-ra-qprp
E (A) ≤ q′

√
q

22n
,

provided the online queries are done classically.

Note that the condition that the online queries are done classically resembles ideas
of Jaeger et al. [JST21], who showed how to reprogram a quantum oracle having offline
queries to E and E−1 using quantum one-way to hiding theorems.

2.4 Quantum Computing
We will discuss some basic quantum algorithms and observations that we will use in
this paper. Performing a quantum query to a function f means applying the unitary
Of : |x⟩ |y⟩ → |x⟩ |y ⊕ f(x)⟩. If f is efficiently computable classically then Of is efficiently
computable quantumly. If f is a permutation, we can also use IN f : |x⟩ → |f(x)⟩, which
is efficiently computable if both f and f−1 are classically efficiently computable.1

We remark that in the quantum setting, different attack models are possible. The
Q1 setting allows the attacker to use a quantum computer but it can make only classical
queries to the black-box keyed oracles. In the Q2 setting, the attacker is able to make
superposition queries to the black-box keyed primitives. Various attacks in both settings
have appeared over time. In particular, the Q2 setting allows to attack many symmetric
cryptographic algorithms [KLLN16b, KM12, KM10, DW18]. As the Q2 setting is the
strongest of the two, and also represents security in other weaker scenarios, we will aim for
resistance of our construction in this setting.

Simon’s Algorithm. A function g : {0, 1}n → {0, 1}m is said to have a period s when
g(x) = g(y) if and only if x = y or x = y ⊕ s. If g is efficiently computable, then Simon’s
algorithm [Sim97] is able to recover s in time O(n3). A relaxed version of Simon’s Algorithm
can be used to detect the presence of a period without recovering it [IHM+18, Section 4].

It is also possible to only evaluate g on a subspace as long as the subspace admits s as
a period: i.e., if x is the subspace, x⊕ s is also in the subspace.

Grover’s Search. Given an efficiently computable function g : {0, 1}n → {0, 1}, Grover’s
search algorithm [Gro96] finds an element x (if it exists) such that g(x) = 1 in time O(2n/2).

BHT Algorithm. Given a random function g : {0, 1}n → {0, 1}n, the BHT algo-
rithm [BHT98] finds a collision (i.e., x ≠ y such that g(x) = g(y)) with O(2n/3) quantum
queries to g. If g is efficiently computable then the quantum running time is also O(2n/3),
given access to quantum RAM operations.

The BHT algorithm as cited uses a (classical) list of elements as a reference from which
it searches for an element which collides with the list, and as such it only outputs one

1This is done by computing |x⟩ |0⟩
Of−−→ |x⟩ |f(x)⟩ swap−−−→ |f(x)⟩ |x⟩

O
f−1

−−−−→ |f(x)⟩ |0⟩.
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collision in classical state. However, it is possible to have this reference in superposition.
In this case, we get the superposition of references with a colliding element (or a random
element with small probability). By retrieving the right element out of the reference
list and putting it next to the colliding element, we get a quantum state close to the
juxtaposition of the uniform superposition of collisions and a list of element in uniform
superposition.

3 Encrypt-Mix-Encrypt in Quantum Setting
Our aim is to find a 2n-to-2n-bit encryption mode using an n-bit block cipher. We will start
from the general Encrypt-Mix-Encrypt construction, which we discuss in Section 3.1. Then,
we will describe a new superposition attack on a large class of Encrypt-Mix-Encrypt-style
constructions in Section 3.2.

3.1 Generic Construction
Let E : {0, 1}k × {0, 1}n −→ {0, 1}n be a block cipher. In the Encrypt-Mix-Encrypt
paradigm, the plaintext is first passed through an encryption layer, then an invertible
mixing layer with possibly non-linear components, and then another encryption layer. The
encryption layers can be weak and simple, such as an ECB layer (with different keys). In
this case, the Encrypt-Mix-Encrypt construction operates as follows:

(L, R) 7→
(

E3
(
M(E1(L), E2(R))ℓ

)
, E4

(
M(E1(L), E2(R))r

))
,

where Ei (for i = 1, . . . , 4) is shorthand notation for E(Ki, ·) for some secret key Ki, M is
a 2n-to-2n-bit mixing layer with M(·, ·)ℓ and M(·, ·)r indicating the left and right halves
of its output, respectively. This generic Encrypt-Mix-Encrypt construction is depicted in
Figure 2a.

The next step is to select a proper invertible mixing function, preferably based on
an n-to-n-bit function f (which could, subsequently, be instantiated as Id ⊕ E using a
block cipher E with a secret key). An example mixing choice of this type would be the
Lai-Massey construction [LM92], as depicted in Figure 2b. In detail, it instantiates the
mixing function as

M(x, y) := (x⊕ f(x⊕ y), y ⊕ f(x⊕ y)). (2)

One can consider this construction to be a variant of EME [HR04].

3.2 Superposition Attack on Wide Class of Variants
Unfortunately, the construction of Figure 2b, i.e., with the mixing of (2), turns out to
be insecure in the quantum setting, even if E is a qPRP and f a qPRP or qPRF. Even
stronger, we demonstrate that any invertible mixing making a single call to an n-to-n-bit
function f is insecure in the quantum setting. We demonstrate the result for Figure 2b
in Section 3.2.1, and subsequently explain how the result generalizes to arbitrary mixing
functions in Section 3.2.3.

3.2.1 Attack on Construction of Figure 2b

We describe a general attack that recovers one of the keys of the outer permutations in
around Õ(2n/2) time.
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E1 E2

L R

M

E3 E4

S T

L̂ R̂

Ŝ T̂

(a)

E1 E2

L R

f

E3 E4

S T

L̂ R̂

Ŝ T̂X

(b)

E1 E2

L R

F

E3 E4

S T

L̂ R̂

Ŝ T̂X

(c)

Figure 2: Variants of the Encrypt-Mix-Encrypt (EME) construction. Figure 2a depicts
the construction with generic invertible mixing layer M : {0, 1}2n −→ {0, 1}2n. An
instantiation of this mixing layer using a non-compressing function f : {0, 1}n −→ {0, 1}n

is depicted in Figure 2b and using a compressing function F : {0, 1}2n −→ {0, 1}n in
Figure 2c.

Theorem 1. Let K1, . . . , K4 ∈ {0, 1}n be four keys, and denote K = (K1, . . . , K4) for
brevity. There exists a quantum key recovery adversary A against EME[E, f ]K of Figure 2b
with the mixing layer of (2) for a random2 function f that makes Õ(2n/3) queries, operates
in Õ(2n/2) time and Õ(2n/3) memory, and succeeds with probability at least Θ(1).

The proof is given in Section 3.2.2.

3.2.2 Proof of Theorem 1

The idea of the attack is to apply the BHT algorithm to obtain a superposition of pairs
of states, each for fixed left inputs L0 and L1, that collide on their left half S. This
phase runs in time O(2n/3). Then, Grover’s algorithm is evaluated to obtain the key K2,
which succeeds in time O(2n/2). Within this key search, Simon’s algorithm is employed
to verify correct key guesses. Due to symmetry of the EME[E, f ] mode, the same attack
can be applied to recover the keys K1, K3, or K4. The attack is unique in its kind as
it combines BHT, Grover, and Simon, where particularly BHT is used to restraint the
analyzed function to interesting outputs that generate a partial collision, and Grover and
Simon are combined to obtain a more targeted key recovery on top of the earlier collision
search.

Description of the Attack. Write Ei = EKi as shorthand notation. Define the function
S(L, R) that on input of (L, R) outputs the left half of EME[E, f ]K :

S(L, R) = E3 (E1(L)⊕ f(E1(L)⊕ E2(R))) .

Next, we fix two distinct values L0 and L1, and consider the uniform superposition of
claws between F0 : R 7→ S(L0, R) and F1 : R 7→ S(L1, R). The claws are interesting as

S(L0, R0) = S(L1, R1)⇐⇒
2The attack succeeds if Prx(f(a ⊕ E2,K2 (E−1

2,k
(x))) ⊕ f(b ⊕ E2,K2 (E−1

2,k
(x))) = f(a ⊕ E2,K2 (E−1

2,k
(x ⊕

t))) ⊕ f(b ⊕ E2,K2 (E−1
2,k

(x ⊕ t)))) ≤ 1/2 for any k ̸= K2, t, and random a, b. This is an expected property
of random functions f and E.
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f
(
E1(L0)⊕ E2(R0)

)
⊕ f

(
E1(L1)⊕ E2(R1)

)
= E1(L0)⊕ E1(L1).

We obtain a uniform superposition
1√

|{(R0, R1) | S(L0, R0) = S(L1, R1)}|

∑
(R0,R1)∈X

|R0, R1⟩

of elements from

X :=
{

(R0, R1) | f
(
E1(L0)⊕ E2(R0)

)
⊕ f

(
E1(L1)⊕ E2(R1)

)
= E1(L0)⊕ E1(L1)

}
. (3)

This superposition of claws can be obtained with the BHT algorithm in time O(2n/3). The
algorithm will be ran O(n) time as we will use multiple claws for confirmation later on,
and the below next steps are performed for each result.

We add an extra qubit |b⟩ = 1√
2 |0⟩ + 1√

2 |1⟩ to the state and apply the controlled
exchange (b, R0, R1) 7→ (b, Rb, R1−b). As a result, the state becomes the uniform superpo-
sition of elements from

Y :=
{

(b, R0, R1) | f
(
E1(Lb)⊕ E2(R0)

)
⊕ f

(
E1(L1−b)⊕ E2(R1)

)
= E1(L0)⊕ E1(L1)} . (4)

We will call the resulting state |Φ⟩.
The next step is Grover’s algorithm to guess key K⋆ of E2. Assuming that we guess

K⋆ = K2 correctly, we can apply IN EK⋆ : |x⟩ → EK⋆(|x⟩) (since we then efficiently
compute EK∗ and E−1

K∗) on the two rightmost registers of |Φ⟩ and get the superposition

1√
2|{(R0, R1) | S(L0, R0) = S(L1, R1)}|

∑
(b,R0,R1)∈Z

|b, R0, R1⟩ ,

where

Z :=
{

(b, R0, R1) | f
(
E1(Lb)⊕R0

)
⊕ f

(
E1(L1−b)⊕R1

)
= E1(L0)⊕ E1(L1)

}
. (5)

In this case, the set Z admits the period
(
1, E1(L0)⊕E1(L1), E1(L0)⊕E1(L1)

)
. In other

words, if (b, R0, R1) ∈ Z then also
(
b⊕1, R0⊕E1(L0)⊕E1(L1), R1⊕E1(L0)⊕E1(L1)

)
∈ Z.

We thus apply Simon’s algorithm on (b, R0, R1) 7→ R0 ⊕ R1, to recover the existence of
this period and uncompute the last steps to recover the states |Φ⟩ if this is the case. We
note that the last step succeeds if Prx(f(a⊕ E2,K2(E−1

2,k(x)))⊕ f(b⊕ E2,K2(E−1
2,k(x))) =

f(a⊕E2,K2(E−1
2,k(x⊕ t)))⊕ f(b⊕E2,K2(E−1

2,k(x⊕ t)))) ≤ 1/2 for any k, t, and random a, b.
The attack is described in more detail in Algorithm 1.

Analysis of the Attack. The attack combines the BHT algorithm O(n) times, followed
by a combination of Grover’s algorithm and Simon’s algorithm. The latter part of the attack.
The success probability of this second phase of the attack is estimated in Proposition 1
below. In fact, this proposition is slightly more general: it applies to our attack with g = 0,
Z =

{
(b, R0, R1) | S(L0, R0) = S(L1, R1)

}
, f ′

i : (b, R0, R1) 7→ (b, E2,i(Rb), E2,i(R1−b)),
fi : (b, R, R′) 7→ R′ ⊕ R, and s = (1, E1(L0) ⊕ E1(L1), E1(L0) ⊕ E1(L1)) and i0 = K2
where E2,i is E2 with the key i.

Proposition 1. Suppose that m = O(n), let {fi : {0, 1}n → {0, 1}l} be a family of
public functions, and {f ′

i : {0, 1}n → {0, 1}n} be a family of public permutations. Let
g : A ⊆ {0, 1}n → {0, 1}l be a function on which we only get some databases |ϕg⟩. Assume
that there is a unique i0 such that fi0 ⊕ g ◦ f ′

i0
has a period s and

max
i,t/∈{0,1}m×{0}∪{i0,s}

Pr
x∈f ′−1

i
(A)

[(fi ⊕ g̃ ◦ f ′
i)(x⊕ t) = (fi ⊕ g ◦ f ′

i)(x)] ≤ 1
2 .
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Algorithm 1 Superposition attack on EME[E, f ]K with the mixing layer of (2)
Input: superposition oracle access to EME[E, f ]K
Output: K2

1: Select two distinct values L0, L1 ∈ {0, 1}n

2: Repeat O(n) times (for confirmation)
3: Apply BHT algorithm to find claws Fb : R 7→ S(Lb, R) ▷ O(2n/3) time.

▷ We obtain uniform superposition
∑

(R0,R1)∈X |R0, R1⟩ with X of (3).
4: EndRepeat
5: Grover search on K2 with O(2n/2) turns using the following oracle:
6: ForEach superposition

∑
(R0,R1)∈X |R0, R1⟩ of clause 2

7: Prepend external qubit |b⟩ = 1√
2 |0⟩+ 1√

2 |1⟩
8: Apply (b, R0, R1) 7→ (b, EK2(Rb), EK2(R1−b))
9: EndFor

▷ If we guessed right, we obtain uniform superpositions on Z of (5).
▷ This set admits the period

(
1, E1(L0)⊕ E1(L1), E1(L0)⊕ E1(L1)

)
.

10: Apply Simon’s algorithm on the resulting superpositions
with function (b, R0, R1) 7→ R0 ⊕R1

▷ Simon’s algorithm returns 1 if and only if K2 is guessed correctly
11: Uncompute to retrieve superpositions

∑
(R0,R1)∈X |R0, R1⟩

12: EndGrover
13: Return K2

Using O(n) databases |ϕg⟩ =
∑

x∈A
1√
|A|
|x⟩ |g(x)⟩, we can recover i0 with probability Θ(1).

The running time is O(n32m/2).

The above proposition can be obtained as a modification of the offline Simon algo-
rithm [BHN+19], which is explained in more detail in Supplementary Material A.

