
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 3, 24 pages.

https://doi.org/10.62056/ahvr-zoja5
Check for updates

Efficient Algorithm for Generating Optimal
Inequality Candidates for MILP Modeling of

Boolean Functions
Alexander Bille and Elmar Tischhauser

University of Marburg, Dept. of Mathematics and Computer Science, Marburg, Germany

Abstract. Mixed-Integer Linear Programming (MILP) modeling has become an
important tool for both the analysis and the design of symmetric cryptographic
primitives. The bit-wise modeling of their nonlinear components, especially the
S-boxes, is of particular interest since it allows more informative analysis compared
to word-oriented models focusing on counting active S-boxes. At the same time,
the size of these models, especially in terms of the number of required inequalities,
tends to significantly influence and ultimately limit the applicability of this method
to real-world ciphers, especially for larger number of rounds. It is therefore of great
cryptographic significance to study optimal linear inequality descriptions for Boolean
functions. The pioneering works of Abdelkhalek et al. (FSE 2017), Boura and Coggia
(FSE 2020) and Li and Sun (FSE 2023) provided various heuristic techniques for this
computationally hard problem, decomposing it into two algorithmic steps, coined
Problem 1 and Problem 2, with the latter being identical to the well-known NP-
hard set cover problem, for which there are many heuristic and exact algorithms in
the literature. In this paper, we introduce a novel and efficient branch-and-bound
algorithm for generating all minimal, non-redundant candidate inequalities that satisfy
a given Boolean function, therefore solving Problem 1 in an optimal manner without
relying on heuristics. We furthermore prove that our algorithm correctly computes
optimal solutions. Using a number of dedicated optimizations, it provides significantly
improved runtimes compared to previous approaches and allows the optimal modeling
of the difference distribution tables (DDT) and linear approximation tables (LAT) of
many practically used S-boxes. The source code for our algorithm is publicly available
as a tool for researchers and practitioners in symmetric cryptography.
Keywords: MILP modeling · Boolean functions · S-boxes · Differential cryptanalysis
· Linear cryptanalysis · Symmetric cryptography

1 Introduction
Mixed-Integer Linear Programming (MILP) modeling is an important tool in combinatorial
optimization which has found widespread adoption in many application domains. While
general linear programming deals with the minimization or maximization of a linear
objective function with respect to a set of linear inequalities as constraints, MILP allows
the restriction of some or all involved variables to integral values.

Following the proposal by Mouha, Wang et al. [MWGP11], MILP modeling has become
a standard technique in the analysis and design of symmetric cryptographic primitives, in
particular in the context of differential and linear cryptanalysis. Efficient and compact
MILP modeling of the individual components employed in these schemes, in particular

E-mail: bille@informatik.uni-marburg.de (Alexander Bille), tischhauser@informatik.uni-marbu
rg.de (Elmar Tischhauser)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-07-08 Accepted: 2024-09-02

https://doi.org/10.62056/ahvr-zoja5
https://crossmark.crossref.org/dialog/?doi=10.62056/ahvr-zoja5&domain=pdf&date_stamp=2024-09-27
https://orcid.org/0000-0002-2031-8652
mailto:bille@informatik.uni-marburg.de
mailto:tischhauser@informatik.uni-marburg.de
mailto:tischhauser@informatik.uni-marburg.de
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Generating Optimal Inequality Candidates for Modeling Boolean Functions

the S-boxes or similar nonlinear components is therefore an important research topic in
symmetric cryptography, with various previous works extending and refining the basic
technique [LS22,Udo21,BC20,ST17,AST+17,SHW+14a,SHW+14b,FTW+22].

These modelings are then extensively used in the security analysis of symmetric ciphers,
for automated proving of bounds for the minimum number of active S-boxes and for the
identification of best differential and linear [ZZDX19, FWG+16], integral [XZBL16] or
division property trails [DL22, HLM+20, WHG+19, ST17]. The resulting MILP models
tend to grow significantly with the number of rounds of the scheme, which makes the
task of obtaining compact models for each component of the round function particularly
important. This is especially relevant since popular MILP solvers tend to work better with
smaller models, although exceptions to this rule of thumb exist.

A key problem in each of these modeling approaches is to obtain a minimal description
of the support of a Boolean function by a minimum set of integer inequalities. In the
context of differential cryptanalysis, this would correspond to the set of possible input
and output differences to an S-box, and for linear cryptanalysis, likewise the set of input
and output masks with a nonzero correlation. In some cases, not only the number of
inequalities is to be minimized, but also the absolute value of the integer coefficients of the
involved inequalities.

Suppose we want to model a Boolean function by the minimum number of inequalities,
e.g. the DDT of an S-box. Let S ⊆ Fn

2 denote the support of this function. The task of
obtaining a minimal characterization of a Boolean function can then be decomposed into
two main algorithmic steps [BC20, LS22, Udo21], which can informally be described as
follows:

Problem 1 (informal). For a given set S ⊆ Fn
2 , generate all minimal (i.e., nonredundant)

candidate inequalities which are satisfied by at least all points of S.

Problem 2 (informal). Given a set S ⊆ Fn
2 and all its minimal candidate inequalities,

find the minimal number of them such that their combination describes exactly S.

Solving Problem 1 exactly is essential to the success of any algorithm for Problem 2,
since an incomplete set of candidates will prevent any algorithm for Problem 2 from
obtaining a provably optimal solution. We note that Problem 2 is equivalent to the
well-known Set Cover Problem or the equivalent Hitting Set Problem, which are
NP-hard [KV18]. For smaller instance sizes, they can be solved in an exact manner using
techniques including MILP, and approximate solutions can be obtained using various
heuristics (cf. Section 2.2). This paper therefore focuses on an efficient algorithm for
solving Problem 1.

1.1 Previous work
The initial work by Mouha, Wang et al. [MWGP11] focused on using MILP to obtain
bounds for the number of differentially or linearly active S-boxes. MILP modeling of
the valid concrete differential or linear transitions through an S-box at the bit level was
introduced by Sun et al. in [SHW+14a,SHW+14b]. Given the highly non-linear nature of
the S-boxes, this pioneering approach was only efficient for smaller 4-bit S-boxes.

Abdelkhalek et al. [AST+17] extended the detailed bit-oriented MILP modeling tech-
nique to larger 8-bit S-boxes, employing well-known Boolean optimization algorithms
such as Quine-McCluskey [Qui52, Qui55, McC56] or the Espresso heuristic [BHMS84].
Their approach was further improved by Sasaki and Todo in [ST17], who also proposed a
MILP-based technique for Problem 2.

Boura and Coggia [BC20] introduced several novel heuristic approaches for Problem 1
to improve this bit-oriented MILP modeling for S-boxes. Whereas previous techniques
were based on using the convex hull of the support of the Boolean function in question and

Alexander Bille, Elmar Tischhauser 3

as such limited to smaller S-boxes, Boura and Coggia propose the combined removal of
multiple invalid points at a time by using lexicographic relations, and introduce so-called
“balls” and “distorted balls” for efficiently dealing with dense sets. They additionally
propose new techniques for modeling linear layers efficiently.

Significantly extending Boura and Coggia’s work, Li and Sun [LS22] developed a heuris-
tic approach named “Superball” which involves dividing the Boolean function modeling
problem into individual shifts or “centers”. They use MILP in turn as a subroutine to gen-
erate inequalities for each center, balancing the exclusion of (inner) region points and the
satisfaction of inequalities by border points. Despite some variability in the experimental
results, their method offers a robust heuristic for MILP-based S-box modeling which yields
very good results for many practical S-boxes, however without optimality guarantee due
to the heuristic nature of the approach.

In the first paper focusing on optimal results instead of heuristics, Udovenko [Udo21]
presented a framework for obtaining optimal MILP modelings for Boolean functions which
allows extensive customization, including the selection of different solvers (MILP/SAT/CP)
for different subproblems. By dividing the problem into shifts (similar to the Superball
approach [LS22]) and employing SAT solvers for monotone set learning, Udovenko’s method
achieves optimal results at the expense of a sometimes prohibitive runtime.

A recent paper by Feng et al. [FTW+22] also achieves near-optimal results by subdi-
viding the problem into shifts and applying simplification rules within these subproblems.
Their strategy includes enforcing a particular order within shifts and searching for elements
that violate certain consistency conditions. However, the approach of [FTW+22] is also
heuristic, and does not come with optimality guarantees. In particular, as detailed in
Section 6, it does not fully solve Problem 1 to generate all inequality candidates for
selection.

A more general related problem is the so-called relaxation complexity as considered
by Averkov et al. [AHS23a, AHS23b]. These works are concerned with the smallest
possible characterization of a lattice-convex subset of Zn by linear inequalities. In order
to remain within practical runtime limits, a number of heuristics are combined with an
MILP-based approach. The resulting algorithm appears to be less suited for the Boolean
functions arising from cryptographic S-boxes since it is comparatively slow compared to
e.g. [Udo21,LS22] and is limited to some 4- and 5-bit S-boxes.

The problem of reducing the size of integer or Boolean coefficients of inequality has
been studied by Bradley and Hammer [BHW74] and Wilson [Wil77]. These techniques can
additionally be applied as a post-processing step after any of the outlined algorithms for
MILP modeling, including the one presented in this paper. In the cryptographic context,
the impact of coefficient reduction has have been studied by Li and Sun [LS22] and Xu et
al. [XFW23].

