
IACR Communications in Cryptology
ISSN 3006-5496, Vol. 1, No. 3, 22 pages.

https://doi.org/10.62056/aytxl86bm
Check for updates

Key Rank Estimation Methods: Comparisons and
Practical Considerations

Rebecca Hay1 and Elisabeth Oswald2,3

1 University of Bristol, Computer Science, Bristol, United Kingdom
2 University of Klagenfurt, Digital Age Research Centre, Klagenfurt, Austria

3 University of Birmingham, Computer Science, Birmingham, United Kingdom

Abstract. New proposals for scalable key rank estimation methods have appeared
recently, in particular the sampling based approach MCRank. The idea is that one
can consistently estimate the key rank by sampling only a small portion of the key
space as a “proxy”, leading to both an accurate and scalable approach, at least in
comparison with another approach based on histograms. We show that the (earlier)
GEEA algorithm is in fact a sampling based algorithm, and provide an in-depth
comparison between GEEA (when adapted to produce rank estimates rather than
guessing entropy estimates), GM bounds, MCRank and the currently most performant
counting based rank estimation as implemented in the Labynkyr library. We find
that although MCRank does live up to the promised accuracy and scalability for
probability-based distinguishers, it fails to handle cases with unusual distinguisher
distributions.
Furthermore, we put forward a novel proposal for a highly scalable key rank estimation
method by introducing the notion of an “attacker budget”. Our proposal is based on
the idea that, in particular for very long keys, the exact key rank is less important
than the knowledge whether a key is within a certain bound. Thus our “budget
approach” is based on efficiently checking if the result of an attack is such that the
attacker’s budget suffices for successful enumeration. Our budget approach scales
linearly with the key size and thus enables security estimations even for post-quantum
key lengths.
Keywords: Key Rank Estimation · Large Keys · Key Security Assessments

1 Introduction
Side channel attacks reveal information about secret keys in the form of either scores or
probabilities (i.e. normalised scores). Adversaries can trade off the effort put into an
attack and the effort put into a post side-channel key enumeration. Consequently, it is
relevant from designers’ and evaluators’ points of view to be able to quickly estimate the
enumeration effort given the scores resulting from a side channel attack. This explains the
interest in so-called key rank algorithms. Key ranking algorithms take the scores from an
attack and the secret key as input, and return the number of keys that have a score higher
than the secret key.

Key rank estimation is used routinely in the context of evaluating symmetric schemes,
but they are also useful when considering asymmetric schemes. For instance, one may be
interested in the information leakage when a secret key is loaded, or in the context of cold
boot attacks [Pol19]. The versatility of key ranking to estimate the remaining effort of
an adversary has lead to a considerable interest in scalable key rank estimation methods.

E-mail: rebecca.hay@bristol.ac.uk (Rebecca Hay), m.e.oswald@bham.ac.uk (Elisabeth Oswald)

This work is licensed under a “CC BY 4.0” license.
Received: 2024-07-08 Accepted: 2024-09-02

https://doi.org/10.62056/aytxl86bm
https://crossmark.crossref.org/dialog/?doi=10.62056/aytxl86bm&domain=pdf&date_stamp=2024-10-02
https://orcid.org/0000-0001-9659-8139
https://orcid.org/0000-0001-7502-3184
mailto:rebecca.hay@bristol.ac.uk
mailto:m.e.oswald@bham.ac.uk
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Key Rank Estimation Methods: Comparisons and Practical Considerations

After the initial publications by Veyrat-Charvillion et al. [VGRS12,VGS13], several faster
and tighter key rank and key enumeration algorithms have been developed, by Glowacz et
al. [GGP+15], Martin et al. [MOOS15], Bernstein et al. [BLvV15], Longo et al. [LMM+16]
and Grosso [Gro18].

The approaches by Glowacz et al. [GGP+15] and Martin et al. [MOOS15] support key
enumeration as well as key ranking, and it was later shown by Martin et al. [MMO18]
that they are mathematically equivalent. Improvements to these methods appeared in
work by Longo et al. [LMM+16],Martin et al. [MMOS16a] and Poussier et al. [PSG16]. An
independent line of work by David and Wool [DW19b] (with further work [DW19a,DW22]),
which is of comparable speed as the work of Glowacz et al. [GGP+15], but enables better
bounds. Because single key rank estimations are of limited meaning, more ideas for the
estimation of the expected key rank (aka “Guessing Entropy”, short GE) were proposed
by Zhang et al. [ZDF20], culminating in the GEEA algorithm.

In work by Young et al. [YMO22] GEEA was scrutinised and it was found that it delivers
unreliable estimates, and its performance highly depends on the number of sampled keys.
In the same paper, [YMO22] showed the path counting approach to estimate key ranks
presented by Martin et al. [MOOS15], which is mathematically equivalent to histogram
convolution [MMO18], leads to a very performant implementation that can scale up to
key lengths of up to 4096 bits. Most recently “MCRank” by Camurati et al. [CDS23]
appeared, which claims to be based on a novel idea of using sampling, and promises
superior scalability and speed over the “state of the art”.

1.1 Challenge: accuracy and scalability
The accuracy or tightness of a key rank algorithm is determined by how close the returned
rank is to the true rank. There are two factors that impact the accuracy of key ranks. The
first factor is the accuracy of the ranking algorithm itself, which may be determined by
how much information is retained about the scores, or by the sample size that the estimate
considers.

The second factor is due to variation of the distribution of the key rank. The key rank
itself is a random variable, which depends on the score vectors. If the same attack is
carried out multiple times (using exactly the same parameters, and the same key), each
time a different set of scores will be produced, resulting in different key ranks. An early
investigation into the rank distribution [MMOS16a] revealed that the distribution has a
large variance, and thus to provide an accurate estimate of the key rank for a given attack
vector, one must repeat the attack, derive the resulting key ranks and then consider how
to best represent them (e.g by some average measure, or by some representative statistical
plot).

Quantities like the average rank and the guessing entropy are the most popular
methods to represent the outcomes of multiple key rank experiments. However, outputting
averages can conceal the large variation in rank estimates, and thereby give a misleading
representation of the quality of an approach. The use of descriptive statistics such as box
plots can give a much more informative assessment of the accuracy of a ranking algorithm,
as demonstrated in [YMO22].

