
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 3, 27 pages.

https://doi.org/10.62056/ayojbhey6b
Check for updates

Finding Practical Parameters for
Isogeny-based Cryptography

Maria Corte-Real Santos1 , Jonathan Komada Eriksen2 ,
Michael Meyer3 and Francisco Rodríguez-Henríquez4

1 University College London, London, UK
2 Norwegian University of Science and Technology, Trondheim, Norway

3 University of Regensburg, Regensburg, Germany
4 Cryptography Research Center, Technology Innovation Institute, Abu Dhabi, United Arab

Emirates

Abstract. Isogeny-based schemes often come with special requirements on the field
of definition of the involved elliptic curves. For instance, the efficiency of SQIsign, a
promising candidate in the NIST signature standardisation process, requires a large
power of two and a large smooth integer T to divide p2 − 1 for its prime parameter p.
We present two new methods that combine previous techniques for finding suitable
primes: sieve-and-boost and XGCD-and-boost. We use these methods to find primes
for the NIST submission of SQIsign. Furthermore, we show that our methods are
flexible and can be adapted to find suitable parameters for other isogeny-based
schemes such as AprèsSQI or POKE. For all three schemes, the parameters we present
offer the best performance among all parameters proposed in the literature.
Keywords: Post-quantum cryptography · isogenies · parameter search · SQIsign ·
AprèsSQI · POKE

1 Introduction
Research has shown that large-scale quantum computers can break most widely deployed
cryptographic schemes today, such as those based on the discrete logarithm problem
(e.g., ECC) and the integer factorization problem (e.g., RSA). With increased investment
in building large-scale quantum computers, there has been a significant focus on post-
quantum cryptography in recent years. The aim of this area of cryptography is to construct
cryptographic schemes whose security is based on alternative mathematical problems
that are conjectured to be hard against adversaries with access to classical and quantum
computers. In 2016, NIST began an effort to standardise post-quantum key encapsulation
mechanisms and digital signature schemes.

This work focuses on a specific area of post-quantum cryptography known as isogeny-
based cryptography. Here, we rely on the difficulty of finding an isogeny (a specific
type of map) between two elliptic curves defined over a finite field. While isogeny-based
cryptography offers promising schemes with small private/public keys and signatures,
they have proved to be considerably slower compared to other candidates. Notably,
SQIsign, the only isogeny-based signature scheme in Round 1 of NIST’s alternate call for

Author list in alphabetical order; see https://www.ams.org/profession/leaders/CultureStatemen
t04.pdf. This work has been supported by UK EPSRC grant EP/S022503/1 and by the German Federal
Ministry of Education and Research (BMBF) under the project 6G-RIC (ID 16KISK033).

E-mail: maria.santos.20@ucl.ac.uk (Maria Corte-Real Santos), jonathan.k.eriksen@ntnu.no
(Jonathan Komada Eriksen), michael@random-oracles.org (Michael Meyer), francisco.rodriguez@tii.
ae (Francisco Rodríguez-Henríquez)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-07-09 Accepted: 2024-09-02

https://doi.org/10.62056/ayojbhey6b
https://crossmark.crossref.org/dialog/?doi=10.62056/ayojbhey6b&domain=pdf&date_stamp=2024-09-17
https://orcid.org/0000-0003-2651-8951
https://orcid.org/0009-0000-3040-2965
https://orcid.org/0009-0000-2972-7324
https://orcid.org/0000-0002-5916-6625
https://www.ams.org/profession/leaders/CultureStatement04.pdf
https://www.ams.org/profession/leaders/CultureStatement04.pdf
mailto:maria.santos.20@ucl.ac.uk
mailto:jonathan.k.eriksen@ntnu.no
mailto:michael@random-oracles.org
mailto:francisco.rodriguez@tii.ae
mailto:francisco.rodriguez@tii.ae
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Finding Practical Parameters for Isogeny-based Cryptography

signatures [NIS23], boasts the smallest combined signature and public key sizes among all
submissions. However, signing with SQIsign is orders of magnitude slower than lattice-based
alternatives, while verification remains relatively fast in the range of milliseconds.

Increasingly many isogeny-based schemes have come with special requirements on
parameters to ensure that the resulting schemes are efficient, e.g., B-SIDH [Cos20],
SQIsign [DKL+20, DLLW23], or POKE [Bas24]. These schemes work with supersingu-
lar elliptic curves defined over a finite field Fp2 with prime p. The efficiency of computing
isogenies relies on the choice of p. To make a good choice, we follow two rules of thumb:

1. For some N ∈ N we have N | (p − 1)(p + 1): this ensures that all points of order N ,
resp. the N torsion, is defined over Fp2 , thus leading to the efficient computation of
isogenies of degree N .

2. Small prime divisors ℓ | N : an isogeny of composite degree N with prime factorization∏
i ℓei

i can more efficiently be computed as a composition of ei isogenies of degree
ℓi, i.e., a total of

∑
i ei prime-degree isogenies. Computing an ℓ-isogeny of prime

degree has complexity O(ℓ) using Vélu’s formulas [Vél71], and asymptotic complexity
Õ(

√
ℓ) using

√
élu formulas [BDLS20]. Thus, only isogenies of small degrees ℓ can

be computed efficiently.

Hence, we can efficiently compute isogenies of degree N if N | p2 − 1 and all prime factors
of N are below a certain bound B, i.e., N is B-smooth.

The exact requirements on the size of p and factors of p2 − 1 depend on the respective
scheme. While SIDH exclusively used isogeny degrees N with N | p + 1, B-SIDH was the
first scheme to explicitly use quadratic twists of the involved elliptic curves, hence allowing
to also use factors of p − 1 as isogeny degrees. In particular, for NIST-I security level, ideal
B-SIDH primes were required to be of size p ≈ 2256 and to have a B-smooth value p2 − 1
for B as small as possible. However, finding such primes p is a difficult task that spurred a
new line of research [Cos20, CMN21, BCC+23]. The best known smoothness bound for
the mentioned NIST-I requirements is B ≈ 215 [CMN21].

After SIDH – and simultaneously also B-SIDH – was broken [CD23, MMP+23, Rob23],
variants of this problem have remained of high interest. We highlight in particular the
signature scheme SQIsign [DKL+20, DLLW23]. For efficiency, SQIsign requires 2f T | p2 −1,
where T is an odd smooth integer satisfying T > p5/4, and f as large as possible. The
signer then computes a number (depending on f) of T -isogenies, while the verifier computes
a chain of 2f -isogenies. As a result, signing times benefit from both larger values of f
and better smoothness of T . Verification times mainly benefit from larger f , as detailed
in [CEMR24, Fig. 2].

Prior to this work, De Feo, Leroux, Longa and Wesolowski [DLLW23] introduced the
prime p3923, which was used for NIST-I security. It has

f = 66,

B = 3923,

T = 365 · 527 · ·11 · 13 · 17 · 19 · 292 · 372 · 43 · 47 · 79 · 157 · 197 · 239 · 263 · 271 · 281
· 283 · 307 · 461 · 521 · 563 · 599 · 607 · 619 · 743 · 827 · 941 · 2357 · 3923.

Larger parameters were only considered in [BCC+23], but without large enough powers of
2 dividing p ± 1.

In this work, we present two new methods to find SQIsign-friendly primes. While both
techniques are simple, they seem to produce the best primes for SQIsign. These new methods
combine sieving [CMN21] or the extended Euclidean algorithm techniques [Cos20, DKL+20]
with the boosting method introduced in [BCC+23]. Using these techniques, we find new
primes targeting NIST-I, -III and -V security. We highlight in particular a new NIST-I

M. Corte-Real Santos, J.K. Eriksen, M. Meyer, F. Rodríguez-Henríquez 3

prime p1973 with

f = 75,

B = 1973,

T = 336 · 74 · 11 · 13 · 232 · 37 · 592 · 89 · 97 · 1012 · 107 · 1092 · 131 · 137 · 1972 · 223 · 239
· 383 · 389 · 4912 · 499 · 607 · 7432 · 1033 · 1049 · 1193 · 19132 · 1973.

Comparing with the previous state-of-the-art prime, we achieve both a lower smoothness
bound B and a larger power-of-2 f , leading to faster signing and verification.

Though we have thus far only discussed finding parameters for SQIsign, small adap-
tations of our techniques also apply to finding primes for AprèsSQI [CEMR24], a variant
of SQIsign focussed on fast verification, and POKE, a new PKE scheme introduced by
Basso [Bas24], showing the wide applicability of our methods. In particular, we give several
primes for AprèsSQI which make both signing and verification faster than in the original
SQIsign scheme.

Our contributions. In this article, we present two new techniques for finding primes p
satisfying the requirements imposed by various isogeny-based schemes, as detailed above.
The first of these methods is sieve-and-boost (see Section 3), where we sieve for B-smooth
numbers r in a suitable range, and boost this to give cryptographically sized primes by
evaluating polynomials of the form pn(x) = 2xn − 1 at x = 2f13f2r. The second method is
XGCD-and-boost (see Section 4). Here, rather than sieving, we construct pairs (r, r ± 1)
of twin smooth numbers using the XGCD method and use them as inputs to pn(x).

We analyse the probability of obtaining suitable primes p with both our methods to
determine the degree n and smoothness bound B for which to run our searches. Using this,
we tackle three schemes in particular, where according to our cost metric, our parameters
are the best in the literature:

• SQIsign. We found suitable primes for NIST security levels I, III, and V (cf. Table 5)
that permit faster signing verification. These primes outperform those proposed
in [DLLW23, BCC+23] and have been adopted in [CCD+23].

• AprèsSQI. We found suitable primes (cf. Table 6) that strictly outperform the primes
selected in [CCD+23] for NIST-I security level, in both signature generation and
verification.

• POKE. We present the first suitable primes of minimal size that permit an efficient
computation of the PKE scheme constructed with the POKE framework [Bas24, §4],
hence reducing key and ciphertext sizes compared to the original proposal.

Remark 1. Very recent work introduced 2-dimensional variants of SQIsign [BDD+24,
DF24, NO24]. These variants improve upon the 4- and 8-dimensional SQIsignHD schemes
[DLRW24] and feature a very promising performance profile. As they use an isogeny
representation that differs from the discussion above, they have different, relatively mild
conditions on the prime parameters. Nevertheless, due to the lack of optimised implementa-
tions of AprèsSQI, it is not clear if these schemes can offer a faster verification than SQIsign
or AprèsSQI. Although our work does not apply to these new schemes, it is thus still impor-
tant to find optimal SQIsign and AprèsSQI parameters. Furthermore, the applicability to
POKE shows that our search techniques are of high interest in isogeny-based cryptography
even beyond variants of SQIsign. Indeed, research on these prime finding methods first
started within the context of SIDH, before later being applied to SQIsign. Our techniques
are flexible, so protocol designers can simply adapt our search implementations to their
needs.

4 Finding Practical Parameters for Isogeny-based Cryptography

Remark 2. A short description of the methods used in this work and the related search
for SQIsign primes is included (but not formally published) in the NIST specification of
SQIsign [CCD+23]. The fact that the primes found in our work are the parameters of
choice of the SQIsign NIST submission emphasises the relevance of our work.