1.2 Contributions
In this paper, we introduce a new and efficient dedicated algorithm for solving Problem 1.
It is based on a branch-and-bound approach using a number of dedicated optimizations for
pruning the search tree and avoiding duplicate subproblems. We explain the theory when
a set can be described by precisely one inequality (so-called “monotone” sets), leading to a
computationally useful characterization of optimality which allows us to prove that our
algorithm correctly computes optimal solutions. As such, it also extends and corrects the
partial results of [FTW+22].

At the same time, our algorithm provides significantly improved runtimes compared
to previous approaches [LS22, Udo21]. We provide experimental results running our
algorithm on Boolean functions corresponding to the difference distribution (DDT) and
linear approximation tables (LAT) of many m-bit S-boxes of real-world ciphers, where
4 ≤ m ≤ 8. To the best of our knowledge, these are the first results for optimal modeling

4 Generating Optimal Inequality Candidates for Modeling Boolean Functions

of LATs. Furthermore, the source code for our algorithm is publicly available1 as a tool
for researchers and practitioners in symmetric cryptography.

Lastly, our algorithm for Problem 1 is likely to have useful applications beyond
symmetric cryptography, as it solves the general problem of finding all optimal inequality
candidates for the modeling of any Boolean function (not limited to S-boxes) by means of
linear inequalities.

2 Preliminaries
2.1 Notation
Let S ⊆ Fn

2 . As usual we denote the complement of S by S := {y ∈ Fn
2 | y /∈ S}. We

define the operator ⪯ on two elements x, y ∈ Fn
2 . It holds that x ⪯ y if and only if xi ≤ yi

for all 0 ≤ i < n. In this case, we call y a dominating number of x or, equivalently, that y
dominates x. Furthermore, let x ≺ y ⇔ x ⪯ y and x ̸= y. In this work, the numbers used
in inequalities are elements of Z. We identify an inequality a0x0 + · · ·+ an−1xn−1 ≤ b with
the vector (a0, . . . , an−1, b)⊺ ∈ Zn+1. Let ⟨a, x⟩ := a0x0 + · · · + an−1xn−1 be the scalar
product.

2.2 Boolean Functions and their Set Representation
Our goal is to describe a Boolean function f : Fn

2 → F2 with the minimal number of linear
inequalities of the form ⟨a, x⟩+ b = a0x0 + · · ·+ an−1xn−1 + b ≥ 0 with coefficients ai ∈ Z
and constant b ∈ Z. This means for x = (x0, . . . , xn−1)⊺ the function f(x) equals 1 if and
only if all inequalities are satisfied by x, and for the case f(x) = 0 at least one inequality
is not satisfied.

In this work, we represent a Boolean function f by its support, i.e. a set S ⊆ Fn
2

where x ∈ S ⇔ f(x) = 1. Also, an inequality can be represented by the set consisting
of the values satisfying the inequality. We call sets that can be described by exactly one
inequality monotone. When S is monotone there exists an inequality such that{

⟨a, x⟩+ b ≥ 0, if x ∈ S,
⟨a, x⟩+ b < 0, if x ∈ S.

(1)

By considering multiple inequalities, the set describing the combination of these inequalities
is the intersection of their representing sets.

Let S ⊆ Fn
2 be the set we want to describe by inequalities, or in other form by monotone

sets. We call a monotone set A ⊆ Fn
2 a closure of S if S ⊆ A. In the context of our problem,

we want to generate the closures of S to have suitable candidates for a description of S
by inequalities. If A and B are closures of S, the set A can be a subset of B making B
an unnecessarily large candidate regarding S. In particular, Fn

2 is a closure of every set,
but nothing would be gained by using the corresponding inequality (0, . . . , 0, 0) since all
elements satisfy it. Hence, we refine the definition of useful candidates to minimal closures:

Definition 1. Let A, S ⊆ Fn
2 . We call A a minimal closure of S if A is monotone, S ⊆ A

and there is no other closure B ̸= A of S with B ⊆ A.

Now, we formalize our goal describing a Boolean function with the minimal number of
inequalities into two problems.

Problem 1. For a given set S ⊆ Fn
2 , generate all minimal closures of S.

1https://osf.io/v73wm/?view_only=d49f79ae0f974904af38b4c71a9b86f1
https://gitlab.com/BilleUni/boolean-function-linear-inequality-algorithm-code

https://osf.io/v73wm/?view_only=d49f79ae0f974904af38b4c71a9b86f1
https://gitlab.com/BilleUni/boolean-function-linear-inequality-algorithm-code

Alexander Bille, Elmar Tischhauser 5

Problem 2. Given a set S ⊆ Fn
2 and all its minimal closures. Choose the minimal number

of these sets such that their intersection equals S.

This work focuses on an efficient way of computing the minimal closures for Prob-
lem 1. The minimal selection as demanded by Problem 2 is the well known Set
Cover Problem or its equivalent, the Hitting Set Problem. For example, for
Problem 2, possible algorithmic approaches include an MILP formulation [ST17] and
dedicated algorithms [BFSW22, SC10] for optimal solutions, as well as various heuris-
tics [SHW+14b,LDW07].

Note that in general one can only describe a Boolean function (or its corresponding set)
with the minimal number of linear inequalities when all minimal closures are generated.
Otherwise no such optimality guarantee can be given.

3 Inequalities for Boolean Functions
In this section, we characterize the XOR of a set and a value, and the adjustment of
the corresponding inequality which is described in Section 3.1. This is used to divide
Problem 1 into subproblems generating minimal closures corresponding to inequalities
having nonnegative coefficients and a nonpositive constant. Such inequalities are called
positive. Their properties are discussed in Section 3.2.

3.1 Shifting Inequalities and Sets
We explain how to shift an inequality I = (a0, . . . , an−1, b) and its corresponding set SI

by some s ∈ Fn
2 . Let S′

I = {x⊕ s | x ∈ S} and let I ′ = (a′
0, . . . , a′

n−1, b′) with

a′
i =

{
−ai, if si = 1,

ai, otherwise,

and b′ = b +
∑

i,si=1 ai.

Lemma 1. For any x ∈ SI , x satisfies I if and only if x′ = x⊕ s satisfies I ′.

Proof. We prove this by showing
∑n−1

i aixi + b =
∑n−1

i a′
ix

′
i + b′. Note that xi = 1− x′

i

holds for si = 1, otherwise xi = x′
i. Then

n−1∑
i=0

aixi + b =
∑

i,si=0
aixi +

∑
i,si=1

aixi + b

=
∑

i,si=0
aix

′
i +

∑
i,si=1

ai(1− x′
i) + b =

∑
i,si=0

aix
′
i +

∑
i,si=1

ai +
∑

i,si=1
−aix

′
i + b

=
∑

i,si=0
a′

ix
′
i +

∑
i,si=1

a′
ix

′
i +

∑
i,si=1

ai + b =
n−1∑
i=0

a′
ix

′
i + b′.

To divide Problem 1 we consider the inequalities with the same sign.

Definition 2. The sign σI ∈ Fn
2 of an inequality I = (a0, . . . , an−1, b) is defined by

σI
i = 1⇔ ai < 0 for 0 ≤ i < n.

To obtain the minimal closures corresponding to inequalities with the sign s, we can
shift S by some s and compute the minimal closures corresponding to positive inequalities.
Afterwards the closures can be “reshifted” by s. It turns out that sets corresponding
to positive inequalities have several computationally useful special properties which are
described in the next section.

6 Generating Optimal Inequality Candidates for Modeling Boolean Functions

3.2 Positive Inequalities
Let I = (a0, . . . , an−1, b) be a positive inequality describing the set SI . Sets of positive
inequalities have the following property:

Observation 1. For any x ∈ SI and some y ⪰ x dominating x, y is also an element
of SI .

This follows immediately from the fact that the coefficients ai are nonnegative.

Definition 3. A set S ⊆ Fn
2 with the following property is called positive:

∀x ∈ S,∀y ∈ Fn
2 : y ⪰ x⇒ y ∈ S.

Analogously, the set is called negative if

∀x ∈ S,∀y ∈ Fn
2 : y ⪯ x⇒ y ∈ S.

Observation 2. The negation of a positive set is negative set and vice versa.

Positive and negative sets can be completely characterized by the so called pillars:

Definition 4. For a positive set S an element p ∈ S is called a positive pillar if

∄x ∈ S : x ≺ p.

Likewise, for a negative set S an element p ∈ S is called a negative pillar if

∄x ∈ S : x ≻ p.

Let ↑S := {y | ∃x ∈ S, x ⪯ y} be the set consisting of all dominating elements of some
set S ∈ Fn

2 . We refer to this as the positive hull of S. Furthermore, let PosPil : Fn
2 → Fn

2
and NegPil : Fn

2 → Fn
2 be the functions returning all the positive or negative pillars,

respectively, of a positive or negative set, respectively.

4 Monotonicity in Positive Sets
This section provides the formal definition for monotonicity and develops incrementally
the condition our approach uses to branch over. Let S be a positive set. We can simplify
the monotonicity requirements (1) for positive sets since for x, y ∈ S with x ⪯ y it holds
that ⟨a, y⟩ ≥ ⟨a, x⟩ when ai ≥ 0 for all i. Hence, we may only consider the positive pillars
of S and the negative pillars of S:{

⟨a, x⟩+ b ≥ 0, if x ∈ PosPil(S),
⟨a, x⟩+ b < 0, if x ∈ NegPil(S).

(2)

When S is not monotone an inequality (a0, . . . , an−1, b) satisfying (2) does not exist. This
motivates looking at combinations of elements leading to a contradiction to monotonicity,
which we formalize below.

