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An analysis of the Crossbred Algorithm for the
MQ Problem
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Abstract. The Crossbred algorithm is currently the state-of-the-art method for
solving overdetermined multivariate polynomial systems over F2. Since its publication
in 2017, several record breaking implementations have been proposed and demonstrate
the power of this hybrid approach. Despite these practical results, the complexity
of this algorithm and the choice of optimal parameters for it are difficult open
questions. In this paper, we prove a bivariate generating series for potentially
admissible parameters of the Crossbred algorithm.
Keywords: Gröbner basis · polynomial system · MQ problem · exhaustive search
· Crossbred

1 Introduction
Solving a given polynomial system of m polynomials and n variables over a finite field Fp

is proved to be NP-complete [FY79]. In this paper, we focus on the Multivariate Quadratic
Problem (MQ), which means that we consider polynomials of degree 2.

The interest of cryptographers for the MQ problem can be traced back as early as
1988 with a public key encryption scheme due to Matsumoto and Imai [MI88]. Although
this scheme was broken by Patarin [Pat95] in 1995, it lead the way to several other to be
developed. Recently, with the growing interest for post-quantum cryptography, MQ-based
cryptography has seen the emergence of many new schemes including UOV [KPG99]
and its variants [CFF+23a, WTKC22, BP17, DS05], as well as schemes derived from
zero-knowledge proofs using the Fiat-Shamir transform (e.g., [CHR+19]). It may be worth
mentioning that four out of the nine signature schemes present in the second round of the
NIST competition for post-quantum cryptography were multivariate ones [BP17, DS05,
CFMR+17, CHR+19]. Note that all of these schemes were later broken for the parameters
given in the specifications [MIS20, Beu22, TPD21, KZ20]. However, it does not mean that
multivariate cryptography is dead yet. In the recent call for additional signatures, ten new
Multivariate schemes were proposed including [JBH+23, CFF+23b, FHI+23]. Moreover,
some of the MPC-in-the-head schemes submitted to this call are also based on the MQ
problem [BPKV24, BFR24].

Not all multivariate quadratic systems are hard to solve since the behaviour of algorithms
allowing to solve them depends on the relative values of m and n. If m ≥ n(n − 1)/2
or if n ≥ m(m + 1), it is possible to solve a polynomial systems with these parameters
in polynomial time [TW12]. Most often in cryptography, we are confronted to solving
polynomial systems for which n2 > m ≥ n. Commonly used methods to solve these
systems are algorithms for computing Gröbner basis: Buchberger’s algorithm [Buc65] or
linear algebra-based algorithms (F4 [Fau99], F5 [Fau02], XL [CKPS00]). In the case of
small finite fields (for example F2, F3 or F5), exhaustive search becomes a viable way to
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solve a polynomial system (FES [BCC+10]). It is also used to assign certain variables
before running the linear algebra-based algorithm for solving the system (FXL [CKPS00],
BooleanSolve [BFSS13], Crossbred [JV17]). In particular, we are interested in the case
where the polynomial system is defined over F2.

The complexity analysis of the Crossbred algorithm is not clear, but the authors of
the algorithm claim it to be similar to that of FXL [CKPS00] or BooleanSolve [BFSS13],
without giving a proof. However, Joux and Vitse’s original implementation as well as
more recent open-source implementations [NNY18, NNY17, BS23] were used to break
records several times on overdetermined systems coming from the Fukuoka Type I MQ
challenge [Yas15]. For a polynomial system F , the running time of the algorithm heavily
depends on three input parameters: D, d and k. In a pre-processing step based on linear
algebra on the degree D Macaulay matrix, the algorithm constructs r polynomials of total
degree D and of degree d in the first k variables. After that, the last n− k variables are
assigned in F and the degree d Macaulay matrix is computed for the system obtained in
this way. After specialization, the new polynomials obtained in the pre-processing step
are also appended as rows in this matrix. If the resulting degree d system in the first k
variables may be solved (for instance by linearization), then we are done.

A set of parameters D, d and k are called admissible if the degree d system obtained
after specialization can be solved with echelonization. From a theoretical point of view,
it is not easy to determine admissible parameters for the algorithm, let alone optimal
choices. To the best of our knowledge, all existing implementations over F2 have focused
on D ≤ 5 and d = 1, which means that the system obtained after specialization is linear.
From a practical point of view, it is difficult to handle higher values of D and d, since as
soon as D ≥ 4 lots of linear dependencies start to appear in the Macaulay matrix and the
matrices are large enough that it is no longer possible to construct them due to memory
issues. This is a common problem when implementing Gröbner basis algorithms, most
of the computation time is lost in useless operations. For example, in the F5 algorithm,
Faugère [Fau02] and later Bardet in her PhD thesis [Bar04], proposed two criteria to remove
all linear dependencies, for regular and semi-regular polynomial systems, respectively.

Contributions and related work. In this paper, we first restate these criteria for
the special form of Macaulay matrices of degree D appearing in the Crossbred algorithm
and show that we can remove linear dependencies after specialization. Secondly, we
propose a simplified variant of the algorithm, called Block Crossbred, which may be
seen as a homogeneous variant of the algorithm, before specialization. We compute a
bivariate generating series whose coefficients correspond to the number of newly generated
polynomials in the pre-processing step of the algorithm for input parameters D, d and k,
under semi-regularity assumptions. From this analysis, we deduce the generating series
for the Crossbred algorithm, again under a semi-regularity hypothesis. We conclude by
showing sets of admissible parameters for Crossbred obtained by looking at the coefficients
of the series. Finally, we implemented in Magma and ran the Crossbred algorithm on the
smallest sets of these parameters, to empirically verify our theoretical findings.

Recently, there have been several attempts to study the complexity of Crossbred. First
Duarte [Dua23] computes a bivariate generating series for the pre-processing step of the
algorithm. The author introduces the notion of semi-regularity for homogeneous systems
of polynomials, but this notion is not used anywhere in his proof. On one hand, the
polynomials appearing in the rows of the Macaulay matrices in Crossbred are affine, and
on the other hand the proofs do not keep track of reductions to zero in the algorithm.

Nakamura [Nak24] proposes an analogue series for systems defined over finite fields of
odd characteristic, however these results are based on unverified assumptions. Finally, the
recent preprint [BCT+24] revisits the notion of semi-regularity and focuses on admissible
parameters for Crossbred under semi-regularity assumptions, provided that the bivariate
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generating series conjectured in the literature is correct. We stress here that the correct
assumption for Crossbred, which is a hybrid algorithm, is that of strong semi-regularity.
Roughly speaking, this means that after assigning n − k variables in the initial system,
the derived system in k variables is semi-regular, for almost all assignments. Theorem 1
in [Nak24] and Theorem 2 in [BCT+24] came close to this idea, but the authors focus on
a fixed assignment instead of looking at all possible assignments.

Our work is completely independent from [Dua23, Nak24, BCT+24], but we certainly
do not claim originality for this approach. Most of the techniques used in this paper
are standard in the literature (see [Fau02, Bar04]) and we adapted them to the case of
Crossbred.

This paper is organised as follows. In Section 2 we introduce the notion of semi-regular
sequences of polynomials and briefly survey linear algebra based algorithms and the
Crossbred algorithm. From that, we state our criteria for reduction to zero and present
the Block Crossbred algorithm in Section 3. In Section 4 we show that there are no
reductions to zero in the Block Crossbred algorithm if the two criteria are used. Based on
this result, we compute the generating series of our algorithm in Section 5. Finally, under
semi-regularity assumptions, we deduce a proof for the bivariate generating series of the
original Crossbred in Section 6. We apply our results to compute admissible parameters
for Crossbred in Section 7.

Acknowledgment. We are grateful to the anonymous reviewers for their helpful com-
ments, which helped us improve on a preliminary version of this paper. The authors thank
Charles Bouillaguet, Julia Sauvage and Momonari Kudo for helpful discussions. This
work was partially funded by the French Agence Nationale de la Recherche under the
projects Postcryptum ANR20-ASTR-0011 and CRYPTANALYSE 22-PECY-0010. The
experiments were carried on the MatriCS platform of the Université de Picardie Jules
Verne.

2 Notation and Background
In this section, we will introduce the notation and terminology used throughout the paper.
We will use the polynomial ring R = Fp[x1, . . . , xn], where Fp is any finite field. We write
xb = xb1

1 xb2
2 · · ·xbn

n with b = (b1, . . . , bn). Then |b| =
∑n

i=1 bi is the degree of the monomial
(also called total degree) and is written deg(xb). We denote by degk the degree over the
first k variables (i.e. degk(xb) =

∑k
i=1 bi). We choose an admissible monomial ordering on

R. For instance, we will need the glex order with x1 > x2 > . . . > xn which is defined as
xa >glex xb if |a| > |b| or |a| = |b| and the leftmost non-zero coefficient of a− b is positive.
The leading term of a polynomial f with respect to the chosen order is denoted by LT (f).
The total degree and the degree over k of f are the total degree and the degree over the
first k variables, respectively, of its leading term LT (f) with respect to the chosen order.
Macaulay matrices, initially introduced by Lazard [Laz83], are at the heart of all linear
algebra-based algorithms for computing Gröbner basis. The Macaulay matrix is defined as
follows.