Roadmap. We begin by discussing the preliminaries in Section 2, including a description
of the precise parameter requirements for the schemes we target in this article. Next, we
describe our two methods: sieve-and-boost in Section 3 and XGCD-and-boost in Section 4.
In Section 5, we analyse the smoothness probabilities related to each method. Finally,
in Section 6, we detail the searches we perform and the best parameters we obtain for each
scheme.

Acknowledgements. We thank Luca De Feo, Lorenz Panny, and the SQIsign NIST
submission team for discussions, comments, and suggestions on our SQIsign prime searches.
We thank Andrea Basso for pointing out the problem of finding POKE primes to us. We
thank the authors of [AAA+24a] for sharing their preliminary results, which enabled us
to define our cost metric using their prime scoring script for computing isogenies in field
extensions. We thank the anonymous reviewers for their constructive feedback.

2 Preliminaries
We start by covering the necessary preliminaries. Through the rest of this paper, let p
denote a prime p > 3.

Before describing the precise parameter requirements for SQIsign, AprèsSQI, and POKE,
we briefly recall required definitions on smooth integers. A discussion on relevant facts
about smoothness probabilities required for analysing our search methods is provided in
Section 5.

Definition 1. A positive integer r is called B-smooth if all of its prime divisors qi satisfy
qi ≤ B. A pair (r, r + 1) of B-smooth integers is called B-smooth twins. If all prime
divisors qi of a positive integer r satisfy qi > B, r is said to be B-rough.

2.1 SQIsign prime requirements
The most expensive computational task in SQIsign is the computation of isogenies. We
work with supersingular elliptic curves E defined over Fp2 , whose group of Fp2-rational
points has cardinality (p + 1)2. This ensures that for any point P ∈ E of order N | p + 1,
we have that P ∈ E(Fp2). Similarly, for any point P ′ ∈ E of order N ′ | p − 1, we have that
P ′ ∈ Et(Fp2), where Et denotes an arbitrary quadratic twist of E over Fp2 .

Using Vélu’s formulas [Vél71] or
√

élu [BDLS20], together with x-only arithmetic, we
can thus compute isogenies of any degree ℓ | (p + 1) or ℓ | (p − 1) in O(ℓ) or Õ(

√
ℓ),

respectively, without moving to field extensions of Fp2 . Hence, the efficiency of SQIsign
hinges on choosing a prime p of suitable size, such that lcm(p − 1, p + 1) = (p2 − 1)/2
contains sufficiently many smooth prime factors.

SQIsign-friendly primes are required to be of size log2(p) ≈ 2λ, where λ is the prescribed
security parameter (i.e., λ ∈ {128, 192, 256} for NIST-I, -III, resp. -V security). We note
that due to its performance profile, SQIsign naturally prioritises fast verification, while
maintaining reasonable signing performance.

The verifier recomputes a response isogeny of degree ≈ p15/4 and a challenge isogeny
of degree ≈ 2λ. For efficiency, the degrees of these isogenies are chosen to be as smooth as
possible. In particular, we fix the response degree to be 2e, and the challenge degree to

M. Corte-Real Santos, J.K. Eriksen, M. Meyer, F. Rodríguez-Henríquez 5

2f 3f ′ . The response isogeny of degree 2e ≈ p15/4 is computed as a composition of ⌈e/f⌉
isogenies of degree 2f , where 2f is the maximal power of two dividing p + 1.

In the signing procedure of SQIsign, the bottleneck is to compute 2⌈e/f⌉ odd degree
T -isogenies, where T is a smooth positive integer of size approximately p5/4. Since T
has to be coprime to the degree of the response isogeny, this yields the requirement
2f · T | (p2 − 1)/2, where T is odd and 3f ′ | T .

In summary, we get the following requirements:

1. Primes p of roughly 256, 384, resp. 512 bits for NIST-I, -III, resp. -V. Note that slightly
smaller sizes by a few bits allow for more efficient field arithmetic implementations.

2. Smooth T | (p2 − 1)/2: For the efficient computation of T -isogenies during signing,
we require the odd factor T ≈ p5/4 to be B-smooth for B as small as possible. Since
values of T close to p5/4 may lead to frequent failures, we require T > p1.27 for NIST-I
and -III, and T > p1.26 for NIST-V security to give a failure margin (see [CCD+23]).

3. Large f : Since a smaller number of steps ⌈e/f⌉ in the response isogeny recomputation
improves verification performance (see [CEMR24]), we require f to be as large as
possible, such that 2f | p + 1.

4. Power of 3: For an efficient challenge isogeny computation, we require 2f 3f ′ ≥ 2λ

with 2f 3f ′ | p + 1, and 3f ′ | T .

There is an obvious conflict between requirements (2) and (3): larger values of f leave
a smaller factor of (p2 − 1)/2 (of log2(2p − f − 1) bits), from which we can pick smooth
factors for T . As mentioned above, SQIsign aims at fast verification, thus prioritising (3)
over (2).

We note that all current implementations of SQIsign restrict to primes p ≡ 3 (mod 4),
since this less general case significantly simplifies implementations and is beneficial for fast
field arithmetic over Fp2 . Our search methods follow this restriction.

2.2 AprèsSQI prime requirements
AprèsSQI [CEMR24] is a variant of SQIsign focusing on faster verification. Recall that
SQIsign requires T | (p2 − 1)/2 to ensure that all isogeny computations take place over Fp2 .
However, the fact that T > p5/4 limits the size of f to a theoretical maximum of 2f < p3/4.
In practice, reaching this maximum is infeasible, and we often only reach 2f ≈ p1/4 for
acceptable smoothness bounds B of T (see, for example, [DLLW23]).

AprèsSQI relaxes this condition on T by allowing isogeny computations over small
extension fields Fp2k . This means that T can be composed of prime power factors of pk ± 1
for small k, easing the requirement on T . Hence, the theoretical maximum on the size of f
in AprèsSQI is 2f ≈ p, which allows for improved verification performance at the cost of
potentially more expensive signing due to isogeny computations over extension fields.

All prime requirements from SQIsign carry over to AprèsSQI with the exception that
AprèsSQI only requires T | Nk(p) with

Nk(p) =
k∏

d=1
Φd(p2)/2,

for small values of k (see [CEMR24, Thm. 1]) instead of requiring T | (p2 − 1)/2. If f > λ,
we can set the challenge isogeny degree to 2λ, and no additional power of 3 dividing p + 1
is required (see requirement (4) above).

6 Finding Practical Parameters for Isogeny-based Cryptography

2.3 POKE prime requirements
POKE [Bas24] is a framework introduced by Basso to construct efficient PKEs, Split KEMs
and OPRFs. We focus on the parameters used for the PKE [Bas24, §4]. In the set-up of
the encryption scheme, a prime of the form p = 2a3bc − 1 is fixed, where c is a cofactor to
ensure primality. Due to security, we require 2a ≈ 2λ, 3b ≈ 22λ and p − 1 has a divisor
x such that x ≈ 2λ/2 (where x does not need to be smooth). As a result, we have that
p ≈ 23λ. Although not strictly required, the security analysis of POKE is simplified by
choosing x ≈ 2λ/2 to be prime.

The parameter finding methods presented in this paper allow us to identify prime
numbers p close to 22λ such that 2aT | p2 − 1 (for some smooth odd integer T), with which
we can instantiate the PKE scheme. Ideally, the efficiency benefits of using a smaller prime
outweighs the performance penalty incurred by employing smooth T -torsion compared
to 3b-torsion. Additionally, this strategy leads to reduced public key and ciphertext sizes.
This idea has been mentioned by Basso [Bas24], but no corresponding parameters were
provided.

2.4 Prior search methods
Prior methods of finding friendly primes for isogeny-based schemes focused on first finding
B-smooth twins (r, r + 1) resp. pairs (r, r + 1) satisfying the relevant requirements. Then
they define p = 2r + 1 and check if p is prime. In this case, p2 − 1 = 4r(r + 1) inherits the
relevant properties from (r, r + 1).

There are several approaches for finding suitable pairs (r, r+1): constructive approaches
using Pell equations or the Conrey-Holmstrom-McLaughlin algorithm to find fully smooth
pairs (r, r + 1), and search methods based on polynomials or the extended Euclidean
algorithm, potentially allowing for rough factors in r(r + 1).

Pell equations. Given B > 0 and a list of primes {2, 3, . . . , q} smaller than B of
cardinality π(B), a method to find all B-smooth twins is given by Størmer [Stø97] and
further work by Lehmer [Leh64]. Assuming that (r, r + 1) are B-smooth twins, we set
x = 2r + 1, so x − 1 and x + 1 are smooth. Defining D as the squarefree part of their
product, we get x2 − 1 = Dy2 for some y ∈ Z with Dy2 being B-smooth. For all 2π(B)

possible values of D = 2α2 · 3α3 · · · · · qαq with αi ∈ {0, 1}, Størmer proposes to solve the
Pell equation x2 − Dy2 = 1, hence finding all B-smooth values of y, and therefore all
B-smooth twins.

In principle this method could be used to find parameters with optimal smoothness
bounds, but solving 2π(B) Pell equations quickly becomes infeasible for large enough B.
Indeed, the current record solves all 230 Pell equations for B = 113, where the largest pair
of twin smooths is of size roughly 274, and therefore too small for cryptographic purposes.
A follow-up work shows that this method can be adapted to increase the chances of finding
cryptographically sized instances of twin smooths [BHL+22]. However, there seems to be
no method to enforce special requirements such as large powers of two dividing r(r + 1),
making this method unsuitable for schemes like SQIsign or POKE.

The Conrey-Holmstrom-McLaughlin algorithm. Given a smoothness bound B, the
Conrey-Holmstrom-McLaughlin (CHM) algorithm [CHM13] tries to construct B-smooth
twins based on a simple observation: Given B-smooth twins (r, r + 1) and (s, s + 1) with
r < s, computing

r

r + 1 · s + 1
s

= t

t′

often yields t′ = t + 1 when writing t/t′ in lowest terms, hence producing a new pair
(t, t + 1) of B-smooth twins.

M. Corte-Real Santos, J.K. Eriksen, M. Meyer, F. Rodríguez-Henríquez 7

The CHM algorithm defines a starting set S = {1, . . . , B − 1} of integers r defining
twins smooths (r, r + 1), and iterates over all pairs S × S to generate new twin smooths
by the above equation. After adding new solutions to S, this procedure is repeated until
no more new solutions can be found.

Although this algorithm finds almost all B-smooth twins for small values of B, it
quickly becomes infeasible to run due to the large number of twins. The current record of
running an optimised variant of CHM sets B = 547, and finds a set of 82,026,426 twin
smooths [BCC+23], the largest of which is a 122-bit pair. Finding large enough twin
smooths for cryptographic applications using only the CHM algorithm seems infeasible,
and it is not known how to enforce further conditions such as a large power of 2 dividing
r(r + 1), making it unsuitable for schemes like SQIsign or POKE.