3.2.3 Extension to Arbitrary Mixing Based on Non-Compressing f

While the attack of Section 3.2.2 is described for the specific mixing of (2), it can readily
be adapted to other non-compressing mixing layers similar to (2). Consider a general
mixing layer where the left half of the output can be written as

ML(x, y) := Π2(f(Π1(x, y)), x, y), (6)

for some linear maps Π1 and Π2. By linearity, we can write Π1(x, y) = Π1,L(x)⊕Π1,R(y)
and Π2(f, x, y) = f⊕Π2,L(x)⊕Π2,R(y) (even if it means rewriting the function f). Recalling
that S(L, R) := E3(ML(E1(L), E2(R))), the collision equation S(L0, R0) = S(L1, R1) is
satisfied if and only if

f(Π1,L ◦ E1(L0)⊕Π1,R ◦ E2(R0))⊕ f(Π1,L ◦ E1(L1)⊕Π1,R ◦ E2(R1)) =
Π2,L ◦ E1(L0)⊕Π2,L ◦ E1(L1)⊕Π2,R ◦ E2(R0)⊕Π2,R ◦ E2(R1).

With a good key guess and the controlled exchange, the equation becomes

f(Π1,L ◦ E1(Lb)⊕Π1,R(R0))⊕ f(Π1,L ◦ E1(L1−b)⊕Π1,R(R1)) =
Π2,L ◦ E1(L0)⊕Π2,L ◦ E1(L1)⊕Π2,R(R0)⊕Π2,R(R1).

Now, if Π1,R is not reversible, there exists t ̸= 0 such that Π1,R(t) = 0, and the set of
collisions admits the period s = (0, t, t). On the other hand, if Π1,R is reversible, then the
set of collisions admits the period s = (1, t, t) for t = Π−1

1,R ◦ Π1,L(E1(L0)⊕ E1(L1)). In
either case, the attack works the same way but the recovered period will be different.
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4 QuEME
The EME construction appears to be a good starting point for our doubler; however, the
attack of Section 3.2 shows that the mixing layer must be chosen with care. In fact, the
attack of Section 3.2 excludes all mixing functions based on a single non-compressing
primitive f . As our aim is to build our scheme based on a simple block cipher, the only
reasonable alternative is to view the block cipher as a compressing function E : {0, 1}2n −→
{0, 1}n, where one block of n bits goes into the data path and one block of n bits into the
key path, and build the mixing layer on top of that.

Unfortunately, also such instantiation must be made with care. Suppose, for example,
we would take the arguably most logical choice, namely the specification of Figure 2c,
with F replaced by E in such a way that L̂ goes into the key path and R̂ into the data
path of E. In this case, one can easily mount a distinguishing attack: An attacker can
keep L constant and vary R. This leads to constant L̂, and thus differing X for each
query. This also implies that Ŝ and thus S differ for each query. On the other hand, for an
ideal primitive collisions in S are expected in 2n/2 evaluations. A logical solution to this
approach is to have the key path to E depending on both L̂ and R̂. Taking bijectivity of
the mixing layer into account, this leads to the mixing layer that we adopted for QuEME:

M(x, y) := (E(x⊕ y, x), y ⊕ E(x⊕ y, x)).

This will be the core idea of QuEME. However, we will describe it in a more general
fashion where (i) the block cipher in the mixing layer may be different from the block
cipher used in the outer layer, and (ii) the block cipher in the outer layer may have a key
size different from the data size. In addition, QuEME is a priori defined for four keys.
Looking ahead, in Section 8 we propose an instantiation that also deals with how to obtain
variation in the block ciphers and how to obtain four keys from two keys.

In detail, let E : {0, 1}k × {0, 1}n −→ {0, 1}n and E′ : {0, 1}n × {0, 1}n −→ {0, 1}n be
two block ciphers and let K1, . . . , K4 ∈ {0, 1}k be four keys. Denote K = (K1, . . . , K4).
We define QuEMEE,E′

: {0, 1}4k × {0, 1}2n −→ {0, 1}2n as

QuEMEE,E′

K (L, R) := (S, T ), (7)

where

L̂ = E(K1, L), R̂ = E(K2, R),
X = L̂⊕ R̂,

Ŝ = E′(X, L̂), T̂ = X ⊕ Ŝ,

S = E(K3, Ŝ), T = E(K4, T̂ ).

We simply write QuEMEE in case k = n and E = E′. For this case, the scheme is depicted
in Figure 1b.

5 Generic Attack in 2n Queries
We will first describe a generic attack against QuEMEE,E′

that operates in 2n+4 queries.
The attack de facto demonstrates that we cannot prove security of QuEME beyond 2n.
Proposition 2. Let E : {0, 1}k × {0, 1}n −→ {0, 1}n and E′ : {0, 1}n × {0, 1}n −→
{0, 1}n be two block ciphers. There exists a classical PRP adversary A against QuEMEE,E′

making 2n+4 queries such that

Advprp
QuEMEE,E′ (A) ≥ Ω(1).

The proof is given in Section 5.1.
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5.1 Proof of Proposition 2
We will describe an adversary A that is given access to either f = QuEMEE,E′

K with
K = (K1, . . . , K4) or f = Π $←− perm(2n). We will write Ei (for i = 1, . . . , 4) as shorthand
notation for E(Ki, ·). The adversary will only make forward queries to f , and will be able
to distinguish with high probability with which function it communicates. It relies on the
core idea that for f = Π, on any input (L, R), the output f(L, R) = (S, T ) is a uniformly
random string that has not been output before, whereas if f = QuEMEE,E′

K , we have

E1(L)⊕ E2(R) = E−1
3 (S)⊕ E−1

4 (T ). (8)

We will use linear algebra techniques in order to detect this structure. Let N = 2n

and N ′ = 4N . Let L, R, S, T ∈ {0, 1}n, which we interpret as integers in [0..N − 1], and
denote by eLRST ∈ FN ′

2 the binary column vector where the ith coordinate of eLRST is
equal to 1 if i = L, i = R + N , i = S + 2N or i = T + 3N , and is equal to 0 otherwise.
This means each ex1x2y1y2 ∈ FN ′

2 has weight 4, meaning four non-zero coordinates.

Description of the Adversary. The idea of the adversary is the following: perform
q queries of the form {LiRiSiT i}i∈[1..q], and let H = span{e⃗LiRiSiT i}i∈[1..q]. For q large
enough, but linear in N ′, we will show that if A queries f = QuEMEE,E′

K , we have
dim(H) ≤ N ′ − 2 with overwhelming probability, due to (8). On the other hand, if A
queries f = Π we have dim(H) ≥ N ′ − 1 since the e⃗LiRiSiT i ’s will essentially be random
vectors of FN ′

2 of weight 4.
More detailed, the adversary operates as follows:

• Perform q = 4N ′ random different queries (Li, Ri) for i ∈ [1..q] and get respective
outputs (Si, T i) = f(Li, Ri);

• Let H = span{e⃗LiRiSiT i}i∈[1..q] and compute dim(H);

• If dim(H) ≤ N ′ − 2, return “QuEMEE,E′

K ”, else return “Π”.

Analysis of the Attack. We will prove in Lemma 3 below that in the real world we
always have dim(H) ≤ N ′ − 2 and in Lemma 4 below that in the ideal world we have
dim(H) = N ′ − 1 with overwhelming probability. These two results imply that after
q = 4N ′ = 2n+4 queries, A distinguishes between QuEMEE,E′

K and Π with overwhelming
probability.

Lemma 3. If f = QuEMEE,E′

K , we have dim(H) ≤ N ′ − 2.

Proof. By construction, each query (Si, T i) = f(Li, Ri) satisfies

E1(Li)⊕ E2(Ri) = E−1
3 (Si)⊕ E−1

4 (T i).

Consider the following matrix M ∈ F n×N ′

2 : the first N columns of M are the columns[E1(x)]1
...

[E1(x)]n

 for each x ∈ {0, 1}n. Then, the next N columns are the same but we replace

E1 with E2, and similarly with the third and last where we have E−1
3 and E−1

4 respectively
instead of E1. In other words,

M =


[E1(0)]1

...
[E1(0)]n

 . . .

[E2(0)]1
...

[E2(0)]n

 . . .

[E−1
3 (0)]1

...
[E−1

3 (0)]n

 . . .

[E−1
4 (0)]1

...
[E−1

4 (0)]n

 . . .

 .
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Because E1, E2, E3, E4 are permutations, the matrix M contains at least 2 different non-
zero rows, therefore dim(M) ≥ 2. Also,

M · e⃗LRST = E1(L)⊕ E2(R)⊕ E−1
3 (S)⊕ E−1

4 (T ).

We can conclude that H ⊆ Ker(M) and dim(Ker(M)) = N ′ − dim(M) ≤ N ′ − 2. From
this, we can conclude that dim(H) ≤ N ′ − 2.

Lemma 4. If f = Π, we have dim(H) = N ′ − 1 with overwhelming probability.

Proof. Let Hj = span{e⃗LiRiSiT i}i∈[j]. We will show that if dim(Hj) ≤ N ′ − 2, then, with
constant probability, dim(Hj+1) = dim(Hj) + 1. Let H⊥

j be the dual of Hj , so

x ∈ Hj ⇐⇒ ∀y ∈ H⊥
j , ⟨x, y⟩ = 0.

We have dim(Hj) + dim(H⊥
j ) = N ′. This, in particular, implies that dim(H⊥

j ) ≥ 2. We
can in turn conclude that there exist two distinct non-zero vectors v1, v2 ∈ H⊥

j . This, in
turn, implies that there exists v∗ ∈ H⊥

j such that |v∗| ≤ 2N ′/3. One can indeed easily
check that if |v1|, |v2| > 2N ′/3 then |v1 + v2| ≤ 2N ′/3.

For a random tuple (L, R, S, T ), we then have

Pr [e⃗LRST ∈ Hj ] ≤ Pr [⟨e⃗LRST , v∗⟩ = 0]

≤
(

1
3

)4
+ 6

(
1
3

)2 (
2
3

)2
+

(
2
3

)4
= 41

81 .

This gives Pr[e⃗LRST /∈ Hj ] ≥ 40/81.
However, for f = Π, the tuples {LiRiSiT i}i∈[1..q] are not entirely random. Indeed,

although for tuple j +1 the values (Lj+1, Rj+1) are chosen uniformly at random, the output
(Sj+1, T j+1) is generated randomly without repetition. For a fixed query, this changes
the output distribution by at most O(j/N2) = O(1/N) (since there are O(N ′) = O(N)
queries in total, so j ≤ O(N)). We thus obtain, for any j,

Pr [e⃗Lj+1Rj+1Sj+1T j+1 /∈ Hj ] ≥ 40
81 −O

(
1
N

)
.

This implies that, with near-constant probability, dim(Hj+1) = dim(Hj) + 1. Since
q = 4N ′, this then implies that with overwhelming probability dim(Hq) ≥ N ′ − 1.

We remark that we have not been able to find any improvement to the attack using
quantum techniques. In particular, we do not believe that above adversary can benefit
from any speed-up in the quantum setting.

6 Classical n-Bit Security of QuEME
We will give a classical security proof of QuEMEE,E′

up to 2n queries.

Theorem 2. Let E : {0, 1}k × {0, 1}n −→ {0, 1}n and E′ : {0, 1}n × {0, 1}n −→ {0, 1}n

be two independent block ciphers. For any classical SPRP adversary A against QuEMEE,E′
,

making q queries and operating in time t, we have

Advsprp
QuEMEE,E′ (A) ≤ 3.5q2

22n
+ 4 ·Advsprp

E (A′) + Advra-sprp
E′ (A′′),

for some adversaries A′,A′′ making q queries and operating in time t′, t′′ ≈ t, subject to
the assumption of a conjectured bound from mirror theory (cf. Conjecture 1, Section 6.1).
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At a high level, the security proof consists of first reducing the security of QuEMEE,E′

to the SPRP security of E and to the random access SPRP security of E′ as freshly defined
in Section 2.3. Then, using a variant of a mirror theory result, the idealized version is
demonstrated to behave ideally up to around 2n queries. If we restrict our focus to PRP
security, where A cannot make queries to the inverse construction, the same result applies
with also only PRP and random access PRP security on the right hand side.

We note that the proof of Theorem 2 is in the standard model, but the notion of
ra-SPRP security might seem artificial at first. However, as we showed in Lemma 2, it is
strictly weaker than the ideal cipher model. Consequently, security of QuEMEE,E′

in the
ideal cipher model follows immediately from Theorem 2 and Lemma 2.

Corollary 1. Let E
$←− perm(k, n) and E′ $←− perm(n, n) be two ideal ciphers. For any

classical i-SPRP adversary A against QuEMEE,E′
, making q construction queries and q′

primitive queries, we have

Advi-sprp
QuEMEE,E′ (A) ≤ 3.5q2

22n
+ 4q′

2k
+ qq′

22n
,

subject to the assumption that Conjecture 1 is true.

The mirror theory conjecture upon which our proof is based is described in Conjecture 1
in Section 6.1, and the proof of Theorem 2 is given in Supplementary Material B. In
Supplementary Material C we dive deeper into Conjecture 1 and perform a simulation,
which could be of interest to other mirror theory results as well.

6.1 Mirror Theory
The mirror theory of Patarin [Pat05,Pat10a,Pat03] gives a lower bound on the number of
solutions of systems of bi-variate equations. In its most natural form, it considers q n-bit
variables (Y1, . . . , Yq) and r bi-variate equations of the form

Yi ⊕ Yj = δi,j , (9)

where i ̸= j for all equations. It states that, provided all δi,j ̸= 0 and the graph
corresponding to these equations (where the variables are nodes and the equations are edges)
does not have a cycle or a component larger than ξmax, and provided that nξ2

max + ξmax ≤
2n/2, and either r ≤ 2n/2 or r ≤ 2n/12ξmax holds, the number of solutions such that all
variables are distinct is at least

(2n)q

2nr
. (10)

The intuition behind this lower bound is that the numerator in the above expression is
the total number of solutions satisfying just the distinctness constraint, and any randomly
chosen solution has a probability of around 1/2nr of satisfying all r bi-variate equations.
The mirror theory has a long history [Pat08a,Pat10b,CLP14], and despite having seen
various disputes in the community for a long time, it has been well-accepted by the
community. There have been various instances in literature where the mirror theory has
been used to derive security bounds [IMV16,MN17,ZHY18,BBN22]. Dutta et al. [DNS22]
recently provided a clean proof of the bound for ξmax = 2, and Cogliati et al. [CDN+23]
followed it up with a proof for a wider range of ξmax; the above statement is taken from
the latter.

The above statement is useful to obtain a lower bound on the number of permutations
P ∈ perm(n) which satisfy the r conditions of (9) for a certain q of its outputs. There
is also a generalization of this result that considers the case where the n-bit variables
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come from two different permutations. In other words, the variables (Y1, . . . , Yq) are split
over two tuples, say (Y1, . . . , Yq1) and (Z1, . . . , Zq2), and in each of these two tuples there
occurs no collision. The mirror theory variant in this setting asserts that the number of
solutions is at least

(2n)q1(2n)q2

2nr
. (11)

The idea of this one is that, again, the numerator is the total number of solutions satisfying
just the distinctness constraint. This variant of the mirror theory has been used in earlier
works (e.g., to argue security of EWCDM [MN17]). A proof of this bound for the special
case of ξmax = 2 was provided in [DNS22].