Definition 5. For a given positive set S ⊆ Fn
2 we call c = ({x0, . . . , xk−1}, {v0, . . . ,

vk−1}) with xj ∈ S and vj ∈ S a k-general contradiction when for each i,
∑

j xj
i ≤

∑
j vj

i .

Lemma 2. A positive set S is not monotone if and only if at least one k-general contra-
diction exists.

Alexander Bille, Elmar Tischhauser 7

Proof. ⇒: If S is not positive then there is no solution for the inequality system (1). Note
that 0 ∈ S, otherwise S = Fn

2 and would be monotone. This means that there exist
x0, . . . , xk−1 ∈ S and v0, . . . , vℓ−1 ∈ S with k ≥ ℓ such that

0 ≤
k−1∑
j=0
⟨a, xj⟩+ kb ≤

ℓ−1∑
j=0
⟨a, vj⟩+ ℓb < 0

⇔− kb ≤
k−1∑
j=0
⟨a, xj⟩ ≤

ℓ−1∑
j=0
⟨a, vj⟩ < −ℓb.

Since 0 ∈ S we can set vℓ, . . . , vk−1 = 0 and include them in the above estimation to

− kb ≤
k−1∑
j=0
⟨a, xj⟩ ≤

k−1∑
j=0
⟨a, vj⟩ < −kb

⇔− kb ≤ ⟨a,

k−1∑
j=0

xj⟩ ≤ ⟨a,

k−1∑
j=0

vj⟩ < −kb

⇔− kb ≤
n−1∑
i=0

ai(
k−1∑
j=0

xj
i) ≤

n−1∑
i=0

ai(
k−1∑
j=0

vj
i) < −kb

The property
∑k−1

j=0 xj
i ≤

∑k−1
j=0 vj

i must hold for 0 ≤ i < n. If this is not the case for
a specific i, we could increase ai in such a way that the contradiction of the inequality
system does not arise. Hence, ({x0, . . . , xk−1}, {v0, . . . , vk−1}) is a k-general contradiction.
⇐: Let c = ({x0, . . . , xk−1}, {v0, . . . , vk−1}) be a k-general contradiction. Assume S is
monotone and I = (a0, . . . , an−1, b) would be the corresponding inequality. Since xj ∈ S
and vj ∈ S the inequalities ⟨a, xj⟩ + b ≥ 0 and ⟨a, vj⟩ + b < 0 hold. Combining the
inequalities respectively we also know

⟨a,
∑

j

xj⟩+ kb ≥ 0,

⟨a,
∑

j

vj⟩+ kb < 0.

Because of the k-general contradiction property
∑

j xj
i ≤

∑
j vj

i :

⟨a,
∑

j

xj⟩ = a0(
∑

j

x0
j) + · · ·+ an−1(

∑
j

xj
n−1)

≤ a0(
∑

j

v0
j) + · · ·+ an−1(

∑
j

vj
n−1) = ⟨a,

∑
j

vj⟩.

This leads to the contradiction of our assumption that S is monotone since

0 ≤ ⟨a,
∑

j

xj⟩+ kb ≤ ⟨a,
∑

j

vj⟩+ kb < 0.

In the following we prove that a positive set S is monotone if and only if there is no
2-general contradiction by showing that S is not monotone when a 2-general contradiction
exists and that S is monotone when no 2-general contradiction exists. This will turn out
to be a computationally useful characterization.

8 Generating Optimal Inequality Candidates for Modeling Boolean Functions

Lemma 3. A positive set S is monotone if and only if there is no 2-general contradiction.

Proof. The fact that S is not monotone when a 2-general contradiction exists is an
implication of Lemma 2. Now we consider the case when no 2-general contradiction exists.
We show that no k-general contradiction exists and therefore S is monotone. In this case,
for each combination of two elements x, y of S the following holds

⟨a, x + y⟩+ 2b ≥ 0.

Otherwise, a 2-general contradiction would exist. Suppose that c = ({z0, . . . , zk−1}, {v0,
. . . , vk−1}) is an arbitrary k-general contradiction. First, assume k is even. By splitting
⟨a,

∑
j zj⟩+ kb up into

⟨a, z0 + z1⟩+ 2b︸ ︷︷ ︸
≥0

+ ⟨a, z2 + z3⟩+ 2b︸ ︷︷ ︸
≥0

+ · · ·+ ⟨a, zk−2 + zk−1⟩+ 2b︸ ︷︷ ︸
≥0

≥ 0

the term ⟨a,
∑

j zj⟩+ kb is shown to be greater or equal 0. Hence, c cannot be a general
k-contradiction. At last, we consider the case where k is odd. Because c is a k-general con-
tradiction then c′ = ({z0, . . . , zk−1, z0, . . . , zk−1}, {v0, . . . , vk−1, v0, . . . , vk−1}) must be a
2k-general contradiction. Since 2k is even and thus c′ can not be 2k-general contradiction,
c is also no k-general contradiction.

In the following we consider a specialized form of 2-general contradictions, the strict
contradiction. These are used in our algorithms to branch over. Afterwards, we show that for
each 2-general contradiction ({x, y}, {v, w}) we find a strict contradiction ({p, q}, {v′, w′})
with p ⪯ x, q ⪯ y and p and q are positive pillars. This result implies that a positive set S
is monotone if and only if there is no strict contradiction.

Definition 6. We call two pairs ({p, q}, {v, w}) with p, q ∈ S, v, w ∈ S a strict contradiction
if

p⊕ q = v ⊕ w and (3)
p ∧ q = v ∧ w. (4)

Furthermore, we call {v, w} a conflicting pair and {p, q} an inducing pair and say {v, w}
is induced by {p, q}.

Corollary 1. A strict contradiction is a 2-general contradiction.

Proof. Let c = ({x, y}, {v, w}) be a strict contradiction. Let i arbitrary but fixed. Because
of (3) and (4) we know xi + yi = vi + wi. Hence, c is a 2-general contradiction since
xi + yi ≤ vi + wi.

Lemma 4. If a 2-general contradiction exists, then a strict contradiction exists.

Proof. Let c = ({x, y}, {v, w}) be a 2-general contradiction. We create v′ ⪯ v and w′ ⪯ w
such that c′ = ({x, y}, {v′, w′}) is a strict contradiction. Since S is positive and thus S is
negative the values v′, w′ are in S. Let i be arbitrary but fixed. From xi + yi ≤ vi + wi, we
set v′

i ≤ vi and w′
i ≤ wi in a way such that xi + yi = v′

i + w′
i holds. Then the conditions

(3) and (4) apply for c′ and c′ is a strict contradiction.

Lemmas 3 and 4 imply the following property.

Theorem 1. A positive set S is monotone if and only if there is no strict contradiction.

Alexander Bille, Elmar Tischhauser 9

Table 1: Example of the construction of a strict contradiction ({p, q}, {v′, w′}) with pillars
as inducing pair from an arbitrary strict contradiction ({x, y}, {v, w}) with p ⪯ x and
q ⪯ y.

Jx↔y Jx∧¬y Jy∧¬x

Index 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x 1 1 1 0 0 0 0 1 1 1 1 0 0 0
y 1 1 1 0 0 0 0 0 0 0 0 1 1 1
v 1 1 1 0 0 0 0 0 1 1 0 0 1 0
w 1 1 1 0 0 0 0 1 0 0 1 1 0 1
p 1 0 1 0 0 0 0 1 0 1 0 0 0 0
q 0 0 1 0 0 0 0 0 0 0 0 0 1 1
α 0 1 0 0 0 0 0 0 1 0 1 0 0 0
β 1 1 0 0 0 0 0 0 0 0 0 1 0 0
v′ 1 0 1 0 0 0 0 0 0 1 0 0 1 0
w′ 0 0 1 0 0 0 0 1 0 0 0 0 0 1

Jp↔q Jp∧¬q Jq∧¬p

Index 11 12 10 9 8 7 5 3 2 13 6 4 1 0
p 1 0 0 0 0 0 0 0 0 1 1 1 0 0
q 1 0 0 0 0 0 0 0 0 0 0 0 1 1
v′ 1 0 0 0 0 0 0 0 0 1 0 1 1 0
w′ 1 0 0 0 0 0 0 0 0 0 1 0 0 1

For the search of strict contradictions in a positive set S, it is sufficient to search with
two pillars of S as inducing pairs. Let c = ({x, y}, {v, w}) be a strict contradiction. We
will create a strict contradiction ({p, q}, {v′, w′}) where p and q are positive pillars and
which is “better” than c. “Better” means that v and w dominate v′ and w′, respectively.
Later, in the algorithm for generating positive closures of a set, we use the conflicting pairs
to branch over and include one element of this conflicting pair into the set S and create
the positive hull of the augmented set in a branch. Therefore, every dominating number of
the last included number of the conflicting pair is also an element of this set.

We split x and y into a pillar and the rest, namely x = p⊕α and y = q⊕ β with p ⪯ x,
q ⪯ y, α ⪯ x, β ⪯ y, p ∧ α = 0 and q ∧ β = 0. Note that there can be multiple pillars for
this split. However the choice of pillar does not matter for the purposes of our algorithm
since only the conflicting pairs are used for the branching. Let Jx↔y := {i | xi ↔ yi}. We
define v′ and w′ as follows:

v′
i =

{
vi ∧ ¬αi if i ∈ Jx↔y

vi ∧ ¬(αi ∨ βi) if i /∈ Jx↔y

w′
i =

{
wi ∧ ¬βi if i ∈ Jx↔y

wi ∧ ¬(αi ∨ βi) if i /∈ Jx↔y

Table 1 shows an example of this construction. The indices are chosen such that
the sections such as Jx↔y are easily visible. In general, these sections can be arbitrarily
distributed. With this construction we have found a better contradiction as proved by
Lemma 5.

Lemma 5. The pair ({p, q}, {v′, w′}) as built above is a strict contradiction.

10 Generating Optimal Inequality Candidates for Modeling Boolean Functions

Proof. Since p and q are positive pillars of S, they are element of S. The vectors v′ and w′

are in S because by construction v′ ⪯ v and w′ ⪯ w holds and v, w ∈ S.
We prove the necessary condition p⊕ q = v′ ⊕ w′ and p ∧ q = v′ ∧ w′ for each bit in

two cases. Recall that ({x, y}, {v, w}) is a strict contradiction and hence x⊕ y = v ⊕ w
and x ∧ y = v ∧ w. The XOR operation a⊕ b can also be expressed as (a ∨ b) ∧ (¬a ∨ ¬b).
The relation α ⪯ x can be expressed by 1 = ¬x→ ¬α⇔ x ∨ ¬α = 1 since whenever the
j-th bit of x is 0 then j-th bit of α also has to be 0. Analogously, y ∨ ¬β = 1. For the
sake of readability we omit the subscript i indicating the i-th bit of a vector.

Case 1: i ∈ Jx↔y. The bits in this index are the same for x and y. Hence, we know
x = y and this implies

v ⊕ w = x⊕ y = x⊕ x = 0⇒ v = w.

Furthermore, we can derive x = y = v = w by

x = x ∧ x = x ∧ y = v ∧ w = v ∧ v = v.

Now the necessary conditions resolve to:

p⊕ q = (x⊕ α)⊕ (y ⊕ β) = α⊕ β = (α⊕ β) ∧ 1 ∧ 1
= (α⊕ β) ∧ (x ∨ ¬α) ∧ (y ∨ ¬β) = (α⊕ β) ∧ (x ∨ ¬α) ∧ (x ∨ ¬β)
= (α⊕ β) ∧ (x ∧ (¬α ∨ ¬β)) = (α ∨ β) ∧ (¬α ∨ ¬β) ∧ x ∧ (¬α ∨ ¬β)
= x ∧ (¬α ∨ ¬β) ∧ (α ∨ β) = x ∧ (¬α ∨ ¬β) ∧ (¬x ∨ α ∨ ¬x ∨ β)
= ((x ∧ ¬α) ∨ (x ∧ ¬β)) ∧ (¬(x ∧ ¬α) ∨ ¬(x ∧ ¬β))
= ((v ∧ ¬α) ∨ (w ∧ ¬β)) ∧ (¬(v ∧ ¬α) ∨ ¬(w ∧ ¬β))
= (v′ ∨ w′) ∧ (¬v′ ∨ ¬w′) = v′ ⊕ w′

and
p ∧ q = (x⊕ α) ∧ (y ⊕ β) = (x⊕ α) ∧ (y ⊕ β) ∧ (x ∨ ¬α) ∧ (y ∨ ¬β)

= (x ∨ α) ∧ (¬x ∨ ¬α) ∧ (y ∨ β) ∧ (¬y ∨ ¬β) ∧ (x ∨ ¬α) ∧ (y ∨ ¬β)
= ((x ∨ α) ∧ (x ∨ ¬α)) ∧ (¬x ∨ ¬α) ∧ ((y ∨ β) ∧ (y ∨ ¬β)) ∧ (¬y ∨ ¬β)
= x ∧ (¬x ∨ ¬α) ∧ y ∧ (¬y ∨ ¬β) = x ∧ ¬α ∧ y ∧ ¬β = v ∧ ¬α ∧ w ∧ ¬β

= v′ ∧ w′,

as required.

Case 2: i /∈ Jx↔y. In this index, the bits of x and y differ. Thus x = ¬y ⇔ ¬x = y and
this implies

v ⊕ w = x⊕ y = x⊕ ¬x = 1⇒ v = ¬w.

One condition can be proved by the following

p ∧ q = (x⊕ α) ∧ (y ⊕ β) = (x⊕ α) ∧ (y ⊕ β) ∧ (x ∨ ¬α) ∧ (y ∨ ¬β)
= (x ∨ α) ∧ (¬x ∨ ¬α) ∧ (y ∨ β) ∧ (¬y ∨ ¬β) ∧ (x ∨ ¬α) ∧ (y ∨ ¬β)
= ((x ∨ α) ∧ (x ∨ ¬α)) ∧ (¬x ∨ ¬α) ∧ ((y ∨ β) ∧ (y ∨ ¬β)) ∧ (¬y ∨ ¬β)
= x ∧ (¬x ∨ ¬α) ∧ y ∧ (¬y ∨ ¬β) = x ∧ y ∧ (¬x ∨ ¬α) ∧ (¬y ∨ ¬β) = 0
= 0 ∧ ¬(α ∨ β) = v ∧ w ∧ ¬(α ∨ β) = v ∧ ¬(α ∨ β) ∧ w ∧ ¬(α ∨ β)
= v′ ∧ w′.

For the last part, we need a further argument. The term x⊕ y is equal to 1 since the bits
differ in this case. Then, at least one of {x, y} is 0. Since α ⪯ x and β ⪯ y by definition

Alexander Bille, Elmar Tischhauser 11

at least one of them is also 0. In conclusion, ¬α ∨ ¬β = 1. Hence

p⊕ q = x⊕ α⊕ y ⊕ β = (x⊕ y)⊕ (α⊕ β) = 1⊕ ((α ∨ β) ∧ (¬α ∨ ¬β))
= 1⊕ ((α ∨ β) ∧ 1) = 1⊕ (α ∨ β) = ¬(α ∨ β) = 1 ∧ ¬(α ∨ β)
= v ⊕ w ∧ ¬(α ∨ β) = (v ∧ ¬(α ∨ β))⊕ (w ∧ ¬(α ∨ β)) = v′ ⊕ w′,

which concludes the proof.

5 Algorithm
In this section, we will explain our algorithm for Problem 1. Let S be the set we want to
have the minimal closures of. We separate this problem in |Fn

2 \ S| many subproblems. In
each subproblem, we create S′ := {x ⊕ s | x ∈ S} by shifting S with s ∈ Fn

2 . Then, we
consider the positive hull of S′ and generate all positive minimal closures to this hull with a
branch-and-bound strategy. In the subproblem getting by shifting with s, the resulting sets
correspond to inequalities with the sign s after a “reshifting”. Since superfluous sets can
occur from solutions for different shifts, they are filtered out collectively at the end. The
pseudocode of the main algorithm is given in Algorithm 1. Its subroutines are explained
in the following subsections.

Algorithm 1: Generate Minimal Closures
Input: Set S ⊆ Fn

2 where n is the number of variables.
Output: List of all minimal monotone sets of S.
R← empty list containing the solutions of each for loop result
for s ∈ Fn

2 \ S do
S′ ← ↑{x⊕ s | x ∈ S}
P ← positive pillars of S′

C ← ∅
for p, q ∈ P do C extend by
{{v, w} | {v, w} ∈ findPosConfl(p, q), {v, w} ∩ S′ = ∅}

G← graph constructed by C
B ← ∅
T ← branch(S′, P, G, B)
R[s]← T

end
R← crossFilter(R)
return R

5.1 Branch and Bound Approach
Let S be a non-monotone positive set and let C be a set of conflicting pairs of S. Consider
one conflicting pair c = {c1, c2} of C. Recall that a closure D of S is a monotone set such
that S ⊆ D. The conflicting pair c states the non-monotonicity of S. This means that at
least one element of {c1, c2} has to be in D. With this information we can construct a
basic version of an algorithm to generate closures of S. We branch over some conflicting
pair {c1, c2} and consider in two cases where c1 or c2 is element of a closures, respectively.
The pseudocode of this basic version is given in Algorithm 2. Note that new conflicting
pairs can arise when the set is augmented by new values. Therefore, this basic algorithm
includes a step searching for conflicting pairs. In the advanced versions, such a search
from scratch is avoided.

12 Generating Optimal Inequality Candidates for Modeling Boolean Functions

Algorithm 2: Method branchbasic

Input: Positive set S
Output: All positive minimal closures of S
if S is monotone then return {S}
P ← positive pillars of S
find a strict contradiction ({p1, p2}, {c1, c2}) with p1, p2 ∈ P
S1 ← ↑(S ∪ {c1})
R1 ← branchbasic(S1)
S2 ← ↑(S ∪ {c2})
R2 ← branchbasic(S2)
remove sets from R2 having at least one set of R1 as subset
remove sets from R1 having at least one set of R2 as subset
return R1 ∪R2

5.1.1 Better Branching

We can improve the branching by considering multiple conflicting pairs with one common
element x at the same time. Let C be the set of conflicting pairs of the positive set S.
Now we fix some number x that is part of a conflicting pair and let Cx := {y | {x, y} ∈ C}
be the conflict combinations of x, i.e. the set of the numbers which are combined with x in
a conflicting pair. Again, we can branch into two cases. The first case considers closures
including x and the second case considers closures containing Cx. The idea behind this
improvement is to reduce the number of branching nodes since more elements are included
in the second case. Hence, we try to find a good candidate such that a lot of numbers are
included in the second step. To accomplish this we create an auxiliary graph G = (V, E)
with V as the vertex set and E as the edge set. The vertices V = {v | v ∈ c, c ∈ C} are
the numbers that are part of a conflicting pair and the edge set E = C is equal to the set
of conflicting pairs. This graph will be updated accordingly during the execution of the
algorithm. Whenever a new conflicting pair {a, b} arises, we add a and b to V if necessary
and add {a, b} to E. Whenever we include a value x for a branching step we remove x
from V and the edges including x from E. To obtain a candidate for the branching
we iterate through V and return the vertex v where |{y | {v, y} ∈ E}| is maximal. In
other words, we take the vertex with the most neighbors as our branching candidate. By
implementing the graph structure with adjacency sets, this process can be completed in
average linear time.

5.1.2 Blocking

First, consider the basic approach to this problem. In Algorithm 2, the first case returns
closures including c1 and the second case returns closures including c2. Each time a minimal
closure including both numbers exits this will be found in both cases. To avoid such
behavior we can prohibit to include c1 in the second branch since we found all necessary
closures already in the first branch. Alternatively, we can prohibit to include c2 in the
first branch. Note that both rules cannot be applied at the same time since then some
closures will not be found.

As outlined in Section 5.1.1 we can either prohibit x in the second branch or we can
prohibit the conflict combinations Cx in the first branch. The latter rule means that at
least one element of Cx must be excluded. According to our experiments, the latter rule
significantly improves the runtime in comparison to the first rule. Because of this, we use
the latter rule in Algorithm 6.

For this we maintain a set of conflict combinations B. Before branching into a case we
check whether all numbers of a combination will be included in the set of the branching

Alexander Bille, Elmar Tischhauser 13

case. If this holds for some combination we skip this branch.

Algorithm 3: Method isBlocked
Input: Positive set S, set of conflict combinations B
Output: True if all elements of at least one confict combination are in S
for L ∈ B do if ∀ℓ ∈ L, ℓ ∈ S then return True
return False;

5.1.3 Finding Conflicting Pairs

In this subsection, a procedure for finding conflicting pairs is presented which is independent
of a specific positive set S. This independence is considered because the results are saved
to avoid equal computations. Consider two positive pillars p, q of some positive set. We
want to find the conflicting pairs {v, w} of strict contradictions ({p, q}, {v, w}). This means
that we search for v and w such that p⊕ q = v ⊕w and p ∧ q = v ∧w. Furthermore, none
of {v, w} is allowed to dominate one of {p, q}, since the dominating value is definitely an
element of any positive set with the dominated value as one pillar. We can reduce our
search to only v since w = p⊕ q ⊕ v by Definition 6.

Table 2 shows an example of a possible conflicting pair {v′, w′′} and an impossible
conflicting pair {v′′, w′′} since q ⪯ w′′. This example is chosen such that the three important
sections are clearly visible. The first section Jp↔q consists of the indices where the bits of p
and q are equal. The other two sections Jp∧¬q = {i | pi∧¬qi = 1}, Jp∧¬q = {i | qi∧¬pi = 1}
consist of indices where the bits of p are equal to 1 and q differs, and vice versa. The
latter two sections are important for the generation of the different possibilities for v. We
consider almost all subsets of Jp∧¬q and Jq∧¬p to generate v such that the elements of
these subsets will be one-valued indices of v, i. e. index i with vi = 1.

Let supp(x) := {i | xi = 1} be the set of one-valued indices of a vector x ∈ Fn
2 and

let 1(X) = x with xi = 1 if and only if i ∈ X denote the function returning the vector
with one-valued indices of a given set X.

Now, consider the section Jp∧¬q. If ∀i ∈ Jp∧¬q : vi = 1 then v would dominate p. This
means that v would be an element of any positive set with p as a pillar. In the opposite
case, if ∀i ∈ Jp∧¬q : vi = 0 then w would dominate p. This behavior is analogous for Jq∧¬p

and q. Hence, we can skip these cases in the generation algorithm. Thus the sets Jp∧¬q

and Jq∧¬p must each have at least a size of 2. Since v and w can be switched with each
other and we do not want redundant solutions such as {v, w} and {w, v}, we can fix one
bit to 0 in v by removing an arbitrary element in the subset of Jq∧¬p. All in all, this
procedure is illustrated in Algorithm 4.

5.1.4 Branching Preparation

For the above adjustments and features we update the necessary data structures. This
process is done in Algorithm 5. As the input, we have the set of vectors V that should be
element of the closures in the coming branching step, the current positive set, its pillars
and the graph constructed by the conflicting pairs. First, we remove all nodes and edges
containing any vector in V . Then we remove dominating elements from V since the cannot
be pillars and are not relevant in the next steps. The set S will be its transitive hull
after the augmentation by V . Since the elements of V are new pillars regarding S, we
remove elements of P when one vector dominates one of V . Afterwards we search with
Algorithm 4 for new conflicting pairs and update the graph G accordingly. All featured
ideas are included in Algorithm 6. Recall that a set S is monotone if no strict contradiction
exists, and with it no conflicting pair. This means that a set is monotone if the graph has
no edges left.

14 Generating Optimal Inequality Candidates for Modeling Boolean Functions

Table 2: Example of a possible conflicting pair {v′, w′} induced by {p, q} and an impossible
conflicting pair {v′′, w′′} induced by {p, q} since q ⪯ w′′.

Jp↔q Jp∧¬q Jq∧¬p

Index 13 12 11 10 9 8 7 6 5 4 3 2 1 0
p 1 1 1 0 0 0 0 1 1 1 1 0 0 0
q 1 1 1 0 0 0 0 0 0 0 0 1 1 1

m = p⊕ q 0 0 0 0 0 0 0 1 1 1 1 1 1 1
b = p ∧ q 1 1 1 0 0 0 0 0 0 0 0 0 0 0

v′ 1 1 1 0 0 0 0 0 1 1 0 0 1 0
w′ = v′ ⊕m 1 1 1 0 0 0 0 1 0 0 1 1 0 1

v′′ 1 1 1 0 0 0 0 1 0 0 1 0 0 0
w′′ = v′′ ⊕m 1 1 1 0 0 0 0 0 1 1 0 1 1 1

Algorithm 4: Method findPosConfl
Input: Two vectors p, q ∈ Fn

2
Output: Set of all conflicitng pairs can be induced by {p, q} in a positive set
m← p⊕ q
if |p ∧m| < 2 or |q ∧m| < 2 then return ∅
R← ∅
Jp∧¬q ← supp(p ∧m)
Jq∧¬p ← supp(q ∧m)
remove one arbitrary element of Jq∧¬p

foreach O ⊆ Jp∧¬q, Z ⊆ Jq∧¬p do
if |O| = 0 or |O| = |Jp∧¬q| or |Z| = 0 then continue
v ← m + 1(O) + 1(Z)
w ← v ⊕m
R← R ∪ {{v, w}}

end
return R

Algorithm 5: Method prepareBranch
Input: Set V ⊆ Fn

2 , positive set S ⊆ Fn
2 , set of pillars P of S, graph G

Output: Positive set, its positive pillars and its corresponding conflict graph after
S is augmented by V

remove edges from G including one element of V
V ← PosPil(V)
S ← ↑(S ∪ V)
remove values of P if dominating one element of V
C ← ∅
for v ∈ V do

for p ∈ P do extend C by
{{v, w} | {v, w} ∈ findPosConfl(v,p), {v, w} ∩ S = ∅}

P ← P ∪ {v}
end
for {v, w} ∈ C do if v, w /∈ S then add edge {v, w} to G
return S, P, G

Alexander Bille, Elmar Tischhauser 15

Algorithm 6: Method branch
Input: Positive set S, pillars P of S, graph G, set of conflict combinations B
Output: All positive minimal closures of S and its pillars considering no conflict

combination is a subset of the resulting closures
find u maximizing |G[u]|
if |G[u]| = 0 then return (S, P)
R← ∅
S1, P1, G1 ← prepareBranch([u], S, G, P)
B1 ← B appended by G[u]
if not isBlocked(S1, B1) then R1 ← branch(S1, P1, G1, B1)
S2, P2, G2 ← prepareBranch(G[u], S, G, P)
R2 ← branch(S2, P2, G2, B)
R← R1
for (S, P) ∈ R2 do

if ∀(S′, P ′) ∈ R1, S ̸⊇ S′ then append (S, P) to R
end
return R

5.1.5 Cross-Filtering

In each subproblem we generate monotone and positive sets. Afterwards, they have to
be transformed into inequalities and these inequalities have to be “reshifted”. When an
inequality is shifted then – depending on the shift s – some signs of the coefficients are
swapped and the constant b is adjusted. Since −ai = ai is possible for ai = 0, redundant
or superfluous sets may be generated. Hence, we have to filter these. The first step is
to identify whether an inequality of a monotone set S may have zero coefficients. Let
(a0, . . . , an−1, b) be an inequality corresponding to S. The coefficient ai = 0 if and only if
for all x ∈ Fn

2 satisfying I also x⊕ 1({i}) satisfies I. When a positive pillar p of S has is
one-valued at index i then this property is violated. Thus, each positive pillars must be
zero-valued at index i when an inequality corresponding to S may ai = 0. Let U be the
indices where an inequality has zero-values in. The solution (S, P) has to be compared
to the solutions with shift s′ ∈ {s ⊕ 1(U ′) | U ′ ⊆ U}, that is the current shift s where
each possible combination of indices of U are flipped. This allows us to verify whether our
current solution (S, P) is a superset of one of the solutions of shift s′, in which case our
current solution is redundant and can be discarded.

Algorithm 7: Method crossFilter
Input: List indexed by shifts of positive sets and their pillars R
Output: Cross filtered R
for s ∈ Fn

2 \ S do
for (S, P) ∈ R[s] do

U ← {i | ∀p ∈ P, pi = 0}
for ∅ ≠ U ′ ⊆ U do

for (S′, P ′) ∈ R[s⊕ 1(U ′)] do if S′ ⊆ S then mark (S, P)
end

end
remove all marked solutions in R[s]

end
return R

16 Generating Optimal Inequality Candidates for Modeling Boolean Functions

5.2 Time Complexity
We estimate the worst-case complexity of Algorithm 1. We consider that the filtering
is done after all solutions for a subproblem are obtained. First, we upper bound the
operations for Algorithm 1. Second, we consider the number of comparisons for the
filtering and the cross filtering process.

For an input set S, we have |S| many subproblems. The branching steps for a
subproblem can be estimated by the number of vertices of the corresponding auxiliary
graph G. Note that after one value is picked and inserted into the set, this value cannot
be a vertex in the graphs of its subbranches. Hence, we can upper bound the number
of vertices to |S| and neglect the effect that vertices may be be added in subbranches
(due to newly arising conflict pairs). In the worst case, only one vertex is deleted in each
subbranch, so that we have two branching cases removing exactly one vertex from the
graph. This yields the branching vector (1, 1) resulting in at most 2|S| branching nodes.

We make two brief notes about the set representation and the number of positive
pillars before computing the time complexity for Algorithm 6. A set of Fn

2 consisting of
up to 2n elements is represented by a bitset using at most 2n−6 64-bit integers, which in
combination with the storage of the positive hulls of {α} with | supp(α)| = 1 accelerates
the set operations. Testing element membership in a bitset takes O(1). The generation of
the positive hull of any number v takes | supp(v)| or-operations on the bitset.

The maximal number of pillars of a positive set S ∈ Fn
2 is dominated by |S| ∈ O(2n)

itself. In detail, if n is even then the maximal number of pillars is exactly all values with
n
2 many zero-valued indices and n

2 many one-valued indices due to the fact that
(

n
k

)
is

maximal if k = n
2 . In our experiments, the number of pillars is far below

(
n
n
2

)
.

In a branching call of Algorithm 6, the search for vertex u can be done in linear time
regarding G or even in constant time if we store the vertex with the most neighbors
in a variable which gets updated during the changes on G. Thus, the time complexity
of Algorithm 5 which is shown to be in O(22n−1) dominates this process.

We upper bound the complexity of Algorithm 4 to obtain the time complexity for Al-
gorithm 5. Up to the for loop we can compute everything in O(n) time. The for loop
iterates over O(2n−1) different sets for O and Z. Using the Gray code for the generation
of 1(O) and 1(Z) the operations in the for loop can be done in constant time. This yields
a time complexity of O(n + 2n−1) ∈ O(2n−1).

Now, we calculate the time complexity of Algorithm 5. In the worst case, we have
|V | = 1 maximizing the overall branching nodes. Thus, the update of G can be done in
constant time. We get the positive hull for V = {v} in | supp(v)| · 2n−6 ∈ O(n2n−6) time
when we use the stored auxiliary sets. The augmentation of S can be done in O(2n−6) time.
The adjustment of P can be done in linear time considering |P |. Now, we call Algorithm 4
|P | many times. Hence, we have a time complexity of O(1 + n2n−6 + 2n−6 + |P | · 2n−1) ∈
O(|S| · 2n−1) ∈ O(22n−1).

All in all, we have at most |S| subproblems for which there are at most 2|S| branching
steps each (and with it also solutions). The runtime for one branching step is dominated
by O(22n−1). This yields a total runtime of O(2n · 22n · 22n−1) = O(25n−1). Note that on
average, our branching significantly improves upon this upper bound, e.g. for n = 16, to
around 246 operations instead of 279.

For one subproblem, the filtering can be done after all solutions are found for a shift
with at most 2|S| ∈ O(22n) elements. Due to the blocking, the solutions of the second
branch case can only be redundant. When both solution parts are of equal length the
number of comparison maximizes. Hence, we have to compare O((22n−1)2) = O(24n−2)
many pairs. The comparisons for the recursive sub-parts can be neglected. Considering all
subproblems at most O(2n · 24n−2) ∈ O(25n−2) comparisons are necessary.

In the following, we upper bound the number of comparisons needed for the cross

Alexander Bille, Elmar Tischhauser 17

filtering. We show that at most O(24n) comparisons are needed, however note that in
practice, Algorithm 7 takes only a small part of the runtime. Recall that there are at most
23n branching nodes and therefore at most 23n many output sets. To delete duplicates, we
first sort these with O(3n23n) comparisons and then iterate through the sorted elements,
removing adjacent duplicates. With no duplicates there are at most 22n elements since they
have to be all subsets of Fn

2 with |Fn
2 | = 2n. To decide whether a set is redundant, it can

be compared with all other solutions. This naive approach results in O((22n)2) ∈ O(24n)
comparisons.

6 Experimental Results
6.1 Setting
In this section, we present experimental results of Algorithm 1. They were obtained on a
machine with a Core i7-10700 (2.90 GHz) CPU and 16GB RAM running Debian 11. The
algorithm was implemented in C++. Each instance had a time limit of 3 hours and was
computed on a single core. The results are summarized in Tables 3 and 4.

We used a collection of S-boxes λ : Fm
2 → Fm

2 of various symmetric cryptographic
algorithms from the literature. For each S-box, the two Boolean functions corresponding
to its difference distribution table (DDT) and linear approximation table (LAT) were
modeled by linear inequalities. These two are used in differential and linear cryptanalysis
(respectively) and defined as follows. An entry of the DDT of λ is defined as DDT[α][β] :=
#{x | λ(x)⊕ λ(S ⊕ α) = β}. An entry of the LAT of λ is defined by

LAT[α][β] := #{x |
n−1⊕
i=0

xi ∧ αi =
n−1⊕
i=0

λ(x)i ∧ βi} − 2n−1.

The input for Algorithm 1 for a DDT is defined by its non-zero positions, i.e. {2m · x + y |
DDT[x][y] ̸= 0} ⊆ F2m

2 . The sets extracted from an LAT are defined analogously.

6.2 Results and Discussion
In this section, we discuss the runtime of Algorithm 1. The minimal closures of all 4-bit
and some 5-bit and 6-bit S-boxes can be obtained in milliseconds. In these cases where
the number of minimal closures is small, Problem 2 can be solved with an ILP for this
instances in milliseconds. This allows to search efficiently for S-boxes whose DDT/LAT is
hard or easy to represent with linear inequalities.

Except for the instances for the Wage S-box, the sets corresponding for S-boxes up to
7 bits can be computed in seconds. Generating the minimal closures of 8-bit S-boxes can
be done mostly in a couple of minutes when the instance is feasible. For example, we can
compute all minimal closures of the AES-DDT within 80 seconds. The feasible instance
taking the highest time to compute is the instance corresponding to the DDT of the Bel-T
cipher which takes roughly 28 minutes. As a rule of thumb one can say that a set S ⊆ F16

2

for a 16-bit S-box is feasible when the ratio |S|
|Fn

2 | does not exceed 60%.
Regarding these results, we observe a dependency between the runtime, the number of

minimal closures and the ratio of zero entries |S|
|Fn

2 | of the corresponding Boolean function.
Sparse sets seem to have a higher number of minimal closures. We remark that the number
of subproblems for a set S is |Fn

2 \S| since the subproblem becomes trivial if 0 is an element
of the shifted set S′. In this case, ↑S′ = Fn

2 . This is one reason why Algorithm 1 has more
to branch over and as a consequence a bigger runtime.

In general, an LAT tends to have fewer zero entries than a DDT due to the following
properties of random S-boxes. The probability of a zero entry in a DDT is approximately

18 Generating Optimal Inequality Candidates for Modeling Boolean Functions

Table 3: Experimental results of Algorithm 1 for 4-bit S-boxes. The time is denoted in
milliseconds.

Bits S-box
DDT LAT

|S|
|Fn

2 |
min.
closures

time
[ms]

|S|
|Fn

2 |
min.
closures

time
[ms]

4

Blake S1-9 59-64% 316-688 <7.03 42-46% 101-257 <1.98
Elephant 62% 631 5.179 48% 496 3.476
Enocoro S4 60% 372 3.714 43% 96 1.193
Gift 61% 723 5.609 48% 819 5.252
Klein 59% 370 3.054 41% 106 1.299
Knot 62% 1033 7.681 48% 692 5.261
Lblock S0-9 62% 737 <8.02 48% 411 <4.65
Luffa 62% 411 4.263 48% 154 1.555
Luffa V1 62% 585 6.046 48% 212 2.851
Midori S0 62% 437 5.713 48% 94 2.041
Midori S1 59% 333 4.26 41% 84 1.378
Minalpher 59% 322 3.276 41% 102 1.246
Noekeon 62% 722 7.307 48% 464 4.183
Panda 59% 333 3.237 41% 100 1.054
Piccolo 62% 704 6.753 48% 459 4.67
Present 62% 464 3.686 48% 294 2.209
Pride 62% 694 6.963 48% 352 4.556
Prince 59% 330 3.74 41% 89 1.297
Pyjamask 4 62% 642 6.519 48% 472 4.351
Qarma Sigma0 60% 391 5.457 43% 112 1.801
Qarma Sigma1 59% 360 5.582 41% 215 1.645
Qarma Sigma2 59% 347 3.347 41% 107 1.178
Rectangle 62% 1033 8.041 48% 692 5.445
SC2000 4 60% 480 4.035 43% 138 1.434
Serpent S0,1,6 62% 464 <3.9 48% 294 <2.52
Serpent S2 62% 440 4.178 48% 275 2.315
Serpent S3,7 60% 381 <2.99 43% 135 <1.43
Serpent S4,5 60% 466 <3.62 43% 247 <2.1
Skinny 4 62% 704 6.932 48% 459 4.82
Twine 59% 373 3.217 41% 150 1.534

Alexander Bille, Elmar Tischhauser 19

Table 4: Experimental results of Algorithm 1 for m-bit S-boxes for m ≥ 5. A dash
indicates the minimal closures could not computed within the time limit. The time is
denoted in seconds.

Bits S-box
DDT LAT

|S|
|Fn

2 |
min.
closures

time
[s]

|S|
|Fn

2 |
min.
closures

time
[s]

5

Ascon 69% 52997 2.005 63% 48897 2.044
Drygascon128 69% 52997 1.916 63% 48897 2.033
Fides 5 51% 2306 0.0373 51% 2383 0.0396
Isap 69% 52997 1.969 - 63% 48897 2.051
Keccak 69% 111701 8.643 63% 112631 7.168
SC2000 5 51% 1867 0.029 51% 1873 0.0329
Shamash 51% 5002 0.0509 51% 4882 0.0485
Sycon 69% 52997 2.004 63% 48897 2.009

6
APN 6 51% 53831 3.085 26% 85071 4.693
Fides 6 51% 14914 0.434 26% 13701 0.4009
SC2000 6 52% 14998 0.4032 22% 720 0.0275

7 Misty7 50% 77596 3.552 50% 84939 3.739
Wage 60% 457213 57.76 20% 152894 43.56

8

AES 51% 621746 80.31 7% 2926 1.011
Anubis 60% 4318782 1468 11% 4612 1.54
Belt 57% 2095921 1703 10% 4028 1.364
Camellia 51% 645405 97.45 7% 2932 1.022
Clefia S0 61% - 10800 22% 120732 443.9
Clefia S1 51% 684922 137.8 7% 2944 1.041
Fox 65% - 10800 29% 86455 9.727
Skinny 8 82% - 10800 62% - 10800
SMS4 51% 641112 109.1 7% 2909 1.014
Snow 3G 61% 4121928 693.1 39% 133981 14.43
Twofish P0 61% - 10800 22% 20063 4.529
Twofish P1 61% - 10800 22% 20556 4.477
Whirlpool 61% - 10800 11% 13378 7.5
Zuc S0 63% - 10800 41% - 10800
Zuc S1 51% 628553 83.09 7% 2977 1.021

20 Generating Optimal Inequality Candidates for Modeling Boolean Functions

e−1/2 ≈ 0.6 [DR07] and the probability of a zero entry in a LAT of an m-bit S-box is
approximately 1√

2π
2 4−m

2 [BR14] for m ≥ 5 which is about 0.28, 0.2, 0.14, 0.1 for m = 5, 6, 7, 8
respectively. This explains why our algorithm could solve more sets corresponding to LATs
than DDTs of larger S-boxes.

Comparison to related work. The paper of Udovenko [Udo21] does not provide
runtime measurements. His method also considers shifted subproblems, from which he
uses monotone set leaning techniques with SAT to obtain the minimal closures. Running
his code for the same instances reveals that our approach generates the minimal closures
significantly faster.

Averkov et al. [AHS23b] introduced several MIP approaches for the more general
relaxation complexity problem of convex subsets of Zn which is the minimal number to
describe this subset with inequalities. In contrast to their work, we focus on and optimized
our algorithm for sets over Fn

2 . They tested their approaches on several datasets, with one
dataset consisting of 18 DDTs from 12 4-bit S-boxes and 6 5-bit S-boxes. Their time limit
was set to 4 hours per instance. Only one of their techniques could solve all their 12 4-bit
instances with a total runtime of 443.4 seconds. From the 5-bit instances only a maximum
of two could be solved with 4627.5 seconds as average time. Our algorithm, on the other
hand, requires only some milliseconds or seconds to solve these instances. Additionally,
our algorithm comes with an optimality guarantee since it does not rely on heuristics.
Therefore, we deduce that specialized algorithms for sets over Fn

2 such as ours or other
approaches [Udo21] are far more suitable for Boolean instances arising from cryptographic
applications.

Feng et al. [FTW+22] present an algorithmic approach that bears some similarities to
ours. Their method is likewise characterized by the division of the problem into shifted
subproblems. After some simplification rules (degeneration cases) and additional branching
over an ordering condition, they searched for all k-general contradictions with positive
pillars of S and negative pillars S as elements with k up to 4. These contradictions were
used to generate minimal closures by finding the all possibilities where exactly one yi of a
contradiction ({x0, . . . , xk−1}, {y0, . . . , yk−1}) is element of the resulting closure.

They present the number of minimal closures and the runtimes for 40 sets deduced from
the DDT of m-bit S-boxes with 4 ≤ m ≤ 8 (22 4-bit, 7 5-bit, 3 6-bit, 3 7-bit and 5 8-bit).
Their numbers of minimal closures differ from our results, especially for the S-boxes for
5 bits and above. Since the code of Feng et al. is not public yet, we compared our results
with the ones from Udovenko (for instances where his technique is computationally feasible)
by using his code, observing that the number of minimal closures is consistently the same
to ours and different from the results of [FTW+22]. For example, [FTW+22] reports the
number of minimal closures for the Ascon-DDT as 46765 and for Drygascon128 as 46754,
however Drygascon128 uses the same S-box as Ascon, meaning that the number of minimal
closures must be identical. This illustrates that the technique from [FTW+22] is heuristic
in nature and, while being a very useful non-deterministic approximation tool, is not
capable of fully solving Problem 1, since it does not compute all minimal closures for
Problem 1. As a possible explanation for this, it appears that Feng et al. search only once
for contradictions, whereas we search for strict contradictions in each branching step.

Finally, note that our exact algorithm which generates optimal solutions also signifi-
cantly outperforms the heuristic from [FTW+22] in terms of runtime, especially considering
that their timings are reported for parallel execution on 28 cores, whereas our timings are
single-core.

Acknowledgements. We would like to thank the anonymous reviewers for their com-
ments which improved the paper.

Alexander Bille, Elmar Tischhauser 21

References
[AHS23a] Gennadiy Averkov, Christopher Hojny, and Matthias Schymura. Computa-

tional aspects of relaxation complexity: possibilities and limitations. Math.
Program., 197(2):1173–1200, 2023. doi:10.1007/S10107-021-01754-8.

[AHS23b] Gennadiy Averkov, Christopher Hojny, and Matthias Schymura. Efficient
MIP techniques for computing the relaxation complexity. Math. Program.
Comput., 15(3):549–580, 2023. doi:10.1007/S12532-023-00241-9.

[AST+17] Ahmed Abdelkhalek, Yu Sasaki, Yosuke Todo, Mohamed Tolba, and Amr M.
Youssef. MILP modeling for (large) s-boxes to optimize probability of dif-
ferential characteristics. IACR Trans. Symmetric Cryptol., 2017(4):99–129,
2017. doi:10.13154/TOSC.V2017.I4.99-129.

[BC20] Christina Boura and Daniel Coggia. Efficient MILP modelings for sboxes and
linear layers of SPN ciphers. IACR Trans. Symmetric Cryptol., 2020(3):327–
361, 2020. doi:10.13154/TOSC.V2020.I3.327-361.

[BFSW22] Thomas Bläsius, Tobias Friedrich, David Stangl, and Christopher Weyand.
An efficient branch-and-bound solver for hitting set. In Cynthia A. Phillips
and Bettina Speckmann, editors, Proceedings of the Symposium on Algorithm
Engineering and Experiments, ALENEX 2022, Alexandria, VA, USA, January
9-10, 2022, pages 209–220. SIAM, 2022. doi:10.1137/1.9781611977042.17.

[BHMS84] Robert K. Brayton, Gary D. Hachtel, Curtis T. McMullen, and Alberto L.
Sangiovanni-Vincentelli. Logic Minimization Algorithms for VLSI Synthesis,
volume 2 of The Kluwer International Series in Engineering and Computer
Science. Springer, 1984. doi:10.1007/978-1-4613-2821-6.

[BHW74] Gordon H. Bradley, Peter L. Hammer, and Laurence A. Wolsey. Coefficient
reduction for inequalities in 0-1 variables. Math. Program., 7(1):263–282, 1974.
doi:10.1007/BF01585527.

[BR14] Andrey Bogdanov and Vincent Rijmen. Linear hulls with correlation zero and
linear cryptanalysis of block ciphers. Des. Codes Cryptogr., 70(3):369–383,
2014. doi:10.1007/S10623-012-9697-Z.

[DL22] Patrick Derbez and Baptiste Lambin. Fast MILP models for division property.
IACR Trans. Symmetric Cryptol., 2022(2):289–321, 2022. doi:10.46586/T
OSC.V2022.I2.289-321.

[DR07] Joan Daemen and Vincent Rijmen. Probability distributions of correlation
and differentials in block ciphers. J. Math. Cryptol., 1(3):221–242, 2007.
doi:10.1515/JMC.2007.011.

[FTW+22] Xiutao Feng, Yu Tian, Yongxing Wang, Shengyuan Xu, and Anpeng Zhang.
Full linear integer inequality characterization of sets over Z2n . chinaXiv
Preprint Archive, 202210.00055v2, 2022. URL: https://math.chinaxiv.or
g/pdf/202210.00055V2.

[FWG+16] Kai Fu, Meiqin Wang, Yinghua Guo, Siwei Sun, and Lei Hu. MILP-based
automatic search algorithms for differential and linear trails for speck. In
Thomas Peyrin, editor, Fast Software Encryption - 23rd International Con-
ference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected
Papers, volume 9783 of Lecture Notes in Computer Science, pages 268–288.
Springer, 2016. doi:10.1007/978-3-662-52993-5_14.

https://doi.org/10.1007/S10107-021-01754-8
https://doi.org/10.1007/S12532-023-00241-9
https://doi.org/10.13154/TOSC.V2017.I4.99-129
https://doi.org/10.13154/TOSC.V2020.I3.327-361
https://doi.org/10.1137/1.9781611977042.17
https://doi.org/10.1007/978-1-4613-2821-6
https://doi.org/10.1007/BF01585527
https://doi.org/10.1007/S10623-012-9697-Z
https://doi.org/10.46586/TOSC.V2022.I2.289-321
https://doi.org/10.46586/TOSC.V2022.I2.289-321
https://doi.org/10.1515/JMC.2007.011
https://math.chinaxiv.org/pdf/202210.00055V2
https://math.chinaxiv.org/pdf/202210.00055V2
https://doi.org/10.1007/978-3-662-52993-5_14

22 Generating Optimal Inequality Candidates for Modeling Boolean Functions

[HLM+20] Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang.
Modeling for three-subset division property without unknown subset - im-
proved cube attacks against Trivium and Grain-128AEAD. In Anne Canteaut
and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT 2020 -
39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings,
Part I, volume 12105 of Lecture Notes in Computer Science, pages 466–495.
Springer, 2020. doi:10.1007/978-3-030-45721-1_17.

[KV18] B. Korte and Jens Vygen. Combinatorial Optimization: Theory and Algo-
rithms. Springer-Verlag, New York, NY, 2018. doi:10.1007/978-3-662-5
6039-6.

[LDW07] Guanghui Lan, Gail W. DePuy, and Gary E. Whitehouse. An effective and
simple heuristic for the set covering problem. Eur. J. Oper. Res., 176(3):1387–
1403, 2007. doi:10.1016/J.EJOR.2005.09.028.

[LS22] Ting Li and Yao Sun. Superball: A new approach for MILP modelings of
boolean functions. IACR Trans. Symmetric Cryptol., 2022(3):341–367, 2022.
doi:10.46586/TOSC.V2022.I3.341-367.

[McC56] Edward J McCluskey. Minimization of boolean functions. The Bell System
Technical Journal, 35(6):1417–1444, 1956. doi:10.1002/j.1538-7305.1956
.tb03835.x.

[MWGP11] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and
linear cryptanalysis using mixed-integer linear programming. In Chuankun Wu,
Moti Yung, and Dongdai Lin, editors, Information Security and Cryptology -
7th International Conference, Inscrypt 2011, Beijing, China, November 30 -
December 3, 2011. Revised Selected Papers, volume 7537 of Lecture Notes in
Computer Science, pages 57–76. Springer, 2011. doi:10.1007/978-3-642-3
4704-7_5.

[Qui52] Willard V Quine. The problem of simplifying truth functions. The American
mathematical monthly, 59(8):521–531, 1952. doi:10.2307/2308219.

[Qui55] Willard V Quine. A way to simplify truth functions. The American mathe-
matical monthly, 62(9):627–631, 1955. doi:10.2307/2307285.

[SC10] Lei Shi and Xuan Cai. An exact fast algorithm for minimum hitting set. In
2010 Third International Joint Conference on Computational Science and
Optimization, volume 1, pages 64–67. IEEE, 2010. doi:10.1109/cso.2010
.240.

[SHW+14a] Siwei Sun, Lei Hu, Meiqin Wang, Peng Wang, Kexin Qiao, Xiaoshuang Ma,
Danping Shi, Ling Song, and Kai Fu. Towards finding the best characteristics
of some bit-oriented block ciphers and automatic enumeration of (related-key)
differential and linear characteristics with predefined properties. Cryptology
ePrint Archive, Paper 2014/747, 2014. URL: https://eprint.iacr.org/20
14/747.

[SHW+14b] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song.
Automatic security evaluation and (related-key) differential characteristic
search: Application to SIMON, PRESENT, LBlock, DES(L) and other bit-
oriented block ciphers. In Palash Sarkar and Tetsu Iwata, editors, Advances
in Cryptology - ASIACRYPT 2014 - 20th International Conference on the

https://doi.org/10.1007/978-3-030-45721-1_17
https://doi.org/10.1007/978-3-662-56039-6
https://doi.org/10.1007/978-3-662-56039-6
https://doi.org/10.1016/J.EJOR.2005.09.028
https://doi.org/10.46586/TOSC.V2022.I3.341-367
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.2307/2308219
https://doi.org/10.2307/2307285
https://doi.org/10.1109/cso.2010.240
https://doi.org/10.1109/cso.2010.240
https://eprint.iacr.org/2014/747
https://eprint.iacr.org/2014/747

Alexander Bille, Elmar Tischhauser 23

Theory and Application of Cryptology and Information Security, Kaoshiung,
Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, volume 8873 of
Lecture Notes in Computer Science, pages 158–178. Springer, 2014. doi:
10.1007/978-3-662-45611-8_9.

[ST17] Yu Sasaki and Yosuke Todo. New algorithm for modeling s-box in MILP
based differential and division trail search. In Pooya Farshim and Emil
Simion, editors, Innovative Security Solutions for Information Technology and
Communications - 10th International Conference, SecITC 2017, Bucharest,
Romania, June 8-9, 2017, Revised Selected Papers, volume 10543 of Lecture
Notes in Computer Science, pages 150–165. Springer, 2017. doi:10.1007/97
8-3-319-69284-5_11.

[Udo21] Aleksei Udovenko. MILP modeling of boolean functions by minimum number
of inequalities. IACR Cryptol. ePrint Arch., page 1099, 2021. URL: https:
//eprint.iacr.org/2021/1099.

[WHG+19] Senpeng Wang, Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi. MILP-aided
method of searching division property using three subsets and applications.
In Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryptology
- ASIACRYPT 2019 - 25th International Conference on the Theory and
Application of Cryptology and Information Security, Kobe, Japan, December
8-12, 2019, Proceedings, Part III, volume 11923 of Lecture Notes in Computer
Science, pages 398–427. Springer, 2019. doi:10.1007/978-3-030-34618-8
_14.

[Wil77] JM Wilson. A method for reducing coefficients in zero-one linear inequalities.
International Journal of Mathematical Educational in Science and Technology,
8(1):31–35, 1977. doi:10.1080/0020739770080104.

[XFW23] Shengyuan Xu, Xiutao Feng, and Yongxing Wang. On two factors affecting
the efficiency of MILP models in automated cryptanalyses. IACR Cryptol.
ePrint Arch., page 196, 2023. URL: https://eprint.iacr.org/2023/196.

[XZBL16] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying
MILP method to searching integral distinguishers based on division property
for 6 lightweight block ciphers. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd International
Conference on the Theory and Application of Cryptology and Information
Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I, volume
10031 of Lecture Notes in Computer Science, pages 648–678, 2016. doi:
10.1007/978-3-662-53887-6_24.

[ZZDX19] Chunning Zhou, Wentao Zhang, Tianyou Ding, and Zejun Xiang. Improv-
ing the MILP-based security evaluation algorithm against differential/linear
cryptanalysis using A divide-and-conquer approach. IACR Trans. Symmetric
Cryptol., 2019(4):438–469, 2019. doi:10.13154/TOSC.V2019.I4.438-469.

A Source Code: Usage and Output Format
The output format of Algorithm 1 of our source code consists of two files. Each line of the
first file represent a minimal closure. A line consists of an id, the shift s the closure was
created, its positive pillars and the negative pillars of its complement, separated with ;.
This file can be used to generate an inequality from a minimal closure. A typical technique
is to use the MILP formulation with the inequalities (2) as constraints. It is also possible

https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/978-3-319-69284-5_11
https://doi.org/10.1007/978-3-319-69284-5_11
https://eprint.iacr.org/2021/1099
https://eprint.iacr.org/2021/1099
https://doi.org/10.1007/978-3-030-34618-8_14
https://doi.org/10.1007/978-3-030-34618-8_14
https://doi.org/10.1080/0020739770080104
https://eprint.iacr.org/2023/196
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.13154/TOSC.V2019.I4.438-469

24 Generating Optimal Inequality Candidates for Modeling Boolean Functions

to use the techniques of the Superball approach [LS22]. Afterwards the inequality has to
be reshifted with s. The second file states which minimal closure indexed by the id is not
satisfied by which elements. This file is intended to be used as input to Problem 2.

Additionally, the possibility exists to define elements of S as “don’t care points” where
it is of no interest whether these elements satisfy inequalities or not. In other words, the
Boolean function is not defined on these values. If don’t care points are given, the second
file is adjusted accordingly by our code.

	Introduction
	Previous work
	Contributions

	Preliminaries
	Notation
	Boolean Functions and their Set Representation

	Inequalities for Boolean Functions
	Shifting Inequalities and Sets
	Positive Inequalities

	Monotonicity in Positive Sets
	Algorithm
	Branch and Bound Approach
	Time Complexity

	Experimental Results
	Setting
	Results and Discussion

	References
	Source Code: Usage and Output Format