The extended Euclidean algorithm (XGCD). This method was first proposed by
Costello to find twin smooth integers to create B-SIDH-friendly primes [Cos20], and later
adapted to SQIsign [DKL+20, DLLW23]. To generate a pair (r, r + 1) of 2λ bits, we choose
two coprime B-smooth numbers a and b of size roughly 2λ. Since gcd(a, b) = 1, the XGCD
algorithm returns integers s, t with |s| < |b/2| and |t| < |a/2| that satisfy as + bt = 1. If
s and t have large enough smooth factors, we can use pairs {r, r + 1} := {|as|, |bt|} to
generate primes of size roughly 22λ for isogeny applications.

The key observation underlying this approach is that the product s · t of two numbers
of size roughly 2λ is much more likely to be smooth (or to contain a large enough smooth
factor) than a random integer of size 22λ. This can easily be deduced using the Dickman–de
Bruijn function (see e.g. [CMN21]).

An advantage compared to the methods above is that we are free to choose any smooth
numbers a and b, hence we can e.g. choose one of them to be divisible by a large power of
two. Note however that we have to ensure a large enough search space, for instance, by
fixing a suitable a and iterating over random smooth numbers b.

This method was used for SQIsign to find the 254-bit prime p3923, featuring f = 65
and B = 3923 as a smoothness bound for the odd factor T [DLLW23]. Beyond the NIST-I
security level, this method does not seem to scale well, see [CMN21, Table 3].

Searching with xn polynomials. Another method proposed by Costello uses (r, r+1) =
(xn − 1, xn) for small values of n [Cos20]. For good choices of n, this has the advantage
that xn − 1 splits into smaller factors. For instance, when looking for a 2λ-bit pair (r, r + 1)
using n = 4, we get that x4 − 1 = (x − 1)(x + 1)(x2 + 1). Hence, we get one λ-bit and
two λ/2-bit factors, which increases the chance for a large enough smooth factor of x4 − 1,
similar to the case of XGCD. Again, note that we require a large enough search space and
so n has to be chosen relatively small.

This approach has been used for finding SQIsign primes for NIST-I security, choosing x
to be a smooth number divisible by a large power of two [DLLW23]. However, none of the
primes found by this method outperformed p3923 found via the XGCD approach. Similar
to XGCD, this method does not scale well to higher security levels, see [CMN21, Table 3].

To overcome this issue, we can instead use this approach to boost twin smooth integers
(r, r + 1) [BCC+23]. Continuing the example above, since (x − 1) divides x4 − 1, we can
set x = r + 1 for B-smooth twins (r, r + 1), ensuring that x − 1 = r is smooth too. Setting
our prime to be p = 2x4 − 1 with x = r + 1, we have a guaranteed smooth factor of 1.25λ
bits in p2 − 1 = 4x4(x4 − 1), improving the chances to find friendly primes for isogeny
schemes. In [BCC+23] twin smooth integers found with the CHM approach were used
as inputs, ensuring optimal smoothness bounds. Even though this produces somewhat
SQIsign-friendly primes for the NIST security levels I, III, and V, the involved powers of 2
are too small to achieve efficient instantiations. We will reuse this boosting technique in a
different context in the following sections.

8 Finding Practical Parameters for Isogeny-based Cryptography

Searching with PTE solutions. The main drawback of the approach using xn polyno-
mials is that xn − 1 does not fully split in linear factors for n > 2, such that the non-linear
factors hamper the probability of finding enough smooth divisors of xn − 1. Instead, we
can use (r, r + 1) = (f(x)/c, g(x)/c), where f(x) and g(x) are fully split polynomials of
degree n that differ by a constant c [CMN21]. This means that the overall smoothness
probability is boosted through r and r + 1 splitting in n smaller factors, respectively. Such
polynomials can be found through solutions to the Prouhet-Tarry-Escott (PTE) problem,
and suitable pairs (r, r + 1) can be found using a sieving technique [CMN21].

However, in comparison to xn polynomials, PTE polynomials do not allow for large
exponents of linear factors of f(x) and g(x), hampering the probability of finding a large
power of 2 dividing r(r + 1). To overcome this, Sterner proposed to use polynomials
that almost split into linear factors, but allow for larger powers of linear factors [Ste23].
Nevertheless, although improving over [CMN21] for some target sizes of (r, r + 1), this
method does not seem to produce appealing SQIsign-friendly primes due to their relatively
modest power of two factor.

2.5 Cost metric for evaluating primes
To evaluate the relative merits of the primes found using our search methods, we define a
detailed cost metric. This metric considers the efficiency of a low-level implementation
for computing T -isogenies from kernels defined over Fp2 or Fp2k and largely follows the
framework presented in [AAA+24a, AAA+24b]. To assess the cost of computing a T -
isogeny, where T =

∏r
i=1 ℓei

i , we start by writing a list of tuples

L := [(ℓi, ei, ki)]ri=1,

where ki denotes the smallest field-extension Fp2ki , where ℓei
i -torsion can be found. For

each prime power, ℓei
i , we estimate the cost of

1. Successively computing image curves by applying an ℓei
i -isogeny mapping to the

domain curve,

2. Pushing all the remaining kernel points necessary to compute the remaining prime
power factors of T through this isogeny,

3. Drawing inspiration from methods used for isogeny computations in the CSIDH
key exchange protocol [BBC+21], we require kernel points with torsion for all
remaining prime factors ℓi within a given extension field ki. This approach requires
computing multiple scalar multiplications, which can be computed efficiently using
Montgomery ladders and short differential addition chains for each ℓi, as described
in [CCC+19, CCC+24].

We compute isogeny image curves and push points to them using one of three different
methods for each prime power ℓei

i : either using Vélu, or
√

élu, or using the approach from
Deuring for the People [EPSV24]. Denoting each of these costs by CVélu, C√

élu and CDftP,
we get the total cost as

Cisog,p(T) =
∑

(ℓi,ei,ki)∈L

min{CVélu(ℓei
i , ki), C√

élu(ℓei
i , ki), CDftP(ℓei

i , ki)}. (1)

If all the torsion in the T -group is rational (i.e., defined over the field Fp2), then CDftP is
never better than min{CVélu, C√

élu}. For our case studies SQIsign and POKE, this property
always holds true. However, the cost model for AprèsSQI becomes considerably more
intricate. This complication arises from the large number of computational alternatives
for processing prime factors defined over different field extensions.

M. Corte-Real Santos, J.K. Eriksen, M. Meyer, F. Rodríguez-Henríquez 9

We note that our cost model of Equation (1) carefully takes into consideration the
computational expenses associated to perform scalar multiplications as mentioned in Item 3,
which allows us to recover kernel points with the required torsion ℓei

i . Furthermore, note
that the order chosen for processing prime factors significantly impacts the total cost of
Equation (1). Determining the optimal order and the optimal number of kernel points to
minimise this cost presents a challenging optimisation problem. More on this complexity
is explained below (cf. Section 6.2).
Remark 3. When assessing the quality of a prime for SQIsign and AprèsSQI, the total
number of T -isogenies also depends on the largest f such that 2f | p + 1. Thus, we can in
this case use Cisog,p to define a new metric as

CSign,p(T) = ⌈e/f⌉ · Cisog,p(T), (2)

where 2e is the length of the response isogeny, and ⌈e/f⌉ accounts for the total cost of all
T -isogenies computed during signing.
Remark 4. For optimised implementations, the efficiency of the field arithmetic over Fp

and its extensions is an important measure for the quality of a prime. For instance,
primes of the form p = 2f · c − 1 are considered to be Montgomery-friendly, resulting in
particularly efficient operations over Fp when f is large, see [BD21] or [CCC+24] in the
context of isogenies. The primes in our work increasingly benefit from these optimisations
depending on the size of f . A more precise cost metric could thus use a factor Carith ∈ (0, 1]
in Equation (2) to reflect the efficiency of field arithmetic implementations, where Carith
decreases with increasing size of f . However, it seems difficult to assess the exact values of
Carith from the literature without optimised implementations. Therefore, we ignore this
factor in our cost metric.
Remark 5. Evaluating the exact cost of arithmetic operations in prime field extensions
Fp2k is a complex task that must consider several factors. For example, the presence of
irreducible binomials of the form xk − β enable efficient reductions in the field. It is also
crucial to develop formulas minimising the number of base field multiplications required
for field multiplication and squaring in the extension field. A popular approach is to follow
the Karatsuba-like field multiplication framework pioneered by Montgomery [Mon05] that
has seen significant advancements in subsequent publications (see [Cen18] for a survey).

Selecting T when allowing extension-fields. Even when fixing a prime p, selecting
the T -torsion that minimises Cisog,p(T) seems to be a difficult task. In protocols where
we are solely working over Fp2 , the following simple greedy algorithm works well: Start
with T = 1 and multiply T by the smoothest prime power factors of p2 − 1 until T is large
enough, and then “shave off” smaller factors of T , if this keeps T above the size bound.

However, selecting T becomes much more complicated when allowing for extension
fields. In this case, we also use a greedy algorithm, which first appeared in the software
accompanying Deuring for the People [EPSV24], which we now briefly describe.

The idea is to start with a natural first approximation, namely setting T as power-
smooth as possible, while keeping it above the size bound. Next, it sorts each prime power
ℓe | T , based on the cost of computing the ℓe-isogeny, divided by the size of ℓ.1 From this
point, it sequentially increases k, looking for new prime-power factors available in each
extension Fp2k . In each extension, we compute the maximal ℓmax such that computing an
ℓmax-isogeny over Fp2k is cheaper than the currently most expensive part of T .

The iterative process discussed above continues until until ℓmax < 3. We can then
iteratively remove any remaining small prime factors from T as long as it maintains its size

1This approach assumes that the cost of the ℓe factor is independent of the other factors of T . However,
this is a first order simplification that should be used with care and that does not quite apply to the cost
function Cisog,p.

10 Finding Practical Parameters for Isogeny-based Cryptography

above the prescribed size bound. This approach achieves reasonable efficiency in practice
and yields good choices of T . However, identifying methods to determine the absolute
optimal choices of T for a given prime p remains an open problem as far as we know.

3 Sieve-and-boost
Our first prime search method, the sieve-and-boost method, builds upon the xn-technique
described in Section 2.4. However, it introduces a key modification: enforcing the presence
of a large power of 2 in the prime factorisation.

This technique was outlined and used in [DLLW23] for n = 4 in search of NIST-I
primes, but did not result in any good primes. In this work, we formalise the technique.
For application to SQIsign, we also extend the search to other polynomials, and search
for larger parameter sizes. This leads to the discovery of suitable parameter choices for
NIST-III and NIST-V.

We additionally apply this technique to AprèsSQI and POKE for security level NIST-I.
However, we will see that better parameters for these schemes can be found with the
technique in Section 4. Details regarding the specific searches conducted and their results
are presented in Section 6.

Description of technique. We search for primes of the form

p = 2(2fn3f ′
nx)n − 1 (3)

for a smooth number x, where the choice of (fn, f ′
n) depends on the specific prime

requirements on f ≥ nfn + 1 and f ′ ≥ nf ′
n for the protocols in use.

This idea is adapted from [Cos20], which is based on the observation that when
pn(x) := 2xn − 1, then

pn(x)2 − 1 = 4xn
∏
d|n

Φd(x),

where Φd denotes the d-th cyclotomic polynomial (see [BCC+23]). Fixing values n, fn, f ′
n

and a smoothness bound B, the search consists of two phases.