However, it appears that if the graph corresponding to the system of bi-variate equations
is structured in a certain way, a slightly improved term can be claimed. Suppose the graph
can be split into t components C(1), . . . , C(t) where t = q1 + q2 − r. For each j ∈ [1..t], let
q

(j)
1 (resp. q

(j)
2 ) be the number of Yi’s (resp. Zi’s) that appear in C(j). Finally, define the

cumulative sums

Q
(j)
b =

j−1∑
i=1

q
(i)
b

for each b ∈ {1, 2} and each j ∈ [1..t]. This system of equations is consistent when there is
no path of even length on which the δi,j sum to 0, and it does not have any redundancy
when the graph has no cycles. In this case, we pose the following conjecture.

Conjecture 1 (Tighter Mirror Conjecture). For a consistent system of r bi-variate
equations whose corresponding graph has t components, with ξmax denoting the size of the
largest component, suppose that one of the following two constraints is true:

• r ≤ 2n/2;

• nξ2
max + ξmax ≤ 2n/2 and rξmax ≤ 2n/12.

Then the number of solutions such that all variables (Y1, . . . , Yq1) are distinct and all
variables (Z1, . . . , Zq2) are distinct is at least

1
2nr
·

t∏
j=1

[(
2n −Q

(j)
1

)q
(j)
1

(
2n −Q

(j)
2

)q
(j)
2

]
, (12)

where Q
(j)
1 , q

(j)
1 , Q

(j)
2 , q

(j)
2 are as described above.

The intuition behind this extension is the following. As before we randomly choose
a valid solution for the Yi’s and the Zi’s, and it satisfies the equations with (roughly)
a probability 1/2nr. However, in this case, the key additional observation is that when
choosing the valid solution, instead of ensuring distinctness among all Yi’s and all Zi’s,
we just need to ensure that there are no collisions between components. Indeed, since
our system of equations is consistent, for any solution that satisfies the equations, within-
component distinctness is automatically ensured. Thus when choosing the q

(j)
1 Yi’s from

the jth component, we just choose them randomly from all the N − Q
(j)
1 unsampled

values, and similarly for the Zi’s. A small-scale simulation of Conjecture 1 is given in
Supplementary Material C.
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7 Quantum n/6-Bit Security of QuEME
Even though the results of Section 6 give guarantees about the security of QuEMEE,E′

in
the classical setting, our ultimate goal was to develop a scheme that achieves a certain
level of security against quantum attackers. In this section, we will demonstrate that
QuEMEE,E′

generically achieves n/6-bit PRP security in the quantum setting.
The first step is to reduce the quantum security of QuEMEE,E′

to its classical security,
which happens in Theorem 3. In the formulation below, we will consider quantum
adversaries and in some intermediate steps, quantum adversaries that are restricted to
classical queries. This will be denoted in the subscript of the adversary: AQQ will
correspond to a quantum adversary performing quantum queries and AQC will correspond
to a quantum adversary performing classical queries. We can now state our main theorem
of this section.

Theorem 3. Let E : {0, 1}k × {0, 1}n −→ {0, 1}n and E′ : {0, 1}n × {0, 1}n −→ {0, 1}n

be two independent block ciphers. For any qPRP adversary AQQ against QuEMEE,E′

performing quantum queries, for any integer parameter r ≥ 1, we have

Advqprp
QuEMEE,E′ (AQQ) ≤ Advprp

QuEMEπ,π̃ (A′
QC) + Advra-qprp

E′ (A′′
QC)

+ 4 ·Advqprp
E (BQQ) + r4

22n
+ O

(
q3

r

)
,

where π = (π1, . . . , π4) $←− perm(n)4 and π̃
$←− perm(n, n). Moreover, A′

QC is a quantum
adversary performing r2 classical queries and A′′

QC is a quantum adversary performing
r2 classical construction queries and q quantum primitive queries. BQQ is a quantum
adversary performing as many quantum queries as AQQ.

The proof of Theorem 3 is given in Supplementary Material D. The proof consists of first
applying the quantum step to qPRP security just like in the proof of Theorem 2 (namely
Supplementary Material B.1), leaving a randomized scheme QuEMEπ,E′

(abusing notation,
the keys are irrelevant here), and then reducing the quantum security of that scheme to its
classical security using Zhandry’s lower bound on small range functions [Zha15]. Entering
the PRP security result of Theorem 2 for this scheme into the equation, we obtain an
equilibrium for r = q3/522n/5, which immediately yields the following corollary.

Corollary 2. For any qPRP adversary AQQ against QuEMEE,E′
, making q quantum

queries, we have,

Advqprp
QuEMEE,E′ (AQQ) ≤ Advra-qprp

E′ (A′′
QC) + 4 ·Advqprp

E (BQQ) + O

(
q12/5

22n/5

)
,

where BQQ makes q quantum queries and A′′
QC performs q6/524n/5 classical construction

queries and q quantum primitive queries.

Proof. We use the notations and the statement of the above theorem. Using Theorem 2,
we have Advprp

QuEMEπ,π̃ (A′
QC) = O( r4

22n ), since the algorithms A′
QC performs r2 classical

queries. Plugging this into the statement of Theorem 3 and choosing r = q3/522n/5, we
obtain

AdvQuEMEE,E′
K

;Π(AQQ) ≤

Advra-qprp
E′ (A′′

QC) + 4 ·Advqprp
E (BQQ) + O

(
q12/5

22n/5

)
.
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The above corollary shows the security of our scheme up to q = 2n/6. We discuss its
tightness and possible improvements in Section 7.1.

Just like for Theorem 2, an ideal cipher model equivalent is directly implied from
Lemma 2.
Corollary 3. Let E

$←− perm(k, n) and E′ $←− perm(n, n) be two ideal ciphers. For any
quantum i-PRP adversary AQQ against QuEMEE,E′

, making q quantum queries, we have,

Advi-qprp
QuEMEE,E′ (AQQ) ≤ O

(
q2

2k

)
+ O

(
q12/5

22n/5

)
.

Proof. With the same adversaries A′′
QC and BQQ as in Corollary 2, we have

Advi-qprp
QuEMEE,E′ (AQQ) ≤ Advi-ra-qprp

E′ (A′′
QC) + 4 ·Advi-qprp

E (BQQ) + O

(
q12/5

22n/5

)
≤ O

(
q · q3/522n/5

2n

)
+ O

(
q2

2k

)
+ O

(
q12/5

22n/5

)
= O

(
q2

2k

)
+ O

(
q12/5

22n/5

)
,

where we used Lemma 2 as well as the fact that the qPRP advantage of an ideal cipher is
O

(
q2

2k

)
, which corresponds to performing Grover’s algorithm on the key. Also the first

term O
(

q · q3/522n/5

2n

)
is dominated by O

(
q12/5

22n/5

)
.

7.1 Discussion
Our proof is very generic and relies on the observation that we can relate the quantum
security to the classical security for any construction that starts by encrypting the left
and right halves of the input. The drawback of this strategy is that it seems to be far
from tight. Indeed, when looking at our construction and the classical attack running
with O(2n) queries (Section 5), it is not clear how to use quantum queries to improve this
attack. We expect our construction to have much more than n/6 bits of quantum security.
It is likely that it even achieves n-bit quantum security.

One possible avenue to improve our bound would be to to look at Zhandry’s quantum
query recording technique [Zha19]. However, in our case, we need to consider random
permutations and not random functions, and this is notoriously hard, as some of the
proposals for this turned out to be incorrect (see for instance [Unr21]). As this topic
becomes more mature, we hope that this tool will be available for proving tight quantum
security bounds for our construction.

8 Concrete Instantiation: Double-AES
In this section, we propose a concrete instantiation based on the standardized and most
widely used block cipher AES-128 [DR02]. We show how to derive four 128-bit keys (as
required in the generic QuEME construction) from our main 256-bit key, and how to vary
the AES-128 scheme so that it is safe to use in QuEME in Section 8.1. We describe our
concrete variants depending on how many AES rounds are considered in each block in
Section 8.2. The best classical and quantum attacks we found on these constructions are
given in Section 8.3. As we will see, these results motivate us to consider including the
last MixColumns transformation on each block cipher call. We estimate and compare
implementation performances in Section 8.4, among others with Saturnin [CDL+20].

We refer to Supplementary Material E for a brief description of AES-128 and a discussion
of the best known attacks on it.



20 Block Cipher Doubling for a Post-Quantum World

8.1 Key Extension and Scheme Variation
In the ongoing instantiation, the key input K is of size 256 bits. We can split it into two,
K = K1∥K2, to obtain the two 128-bit keys to the block ciphers in the top layer. The
keys K3 and K4 for the bottom layer will then be derived from K1 and K2 in such a way
that knowledge of any of the keys does not give any information about any of the other
keys; at least two keys are needed to obtain a third one. For this, we propose to take
K3 = K1 ⊕K2 and K4 = K1 ⊕ (K2 ≪ 1).

As the security proof assumes independence of the four keys, but eventually they are
related, it is beneficial to have some variation in the block cipher evaluations. We resolve
this by using different constants for each round in each cipher:

rci,j =


Xi mod X8 + X4 + X3 + X + 1

j
0
0

 .

For the inner block cipher in the QuEME mode we maintain the original AES definition.

8.2 Concrete Proposals
Double-AES-10. This is QuEME with the key and constant definitions of Section 8.1
with full 10-round AES-128 encryptions for each block cipher.

Double-AES-7. It seems that the 7-round attacks on AES-128 (refer to Table 3) cannot
be exploited when using AES-128 in our construction. Even stronger, given the restricted
access that the attacker has on the block ciphers within QuEME, it seems that this 7-round
version is already quite conservative.

Double-AES-6-MC. We propose a variant where the number of rounds of AES-128
is reduced to 6, but where an additional MixColumns operation is performed at the
end of the block ciphers in the top and middle layer. We encourage cryptanalysis of
Double-AES-5-MC, i.e., this version but instantiated with 5-round AES-128, for which
we think an attack might exist, but we conjecture that Double-AES-6-MC provides a
comparable level of security as Double-AES-10.

8.3 Security Claims and Cryptanalysis
We claim that our instantiations achieve the same quantum security as the Saturnin block
cipher [CDL+20], that was designed to propose resistance against quantum-attackers. In
particular, we also claim that there exists no quantum attack in the single-key setting
with T 2/p < 2224, where T is the time/query complexity, p the success probability. We do
not provide security against related-key superposition attacks (as is the case of all known
block ciphers).

In addition, we claim that when plugged into a secure mode, any attack that requires a
collision on the state would require at least the generic complexity for generating a collision.
In other words, no attack significantly better than T 5 ×Mq = 2512 exists, where Mq

denotes the quantum memory (that includes the classical memory). This is the theoretical
limit given by the best generic attacks, as stated in [CDL+20].

8.3.1 Cryptanalysis

In the remainder of this section, we present the best attacks we have found on round-
reduced versions of Double-AES. In order to reflect that a different number of rounds can
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Figure 3: Square-like property on the middle layer of round-reduced Double-AES. We use
orange for bytes that take all values (i.e., that are saturated), blue for balanced bytes, and
black for ignored bytes.

be considered per block, we say that an attack is on variant r1-r2-r3 of Double-AES when
it covers r1 rounds for E1 and E2, r2 rounds for E, and r3 rounds for E3 and E4. The
two best attacks that we found cover (i) 3 rounds in E, E3, and E4, and any number
of rounds in E1 and E2, which we denote as X-3-3, and (ii) 2 rounds in the E and any
number of rounds in the outer block ciphers, which we denote as X-2-X. Both attacks
are not considering an added MixColumns layer at E1, E2, and E. Also, both attacks are,
logically, quantum attacks.

The attacks rely on the core observation that given the key addition operation of
AES-128, the data path of the inner block cipher after the first key addition will be equal to
the output of E2. This property is very interesting. For example, if we consider differences
and if the right half of the input is fixed, the first SubBytes transformation in the middle
block cipher will have no active S-boxes.

Attack on X-3-3 Version. This attack is based on the square attack [FKL+00]. From
this attack, we know that if we consider four rounds of AES, and we encrypt a set of 28

inputs taking all the possible values of a concrete byte (we call this a saturated byte) while
fixing the rest of the state, we will obtain 28 outputs verifying that the values of all their
16 words are balanced.

We want to exploit a similar property in our attack: if we guess K1 of E1, we can
generate an input to the middle call E with some saturated bytes through the output of
E1. We have to be careful, however, as this input state will also influence its subkeys.
Taking into account the key schedule and difference propagation through the subkeys, we
obtain the path in Figure 3 that holds with probability 1. Given an input to E with two
saturated bytes, generated from the output of E1 as shown in the figure, three rounds
(without the last MixColumns) later, we obtain a state where 8 bytes take all different
values, in orange; one balanced byte, in blue; and 6 constant ones.

Figure 3: Square-like property on the middle layer of round-reduced Double-AES. We use
orange for bytes that take all values (i.e., that are saturated), blue for balanced bytes, and
black for ignored bytes.

be considered per block, we say that an attack is on variant r1-r2-r3 of Double-AES when
it covers r1 rounds for E1 and E2, r2 rounds for E, and r3 rounds for E3 and E4. The
two best attacks that we found cover (i) 3 rounds in E, E3, and E4, and any number
of rounds in E1 and E2, which we denote as X-3-3, and (ii) 2 rounds in the E and any
number of rounds in the outer block ciphers, which we denote as X-2-X. Both attacks
are not considering an added MixColumns layer at E1, E2, and E. Also, both attacks are,
logically, quantum attacks.

The attacks rely on the core observation that given the key addition operation of
AES-128, the data path of the inner block cipher after the first key addition will be equal to
the output of E2. This property is very interesting. For example, if we consider differences
and if the right half of the input is fixed, the first SubBytes transformation in the middle
block cipher will have no active S-boxes.

Attack on X-3-3 Version. This attack is based on the square attack [FKL+00]. From
this attack, we know that if we consider four rounds of AES, and we encrypt a set of 28

inputs taking all the possible values of a concrete byte (we call this a saturated byte) while
fixing the rest of the state, we will obtain 28 outputs verifying that the values of all their
16 words are balanced.