The scalability of algorithms relates to their ability to deal with very long keys, and
therefore very large key ranks. It was recently explored in [YMO22], and it was also the
motivation for MCRank [CDS23]. Most existing key rank estimation methods are unable
to scale for larger key sizes due to time or memory constraints. Assessing the leakage
of very long keys, e.g. due to initial key loading operations (as pointed out in [CDS23]),
will become increasingly problematic as the world shifts to dealing with post-quantum
cryptographic keys where we must be able to assess the information loss in the context of
very long keys.

Rebecca Hay, Elisabeth Oswald 3

1.2 Motivation
Many papers have appeared over the years claiming scalability to “very large keys”, with
the MCRank [CDS23] being the most recent proposal. The paper claims that it is based
on a novel idea (“Monte Carlo sampling”), and that is better than the state of the art
algorithms both in terms of scalability, accuracy and handling various types of distinguisher
outcomes. Examining the paper closely reveals that neither the approach of the GEEA
algorithm nor the path counting approach were considered for comparison. This leaves
questions about the claimed novelty and superiority of the described approach. We conduct
comparisons of various algorithms, not previously considered, where we find not all the
claims hold. We focus on analysing how the algorithms handle score-based distributions in
contrast to probability-based distributions, as well as situations where the subkeys are not
independent. We propose a novel approach to vulnerability assessment using an attacker
budget metric to work with very long keys and demonstrate how scalable some approaches
might be when considering post-quantum key structures.

1.3 Outline of our contributions
Our baseline for comparison is the efficient key rank estimation approach that is available
via the open source library Labynkyr [MMOS16b]. Labynkyr implements an optimised
version of the path counting approach [MOOS15,LMM+16], which we will briefly summarise
in Section 2. We also use this section to provide summaries of other counting and sampling
based estimation approaches.

In Section 2.3, we show as our first contribution, that GEEA [ZDF20] and MCRank [CDS23]
are in fact related: both papers describe a Monte Carlo sampling strategy to approximate
the key rank (albeit GEEA estimates the guessing entropy as an average key rank metric).
Thereafter in Section 3, we modify GEEA to estimate the rank rather than the guessing
entropy (we call this algorithm REA) and show that the only difference between REA and
MCRank is the sampling distribution. In Section 3, we also introduce our novel approach
to vulnerability assessment using attacker budgets. In Section 4.1, we run experiments
comparing path counting (using the Labynkyr implementation), MCRank (using their
accompanying implementation that can be found on Github), REA and GM bounds as well
as analysis of the accuracy of the Budget Approach. In Sections 4.2 and 4.3, we explore
various types of distinguishing outcomes, looking at score-based distributions and depen-
dency amongst subkeys. Finally, we investigate the scalability of these different approaches,
firstly extending number of subkeys then moving to post-quantum key structures.

All experiments in this paper were conducted on a standard laptop with Intel I9-9880H
(2.3GHz) mobile CPU with single threaded implementations.

2 Background
2.1 Counting based key rank estimation
In this section, we define the distinguishing vectors we obtain following a side channel
attack and then how we can use these scores to calculate the rank of the secret key sk.
An adversary with enumeration capability must make an additional effort proportional to
the rank of sk when attempting to determine sk given likelihoods (or scores) from a side
channel attack.

Definition 1 (Distinguishing Vector). For each subkey i, the vector Di is made up of
scores Dki,i corresponding to how likely subkey value ki is to be the correct subkey value.

Definition 2 (Key Rank). Given a matrix of distinguishing vectors D = (D0, ..., Dm−1)
and secret key sk, the rank of sk is the number of keys k with a greater distinguishing

4 Key Rank Estimation Methods: Comparisons and Practical Considerations

score (assuming in the following formula that we have additive scores).

ranksk(D) = |{k = (k0, .., km−1) :
m−1∑
i=0

Dki,i >

m−1∑
i=0

Dski,i}| (1)

Thus a natural approach to calculating the rank of sk is to count all keys that are
more likely to be the correct key than sk: which appears to be a challenging problem given
typical sizes for the key space in contemporary cryptography. However, two algorithms
emerged that were eventually shown to be mathematically equivalent solutions [MMO18] for
counting possible key values: path counting [MOOS15] and histogram counting [GGP+15].

The idea behind the path counting approach is to count solutions to a knapsack problem,
by creating a graph of potential solutions. Let W be the likelihood of the full key sk
(based on the outcome of a side channel attack), and let m be the number of subkeys that
an adversary has recovered. The path counting method constructs a graph with at most
m ∗W + 2 nodes, and counts very efficiently how many paths lead from a designated start
to a designated accept node of the graph. The paths corresponds to keys that are more
likely than sk. The complexity of the resulting algorithm is independent of the distribution
of the likelihoods, and the depth of the key; it depends on the number of subkeys, and the
number of values of the subkeys. As a consequence it is possible to utilise various compiler
optimisations by fixing these parameters at compile time.

The histogram counting method organises subkeys scores into histograms with a defined
numbers of bins. Then the histograms are convolved, leading to a single large histogram
representing the distribution of the full key scores. It is possible to locate the bin associated
with the score of sk. Hence by counting the number of elements in all bins that are more
likely than the bin associated with sk gives the rank of sk. The complexity of this counting
method depends on the number of bins and the distribution of scores in the bins. Thus it
is not independent of the distribution of the score and no easy complexity estimate can be
given. Furthermore, because no general assumptions can be made about this distribution,
a comparison between the efficiency of path counting and histogram counting must be
based on experiments. This was done in [MMO18] focussing on the associated enumeration
methods. Their comparison showed that for typical symmetric key sizes, both methods,
when configured equivalently, were equally performant and mathematically equivalent for
independent subkey scores that can be combined additively. But when the estimation
precision was increased (both algorithms allow you to configure precision), or when key
length was increased, then path counting was more performant.

2.2 GM Bounds
An alternative approach presented in [CP17] used formulae to calculate lower and upper
bounds for the Massey Guessing Entropy metric, originally proposed in [Mas94]. We have
translated the formulae to use same notation as seen throughout this work. Following
a side channel attack, we assume the scores we obtain are probabilities. The approach
requires these probabilities pk, k = 1, ..., n to be sorted from highest to lowest and then
GM is defined by equation 2.2. In [CP17], it was highlighted that some distinguishers such
as correlation power analysis return scores but it is possible to use statistical techniques to
obtain pseudo-probabilities for use with these formulae.