Sieving. Find all B-smooth numbers x in some suitable range [L, R], with a sieving
approach based on the classic sieve of Eratosthenes, see [CMN21].

Boosting. For all smooth xi in [L, R], compute pi = 2(2fn3f ′
nxi)n − 1. For all primes

pi, compute the values Ni = p2
i − 1, and find the (odd) B-smooth part Ti of all the

Ni, either using trial division or a more optimised remainder tree approach [Ber04].
Discard pi if Ti is smaller than required.

Next, we describe a few specifics for applying the sieve-and-boost search to the three
protocols we consider.

Sieving for SQIsign primes. Recall that for SQIsign, we have the requirement that
2f 3f ′ ≥ 2λ such that (a divisor of) 2f 3f ′ is the degree of the challenge isogeny, and p ≈ 22λ,
while we also want to push f to be as large as possible. Thus, when 2f 3f ′ ≈ 2λ, and
when searching for security levels around λ = 128, 192, 256 (corresponding to primes of
sizes around 256, 384 and 512 bits), the search space for x is roughly of size λ/n bits. For
larger values of n, we can thus exhaust the full search space of potential smooth values
of x. In other cases, we artificially reduce the size of x by increasing the size of f and
f ′. Specifically, if x is of bitsize m, and f0 is the smallest value of fn we accept, then the
largest value of fn becomes ⌊2λ/n⌋ − m, and we can try all primes of the form

2(2fn3f ′
nx)n − 1,

M. Corte-Real Santos, J.K. Eriksen, M. Meyer, F. Rodríguez-Henríquez 11

where fn ∈ [f0, ⌊2λ/n⌋−m], and f ′
n is set to be so the prime is of the right size. Specifically,

we set f ′
n = ⌊log3(22λ/n−fn−m)⌋.

Sieving for AprèsSQI primes. When searching for parameters for AprèsSQI, we have the
same requirements as in SQIsign, except that in the boosting step, we allow for searching
for the B-smooth part of

Ni := Nk(pi) =
k∏

d=1
Φd(p2

i)/2 = lcm({p2d
i − 1}k

d=1),

instead of the usual p2
i − 1. Hence, we can run a straightforward adaptation of the SQIsign

technique with this value of Ni. However, as one typically wants lower smoothness bounds
over higher extension fields as computing these isogenies becomes more expensive, we can
also adapt the sieve to find the smooth parts of each extension separately, with different
smoothness bounds per extension. Specifically, we set a maximal extension kmax, and for
all k ∈ {1, . . . , kmax}, we choose a bound Bk, compute the Bk-smooth part of p2k

i − 1,
denoted Tk. Then finally, we compute T as

T = lcm({Tk}kmax
k=1).

Computing the Tk can again be done either simply with trial division, or in batches using
remainder trees (with different trees for different bounds).

After identifying a prime candidate p through the sieve, we know from the search that
there exists a T which is smooth enough over small extension. However, the sieve might
not necessarily identify the optimal choice of T . Therefore, we post-process each prime p
with the greedy algorithm from Section 2.5 to potentially find a more suitable value for
T . This refined T is then used to evaluate the prime based on the computational cost of
T -isogenies.

Sieving for POKE primes. From the requirements of POKE, we see that we can apply
the same search as for SQIsign, except that we always fix f = λ, and relax the size
requirement for T to only 22λ (down from T > p5/4 ≈ 25λ/2 for SQIsign and AprèsSQI).
Thus, in terms of smoothness of p2 − 1, finding POKE primes is roughly as difficult as
finding SQIsign primes with f = λ/2 for a given smoothness bound B.

4 XGCD-and-boost
We now describe the second technique that we call the XGCD-and-boost technique, which
combines the XCGD approach for finding twin smooths from Section 2.4 with the boosting
technique. Compared to sieve-and-boost, this technique is particularly useful for smaller
parameter sets and smaller choices of n, where we cannot exhaust the full search interval.
We apply this technique to SQIsign, AprèsSQI, and POKE. Details on the specific searches
we ran and their results are presented in Section 6.

Description of technique. To generate primes of size 2λ, we aim to generate pairs
(r, r ±1) of twin smooth numbers of size 22λ/n, and use them as inputs to pn(x) with x = r,
similar to the technique of [BCC+23] described in Section 2.4. Since both xn and x ± 1 are
divisors of pn(x)2 − 1, we are guaranteed a smooth factor T ′ of n+1

n (log2(p) − 1) + 2 bits
in this case. However, unlike [BCC+23], we instead use the XGCD approach to generate
the pair (r, r ± 1).

Thus, we again have a technique consisting of two phases. First, we fix a value
a = 2fn3f ′

n ≈ 2λ/n, depending on the requirements on f ≥ nfn + 1 and f ′ ≥ nf ′
n of the

12 Finding Practical Parameters for Isogeny-based Cryptography

protocol. Further, we also fix a smoothness bound B, and a parameter M to control the
size of the search space. The procedure can be summarized as follows:

XGCD. Sample M random B-smooth primes ℓj /∈ {2, 3}, and set bi = ℓki

small
∏

ℓj , where
ℓsmall > 3 is a small prime and ki is chosen so that bi ≈ 2λ/n. Then, compute
si, ti through XGCD such that siai + tibi = gcd(ai, bi) = 1, and store the pair
(ri, ri ± 1) = (|siai|, |tibi|) where ri ≈ 22λ/n. Collect all such pairs. The search space
is of size

((π(B)−2)+M−1
M

)
.

Boost. For each pair (ri, ri ± 1), compute pi = 2(ri)n − 1. For each prime pi, compute
the value Ni = p2

i − 1, and find the (odd) B-smooth part Ti of all the Ni either using
trial division or a more optimised remainder tree approach [Ber04]. Discard pi if Ti

is smaller than required.

Notice that a priori, we do not need to require that the pair (ri, ri ± 1) is fully B-smooth,
as a large enough smooth factor of ri(ri ± 1) could still give useful parameters, as long as
a sufficiently big part of Ni = p2

i − 1 = pn(ri)2 − 1 is B-smooth.
We can increase the search space by iterating through multiple XGCD solutions of

appropriate size (see [Cos20]). Given a solution (s, t) for the input (a, b), there is an infinite
number of solutions of the form (sj , tj) = (s + jb, t − ja) with j ∈ Z. However, only a
limited number of these solutions is suitable for our purposes due to the size requirement
of r = |asj | < 22λ/n. On average, this increases the search space for our searches described
in Section 6 by factor 4.

An unbalanced variant of this approach first samples M ′ small prime factors ℓj /∈
{2, 3, ℓsmall} for 1 ≤ j ≤ M ′, and sets

a = 2fn · 3f ′
n ·

M ′∏
j=1

ℓj ,

with (fn, f ′
n) as chosen above, increasing the size of a. In contrast, we decrease the size of b

by sampling only M − M ′ small prime factors ℓj /∈ {2, 3, ℓ1, . . . , ℓM ′} for M ′ + 1 ≤ j ≤ M
and setting

b = ℓki

small

M∏
j=M ′+1

ℓj

with ki such that ab ≈ 22λ/n. Since r = |as| ≈ 22λ/n, this reduces the size of the XGCD
solution s, and thus increases the smoothness probability for r. This is beneficial, since r
is the boosted factor, i.e., we have rn | (pn(r)2 − 1). In contrast, the smaller size of b and
larger size of t reduce the smoothness probability of r ± 1 = |bt| ≈ 22λ/n. However, r ± 1
does not necessarily need to be fully smooth, since other factors of pn(r) − 1 are likely to
contain smooth factors too, making this approach favorable overall. The search space is
slightly reduced in this approach, due to the fact that a and b have to be coprime, yet this
effect is negligible in practice.

XGCD-and-boost for SQIsign. To satisfy the SQIsign requirements, in the balanced
approach we pick a = 2fn · 3f ′

n ≈ 2λ/n with (fn, f ′
n) such that potential primes p = pn(r) =

pn(|as|) satisfy
an = 2nfn+1 · 3nf ′

n | (p + 1),

i.e., f ≥ nfn + 1 and f ′ ≥ nf ′
n, and 2nfn+13nf ′

n ≥ 2λ. We set M and B such that
ℓM < 2λ/n for the largest prime ℓ ≤ B and compute b ≈ 2λ/n accordingly. The unbalanced
approach can be instantiated similarly with minor adaptations as described above. The
smoothness bound B can be chosen such that the probability for finding twin smooths

M. Corte-Real Santos, J.K. Eriksen, M. Meyer, F. Rodríguez-Henríquez 13

(|as|, |bt|) is larger than the inverse of the size of the search space, so it is likely to find
twin smooths.

We particularly highlight the case n = 2 and aiming for f ′ = λ/4 − 1. In this case,
when we find twin smooths (r, r ±1) via XGCD, we are guaranteed that pn(r)2 −1 contains
a large enough odd smooth factor T to meet the SQIsign requirements, hence we only need
pn(r) to be prime.

XGCD-and-boost for AprèsSQI. The adaptations to the above search to find AprèsSQI
primes are completely analogous to the description in Section 3. In particular, we allow T
to be a factor of

Ni =
k∏

d=1
Φd(p2

i)/2 = lcm({p2d
i − 1}k

d=1).

We note that the XGCD-and-boost approach limits the size of f compared to sieve-and-
boost. Maximising f can be done by setting a = 2fn , but since we require a large enough
search space, we cannot pick a too large, as this would decrease M . Therefore, in practice
we set a limit of a ≈ 2λ/n, resulting in a maximum of f ≈ nfn + 1 = λ + 1.

XGCD-and-boost for POKE. Similar to the adaptations for sieve-and-boost in Sec-
tion 3, finding POKE-friendly primes requires setting a = 2fn = 2λ, such that f ≥ λ + 1.
In contrast, the size of the odd smooth factor T is only required to be of size T > 22λ. As
for sieve-and-boost, finding POKE primes is roughly as difficult as finding SQIsign primes
with f = λ/2 for a given smoothness bound B.

5 Smoothness probabilities
Unfortunately, it is not possible to know exactly what is the best prime we can obtain
for each scheme and security level. The best we can do is determine how likely we are to
find a prime p such that p2 − 1 contains a large enough B-smooth factor using a certain
method. In this section, we discuss how to compute these probabilities with respect to the
methods we use.

For our cryptographic applications, we saw that it is enough to chose a prime p such
that

Nk(p) =
k∏

d=1
Φd(p2)/2,

where Φd denoted the d-th cyclotomic polynomial, is sufficiently smooth. For example, in
SQIsign we take k = 1 and require 2f T | p2 − 1 with smooth odd T ≈ p5/4 and f as large
as possible. As the search to find suitable primes is a computationally heavy task, it is
essential to determine what parameters defining the searches are likely to produce good
primes yielding sufficient smoothness.

We follow Banks and Shparlinski [BS07] to determine the probability of Nk(p) being
sufficiently smooth given some prime p. More precisely, given a smooth integer r | Nk(p) or
a pair (r, r ± 1) of twin smooths with r(r ± 1) | Nk(p), we want to calculate the probability
that Nk(p) has b bits of B-smoothness.

The first step is to determine the probability that the factor r or r(r ± 1) is fully
smooth. To do so, we use the following counting function:

Ψ(X, B) = #{x ≤ X : x is B-smooth}.

For a large range of X and B, it is known that

Ψ(X, B) ∼ ρ(u)X,

14 Finding Practical Parameters for Isogeny-based Cryptography

Table 1: This table gives the probability of obtaining B-smooth integer r or B-smooth
twins (r, r ± 1) of bitsize log2(r), computed with the Dickman-de Bruijn function.

Probability of smooth r

for smoothness bound B

Probability of smooth twins
(r, r ± 1) for bound B

log2(r) B = 211 B = 215 B = 218 B = 211 B = 215 B = 218

32 2−4.1 2−2.0 2−1.2 2−8.2 2−4.0 2−2.5

64 2−14.9 2−8.6 2−6.1 2−29.7 2−17.3 2−12.3

128 2−44.0 2−27.5 2−20.6 2−87.9 2−55.0 2−41.3

192 2−79.0 2−50.6 2−38.6 2−157.3 2−101.1 2−77.3

256 2−116.9 2−76.2 2−58.9 2−233.9 2−152.5 2−117.7

where u = (log X)/(log B) and ρ is the Dickman–De Bruijn function [Dic30, dB66]. This
function is implemented in various computer algebra software packages, such as SageMath,
from which we can compute Ψ(X, B) for various X and B.

Explicitly, we compute the probability of finding a B-smooth integer r ≤ 2b′ for
some b′ ∈ Z>0 as ρ(b′

log B). To compute the probability of finding a B-smooth pair
r, r ± 1 ≤ 2b′ , we assume that the probabilities of r being smooth and r ± 1 being smooth
are independent [CMN21, Heuristic 1]. This is quite a strong assumption but we will see
from our results that it is sufficient for our estimates. Then, the probability is given by
ρ(b′

log B)2. In Table 1, we give these probabilities for a range of log2(r). We find that,
for fixed B we have a lower probability of finding a smooth integer r of larger bitsize b′.
Similarly, for a fixed bitsize, the probability of finding r decreases as B decreases.

Next, we investigate the probability of Nk(p) having enough smoothness. More precisely,
given smooth integers r (where r ± 1 is also smooth for the XGCD-and-boost method), we
want to determine with what probability Nk(p) has b bits of B-smoothness with p = pn(R),
where pn(x) = 2xn − 1 and R is an integer depending on r, whose precise value depends
on the method we use. For this will use another counting function

Θ(X, B, D) = #{x ≤ X : D < largest B-smooth divisor of x}.

The value Θ(X, B, D) will give the number of positive integers ≤ X for which there exists a
B-smooth divisor d > D. The first two terms in the asymptotic expansion of Θ(X, B, D) for
X, B, D varying over a large domain are given by Banks and Shparlinski [BS07, Theorem
1]. Using this, we can compute the probability Θ(X, B, D)/X that we are interested in up
to a sufficient level of precision.

For simplicity, let us consider the case where k = 1 and N1(p) = (p2 − 1)/2. This is
required for SQIsign and POKE-friendly primes; for AprèsSQI we can allow k ≥ 1. We can
readily see that pn(x) = 2xn −1 = 4xn(x−1)g(x) for some polynomials g(x) ∈ Z[x]. Write
g(x) = g1(x) · · · gm(x), where each gi is irreducible of degree di = deg(gi) and d = deg(g).
We will assume that the probability of g(r) having at least b bits of B-smoothness is the
product of the probabilities of each of its factors gi having at least bi bits of B-smoothness
where b =

∑m
i=1 bi. This assumption was also made in [BCC+23] and can be seen as an

extension of [CMN21, Heuristic 1]. Furthermore, similarly to [BCC+23], we assume that
smoothness is distributed evenly between gi (weighted by the degree), i.e., bi = di

b
d . Note

that, in reality, this only gives us a lower bound for the probability, but this will suffice for
our purposes.

M. Corte-Real Santos, J.K. Eriksen, M. Meyer, F. Rodríguez-Henríquez 15

Sieve-and-boost. Under these assumptions, given a b′-bit B-smooth integer r, the
probability that p2 − 1 has b-bits of smoothness with p = pn(R) for R = 2fn3f ′

nr is

m∏
i=1

Θ(Rdi , B, 2di(b−bg)/d)
Rdi

, (4)

where bg = n(b′ + fn + f ′
n · log2 3) + 2 is the guaranteed smoothness and pn(x) = 4xn(x −

1)g1(x) · · · gm(x) as above.

XGCD-and-boost. We are now given a pair (r, r ± 1) of B-smooth b′-bit integers. The
probability that p2 − 1 has b-bits of smoothness, where p = pn(R) where R = r is again
given by Equation (4), where now bg = n+1

n (log2(p) − 1) + 2 is the amount of guaranteed
smoothnes. We remark that this mirrors the way the probabilities are computed for the
CHM-and-boost method in [BCC+23, Table 3].

5.1 Probabilities for SQIsign primes
In Table 2, we give the probabilities for constructing SQIsign parameters for NIST Level
I, III and V security using sieve-and-boost. We observe that the probability of finding
a SQIsign friendly prime given r is correlated to the degrees of the factors of pn(x); the
probability is higher for larger degree n, especially when they factor into lots of small
degree polynomials. Indeed, in this case, we only have to search for smoothness in many
small integers. We remark, however, that for bigger n, the sieve interval for r is not
large enough. For each NIST security level, we chose n that balance these two opposing
constraints.

In Table 3 we show the probabilities for the XGCD-and-boost method. As n increases,
the bitsize of r decreases and the amount of smoothness required to find increases. Therefore,
the probability of finding SQIsign friendly primes p decreases with increasing n, however
we can more easily find smooth twins of the required bitsize (see Table 1). As before, we
must balance these two constraints when choosing appropriate n to run our searches.

The computation of probabilities for POKE can be done in an analogous way. Fur-
thermore, by extending the probability formula for Nk(p) with k ≥ 1 we can analogously
compute the probabilities associated to finding AprèsSQI primes. These will guide the
parameters we choose to run the experiments in Section 6.

6 Results
In this section, we describe our implementations of the search approaches and the concrete
search spaces we exhausted, and give our resulting primes for SQIsign, AprèsSQI, and
POKE. In all cases, we collect a large list of primes satisfying the requirements for a
suitable smoothness bound B, before scoring the primes with the cost metric described in
Section 2.5 to determine the best primes.

We implemented our sieve-and-boost approach in Python, based on the implemen-
tation of PTE sieving [CMN21]. The involved sieving step, which is the performance
bottleneck in this technique, uses the efficient C implementation by Costello, Meyer and
Naehrig [CMN21].

Our implementation of the XGCD-and-boost approach is based on the XGCD prime
search script by De Feo, Kohel, Leroux, Petit and Wesolowski [DKL+20], written in C++.
All of our prime search were carried out on two AMD EPYC 7763 64-Core processors at
2.45 GHz, running up to 128 threads in parallel.

For evaluating primes, we use a SageMath script that chooses T and evaluates the cost
of computing a T -isogeny, possibly over extensions of Fp2 . It is based on the implementation

16 Finding Practical Parameters for Isogeny-based Cryptography

Table 2: This tables gives probabilities relating to the sieve-and-boost method. Let
R = 2fn3f ′

nr where r is B-smooth, fn = f/n and f ′
n = log3 2 ·

(
log2(p)

2n − fn

)
. This table

presents the probability of p = pn(R)2 − 1 having a B-smooth divisor 2f T | (p2 − 1) with
T ≈ p5/4.

NIST-I
B = 211

log2(p) = 254
f = 64

NIST-III
B = 215

log2(p) = 382
f = 96

NIST-V
B = 218

log2(p) = 510
f = 128

log2(r) Probability log2(r) Probability log2(r) Probability

n

2 63.5 ≈ 2−32.6 95.5 ≈ 2−38.2 127.5 ≈ 2−45.0

3 42.3 ≈ 2−33.7 63.7 ≈ 2−39.5 85.0 ≈ 2−46.4

4 31.8 ≈ 2−27.1 47.8 ≈ 2−32.3 63.8 ≈ 2−38.3

6 21.2 ≈ 2−23.2 31.8 ≈ 2−27.2 42.5 ≈ 2−32.2

8 15.9 ≈ 2−25.4 23.9 ≈ 2−30.0 31.9 ≈ 2−35.6

10 12.7 ≈ 2−26.4 19.1 ≈ 2−30.8 25.5 ≈ 2−36.2

12 10.6 ≈ 2−20.3 15.9 ≈ 2−23.4 21.3 ≈ 2−27.2

14 9.1 ≈ 2−27.8 13.6 ≈ 2−33.0 18.2 ≈ 2−39.2

16 7.9 ≈ 2−17.1 11.9 ≈ 2−21.1 15.9 ≈ 2−25.8

18 7.1 ≈ 2−21.7 10.6 ≈ 2−25.7 14.2 ≈ 2−30.6

24 5.3 ≈ 2−15.3 8.0 ≈ 2−16.8 10.6 ≈ 2−18.0

Table 3: Let R = r where (r, r ± 1) (resp. (r, r − 1) for n = 3), is B-smooth. This table
displays the probability of p = pn(R)2 − 1 having a B-smooth divisor 2f T | (p2 − 1) with
T ≈ p5/4.

n log2(r) Bits of smoothness
required

Probability

NIST-I
B = 211

log2(p) = 254
f = 64

2 127.0 0 1
3 84.7 41.7 ≈ 2−8.7

4 63.5 62.8 ≈ 2−11.7

6 42.3 83.3 ≈ 2−14.2

8 31.8 94.4 ≈ 2−18.8

NIST-III
B = 215

log2(p) = 382
f = 96

2 191.0 0 1
3 127.3 63.0 ≈ 2−10.4

4 95.5 94.8 ≈ 2−13.9

6 63.7 126.5 ≈ 2−16.9

8 47.8 142.4 ≈ 2−22.2

NIST-V
B = 218

log2(p) = 510
f = 128

2 255.0 0 1
3 170.0 84.3 ≈ 2−12.3

4 127.5 126.8 ≈ 2−16.5

6 85.0 169.2 ≈ 2−20.2

8 63.8 190.4 ≈ 2−26.3

M. Corte-Real Santos, J.K. Eriksen, M. Meyer, F. Rodríguez-Henríquez 17

Table 4: List of ranges that have been exhausted for searches using the sieve-and-boost
approach described in Section 3. The degree n specifies the exponents of Equation (3)
used in the prime search.

Sieve range n for NIST-I n for NIST-III n for NIST-V
[245, 246] - 4 -
[241, 242] 3 - 6
[231, 232] 4 6 8
[220, 221] 6 9 12
[215, 216] 8 12 16
[29, 210] 12 18 24

of [EPSV24] for choosing T , and relies on the data from the optimised implementation
of [AAA+24a] for the cost of computing isogenies over extension fields using their Magma
script [AAA+24b].

All the primes reported and discussed in this section are fully specified in Appendix A.
Our SQIsign search implementations is available with the NIST Round 1 submission package
of SQIsign.2 Minor adaptations allow searching for primes with different requirements such
as in AprèsSQI or POKE.

6.1 Results for SQIsign
For SQIsign, we ran a large search, using both sieve-and-boost and XGCD-and-boost, for
security levels NIST-I, NIST-III, and NIST-V, i.e., primes of roughly 256, 384, resp. 512
bits. For estimating the performance of signing, we use our cost metric from Section 2.5
that approximates the performance bottleneck for computing all T -isogenies during signing,
depending on both f and T . For estimating verification performance for NIST-I parameters,
we use the data given in [CEMR24, Fig. 2], only depending on f .3 Note that our
searches were used to find the primes pI

1973, pIII
47441, and pV

318233 for the NIST submission of
SQIsign [CCD+23].

Sieve-and-boost search. For sieve-and-boost, we used polynomials pn(x), with n ∈
{3, 4, 6, 8, 9, 12, 16, 18, 24}. For different security levels, these polynomials naturally require
different sieving intervals; we sieved a total of six different intervals, and applied them
accordingly to find suitable parameters. An overview of which intervals gave which
parameters can be found in Table 4. The smoothness bounds B we used depend on the
size of fn and vary between 211 and 213 for NIST-I, between 215 and 218 for NIST-III, and
between 216 and 219 for NIST-V.

XGCD-and-boost search. For XGCD-and-boost, we are limited by being able to find
(nearly) twin smooth integers (r, r ± 1), which requires large smoothness bounds for larger
sizes such as r ≈ 2256 (see [CMN21, Table 3]). In contrast, for relatively small sizes of r
the search space is small due to the small value of M . Referring to Section 5, the sweet
spot for this approach thus is to find twin smooths of size r ≈ 2128, and use n ∈ {2, 3, 4}
to find parameters for the NIST-I, NIST-III, resp. NIST-V security level.

We ran this approach with various choices of fn ∈ [32, 40] and appropriate f ′
n ∈ [15, 20],

such that 22fn · 32f ′
n ≈ 264. The smoothness bound B was chosen as B = 211 for fn ≤ 35,

B = 212 for 36 ≤ fn ≤ 39, and B = 213 for fn ≥ 40. representing the trade-off between
smoothness of T and size of f . We used ℓsmall ∈ {5, 7}, ℓj < 210, unbalancing by 0, 1, or 2

2Available at https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures.
3There is no similar data available for NIST-III and NIST-V parameters.

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

18 Finding Practical Parameters for Isogeny-based Cryptography

Table 5: Table of the best SQIsign primes and their signing costs. X+B refers to the
XGCD-and-boost technique, while S+B refers to sieve-and-boost. All primes satisfy
2f T | (p2 − 1)/2, where T is odd and smooth. We also report the largest factor ℓmax that
divides T . The primes found are listed by security level, sorted by the most cost-effective
signing. We also compare our results to primes from [DLLW23, BCC+23].

Prime log2(p) f ℓmax | T CSign,p(T) Method

NIST-I

pI
1223 251.9 67 1223 1.97 X+B

pI
1973 253.7 75 1973 2.01 X+B

pI
8011 253.6 83 8011 2.22 X+B

p3923 [DLLW23] 253.7 65 3923 2.16 XGCD
p479 [BCC+23] 252.2 49 479 2.80 CHM + boost

NIST-III

pIII
5563 378.3 55 5563 6.05 S+B (n = 6)

pIII
22741 379.1 69 22741 5.64 S+B (n = 4)

pIII
47441 377.9 97 47441 5.67 S+B (n = 4)

pIII
194581 381.4 129 194581 6.96 S+B (n = 4)

p1097 [BCC+23] 361.1 39 1097 9.52 CHM + boost
p10243 [BCC+23] 381.2 79 10243 6.08 CHM + boost

NIST-V

pV
40609 504.2 73 40609 12.78 S+B (n = 6)

pV
66343 505.7 91 66343 12.12 S+B (n = 6)

pV
141079 499.9 115 141079 11.50 S+B (n = 6)

pV
318233 501.2 145 318233 12.40 S+B (n = 6)

p150151 [BCC+23] 507.8 85 150151 17.05 CHM + boost

factors ℓj , and M = 6, resulting in a search space of size 235.1 per search configuration.4
Due to the sampling of small primes, this approach is probabilistic. Given the relatively
small search spaces combined with the high number of trials conducted, we estimate that
we have exhaustively covered the entire search space for the specified parameters.

The choice of B can be motivated by Table 3. For example, when setting n = 2 and
fn = 32, finding B-twin smooth integers (r, r ± 1) with B = 211 has a probability of 2−29.7.
The probability of pn(r) to be prime can be estimated through the prime number theorem,
so with the search space of size 236.1 per search configuration, we can expect to find enough
twin smooths to produce a SQIsign-friendly prime. Note that this is only a rough estimate,
since (r, r ± 1) are not required to be fully smooth if pn(r) − 1 contains enough smooth
factors not inherited from r ± 1. For larger fn, the probabilities for finding a large enough
smooth T decreases, for which we account by increasing the smoothness bound B.

Best primes for SQIsign. We summarise the best primes we found for SQIsign in Table 5.
As suggested by our probability analysis, XGCD-and-boost with n = 2 is superior for
finding NIST-I primes, where the unbalanced version found suitable primes. For NIST-III
and NIST-V, sieve-and-boost gives the best results, using n = 4 and n = 6.

NIST-I. For NIST-I primes, targeting p ≈ 2256, we found several primes with odd B-
smooth factor T > p1.27 using B = 211. For instance, the primes pI

1223 and pI
1973 feature

powers of two of size f = 67 and f = 75. Therefore, they improve upon the the prime
p3923 used in previous work [DLLW23] both in signing and verification time. In particular,

4Iterating over XGCD solutions as described in Section 4 further increases this by factor 4 on average.

M. Corte-Real Santos, J.K. Eriksen, M. Meyer, F. Rodríguez-Henríquez 19

we deem pI
1973 to be the most beneficial choice for efficient implementations, improving

signing performance by 7% and verification cost by 7.5% over p3923. The verification cost
of pI

1223 only improves marginally upon p3923.
In particular, pI

1973 is a 254-bit prime using

T = 336 · 74 · 11 · 13 · 232 · 37 · 592 · 89 · 97 · 1012 · 107 · 1092 · 131 · 137 · 1972 · 223
· 239 · 383 · 389 · 4912 · 499 · 607 · 7432 · 1033 · 1049 · 1193 · 19132 · 1973.

Increasing the size of f in exchange for a larger smoothness bound B yields the prime pI
8011

with B = 213. The larger f = 83 improves verification performance by 3.5%, while signing
performance is slower by 10% compared to pI

1973, which makes practical application less
appealing.

Note also that, somewhat surprisingly, the prime p479 found by CHM with boost-
ing [BCC+23] has a much smaller smoothness bound B = 479 of T , but results in slower
performance by roughly 40% for signing and 27% for verifying compared to pI

1973, due to
the relatively small size of f .

NIST-III. For the NIST-III security level, targeting p ≈ 2384, the only parameters
proposed prior to our work used the CHM with boosting approach [BCC+23], but no
implementation was available. The most promising prime defined there is p10243, featuring
f = 79 and B = 10243.

Resulting from our sieve-and-boost searches, the most promising prime is pIII
47441 with

f = 97, permitting good performance for both signing and verifying. It uses

T = 368 · 5 · 712 · 114 · 13 · 474 · 89 · 113 · 1574 · 173 · 233 · 239 · 241 · 443 · 5094 · 569
· 7614 · 1229 · 2393 · 3371 · 4517 · 5147 · 5693 · 5813 · 9397 · 26777 · 39679 · 47441.

Despite the larger smoothness bound compared to p10243, the estimated signing cost is 7%
lower, while also allowing for faster verification due to the larger value of f .

Similar to p479 for NIST-I, p1097 from [BCC+23] offers a much smaller smoothness
bound, at the cost of the smaller choice f = 39. Again, this leads to both much slower
signing and verification.

NIST-V. Similar so NIST-III, the only primes for NIST-V, targetting p ≈ 2512 have been
found through CHM with boosting [BCC+23]. The most promising proposal regarding
overall performance is p150151, featuring f = 85 and B = 150151.

Our sieve-and-boost searches produced many primes that are superior both for signing
and verification. The best overall performance can be reached when using pV

318233 with the
much larger f = 145 and

T = 372 · 5 · 7 · 136 · 17 · 37 · 416 · 53 · 676 · 73 · 1036 · 127 · 151 · 4616 · 643 · 733 · 739
· 8276 · 1009 · 2539 · 4153 · 5059 · 7127 · 10597 · 13591 · 14923 · 15541 · 15991
· 18583 · 23227 · 48187 · 63247 · 65521 · 318233.

Again, the larger smoothness bound compared to p150151 is mitigated by the larger value
of f , resulting in an estimated signing cost reduction by 27%, and much faster verification.
Thus, our search methods seem to scale better to larger parameter sizes than previous
approaches.

6.2 Results for AprèsSQI
We ran a large search for AprèsSQI primes at security level NIST-I, again using both
sieve-and-boost and XGCD-and-boost. We ran both techniques with different smoothness

20 Finding Practical Parameters for Isogeny-based Cryptography

Table 6: Table of the best AprèsSQI primes and their signing costs. In the table, ℓmax
refers to the largest prime ℓ | T , while kmax refers to the largest extension field we have to
use.

Prime log2(p) f ℓmax | T kmax CSign,p(T) Method

pAPRÈS
3917 253.7 99 3917 14 1.34 S+B

pAPRÈS
2791 249.7 107 2791 15 1.34 X+B

pAPRÈS
3527 250.1 119 3527 13 1.43 X+B

pAPRÈS
4441 249.1 129 4441 11 1.60 X+B

pAPRÈS
12433 253.9 161 12433 26 2.19 S+B

p7 [CEMR24] 253.6 145 1663 23 2.26 S+B
pI

1973 253.7 75 1913 9 1.74 X+B

bounds over the different extensions, using k ≤ 8 and 28 ≤ B ≤ 212 for different extensions
for the initial choice of T . Further, for sieve-and-boost, we allow larger bounds B for larger
values of f > 128. Unlike for SQIsign-primes, both methods seem to produce good primes
for AprèsSQI at NIST-I, as seen in Table 6.

Interestingly, we can also apply the AprèsSQI-techniques to the “official” SQIsign-prime
pI

1973. This allows us to replace the two most expensive factors of pI
1973, with cheap factors

over small extension fields, lowering the total cost from 2.01 to 1.74. We use this as a
baseline to compare to the AprèsSQI-specific primes.

The most promising AprèsSQI-prime we found, pAPRÈS
2791 , has a signing cost of 1.34.

Compared to pI
1973, this prime thus has both significantly faster verification by 15%

and signing by 23%. Alternatively, pAPRÈS
12433 is also an interesting candidate, which has

only slightly slower signing than SQIsign with pI
1973, but which has f = 161, yielding a

verification speed-up by 30%.
We also point out that there is little correlation between ℓmax, kmax and the total

cost. This is likely due to the fact that the total cost depends much more on the whole
distribution of T , not only the upper bounds. The full information on T for the different
primes can be found in Appendix A.

Remark 6. Most AprèsSQI primes listed in Table 6 strictly outperform the SQIsign NIST-I
prime pI

1973 submitted by [CCD+23], in the sense that they provide both faster signing
and faster verification for SQIsign according to our cost metric. Hence, it seems beneficial
in general to use the AprèsSQI approach of computing T -isogenies over field extensions.
However, as a caveat, we recall that the cost estimates provided in Table 6 are highly
dependent on the specific cost of performing arithmetic operations within different field
extensions.

6.3 Results for POKE

We searched for POKE-friendly primes for the NIST-I security level. As described above,
we can aim for the smoothness bounds B to be the same as in searches for SQIsign NIST-I
primes with f = 64. Hence, we ran sieve-and-boost and XGCD-and-boost searches with
B = 211. Similar to SQIsign, XGCD-and-boost is superior in this setting, and we found 19
primes of size ≈ 2256 satisfying the POKE requirements. We rated these primes according
to the cost of computing a single T -isogeny given by Cisog,p(T). The best results are shown
in Table 7, indicating whether there are prime factors of p2 − 1 that exceed 264.

M. Corte-Real Santos, J.K. Eriksen, M. Meyer, F. Rodríguez-Henríquez 21

Table 7: Table of the best POKE primes and the cost of computing a T -isogeny. The
largest prime factor that divides T is denoted as ℓmax.

Prime log2(p) ℓmax | T Cisog,p(T) Prime factor > 2λ/2?

pPOKE
1951 253.9 1951 115.004 ✗

pPOKE
1879 251.3 1879 115.349 ✓

pPOKE
1373 246.8 1373 118.092 ✗

pPOKE
1693 244.2 1693 119.646 ✗

pPOKE
1487 249.0 1487 119.916 ✓

The most promising prime appears to be pPOKE
1879 , satisfying 2f T | (p2 −1)/2 with f = 129

and

T = 310 · 5 · 7 · 112 · 132 · 17 · 19 · 432 · 472 · 732 · 79 · 1392 · 2332 · 263
· 3172 · 3832 · 4012 · 4432 · 599 · 643 · 1231 · 1301 · 1549 · 1879.

This cost for computing a T -isogeny is almost minimised among the primes we found, and
we have q | (p2 − 1)/2 with a prime q ≈ 265.

Similarly, we could run searches for the NIST-III and NIST-V security levels, searching
for primes of roughly 384 resp. 512 bit. As for SQIsign, we can expect that sieve-and-
boost outperforms XGCD-and-boost for these sizes. The equivalence to searching SQIsign
parameters with f ≈ 2λ/2 further suggests that we can find primes for the smoothness
bounds B ≈ 215.5 resp. B ≈ 218 in these cases.

References
[AAA+24a] Marius A. Aardal, Gora Adj, Arwa Alblooshi, Diego Aranha, Isaac A. Canales-

Martínez, Jorge Chávez-Saab, Décio Luiz Gazzoni Filho, Krijn Reijnders, and
Francisco Rodríguez-Henríquez. Optimized SQIsign 1D verification on Intel
and Cortex-M4. Personal communication, manuscript in preparation, 2024.

[AAA+24b] Marius A. Aardal, Gora Adj, Arwa Alblooshi, Diego Aranha, Isaac A. Canales-
Martínez, Jorge Chávez-Saab, Décio Luiz Gazzoni Filho, Krijn Reijnders, and
Francisco Rodríguez-Henríquez. Scoring primes for computing isogenies in
extension fields. Available at: http://delta.cs.cinvestav.mx/~francis
co/codigo.html, 2024.

[Bas24] Andrea Basso. POKE: A Framework for Efficient PKEs, Split KEMs, and
OPRFs from Higher-dimensional Isogenies. Cryptology ePrint Archive, Paper
2024/624, 2024. URL: https://eprint.iacr.org/2024/624.

[BBC+21] Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja
Lange, Michael Meyer, Benjamin Smith, and Jana Sotáková. CTIDH: faster
constant-time CSIDH. IACR TCHES, 2021(4):351–387, 2021. https://tche
s.iacr.org/index.php/TCHES/article/view/9069. doi:10.46586/tches
.v2021.i4.351-387.

[BCC+23] Giacomo Bruno, Maria Corte-Real Santos, Craig Costello, Jonathan Komada
Eriksen, Michael Meyer, Michael Naehrig, and Bruno Sterner. Cryptographic
smooth neighbors. In Jian Guo and Ron Steinfeld, editors, ASIACRYPT 2023,
Part VII, volume 14444 of LNCS, pages 190–221. Springer, Singapore, De-
cember 2023. doi:10.1007/978-981-99-8739-9_7.

http://delta.cs.cinvestav.mx/~francisco/codigo.html
http://delta.cs.cinvestav.mx/~francisco/codigo.html
https://eprint.iacr.org/2024/624
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.1007/978-981-99-8739-9_7

22 Finding Practical Parameters for Isogeny-based Cryptography

[BD21] Jean-Claude Bajard and Sylvain Duquesne. Montgomery-friendly primes
and applications to cryptography. Journal of Cryptographic Engineering,
11(4):399–415, November 2021. doi:10.1007/s13389-021-00260-z.

[BDD+24] Andrea Basso, Luca De Feo, Pierrick Dartois, Antonin Leroux, Luciano Maino,
Giacomo Pope, Damien Robert, and Benjamin Wesolowski. SQIsign2D-West:
The Fast, the Small, and the Safer. Cryptology ePrint Archive, Paper 2024/760,
2024. URL: https://eprint.iacr.org/2024/760.

[BDLS20] Daniel J Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith.
Faster computation of isogenies of large prime degree. Open Book Series,
4(1):39–55, 2020. doi:10.2140/obs.2020.4.39.

[Ber04] Daniel J. Bernstein. How to find smooth parts of integers, 2004. http:
//cr.yp.to/papers.html#smoothparts.

[BHL+22] Jan Buzek, Junaid Hasan, Jason Liu, Michael Naehrig, and Anthony Vigil.
Finding twin smooth integers by solving Pell equations. CoRR, abs/2211.04315,
2022. doi:10.48550/ARXIV.2211.04315.

[BS07] William D. Banks and Igor E. Shparlinski. Integers with a large smooth
divisor. Integers. Electronic Journal of Combinatorial Number Theory, 7:A17,
11, 2007. doi:10.5281/zenodo.8281131.

[CCC+19] Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domínguez,
Luca De Feo, Francisco Rodríguez-Henríquez, and Benjamin Smith. Stronger
and faster side-channel protections for CSIDH. In Peter Schwabe and Nicolas
Thériault, editors, LATINCRYPT 2019, volume 11774 of LNCS, pages 173–
193. Springer, Cham, October 2019. doi:10.1007/978-3-030-30530-7_9.

[CCC+24] Fabio Campos, Jorge Chávez-Saab, Jesús-Javier Chi-Domínguez, Michael
Meyer, Krijn Reijnders, Francisco Rodríguez-Henríquez, Peter Schwabe, and
Thom Wiggers. Optimizations and practicality of high-security CSIDH. IACR
Communications in Cryptology, 1(1), 2024. doi:10.62056/ANJBKSDJA.

[CCD+23] Jorge Chavez-Saab, Maria Corte-Real Santos, Luca De Feo, Jonathan Ko-
mada Eriksen, Basil Hess, David Kohel, Antonin Leroux, Patrick Longa,
Michael Meyer, Lorenz Panny, Sikhar Patranabis, Christophe Petit, Francisco
Rodríguez-Henríquez, Sina Schaeffler, and Benjamin Wesolowski. SQIsign:
Algorithm specifications and supporting documentation, 2023. National Insti-
tute of Standards and Technology. URL: https://csrc.nist.gov/csrc/m
edia/Projects/pqc-dig-sig/documents/round-1/spec-files/sqisign
-spec-web.pdf.

[CD23] Wouter Castryck and Thomas Decru. An efficient key recovery attack on
SIDH. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023,
Part V, volume 14008 of LNCS, pages 423–447. Springer, Cham, April 2023.
doi:10.1007/978-3-031-30589-4_15.

[CEMR24] Maria Corte-Real Santos, Jonathan Komada Eriksen, Michael Meyer, and
Krijn Reijnders. AprèsSQI: Extra Fast Verification for SQIsign Using
Extension-Field Signing. In Marc Joye and Gregor Leander, editors, Ad-
vances in Cryptology - EUROCRYPT 2024 - 43rd Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Zurich, Switzerland, May 26-30, 2024, Proceedings, Part I, volume 14651
of Lecture Notes in Computer Science, pages 63–93. Springer, 2024. doi:
10.1007/978-3-031-58716-0_3.

https://doi.org/10.1007/s13389-021-00260-z
https://eprint.iacr.org/2024/760
https://doi.org/10.2140/obs.2020.4.39
http://cr.yp.to/papers.html#smoothparts
http://cr.yp.to/papers.html#smoothparts
https://doi.org/10.48550/ARXIV.2211.04315
https://doi.org/10.5281/zenodo.8281131
https://doi.org/10.1007/978-3-030-30530-7_9
https://doi.org/10.62056/ANJBKSDJA
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/sqisign-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/sqisign-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/sqisign-spec-web.pdf
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-031-58716-0_3
https://doi.org/10.1007/978-3-031-58716-0_3

M. Corte-Real Santos, J.K. Eriksen, M. Meyer, F. Rodríguez-Henríquez 23

[Cen18] Murat Cenk. Karatsuba-like formulae and their associated techniques. Journal
of Cryptographic Engineering, 8(3):259–269, September 2018. doi:10.1007/
s13389-017-0155-8.

[CHM13] Brian Conrey, Mark Holmstrom, and Tara McLaughlin. Smooth neighbors.
Experimental Mathematics, 22(2):195–202, 2013. doi:10.1080/10586458.2
013.768483.

[CMN21] Craig Costello, Michael Meyer, and Michael Naehrig. Sieving for twin smooth
integers with solutions to the prouhet-tarry-escott problem. In Anne Canteaut
and François-Xavier Standaert, editors, EUROCRYPT 2021, Part I, volume
12696 of LNCS, pages 272–301. Springer, Cham, October 2021. doi:10.100
7/978-3-030-77870-5_10.

[Cos20] Craig Costello. B-SIDH: Supersingular isogeny Diffie-Hellman using twisted
torsion. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part II, volume 12492 of LNCS, pages 440–463. Springer, Cham, December
2020. doi:10.1007/978-3-030-64834-3_15.

[dB66] Nicolaas G. de Bruijn. On the number of positive integers ≤ x and free of
prime factors > y, ii. Indag. Math, 38:239–247, 1966. doi:10.1016/S1385-7
258(66)50029-4.

[DF24] Max Duparc and Tako Boris Fouotsa. Sqiprime: A dimension 2 variant of
sqisignhd with non-smooth challenge isogenies. Cryptology ePrint Archive,
Paper 2024/773, 2024. URL: https://eprint.iacr.org/2024/773.

[Dic30] Karl Dickman. On the frequency of numbers containing prime factors of
a certain relative magnitude. Arkiv for matematik, astronomi och fysik,
22(10):A–10, 1930.

[DKL+20] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Ben-
jamin Wesolowski. SQISign: Compact post-quantum signatures from quater-
nions and isogenies. In Shiho Moriai and Huaxiong Wang, editors, ASI-
ACRYPT 2020, Part I, volume 12491 of LNCS, pages 64–93. Springer, Cham,
December 2020. doi:10.1007/978-3-030-64837-4_3.

[DLLW23] Luca De Feo, Antonin Leroux, Patrick Longa, and Benjamin Wesolowski.
New algorithms for the deuring correspondence - towards practical and secure
SQISign signatures. In Carmit Hazay and Martijn Stam, editors, EURO-
CRYPT 2023, Part V, volume 14008 of LNCS, pages 659–690. Springer, Cham,
April 2023. doi:10.1007/978-3-031-30589-4_23.

[DLRW24] Pierrick Dartois, Antonin Leroux, Damien Robert, and Benjamin Wesolowski.
Sqisignhd: New dimensions in cryptography. In Marc Joye and Gregor
Leander, editors, Advances in Cryptology - EUROCRYPT 2024 - 43rd Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Zurich, Switzerland, May 26-30, 2024, Proceedings, Part I, volume
14651 of Lecture Notes in Computer Science, pages 3–32. Springer, 2024.
doi:10.1007/978-3-031-58716-0_1.

[EPSV24] Jonathan Komada Eriksen, Lorenz Panny, Jana Sotáková, and Mattia Veroni.
Deuring for the people: Supersingular elliptic curves with prescribed endo-
morphism ring in general characteristic. In LuCaNT: LMFDB, computation,
and number theory, volume 796 of Contemporary Mathematics, pages 339–373.
Amer. Math. Soc., Providence, RI, 2024. doi:10.1090/conm/796/16008.

https://doi.org/10.1007/s13389-017-0155-8
https://doi.org/10.1007/s13389-017-0155-8
https://doi.org/10.1080/10586458.2013.768483
https://doi.org/10.1080/10586458.2013.768483
https://doi.org/10.1007/978-3-030-77870-5_10
https://doi.org/10.1007/978-3-030-77870-5_10
https://doi.org/10.1007/978-3-030-64834-3_15
https://doi.org/10.1016/S1385-7258(66)50029-4
https://doi.org/10.1016/S1385-7258(66)50029-4
https://eprint.iacr.org/2024/773
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-031-30589-4_23
https://doi.org/10.1007/978-3-031-58716-0_1
https://doi.org/10.1090/conm/796/16008

24 Finding Practical Parameters for Isogeny-based Cryptography

[Leh64] Derrick H. Lehmer. On a problem of Störmer. Illinois Journal of Mathematics,
8(1):57–79, 1964. doi:10.1215/ijm/1256067456.

[MMP+23] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and
Benjamin Wesolowski. A direct key recovery attack on SIDH. In Car-
mit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V, vol-
ume 14008 of LNCS, pages 448–471. Springer, Cham, April 2023. doi:
10.1007/978-3-031-30589-4_16.

[Mon05] Peter L. Montgomery. Five, Six, and Seven-Term Karatsuba-Like Formulae.
IEEE Trans. Computers, 54(3):362–369, 2005. doi:10.1109/TC.2005.49.

[NIS23] NIST. Post-quantum cryptography: Digital signature schemes, 2023. Personal
communication, 2023. Available at: https://csrc.nist.gov/Projects/p
qc-dig-sig/round-1-additional-signatures.

[NO24] Kohei Nakagawa and Hiroshi Onuki. SQIsign2D-East: A New Signature
Scheme Using 2-dimensional Isogenies. Cryptology ePrint Archive, Paper
2024/771, 2024. URL: https://eprint.iacr.org/2024/771.

[Rob23] Damien Robert. Breaking SIDH in polynomial time. In Carmit Hazay and
Martijn Stam, editors, EUROCRYPT 2023, Part V, volume 14008 of LNCS,
pages 472–503. Springer, Cham, April 2023. doi:10.1007/978-3-031-305
89-4_17.

[Ste23] Bruno Sterner. Towards optimally small smoothness bounds for cryptographic-
sized twin smooth integers and their isogeny-based applications. Cryptology
ePrint Archive, Paper 2023/1576, 2023. URL: https://eprint.iacr.org/
2023/1576.

[Stø97] Carl Størmer. Quelques théorèmes sur l’équation de Pell x2 − dy2 = ±1 et
leurs applications. Christiania Videnskabens Selskabs Skrifter, Math. Nat. Kl,
(2):48, 1897. doi:10.1215/ijm/1256067456.

[Vél71] Jacques Vélu. Isogénies entre courbes elliptiques. Comptes Rendus de
l’Académie des Sciences de Paris, Séries A, 273:238–241, 1971.

https://doi.org/10.1215/ijm/1256067456
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1109/TC.2005.49
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://eprint.iacr.org/2024/771
https://doi.org/10.1007/978-3-031-30589-4_17
https://doi.org/10.1007/978-3-031-30589-4_17
https://eprint.iacr.org/2023/1576
https://eprint.iacr.org/2023/1576
https://doi.org/10.1215/ijm/1256067456

M. Corte-Real Santos, J.K. Eriksen, M. Meyer, F. Rodríguez-Henríquez 25

A List of primes
A.1 SQIsign

pI
1223 = 0xea6a4dda9518e5c5d50ccdfbd97e4c49efe85e0e09039c7ffffffffffffffff

pI
1973 = 0x34e29e286b95d98c33a6a86587407437252c9e49355147ffffffffffffffffff

pI
8011 = 0x31ebc32c245c72c40115748f25c4ba516cb58aaae247ffffffffffffffffffff

pIII
5563 = 0x4cd95e35908847e31ac2953eb6d35610ccd37a339b81a09214ad43375dd1219f

9ed34f2a4ad05b5507fffffffffffff

pIII
22741 = 0x851b4a8ba9ca5268304fcfea6b20d3641c5982a3e888543d00f3741c8764bdb

ef38bf6a1531aa1fffffffffffffffff

pIII
47441 = 0x3df6eeeab0871a2c6ae604a45d10ad665bc2e0a90aeb751c722f669356ea468

4c6174c1ffffffffffffffffffffffff

pIII
194581 = 0x2a61eff6f5b99e8a6531a3dd016bce053791af1d1f4c95da3643c770c28ca9

e1ffffffffffffffffffffffffffffffff

pV
40609 = 0x1258a04d42f6b813d52a2b7a316c88f20e534878009f8262082fa9996b5bb08ed

14526e626a06c28e0388a0721ebd5514e072a9d10861ffffffffffffffffff

pV
66343 = 0x353849c34fc94533c0d441876a7a45402ba8961efb78f3aef29a679fc7623bfcc

519c82a014ac7fa64b2f97fa47d154b20f99af07ffffffffffffffffffffff

pV
141079 = 0xf18c5c8a0bafce13183dc4b177b859181420c5d9aa73483b708189cf1f67db4a

ec4488346a2cfe7fc41c079c2123aea07ffffffffffffffffffffffffffff

pV
318233 = 0x255946a8869bc68c15b0036936e79202bdbe6326507d01fe3ac5904a0dea65fa

f0a29a781974ce994c68ada6e1ffffffffffffffffffffffffffffffffffff

A.2 AprèsSQI

pAPRÈS
3917 = 0x367db3d1610fd86993ad6d494796c777fecd0787ffffffffffffffffffffffff

pAPRÈS
2791 = 0x35115c96469bb569c2dd34314f43c0614f2c7ffffffffffffffffffffffffff

pAPRÈS
3527 = 0x4513330eaf8964fda7d3c89a0be26929c7fffffffffffffffffffffffffffff

pAPRÈS
4441 = 0x221664ddd26fb24cc84ae0ed4d41291ffffffffffffffffffffffffffffffff

pAPRÈS
12433 = 0x3e30773d028b14a993d5acd1ff

A.3 POKE

pPOKE
1951 = 0x3aff3eb7970fa4ceb7c8678eb8d6cc11ffffffffffffffffffffffffffffffff

pPOKE
1879 = 0x99d82349ba3fd6e8bf5468b25b7a621ffffffffffffffffffffffffffffffff

pPOKE
1373 = 0x7036364ab7f4f4dd8e06adbd7c231fffffffffffffffffffffffffffffffff

pPOKE
1693 = 0x12128537506e5ac7cb81cbb7f737c7ffffffffffffffffffffffffffffffff

pPOKE
1487 = 0x1faead661e4fec39df163a284d8bae1ffffffffffffffffffffffffffffffff

26 Finding Practical Parameters for Isogeny-based Cryptography

Table 8: Choice of T =
∏

ℓei
i , and the minimal fields Fp2k for the prime pAPRÈS

3917

k ℓei

i

1 363, 73, 47, 163, 211, 233, 2832, 397, 419, 5232, 7192,
1187, 1201, 1613, 2857, 3389, 3917

2 5, 373
3 19, 43
5 112

6 13
8 17
9 37
11 23
14 29

Table 9: Choice of T =
∏

ℓei
i , and the minimal fields Fp2k for the prime pAPRÈS

2791

k ℓei

i

1 314, 56, 74, 23, 292, 612, 101, 151, 2292, 2512, 293, 3312, 5632, 5872,
823, 863, 997, 1181, 1319, 1933, 2003, 2791

2 37, 109, 773
3 19, 79
5 11
6 13
8 17
10 41
15 31

Table 10: Choice of T =
∏

ℓei
i , and the minimal fields Fp2k for the prime pAPRÈS

3527

k ℓei

i

1 39, 73, 132, 312, 432, 672, 714, 832, 163, 2692, 349, 5692,
613, 647, 673, 787, 797, 857, 1283, 1571, 3527

2 5, 137, 1861
3 19
4 17, 41, 337
5 11
6 61, 73
7 29
9 37
11 23
13 53

M. Corte-Real Santos, J.K. Eriksen, M. Meyer, F. Rodríguez-Henríquez 27

Table 11: Choice of T =
∏

ℓei
i , and the minimal fields Fp2k for the prime pAPRÈS

4441

k ℓei

i

1 317, 55, 112, 17, 19, 31, 1272, 293, 4792, 521, 577, 659,
8232, 8572, 14092, 23392, 2843, 4441

2 132, 1277
3 7, 43, 67
5 1012, 131
6 61, 73
7 29
11 23
13 53
18 37

Table 12: Choice of T =
∏

ℓei
i , and the minimal fields Fp2k for the prime pAPRÈS

12433

k ℓei

i

1 316, 5, 76, 11, 17, 59, 792, 157, 1932, 283, 419, 587, 9532, 1301, 5657, 12433
2 13, 372, 349
3 19, 73, 487
4 89, 233, 313
5 131
6 61
7 127
9 181
10 41
11 23, 67
12 97
14 29
15 31
18 109
21 43
23 47
26 53

	Introduction
	Preliminaries
	SQIsign prime requirements
	AprèsSQI prime requirements
	POKE prime requirements
	Prior search methods
	Cost metric for evaluating primes

	Sieve-and-boost
	XGCD-and-boost
	Smoothness probabilities
	Probabilities for SQIsign primes

	Results
	Results for SQIsign
	Results for AprsSQI
	Results for POKE

	References
	List of primes
	SQIsign
	AprsSQI
	POKE