We want to exploit a similar property in our attack: if we guess K1 of E1, we can
generate an input to the middle call E with some saturated bytes through the output of
E1. We have to be careful, however, as this input state will also influence its subkeys.
Taking into account the key schedule and difference propagation through the subkeys, we
obtain the path in Figure 3 that holds with probability 1. Given an input to E with two
saturated bytes, generated from the output of E1 as shown in the figure, three rounds
(without the last MixColumns) later, we obtain a state where 8 bytes take all different
values, in orange; one balanced byte, in blue; and 6 constant ones.

As we guess K1 of E1 to compute the inputs that generated the desired inputs to
E, and the input to E2 is constant, any number of rounds in E1 and E2 would allow
the attack to work. The output of E from Figure 3 is directly fed as input to E3. We
now guess the subkey bytes from K3 associated to 32 bits of the antidiagonal for the last
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Figure 4: Recovery on the bottom layer of round-reduced Double-AES. We use orange for
saturated bytes, blue for balanced bytes, black for ignored bytes, ■ for guessed bytes, and
• for deduced and known bytes.

As we guess K1 of E1 to compute the inputs that generated the desired inputs to
E, and the input to E2 is constant, any number of rounds in E1 and E2 would allow
the attack to work. The output of E from Figure 3 is directly fed as input to E3. We
now guess the subkey bytes from K3 associated to 32 bits of the antidiagonal for the last
subkey, and 8 bits of information from the subkey of the penultimate equivalent subkey, as
shown in Figure 4. This allows us to compute, for the 128 leftmost bits of the outputs of
Double-AES version X-3-3, a byte after the first MixColumns transformation in E3, and
to check whether the sum of the resulting bytes is 0 or not. This produces a filter that
only keeps one guess out of 256 (2−8).

In order to increase this sieving, we choose, instead of one fixed state as input of E2,
21 different ones, which would provide a sieving with a probability of 2−8×21 to have the
21 bytes associated to a guess balanced, leaving approximately 2128+5×8 × 2−8×21 = 1 key
guess as candidate for the correct value.

The complexity will be 21×28×2(128+32+8)/2 = 296.5 time and 21×28×2(128)/2 = 276.5

data, where 21×28 is the number of inputs we will consider per key guess, and 2(128+32+8)/2

the cost of exhaustive search of the key when done with Grover’s algorithm. We expect that
these attacks might be extendable to the 4-4-4 configuration, or to 4-3-4 with MixColumns,
by having a closer look at the properties generated by the key schedule of the middle layer.

Attack on X-2-X Version. We start with a fixed pair (P1, P2) of distinct input blocks
to E1 and perform the encryption through Double-AES version X-2-X of (P1, R), (P2, R),
for a fixed value R, which is the input to E2. We consider exclusively the left part of the
output, i.e., the output of E3, and we obtain C1 and C2. For each guess of key K3 from
E3, we will try a decryption through E3 of C1 and C2 and record the difference δ.

In parallel, we guess key K1 from E1, and for each guess we will try an encryption
through E1 of P1 and P2. This will produce values L̂1 and L̂2 that correspond to the

Figure 4: Recovery on the bottom layer of round-reduced Double-AES. We use orange for
saturated bytes, blue for balanced bytes, black for ignored bytes, ■ for guessed bytes, and
• for deduced and known bytes.

subkey, and 8 bits of information from the subkey of the penultimate equivalent subkey, as
shown in Figure 4. This allows us to compute, for the 128 leftmost bits of the outputs
of Double-AES version X-3-3, a byte after the first MixColumns transformation in E3,
and to check whether the sum of the resulting bytes is 0 or not. This produces a filter
that only keeps one guess out of 256 (2−8). In order to increase this sieving, we choose,
instead of one fixed state as input of E2, 21 different ones, which would provide a sieving
with a probability of 2−8×21 to have the 21 bytes associated to a guess balanced, leaving
approximately 2128+5×8 × 2−8×21 = 1 key guess as candidate for the correct value.

The complexity will be 21×28×2(128+32+8)/2 = 296.5 time and 21×28×2(128)/2 = 276.5

data, where 21×28 is the number of inputs we will consider per key guess, and 2(128+32+8)/2

the cost of exhaustive search of the key when done with Grover’s algorithm. We expect that
these attacks might be extendable to the 4-4-4 configuration, or to 4-3-4 with MixColumns,
by having a closer look at the properties generated by the key schedule of the middle layer.

Attack on X-2-X Version. We start with a fixed pair (P1, P2) of distinct input blocks
to E1 and perform the encryption through Double-AES version X-2-X of (P1, R), (P2, R),
for a fixed value R, which is the input to E2. We consider exclusively the left part of the
output, i.e., the output of E3, and we obtain C1 and C2. For each guess of key K3 from
E3, we will try a decryption through E3 of C1 and C2 and record the difference δ.

In parallel, we guess key K1 from E1, and for each guess we will try an encryption
through E1 of P1 and P2. This will produce values L̂1 and L̂2 that correspond to the
values that should enter the middle part E.

Then, we will experience the cancellation of the first round as described above. The
second round starts by a subkey addition, and we can get to know the differences on
the bytes 0, 4, 8, and 12 (the first line) before the second layer of SubBytes for one
additional guess of the byte 13 of E2(R). Each one of these differences can be associated
to 232−4 = 228 output differences through the DDT of these four S-boxes. The output
differences of the second layer of SubBytes will be determined by δ XOR-ed to the last
subkey of the middle layer. In order to compute the difference of this subkey for the first
line, and therefore the possible values for finding a match of this first line with the δs, we
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Table 2: Estimation of implementation performances.
Cipher Gates per processed bit Cycles per block
Rijndael-256-256 283.5 1848
Saturnin 118.5 1678
Double-AES 506.5 1980
Double-AES-7 354.5 1386
Double-AES-6-MC 306.25 1188

can perform an additional guess of byte 14 of E2(R) and the XOR of the bytes 1, 5, 9,
and 13 of E2(R). We therefore get to compute the possible output differences of E and
compare them to the differences δ obtained earlier.

The probability of this sieving is of 2−4 because of the DDT. In order to sieve more
guesses, we use 70 pairs instead of one, which leaves approximately 2128+128+3×8×2−4×70 =
1 combination.

We can then use an element distinctiveness algorithm to find the correct combination
of (K1, K3). Thanks to Ambainis algorithm [Amb07], the cost of this attack will be about
70× (2128 + 2128+24)2/3 = 2107.5 time and memory.

8.4 Estimated Implementations Evaluations
Using implementation statistics on the AES round function [SS16], we can get a fairly
reasonable estimation of the implementation costs of our proposed schemes, and we can
compare it with Saturnin [CDL+20]. It also makes sense to compare our instantiations
with Rijndael-256 [DR02], as it has comparable state and key size. The comparison is
given in Table 2. We can observe that in particular Double-AES-6-MC is better than all
other variants with respect to cycle count.

9 Conclusion
In this paper, we provide the first proposal of a generic way to double both the key
and the state size of an n-bit block cipher whilst still achieving n-bit security, including
both classical and quantum security arguments. As a bonus, we proposed a new type
of superposition attack on the EME construction in Section 3.2, a distinguishing attack
matching our security bound in Section 5, and a method for performing simulations for the
mirror theory in Supplementary Material C. We finally proposed concrete instantiations of
our construction, namely Double-AES, Double-AES-7, and Double-AES-6-MC, along with
preliminary cryptanalysis, in Section 8. The instantiations come with a unified security
claim regarding classical and quantum attackers. We believe that it is an interesting
question to consider security of our instantiations had we reduced the number of rounds
even further. Our best attack reaches X-3-3 rounds, i.e., any number of rounds in the first
layer, 3 rounds in the middle layer, and 3 rounds in the final layer. An interesting further
avenue would be to investigate the power of related-key attacks on AES, noting that the
key input to the middle layer varies per evaluation of the scheme.

We believe that our quantum security bound of Section 7 is not tight. It would be
interesting to explore the possibilities of using a quantum reduction proof based on a
recording oracle, akin to [HI19]. The main difficulty here is that there is no known way to
lazily sample a permutation or to respond to inverse queries using a quantum recording
oracle.

Acknowledgements. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-



24 Block Cipher Doubling for a Post-Quantum World

gramme (grant agreement no. 714294 - acronym QUASYModo), and has also been partially
funded by the European Union (ERC-2023-COG, SoBaSyC, 101125450). André Chailloux
received funding from the France 2030 program managed by the French National Research
Agency under grant agreements No. ANR-22-PETQ-0007 EPiQ and No. ANR-22-PETQ-
0008 PQ-TLS. Bart Mennink was supported by the Netherlands Organisation for Scientific
Research (NWO) under grant VI.Vidi.203.099.

References
[ABKM22] Gorjan Alagic, Chen Bai, Jonathan Katz, and Christian Majenz. Post-

Quantum Security of the Even-Mansour Cipher. In Orr Dunkelman and
Stefan Dziembowski, editors, Advances in Cryptology - EUROCRYPT 2022
- 41st Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Trondheim, Norway, May 30 - June 3, 2022, Pro-
ceedings, Part III, volume 13277 of Lecture Notes in Computer Science, pages
458–487. Springer, 2022. doi:10.1007/978-3-031-07082-2\_17.

[Amb07] Andris Ambainis. Quantum Walk Algorithm for Element Distinctness. SIAM
J. Comput., 37(1):210–239, 2007. doi:10.1137/S0097539705447311.

[BBN22] Arghya Bhattacharjee, Ritam Bhaumik, and Mridul Nandi. Offset-Based BBB-
Secure Tweakable Block-ciphers with Updatable Caches. In Takanori Isobe and
Santanu Sarkar, editors, Progress in Cryptology - INDOCRYPT 2022 - 23rd
International Conference on Cryptology in India, Kolkata, India, December
11-14, 2022, Proceedings, volume 13774 of Lecture Notes in Computer Science,
pages 171–194. Springer, 2022. doi:10.1007/978-3-031-22912-1\_8.

[BDK+18] Achiya Bar-On, Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir.
Improved Key Recovery Attacks on Reduced-Round AES with Practical Data
and Memory Complexities. In Hovav Shacham and Alexandra Boldyreva,
editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Pro-
ceedings, Part II, volume 10992 of Lecture Notes in Computer Science, pages
185–212. Springer, 2018. doi:10.1007/978-3-319-96881-0\_7.

[BGL20] Zhenzhen Bao, Jian Guo, and Eik List. Extended Truncated-differential
Distinguishers on Round-reduced AES. IACR Trans. Symmetric Cryptol.,
2020(3):197–261, 2020. doi:10.13154/tosc.v2020.i3.197-261.

[BHN+19] Xavier Bonnetain, Akinori Hosoyamada, María Naya-Plasencia, Yu Sasaki,
and André Schrottenloher. Quantum Attacks Without Superposition Queries:
The Offline Simon’s Algorithm. In Steven D. Galbraith and Shiho Moriai,
editors, Advances in Cryptology - ASIACRYPT 2019 - 25th International
Conference on the Theory and Application of Cryptology and Information
Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part I, volume
11921 of Lecture Notes in Computer Science, pages 552–583. Springer, 2019.
doi:10.1007/978-3-030-34578-5\_20.

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum Cryptanalysis of
Hash and Claw-Free Functions. In Claudio L. Lucchesi and Arnaldo V.
Moura, editors, LATIN ’98: Theoretical Informatics, Third Latin American
Symposium, Campinas, Brazil, April, 20-24, 1998, Proceedings, volume 1380
of Lecture Notes in Computer Science, pages 163–169. Springer, 1998. doi:
10.1007/BFb0054319.

https://doi.org/10.1007/978-3-031-07082-2_17
https://doi.org/10.1137/S0097539705447311
https://doi.org/10.1007/978-3-031-22912-1_8
https://doi.org/10.1007/978-3-319-96881-0_7
https://doi.org/10.13154/tosc.v2020.i3.197-261
https://doi.org/10.1007/978-3-030-34578-5_20
https://doi.org/10.1007/BFb0054319
https://doi.org/10.1007/BFb0054319


Bhaumik, R., Chailloux, A., Frixons, P., Mennink, B., Naya-Plasencia, M. 25

[BKR98] Mihir Bellare, Ted Krovetz, and Phillip Rogaway. Luby-Rackoff Backwards:
Increasing Security by Making Block Ciphers Non-invertible. In Kaisa Nyberg,
editor, Advances in Cryptology - EUROCRYPT ’98, International Conference
on the Theory and Application of Cryptographic Techniques, Espoo, Finland,
May 31 - June 4, 1998, Proceeding, volume 1403 of Lecture Notes in Computer
Science, pages 266–280. Springer, 1998. doi:10.1007/BFb0054132.

[BLNS18] Christina Boura, Virginie Lallemand, María Naya-Plasencia, and Valentin
Suder. Making the Impossible Possible. J. Cryptol., 31(1):101–133, 2018.
doi:10.1007/s00145-016-9251-7.

[BN10] Alex Biryukov and Ivica Nikolic. Automatic Search for Related-Key Differential
Characteristics in Byte-Oriented Block Ciphers: Application to AES, Camellia,
Khazad and Others. In Henri Gilbert, editor, Advances in Cryptology -
EUROCRYPT 2010, 29th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Monaco / French Riviera, May 30 -
June 3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer Science,
pages 322–344. Springer, 2010. doi:10.1007/978-3-642-13190-5\_17.

[CDL+20] Anne Canteaut, Sébastien Duval, Gaëtan Leurent, María Naya-Plasencia,
Léo Perrin, Thomas Pornin, and André Schrottenloher. Saturnin: a suite of
lightweight symmetric algorithms for post-quantum security. IACR Trans.
Symmetric Cryptol., 2020(S1):160–207, 2020. doi:10.13154/tosc.v2020.iS
1.160-207.

[CDN+23] Benoît Cogliati, Avijit Dutta, Mridul Nandi, Jacques Patarin, and Abishanka
Saha. Proof of Mirror Theory for a Wide Range of ξmax. In Carmit Hazay
and Martijn Stam, editors, Advances in Cryptology - EUROCRYPT 2023
- 42nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part
IV, volume 14007 of Lecture Notes in Computer Science, pages 470–501.
Springer, 2023. doi:10.1007/978-3-031-30634-1\_16.

[CLL+14] Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin, and John P.
Steinberger. Minimizing the Two-Round Even-Mansour Cipher. In Juan A.
Garay and Rosario Gennaro, editors, Advances in Cryptology - CRYPTO 2014
- 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2014, Proceedings, Part I, volume 8616 of Lecture Notes in Computer Science,
pages 39–56. Springer, 2014. doi:10.1007/978-3-662-44371-2\_3.

[CLP14] Benoit Cogliati, Rodolphe Lampe, and Jacques Patarin. The Indistinguisha-
bility of the XOR of k Permutations. In Carlos Cid and Christian Rech-
berger, editors, Fast Software Encryption - 21st International Workshop,
FSE 2014, London, UK, March 3-5, 2014. Revised Selected Papers, volume
8540 of Lecture Notes in Computer Science, pages 285–302. Springer, 2014.
doi:10.1007/978-3-662-46706-0\_15.

[CNS17] André Chailloux, María Naya-Plasencia, and André Schrottenloher. An
Efficient Quantum Collision Search Algorithm and Implications on Symmetric
Cryptography. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances
in Cryptology - ASIACRYPT 2017 - 23rd International Conference on the
Theory and Applications of Cryptology and Information Security, Hong Kong,
China, December 3-7, 2017, Proceedings, Part II, volume 10625 of Lecture
Notes in Computer Science, pages 211–240. Springer, 2017. doi:10.1007/97
8-3-319-70697-9\_8.

https://doi.org/10.1007/BFb0054132
https://doi.org/10.1007/s00145-016-9251-7
https://doi.org/10.1007/978-3-642-13190-5_17
https://doi.org/10.13154/tosc.v2020.iS1.160-207
https://doi.org/10.13154/tosc.v2020.iS1.160-207
https://doi.org/10.1007/978-3-031-30634-1_16
https://doi.org/10.1007/978-3-662-44371-2_3
https://doi.org/10.1007/978-3-662-46706-0_15
https://doi.org/10.1007/978-3-319-70697-9_8
https://doi.org/10.1007/978-3-319-70697-9_8


26 Block Cipher Doubling for a Post-Quantum World

[CS14] Shan Chen and John P. Steinberger. Tight Security Bounds for Key-
Alternating Ciphers. In Phong Q. Nguyen and Elisabeth Oswald, ed-
itors, Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume
8441 of Lecture Notes in Computer Science, pages 327–350. Springer, 2014.
doi:10.1007/978-3-642-55220-5\_19.

[DFJ13] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved Key Recov-
ery Attacks on Reduced-Round AES in the Single-Key Setting. In Thomas
Johansson and Phong Q. Nguyen, editors, Advances in Cryptology - EU-
ROCRYPT 2013, 32nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013.
Proceedings, volume 7881 of Lecture Notes in Computer Science, pages 371–387.
Springer, 2013. doi:10.1007/978-3-642-38348-9\_23.

[DHT17] Wei Dai, Viet Tung Hoang, and Stefano Tessaro. Information-Theoretic
Indistinguishability via the Chi-Squared Method. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 20-
24, 2017, Proceedings, Part III, volume 10403 of Lecture Notes in Computer
Science, pages 497–523. Springer, 2017. doi:10.1007/978-3-319-63697-9
\_17.

[Din15] Itai Dinur. Cryptanalytic Time-Memory-Data Tradeoffs for FX-Constructions
with Applications to PRINCE and PRIDE. In Elisabeth Oswald and Marc
Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume
9056 of Lecture Notes in Computer Science, pages 231–253. Springer, 2015.
doi:10.1007/978-3-662-46800-5\_10.

[DKRS20] Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir. The Retracing
Boomerang Attack. In Anne Canteaut and Yuval Ishai, editors, Advances in
Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia,
May 10-14, 2020, Proceedings, Part I, volume 12105 of Lecture Notes in
Computer Science, pages 280–309. Springer, 2020. doi:10.1007/978-3-030
-45721-1\_11.

[DKS10] Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved Single-Key Attacks
on 8-Round AES-192 and AES-256. In Masayuki Abe, editor, Advances in
Cryptology - ASIACRYPT 2010 - 16th International Conference on the Theory
and Application of Cryptology and Information Security, Singapore, December
5-9, 2010. Proceedings, volume 6477 of Lecture Notes in Computer Science,
pages 158–176. Springer, 2010. doi:10.1007/978-3-642-17373-8\_10.

[DNS22] Avijit Dutta, Mridul Nandi, and Abishanka Saha. Proof of Mirror Theory for
ξmax = 2. IEEE Trans. Inf. Theory, 68(9):6218–6232, 2022. doi:10.1109/TI
T.2022.3171178.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Information Security and Cryptography.
Springer, 2002. doi:10.1007/978-3-662-04722-4.

https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-642-38348-9_23
https://doi.org/10.1007/978-3-319-63697-9_17
https://doi.org/10.1007/978-3-319-63697-9_17
https://doi.org/10.1007/978-3-662-46800-5_10
https://doi.org/10.1007/978-3-030-45721-1_11
https://doi.org/10.1007/978-3-030-45721-1_11
https://doi.org/10.1007/978-3-642-17373-8_10
https://doi.org/10.1109/TIT.2022.3171178
https://doi.org/10.1109/TIT.2022.3171178
https://doi.org/10.1007/978-3-662-04722-4


Bhaumik, R., Chailloux, A., Frixons, P., Mennink, B., Naya-Plasencia, M. 27

[DW18] Xiaoyang Dong and Xiaoyun Wang. Quantum key-recovery attack on Feistel
structures. Sci. China Inf. Sci., 61(10):102501:1–102501:7, 2018. doi:10.100
7/s11432-017-9468-y.

[FJP13] Pierre-Alain Fouque, Jérémy Jean, and Thomas Peyrin. Structural Evaluation
of AES and Chosen-Key Distinguisher of 9-Round AES-128. In Ran Canetti
and Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013 - 33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, volume 8042 of Lecture Notes in Computer Science, pages
183–203. Springer, 2013. doi:10.1007/978-3-642-40041-4\_11.

[FKL+00] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay,
David A. Wagner, and Doug Whiting. Improved Cryptanalysis of Rijndael. In
Bruce Schneier, editor, Fast Software Encryption, 7th International Workshop,
FSE 2000, New York, NY, USA, April 10-12, 2000, Proceedings, volume
1978 of Lecture Notes in Computer Science, pages 213–230. Springer, 2000.
doi:10.1007/3-540-44706-7\_15.

[Gil14] Henri Gilbert. A Simplified Representation of AES. In Palash Sarkar and
Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT 2014 - 20th
International Conference on the Theory and Application of Cryptology and
Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014.
Proceedings, Part I, volume 8873 of Lecture Notes in Computer Science, pages
200–222. Springer, 2014. doi:10.1007/978-3-662-45611-8\_11.

[GLR+20] Lorenzo Grassi, Gregor Leander, Christian Rechberger, Cihangir Tezcan,
and Friedrich Wiemer. Weak-Key Distinguishers for AES. In Orr Dunkel-
man, Michael J. Jacobson Jr., and Colin O’Flynn, editors, Selected Areas
in Cryptography - SAC 2020 - 27th International Conference, Halifax, NS,
Canada (Virtual Event), October 21-23, 2020, Revised Selected Papers, volume
12804 of Lecture Notes in Computer Science, pages 141–170. Springer, 2020.
doi:10.1007/978-3-030-81652-0\_6.

[GR20] Lorenzo Grassi and Christian Rechberger. Revisiting Gilbert’s known-key
distinguisher. Des. Codes Cryptogr., 88(7):1401–1445, 2020. doi:10.1007/s1
0623-020-00756-5.

[Gro96] Lov K. Grover. A Fast Quantum Mechanical Algorithm for Database Search.
In Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA,
May 22-24, 1996, pages 212–219. ACM, 1996. doi:10.1145/237814.237866.

[HI19] Akinori Hosoyamada and Tetsu Iwata. 4-Round Luby-Rackoff Construction
is a qPRP. In Steven D. Galbraith and Shiho Moriai, editors, Advances
in Cryptology - ASIACRYPT 2019 - 25th International Conference on the
Theory and Application of Cryptology and Information Security, Kobe, Japan,
December 8-12, 2019, Proceedings, Part I, volume 11921 of Lecture Notes in
Computer Science, pages 145–174. Springer, 2019. doi:10.1007/978-3-030
-34578-5\_6.

[HI21] Akinori Hosoyamada and Tetsu Iwata. Provably Quantum-Secure Tweakable
Block Ciphers. IACR Trans. Symmetric Cryptol., 2021(1):337–377, 2021.
doi:10.46586/tosc.v2021.i1.337-377.

[HR04] Shai Halevi and Phillip Rogaway. A Parallelizable Enciphering Mode. In Tat-
suaki Okamoto, editor, Topics in Cryptology - CT-RSA 2004, The Cryptogra-
phers’ Track at the RSA Conference 2004, San Francisco, CA, USA, February

https://doi.org/10.1007/s11432-017-9468-y
https://doi.org/10.1007/s11432-017-9468-y
https://doi.org/10.1007/978-3-642-40041-4_11
https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1007/978-3-662-45611-8_11
https://doi.org/10.1007/978-3-030-81652-0_6
https://doi.org/10.1007/s10623-020-00756-5
https://doi.org/10.1007/s10623-020-00756-5
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-030-34578-5_6
https://doi.org/10.1007/978-3-030-34578-5_6
https://doi.org/10.46586/tosc.v2021.i1.337-377


28 Block Cipher Doubling for a Post-Quantum World

23-27, 2004, Proceedings, volume 2964 of Lecture Notes in Computer Science,
pages 292–304. Springer, 2004. doi:10.1007/978-3-540-24660-2\_23.

[IHM+18] Gembu Ito, Akinori Hosoyamada, Ryutaroh Matsumoto, Yu Sasaki, and
Tetsu Iwata. Quantum Chosen-Ciphertext Attacks against Feistel Ciphers.
Cryptology ePrint Archive, Report 2018/1193, 2018. URL: https://eprint
.iacr.org/2018/1193.

[IHM+19] Gembu Ito, Akinori Hosoyamada, Ryutaroh Matsumoto, Yu Sasaki, and Tetsu
Iwata. Quantum Chosen-Ciphertext Attacks Against Feistel Ciphers. In
Mitsuru Matsui, editor, Topics in Cryptology - CT-RSA 2019 - The Cryptog-
raphers’ Track at the RSA Conference 2019, San Francisco, CA, USA, March
4-8, 2019, Proceedings, volume 11405 of Lecture Notes in Computer Science,
pages 391–411. Springer, 2019. doi:10.1007/978-3-030-12612-4\_20.

[IMV16] Tetsu Iwata, Bart Mennink, and Damian Vizár. CENC is Optimally Secure.
Cryptology ePrint Archive, Paper 2016/1087, 2016. URL: https://eprint
.iacr.org/2016/1087.

[JST21] Joseph Jaeger, Fang Song, and Stefano Tessaro. Quantum Key-Length Exten-
sion. In Kobbi Nissim and Brent Waters, editors, Theory of Cryptography -
19th International Conference, TCC 2021, Raleigh, NC, USA, November 8-11,
2021, Proceedings, Part I, volume 13042 of Lecture Notes in Computer Science,
pages 209–239. Springer, 2021. doi:10.1007/978-3-030-90459-3\_8.

[KLLN16a] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and María Naya-Plasencia.
Breaking Symmetric Cryptosystems Using Quantum Period Finding. In
Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, volume 9815
of Lecture Notes in Computer Science, pages 207–237. Springer, 2016. doi:
10.1007/978-3-662-53008-5\_8.

[KLLN16b] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and María Naya-Plasencia.
Quantum Differential and Linear Cryptanalysis. IACR Trans. Symmetric
Cryptol., 2016(1):71–94, 2016. doi:10.13154/tosc.v2016.i1.71-94.

[KM10] Hidenori Kuwakado and Masakatu Morii. Quantum distinguisher between the
3-round Feistel cipher and the random permutation. In IEEE International
Symposium on Information Theory, ISIT 2010, June 13-18, 2010, Austin,
Texas, USA, Proceedings, pages 2682–2685. IEEE, 2010. doi:10.1109/ISIT
.2010.5513654.

[KM12] Hidenori Kuwakado and Masakatu Morii. Security on the quantum-type
Even-Mansour cipher. In Proceedings of the International Symposium on
Information Theory and its Applications, ISITA 2012, Honolulu, HI, USA,
October 28-31, 2012, pages 312–316. IEEE, 2012. URL: https://ieeexplo
re.ieee.org/document/6400943/.

[KR01] Joe Kilian and Phillip Rogaway. How to Protect DES Against Exhaustive
Key Search (an Analysis of DESX). J. Cryptol., 14(1):17–35, 2001. doi:
10.1007/s001450010015.

[LDKK08] Jiqiang Lu, Orr Dunkelman, Nathan Keller, and Jongsung Kim. New Impos-
sible Differential Attacks on AES. In Dipanwita Roy Chowdhury, Vincent Rij-
men, and Abhijit Das, editors, Progress in Cryptology - INDOCRYPT 2008, 9th

https://doi.org/10.1007/978-3-540-24660-2_23
https://eprint.iacr.org/2018/1193
https://eprint.iacr.org/2018/1193
https://doi.org/10.1007/978-3-030-12612-4_20
https://eprint.iacr.org/2016/1087
https://eprint.iacr.org/2016/1087
https://doi.org/10.1007/978-3-030-90459-3_8
https://doi.org/10.1007/978-3-662-53008-5_8
https://doi.org/10.1007/978-3-662-53008-5_8
https://doi.org/10.13154/tosc.v2016.i1.71-94
https://doi.org/10.1109/ISIT.2010.5513654
https://doi.org/10.1109/ISIT.2010.5513654
https://ieeexplore.ieee.org/document/6400943/
https://ieeexplore.ieee.org/document/6400943/
https://doi.org/10.1007/s001450010015
https://doi.org/10.1007/s001450010015


Bhaumik, R., Chailloux, A., Frixons, P., Mennink, B., Naya-Plasencia, M. 29

International Conference on Cryptology in India, Kharagpur, India, December
14-17, 2008. Proceedings, volume 5365 of Lecture Notes in Computer Science,
pages 279–293. Springer, 2008. doi:10.1007/978-3-540-89754-5\_22.

[LM92] Xuejia Lai and James L. Massey. Hash Function Based on Block Ciphers.
In Rainer A. Rueppel, editor, Advances in Cryptology - EUROCRYPT ’92,
Workshop on the Theory and Application of of Cryptographic Techniques,
Balatonfüred, Hungary, May 24-28, 1992, Proceedings, volume 658 of Lecture
Notes in Computer Science, pages 55–70. Springer, 1992. doi:10.1007/3-5
40-47555-9\_5.

[LM17] Gregor Leander and Alexander May. Grover Meets Simon - Quantumly
Attacking the FX-construction. In Tsuyoshi Takagi and Thomas Peyrin,
editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd International
Conference on the Theory and Applications of Cryptology and Information
Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II, volume
10625 of Lecture Notes in Computer Science, pages 161–178. Springer, 2017.
doi:10.1007/978-3-319-70697-9\_6.

[LP21] Gaëtan Leurent and Clara Pernot. New Representations of the AES Key
Schedule. In Anne Canteaut and François-Xavier Standaert, editors, Advances
in Cryptology - EUROCRYPT 2021 - 40th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia,
October 17-21, 2021, Proceedings, Part I, volume 12696 of Lecture Notes in
Computer Science, pages 54–84. Springer, 2021. doi:10.1007/978-3-030-7
7870-5\_3.

[Luc00] Stefan Lucks. The Sum of PRPs Is a Secure PRF. In Bart Preneel, editor,
Advances in Cryptology - EUROCRYPT 2000, International Conference on
the Theory and Application of Cryptographic Techniques, Bruges, Belgium,
May 14-18, 2000, Proceeding, volume 1807 of Lecture Notes in Computer
Science, pages 470–484. Springer, 2000. doi:10.1007/3-540-45539-6\_34.

[MN17] Bart Mennink and Samuel Neves. Encrypted Davies-Meyer and Its Dual:
Towards Optimal Security Using Mirror Theory. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 20-
24, 2017, Proceedings, Part III, volume 10403 of Lecture Notes in Computer
Science, pages 556–583. Springer, 2017. doi:10.1007/978-3-319-63697-9
\_19.

[Pat03] Jacques Patarin. Luby-Rackoff: 7 Rounds Are Enough for 2n(1−ϵ) Security.
In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, 23rd Annual
International Cryptology Conference, Santa Barbara, California, USA, August
17-21, 2003, Proceedings, volume 2729 of Lecture Notes in Computer Science,
pages 513–529. Springer, 2003. doi:10.1007/978-3-540-45146-4\_30.

[Pat04] Jacques Patarin. Security of Random Feistel Schemes with 5 or More Rounds.
In Matthew K. Franklin, editor, Advances in Cryptology - CRYPTO 2004, 24th
Annual International CryptologyConference, Santa Barbara, California, USA,
August 15-19, 2004, Proceedings, volume 3152 of Lecture Notes in Computer
Science, pages 106–122. Springer, 2004. doi:10.1007/978-3-540-28628-8
\_7.

[Pat05] Jacques Patarin. On Linear Systems of Equations with Distinct Variables and
Small Block Size. In Dongho Won and Seungjoo Kim, editors, Information

https://doi.org/10.1007/978-3-540-89754-5_22
https://doi.org/10.1007/3-540-47555-9_5
https://doi.org/10.1007/3-540-47555-9_5
https://doi.org/10.1007/978-3-319-70697-9_6
https://doi.org/10.1007/978-3-030-77870-5_3
https://doi.org/10.1007/978-3-030-77870-5_3
https://doi.org/10.1007/3-540-45539-6_34
https://doi.org/10.1007/978-3-319-63697-9_19
https://doi.org/10.1007/978-3-319-63697-9_19
https://doi.org/10.1007/978-3-540-45146-4_30
https://doi.org/10.1007/978-3-540-28628-8_7
https://doi.org/10.1007/978-3-540-28628-8_7


30 Block Cipher Doubling for a Post-Quantum World

Security and Cryptology - ICISC 2005, 8th International Conference, Seoul,
Korea, December 1-2, 2005, Revised Selected Papers, volume 3935 of Lecture
Notes in Computer Science, pages 299–321. Springer, 2005. doi:10.1007/11
734727\_25.

[Pat08a] Jacques Patarin. A Proof of Security in O(2n) for the Xor of Two Random
Permutations. In Reihaneh Safavi-Naini, editor, Information Theoretic Secu-
rity, Third International Conference, ICITS 2008, Calgary, Canada, August
10-13, 2008, Proceedings, volume 5155 of Lecture Notes in Computer Science,
pages 232–248. Springer, 2008. doi:10.1007/978-3-540-85093-9\_22.

[Pat08b] Jacques Patarin. The “Coefficients H” Technique. In Roberto Maria Avanzi,
Liam Keliher, and Francesco Sica, editors, Selected Areas in Cryptography,
15th International Workshop, SAC 2008, Sackville, New Brunswick, Canada,
August 14-15, Revised Selected Papers, volume 5381 of Lecture Notes in
Computer Science, pages 328–345. Springer, 2008. doi:10.1007/978-3-642
-04159-4\_21.

[Pat10a] Jacques Patarin. Introduction to Mirror Theory: Analysis of Systems of Linear
Equalities and Linear Non Equalities for Cryptography. Cryptology ePrint
Archive, Paper 2010/287, 2010. URL: https://eprint.iacr.org/2010/287.

[Pat10b] Jacques Patarin. Security of balanced and unbalanced Feistel Schemes with
Linear Non Equalities. Cryptology ePrint Archive, Paper 2010/293, 2010.
URL: https://eprint.iacr.org/2010/293.

[RBH17] Sondre Rønjom, Navid Ghaedi Bardeh, and Tor Helleseth. Yoyo Tricks with
AES. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology
- ASIACRYPT 2017 - 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part I, volume 10624 of Lecture Notes in
Computer Science, pages 217–243. Springer, 2017. doi:10.1007/978-3-319
-70694-8\_8.

[RSP21] Mostafizar Rahman, Dhiman Saha, and Goutam Paul. Boomeyong: Embed-
ding Yoyo within Boomerang and its Applications to Key Recovery Attacks on
AES and Pholkos. IACR Trans. Symmetric Cryptol., 2021(3):137–169, 2021.
doi:10.46586/tosc.v2021.i3.137-169.

[Sim97] Daniel R. Simon. On the Power of Quantum Computation. SIAM J. Comput.,
26(5):1474–1483, 1997. doi:10.1137/S0097539796298637.

[SS16] Peter Schwabe and Ko Stoffelen. All the AES You Need on Cortex-M3
and M4. In Roberto Avanzi and Howard M. Heys, editors, Selected Areas
in Cryptography - SAC 2016 - 23rd International Conference, St. John’s,
NL, Canada, August 10-12, 2016, Revised Selected Papers, volume 10532 of
Lecture Notes in Computer Science, pages 180–194. Springer, 2016. doi:
10.1007/978-3-319-69453-5\_10.

[Tun12] Michael Tunstall. Improved “Partial Sums”-based Square Attack on AES. In
Pierangela Samarati, Wenjing Lou, and Jianying Zhou, editors, SECRYPT
2012 - Proceedings of the International Conference on Security and Cryptogra-
phy, Rome, Italy, 24-27 July, 2012, SECRYPT is part of ICETE - The Inter-
national Joint Conference on e-Business and Telecommunications, pages 25–34.
SciTePress, 2012. URL: https://doi.org/10.5220/0003990300250034.

https://doi.org/10.1007/11734727_25
https://doi.org/10.1007/11734727_25
https://doi.org/10.1007/978-3-540-85093-9_22
https://doi.org/10.1007/978-3-642-04159-4_21
https://doi.org/10.1007/978-3-642-04159-4_21
https://eprint.iacr.org/2010/287
https://eprint.iacr.org/2010/293
https://doi.org/10.1007/978-3-319-70694-8_8
https://doi.org/10.1007/978-3-319-70694-8_8
https://doi.org/10.46586/tosc.v2021.i3.137-169
https://doi.org/10.1137/S0097539796298637
https://doi.org/10.1007/978-3-319-69453-5_10
https://doi.org/10.1007/978-3-319-69453-5_10
https://doi.org/10.5220/0003990300250034


Bhaumik, R., Chailloux, A., Frixons, P., Mennink, B., Naya-Plasencia, M. 31

[Unr21] Dominique Unruh. Compressed Permutation Oracles (And the Collision-
Resistance of Sponge/SHA3). Cryptology ePrint Archive, Report 2021/062,
2021. URL: https://eprint.iacr.org/2021/062.

[Zha15] Mark Zhandry. A note on the quantum collision and set equality problems.
Quantum Inf. Comput., 15(7&8):557–567, 2015. doi:10.26421/QIC15.7-8-2.

[Zha16] Mark Zhandry. A Note on Quantum-Secure PRPs. Cryptology ePrint Archive,
Report 2016/1076, 2016. URL: https://eprint.iacr.org/2016/1076.

[Zha19] Mark Zhandry. How to Record Quantum Queries, and Applications to Quan-
tum Indifferentiability. In Alexandra Boldyreva and Daniele Micciancio,
editors, Advances in Cryptology - CRYPTO 2019 - 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Pro-
ceedings, Part II, volume 11693 of Lecture Notes in Computer Science, pages
239–268. Springer, 2019. doi:10.1007/978-3-030-26951-7\_9.

[ZHY18] Ping Zhang, Honggang Hu, and Qian Yuan. Close to Optimally Secure
Variants of GCM. Secur. Commun. Networks, 2018:9715947:1–9715947:12,
2018. doi:10.1155/2018/9715947.

https://eprint.iacr.org/2021/062
https://doi.org/10.26421/QIC15.7-8-2
https://eprint.iacr.org/2016/1076
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1155/2018/9715947


32 Block Cipher Doubling for a Post-Quantum World

SUPPLEMENTARY MATERIAL

A Offline Simon Algorithm
We start by recalling the Hadamard gate. The Hadamard gate (H) maps |0⟩ to 1√

2 (|0⟩+|1⟩)
and |1⟩ to 1√

2 (|0⟩ − |1⟩):

H = 1√
2

[
1 1
1 −1

]
|b⟩ H

1√
2 (|0⟩+ (−1)b |1⟩)

Using the Hadamard gate, we can discuss the fundamentals of Simon’s algorithm [Sim97].
Simon’s algorithm is described in Algorithm 2

Algorithm 2 Description of Simon’s routine
Input: superposition oracle access to g
Output: vector y such that y · s = 0

1: Initialize state |0n⟩ |0m⟩
2: Apply Hadamard gate on all qubits of the first register, obtaining

1
2n/2

∑
x∈{0,1}n

|x⟩ ⊗ |0m⟩

3: Apply oracle Og : |x⟩ |y⟩ 7→ |x⟩ |y ⊕ g(x)⟩ to the state, obtaining∑
x∈{0,1}n

1
2n/2 |x⟩ |g(x)⟩

4: Measure second register and get a value c = g(x0) for a unknown x0
▷ By the premise, we get state 1√

2 (|x0⟩+ |x0 ⊕ s⟩).
5: Apply Hadamard gate on all qubits and obtain the state

1√
2n+1

∑
y∈{0,1}n

(
(−1)x0·y + (−1)(x0⊕s)·y

)
|y⟩

▷ This simplifies to

1√
2n+1

∑
y∈{0,1}n

(−1)x0·y (1 + (−1)s·y)︸ ︷︷ ︸
0 if y·s=1

|y⟩ .

6: Measure the state and get a uniformly random y such that y · s = 0
7: Return y

Simon’s algorithm consists in applying Simon’s routine of Algorithm 2 l = O(n) times,
thus getting (y1, . . . , yl) and solving the following linear system with unknown s:

y1 · s = 0
...

yl · s = 0

This version of Simon’s algorithm requires as a premise that g is a two-to-one function.
Luckily, it has also been studied for random functions that admit a period.
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Theorem 4 (Kaplan et al. [KLLN16a, Theorem 2]). Suppose that g : {0, 1}n → X has a
period s, i.e., g(x⊕ s) = g(x) for all x ∈ {0, 1}n, and that

max
t/∈{0,s}

Pr [g(x⊕ t) = g(x)] ≤ 1
2 .

If we apply Simon’s algorithm to g with cn calls to the routine, it returns s with probability
at least 1− 2n · (3/4)cn. It runs in cn queries to g and time cn2.

An important remark on Simon’s routine (and on Simon’s algorithm by consequence)
is that we do not need g if we have access to cn superposition states

|ϕg⟩ =
∑

x∈{0,1}n

1
2n/2 |x⟩ |g(x)⟩ .

Moreover, we do not need the superposition to include all x in {0, 1}n; it is possible to
restrict g to a subset A as long as this subset admits s as a period, i.e., x ∈ A if and only
if x⊕ s ∈ A, and A does not make an artificial period appear (by restricting on elements
such that g(x⊕ t) = g(x) for a certain t). This can be taken to an extreme where g = 0
but A has the information of the period.

Corollary 4. Suppose that g : A ⊆ {0, 1}n → X has a period s, i.e., x ⊕ s ∈ A for all
x ∈ A, and that

max
t/∈{0,s}

Pr
x∈A

[g̃(x⊕ t) = g(x)] ≤ 1
2 ,

where

g̃(x) =
{

g(x) if x ∈ A,

⊥ otherwise.

If we apply Simon’s algorithm to cn copies of |ϕg⟩ =
∑

x∈A
1√
|A|
|x⟩ |g(x)⟩, it returns s

with probability at least 1− 2n · (3/4)cn. It runs in time cn2.

Finally, because the properties of Simon’s algorithm did not change because of the
input restriction on g, we can apply the ideas of offline Simon’s algorithm [BHN+19] of
Algorithm 3. Here, we define RANK to be a circuit that takes |y1⟩ · · · |yl⟩ |b⟩ and flips b if
and only if the previous system admits a solution other than 0.

Theorem 5 (Bonnetain et al. [BHN+19, Proposition 2]). Suppose that m = O(n) and let
f : {0, 1}m × {0, 1}n → {0, 1}l be a public function. Let g : {0, 1}n → {0, 1}l be a function
on which we only get some databases |ϕg⟩. Assume that there is a unique i0 such that
fi0 ⊕ g has a period s and

max
i,t/∈{0,1}m×{0}∪{i0,s}

Pr [(fi ⊕ g)(x⊕ t) = (fi ⊕ g)(x)] ≤ 1
2 .

If we apply the offline Simon’s algorithm to O(n) databases |ϕg⟩, it returns i0 with probability
Θ(1). It runs in time O(n32m/2).

This technique relies on the equality |ϕfi⊕g⟩ = Ofi
|ϕg⟩ for preparing and recovering

the databases |ϕg⟩. In our case, instead of fi0 ⊕ g being periodic, we look for fi0 ⊕ g ◦ f ′
i0

being periodic with f ′
i as public permutations. We build the operator IN f ′

i
: |x⟩ 7→ |f ′

i(x)⟩
using Ancilla qubits and the following circuit:
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Algorithm 3 Description of the Offline-Simon algorithm
Input: superposition oracle access to f and O(n) databases |ϕg⟩
Output: i0

1: Grover search on i with O(2m/2) turns using the following oracle:
2: Compute O(n) copies of |ϕfi⊕g⟩ = Ofi |ϕg⟩
3: Apply Hadamard gate on all qubits of the first registers of |ϕfi⊕g⟩, obtaining O(n)

states y
▷ y · s = 0 if i = i0, and random otherwise.

4: Apply the RANK circuit on the states y
▷ A flip occurs if and only if i = 0.

5: Uncompute the Hadamard gates and Ofi to retrieve databases |ϕg⟩
6: EndGrover
7: Measure and return i

Of ′
i

Of ′−1
i

|x⟩ |f ′
i(x)⟩

|0⟩ |0⟩

This allows us to compute
∣∣∣ϕfi0 ⊕g◦f ′

i0

〉
= Ofi ◦ (IN f ′−1

i
⊗ I) |ϕg⟩.

This property combined with our observation on input restrictions give the Proposition
1.

B Proof of Theorem 2 (Classical n-Bit Security)

Let K = (K1, . . . , K4) ∈ {0, 1}4k, and Π $←− perm(2n). We consider an adversary A that
aims to distinguish (QuEMEE,E′

K )
±

from Π±:

Adv
(QuEMEE,E′

K
)

±
;Π±(A). (13)

We assume that A never makes redundant queries, which can either be repetitions of
earlier queries or relaying an encryption output to the decryption oracle or vice versa.

B.1 Reduction to Ideal Primitives
As a first step, we replace the outer block cipher evaluations EK1 , . . . , EK4 by random
permutations π1, . . . , π4

$←− perm(n). This is a plain SPRP step and comes at the cost of
4·Advsprp

E (A′) for some adversary A′ with the same query complexity and comparable time
complexity as A. Denoting π = (π1, . . . , π4) and the resulting construction as QuEMEπ,E′

for brevity, we obtain

(13) ≤ Adv(QuEMEπ,E′ )±;Π±(A) + 4 ·Advsprp
E (A′)

≤ Adv(QuEMEπ,E′ )±;(QuEMEπ,π̃)±(A) + Adv(QuEMEπ,π̃)±;Π±(A) + 4 ·Advsprp
E (A′).

(14)

Next, in the first distance, the interface that A has towards the inner block cipher exactly
matches the ra-SPRP security of E′: it can evaluate E′ offline, and it can trigger online
evaluations without seeing them. More formally, let π̃

$←− perm(n, n). Given adversary A
that aims to distinguish (QuEMEπ,E′

)
±

from (QuEMEπ,π̃)±, we can define the adversary
A′′ against the ra-SPRP security of E′ as follows. Adversary A′′ collects all construction
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queries of A, for each construction query (L, R) it evaluates its oracle and returns the
responding (K, X, Y ), and similarly for each inverse construction query (S, T ). At the
end, A′′ copies the output bit of A. Denote by E the event that the oracle is queries for a
forward and inverse evaluation such that (K, X, Y ) = (K ′, X ′, Y ′). Provided that E does
not happen, the outputs of A′′ follow the distributional constraints of the oracle of A.
Event E happens with probability at most

(
q
2
)
/22n. Thus,

Adv(QuEMEπ,E′ )±;(QuEMEπ,π̃)±(A) ≤ Advra-sprp
E′ (A′′) +

(
q
2
)

22n
.

Adversary A′′ with the same query complexity and comparable time complexity as A. We
thus obtain

(13) ≤ Adv(QuEMEπ,π̃)±;Π±(A) + 4 ·Advsprp
E (A′) + Advra-sprp

E′ (A′′) +
(

q
2
)

22n
. (15)

We perform one more oracle transformation. Let f+, f− $←− func(2n, 2n) be two random
functions. Then, f± = (f+, f−) behaves identically to Π±, conditioned on the event that
an output of one of the two functions never collides with one of its previous outputs or
with a previous query to the other function (here, we use that A never makes redundant
queries). We can thus perform this RP-RF switch at a cost of

(
q
2
)
/22n:

(13) ≤ Adv(QuEMEπ,π̃)±;f±(A) + 4 ·Advsprp
E (A′) + Advra-sprp

E′ (A′′) + q2

22n
. (16)

In the remainder, we will focus on the remaining distance between O = (QuEMEπ,π̃)±

and P = f± and use the H-coefficient technique (Lemma 1) to bound it.

B.2 Additional Notation
We will relax the setting and assume that A has unbounded computational power and we
measure its complexity only by the number of oracle calls it makes. All queries are recorded
in a transcript τ = {(Li, Ri, Si, T i, di) | i ∈ [1..q]}, with di ∈ {fwd, inv} indicating the
query direction. We partition [1..q] into I∗, containing the query indices where both
output blocks are fresh, and I, containing the query indices where one of the output blocks
collides with an earlier block at the same position.

We expand the transcript with τ∗ = {(L̂i, R̂i, XiŜi, T̂ i) | i ∈ [1..q]}. In the real world
O, these are the actual values within the evaluation of QuEMEπ,π̃. In the ideal world,
these are generated by sampler S.

In order to define our sampler, we first define two undirected bipartite graphs G and
H. The vertices of G are the q1 distinct values L1, . . . , Lq1 in the set {Li | i ∈ [1..q]} and
the q2 distinct values R1, . . . , Rq2 in the set {Ri | i ∈ [1..q]} (we will soon specify how we
pick these labels). We put an edge between Lj and Rk if (Lj , Rk, S, T, d) ∈ τ for some
S, T, d. The graph H is defined identically, but over the ciphertexts {(Si, T i) | i ∈ [1..q]}
instead of the plaintexts.

Let γ (resp., η) be the number of components in G (resp., H). We label these
components G(1), . . . , G(γ) and H(1), . . . , H(η). For t ∈ [1..γ] let q

(t)
1 (resp., q

(t)
2 ) be the

number of L-nodes (resp., R-nodes) in G(t). Similarly, for t ∈ [1..η] let q
(t)
3 (resp., q

(t)
4 ) be

the number of S-nodes (resp., T -nodes) in H(t). Define the cumulative sums

Q
(j)
b =

j−1∑
i=1

q
(i)
b
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for each j ∈ [1..γ] when b ∈ {1, 2} and each j ∈ [1..η] when b ∈ {3, 4}. We assume the
labeling of the L-nodes in G is such that the nodes {Lk | Q(j)

1 + 1 ≤ k ≤ Q
(j+1)
1 } are in

G(j), and likewise for the R-nodes, S-nodes, and T -nodes.
For simplicity we assume there are no cycle queries; the case when there are cycle

queries can be similarly handled. Let L̂1, . . . , L̂q1 , R̂1, . . . , R̂q2 , Ŝ1, . . . , Ŝq3 and T̂1, . . . , T̂q4

be the distinct values we need to choose for each permutation. The sampler S is defined
as follows:

1. S first samples a (X1, . . . , Xq) uniformly from the set Λ of all (X1, . . . , Xq) satisfying
the condition that on any (non-empty) path P of even length in G or H,⊕

i∈P

Xi ̸= 0.

This allows us to assign a label δG
j,k to each edge (Lj , Rk) in G. This label will be

defined δG
j,k := Xi, where i is such that Li = Lj , Ri = Rk (such an i must exist for

the edge to be part of G). Similarly we assign the label δH
j,k := Xi to each edge

(Sj , Tk) in H such that Si = Sj , T i = Tk;

2. Next, S samples (L̂1, . . . , L̂q1 , R̂1, . . . , R̂q2) uniformly from the set ΓG of all solutions
to the q bi-variate equations L̂i ⊕ R̂j = δG

i,j satisfying the constraint that L̂1, . . . , L̂q1

are all distinct and R̂1, . . . , R̂q2 are all distinct;

3. Finally S samples (Ŝ1, . . . , Ŝq3 , T̂1, . . . , T̂q4) uniformly from the set ΓH of all solutions
to the q bi-variate equations Ŝi ⊕ T̂j = δH

i,j satisfying the constraint that Ŝ1, . . . , Ŝq3

are all distinct and T̂1, . . . , T̂q4 are all distinct.

The sets Λ, ΓG, and ΓH will be analyzed further in the next section.

B.3 Analysis of Idealized QuEME
In the remainder, we write N = 2n for brevity. We define the following bad events on the
random coins of f and S:

bad0: For some distinct i, i′ ∈ [q] with i > i′:

– di = fwd and (Si, T i) = (Si′
, T i′); or

– di = inv and (Li, Ri) = (Li′
, Ri′);

bad1: For some distinct i, i′ ∈ [q] with i > i′ and Xi = Xi′ :

– di = fwd and
(

Si = Si′ ∨ T i = T i′
)

; or

– di = inv and
(

Li = Li′ ∨Ri = Ri′
)

;

bad2: For some i ∈ [q]:

– di = fwd and (Si, T i) completes a cycle in H; or
– di = inv and (Li, Ri) completes a cycle in G.

For bad2, this event implies that the ith query completes a cycle with nodes coming from
the first i− 1 queries. We define bad = bad0 ∨ bad1 ∨ bad2.
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Bad Transcripts. Recall that the bad events (and hence bad probabilities) are only
defined in the ideal world. We have

Pr [bad] ≤ Pr [bad0] + Pr [bad1 | ¬bad0] + Pr [bad2 | ¬bad0] . (17)

Now, bad0 involves a random collision over 2n bits, with
(

q
2
)

choices of the two indices i
and i′. Thus,

Pr [bad0] ≤
(

q
2
)

N2 ≤
q2

2N2 . (18)

We now bound the probability of bad1 to happen. Consider a fixed pair of indices i > i′

with di = fwd. Then, Si, Si′
, T i, T i′

, Xi, Xi′ are uniformly random in [N ], up to a possible
distinctness constraint on Xi and Xi′ . Similarly for di = inv, Li, Li′

, Ri, Ri′
, Xi, Xi′ are

uniformly random in [N ], up to a possible distinctness constraint on Xi and Xi′ . Therefore,

Pr [bad1 | ¬bad0] ≤
(

q
2
)
· 2

N(N − 1) ≤
q2

N2 . (19)

Finally, a cycle of length 2m (with m ≥ 2, since a cycle of length 2 would imply bad0)
will need 2m collisions for the cycle and give a choice of 2m indices and a choice of whether
the first node is on the left or the right; since the choice of this “first node” is arbitrary,
we divide the total count by m. This gives

Pr [bad2 | ¬bad0] ≤
∑
m≥2

q(q − 1) . . . (q − 2m + 1) · 2
N(N − 1) . . . (N − 2m + 1) ·m

≤
∑
m≥2

2q2m

mN2m

= q2

N2

∑
m≥2

2
m

(
q2

N2

)m−1

≤ q2

N2

∑
m≥2

(
1
2

)m−1
≤ q2

N2 . (20)

Substituting (18)-(20) in (17) gives

Pr [bad] ≤ 2.5q2

N2 . (21)

Good Transcripts. Suppose (τ, τ∗) is a good transcript. Let q1, q2, q3, q4 be the number
of distinct values of Li, Ri, Si, T i, respectively, in τ . Further suppose that in τ∗, there are
r distinct values of Xi, with the number of queries they appear in being t1, . . . , tr, where
t1 + . . . + tr = q.

In the real world, for each j ∈ [4], the probability that πj is compatible with (τ, τ∗)
is 1/(N)qj

, and the probability that π̃ is compatible with (τ, τ∗) is 1/[(N)t1
· . . . · (N)tr

].
Thus,

Pr [DO = (τ, τ∗)] = 1
(N)q1

· . . . · (N)q4
(N)t1

· . . . · (N)tr

. (22)

In the ideal world, we have q distinct outputs of 2n-bit random functions, and three
independent uniform samples from the sets Λ, ΓG, and ΓH , so

Pr[DP = (τ, τ∗)] = 1
(N2)q|Λ||ΓG||ΓH |

. (23)
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Since we assumed that there are no cycles in G and H, we have q1 +q2−γ = q3 +q4−η = q.
Then, from (12) of Conjecture 1, Section 6.1, we have

|ΓG| ≥
γ∏

j=1

[(
N −Q

(j)
1

)q
(j)
1

(
N −Q

(j)
2

)q
(j)
2

]
· 1

Nq
, (24)

|ΓH | ≥
η∏

j=1

[(
N −Q

(j)
3

)q
(j)
3

(
N −Q

(j)
4

)q
(j)
4

]
· 1

Nq
. (25)

Similarly, we can show that

|Λ| ≥ Nq

 γ∏
j=1

(N)
q

(j)
1

(N)
q

(j)
2

Nq
(j)
1 +q

(j)
2

  η∏
j=1

(N)
q

(j)
3

(N)
q

(j)
4

Nq
(j)
3 +q

(j)
4

 . (26)

We observe that

(
N −Q

(j)
1

)q
(j)
1 (N)

q
(j)
1

=
q

(j)
1 −1∏
k=0

(
N −Q

(j)
1

)
(N − k)

≥
q

(j)
1 −1∏
k=0

(
N −Q

(j)
1 − k

)
N =

(
N −Q

(j)
1

)
q

(j)
1

Nq
(j)
1 ,

so that
γ∏

j=1

(
N −Q

(j)
1

)q
(j)
1 (N)

q
(j)
1
≥ (N)q1

Nq1 . (27)

We can show similarly that
γ∏

j=1

(
N −Q

(j)
2

)q
(j)
2 (N)

q
(j)
2
≥ (N)q2

Nq2 , (28)

η∏
j=1

(
N −Q

(j)
3

)q
(j)
3 (N)

q
(j)
3
≥ (N)q3

Nq3 , (29)

η∏
j=1

(
N −Q

(j)
4

)q
(j)
4 (N)

q
(j)
4
≥ (N)q4

Nq4 . (30)

From (24)-(30) we can see that

|ΓG||ΓH ||Λ|
(N)q1

(N)q2
(N)q3

(N)q4

≥ 1
Nq

. (31)

From (22), (23) and (31) we get

Pr [DO = (τ, τ∗)]
Pr [DP = (τ, τ∗)] ≥

Nq

(N)t1 · . . . · (N)tr

≥ 1. (32)

Conclusion. From (21) and (32), using the H-coefficient technique of Lemma 1, we
obtain that the remaining advantage in (16) is upper bounded by 2.5q2/N2. This completes
the proof, recalling that N = 2n.
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Algorithm 4 Identifying components
Input: list of equations of the form Xi ⊕ Yj = δi,j

Output: list of connected components
1: Sort the equations Xi ⊕ Yj = δi,j by i, and store in LX

▷ There needs to be a place to mark the indices i.
2: Sort the equations Xi ⊕ Yj = δi,j by j, and store in LY

▷ There needs to be a place to mark the indices j.
3: for all i do
4: Start a stack with the element (X, i, 0)

▷ Elements of the pile are of the form (Z, l, ∆) with Z = X or Y to indicate the target
list LX or LY , l the corresponding index in the target list and ∆ the difference with
the stating element, also called the root.

5: Start a stack for recording the elements of the current connected component with
the root element (X, i, 0)

6: while the stack is not empty do
7: Pop the first element off the stack (Z, l, ∆)
8: if l is not marked in the list LZ then
9: for all Xi ⊕ Yj = δi,j in LZ with i = l (if X = Z) do

10: Add (Y, j, ∆⊕ δi,j) to the pile and to the component
11: end for
12: for all Xi ⊕ Yj = δi,j in LZ with j = l (if Y = Z) do
13: Add (X, i, ∆⊕ δi,j) to the pile and to the component
14: end for
15: Mark l in the list LZ

16: end if
17: end while
18: Register the list if it contains more than one element

▷ This connected component has either no elements or is an isolated point.
19: end for
20: Return list of connected components

C Simulation of Mirror Theory
We perform a small-scale simulation to verify Conjecture 1, and concretely the lower bound
(12) on the number of solutions to a system of equations of the form (9). The simulation
gets as input a random system of equations, first identifies the connected components, and
next “solves” the equations in the components according to different strategies.

Identifying Sets of Connected Components. We recall that there is an edge between
the variables Xi and Yj if and only if there is an equation Xi ⊕ Yj = δi,j . We generate
a list of equations sorted by index i and one sorted by index j for retrieving the edges
quickly, and then we apply a classic breadth-first traversal of the graph to obtain the
components. The procedure is described in Algorithm 4.

Naive Assignment Strategy. One way to generate the solutions is by the following.
We initialize two sets of remaining values, to {0, 1}n: SX for the variables X and SY for
the variables Y . We take the largest component, select a value α for its root, and for every
other node in the component rule out α⊕∆ from the corresponding variable (SX for Xi

and SY for Yj), where ∆ is prescribed by the path from the root to the node. We consider
the second largest component, select a value β for its root, and again for every other node
in the component rule out β ⊕∆, where ∆ is the prescribed path from the root to the
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node. We proceed until there is no component left (thus obtaining a solution) or there is
no valid value for a root (thus implying there is no valid solution). This method is not
practical as it generates every solution to the system of equations and rounds in doubly
exponential time on the size of the input. On the other hand, it seems to be the only
approach to give the exact number of solutions.

Approximated Assignment Strategy. We next describe a method to compute an
approximation on the number of solutions. Denote the number of components by t and
their sizes by |C(j)|. We denote by ∆i,j the set of solutions to the connected components
i, j such that the components C(i) and C(j) collide. Then, by the formula of the cardinality
of a union, we get

2nm − |solutions| =
m∑

k=1
(−1)k−1

∑
{i1,j1}>···>{ik,jk}

|∆i1,j1 ∩ · · · ∩∆ik,jk
|,

where > is any ordering.
A first observation is that for all {i1, j1} ≠ {i2, j2},

|∆i1,j1 ∩∆i2,j2 | × 2nm = |∆i1,j1 | × |∆i2,j2 |,

as the difference between the value of the roots of C(i1) and C(j1) and between C(i2) and
C(j2) are independent. Indeed, if {i1, j1}∩{i2, j2} = ∅, the sets are independent, whereas if
{i1, j1} ∩ {i2, j2} ≠ ∅, we consider the differences of the root values which are independent
as we are in a vector space.

Then the computation of the different terms depends on whether the different sets
{i1, j1} > · · · > {ik, jk} have an intersection or not. In that direction, for a set {i1,
j1} > · · · > {ik, jk}, we define the graph G{i1,j1}>···>{ik,jk} with vertices 1, . . . , m and an
edge between vertices a and b if and only if there exists an l such that {il, jl} = {a, b}. For
a graph G on vertices 1, . . . , m, we define

SG = 1
2nm

∑
G′∼=G

∣∣∣ ⋂
i,j∈G′

∆i,j

∣∣∣,
where ∼= denotes graph isomorphism. We let CG be the number of connected components
of G and PG the number of non-isolated points.

The observation extends to the computation of any SG, where G has no cycle, and to
unions of non-connected sub-graphs. The value SG can be bounded by(∑

i |Ci|2
)PG

2n(m−CG) .

This means that this method of approximation is very well-suited for cases where the
value

∑
j |C(j)|2 is controlled. For random systems,

∑
j |C(j)|2 = O (q). Then, a first

approximation can be made by taking
|solutions|

2nm
=

∏
i,j

(
1− |∆i,j |

2n

)
+ O

(
q3

22n

)
.

More advanced approximations can be made by considering cycles of successively bigger
sizes. For example, by considering the cycles of size 3, we get a better approximation with
an error in O(q4/23n).

Results. We performed a simulation with different approximations, namely the exact
approach for n = 5, a first approximation for n = 11, and a better approximation for n = 8.
The simulation took 10 hours on an Intel i5-6500U CPU, and the results are depicted in
Figure 5. The results support the mirror theory lower bound (12) for small values of n.
Unfortunately, expanding the analysis to larger values of n becomes quickly infeasible.
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(a) exact approach (n = 5)
(b) an initial approximation
(n = 11)

(c) a better approximation
(n = 8)

Figure 5: Simulation results, depicting the difference of the logarithm of the results between
simulation and conjectural prediction by number of equations. The line is the mean over
100 trials, the surrounding area is the variability.

D Proof of Theorem 3 (Quantum n/6-Bit Security)

Let K = (K1, . . . , K4) ∈ {0, 1}4k, and Π $←− perm(2n). We consider a quantum adversary
AQQ that aims to distinguish QuEMEE,E′

K from Π:

Advqprp
QuEMEE,E′ (AQQ) = AdvQuEMEE,E′

K
;Π(AQQ). (33)

By the qPRP definition, we can first write

AdvQuEMEE,E′
K

;Π(AQQ) ≤ AdvQuEMEπ,E′ ;Π(AQQ) + 4 ·Advqprp
E (BQQ), (34)

where BQQ is a quantum adversary that performs quantum queries that has essentially
the same running time and number of queries than A. We now present our main lemma,
that reduces the security with quantum queries to the security with classical queries.
Lemma 5. For any qPRP adversary AQQ performing q quantum queries there exists a
qPRP adversary A′

QC performing r2 classical queries such that

Advqprp
QuEMEπ,E′ (AQQ) ≤ Advprp

QuEMEπ,E′ (A′
QC) + O

(
q3

r

)
. (35)

Proof. Fix an adversary AQQ. Its qPRP advantage is equivalently described in Game1
below.

Game1 → Game2. We transform Game1 into Game2 by prepending two random
permutations to f .

Game1: prp-game(AQQ)

b
$←− {0, 1}

If b = 0
π = π1, π2, π3, π4

$←− perm(n)
f = QuEMEπ,E′

If b = 1
f

$←− perm(2n)

b′ ← Af
QQ(·)

Win if b = b′

Game2: permutation blinding

b
$←− {0, 1}

If b = 0
π = π1, π2, π3, π4

$←− perm(n)
f = QuEMEπ,E′

If b = 1
f

$←− perm(2n)
hL, hR

$←− perm(n)
f ′ := f ◦ (hL∥hR)
b′ ← Af ′

QQ(·)
Win if b = b′
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As QuEMEπ,E′
already starts with two random permutations π1∥π2 in parallel, adding

an extra layer of permutations does not change its distribution. In the ideal world, the
addition of the extra layer of permutations does not change the distribution either, and
hence

Pr [AQQ wins Game1] = Pr [AQQ wins Game2] .

Game2 → Game3. We now replace the two freshly added permutations with random
small range functions distributed according to Sn(r), which is defined as follows.

Definition 1. Sn(r) is a distribution on functions from {0, 1}n to {0, 1}n sampled as
follows:

• Draw a random function g from {0, 1}n → [r];

• Draw a random injective function h from [r]→ {0, 1}n;

• Output the composition h ◦ g.

Notice that any function f drawn from Sn(r) satisfies |Im(f)| ≤ r.
The transition from Game2 to Game3 is described below.

Game2: permutation blinding

b
$←− {0, 1}

If b = 0
π = π1, π2, π3, π4

$←− perm(n)
f = QuEMEπ,E′

If b = 1
f

$←− perm(2n)
hL, hR

$←− perm(n)
f ′ := f ◦ (hL∥hR)
b′ ← Af ′

QQ(·)
Win if b = b′

Game3: small range functions

b
$←− {0, 1}

If b = 0
π = π1, π2, π3, π4

$←− perm(n)
f = QuEMEπ,E′

If b = 1
f

$←− perm(2n)
hL, hR

$←− Sn(r)
f ′ := f ◦ (hL∥hR)
b′ ← Af ′

QQ(·)
Win if b = b′

Zhandry [Zha15] proved that a small range function behaves like a random permutation
up to a certain bound.

Lemma 6 (Zhandry [Zha15]). For any r, for any quantum adversary A performing q

quantum queries, we have Advqprp
f (A) = O

(
q3

r

)
, for f

$←− Sn(r).

From Lemma 6, we subsequently obtain

Pr [AQQ wins Game2] ≤ Pr [AQQ wins Game3] + O

(
q3

r

)
.

Game3: Classical Emulation. Consider the following adversary A′
QC against Game1

with classical queries:

• Pick hL, hR
$←− Sn(r). Let ZL, ZR be the ranges of hL, hR respectively, so they are

each subsets of {0, 1}n of size r;

• Define f ′ := f ◦ (hL∥hR);
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• Query f(x, y) for each (x, y) ∈ ZL ×ZR for a total of r2 queries. From these queries,
recover the truth table of f ′;

• Emulate the quantum circuit Af ′

QQ(·) and output b′ ← Af ′

QQ(·).

By definition, A′
QC outputs exactly the same output as Af ′

QQ, and hence

Pr
[
A′

QC wins Game1
]

= Pr [AQQ wins Game3] .

Moreover, A′
QC is a quantum algorithm that performs r2 queries to f . We remark that

A′
QC does not a priori know the sets ZL, ZR but it can reconstruct them with Õ(r) queries

to hL and hR. Then, it can recover the whole truth table of f on the input set ZL × ZR,
hence he knows the full truth table of f ′. From there, it can emulate the quantum queries
to f ′ using its truth table, which can be done efficiently, assuming efficient Quantum RAM.

Conclusion. We can now conclude:
Advqprp

QuEMEπ,E′ (AQQ) = Pr [AQQ wins Game1]

≤ Pr [AQQ wins Game3] + O

(
q3

r

)
= Pr

[
A′

QC wins Game1
]

+ O

(
q3

r

)
= Advprp

QuEMEπ,E′ (A′
QC) + O

(
q3

r

)
.

Next, we make use of our random access qPRP advantage definition. Starting from our
quantum adversary A′

QC that performs r2 classical queries. We can adopt the reductions
of Theorem 2 on the replacement of the primitives, but now up to the quantum security of
these primitive, and obtain

AdvQuEMEπ,E′ ;QuEMEπ,π̃ (A′
QC) ≤ Advra-qprp

E′ (A′′
QC) + r4

22n
,

for π̃
$←− perm(n, n), where A′′

QC runs in the same quantum time and performs as much
classical queries as A′

QC . This implies in particular that, using the same triangle inequality
as in (14),

Advprp
QuEMEπ,E′ (A′

QC) ≤ Advprp
QuEMEπ,π̃ (A′

QC) + Advra-qprp
E′ (A′′

QC) + r4

22n
. (36)

From (34), (35), and (36), we obtain

Advqprp
QuEMEE,E′

K

(AQQ) ≤ Advprp
QuEMEπ,π̃ (A′

QC) + Advra-qprp
E′ (A′′

QC)

+ 4 ·Advqprp
E (BQQ) + r4

22n
+ O

(
q3

r

)
.

which completes the proof of Theorem 3.

E AES Specification and Known Attacks
The internal state of AES [DR02] is 128 bits. The three standardized versions have a key
of size 128, 192, or 256 bits, and internally evaluate 10, 12, or 14 rounds, respectively. Note
that, given Grover’s algorithm, AES-256 would be able to reach key recovery security of
128 bits, but when used in most common modes, collisions on internal states could provide
other kind of attacks, potentially better than classical attacks under some assumptions on
the attackers.
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Specification of AES. We provide a basic description of AES-128 and we point to [DR02]
for more details. The state of AES-128 is composed of elements of F256, organized in a
4× 4 matrix: 

α0 α4 α8 α12
α1 α5 α9 α13
α2 α6 α10 α14
α3 α7 α11 α15

 .

AES-128 is composed of 10 rounds, which internally consist of four operations:

• AddKey, which XORs the state with the round key (see below);

• SubBytes, which applies the AES S-box on all individual elements αi;

• ShiftRows, which shifts the ith row by i positions;

• MixColumns, which multiplies each column by a fixed matrix.

The last round omits the MixColumns operation and applies one extra AddKey.
The round keys are derived from the 128-bit master key K as follows. First, write

K = (k0∥k1∥k2∥k3). Then, the first round key K0 equals K, and round keys Ki for
i = 1, . . . , 10 are defined as Ki = (k4i+4∥k4i+5∥k4i+6∥k4i+7), where

k4i+4 = SubWord (RotWord(k4i+3))⊕ k4i ⊕ rci,
k4i+5 = k4i+4 ⊕ k4i+1,
k4i+6 = k4i+5 ⊕ k4i+2,
k4i+7 = k4i+6 ⊕ k4i+3,

,

and

rci =


Xi mod X8 + X4 + X3 + X + 1

0
0
0

 .

Best Known Attacks on AES-128. We list the best known attacks on AES-128 in
the secret key setting in Table 3 and in other settings in Table 4.
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Table 3: Currently known cryptanalysis for round-reduced AES-128 in the secret-key
model.

Attack Rounds Time Data Reference
Mixture Differential 5 221.5 221.5 [BDK+18]
Yoyo 5 233 213.3 [RBH17]
Partial Sum 5 240 28 [Tun12]
Rectangle 5 223 29 [DKRS20]
Rectangle 5 216.5 215 [DKRS20]
Improved Square 5 235 233 [FKL+00]
Boomeyong 5 249 249 [RSP21]
Rectangle 6 280 226 [DKRS20]
Partial Sum 6 244 234.5 [FKL+00]
Truncated Differential 6 278.7 271.3 [BGL20]
Boomeyong 6 279.72 279.72 [RSP21]
Impossible Differential 7 2117.2 2112.2 [LDKK08]
Meet-in-the-Middle 7 2116 2116 [DKS10]
Impossible Differential 7 2113 2105.1 [BLNS18]
Impossible Differential 7 2110.9 2104.9 [LP21]
Meet-in-the-Middle 7 299 297 [DFJ13]

Table 4: Currently known cryptanalysis for round-reduced AES-128 in the related-
key/chosen-key/known-key model.

Attack Rounds Time Data Reference
Related-key

RK Boomerang 7 297 297 [BN10]
Chosen-key

Multi-collision 9 255 255 [FJP13]
Multiple-of-n 9 264 264 [GLR+20]

Known-key
Uniform Distribution 10 264 264 [Gil14]
Uniform Distribution 12 282 282 [GR20]
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