Definition 1. Fix an admissible monomial ordering on R. Given a homogeneous (affine)
system of polynomials F = {f1, . . . , fm} in R, we associate to it the Macaulay matrix
of degree D (resp. ≤ D), denoted by MacD,m(F) (resp. Mac≤D,m(F)) and defined as
follows: the columns of MacD,m(F) (resp. Mac≤D,m(F)) are indexed by the monomials in
Fp[x1, . . . , xn] of degree D (resp. of degree ≤ D), sorted in decreasing order from left to the
right following the chosen order. Each row in this matrix is labeled by a tag (u, fi), where u
is a monomial in Fp[x1, . . . , xn] and fi ∈ F such that deg(ufi) = D (resp. deg(ufi) ≤ D),
and contains the polynomial ufi written as a vector of coefficients of monomials.
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Example 2.1. Consider the polynomial system F = {f1, f2} with f1, f2 ∈ F2[x1, x2, x3]
given by:

f1 = x1x3 + x2x3 + x2 + 1,

f2 = x1x2 + x1 + x3 + 1.

Since the goal is to compute roots of this polynomial system in F2, we add the polynomials
x2

1−x1, x2
2−x2 and x2

3−x3 to this system. This is equivalent to constructing the Macaulay
matrix in F2[x1, x2, x3]/ < x2

1 − x1, x2
2 − x2, x2

3 − x3 > . Then the corresponding Macaulay
matrix of degree 3 for the glex order is:

Mac≤3,2(F) =

x1x2x3 x1x2 x1x3 x2x3 x1 x2 x3 1



f1 0 0 1 1 0 1 0 1
f2 0 1 0 0 1 0 1 1

x1f1 1 1 1 0 1 0 0 0
x2f1 1 0 0 1 0 0 0 0
x3f1 0 0 1 0 0 0 1 0
x1f2 0 1 1 0 0 0 0 0
x2f2 0 0 0 1 0 1 0 0
x3f2 1 0 1 0 0 0 0 0

2.1 Linear algebra-based Gröbner basis algorithms and their com-
plexity

Let us fix a monomial ordering on R and denote by I the ideal in R generated by a
sequence of polynomials F . We denote by LT (I) the set of all leading terms of non-zero
polynomials in I. A Gröbner basis for I is a finite set of generators G = {g1, . . . gs} such
that the monomial ideal generated by elements of LT (I) is given by:

⟨LT (I)⟩ = ⟨LT (g1), . . . , LT (gs)⟩.

Gröbner basis algorithms based on linear algebra compute the row echelon form of certain
submatrices of the Macaulay matrix for some degree d of the system F . The first nonzero
element of each row corresponds to a leading monomial of an element of I, belonging to
LT (I). For large enough d, Dickson’s lemma [CLO97, §2.4, Thm. 5] implies that the
collection of those monomials up to degree d generates LT (I) and thus the polynomials
corresponding to those rows together form a Gröbner basis of I with respect to the chosen
monomial ordering.

During the echelonization process, it may happen that a given row yields zero when
reduced modulo the basis under construction. This is called reduction to zero in the
literature. Ideally, one would like to avoid spending time on computations for rows whose
result is zero. For this, several criteria have been proposed and allow to avoid the effective
computation of useless reductions [Buc65, Fau02]. We briefly recall here the criteria used
in the F5-like algorithms [Fau02, Bar04], which guarantee that there are no reductions to
zero during the algorithm for semi-regular sequences of polynomials.

Let us first consider F = {f1, . . . , fm} a homogeneous system of polynomials in
Fp[x1, . . . , xn] with deg fi = di. When applying the General Criterion [Fau02], the algo-
rithm constructs the matrix Macd,i(F) by adding to the matrix Macd,i−1(F) all rows
representing polynomials ufi except for those where u is a leading term of a row in
M̃acd−di,i−1(F), the row echelon form of Macd−di,i−1(F).

Faugère shows that if the sequence of polynomials is regular, then the only reductions
to zero during the execution of the algorithm for finite fields of characteristic strictly
greater than 2 are those detected by the General Criterion. For a system of polynomials
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F = {f1, . . . , fm} in F2[x1, . . . , xn], if the goal is to find solutions in F2, we may as
well add to this system the equations {x2

1 − x1, . . . , x2
n − xn}. Working with the system

F ∪ {x2
1 − x1, . . . , x2

n − xn} in R = F2[x1, . . . , xn] is equivalent to working with the
polynomial system F in Rn = R/⟨x2

1 − x1, . . . , x2
n − xn⟩. Consequently, when running the

F5 algorithm, we also need to remove all reductions to zero coming from the fact that
f2 = f , for any f ∈ Rn.

The Frobenius Criterion [Fau02] states that a row representing the polynomial ufi is a
linear combination of previous rows if u is a leading term of a row in M̃acd−di,i(F), the
row echelon form of Macd−di,i(F).

Bardet [Bar04] extends these two criteria for reductions to zero to sequences of poly-
nomials where m > n by introducing the notion of semi-regularity. We recall this notion
here, but let us first introduce some more notation.

For d ≥ 0, we denote by Fp[x1, . . . , xn]d the Fp-vector space of homogeneous polynomials
of degree d. Let I be an ideal of dimension 0 generated by the sequence F = {f1, . . . fm}
and denote by Id = Fp[x1, . . . , xn]d ∩ I. Then there exists D ≥ 0 such that

dimFp
(Id) = dimFp

(Fp[x1, . . . , xn]d) ,

for all d ≥ D [CLO97] and we define Dreg to be the smallest degree with this property.
From now on, we consider systems defined over the finite field F2. Since the ho-

mogeneous part of highest degree of field equations x2
i − xi is x2

i , we consider the ring
Rh

n = F2[x1, . . . , xn]/⟨x2
1, . . . , x2

n⟩. Any homogeneous polynomial of degree d in Rh
n verifies

f2 = 0. Following Bardet [Bar04], we directly state the definition of a semi-regular sequence
of polynomials defined over F2.

Definition 2. A sequence of homogeneous polynomials {f1, . . . , fm} in Rh
n is called

semi-regular over F2 if:

1. ⟨f1, . . . , fm⟩ ≠ Rh
n,

2. For all i ∈ {1, . . . , m} if gifi = 0 in Rh
n/⟨f1, . . . , fi−1⟩ and deg(gifi) < Dreg, then

gi ∈ ⟨f1, . . . , fi−1, fi⟩.

Given a power series S ∈ Z[[X]], the notation [S]n denotes the series obtained by trun-
cating S just before the index n. Bardet computes the Hilbert series of the ideal generated
by a semi-regular sequence of quadratic homogeneous polynomials F = {f1, . . . fm} as

HFR/I(X) =
[

(1 + X)n

(1 + X2)m

]
Dreg

. (1)

The degree of regularity of a semi-regular system is in fact given by the index of the
first non-positive coefficient of the series in Equation (1).

As shown by Bardet [Bar04], if the sequence is semi-regular and the two criteria are
used for recursively constructing the Macaulay matrices, then there are no reductions to
zero in the F5 algorithm (called Matrix F5 in [Bar04]), until the degree d = Dreg − 1 is
reached. When degree Dreg is reached, the algorithm outputs a Gröbner basis with respect
to the chosen monomial order.

Consequently, the complexity of the Gröbner basis computation using the Matrix F5
algorithm is:

O
((

n + Dreg − 1
n

)ω)
,

where ω is a linear algebra constant.
If the system is affine, it suffices to examine its homogeneous part of highest degree

to ensure that there are no degree falls before reaching Dreg, during the execution of the
algorithm. Following again [Bar04], we give the following definition.



6 An analysis of the Crossbred Algorithm for the MQ Problem

Definition 3. Let F = {f1, . . . , fm} be an affine sequence of polynomials and denote
by f top

i the homogeneous part of highest degree of fi, 1 ≤ i ≤ m. Then F is called
semi-regular if the sequence F top = {f top

1 , . . . , f top
m } is semi-regular.

By extension, we will call degree of regularity of an affine sequence the degree of
regularity of F top and denote it as well by Dreg.