GM =
n∑

k=1
k · pk (2)

The following formulae can be used to calculate the full key lower and upper bounds
for GM , for a key of m subkeys, where each subkey can take one of n possible values. In

Rebecca Hay, Elisabeth Oswald 5

this formula, pi
k is the probability of the i-th subkey being value k and ln represents the

natural log function.

1
1 + ln nm

m∏
i=1

[
n∑

k=1

√
pi

k

]2

≤ GMf ≤ 1
2

m∏
i=1

[
n∑

k=1

√
pi

k

]2

+ 1
2 (3)

Unlike the other approaches we are considering in this work, GM bounds do not require
prior knowledge of the key, only the probabilities from the distinguisher. This approach
could be used in situations when the key is unknown, such as by an attacker.

In [CP17], a Matlab implementation is provided (https://gitlab.cs.pub.ro/mar
ios.choudary/gmbounds). This implementation provides both a direct computation for
the formulae and symbolic execution alternative. We will use the Python wrapper for the
Matlab implementation provided with the MCRank implementation [CDS23].

2.3 Sampling based key rank estimation
A common feature across several existing approaches is to start with the distribution of
scores returned by a side channel attack. The score distributions for each (independent)
subkey can be used to calculate the full distribution for distinguishing vectors via a
convolution as observed by Glowacz et al. [GGP+15].

In 2020, the authors of [ZDF20] used the observation that the distributions for each
individual subkey can be well described by a (multivariate) normal distribution. They also
observe that rather than work with all scores for all subkey values, it is possible to estimate
the key rank by sampling from a subspace of the key space. Both observations jointly then
lead to the GEEA, which is based on computing the distribution of so-called comparison
scores for each subkey, then sampling a uniformly random subset of the entire key space,
and evaluating the distributions for the sampled keys in order to estimate multiple key
ranks. This then turns into an estimate of the guessing entropy. Their method is a very
classical application of “Monte Carlo sampling”: they use a sample uniformly from the key
space, test each of the sampled keys whether it is more likely than sk, and then use the
proportion of more likely keys in their sample to estimate the number of more likely keys
in the overall population.

Recently, the authors of [CDS23] explain the same principle. They also observe that
it is possible to derive a distribution for the subkey scores. In contrast to [ZDF20] they
don’t estimate the parameters for probability density, but they compute the empirical
cumulative distribution from a single experiment. Then, rather than working with the
entire key space, they suggest to take a sample of the key space and estimate the rank
by calculating the proportion of keys in the sample that are more likely than sk. Their
sampling strategy picks keys from the score distribution (i.e. the distribution resulting
from the side channel attack). In other words, they also use Monte Carlo sampling, but
they do not draw keys from a uniform distribution, instead they draw it from the score
distribution. They explain that this sampling strategy leads to a quicker convergence
than uniform sample, and that on top of that, one could, or should, “calibrate” the score
distributions, to improve the estimation accuracy further, and they provide a way of doing
so. Their calibration method is supposed to be rank preserving and a closer look shows
that their method is indeed one of the rank preserving score transformations that were
proven in [MM18].

Clearly, both [CDS23] and [ZDF20] are based on the idea of Monte Carlo sampling,
and the difference between them is how keys are sampled.

It should be noted that earlier work has also explored using sampling as part of the
rank estimation process. This includes work by Bernstein et al. [BLvV15], who used
sampling as a post-processing technique to extend the estimation algorithm provided

https://gitlab.cs.pub.ro/marios.choudary/gmbounds
https://gitlab.cs.pub.ro/marios.choudary/gmbounds

6 Key Rank Estimation Methods: Comparisons and Practical Considerations

by Veyrat-Charvillon et al. [VGS13]. Like many other algorithms, the extended rank
estimation algorithm also scales poorly to increasing key sizes.

3 Further sampling based approaches for key rank
We now illustrate our contributions by adapting GEEA for comprehensive comparison
with other techniques and introducing a new approach for vulnerability assessments.
This aims to provide a solution for key ranks greater than 24096, the point up to which
the Labynkr implemenation of the path counting approach was identified as the fastest
estimator [YMO22].

3.1 From GEEA to REA
To reasonably compare the techniques used in GEEA with MCRank we need to convert
GEEA to return key rank estimates. We do this based on the following observations.
GEEA works on comparison scores rather than the actual scores, and derives these for all
key bytes independently. Comparison scores are calculated as the difference between a key
byte score and the score for the corresponding correct key byte. We can then calculate the
mean and variance (a Gaussian distribution is assumed) for the key byte score distribution.
Comparison scores are defined in equation 4, whereby s(·) is a function returning the score
vector, sk is the secret key and k is a key guess. We use ki,j to represent the jth possible
value for subkey ki.

∆i,j = s(ki,j)− s(ski) for i ∈ {1, . . . , m}, j ∈ {1, . . . , n} (4)

To derive an overall comparison score for a key guess k, the mean and variance µk and
σ2

k for the score distribution respectively across the subkeys are simply added up. Because
the secret key has a comparison score of 0, the probability that a key guess k returns a
score greater than the secret key is given by equation 5 where s(·) returns the score vector
and Φµk,σk

is the normal distribution CDF with mean µk and standard deviation σk (Φ
being the standard CDF with mean 0 and standard deviation 1). This equation gives the
probability that the key guess k would be ranked higher than the secret key and should be
counted towards the key rank estimate. GEEA calculates this probability for each key
guess in a sample set M and rescales to the size of the key space K to estimate a key rank
value, as shown by equation 6.

P(s(k) > s(sk)) = 1− Φµk,σk
(0) = 1− Φ(−µk

σk
) (5)

R = |K|
|M |

|M |∑
i=0

1− Φ(−µk

σk
) (6)

Our rank adaptation of GEEA follows naturally from the observed working principle
of GEEA, and we provide Algorithm 1 to show the resulting pseudo-code. We note that
we provide x trace sets to allow for the estimation of mean and variance values for the
comparative scores (denoted by µ̃i

j and (σ̃i
j,j)2 for i = 1, .., m and j = 1, ..., n) and we use

notation sl to indicate scores calculated using the trace set l = 1, .., x and sk for the known
secret key.

3.2 The Budget Approach
We now offer a new idea for vulnerability assessment in the context of very long keys by
the following observation: the key rank relates to the precise position of the secret key

Rebecca Hay, Elisabeth Oswald 7

Algorithm 1: REA- (GEEA) based Rank Estimation Algorithm
Data: Score vectors sl(·) for trace sets l = 1, .., x, Secret key sk, Secret key scores

sl(ski) for i = 1, ..m (ski can take values from j = 1, ..., n)
Result: Key rank estimate R

▷ Comparison Score Distributions
for i← 1 to m do

for j ← 1 to n do
µ̃i

j = 1
x

∑x
l=1(sl(ki,j)− sl(ski));

(σ̃i
j,j)2 = 1

x

∑x
l=1(sl(ki,j)− sl(ski)− µ̃i

j)2;
end

end
▷ Estimate Rank

M = (k1, ..., k|M |) ∈ K \ {sk};
for k ∈M do

µ̃k =
∑m

i=1 µ̃i
ki,j

;
(σ̃k)2 =

∑x
j=1(σ̃i

ki,j
)2;

end
R = |K|

|M |
∑|M |

k=0 1− Φ(−µ̃k

σ̃k

);
return R;

among all keys ordered by their likelihood. But what if rather than asking for the exact
position of a specific key, we ask if a specific key is likely to be below a given “budget”? In
other words, we suggest to ask the fundamental question: “Is sk vulnerable to an attacker
using biased brute force search with a budget of B?" We now go on to formalise this idea,
and design a corresponding algorithm.

Definition 3 (Attacker Budget). The attacker budget, denoted B, is the number of keys
an attacker can realistically enumerate.

We have chosen to keep the definition of the attacker budget broad on purpose. It is
designed to be defined by the user and be a parameter that can incorporate various different
measures affecting an attacker’s abilities, for example run time or memory capacity.

Definition 4 (Key Vulnerability Condition). We say that a key k is vulnerable to attacker
with a budget B if k falls within the first B keys and secure from this attacker otherwise.

The attacker budget B by definition is the number of keys our attacker can enumerate.
It can be directly mapped to a proportion of the key space that is vulnerable. The
distribution of the key rank is thought to be a truncated normal distribution with density
FX(x) [MMOS16a]. The truncation is due to the fact there are only a finite number of
keys and there is at least one lowest score and one highest score. There may be multiple
keys with the same score but there remains a limited number of possible score values.

Thus we can define the budget problem in terms of the cumulative distribution function
(CDF) of a truncated normal distribution FX(x), truncated by the minimum and maximum
possible score values. The CDF function Φ

µ̃,σ̃2 for estimated mean µ̃ and variance σ̃2 gives
us P(X ≤ x) for random variable X and we need to calculate the minimum score b for
a key guess that would fall within this vulnerable space, P(X > b) = p where p is the
probability of a key being in the budget (p = 1− B

|K| for key space K). We can use the
truncated inverse CDF Φ−1

µ̃,σ̃2 [Bur14] shown in equation 7, with l and u representing the
lower and upper limits for truncation, to find b. The value b corresponds to the score for
the last key found using biased brute force search and we can use this position to indicate

8 Key Rank Estimation Methods: Comparisons and Practical Considerations

which category our secret key falls in. If this value is negative then the secret key must
fall to the right of this key (a lower score) and therefore be in the vulnerable key space. If
b is positive, the secret key falls to the left and is secure from this attacker.

b = Φ−1
µ̃,σ̃2(Φ

µ̃,σ̃2(l) + p · (Φ
µ̃,σ̃2(u)− Φ

µ̃,σ̃2(l))) (7)

How to choose B? In 2016, [LMM+16] demonstrated 240 keys could be easily enumer-
ated in three days on some University computing infrastructure, and they conclude that
250 would not be infeasible for some attackers with increased computational capability.
From a cryptographic point of view, symmetric primitives are often required to at least
need 280 or 2100 in terms of brute force effort.

3.2.1 Budget Assessments

We now explain how to translate the budget idea into an efficient algorithm.
Firstly, recall that by repeatedly convolving subkey distributions, the resulting sum

of distributions tends towards a normal distribution. Therefore we can estimate the
parameters of the full score distribution in terms of the sum of the empirical means and
variances of the subkey distributions. For our approach it will also be useful to include
two additional values, the minimum and maximum scores.

Secondly, we use comparison scores (from [ZDF20]) as a basis for estimating the full
key distribution. The formula for comparison scores was defined earlier in equation 4 with
s(·) as the function returning the score vector, sk as the secret key and k as a key guess.

Combing these two ideas, we calculate the histograms from the comparison scores for
subkey candidates, and then we generate an approximate normal distribution reflective of
the full key space by estimating the mean and variance of the subkey distributions denoted
as µ̃i and (σ̃i)2 for i = 1, .., m. By using comparison scores (relative to the secret key
scores), the secret key is always at position 0 and this will be important for comparison
with our attacker budget. We calculate the score corresponding the position of the budget
as this corresponds to the minimum score for a key to fall in the vulnerable range, and
then compare this score with the one linked to our secret key. It is important to note this
approach differs from other key rank methods using distributions as we are not sampling
and instead use characteristics of the entire key space.

Due to the precision required for calculations of b using the truncated inverse CDF,
we need to make use of high-precision libraries (like MCRank does). In Python, we are
limited to the IEEE 754 standard doubles of 53 bit precision and this is not sufficient
for our implementation of Algorithm 2. We therefore used the mpmath library [mdt23],
which has built-in functions for some statistical calculations. However, there is no built-in
function in the library for inverse CDF so we are required to use the relationship between
the normal distribution CDF and the Error function erf .

Φ(z) = 1
2(1 + erf(z√

2
)) (8)

This can be adapted for normal distributions with mean µ and variance σ2 using the
formula z = x−µ

σ :

Φ(x, µ, σ) = 1
2(1 + erf(x− µ

σ
√

2
)) (9)

The idea of introducing a “budget” and asking whether or not a given secret key is
within this budget bears resemblance to the previous work by Ye et al. [YEM14], in which
a key enumeration method, known as the Weak Maximum Likelihood (ML) approach, was
introduced. This previous work introduced an “effort vector” to determine the amount of

Rebecca Hay, Elisabeth Oswald 9

Algorithm 2: Budget Assessment Algorithm
Data: Score vector s(·), Secret key sk, Secret key scores s(ski) for i = 1, .., m (ski

can take values from j = 1, ..., n)
Result: “Vulnerable" or “Secure" assessment of sk
for i← 1 to m do

▷ Comparison Scores
for j ← 1 to n do

∆i,j = s(ki,j)− s(ski);
end

end
for i← 1 to m do

▷ Keyspace Distribution
µ̃i = 1

n

∑n
j=1 ∆i,j ;

(σ̃i)2 = 1
n

∑n
j=1(∆i,j − µ̃i)2;

end
µ̃ =

∑m
i=1 µ̃i;

(σ̃)2 =
∑m

i=1(σ̃i)2;
l =

∑m
i=1min(∆i);

u =
∑m

i=1max(∆i);
p = 1− B

|K| ;
▷ Calculate b

b = Φ−1
µ̃,σ̃2(Φ

µ̃,σ̃2(l) + p · (Φ
µ̃,σ̃2(u)− Φ

µ̃,σ̃2(l)));
if b ≤ 0 then

▷ Final Assessment
return “Vulnerable";

else
return “Secure";

end

key space considered in relation to a maximum “cost”. This idea here sounds similar to
introducing a “budget”, but it is fundamentally very different to our work.

The weak ML-algorithm of [YEM14] sets a cost, which can be considered similar to our
budget, and then finds the optimal effort distribution vector in order to enumerate keys
within the cost. The effort distribution vector decides how many values of each subkey
should be considered for enumeration (= counting) to maximise the chance the correct
key is found. This idea has merit if and only if traditional ranking is not possible, and if
the distribution of the subkey scores is very different from subkey to subkey.

Our budget algorithm does not require discarding of subkey scores to facilitate rank
estimation; the budget algorithm still takes the entire score distribution into account.

4 Experiments and Analysis
4.1 Comparing Estimation Accuracy and Speed
We investigated how recent approaches such as MCRank (with and without rescaling)
compare with other techniques, including path counting, GM bounds and GEEA (converted
to REA) in a typical key rank scenario. Hence we conduct simulation experiments: we
use AES SubBytes as the target function, Hamming weight leakage as a leakage model
and conduct template attacks to obtain scores that we can make additive to feed into the
various algorithms. We use 10,000 traces to build our templates and 100 traces for the

10 Key Rank Estimation Methods: Comparisons and Practical Considerations

attack then vary the signal-to-noise ratio (SNR) implying that the secret key is ranked at
different depths for the different SNRs. To produce ranks that go across an entire 128 bit
key space, we use SNR values from 0.001 to 0.5. Each experiment is repeated 100 times.

MCRank and REA both require us to choose the sample size: for a fair comparison
we use the recommended 50,000 samples suggested by Camurati et al. [CDS23]. We note
at this point that when introducing GEEA [ZDF20], Zhang et al. noticed the critical
role that this sample size plays, and recommended a much larger sample size. However,
in their experiments for GEEA they used 10k samples for performance reasons, thus
50k is generous in comparison. We show the results of this experiment in Figures 1a
(estimation accuracy) and 1b (run time). We have also plotted the results for the lower and
upper bounds found using Massey Guessing Entropy formulae [CP17]. These bounds are
calculated by using the GM equations on the ordered probabilities from the distinguisher.
Throughout our experiments, we represent path counting in blue (always using the Labynkyr
implementation), MCRank in shades of green (with rescaling in light green), GEEA/REA
in pink and GM bounds, shown in shades of orange.

We shall discuss the estimation accuracy first. Rather than plotting average ranks
we use box plots, initially introduced and defined in [Tuk77,HS16] to show the outcomes
of the 100 experiments (per SNR). A box plot, informally speaking, consists of a “five
number summary”. It is shown as a box and “whiskers”. The box shows where most of
the data sits. The middle line of the box is the median, and the boundaries of the box
are the first and third quartile1. The whiskers show the first and third quartile plus 1.5
of the inter-quartile range. Any additional points are outliers. A box plot thus is a very
comprehensive visual summary of the outcomes of repeat experiments. The larger the box,
the more variable the outcomes are. Given that all rank estimation algorithms get the
same score vectors as inputs, a larger box represents greater variation in estimations.

We can see that the Labynkyr implementation of path counting and MCRank (with
and without rescaling) produce similar results across all SNR values, in fact we see that
rescaling had no impact on the key rank, producing almost identical box plots. We observe
that the GM bounds frequently overestimates the key rank, producing results much higher
than path counting (using Labynkyr) or the MCRank algorithms. Using GM bounds
during security evaluations could result in systems being deemed secure when they are
likely vulnerable to an attacker. It can also be seen that the GM bound calculations can
produce results outside the range of possible values, i.e. above 2128 and below 0.

REA only produces results over 2120 for each SNR value, which does not reflect the
expected trend of key ranks seen with the other estimation algorithms. It is worth
highlighting that REA requires more than one set of traces and subsequently more than
one set of scores for the algorithm. To compare the results from REA with the other
techniques, we have assumed we also only have 100 traces for the attack stage, and these
must be split between a minimum of 2 sets (with 50 traces in each). Therefore, it is not
unexpected that the results are not comparable as we are working with considerably less
information. In order to demonstrate the impact of the multiple score sets, we conducted
experiments using 100 traces for each score set (taking a total of 200 traces) for comparison.
These results are shown in Figure 2 and highlight that increasing the number of traces
per set will produce key ranks that follow the expected trend. We see that for 100 trace
sets, the key rank estimation drops to 0 for high SNR values and we struggle to estimate
mid-range key rank values. Assuming this trend continues, to achieve estimates of the
same quality as Labynkyr or MCRank we would need considerably more traces per set.
We would argue that REA can not be safely used to estimate key ranks in this “standard
scenario”.

This brings us to examining the run time graph shown in Figure 1b. It shows the average
execution time for the ranking experiments where the algorithms produce meaningful

1Quartiles divide the data set into four equal portions.

Rebecca Hay, Elisabeth Oswald 11

(a) Estimation accuracy

(b) Average run times

(c) Average run times (zoomed to 0-1 seconds)

Figure 1: Estimations for AES-128 bit keys

12 Key Rank Estimation Methods: Comparisons and Practical Considerations

Figure 2: REA: 50 traces vs 100 traces

results (not all 0s or covering the full key space). In terms of average times across our
experiments, we can see that path counting completes in around 0.01 seconds, MCRank
without rescaling takes 0.05 seconds and with rescaling this average time is around 20
seconds. The MCRank approach with rescaling has a wide range of run times even at
similar key rank values as the extent of resampling required is dependent on the randomly
selected samples. As seen in Figure 1a, MCRank produces similar results to path counting
(using Labynkyr) but the time difference is clear in Figure 1c, a zoomed in window of
results under 1 second. We remark at this point that, as visible from the box plots, REA
only produces estimates at the higher end of the rank spectrum and therefore we only
have average times in this range (around 6-7 seconds). This is why we do not include
performance results in the lower end of the key space for REA in Figure 1b, as for low key
ranks we do not have accurate results for this approach. As the GM bounds are calculated
using a fixed equation, it can be calculated in constant time. From the figure, we can see
that this is equivalent to the time for path counting using Labynkyr.

As this point, we can conclude that path counting and MCRank (with or without
resampling) are the best approaches to consider further, based on accuracy and efficiency.

4.1.1 Comparison of budget approach

We compare our new approach with ranks estimated using Labynkyr implementation of
path counting. As B is a user-defined parameter, it can be set to any value. For the
following experiments we are using the biggest feasible enumeration range suggested by
cryptographic intuition and set B = 2100. We utilise the same simulation setup as before.

First, we check the accuracy of the budget approach by checking how often it produces
a correct assessment for the canonical 128 bit key space situation: this means that the
algorithm should return “Vulnerable” for keys with rank lower than 2100 and “Secure” for
keys beyond this bound. Figure 3a shows the outcome, and we can see that only for keys
just above the bound, the algorithm does return “Secure” instead of “Vulnerable” in a
small number of cases. Running experiments focussed on keys around the budget (2100),
we see the cases that return “Secure” instead of “Vulnerable” are within 5 bits of the
budget mark, as shown in Figure 3b.

To assess the accuracy of the budget on larger keys size, we have run experiments on
512 bit keys looking at a range of possible budget values from 2100 to 2500. The heatmap
in Figure 3c shows the accuracy of the assessments, with lighter colours indicated greater
success rates. The accuracy for each square is calculated based on experiments on 200
keys within a 50 bit rank range for a particular budget. The greatest number of errors in
the experiments occur just above the budget value and due to the precision constraints in
the Python implementation, we observe a greater number of errors for smaller budgets.

Rebecca Hay, Elisabeth Oswald 13

(a) 128 bit key assessments - Budget = 2100 (b) 128 bit key assessments - ranks 290 to 2110

(c) 512 bit key assessments - Accuracy (d) 512 bit key assessments - Budget = 2300

(e) Average time
(f) Comparison of Path Counting and Budget
Approach

Figure 3: Assessing the budget approach

14 Key Rank Estimation Methods: Comparisons and Practical Considerations

Figure 3d shows the assessments for 512 bit keys with a budget set to 2300. As with 128
bit keys, we get some inaccurate results around the budget mark.

Finally we consider the run time of the budget approach in comparison with path
counting using Labynkyr. The budget algorithm calculations are not computationally
linked to the position of the key and we therefore see consistent times per assessment
regardless of key rank value. By design, the budget algorithm only factors in key size
when generating the subkey histograms and finding the full key space normal distribution.
This means as the key size grows there is a limited impact on the time per assessment.
Figure 3e shows the average time per assessment of the budget approach compared to
each estimation results from Labynkyr implementation for various key lengths. As key
rank increases, the cost of the budget approach remains minimal. As a result, for longer
keys, we can make security assessments much quicker than by using Labynkyr. This quick
approach allows for the possibility of running repeated assessments with different budget
parameters to identify bounds for the key rank, without needing to keep regenerating the
initial distribution.

The main problem is the proportion of the key space considered vulnerable in relation
to the overall key space. With the mpmath library, we can continually increase the value
of the mpmath.dps parameter as needed to make assessments (i.e. we can adjust this to
find small budgets even in very large key spaces if necessary).

It should be noted that we can use the budget approach to estimate key rank values
using binary search but its primary function is for efficient vulnerability assessments against
user-defined attackers by evaluation labs. As we are asking a slightly different question,
it is difficult to make a direct comparison with estimation algorithms. Figure 3f shows
box plots for path counting using Labynkyr and the Budget approach at the point our
assessments change from secure to vulnerable. To calculate this, we deployed the budget
approach for multiple budget values, starting at our path counting result (taken log 2) -
20 and increasing until our assessment no longer reads secure (within 5 bits). This means
that our key must then be within the capability of the attacker.

Although in Figure 3b, we observe an overestimation of the key security, Figure 3d
we see the opposite. Figure 3f shows cases of both over- and underestimation depending
on the SNR value. It is worth noting that the budget approach is based on estimating
the distribution parameters and we are using unbiased estimators for both the mean and
variance.

4.2 Arbitrary Scores
As part of our comparison of the various key rank estimation algorithms, we investigated
the handling of different distinguishing vector distributions. In [CPS16], the authors
highlighted that when the distinguisher returns probabilities, we have known combination
rules (in this case, summation) that can be used to build full key distributions but this is
not the case for heuristic scores, such as those obtained from correlation power analysis.
In their work, they make use of statistical techniques such as Bayesian extensions or linear
regression with aim of transforming the score distribution into a probability-based one.

It is easily proven that for independent random variables with normal distributions,
the distribution of the summation will also be normal [HMC05] so for our probability
distinguishers that follow a normal distribution, we can easily demonstrate that summation
over subkey distributions will return another normal distribution for the full key space.
Analysis of the distribution for correlation coefficients found that it can be expressed by
hypergeometric distribution [KK51] but there is no evidence to suggest we can easily apply
the same summation rules in this case.

Figure 4 shows the results of running path counting using Labynkyr and MCRank (with
and without rescaling) after using correlation power analysis attacks to generate our scores.
We can see that path counting is unaffected by the different distinguisher distribution

Rebecca Hay, Elisabeth Oswald 15

Figure 4: Correlation Power Analysis

and produces similar results to those seen from the template attacks in Figure 1a. The
path counting approach does not use any knowledge of the distribution and scores can
be supplied from any distribution for the conversion to weights. The knapsack problem
that fundamentally underpins the algorithm is deployed over the converted weights rather
than the original distinguishing vectors. MCRank on the other hand uses the distribution
of the distinguishing vectors and the combination rules between the subkey distribution
play a crucial role. In the cases where these rules are not easily definable, we see greater
variance in the accuracy of our results. In Figure 4, we see that at SNR value of 0.05,
MCRank (without rescaling) returns potential rank values covering the majority of the
key space and higher SNR values result in rank values of 0 with high probability. At low
SNRs, using rescaling produces results across the entire keyspace but for the higher SNR
values, where original MCRank struggles, rescaling greatly improves the accuracy. As seen
in Section 4.1, however this comes at considerable cost.

4.3 Dependent Distinguisher Outcomes
As mentioned in the previous section, we have a statistical understanding of how to
combine independent random variables with normal distributions. Therefore, assuming
independent distinguishing vectors producing probabilities for our subkeys, we can easily
map out the distribution for the full key space and subsequently use the various algorithms
for rank estimation. It is possible, however, that our subkey distributions may not be
entirely independent. When collecting trace readings from our target device, there may be
a processing phase to smooth traces and remove unnecessary noise. This could include
some level of filtering defined over a small interval of the x-axis across the trace. The
resulting trace would then have some dependency between the subkey distributions and
as with the score-based distinguisher case, we have no knowledge of how to successfully
combine these distributions.

We conducted experiments to highlight the impact this dependency can have on
estimation algorithms, particularly MCRank that relies on the successful combination of
subkey distributions. Figure 5a shows the accuracy results for 128 bit keys where we have
assumed dependency within the trace across rolling windows of 4 subkeys. It is clear that
both path counting and MCRank can handle a small level of dependency within the traces.

If we increase the level of dependency between the subkeys, we question whether the
algorithms can still produce reasonable estimations. In order to have a ground truth
measurement, we have restricted our experiments to only 2 subkeys (16 bit keys), allowing
us to calculate a rank value manually. Figure 5b shows the results from experiments where
the scores are generated relying on trace information from across both subkey values,
creating some level of dependency between the subkey distributions. As there is some

16 Key Rank Estimation Methods: Comparisons and Practical Considerations

(a) 4 subkey distributions (128 bit keys) (b) 2 subkey distributions (16 bit keys)

Figure 5: Dependency between subkeys

discrepancy in the results between the two approaches, we use the box plots for our manual
calculations as the ground truth and can clearly see that path counting returns almost the
same results across all SNR values. MCRank, on the hand, struggles in this more extreme
case, producing very low rank values.

4.4 Going Post-Quantum
To further compare path counting and MCRank, we now investigate how well the two
approaches perform in the case of longer keys. To do so we can only run MCRank without
rescaling: with rescaling, as we have seen in previously, its run time is simply too slow.
REA is also too slow for long keys and GM does not give us the same level of accuracy.

We conducted 100 independent experiments for different 2048 bit keys with varying
SNR values to produce data that puts the correct key at different depths of the 2048
bit key space. Figure 6a and 6b show the accuracy results following template and CPA
attacks respectively. As in previous sections, we utilise box plots to visualise the results,
and we consider the path counting results as the best available ground truth. For template
attacks, we can see that the two approaches produce very similar results across the SNR
values. We see that for SNR 0.1, MCRank does have a greater variation in results, mostly
overestimating the ability of an adversary. In the case of correlation scores, with just
50,000 samples, MCRank appears to struggle estimating mid-range key ranks. For instance,
at SNR 0.05 it consistently returns as key rank estimate the rank 0 instead of around
21500. Similar to what we observed before, MCRank’s overestimates are more drastic when
applied to correlation scores. We can see that the impact of score-based distributions, seen
in Section 4.2, only increases with longer key sizes.

All of our experiments up until this point have been conducted as a proof-of-concept
that we could extend key rank estimation algorithms to handle longer key sizes and
post-quantum keys. We have simulated longer keys by increasing the number of subkeys
but assuming a continuation of the AES key structure, with byte-length subkeys. To fully
demonstrate the potential of these algorithms for post-quantum key security evaluation,
we need to adapt them to handle different key structures.

To compare path counting with the other approaches, we will need to adapt the
Labynkyr implementation. It is worth highlighting that the path counting algorithm can
be easily generalised as fundamentally we are applying the knapsack problem across a
weight table of size m subkeys by n potential values, with the maximum weight determined
by the sum of weights for the correct secret subkey values. We can easily change the values

Rebecca Hay, Elisabeth Oswald 17

(a) Template Attacks (b) Correlation Power Analysis

Figure 6: Estimations for 2048 bit keys

Figure 7: Average time for key rank estimations for Kyber keys

of m and n, and the size of the subkeys does not impact the logistics of the algorithm.
Likewise, neither of the distribution based approaches used for MCRank or the Budget
approach make assumptions about the subkey sizes and can easily be applied to any key
structure as long as we can divide into subkey chunks and combine scores in a defined way.

We will use the lattice-based cryptosystem Kyber-768 as an example. The shared secret
keys can be broken down into 256 subkeys with values taken mod q=3329. This means
that each subkey can no longer be expressed by a single byte, we need 12 bits. We adapted
the Labynkyr implementation so the user can set the size of each subkey and the functions
to read from files will process the keys accordingly. As we are assuming 12 bits for our
example key, we set n to be 4096, the maximum value we can represent using 12 bits but
also ensure our scores distribution eliminates values > q by making these weights much
greater than the secret key total weight (and thus they will never be considered).

For MCRank and the Budget approach, the only adaptations needed are setting the
user provided parameters for the number of subkeys (m = 256) and possible values each
subkey can take (ski ∈ {0, .., q − 1}, q = 3329).

Figure 7 shows the average time for estimations in our proof-of-concept experiments,
conducted on keys of increasing size, with subkeys taking values mod q. Our experiments
focus on the computational aspect of the different approaches. As an initial proof-of-
concept, we chose probabilities at random to generate the distinguisher vectors. Although
this does not reflect the expected distribution for Kyber keys, it shows a worst-case

18 Key Rank Estimation Methods: Comparisons and Practical Considerations

scenario.2 We can see that MCRank can estimate rank values for keys up to 256 subkeys
in length within a couple of seconds, while the path counting approach (using adapted
Labynkyr) takes considerably longer and in fact due to memory constraints is unable to
handle more than 80 subkeys. We can also see that we can also apply the Budget approach
to Kyber keys of 256 subkeys in seconds.

5 Application to Practice
In practice, the best method to use for key rank estimation depends on four factors: the
length of the key (or size of the key space), the size of the subkey chunks, the amount of
dependency between these subkey chunks and the type of scores resulting from the side
channel attack. We now discuss these factors in turn.

For shorter keys (i.e. less than 2048 bits in length), split into independent chunks,
our results show that path counting using Labynkyr and MCRank both achieve accurate
and efficient results assuming that they distinguishing scores resemble probabilities. If
the side-channel attack returns score-based distinguishing vectors (e.g. as a result of
a correlation attack), path counting (which does not require probabilities) performed
consistently in our experiments, whereas MCRank did not.

When considering dependent subkeys, there are two situations: either there is depen-
dency as a result of the key recovery process or as a result of the leakage characteristics of
the device. The former case was explored by Camurati et al. [CDS23] when considering
how to approach key rank for AES-256. The latter case, which we explore in this work,
demonstrated that path counting implementation appeared unaffected by processing depen-
dencies and although MCRank was able to handle small levels of dependencies, increasing
the levels had an impact on the accuracy of estimations. We consider this as an interesting
avenue for further work.

As the key space grows towards 24096, path counting via Labynkyr remains efficient for
byte-sized subkeys. However, in the context of post-quantum cryptography, subkeys are
larger and represent modular numbers. Our modifications to Labynkyr enable processing
such types of keys, however at suboptimal performance, and further work is necessary to
implement a version of path counting that can tackle such keys. MCRank is unaffected by
changing the key structure, thus at the moment, would be the better option, assuming
subkeys are independent. For even longer keys, the Budget approach introduced in this
work becomes more applicable and provides efficient key security assessments.

6 Conclusion
We compared existing approaches for key rank estimation designed for use with large key
sizes. By adapting the GEEA algorithm to return key rank estimates rather than guessing
entropy, we were able to compare it to the most recent work, MCRank, as well as path
counting, using the fast Labynkyr implementation, and GM bounds. We showed that path
counting and MCRank produce very similar results when using distinguishing probabilities
from template attacks. The other approaches do not have the same level of accuracy in
comparison, despite the efficiency of the GM bounds calculation. Using resampling with
MCRank provided little to no benefit, despite the increase in computational time and we
chose to focus on the original version of the algorithm.

We presented a novel proposal for security assessments of keys by rephrasing the
question away from key rank estimates to whether the key falls within an attacker’s budget.

2The efficiency of the rank estimation algorithm is impacted by the number of subkeys and the size of
the subkey chunks, rather than the distribution of the subkeys. In our case, we ensure we use the correct
subkey parameters for Kyber.

Rebecca Hay, Elisabeth Oswald 19

In our formal definition of this new metric, we allowed the budget to be determined by the
user and therefore it could be defined in relation to various factors that could affect an
attacker. We designed an algorithm that can efficiently provide assessments for keys and
could scale to handle keys of at least 8192 bits in length, much longer than the previous
top limit of the path counting approach. Although the budget approach has a margin of
error around the chosen budget bound, we found that a certain “safety margin” can be set.
For instance, in our experiments we found that if the actual budget is 280, then selecting
2100 as a bound implies that keys are classified correctly with near certainty.

We analysed the impact on accuracy of using score-based distributions and distributions
with some level of dependency. In these cases, we have no concrete knowledge on how to
successfully combine distributions and this affects the accuracy of results obtained from
approaches that rely on such knowledge, such as MCRank. The results demonstrated
that path counting is the best algorithm to use in situations where the distribution is
not ideal, although resampling does provide some improvement when using correlation
scores. We also explored using path counting and MCRank for longer key sizes, firstly
considering 2048 bit keys following an AES subkey structure and then using Kyber-768
as an example to explore post-quantum cryptography cases. We adapted the Labynkyr
implementation for use on key structures with larger than byte-sized subkeys and then
demonstrated it was possible to estimate Kyber keys up to 80 subkeys in length before
encountering memory constraints. MCRank allowed us to surpass this and reach 256
subkeys more efficiently, indicated this would be the better algorithm for longer key sizes,
but only when the distinguishing vector distributions meet the ideal criteria.

Acknowledgments
Elisabeth Oswald has been supported in part by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant
agreement number 725042). Rebecca Hay has been funded by an NCSC studentship. Both
authors would like to thank the anonymous reviewers for their constructive comments.

References
[BLvV15] Daniel J. Bernstein, Tanja Lange, and Christine van Vredendaal. Tighter,

faster, simpler side-channel security evaluations beyond computing power.
IACR Cryptology ePrint Archive, 2015:221, 2015. URL: http://eprint.iac
r.org/2015/221.

[Bur14] John Burkardt. The truncated normal distribution, 2014.

[CDS23] Giovanni Camurati, Matteo Dell’Amico, and François-Xavier Standaert.
Mcrank: Monte carlo key rank estimation for side-channel security evaluations.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(1):277–300, 2023. URL:
https://doi.org/10.46586/tches.v2023.i1.277-300, doi:10.46586/T
CHES.V2023.I1.277-300.

[CP17] Marios O. Choudary and Pantelimon George Popescu. Back to massey: Im-
pressively fast, scalable and tight security evaluation tools. In Wieland Fischer
and Naofumi Homma, editors, Cryptographic Hardware and Embedded Sys-
tems - CHES 2017 - 19th International Conference, Taipei, Taiwan, September
25-28, 2017, Proceedings, volume 10529 of Lecture Notes in Computer Science,
pages 367–386. Springer, 2017. doi:10.1007/978-3-319-66787-4_18.

http://eprint.iacr.org/2015/221
http://eprint.iacr.org/2015/221
https://doi.org/10.46586/tches.v2023.i1.277-300
https://doi.org/10.46586/TCHES.V2023.I1.277-300
https://doi.org/10.46586/TCHES.V2023.I1.277-300
https://doi.org/10.1007/978-3-319-66787-4_18

20 Key Rank Estimation Methods: Comparisons and Practical Considerations

[CPS16] Marios O. Choudary, Romain Poussier, and François-Xavier Standaert.
Score-based vs. probability-based enumeration - A cautionary note. In
Orr Dunkelman and Somitra Kumar Sanadhya, editors, Progress in Cryp-
tology - INDOCRYPT 2016 - 17th International Conference on Cryptol-
ogy in India, Kolkata, India, December 11-14, 2016, Proceedings, vol-
ume 10095 of Lecture Notes in Computer Science, pages 137–152, 2016.
doi:10.1007/978-3-319-49890-4_8.

[DW19a] Liron David and Avishai Wool. Fast analytical rank estimation. In Ilia Polian
and Marc Stöttinger, editors, Constructive Side-Channel Analysis and Secure
Design - 10th International Workshop, COSADE 2019, Darmstadt, Germany,
April 3-5, 2019, Proceedings, volume 11421 of Lecture Notes in Computer
Science, pages 168–190. Springer, 2019. doi:10.1007/978-3-030-16350-1
_10.

[DW19b] Liron David and Avishai Wool. