
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 3, 19 pages.

https://doi.org/10.62056/ab89ksdja
Check for updates

Efficiently Detecting Masking Flaws in Software
Implementations

Nima Mahdion1 and Elisabeth Oswald1,2

1 University of Klagenfurt, Digital Age Research Centre, Klagenfurt, Austria
2 University of Birmingham, Computer Science, Birmingham, United Kingdom

Abstract. Software implementations of cryptographic algorithms often use masking
schemes as a countermeasure against side channel attacks. A number of recent results
show clearly the challenge of implementing masking schemes in such a way, that
(unforeseen) micro-architectural effects do not cause masking flaws that undermine
the intended security goal of an implementation. So far, utilising a higher-order
version of the non-specific (fixed-vs-random) input test of the Test Vector Leakage
Assessment (TVLA) framework has been the best option to identify such flaws. The
drawbacks of this method are both its significant computation cost, as well as its
inability to pinpoint which interaction of masking shares leads to the flaw. In this
paper we propose a novel version, the fixed-vs-random shares test, to tackle both
drawbacks. We explain our method and show its application to three case studies,
where each time it outperforms its conventional TVLA counterpart. The drawback of
our method is that it requires control over the shares, which, we argue, is practically
feasible in the context of in-house evaluation and testing for software implementations.
Keywords: Side Channels · Leakage Assessment

1 Introduction
Secure implementations of cryptographic algorithms must consider defences against side
channel adversaries. The canonical implementation strategy to provide (provable) security
guarantees against side channel adversaries is masking: all sensitive intermediate values
in an implementation are represented via multiple, statistically independent, shares.
Practically evaluating the security of a concrete masked implementation can be done either
via specific attacks (e.g. differential input attacks such as [Koc96, BCO04, CRR02]) or
via a process called non-specific detection as part of a process called test vector leakage
assessment (TVLA) [GGJR+11, SM15]. Both methods have advantages and disadvantages,
and both are used in formal evaluation schemes [FIP19, Com17].

For an informal evaluation, which may be carried out by cryptographic software
engineers during the implementation process, the speed and ease by which non-specific
first-order leakage detection can be performed makes it a convenient tool for first-order
leakage assessment. However, as soon as one wishes to determine the security level of an
implementation against higher-order adversaries, or, if one wishes to determine if there are
flaws in an implementation, even TVLA can become cumbersome. Recall that a masking
scheme with d shares may (theoretically) offer provable security against an adversary who
can exploit the o-th moment of a distribution (o ≤ d − 1) that they can generate from
the measured traces. A flaw in a masking scheme refers to an unknown (and undesired)
interaction between the shares of a sensitive intermediate, which could lower the envisioned
security goal. An evaluation of such an adversary therefore must encompass processing

E-mail: m.e.oswald@bham.ac.uk (Elisabeth Oswald)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-07-08 Accepted: 2024-09-02

https://doi.org/10.62056/ab89ksdja
https://crossmark.crossref.org/dialog/?doi=10.62056/ab89ksdja&domain=pdf&date_stamp=2024-10-01
https://orcid.org/0000-0001-7502-3184
mailto:m.e.oswald@bham.ac.uk
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Efficiently Detecting Masking Flaws in Software Implementations

traces in such ways prior to launching non-specific detection. This processing is time
consuming and the non-specific detection thereafter requires considerably more traces to
return statistically significant results than the corresponding first-order testing [SM15,
DS16a, DCE16, Sta18, MRSS18, ZQO19, BSS19, MWM21, YJ21, WTW+22].

1.1 The Pain of Evaluating Software Implementations
Even moderately complex processors, such as mid market processors based on the popular
ARM Cortex M architecture [ARMa], create considerable challenge for cryptographic
software implementations due to a range of different micro-architectural effects [MPW22].
These effects are known to be different for processors even if they are part of the same pro-
cessor family from one vendor, as impressively demonstrated in [MPW22]. Consequently,
an implementation that may be secure on one processor could be insecure on another
processor (even when both are from the same family of processors by the same vendor).
This implies that an implementation has to be tested on each processor, and if fails the
desired security level, it may fail for different reasons.

The process of higher-order TVLA helps to identify if an implementation does not reach
its desired security goal. However, its use to detect differences in higher order moments
leads to an exponential (in the tested moment) increase in the number of traces, and
one does not learn which shares are responsible for the problem: this makes finding and
resolving the problem difficult.

Many papers have been written that consider (higher order) statistical aspects of the
TVLA process, such as [MOBW13, SM15, DS16b, Sta18, DZD+17], from an efficiency
point of view. Our work complements these by determining what leaks (i.e. we aim to
identify the combination of shares that causes the problem).

1.2 This Work
Contributions. Given an implementation with d shares, we present a novel process that
determines the combinations of shares that cause masking flaws. A masking flaw is due to
an unintended combination of shares (often due to unknown micro-architectural properties
of a processor), and it leads to not meeting the security goal of an implementation. Our
process makes the assumption that in an “in-house” evaluation of cryptographic software,
it is possible to control the values that shares take. Our process then re-interprets the
“fixed vs. random” test paradigm of TVLA by fixing (some of) the shares and randomly
choosing the rest. It turns out that this approach requires fewer traces to identify flaws
than the application of a conventional higher-order TVLA. By combining knowledge about
the implementation, and the time point of the identified flaw, we can, using the information
about the fixed shares, relatively easily identify what causes the flaw.

We then show how to apply our process to three multiplication gadgets (ISW, DOM-
indep, HPC-1) [ISW03, GMK16, GMK17, CGLS21] when implemented on a typical
mid range processor. The gadgets satisfy two different security notions: t-probing and
glitch-robust probing. We show that even for the gadgets that satisfy the (rather strong)
glitch-robust probing definition, micro-architectural events cause them to fail at an order
lower than the proven order. We relate the identified problem to the Assembly source
code, which goes some way to fix the problematic piece of code.

All examples are available via https://github.com/sca-research/SEAL_Gadgets; a
public repository that includes Assembly sources to gadgets, analysis scripts, and a link to
the traces that we acquired and used in our analyses.

Limitations. The clear limitation of our approach is that it requires control over the
choice of the shares: we argue that in a software implementation this is always possible
(e.g. by manipulation via the software interface). In a dedicated hardware implementation

https://github.com/sca-research/SEAL_Gadgets

Nima Mahdion, Elisabeth Oswald 3

this should also be possible when simulating power traces directly from the hardware
description, but it may not be possible when working post-silicon without direct access to
the randomness.

Outline. We structure this paper as follows. In Sec. 2 we introduce notation and review
the necessary facts around tests of distribution means as well as trace complexity estimates.
In Sec. 3 we explain our new process. In Sec. 4 to Sec. 6 we give the three case studies.

2 Preliminaries
We briefly set out the notation that we use throughout this paper, and then review the
necessary facts around testing distribution means, as well as the principle underlying the
process of non-specific leakage assessment.

2.1 Notation
Leakage traces are vectors over real numbers, and all the tests that we consider in this
paper treat the vector elements independently, i.e. we only consider univariate statistics.
The random variable t refers to a trace point, which can also be understood to be a random
variable, and any index to t (e.g. tF , or tR) further qualifies this random variable. The
exact meaning of the qualifier will be clear from the text, but we reserve the letters F and
R to refer to a “fixed input” and “random input” (i.e. tF implies that the random variable
relates to a measurement with fixed input). Because the distribution of t is typically
unknown, we can only work with samples drawn from t, and unless stated otherwise, we
assume that we get n such samples. We refer to the probability of incorrectly identifying
data dependency with the letter α (the false positive rate), and we refer to the probability
of incorrectly failing to identify data dependency via β (the rate of false negatives).

A natural number x can be shared into d + 1 (Boolean) shares: x = x0 ⊕ x1 ⊕ · · · ⊕ xd.
Considering the d + 1 shares of x as a set, the power set P(x) is the set of all subsets of of
shares. For instance if x = x0 ⊕ x1 then the power set for the set of shares is {x0, x1} is
P(x) = {{}, {x0}, {x1}, {x0, x1}}.

2.2 Experimental Setup
In our experiments, we utilise software implementations of three different multiplication
(c = a · b) algorithms (gadgets), which are based on using 3 shares (we provide brief
background for each gadget in the respective section later in this article).

The target device is a 32-bit ARM Cortex-M3 microprocessor located on a SCALE
board [Pag] running at 2 MHz. For convenience, all input shares (including shares of a, b
and randomnesses) are generated externally and then sent to the device. The information
leakage from this data transfer is not utilised in our analysis, i.e. all our traces refer
strictly to the multiplication gadgets processing only. The acquisition is performed using a
Picoscope 5243D digital oscilloscope sampling at 250 MS/s where each cycle is sampled
with 125 points.

Due to our target platform, all implementations are using Thumb-16 instructions
[ARMb]. The implementations proceed sequentially, operating on byte-wise data, including
inputs, intermediate values and outputs over the field F2n . The key operation in these
implementations is the Galois field multiplication for multiplication of shares (e.g. a1 · b2).

Over F2, the multiplication of shares (e.g. a1 · b2) is easy to implement. However, over
F2n , an efficient software implementation on a commodity process often requires some
trickery because no dedicated modular multiplication is available. As comprehensively
investigated in [GR17], a common implementation choice is to add the (base 2) logarithm

4 Efficiently Detecting Masking Flaws in Software Implementations

of the numbers: a · b = 2log(a)+log(b), which in turn requires to compute their logarithm and
anti-logarithm. This can be done easily by storing and using a logarithm and anti-logarithm
table.

We used this implementation option for all gadgets. Thus each time a multiplication
needs to be performed, the implementation converts both operands for the multiplication
via the logarithm table, it then performs an addition over the respective finite field, and
then converts the result back via the antilogarithm table.

In our assembly implementation, the logarithm and antilogarithm tables are stored in
memory starting from an address that is kept in the internal register r11 (we move this
into a lower register as and when needed). The shares are located in memory as well and
are retrieved from their respective addresses as needed.

We compile the source codes using GNU Arm Toolchain (arm-none-eabi-gcc 10.3-
2021.10) avoiding compiler optimisations by utilising the -0s flag for size efficiency in the
C code section during compilation.

2.3 Testing Distribution Means
All tests in this paper are based on the following two-sided hypothesis test for the (difference
of) means of two normal distributions t1 − t2 ∼ N (µ = µ1 − µ2, σ), where µ1, µ2 and σ
are unknown parameters:

H0 : µ = µ0 vs. Halt : µ ̸= µ0. (1)

In the leakage detection setting we are interested to test for a non-zero difference and thus
we set µ0 = 0.

The canonical test for distribution means, is the Student t-test [Stu08], which assumes
equal sample sizes and population variances (as implied by our explanation before). One
can determine the necessary sample size to achieve some desired combination of α, β (and
some fixed/implied difference between the means µ1 − µ2) via:

n ≥ 2 ·
(zα/2 + zβ)2 · (s1

2 + s2
2)

(µ1 − µ2)2 , (2)

(si are the unbiased estimators of the population variance), this formula can be found in
any standard statistics textbook). In the case of non-specific leakage assessment, which is
what we will consider next, the situation is slightly different: here we have to deal with
sets of unequal variance. As a (non-trivial) consequence, there is no explicit formula for
the sample size available. Instead, sample sizes must be derived via an iterative numerical
process, which however starts with the application of Eq.(2), see [JS11]. Consequently,
Eq.(2) is an approximation of the true sample size, and we will use it to argue why the
method that we suggest in this paper is more trace efficient than previous work.

2.4 Non-specific Leakage Assessment (as defined by TVLA)
The TVLA framework was presented at the 2011 Non-Invasive Attack Testing workshop
organized by NIST [GGJR+11]. It suggests using statistical hypothesis testing to reject (or
not) the null hypothesis of “no data dependency” against the alternative hypothesis (“data
dependency”). The core idea for the test, which is called non-specific leakage assessment,
works as follows:

• An acquisition of size n is taken as the device operates with a fixed key on a fixed
plaintext chosen to induce certain values in one of the middle rounds of a given
encryption scheme. At least two different fixed inputs should be used.

Nima Mahdion, Elisabeth Oswald 5

• An acquisition of size n is taken as the device operates with the same fixed key on
random inputs.

• Welch’s t-tests [Wel47] are performed, setting α ≈ 0.00001, comparing the population
means of each fixed input set with a random input set.
Thus we test the hypotheses that the mean of the fixed trace set is equal to the mean
of the random trace set (akin to “no data dependency”):

H0 : µF = µR vs. Halt : µF ̸= µR. (3)

One concludes that there is data dependency if both (or all) tests reject the null hypothesis
(“no data dependency”) in the same data points.

2.4.1 Extension to Masked Implementations

Practical implementations of cryptographic algorithms typically utilise some secret sharing
technique to provide provable security guarantees in the presence of side channel leakage.
This implies that all sensitive intermediate values are represented by d + 1 shares, and
any concrete masking scheme specifies an algorithm that ensures (at least at the level of
the mathematical description) that shares are only processed in ways that joint leakage
between shares of the same variable are avoided. The security proof of a masking scheme
then makes clear up to which order (i.e. number of shares considered jointly) the scheme
should be secure. Flaws in practical implementations arise when shares are manipulated
concurrently in an implementation, which may lead to multiple shares leaking jointly in a
trace point. In such cases, an implementation will permit an attack below the security
order that is stated by the proof.

TLVA can be used to test concrete implementations of masking schemes, and to find
such flaws. An in-depth explanation of how to use TVLA to assess masked implementations
can be found in [SM15]. We informally summarise the method that is relevant for detecting
typical flaws in software implementations. Assume an implementation with d + 1 shares,
that theoretically supports security of up to order d. We wish to test for flaws, i.e.
combinations of up to d trace points where the non-specific detection described previously
indicates information leakage. We must thus consider all combinations of up to d trace
points. We start from a sanity check at order d = 1 (using TVLA as described in the
previous section with the Welch t-test) and then progress by increasing d and applying
TVLA to all combinations of d points1.

This process is very costly, not only because all d combinations of trace points have to
be produced (leading to very long traces), but also because the pre-processed trace now
consist of points with a much higher variance than the original traces (e.g. if pre-processing
is based on multiplying trace points, then the newly create points have their variance
multiplied too). The fact that the variance increases significantly increases the number of
traces that is needed for the test to reach statistically significantly results (i.e. to have the
same α and β as in the case without pre-processing) — this fact is clear from Eq. 2 (the
variance of both trace sets is the dominant factor in determining the sample size).

2.4.2 Related previous work

The Welch t-test has several configuration options that are relevant for the application in
detecting leakage.

Relating to the trace efficiency (i.e. n in Eq.(2), is the choice of the two groups for the
test. According to the TVLA specification, one group corresponds to a fixed input value,
and one group corresponds to randomly chosen inputs. This may look like an odd choice

1The canonical combination function is the mean-free product, see [SM15].

6 Efficiently Detecting Masking Flaws in Software Implementations

for the two groups: after all, why not choose two fixed (but different) inputs? The reason
is that it is possible (or even likely) that two (out of many) randomly chosen inputs may
not lead to two different distributions. Thus if we were only to pick two inputs at random,
we might incorrectly conclude that there is no leakage. The workaround then is to either
choose many pairs (and hope that at least one pair can indicate leakage) or, to allow the
input in one group to vary (and hope that the mean across many fixed inputs is different
to the mean of any individual input).

However, the fixed-vs-fixed test was in fact advocated in a later paper [DS16a]. Consid-
ering Eq.(2) we can motivate why a fixed-vs-fixed approach might be appealing: by either
lowering the numerator (i.e. reducing the group variances) or increasing the denominator
(i.e. increasing the distance between the group’s means) we can lower n (the number of
necessary traces). By fixing both inputs, we can ensure a low variance in both groups
(as we fix the inputs, there can be no data dependent variance, in contrast to allowing
one input to vary). By carefully choosing both inputs, we may be able to increase the
difference in means. This typically requires some knowledge about the leakage behaviour
of the device. For instance, if one expects to detect leakage from data transfer operations,
then often these leaks are due to the Hamming weight of operands. Thus, if we suspect
leakage in a specific intermediate value, we could choose the two groups for the detection
test that maximise the Hamming distance between the groups.

The fixed-vs-fixed test was subsequently selected as the method of choice in [Rep16]
to detect flaws in masking schemes in an efficient manner. The focus of this work was to
optimise the existing TVLA setup, both in terms of trace efficiency as well as computational
efficiency. Complementary to these previous works, our paper here focuses on identifying
which shares contribute to identified leakage. In other words, we aim to increase the
explainability of detection outcomes in a way that helps fixing implementation problems.
Our method adds to the research contributions towards “explainability” in the sense
that an implementer can narrow down the origin of leakage in a piece of code. This
enables easier fixing of the problem on the code level, and it may help explain the problem.
However, a full explanation of a leak in software will require detailed information about
the micro-architecture of a device, which typically is not available to the software designer.
Thus, there is a limit to the depth of the explanation in this situation. Coincidentally, our
method also increases the trace efficiency of the method.

3 Fixed vs. Random Subset of Shares Test
As explained before, detecting an o-th order flaw in a masking scheme with d shares
requires pre-processing of traces when using fixed-vs-random input TVLA. This significantly
increases the computational effort, both in terms of the number of traces to have robust
statistics as well as in the length of the traces that one must work with. Besides the
computational drawback, we do not learn which shares contribute to the identified flaw
with the identified time points.

To overcome both problems (computational overhead and lack of “hints” to fix the
problem), we now suggest to take full advantage of the white-box situation in an in-house
evaluation: when working with software it is typically easily possible to take control over
how shares are being sampled. With this capability, a natural approach would then be
to reconsider the fixed-vs-random input principle, and turning it into a fixed-vs-random
shares approach.

3.1 Fixed-vs-Random Shares Test
Concretely, consider an implementation with d shares, for which we wish to identify all
points with an o-th order flaw, i.e. points where o shares leak jointly. This implies, that we

Nima Mahdion, Elisabeth Oswald 7

do not make any assumption regarding the (non)-existence of first-order leakage, instead,
thus we also test o = 1 in our approach. With control over the selection of shares, we can
do this elegantly by repeating the following (for all desired share combinations):

Fixed: Select a subset of shares of cardinality o, i.e. y ∈ P(x) with |y| = o, and fix the
values of the shares in this subset. Select the remaining shares at random.

Random: Select all shares at random.

H0 : µFy
= µR vs. Halt : µFy

̸= µR. (4)

This configuration now fixes o out of d shares and we can instantiate with it a first-order
test for distribution means. The test will return trace points that depend on the joint
distribution of o shares, without the need for any pre-processing. Consequently, we confirm
what shares contribute to the data dependency in a trace point without the need for
increasing the number of traces and without increasing the length of traces (at the expense
of controlling the share generation).

3.2 Fixed-vs-Random Shares Test to Identify Transitional Leakage
We can refine the basic idea and tailor it specifically to identify transitional leakage,
which has been reported as a source of many real-world implementation flaws in previous
work [MPW22, BGG+14]. Fixing and mitigating transitional leakage is therefore a
particularly relevant goal in software implementations. Transitional leakage can often be
relatively easily mitigated, either by swapping Assembly instructions, or, by interleaving
Assembly instructions with instructions operating on independent data.

In the context of real-world software implementation, a likely implementation choice
for cryptographic software that needs to support the common AES standard [NIS01], is
to utilise a Boolean masking scheme with three shares. This means that any sensitive
intermediate value x is represented by the three shares x0, x1, x2 (and x = x0⊕x1⊕x2). The
elements of the the power set of x with two shares are thus {{x0, x1}, {x0, x2}, {x1, x2}}.
The refinement to identify transitional leakage in such a three share scenario works as
follows:

Fixed: Select a subset of shares of cardinality 2, i.e. y ∈ {{x0, x1}, {x0, x2}, {x1, x2}},
and fix the exclusive-or sum of the values of the shares in this subset. Select the
remaining shares at random.

Random: Select all shares at random.

H0 : µFy
= µR vs. Halt : µFy

̸= µR. (5)

We note that this adaptation has the advantage over the generic o-th order test that
we now only fix the sum over o shares, rather than the o shares themselves, which enables
us to sample more traces for the fixed class.

3.3 Computational Cost
Our test configuration works directly on the side channel traces. Consequently, the number
of side channel traces to reach a specific rate of false positives and negatives (for the distance
between the sets that is implied by the fixed vs random setup) can be approximated by
Eq.(2). It is proportional to the variances of the traces.

In contrast, let us consider how we could detect such points with the classical fixed-
vs-random input setup. Here, we cannot fix shares, but only the inputs, which implies

8 Efficiently Detecting Masking Flaws in Software Implementations

that we must pre-process traces to exhibit joint leakage within a trace point. Let us
consider two trace points: one point jointly leaks (xi, xj) and one trace point leaks xk

(with i, j, k ∈ {0, 1, 2}). Two determine both points, we need to apply the “mean-free
product” preprocessing method [PRB09]. Multiplying two trace points implies that (at
least) we need to consider their product distribution for the number of necessary traces
calculation. The distribution of the product of two independent normal distributions is
well understood, and at least approximately, the number of traces is then again given by
Eq.(2). The variance of the product distribution increases exponentially by a factor of 2,
implying a significant increase in the number of traces via Eq.(2).

Clearly then, if it is possible to select shares, then our fixed-vs-random shares test is
computationally significantly cheaper than the corresponding classical fixed-vs-random
input test with preprocessing.

3.4 Extension to Arbitrary Masking Orders
We can apply our methodology to evaluate any arbitrary masking scheme with d + 1 shares
by considering all combinations of m shares (1 ≤ m ≤ d) from the d + 1 shares of x. For
an exhaustive evaluation the total number of tests is:

m=d∑
m=1

(
d + 1

m

)
= 2d+1 − 2. (6)

The previous discussion of the trace efficiency still applies to all of these individual tests:
each test has a trace efficiency that directly depends on the variance of the unprocessed
traces, thus each test remains trace efficient (but the number of tests grows exponentially).

In practical software implementations, we would expect that flaws mostly occur due
the joint interaction of two or three shares because of the limited complexity of embedded
processors (often featuring only a three stage pipeline, limited or no out-of-order execution).
Furthermore in practice, a masking scheme may only be required to give order o security
with o being relatively lower than d + 1. Thus we conjecture that an exhaustive testing
of all share combinations is not necessary in practice. When considering joint leakage of
o < d + 1 shares, then our method is particularly appealing, because the trace complexity
is bounded by (order of)

(
d+1

o

)
tests (whereby each test requiring n traces).

3.5 Application Across Different Devices
We mentioned before the pain of evaluating software implementations, because the same
implementation may be secure one device, but insecure on another. Thus, implementations
are typically not portable, but statistical analyses can be. Our method is applicable to
all devices that feature certain statistical characteristics that are assumed for TVLA-like
tests: these boil down to having additive independent Gaussian noise on trace points.

(1) In this paper we position our method as particularly suitable for software implemen-
tations on typically embedded processors. This point of view is driven by the requirement
of our method to “control” the randomness of the shares. From our understanding, which
is based on some interaction with actual evaluators, access to and control over randomness
can be available in both software and hardware implementations.

In software implementations, if share generation takes place as part of the masking
scheme (by sampling randomness), then, we argue, it should always be possible to craft
this shares’ generation code according to the requirements of our testing method. This
piece of code is typically executed at the start of the encryption method, and thus its
influence on leakage is typically isolated from the masked encryption. Refreshing and
remasking are typically also separated into specific functions and thus also their impact on
the leakage of the masked encryption should be minimal.

Nima Mahdion, Elisabeth Oswald 9

In hardware implementations, the initial generation of shares also takes place at the
beginning of the execution, but it may be that share refreshing happens in parallel to the
masked round functions. We did not consider the impact of such a situation in our work so
far. If a hardware implementation is considered with limited parallelism, then control over
the share generation and share refreshing should enable the application of our method as
described in this paper.

4 Case Study: 3-share ISW
The first masked multiplication using an arbitrary number of shares was described by
Ishai et al. [ISW03] over the finite field F2, providing security for up to order d/2 when
using d + 1 shares. We shall use the shortcut ISW to refer to their multiplication. Later
on, Rivain and Prouff [RP10] showed that the same construction also applies when
working over F2n , and that order d security could be reached when using d + 1 shares. For
convenience, we provide a high-level description of the multiplication (with d + 1 shares)
in Alg. 1.

Algorithm 1 ISW multiplication gadget
Require: shares ai, bi (0 ≤ i ≤ d) such as a = ⊕d

i=0ai, b = ⊕d
i=0bi

Ensure: c0, ..., cd such that c = ⊕d
i=0ci = a · b

1: for i = 0 to d do
2: for j = i + 1 to d do
3: rij

$← {0, 1}n

4: rji ← [rij ⊕ (ai · bj)]⊕ (aj · bi)
5: end for
6: end for
7: for i = 0 to d do
8: ci ← (ai · bi)
9: for j = 0 to d do

10: if i ̸= j then
11: ci ← ci ⊕ rij

12: end if
13: end for
14: end for
15: return c0, ..., cd

One can see that in Alg. 1, one proceeds by creating the rij and rji values, and
thereafter they are exclusive-ored to the output shares: ci = ai · bi ⊕ rij . This invites
an implementation where the ci are initialized as ai · bi and then, the necessary rij are
produced and exclusive-ored to the ci. The proof for the construction is agnostic to this
kind of re-ordering.

4.1 Detecting a Flaw
Recall that we specifically look for transitional leakage. The combination of two shares
of a happens only during a specific part of the multiplication algorithm. Thereafter, this
result is stored and re-used, but the leakage from having e.g. a1 and a2 simultaneously in
the micro-architecture is no longer present. Consequently, the subsequent explanation and
figures only show the clock cycles up to the relevant event.

We applied the fixed-vs-random shares test to this implementation. We found that
when we fix the exclusive-or of second and third share of a (a1 ⊕ a2), we find that, using

10 Efficiently Detecting Masking Flaws in Software Implementations

3000 traces, the t-test value crosses our decision boundary in clock cycle 205 (see left
plot in Fig. 1). This indicates that using just 3000 traces, there is enough evidence to
conclude that the distributions are distinguishable. Relating the offending clock cycle to
our Assembly code indicates that in clock cycle 205, the intermediate a2 · b2 is loaded (i.e.
the share c2 is being calculated).

With this information we can set up an analogous, and confirmatory, analysis with the
fixed-vs-random input test for masked implementations: we consider combinations of other
traces points with the trace point at cycle 205 (i.e. we perform a second-order analysis).
For ease of visibility we include a plot that relates only to a part of the analysis, see the
right panel of Fig. 1. This right panel shows that at the point 170 (the combination of
point 41 at cycle 151 and point 45 at cycle 205) the decision threshold is crossed, which
leads to the conclusion that there is information leakage at order 2. In contrast to the
fixed-vs-random shares test, we now need 1.6 million traces.

(a) Fixed-vs-random shares test on a1 and
a2, 3K traces, leakage at cycle 205

(b) Second-order multi-variate t-test (1.6M
traces), combining cycles 151 and 205

Figure 1: Analysis of ISW 3-shares

4.2 Diagnosing the problem
We already know that at clock cycle 205 the value a2 · b2 is loaded. The Assembly
implementation is faithful to the high level description, thus it is likely that some micro-
architectural effect is causing the unintended information leakage. We thus consider what
happens in the clock cycles around, before, and after clock cycle 205. We show this
by including the relevant snippet from our Assembly implementation (for the sake of
readability we remove all the irrelevant lines of code) below:

194 ldrb r5 , [r4 , r2] @ r5 = a1*b2
[...] (no memory instructions between the loads)

205 ldrb r5 , [r2 , #8] @ r5 = a2*b2

Listing 1: ISW 3-shares

The snippet shows that the nearest use of the register r5 in the code occurs in clock cycle
194, when the register r5 contains the value of a1 · b2.

Let us consider why this happens. The implementation computes a1 · b2 in cycle 194,
then exclusive-ors the random value r12 (as per the algorithm), and then proceeds to
compute a2 · b1. Because the algorithm requires to add a2 · b1 and then immediately add
a2 · b2, the implementation loads a2 · b2 right after adding the mask r12 to a1 · b2. Whilst
this does not invalidate the proof, it does create the opportunity for micro-architectural
leakage between a1 · b2 and a2 · b2 even though the random r12 was added in the mean time.
This is because the implementation does not require any instruction between clock cycle

Nima Mahdion, Elisabeth Oswald 11

194 and 205 that uses the memory bus, which means that on this bus we have the values
a1 · b2 and a2 · b2 consecutively, leading to well known transition leakage b2 · (a1 ⊕ a2) in
clock cycle 205. This transition leakage can reveal information about a when combined
with another trace point that leaks on a0, which clearly must at some point happen in the
implementation. The implementation thus is not secure at order 2 (which was its intended
security goal).

5 Case Study: 3-share DOM-independent

Domain-Oriented Masking (DOM) takes the potential for glitches, i.e. uncontrolled
transitions in (micro-)architectural processor elements, into account in its design. The
idea of DOM is built around the concept of share domains, where each share of an input
is exclusively associated with one domain. Additionally, in DOM, the multiplications of
shares is divided into inner-domain terms, which multiply shares within the same domain
ai · bi, and cross-domain terms that use shares from different domains such as ai · bj and
aj · bi.

There are two types of DOM: DOM-dependent (DOM-dep) and DOM-independent
(DOM-indep). Unlike DOM-dep which requires specific management of dependent input
shares, DOM-indep offers d order security with only d + 1 shares. This substantially
reducing the number of required input shares and the randomness needed compared to
approaches such as Threshold Implementations (TI) [NRR06] and Consolidated Masking
Scheme (CMS) [RBN+15]. We implemented DOM-indep as shown in Alg. 2.

As it can be seen in Alg. 2, the initial computation for each domain’s output ci begins
with the calculation of the inner-domain terms, uii = ai · bi, which are first assigned
to ci. Subsequently, as the algorithm progresses, fresh random values r(i+j(j−1)/2) are
generated and exclusive-ored with the cross-domain product terms to ensure that they are
statistically independent. These values are stored in variables uij and uji to avoid glitches,
and then these randomized cross-domain terms are exclusive-ored into the ci.

Algorithm 2 DOM-independent multiplication gadget
Require: shares ai, bi (0 ≤ i ≤ d) such as a = ⊕d

i=0ai, b = ⊕d
i=0bi

Ensure: c0, ..., cd such that c = ⊕d
i=0ci = a · b

1: for i = 0 to d do
2: uii ← (ai · bi)
3: for j = i + 1 to d do
4: r(i+j(j−1)/2)

$← {0, 1}n

5: uij ← (ai · bj)⊕ r(i+j(j−1)/2)
6: uji ← (aj · bi)⊕ r(i+j(j−1)/2)
7: end for
8: end for
9: for i = 0 to d do

10: ci ← ui0
11: for j = 1 to d do
12: ci ← ci ⊕ uij

13: end for
14: end for
15: return c0, ..., cd

12 Efficiently Detecting Masking Flaws in Software Implementations

5.1 Detecting a Flaw
We now apply the fixed-vs-random shares method on the DOM-indep implementation,
which exhibits a flaw using 12,000 traces. The flaw appears when we fix the exclusive-or
a0 ⊕ a2. The flaw occurs in clock cycles 70 and 71, where t-test values exceeded our
predefined threshold, as illustrated in the left plot in Fig. 2. Further investigation of the
Assembly code for these specific cycles reveals that these relate to operations involving
calculating the negative of a2 and assigning the value 32 to register r6.

We use our fixed-vs-random shares test result to facilitate a confirmatory standard
fixed-vs-random input second-order analysis (i.e. we only pre-process with cycle 70), and
show the result as the right-hand side of Fig. 2. We identify leakage also in this experiment
at point 1191, which represents the interaction between cycle 144 (point 46) and cycle 70
(point 66). However, we require 1.1 million traces this time.

5.2 Diagnosing the problem
We have identified clock cycles 70 and 71 as critical cycles in our Assembly implementation.
The Assembly code accurately reflects the intended algorithm, yet, the operations in
these cycles unintentionally create a pathway for information leakage due to unforeseen
micro-architectural interactions. To understand this phenomenon, we will examine the
relevant assembly code extract listed as follows:
r4 = a0
r6 = a2

70 negs r1 , r6 @ r1 = -a2
71 movs r6 , #32 @ r6 = 32

Listing 2: DOM-indep 3-shares

This code reveals a subtle yet significant issue, namely transitional leakage based on
a glitchy-register-access, as described in [GOP22]. The root of the problem lies in the
instruction decoding process, which produces unfavourable micro-architectural behaviour.
To be precise, as the decoder receives the movs instruction (i.e. the bit-string that encodes
the type of instruction, as well as the addresses or immediate value), the decoding processes
the different fields at different speeds. Thus it is possible that part of decoder is still
configured from the preceedings negs instruction, which has two registers as operands. If
then the movs instruction is decoded, it so happens that for a brief moment its second
operand, which is the immediate value 32, is interpreted as a register, which according
to the Thumb16 instruction format, gives r4. Thus for a brief moment, just after negs
accessed r6 via port 2 of the decoder, it now accesses r4 also on port 2 of the decoder.
This leads to the observable transition leakage a0 ⊕ a2.

The fact that our fixed-vs-random shares test found leakage for a0 ⊕ a2 , together
with the time point (=clock cycle) when the problem occurs, is very helpful to identify
what causes the flaw in this example. Evidently, at clock cycle 70 the code accesses a2.
It is much more subtle to see that the immediate value 32, which is used in clock cycle
71 is interpreted as r4 and therefore accesses a0. We were able to make this connection
relatively easily because we knew what to look for (i.e. the occurrence of a0 ⊕ a2 due to
our novel assessment strategy).

6 Case Study: 3-share HPC1
Hardware Private Circuits (HPC) multiplication, introduced by Cassiers et al. in [CGLS21],
represents another glitch-robust, higher-order secure multiplication gadget. The authors
initially proposed two multiplication gadgets, HPC1 and HPC2, whereby HPC1 operates

Nima Mahdion, Elisabeth Oswald 13

(a) Fixed-vs-random shares test on a0 and
a2, 12K traces, leakage at cycle 70

(b) Second-order multi-variate t-test (1.1M
traces), combining cycles 70 and 144

Figure 2: Analysis of DOM-indep 3-shares

over F2n . The fact that HPC1 can be seen as an updated version of the popular DOM gadget
is the reason for its inclusion in our study. We focus on HPC1 in our analysis. Subsequent
improvements have further optimized the trade-off between efficiency and security of this
family [KM22, FGM+23]. HPC1 is essentially a DOM-independent multiplication gadget
with one main modification, wherein one of its inputs undergoes a refresh operation before
the multiplication. This refreshing step is important to achieving the desired security
properties. The structure of HPC1 for multiplying a.b, including the refreshing step which
is based on exclusive-or of shares of b with d + 1 randomness, is illustrated in Fig. 3.

Figure 3: HPC1

6.1 Detecting a Flaw

Using the fixed-vs-random shares method we were again able to identify a flaw: this time
when the exclusive-or of the first two shares of a (a0 ⊕ a1) is kept constant, see the left
plot in Fig. 4. In fact, there are two flaws clearly visible, one around cycle 62 and one
around cycle 75.

Like in the previous case studies, we utilise this information to facilitate a second-order
analysis via TVLA (fixed-vs-random input) by examining the interaction of trace points
in cycle 62 with other points. The plot on the right side of Fig. 4 shows the result; the
threshold is crossed at point 576, indicating leakage. This time we require 1.1 million
traces for the conventional TVLA analysis, whereas our fixed-vs-random shares test only
requires 15k traces.

14 Efficiently Detecting Masking Flaws in Software Implementations

(a) Fixed-vs-random shares test on a0 and
a1, 15K traces, leakage at cycle 62

(b) Second-order multi-variate t-test (1.1M
traces), combining cycles 62 and 224

Figure 4: Analysis of HPC1 3-shares

6.2 Diagnosing the problem
By examining the source code for these cycles, we found that the cause of the leakage at
cycle 62 is the instructions related to clearing the write bus and loading a1’s logarithm
into register r5. The leakage at cycle 75 stems from a value assignment operation (see
Sec. 5.2).

The flaw in cycle 75 is linked to a glitchy-register-access during processing instruction
movs r6, #32, which we encountered and analysed in the previous case study, see Sec. 5.2.
Hence, our focus in this case study is to understand the flaw detected at cycle 62. For this
purpose we include the following assembly snippet:
r6 = a1

62 strb r0 , [r0 , #4] @ clearing the write bus
63 ldrb r5 , [r3 , r6] @ r5 = table [a1]

[...]
75 movs r6 , #32 @ r6 = a1 , r4 = a0

Listing 3: HPC1 3-shares

This code section highlights a hidden subtle but critical problem—–a transitional
leakage based on glitchy-address-signals in the multiplexer tree, which is used to access
the register file. For the sake of completeness, we briefly explain it’s working principle,
using Fig. 5 as a visual aid2. When an instruction requires access to a specific register,
then the binary string representing the instruction is decoded and some of the bits select
(see Fig. 5) which register is being accessed.

The leakage originates from a delay in switching the value of the address signal in
port 2, where the second operands of instructions strb r0, [r0, #4] and ldrb r5, [r3,
r6], r0 and r3 are loaded sequentially into port 2. The transition from r0 to r3 necessitates
changing the address signal of the multiplexer tree from 000 to 110.

When the address signal is 000 to select register r0, the values on wires a to g are as
follow:

a : r0, b : r2, c : r4, d : r6, e : r0, f : r4 and g : r0.
However, during the transition from 000 to 110, there is no guarantee that all address

signal bits change simultaneously. If the value of Bit 1 updates faster than Bit 0, it can
cause a temporary state. Here the outputs of MUX 1 (wires a to d) remain unchanged and

2The multiplexer tree handles 16 registers in the register file and has a depth of four, with each
level’s selection controlled by a Bit of the signal address ADD. However, since the implementations are in
Thumb-16, we consider only the lower registers r0 to r7, using three levels.

Nima Mahdion, Elisabeth Oswald 15

the transition of Bit 1: 0 → 1 causes r6 from wire d briefly appear on wire f (and same r0
on wire e). This results in, both r4 and r6 being present on wire f . Since r4 holds a0 and
r6 contains a1, there is a leakage of a0 ⊕ a1.

This flaw undermines the security of the implementation at a order two, which was its
intended security goal.

Figure 5: Multiplexer tree

7 Summary and Outlook
We suggest a new approach to identifying flaws in implementations of masking schemes.
Our technique keeps some shares constant, whilst randomizing others. We tailor the idea
to specifically find flaws that are based on unintended (micro-architectural) transitions,
and showcase how to apply our method to three software implementations of multiplication
gadgets. Our method is better than the conventional higher-order fixed-vs-random input
TVLA in two significant ways. Firstly, it improves trace and computational efficiency
by utilising raw traces. Secondly, it gives a clue about which shares are involved in
the flaw, which together with the information about when the flaw occurs, facilitates
finding/understanding/fixing the problem.

It is important to note that our method requires control over the shares. This should
be possible in the context of an in-house evaluation or testing facility in the context of
cryptographic software implementations. We leave it as an open question to analyse how
applicable our technique is in the context of cryptographic hardware implementations.

Acknowledgments
Nima Mahdion and Elisabeth Oswald have been supported in part by the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement number 725042). Both authors would like to thank the
anonymous reviewers for their constructive comments.

16 Efficiently Detecting Masking Flaws in Software Implementations

References
[ARMa] ARM. ARM Achitecture. https://developer.arm.com/documentation/

ddi0406/latest.

[ARMb] ARM. Thumb-16-bit instruction set quick reference card. https://develo
per.arm.com/documentation/qrc0006/e.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors,
Cryptographic Hardware and Embedded Systems - CHES 2004: 6th Inter-
national Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings,
volume 3156 of Lecture Notes in Computer Science, pages 16–29. Springer,
2004. doi:10.1007/978-3-540-28632-5_2.

[BGG+14] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and
François-Xavier Standaert. On the cost of lazy engineering for masked software
implementations. In Marc Joye and Amir Moradi, editors, Smart Card
Research and Advanced Applications - 13th International Conference, CARDIS
2014, Paris, France, November 5-7, 2014. Revised Selected Papers, volume
8968 of Lecture Notes in Computer Science, pages 64–81. Springer, 2014.
doi:10.1007/978-3-319-16763-3_5.

[BSS19] Olivier Bronchain, Tobias Schneider, and François-Xavier Standaert. Multi-
tuple leakage detection and the dependent signal issue. IACR TCHES,
2019(2):318–345, 2019. URL: https://tches.iacr.org/index.php/TCHES
/article/view/7394, doi:10.13154/tches.v2019.i2.318-345.

[CGLS21] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier Stan-
daert. Hardware private circuits: From trivial composition to full verification.
IEEE Trans. Computers, 70(10):1677–1690, 2021. doi:10.1109/TC.2020.30
22979.

[Com17] Common Criteria. The Common Criteria for Information Technology Security
Evaluation. https://www.commoncriteriaportal.org/cc/, 2017.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers,
volume 2523 of Lecture Notes in Computer Science, pages 13–28. Springer,
2002. doi:10.1007/3-540-36400-5_3.

[DCE16] A. Adam Ding, Cong Chen, and Thomas Eisenbarth. Simpler, faster, and
more robust t-test based leakage detection. In François-Xavier Standaert and
Elisabeth Oswald, editors, Constructive Side-Channel Analysis and Secure
Design - 7th International Workshop, COSADE 2016, Graz, Austria, April 14-
15, 2016, Revised Selected Papers, volume 9689 of Lecture Notes in Computer
Science, pages 163–183. Springer, 2016. doi:10.1007/978-3-319-43283-0
_10.

[DS16a] François Durvaux and François-Xavier Standaert. From improved leakage
detection to the detection of points of interests in leakage traces. In Marc
Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology - EU-
ROCRYPT 2016 - 35th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016,

https://developer.arm.com/documentation/ddi0406/latest
https://developer.arm.com/documentation/ddi0406/latest
https://developer.arm.com/documentation/qrc0006/e
https://developer.arm.com/documentation/qrc0006/e
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-319-16763-3_5
https://tches.iacr.org/index.php/TCHES/article/view/7394
https://tches.iacr.org/index.php/TCHES/article/view/7394
https://doi.org/10.13154/tches.v2019.i2.318-345
https://doi.org/10.1109/TC.2020.3022979
https://doi.org/10.1109/TC.2020.3022979
https://www.commoncriteriaportal.org/cc/
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-319-43283-0_10
https://doi.org/10.1007/978-3-319-43283-0_10

Nima Mahdion, Elisabeth Oswald 17

Proceedings, Part I, volume 9665 of Lecture Notes in Computer Science, pages
240–262. Springer, 2016. doi:10.1007/978-3-662-49890-3_10.

[DS16b] François Durvaux and François-Xavier Standaert. From improved leakage
detection to the detection of points of interests in leakage traces. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I,
volume 9665 of LNCS, pages 240–262, May 2016. doi:10.1007/978-3-662
-49890-3_10.

[DZD+17] A. Adam Ding, Liwei Zhang, François Durvaux, François-Xavier Standaert,
and Yunsi Fei. Towards sound and optimal leakage detection procedure.
In Thomas Eisenbarth and Yannick Teglia, editors, Smart Card Research
and Advanced Applications - 16th International Conference, CARDIS 2017,
Lugano, Switzerland, November 13-15, 2017, Revised Selected Papers, volume
10728 of Lecture Notes in Computer Science, pages 105–122. Springer, 2017.
doi:10.1007/978-3-319-75208-2_7.

[FGM+23] Jakob Feldtkeller, Tim Güneysu, Thorben Moos, Jan Richter-Brockmann,
Sayandeep Saha, Pascal Sasdrich, and François-Xavier Standaert. Combined
private circuits - combined security refurbished. In Weizhi Meng, Chris-
tian Damsgaard Jensen, Cas Cremers, and Engin Kirda, editors, ACM CCS
2023, pages 990–1004. ACM Press, November 2023. doi:10.1145/3576915.
3623129.

[FIP19] Security Requirements for Cryptographic Modules (FIPS PUB 140-3). https:
//nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf, 2019.

[GGJR+11] Benjamin Jun Gilbert Goodwill, Josh Jaffe, Pankaj Rohatgi, et al. A testing
methodology for side-channel resistance validation. In NIST non-invasive
attack testing workshop, volume 7, pages 115–136, 2011.

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-oriented masking:
Compact masked hardware implementations with arbitrary protection order.
In Begül Bilgin, Svetla Nikova, and Vincent Rijmen, editors, Proceedings of
the ACM Workshop on Theory of Implementation Security, TIS@CCS 2016
Vienna, Austria, October, 2016, page 3. ACM, 2016. doi:10.1145/2996366.
2996426.

[GMK17] Hannes Groß, Stefan Mangard, and Thomas Korak. An efficient side-channel
protected AES implementation with arbitrary protection order. In Helena
Handschuh, editor, CT-RSA 2017, volume 10159 of LNCS, pages 95–112,
February 2017. doi:10.1007/978-3-319-52153-4_6.

[GOP22] Si Gao, Elisabeth Oswald, and Dan Page. Towards micro-architectural
leakage simulators: Reverse engineering micro-architectural leakage features
is practical. In Orr Dunkelman and Stefan Dziembowski, editors, Advances
in Cryptology - EUROCRYPT 2022 - 41st Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Trondheim,
Norway, May 30 - June 3, 2022, Proceedings, Part III, volume 13277 of
Lecture Notes in Computer Science, pages 284–311. Springer, 2022. doi:
10.1007/978-3-031-07082-2_11.

[GR17] Dahmun Goudarzi and Matthieu Rivain. How fast can higher-order masking
be in software? In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EU-
ROCRYPT 2017, Part I, volume 10210 of LNCS, pages 567–597, April / May
2017. doi:10.1007/978-3-319-56620-7_20.

https://doi.org/10.1007/978-3-662-49890-3_10
https://doi.org/10.1007/978-3-662-49890-3_10
https://doi.org/10.1007/978-3-662-49890-3_10
https://doi.org/10.1007/978-3-319-75208-2_7
https://doi.org/10.1145/3576915.3623129
https://doi.org/10.1145/3576915.3623129
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
https://doi.org/10.1145/2996366.2996426
https://doi.org/10.1145/2996366.2996426
https://doi.org/10.1007/978-3-319-52153-4_6
https://doi.org/10.1007/978-3-031-07082-2_11
https://doi.org/10.1007/978-3-031-07082-2_11
https://doi.org/10.1007/978-3-319-56620-7_20

18 Efficiently Detecting Masking Flaws in Software Implementations

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 463–481, August 2003. doi:10.1007/978-3-5
40-45146-4_27.

[JS11] Show-Li Jan and Gwowen Shieh. Optimal sample sizes for welch’s test
under various allocation and cost considerations. Behavior research methods,
43:1014–1022, 2011. doi:10.3758/s13428-011-0095-7.

[KM22] David Knichel and Amir Moradi. Low-latency hardware private circuits. In
Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS
2022, pages 1799–1812. ACM Press, November 2022. doi:10.1145/3548606.
3559362.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Neal Koblitz, editor, Advances in Cryptology
- CRYPTO ’96, 16th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109
of Lecture Notes in Computer Science, pages 104–113. Springer, 1996. doi:
10.1007/3-540-68697-5_9.

[MOBW13] Luke Mather, Elisabeth Oswald, Joe Bandenburg, and Marcin Wójcik. Does
my device leak information? An a priori statistical power analysis of leakage
detection tests. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013,
Part I, volume 8269 of LNCS, pages 486–505, December 2013. doi:10.1007/
978-3-642-42033-7_25.

[MPW22] Ben Marshall, Dan Page, and James Webb. MIRACLE: MIcRo-ArChitectural
leakage evaluation A study of micro-architectural power leakage across many
devices. IACR TCHES, 2022(1):175–220, 2022. doi:10.46586/tches.v2022
.i1.175-220.

[MRSS18] Amir Moradi, Bastian Richter, Tobias Schneider, and François-Xavier Stan-
daert. Leakage detection with the χ2-test. IACR TCHES, 2018(1):209–237,
2018. URL: https://tches.iacr.org/index.php/TCHES/article/view/
838, doi:10.13154/tches.v2018.i1.209-237.

[MWM21] Thorben Moos, Felix Wegener, and Amir Moradi. DL-LA: Deep learning
leakage assessment. IACR TCHES, 2021(3):552–598, 2021. URL: https:
//tches.iacr.org/index.php/TCHES/article/view/8986, doi:10.46586
/tches.v2021.i3.552-598.

[NIS01] Advanced Encryption Standard (AES), 2001. Federal Information Processing
Standards Publication 197, http://csrc.nist.gov/publications/fips/
fips197/fips-197.pdf.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold imple-
mentations against side-channel attacks and glitches. In Peng Ning, Sihan
Qing, and Ninghui Li, editors, ICICS 06, volume 4307 of LNCS, pages 529–545,
December 2006. doi:10.1007/11935308_38.

[Pag] Dan Page. SCALE: Side-Channel Attack Lab. Exercises. https://github.c
om/danpage/scale.

[PRB09] Emmanuel Prouff, Matthieu Rivain, and Régis Bevan. Statistical analysis of
second order differential power analysis. IEEE Trans. Computers, 58(6):799–
811, 2009. doi:10.1109/TC.2009.15.

https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.3758/s13428-011-0095-7
https://doi.org/10.1145/3548606.3559362
https://doi.org/10.1145/3548606.3559362
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-642-42033-7_25
https://doi.org/10.1007/978-3-642-42033-7_25
https://doi.org/10.46586/tches.v2022.i1.175-220
https://doi.org/10.46586/tches.v2022.i1.175-220
https://tches.iacr.org/index.php/TCHES/article/view/838
https://tches.iacr.org/index.php/TCHES/article/view/838
https://doi.org/10.13154/tches.v2018.i1.209-237
https://tches.iacr.org/index.php/TCHES/article/view/8986
https://tches.iacr.org/index.php/TCHES/article/view/8986
https://doi.org/10.46586/tches.v2021.i3.552-598
https://doi.org/10.46586/tches.v2021.i3.552-598
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://doi.org/10.1007/11935308_38
https://github.com/danpage/scale
https://github.com/danpage/scale
https://doi.org/10.1109/TC.2009.15

Nima Mahdion, Elisabeth Oswald 19

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of
LNCS, pages 764–783, August 2015. doi:10.1007/978-3-662-47989-6_37.

[Rep16] Oscar Reparaz. Detecting flawed masking schemes with leakage detection tests.
In Thomas Peyrin, editor, FSE 2016, volume 9783 of LNCS, pages 204–222.
Springer, Heidelberg, March 2016. doi:10.1007/978-3-662-52993-5_11.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order
masking of AES. In Stefan Mangard and François-Xavier Standaert, ed-
itors, CHES 2010, volume 6225 of LNCS, pages 413–427, August 2010.
doi:10.1007/978-3-642-15031-9_28.

[SM15] Tobias Schneider and Amir Moradi. Leakage assessment methodology - A
clear roadmap for side-channel evaluations. In Tim Güneysu and Helena
Handschuh, editors, Cryptographic Hardware and Embedded Systems - CHES
2015 - 17th International Workshop, Saint-Malo, France, September 13-16,
2015, Proceedings, volume 9293 of Lecture Notes in Computer Science, pages
495–513. Springer, 2015. doi:10.1007/978-3-662-48324-4_25.

[Sta18] François-Xavier Standaert. How (not) to use welch’s t-test in side-channel
security evaluations. In Begül Bilgin and Jean-Bernard Fischer, editors, Smart
Card Research and Advanced Applications, 17th International Conference,
CARDIS 2018, Montpellier, France, November 12-14, 2018, Revised Selected
Papers, volume 11389 of Lecture Notes in Computer Science, pages 65–79.
Springer, 2018. doi:10.1007/978-3-030-15462-2_5.

[Stu08] Student. The probable error of a mean. Biometrika, pages 1–25, 1908.
doi:10.2307/2331554.

[Wel47] B. L. Welch. The generalization of ‘Student’s’ problem when several different
population variances are involved. Biometrika, 34(1-2):28–35, 01 1947. arXiv:
https://academic.oup.com/biomet/article-pdf/34/1-2/28/553093/3
4-1-2-28.pdf, doi:10.1093/biomet/34.1-2.28.

[WTW+22] Yaru Wang, Ming Tang, Pengbo Wang, Botao Liu, and Rui Tian. The levene
test based-leakage assessment. Integr., 87:182–193, 2022. URL: https://doi.
org/10.1016/j.vlsi.2022.06.013, doi:10.1016/J.VLSI.2022.06.013.

[YJ21] Wei Yang and Anni Jia. Side-channel leakage detection with one-way analysis
of variance. Secur. Commun. Networks, 2021:6614702:1–6614702:13, 2021.
doi:10.1155/2021/6614702.

[ZQO19] Xinping Zhou, Kexin Qiao, and Changhai Ou. Leakage detection with
Kolmogorov-Smirnov test. Cryptology ePrint Archive, Report 2019/1478,
2019. URL: https://eprint.iacr.org/2019/1478.

https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-52993-5_11
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/978-3-030-15462-2_5
https://doi.org/10.2307/2331554
https://arxiv.org/abs/https://academic.oup.com/biomet/article-pdf/34/1-2/28/553093/34-1-2-28.pdf
https://arxiv.org/abs/https://academic.oup.com/biomet/article-pdf/34/1-2/28/553093/34-1-2-28.pdf
https://arxiv.org/abs/https://academic.oup.com/biomet/article-pdf/34/1-2/28/553093/34-1-2-28.pdf
https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/10.1016/j.vlsi.2022.06.013
https://doi.org/10.1016/j.vlsi.2022.06.013
https://doi.org/10.1016/J.VLSI.2022.06.013
https://doi.org/10.1155/2021/6614702
https://eprint.iacr.org/2019/1478

	Introduction
	The Pain of Evaluating Software Implementations
	This Work

	Preliminaries
	Notation
	Experimental Setup
	Testing Distribution Means
	Non-specific Leakage Assessment (as defined by TVLA)

	Fixed vs. Random Subset of Shares Test
	Fixed-vs-Random Shares Test
	Fixed-vs-Random Shares Test to Identify Transitional Leakage
	Computational Cost
	Extension to Arbitrary Masking Orders
	Application Across Different Devices

	Case Study: 3-share ISW
	Detecting a Flaw
	Diagnosing the problem

	Case Study: 3-share DOM-independent
	Detecting a Flaw
	Diagnosing the problem

	Case Study: 3-share HPC1
	Detecting a Flaw
	Diagnosing the problem

	Summary and Outlook
	References