In practice, if the sequence F is affine, Gröbner basis algorithms will perform Gaussian
elimination on Macaulay matrices Mac≤d,m(F), with d ≥ 0. Then we call solving degree
the smallest degree for which linear algebra on the Macaulay matrices will produce a
Gröbner basis and denote its value by Dsol. This solving degree depends on the precise
algorithm that one adopts. The interested reader is referred to [KY24] for a survey on
known bounds on the solving degree. Under certain conditions, Dsol < Dreg (see for
instance [BND+22, Corollary 3.6]).

We denote :

I≤d =

p =
m∑

i=1
hifi +

n∑
j=1

hj(x2
j − xj) ∈ I

∣∣∣deg(hi) ≤ d− 2, deg(hj) ≤ d− 2

 ,

and R≤d = ⊕0≤d′≤d (F2[x1, . . . , xn]d′). Then the generating series GR/I(X) is defined as
follows:

GR/I(X) =
∑
d≥0

dim(R≤d/I≤d)Xd. (2)

If the sequence F is semi-regular, then up to the degree of regularity, the coefficient
dim(R≤d/I≤d) is equal to difference between the number of columns and rows of the
matrix Mac≤d,m(F). The following result is folklore, but we state it here for completeness.

Lemma 1. Let F = {f1, . . . , fm, x2
1 − x, . . . , x2

n − xn} be an affine semi-regular sequence
of quadratic polynomials defined over F2.

Then, the coefficient corresponding to Xd of the generating series GR/I(X) is equal to
the one in the expansion of the following generating function:

(1 + X)n

(1−X)(1 + X2)m

for all d ≤ Dreg.

Proof. See Appendix A.

Finally, to analyze the complexity of Crossbred, we will make the standard assump-
tion that the input sequence F for the algorithm is strong semi-regular (see for in-
stance [BFSS13]). Roughly speaking, this means that for almost all possible assignments
xk+1 = ak+1, . . . , xn = an, for some k > 0, the sequence

{f1(x1, . . . , xk, ak+1, . . . , an), . . . , fm(x1, . . . , xk, ak+1, . . . an)}

is semi-regular. We slightly adapt here the definition in [BFSS13].

Definition 4. Let F = {f1, . . . , fm} be a semi-regular sequence of polynomials in
F2[x1, . . . , xn] and let 0 ≤ γ ≤ 1 such that k = (1 − γ)n. We say that this sequence
is γ-strong semi-regular if

S(I) = {(ak+1, . . . , an) ∈ Fn−k
2 |

{f1(x1, . . . , xk, ak+1, . . . , an), . . . , fm(x1, . . . , xk, ak+1, . . . an)} is not semi-regular}

has cardinality O(2−γn).
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Algorithm 1: The Crossbred algorithm
Data: Polynomial system F of m equations of n variables, and D, d, k
Result: A solution of the system (or nothing otherwise)
Construct Mack

≤D,≥d,m(F) and Mk
≤D,≥d,m(F)

Compute a basis (v1, . . . , vr) of the left kernel of Mk
≤D,≥d,m(F)

Construct polynomials p1, . . . , pr corresponding to vi ·Mack
≤D,≥d,m(F)

for a = (ak+1, . . . , an) ∈ Fn−k
2 do

Evaluate the last n− k variables in each f ∈ F at (ak+1, . . . , an) and compute
F∗

Compute Mac≤d,m(F∗)
Compute F ′∗ as the partial evaluation of F ′ = {p1, . . . , pr} at (ak+1, . . . , an)
Consider the system S∗ consisting of Mac≤d,m(F∗) ∪ F ′∗

if S∗ is consistent then
return the solution

end
end

In particular, if a sequence F is γ-strong semi-regular, then, for any specialised sequence
F∗, up to the degree of regularity, there are no other linear dependencies between the rows
of the matrix Mac≤d,m(F∗) than the one given by the criteria. In Appendix B we show a
series of experiments which support the claim that random systems satisfy this property.

We denote by dreg(k) (resp. dsol(k)) the degree of regularity of (F∗)top (resp. solving
degree of F∗) for all (ak+1, . . . , an) ∈ Fn−k

2 \S(I).

2.2 The Crossbred algorithm
In all the rest of the paper, we choose the glex monomial order over F2[x1, . . . , xn] and
consider a polynomial system F = {f1, . . . , fm} such that deg(fi) = 2 and degk(fi) =
2. This is a tacit condition for the algorithm to work. In a nutshell, the Crossbred
algorithm [JV17] for fixed input parameters D, d and k, runs in three steps:

(1) Construct r new polynomials p1, . . . , pr of total degree D and of degree d over the
first k variables. These polynomials are added to the original system.

(2) Assign the last n− k variables in the system obtained in this way.

(3) Try to solve the resulting system in k variables. If no solution is found, continue the
exhaustive search through Fn−k

2 and re-assign the values of the last n− k variables.

The pre-processing step (1) of Crossbred performs linear algebra on certain submatrices
of the Macaulay matrices introduced in Definition 1. We introduce these, as well as the
submatrices we use in our simplified version of Crossbred in Section 3 in the following
definition.

Definition 5. Given an affine system of polynomials F = {f1, . . . , fm} in R, let Mack
≤D,≥d,m(F)

be the submatrix of the Macaulay matrix Mac≤D,m(F) whose rows correspond to products
of the form ufi, 1 ≤ i ≤ m, with degk(u) ≥ d− 1. Let Mk

≤D,≥d,m(F) be the submatrix of
Mack

≤D,≥d,m(F) whose columns correspond to monomials M with degk(M) ≥ d + 1.

The pre-processing step roughly works as follows: assuming that D, d and k are such
that the number of rows of Mk

≤D,≥d,m(F) is greater than its number of columns, we can
compute a basis of the co-kernel of Mk

≤D,≥d,m(F). We denote by v1, . . . , vr the vectors of
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Figure 1: Partial Gaussian elimination of Mack
≤D,≥d,m(F)

this basis. Now, each pi is generated as the polynomial whose coefficients correspond to
the product vi ·Mack

≤D,≥d,m(F). From Definition 5, it is clear that degk(pi) ≤ d.
Note that for step (3) there exist multiple ways to solve the resulting system. In this

paper, we only consider the resolution via linearization on the resulting Macaulay matrix
of degree d of the specialized system. In other words, we think of each monomial in the
system as an unknown, and try to solve the linear system obtained in this way. The
pseudocode of the Crossbred algorithm is given in Algorithm 1.

Notation. Given a polynomial f ∈ F2[x1, . . . , xn], we denote by f∗ any polynomial in
F2[x1, . . . , xk] obtained from f after assigning the variables xk+1, . . . , xn. Similarly, given
a sequence F = {f1, . . . , fm}, we denote by F∗ = {f∗

1 , . . . , f∗
m}. and call F∗ the specialized

sequence of F .

Remark 1. In [JV17], Joux and Vitse considered an extra input parameter h which is used
for parallelization of the algorithm. This parameter corresponds to the number of variables
which are guessed before running the pre-processing step for each thread. In our analysis,
we chose to ignore this parameter since this is equivalent to solving a polynomial system
with n− h variables on each thread.

2.2.1 Another look at the pre-processing step

To better understand the pre-processing step of Algorithm 1, we look at it from a different
angle. We construct the matrix Mack

≤D,≥d,m(F). From left to right, we order the
columns corresponding to monomials of degree D, D − 1, . . . , d + 1, d and d− 1 over the
first k variables. We denote by Mk

≤D,≥d (Mk
D,d) the number of monomials m such that

deg(m) ≤ D and degk(m) ≥ d (deg(m) = D and degk(m) = d, respectively).
Instead of computing the kernel of Mk

≤D,≥d,m(F), an equivalent way to generate
new polynomials in the pre-processing step of Algorithm 1 is to partially echelonize
Mack

≤D,≥d,m(F), such that the submatrix given by its first #Mk
≤D,≥d rows is in row

echelon form. New polynomials are obtained by taking the rows that have zero entries on
the columns corresponding to monomials of degree ≥ d + 1 over the first k variables, as
shown in Figure 1.

2.2.2 Limitations of the Crossbred algorithm

To the best of our knowledge, the question of determining a set of parameters (D, d, k)
which are admissible (i.e. which ensure that the algorithm terminates) remains open. An
even harder question is to determine an optimal choice of parameters D, d and k, which
would balance both its running and its memory cost. There are several attempts to study
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the complexity of Crossbred [CHR+19, Dua23, BMSV22, Nak24]. For instance, Duarte
proposes the following complexity for the algorithm:

Õ

((
D∑

dk=d+1

D−dk∑
d′=0

(
k

dk

)(
n− k

d′

))ω)
+ 2n−k · Õ

((
d∑

i=0

(
k

i

))ω)
. (3)

The first term of the sum in Equation (3) corresponds to the complexity to compute
the co-kernel of Mk

≤D,≥d,m(F) (step (1), the pre-processing), 2n−k represents the number
of times we would have to assign the last n− k variables in the worst case scenario and the
last term corresponds to the complexity of solving the specialized system of k variables
(step (3)).

In [JV17], the authors mostly experimented with D = 3 and expressly stated that
when D ≥ 4, linear dependencies appears between the rows of Mack

≤D,≥d,m(F) Indeed,
for larger degree D, we need to take in account trivial relations of the form fifj = fjfi.
As such, the Crossbred algorithm gets slower from this point as it does useless operations.
A way to improve the algorithm would be to remove those dependencies before performing
linear algebra operations. This problem is addressed by applying the criteria presented in
Section 2.1 to remove those dependencies. More specifically, we consider both criteria as
proposed in [Bar04] and adapt them to the Crossbred algorithm.

3 A simplified version of Crossbred
Our first goal is to remove linear dependencies of the form fifj = fjfi and f2 = f which
appear while running the pre-processing step performed on the matrix Mack

≤D,≥d,m(F)
in the Crossbred algorithm. For that, let us consider a quadratic homogeneous system
of polynomials F = {f1, . . . , fm}. Instead of working with Mack

≤D,≥d,m(F) we will only
consider blocks of this matrix which correspond to homogeneous polynomials (u, f) of
total degree deg(uf) = D and degk(u) = d− 1.

Definition 6. Given an homogeneous system of polynomials F = {f1, . . . , fm} in R,
let Mack

D,d,m(F) be the submatrix of the Macaulay matrix MacD,m(F) whose rows
correspond to products of the form ufi, 1 ≤ i ≤ m, with degk(u) = d− 1. Let Mk

D,d,m(F)
be the submatrix of Mack

D,d,m(F) whose columns correspond to monomials M with
degk(M) = d + 1.

We will adapt Algorithm 1 to generate recursively matrices Mack
d1,d2,m(F) andMk

d1,d2,m(F),
for all d1 ≤ D and d2 ≤ D. During the process, we will apply two criteria to sieve out
polynomials that give reductions to zero when performing linear algebra on this matrix.

We denote by M̃ac
k

D,d,m(F) the row-reduced echelon form of the matrix Mack
D,d,m(F).

The following proposition is an adaptation of Faugère’s General Criterion [Fau02] to the
matrices used in our algorithm and by extension, to those used in Crossbred.

Proposition 1. (The General Criterion) Let d ≤ d2 ≤ d1 ≤ D. For any row in
M̃ac

k

d1−2,d2−2,m−1(F) having the monomial t with degk t = d2 − 1 as a leading term, the
row labeled by (t, fm) is a linear combination of previous rows in Macd1,m(F) and the
polynomial generated from this row in the pre-processing step of the Crossbred algorithm is
a linear combination of rows of the matrix Mac≤d2,m(F∗), where F∗ is the system obtained
by assigning the last n− k variables at any (ak+1, . . . , an) ∈ Fn−k

2 .

Proof. Assume that t = LT (f), where f =
∑m−1

j=1 gjfj with gj polynomials with deg(gifi) =
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d1 − 2 and degk(gi) = d2 − 3. We may then write:

tfm = ffm − (f − LT (f))fm

=
m−1∑
j=1

(gjfm)fj − (f − LT (f))fm.

Hence we have:

tfm =
m−1∑
j=1

(∑
i

ui,j + vi,j + wi,j

)
fj −

(∑
i

ui,m + vi,m + wi,m

)
fm, (4)

with degk(ui,j) = d2 − 1, degk(vi,j) = d2 − 2 and degk(wi,j) = d2 − 3 and ui,m < t′.
Denote by s the number of columns of Mk

≤D,>d,m(F). As explained in Section 2.2.1,
in order to generate the new polynomials in the Crossbred algorithm it suffices to partially
echelonize the first s rows in Mack

≤D,≥d,m(F) and extract the sub-matrix corresponding
to rows that only have zero coefficients on these s columns.

If a row labeled (t, fm) (i.e. the row whose coefficients are given by those of tfm) gener-
ates a new polynomial in the pre-processing step of Crossbred, then the row corresponding
to this polynomial after partially echelonizing Mack

≤D,≥d,m(F) is of the form:

p = tfm +
m∑

j=1

∑
i

ui,jfj ,

where ui,j correspond to the monomials of degree d2 − 1 over the first k variables given in
Equation (4). Using Equation (4), we have:

p =
m−1∑
j=1

(∑
i

vi,j + wi,j

)
fj −

(∑
i

vi,m + wi,m

)
fm

=
m∑

j=1

(∑
i

vi,j + wi,j

)
fj .

After specialization, we have:

p∗ =
m∑

j=1

(∑
i

v∗
i,j + w∗

i,j

)
f∗

j .

Note that v∗
i,jf∗

j and w∗
i,jf∗

j are rows of Mac≤d2,m(F∗). Hence the polynomial generated
with the row labeled (t, fm) is a linear combination of rows of Mac≤d2,m(F∗).

As explained in Section 2.1, for polynomial systems defined over F2 another set of
linear dependencies appear due to the fact that for any polynomial f we have f2 = f .
The following proposition is an adaption of the Frobenius criterion to the matrices used in
Crossbred.

Proposition 2. (The Frobenius Criterion) Let d ≤ d2 ≤ d1 ≤ D. For any row in
M̃ac

k

d1−2,d2−2,m(F) having the monomial t as a leading term, the row labeled by (t, fm)
is a linear combination of previous rows in Macd1,m(F) and the polynomial generated
with this row in the pre-processing step of the Crossbred algorithm is a linear combination
of rows of Mac≤d2,m(F∗), where F∗ is the system obtained by assigning the last n − k
variables at any (ak+1, . . . , an) ∈ Fn−k

2 .
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Algorithm 2: Block Crossbred
Data: A polynomial system F of m homogeneous polynomials of n variables over

F2, three parameters D, d, k
Result: A solution of the system (if it exists)
for d1 from 2 to D do

for d2 from 1 to d− 1 do
for m′ from 1 to m do

Mack
d1,d2,m′(F)← GenMat(Mack

d1,d2,m′−1(F))

Compute the echelon form M̃ac
k

d1,d2,m′(F)
end

end
end
Generate Mk

D,d,m(F) from Mack
D,d,m(F)

F ′ ← GenPoly(Mk
D,d,m(F))

for (ak+1, . . . , an) ∈ Fn−k
2 do

Partially evaluate each polynomial f ∈ F at (ak+1, . . . , an)
Compute Mac≤d,m(F∗)
Compute F ′∗ as the partial evaluation of the F ′ polynomials at (ak+1, . . . , an)
Consider the system S∗ consisting of Mac≤d,m(F∗) ∪ F ′∗

if S∗ is consistent then
return the solution

end
end

Proof. Let t = LT (f), where f =
∑m

j=1 hjfj with hj polynomials with deg hjfj = d1 − 2
and degk hj = d2 − 3. We may then write:

tfm = ffm − (f − LT (f))fm

=
m∑

j=1
(hjfm)fj − (f − LT (f))fm

=
m−1∑
j=1

(hjfm)fj + hmf2
m − (f − LT (f))fm

=
m−1∑
j=1

(hjfm)fj + hmfm − (f − LT (f))fm.

Hence tfm can be written as a sum of polynomials ufj with either j ≤ m and degk u =
{d2 − 3, d2 − 2, d2 − 1} or j = m and u < t with respect to the chosen monomial ordering.
The rest of the proof is similar to that of the General Criterion (Proposition 1).

We may now present a simplified version of Algorithm 1, which takes in a homogeneous
system of polynomials F and is based on linear algebra on the matrix Mack

D,d,m(F) (instead
of Mack

≤D,≥d,m(F) as in Crossbred). We recursively construct matrices Mack
d1,d2,m(F)

and apply the criteria in Propositions 1 and 2 in the process. The pseudocode of our
algorithm, that we call Block Crossbred, is given in Algorithm 2. We will see in Section 5
that this algorithm has the advantage that it is easier to analyze than the original Crossbred.
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How to generate Mack
d1,d2,m′(F). In Algorithm 2 the GenMat method computes

Mack
d1,d2,m′(F) by adding to Mack

d1,d2,m′−1(F) all rows labeled (u, fm′) where u is a
monomial with deg u = d1−2 and degk(u) = d2−1 that does not satisfy the conditions in the
General and Frobenius criteria (i.e. u is not a leading term of a row in M̃ac

k

d1−2,d2−2,m′(F)).

GenPoly. In Algorithm 2 the GenPoly method takes in the matrixMk
d1,d2,m to generate

new polynomials that will be added to the initial system F . To do that, we first compute
the left kernel LK of the matrix Mk

D,d,m(F). We then obtain new polynomials thanks to
the operation LK ·Mack

D,d,m(F). This computation is similar to the pre-processing step
of the Crossbred algorithm, each row of the resulting matrix represents a polynomial of
total degree D and of degree d over the first k variables.

4 Semi-regular sequences and Block Crossbred
A first step towards understanding the complexity of the Block Crossbred, and eventually
that of Crossbred, is to evaluate the cost of its pre-processing step. In order to compute
the number of new polynomials generated by the GenPoly procedure, which depends
on the dimensions of the kernels of the matrices Mack

D,d,m(F) and Mk
D,d,m(F), we need

to account for reductions to zero while constructing these matrices. We will use here a
standard assumption in the literature, that of semi-regularity.

We define

Rk
d1,d2

= F2[xk+1, . . . , xn]d1−d2 [x1, . . . , xk]d2 and Ik
d1,d2

= Id1 ∩Rk
d1,d2

,

regarded as Fp-vector spaces.

Proposition 3. Let I be a zero-dimensional ideal. There exists a tuple (D1, D2) such that

dimF2 Rk
D1,D2

= dimF2 Ik
D1,D2

.

Proof. It is well known that for all D ≥ Dreg we have ID = F2[x1, . . . , xn]D. Fix D = Dreg.
Then for any (d1, d2) such that d1 ≥ Dreg we have that

Rk
d1,d2

⊆ Id1 = F2[x1, . . . , xn]d1 .

It follows that Ik
d1,d2

= Id1 ∩Rk
d1,d2

= Rk
d1,d2

.

The proof of this proposition suggests that there exists a set of parameters (D, d) with
d < D ≤ Dreg such that the left kernel of the matrix Mk

D,d,m(F) has positive dimension
(i.e. the GenPoly procedure generates new polynomials). Note that d < D < Dreg is the
only interesting case for Crossbred anyway, since when D = Dreg the cost of the linear
algebra in the pre-processing is asymptotically close to that of linear algebra in the F5
algorithm. Whenever the sequence of polynomials F is γ-strong semi-regular, we will show
that there are no reductions to zero in the GenMat procedure of the Block Crossbred
algorithm.

Proposition 4. Let F = {f1, . . . , fm} be a homogeneous sequence of polynomials such
that the ideal I = ⟨f1, . . . , fm⟩ has dimension 0. Let 0 < k < n and 0 < γ < 1 such that
k = (1 − γ)n. Assume that the sequence F is γ-strong semi-regular. Then there are no
reductions to zero in the matrix Mack

d1,d2,m(F) constructed by the GenMat procedure of
the Block Crossbred algorithm with d2 < dreg(k) and d1 < Dreg.
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Proof. Assume that there is a reduction to zero in the matrix Mack
d1,d2,m(F), with

d1 < Dreg. Then there exist gi and hj , j ∈ {1, . . . , i−1}, such that gifi =
∑i−1

j=1 hjfj , with
deg(gifi) = d1 and gi, hj ∈ Rk

d1−2,d2−1. From the semi-regularity hypothesis, it follows
that gi =

∑i
j=1 h′

jfj . Since the sequence is γ-strong semi-regular, there is no fall of the
degree over the first k variables for the specialized sequence, for d2 < dreg(k). We deduce
that degk(h′

j) = d2 − 3, hence LT (gi) is the leading term of a row in Mack
d1−2,d2−2,i(F).

These are exactly the rows that are removed when applying the General and the Frobenius
Criteria. As such, there is no reduction to zero in the Block Crossbred pre-processing up
to the degree Dreg.

5 A bivariate generating series for Block Crossbred
In this section, we investigate the complexity of the Block Crossbred algorithm for solving
a system of polynomials. To this purpose, we have to estimate first the number of new
polynomials obtained when running the GenPoly procedure in Algorithm 2.

Let F = {f1, . . . , fm} be a sequence of homogeneous quadratic polynomials in R and
denote by Uk

d1,d2,m, d1, d2 ≥ 0, the number of rows of the matrix Mack
d1,d2,m(F), and thus

of Mk
d1,d2,m(F). The number of columns of Mk

d1,d2,m(F) is given by Mk
d1,d2+1, which

corresponds to the number of monomials v of total degree d1 such that degk v = d2 + 1.
We define the following sequence:

hk
d1,d2,m =


Uk

d1,d2,m −Mk
d1,d2+1, if d1 ≥ d2 ≥ 0, m ≥ 1,

−Mk
d1,0, if d1 ≥ 0, d2 = −1, m ≥ 0,

−Mk
d1,d2+1, d1 ≥ d2 ≥ 0, m = 0,

0 in all other cases.

(5)

This sequence gives the number of new “independent” polynomials generated during
the pre-processing step of Algorithm 2.

Proposition 5. If hk
D,d,m > 0 and there are no reductions to zero in Mack

D,d,m(F), then
the number of polynomials computed with the GenPoly procedure is hk

D,d,m.

Proof. The number of polynomials computed with the GenPoly procedure is given
by corank(Mk

D,d,m(F)) − corank(Mack
D,d,m(F)). As there is no reduction to zero in

Mack
D,d,m(F) we have that

corank(Mack
D,d,m(F)) = 0.

On the other hand we compute:

corank(Mk
D,d,m(F)) = Uk

D,d,m − rank(Mk
D,d,m(F)).

Since hk
D,d,m > 0, the number of rows of Mk

D,d,m(F) is greater to the number of columns.
Furthermore, Since Mk

D,d,m(F) is a sub-matrix given by the first columns of the full-rank
matrix Mack

D,d,m(F), it is also full-rank. Hence the rank of Mk
D,d,m(F) is its number of

columns.
We get:

corank(Mk
D,d,m(F)) = Uk

D,d,m −#Col(Mk
D,d,m(F)) = hk

D,d,m.
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Proposition 6. Assume that there are no reductions to zero in the Block Crossbred
algorithm. Then the sequence hk

d1,d2,m satisfies the following recurrence relation:

hk
d1,d2,m = hk

d1,d2,m−1 − hk
d1−2,d2−2,m. (6)

Proof. The number of rows added to Mack
d1,d2,m−1(F) to get Mack

d1,d2,m(F) is equal to
the number of monomials u with deg(u) = d1 − deg(fm) = d1 − 2 and degk(u) = d2 − 1.
From this number we subtract the number of monomials which satisfy the General and the
Frobenius Criterion. As such, the number of rows of the matrix Mack

d1,d2,m(F) verifies
the following equation:

Uk
d1,d2,m − Uk

d1,d2,m−1 = Mk
d1−2,d2−1 − Uk

d1−2,d2−2,m.

By using this formula and Equation (5) we get:

hk
d1,d2,m − hk

d1,d2,m−1 = −hk
d1−2,d2−2,m,

which concludes the proof.

Using the recurrence relation in Equation (6) we may now compute the generating
bivariate series which will allow us to determine admissible parameters for Algorithm 2.
Theorem 7. Let Hk

m,n(X, Y ) =
∑

d1≥0,d2≥0 hk
d1,d2,mXd1Y d2 be the bivariate series with

coefficients defined by Equation (5). This series is given by:

Hk
m,n(X, Y ) = 1

Y

(
(1 + X)n−k − (1 + XY )k(1 + X)n−k

(1 + X2Y 2)m

)
.

Proof. Since the values of k and n are fixed, let Hm(X, Y ) = Hk
m,n(X, Y ) and write

hd1,d1,m instead of hk
d1,d2,m. Moreover, we define

Ĥm(X, Y ) =
∑

d1≥0,d2≥0
hd1−2,d2−2,mXd1Y d2 .

Then, we have

Ĥm(X, Y ) =
∑

d1≥0,d2≥0
Uk

d1−2,d2−2,mXd1Y d2 −
∑

d1≥0,d2≥0
Mk

d1−2,d2−1Xd1Y d2

= X2Y 2
∑

d1≥0,d2≥0
Uk

d1,d2,mXd1Y d2

− X2Y 2
∑

d1≥0,d2≥0
Mk

d1,d2+1Xd1Y d2 −X2Y
∑
d1≥0

Mk
d1,0Xd1

= X2Y 2
∑

d1≥0,d2≥0
hd1,d2,mXd1Y d2 −X2Y

∑
d1≥0

Mk
d1,0Xd1

= X2Y 2Hm(X, Y )−X2Y
∑
d1≥0

Mk
d1,0Xd1 .

Using the recurrence relation obtained in Equation (6) we obtain:

Hm(X, Y ) =
∑

d1≥0,d2≥0
hd1,d2,mXd1Y d2

=
∑

d1≥0,d2≥0
hd1,d2,m−1Xd1Y d2 −

∑
d1≥0,d2≥0

hd1−2,d2−2,mXd1Y d2

= Hm−1(X, Y )− Ĥm(X, Y )
= Hm−1(X, Y )−X2Y 2Hm(X, Y ) + X2Y

∑
d1≥0

Mk
d1,0Xd1 .
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Hence we get

Hm(X, Y ) = (1 + X2Y 2)−1Hm−1(X, Y ) + X2Y

1 + X2Y 2

∑
d1≥0

Mk
d1,0Xd1

= (1 + X2Y 2)−mH0(X, Y )− 1− (1 + X2Y 2)m

Y (1 + X2Y 2)m

∑
d1≥0

Mk
d1,0Xd1 .

By Equation (5), for a fixed value of k, we have that hd1,d2,0 = −Mk
d1,d2+1. Hence we get :

H0(X, Y ) = −
∑

d1≥0,d2≥0
Mk

d1,d2+1Xd1Y d2 .

Since Mk
d1,d2+1 =

(
k

d2+1
)(

n−k
d1−d2−1

)
(with the convention that

(
n−k

d1−d2−1
)

= 0 for d2 ≥ d1−1),
we get:∑

d1≥0,d2≥0
Mk

d1,d2+1Xd1Y d2 =
∑

d1≥0,d2≥0

(
k

d2 + 1

)(
n− k

d1 − d2 − 1

)
Xd1Y d2

=
∑
d2≥0

(
k

d2 + 1

)
Y d2

∑
d1≥0

(
n− k

d1 − d2 − 1

)
Xd1 =

∑
d2≥0

(
k

d2 + 1

)
Y d2Xd2+1

∑
d1≥0

(
n− k

d1

)
Xd1

= (1 + X)n−k

Y

∑
d2≥0

(
k

d2 + 1

)
Y d2+1Xd2+1 = (1 + X)n−k

Y

∑
d2≥0

(
k

d2

)
Y d2Xd2 − 1


= (1 + X)n−k

Y

(
(1 + XY )k − 1

)
.

In conclusion, we have:

Hm(X, Y ) = − (1 + X)n−k

Y (1 + X2Y 2)m

(
(1 + XY )k − 1

)
− 1− (1 + X2Y 2)m

Y (1 + X2Y 2)m

∑
d1≥0

Mk
d1,0Xd1

= 1
Y (1 + X2Y 2)m

(
−(1 + XY )k(1 + X)n−k + (1 + X2Y 2)m(1 + X)n−k

)
= 1

Y

(
(1 + X)n−k − (1 + XY )k(1 + X)n−k

(1 + X2Y 2)m

)
.

6 From Block Crossbred to Joux-Vitse’s Crossbred
The previous analysis was made assuming that the input system was homogeneous.
However, the original Joux-Vitse Crossbred Algorithm has been designed to work with an
affine system F . We notice that even if F is affine, the matrix Mack

≤D,≥d,m(F) can be
constructed by concatenating the matrices Mack

d1,d2,m(F), d ≤ d2 ≤ d1 ≤ D, constructed
in Algorithm 2. This observation allows us to remove reductions to zero arising from the
criteria in the pre-processing step and compute the corank of the matrixMk

≤D,≥d,m(F) in
terms of the coefficients of the generating series Hk

m,n(X, Y ) examined in Proposition 7.
Proposition 8. Assuming that there are no reductions to zero in the pre-processing step of
the Crossbred algorithm, the corank of the matrix Mk

≤D,≥d,m(F) is given by the following
formula:

corank(Mk
≤D,≥d,m(F)) =

∑
d1≤D,d2≥d

hk
d1,d2,m,
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where the sequence hk
d1,d2,m is defined by Equation (5).

Proof. Indeed, we have that:

corank(Mk
≤D,≥d,m(F)) = #Rows(Mk

≤D,≥d,m(F))−#Col(Mk
≤D,≥d,m(F))

=
∑

d1≤D,d2≥d

Uk
d1,d2

−
∑

d1≤D,d2≥d

Mk
d1,d2+1 =

∑
d1≤D,d2≥d

hk
d1,d2,m.

We are now in position to compute the generating bivariate series which will eventually
allow us to determine admissible parameters for Algorithm 1.

Proposition 9. For fixed values of m, n and k the bivariate series Gk
m,n(X, Y ) =∑

d1≥0,d2≥0

(∑
d′

1≤d1,d′
2≥d2

hk
d′

1,d′
2,m

)
Xd1Y d2 is given by the formula:

Gk
m,n(X, Y ) = −

Y Hk
m,n(X, Y )−Hk

m,n(X, 1)
(1−X)(1− Y ) . (7)

Proof. Since m, n and k are fixed, we denote by G(X, Y ) = Gk
m,n(X, Y ) and H(X, Y ) =

Hk
m,n(X, Y ). We compute the bivariate series G(X, Y ) as follows:

G(X, Y ) =
∑

d1≥0,d2≥0

 ∑
d′

1≤d1,d′
2≥d2

hd′
1,d′

2,m

Xd1Y d2 .

First note that∑
d′

1≤d1,d′
2≥d2

hd′
1,d′

2,mXd1Y d2 =hd1,d2,mXd1Y d2 +
∑

d′
1≤d1−1

hd′
1,d2,mXd1Y d2

+
∑

d′
2≥d2+1

hd1,d′
2,mXd1Y d2 +

∑
d′

1≤d1−1,d′
2≥d2+1

hd′
1,d′

2,mXd1Y d2 .

It follows that

G(X, Y ) =
∑

d1≥0,d2≥0
hd1,d2,mXd1Y d2 + X

Y

∑
d1≥0,d2≥0

 ∑
d′

1≤d1−1,d′
2≥d2+1

hd′
1,d′

2,m

Xd1−1Y d2+1

+
∑

d1≥0,d2≥0

 ∑
d′

1≤d1−1

hd′
1,d2,m

Xd1Y d2 +
∑

d1≥0,d2≥0

 ∑
d′

2≥d2+1

hd1,d′
2,m

Xd1Y d2 .

(8)

We denote by S the sequence

S(X, Y ) =
∑

d1≥0,d2≥0

 ∑
d′

1≤d1−1

hd′
1,d2,m

Xd1−1Y d2 ,

and by T the sequence

T (X, Y ) =
∑

d1≥0,d2≥0

 ∑
d′

2≥d2+1

hd1,d′
2,m

Xd1Y d2+1.
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Then we write

S(X, Y ) =
∑

d1≥1,d2≥0
hd1−1,d2,mXd1−1Y d2 +

∑
d1≥1,d2≥0

∑
d′

1≤d1−2

hd′
1,d2,mXd1−1Y d2

=
∑

d1≥0,d2≥0
hd1,d2,mXd1Y d2 + X

∑
d1≥0,d2≥0

∑
d′

1≤d1−2

hd′
1,d2,mXd1−2Y d2

= H(X, Y ) + XS(X, Y ),

and get that

S(X, Y ) = H(X, Y )
1−X

. (9)

To compute T (X, Y ) we follow a similar approach:

T (X, Y ) =
∑

d1≥0,d2≥0

∑
d′

2≥d2+1

hk
d1,d′

2,mXd1Y d2+1 =
∑

d1≥0,d2≥1

∑
d′

2≥d2

hk
d1,d′

2,mXd1Y d2

=
∑

d1≥0,d2≥0

∑
d′

2≥d2

hk
d1,d′

2,mXd1Y d2 −
∑
d1≥0

∑
d′

2≥0

hk
d1,d′

2,mXd1

=
∑

d1≥0,d2≥0

∑
d′

2≥d2+1

hk
d1,d′

2,mXd1Y d2 +
∑

d1≥0,d2≥0

∑
d′

2=d2

hk
d1,d′

2,mXd1Y d2

−
∑
d1≥0

∑
d′

2≥0

hk
d1,d′

2,mXd1

= 1
Y

T (X, Y ) + H(X, Y )−H(X, 1).

We conclude that :

T (X, Y ) = Y

Y − 1 (H(X, Y )−H(X, 1)) . (10)

Now let us focus on the series

Ĝ =
∑

d1≥0,d2≥0

 ∑
d′

1≤d1−1,d′
2≥d2+1

hd′
1,d′

2,m

Xd1−1Y d2+1,

which appears in the second term of the sum in Equation (8). We have that

Ĝ =
∑

d1≥0,d2≥0

 ∑
d′

1≤d1,d′
2≥d2+1

hd′
1,d′

2,mXd1Y d2+1


=

∑
d1≥0,d2≥0

 ∑
d′

1≤d1−1,d′
2≥d2+1

hd′
1,d′

2,m

Xd1Y d2+1 +
∑

d1≥0,d2≥0

 ∑
d′

2≥d2+1

hd1,d′
2,m

Xd1Y d2+1.

We have

Ĝ(X, Y ) = XĜ(X, Y ) + T (X, Y ),
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hence we compute

Ĝ(X, Y ) = 1
1−X

T (X, Y ).

Finally, we obtain

G(X, Y ) = H(X, Y ) + X

Y (1−X)T (X, Y ) + XS(X, Y ) + 1
Y

T (X, Y )

= H(X, Y ) + XS(X, Y ) + 1
(1−X)Y T (X, Y ). (11)

We plug in the expressions obtained in Equations (9) and (10) in the last equality in
Equation (11) and conclude that

G(X, Y ) = H(X, 1)
(1−X)(1− Y ) −

Y H(X, Y )
(1−X)(1− Y ) .

For a fixed value of k, the positive coefficients of Gk
m,n give us values of (d1, d2) for

which the left kernel of Mack
≤d1,≥d2,m(F) is non-trivial. Consequently, for these pairs

(d1, d2) the number of polynomials generated during the pre-processing step, taking into
account the criteria, is given by the coefficient of Xd1Y d2 .

Example 6.1. We are interested in solving a semi-regular polynomial system with m = 160
polynomials and n = 80 variables, which is the set of parameters for one of the recent record
of a polynomial system that was solved over F2 in the Fukuoka Type I MQ challenge [BS23].
By choosing k = 24, we get the following series:

G24
160,80(X, Y ) = − 24X − 1484X2 − 116X2Y − 43124X3 − 4796X3Y + 1816X3Y 2

− 764694X4 − 61086X4Y + 124166X4Y 2 + 20654X4Y 3

− 8869694X5 + 648874X5Y + 4049646X5Y 2 + 1149494X5Y 3

− 27784X5Y 4 +O(X6).

Using this series, we deduce that the number of polynomials generated by the pre-processing
of the Crossbred algorithm (when applying the criteria) for parameters (5, 1, 24) is 648874.

Now that we know how many polynomials are generated by the pre-processing step of
the algorithm, we need to check if it generates enough polynomials for the algorithm to
terminate. To tackle the question of determining admissible parameters for Crossbred, let
us look at a toy example.

Example 6.2. For a system of m = 49 polynomials and n = 23 variables, if we choose
k = 18, the corresponding series is :

G18
49,23(X, Y ) = −18X − 212X2 − 104X2Y − 846X3 − 558X3Y + 66X3Y 2 +O(X4).

Choosing parameters (D, d) = (3, 2), we will generate 66 polynomials. Assuming these
polynomials are linearly independent after assignment of the last n − k variables, we
claim that this is not enough to linearize the specialized system. Indeed, since d = 2,
the Macaulay matrix Mac≤2,49(F∗) has M18

≤2 = 172 columns. After adding the 66 new
polynomials, this matrix has 115 rows. We conclude that (D, d) = (3, 2) and k = 18 are
not admissible parameters for this polynomial system.
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Let R′ = F2[x1, . . . , xk]. Let F = {f1, . . . fm} be a system of polynomials in R
and denote as usual by I the ideal generated by f1, . . . , fm. Then we denote by I∗ =
⟨f∗

1 , . . . , f∗
m⟩, where f∗

i are obtained by assigning the variables xk+1, . . . , xn at any values
(a1, . . . , an−k) ∈ Fn−k

2 .
When d ≥ dsol(k), the matrix Mac≤d,m(F∗) has more rows than columns and it has

full rank. In this case, d is not interesting as input parameter for the Crossbred algorithm
since we do not need any new polynomials generated in the pre-processing step. Indeed,
in this case it suffices to perform exhaustive search, assign the last n− k variables in the
system and solve it (for instance by linearization on the Mac≤d,m(F∗) matrix). This leads
to the following definition.

Definition 7. Let F = {f1, . . . , fm} be a sequence of polynomials in F2[x1, . . . , xn] and
k and γ are such that 0 ≤ k = (1− γ)n ≤ n and F is γ-strong semi-regular. The set of
parameters (D, d, k) is called potentially admissible for the Crossbred algorithm on F if
the following hold:

(1) d < dsol(k) and D < Dreg,

(2) For all (ak+1, . . . , an) ∈ Fn−k
2 \S(I) and the ideal I∗ = ⟨f∗

1 , . . . , f∗
m⟩ obtained by

evaluating f1, . . . , fm at (ak+1, . . . , an) we have that:∑
d1≤D,d2≥d

hk
d1,d2,m + dim I∗

≤d ≥ dim R′
≤d.

Given d < dreg(k), D < Dreg and F a γ-strong semi-regular sequence, condition (2) of
Definition 7 can be written in terms of linear algebra as :

corank(Mk
≤D,≥d,m(F))− corank(Mac≤d,m(F∗)) ≥ 0.

Starting from this observation, we compute the generating series which determines a
certain range of potentially admissible parameters for the Crossbred algorithm.

Theorem 10. Let F = {f1, . . . , fm} be a γ-strong semi-regular sequence of polynomials
in F2[x1, . . . xn] and consider D < Dreg, d < dreg(k). Then k, D and d are potentially
admissible parameters for the Crossbred algorithm if the coefficient corresponding to XDY d

of the following bivariate series

Jk
m,n(X, Y ) = 1

(1−X)(1− Y )

(
(1 + X)n−k(1 + XY )k

(1 + X2Y 2)m
− (1 + X)n

(1 + X2)m
− (1 + Y )k

(1 + Y 2)m

)
(12)

is non-negative.

Proof. To check that condition (2) in Definition 7 is verified, we look at the coefficients of
the following bivariate series :

Gk
m,n(X, Y )−

∑
D≥0

GR/I∗(Y )XD, (13)

where GR/I∗ is defined as in Equation (2). For a fixed value of k, under strong semi-
regularity assumption, the d-th coefficient in the expansion of the series GR/I∗ gives us the
difference between the number of columns and the number of rows in Mac≤d,m(F∗), while
the coefficient before XDY d in the series Gk

m,n gives us the number of new polynomials
that have been generated during the pre-processing step for parameters D and d, and thus
the number of rows that have been appended to Mac≤d,m(F∗) in step (3) of the Crossbred
algorithm. From Lemma 1, we have:[

GR/I∗(Y )
]

dreg(k) =
[

(1 + Y )k

(1− Y )(1 + Y 2)m

]
dreg(k)

. (14)
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Table 1: Example with 5 polynomial systems
seed (D, d) m n k r Mk

≤d 2n−k (#Ind. pol., #Iteration)
261 (4, 1) 59 28 20 108 21 256 (20, 1) (21, 255)
262 (4, 1) 59 28 20 108 21 256 (20, 1) (21, 255)
263 (4, 1) 59 28 20 108 21 256 (20, 1) (21, 255)
264 (4, 1) 59 28 20 108 21 256 (20, 1) (21, 255)
265 (4, 1) 59 28 20 108 21 256 (20, 2) (21, 254)

- (4, 1) 59 28 20 108 21 256 (20, 1.2) (21, 254.8)

Then by replacing Gk
m,n(X, Y ) with its expression computed in Proposition 9, we get the

series claimed in the statement of the theorem.

We can see that the computed generating series for admissible parameters Jk
m,n(X, Y )

is the the one claimed by Joux and Vitse in [JV17].

Example 6.3. We revisit Example 6.1. We compute the degree of regularity of a semi-
regular sequence of polynomials with m = 160 and n = 80 and get Dreg = 8. If the
sequence is γ-strong semi-regular, we get that dreg(24) = 3. We compute the series
Jk

m,n(X, Y ) :

J24
160,80(X, Y ) = − 24X − 1484X2 − 141X2Y − 43124X3 − 4821X3Y + 1675X3Y 2

− 764694X4 − 61111X4Y + 124025X4Y 2 + 22329X4Y 3

− 8869694X5 + 648849X5Y + 4049505X5Y 2 + 1151169X5Y 3

− 5455X5Y 4 +O(X6).

The parameters (D, d) = (3, 2) and (D, d) = (5, 1) are potentially admissible as they satisfy
the conditions of Definition 7. By picking (3, 2), we will have a less costly pre-processing
(in terms of both time and memory), while by choosing (5, 1) the resolution during the
specialization will be faster. This is impactful since we have to test up to 2n−k = 256

values. The choice of optimal parameters depends on the implementation and resources
available and is beyond the scope of this paper.

7 Experiments
In this section we show experimental evidence supporting the conjecture that potentially
admissible parameters are indeed admissible (see Table 2).

We implemented Algorithm 1 in Magma including the General and the Frobenius
criterion when constructing Macaulay matrices (see Prop. 1 and 2) and ran experiments
over pseudo-random polynomial systems. Polynomials systems used in the experiments
are obtained by using Sedlacek’s implementation [Sed22] of Beullens’s differential attack
on Rainbow instances [DS05, Beu22]. We also experimented with polynomials systems
from the Fukuoka Type I MQ challenge [YDH+15, Yas15]. Data in Tables 1, 2 and 3 is
obtained by generating polynomials in the pre-processing step of Algorithm 1 for different
choices of parameters. In these Tables we use the following notation :

• As usual D, d and k are the input parameters for the algorithm and m and n denote
the number of polynomials and the number of variables of the system, respectively.

• r corresponds to the number of polynomials generated by the pre-processing step of
the Crossbred algorithm.

• Mk
≤d denotes the number of monomials of degree ≤ d over k variables. This is the

number of polynomials needed to successfully solve the degree d system obtained
after assigning the last n− k variables, by linearization.
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Table 2: Experimental data on the Crossbred algorithm for admissible parameters
(D, d) m n k r Mk

≤d 2n−k (#Ind. pol., #Iteration) Dreg dreg(k)
(4, 2) 49 23 18 3608 172 32 (171, 1.3) (172, 30.7) 4 3
(4, 2) 49 23 17 4130 154 64 (153, 1.1) (154, 62.9) 4 3
(4, 2) 40 20 17 2240 154 8 (153, 1) (154, 7) 4 3
(4, 1) 49 23 18 1944 19 32 (18, 1.3) (19, 30.7) 4 3
(4, 1) 49 23 17 2216 18 64 (17, 1.1) (18, 62.9) 4 3
(4, 1) 40 20 17 1568 18 8 (17, 1) (18, 7) 4 3
(3, 1) 47 22 11 256 12 2048 (11, 1.2) (12, 2046.8) 4 3

Table 3: Experimental data on the Crossbred algorithm for non-admissible parameters
(D, d) m n k r Mk

≤d 2n−k (#Ind. pol., #Iteration) Dreg dreg(k)
(3, 2) 49 23 18 66 172 32 (115, 32) 4 3
(3, 2) 53 25 19 38 191 64 (91, 64) 4 3
(3, 2) 55 26 19 76 191 128 (131, 128) 4 3
(3, 2) 57 27 19 114 191 256 (171, 256) 4 3

Recall that during the exhaustive search step of the algorithm we evaluate the newly
generated polynomials in the last n− k variables and add them to the degree d Macaulay
matrix of the specialized system Mac≤d,m(F∗). Then we count how many independent
polynomials there are for each iteration of the exhaustive search. Each of the couples for
an entry in the last column of Table 1 gives the number of independent polynomials and
the number of iterations of the exhaustive search for which we obtained this value.

In Table 1, we experimented using 5 polynomial systems obtained using the generator
in [Sed22], using a different seed each time to ensure that these systems are distinct. As
expected, for each of these 5 polynomial systems, the pre-processing step of Algorithm 1
outputs exactly the same numbers of polynomials, which is 108. Since n = 28 and k = 20,
we search through 2n−k = 256 different values for the last n− k variables. We see that for
all possible values, except for one or two, the maximal number of independent polynomial
after specialization is 21 = k +1. This is similar to the test of consistency done in [BFSS13]
in the sense that if the ideal I∗ has no solution, then corank(Mac≤1,59(F∗)) = 0, which
means that the matrix has full rank. Otherwise, if the ideal I∗ has a solution, then
corank(Mac≤1,59(F∗)) ̸= 0 which implies the matrix will not reach full rank. We see that
each seed has one solution except for seed 265 which has two solutions.

The last row in Table 1 computes the average number of independent polynomials
obtained after specialization, for this set of 5 polynomial systems.

In Table 2 we re-do the experiment and compute the same average, for different sets of
admissible parameters. Whenever m = 2n, the data is obtained with polynomials from the
Fukuoka MQ challenge. To obtain this data for the Fukuoka MQ challenge, we took the
five available polynomial systems available in [Yas15] for any n and m, and computed the
average of the result for each system. Every polynomial system gave the same result in
the experiment. When m ̸= 2n, the data is obtained with polynomials systems generated
by Sedlacek’s implementation. For that, we generated distinct polynomials systems with
different seeds. The number of generated polynomials is the same for each seed, which was
expected, and the number of solution in each system varies between one or two depending
on the seed.

Finally, Table 3 shows similar experiments for non-admissible parameters, (i.e., when
m + r < Mk

≤d). In this case, we see that the m + r polynomials of degree d are independent
after specialization, which confirms our γ-strong semi-regularity hypothesis.
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A Proof of Lemma 1
Proof. Since F is affine semi-regular, from Definition 3 the homogeneous sequence F top =
{f top

1 , . . . , f top
m } is semi-regular in Rh

n. We denote by Dreg the degree of regularity of
F top. Since there are no falls of degree when echelonizing the matrices Mac≤d,m(F), for
d < Dreg ([Bar04, Section 3.5]), the truncation up to Dreg of the expansion of the series
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∑
d≥0

(
#Col(Mac≤d,m(F))−#Row(Mac≤d,m(F))

)
Xd,

where #Row and #Col represent respectively the number of rows and of columns of the
matrix given in argument.

We denote by Md the number of monomials of degree d in Rh
n. Note that

#Col(Mac≤d,m(F)) =
∑
d′≤d

Md′ .
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We denote by ∆d(F) = Md −#Row(Macd,m(F)) and compute G̃R/I(X) as follows:

G̃R/I(X) =
∑
d≥0

∑
d′≤d

∆d′(F)

Xd

=
∑
d≥0

∆d(F)Xd + X
∑
d≥0

∑
d′≤d

∆d′(F)

Xd.

We consider the series:

H̃F R/Itop(X) =
∑
0≤d

∆d(F)Xd =
∑
0≤d

(
Md −#Row(Macd,m(F))

)
Xd,

Since F top = {f top
1 , . . . , f top

m } is semi-regular in Rh
n, [H̃F R/Itop ]Dreg

is exactly the Hilbert
series of F top. We have:

G̃R/I(X) = H̃F R/Itop(X) + XG̃R/I(X).

Hence

G̃R/I(X) =
H̃F R/Itop(X)

(1−X) .

Then, replacing [H̃F R/Itop(X)]Dreg
by the expression given in Equation (1) concludes the

proof.

B γ-strong semi-regularity
In this appendix, we show experimental evidence supporting the claim that random
polynomials sequences are γ-strong semi-regular, for small enough γ = 1 − k/n. In
particular, in our experiments, random polynomial sequences, which we know to be semi-
regular [BFS03], remain semi-regular, for all assignment of the last n− k variables, when
γ is smaller than an upper bound that we give below.

To test the semi-regularity of the specialized sequence F∗, we compute the Macaulay
matrix Macd,m((F∗)top), for all d up to dreg(k). If there is no other reduction to zero
between the rows of this matrix than the ones arising from the criteria when d < dreg(k),
then F∗ is semi-regular.

In Table 4 we show that experimental results confirm our assumption. In the fourth
column of this Table, we give the value of dreg(k), computed using the series in Equation (1).
In the fifth column, we give the value of γ, rounded with three decimals. In the seventh
column, we compute the numbers of rows and columns of Macd,m((F∗)top) and its rank,
for successive values of d. For a fixed value of d, the rank did not change depending on
the specialisation. Since the matrix has less rows than columns and it has full rank for
d < dreg(k), for all possible values of the last n− k variables, we conclude that all F∗ are
semi-regular. Thus, F is γ-strong semi-regular.

Note that this does not hold for every value of γ. Indeed, if k is too small and the
number of rows of Mac2,m((F∗)top) is greater than its number of columns, then condition
1. of Definition 2 is not fulfilled. Hence the sequence F∗ is not semi-regular. That leads us
to compute a lower bound on k (which is equivalent to an upper bound on γ). To find it,
we search k such that the number of columns of Mac2,m((F∗)top) is less that the number
of rows, which gives the following inequality:
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(
k

2

)
< m. (15)

This inequality has one positive root k1, which yields a lower bound on the values of k
for which F is γ-strong semi-regular series. For m = 49, this is equal to k1 ≈ 10.41. As
such, for a sequence F of 49 polynomials and 23 variables, if k ≤ 10 (which corresponds
to γ ≈ 0.565), then F is not γ-strong semi-regular as the specialized sequence is not
semi-regular.

Table 4: Experimental data for γ-strong semi-regularity
m n k dreg(k) γ d (# rows, # columns) Rank of Macd,m((F∗)top)
49 23 18 3 0.217 2 (49, 153) 49

3 (882, 816) 816
49 23 17 3 0.261 2 (49, 136) 49

3 (833, 680) 680
49 23 12 3 0.478 2 (49, 66) 49

3 (588, 220) 220
53 25 19 3 0.24 2 (53, 171) 53

3 (1007, 969) 969
59 28 25 4 0.107 2 (59, 300) 59

3 (1475, 2300) 1475
4 (36875, 12650) 12650

59 28 18 3 0.357 2 (59, 153) 59
3 (1062, 816) 816
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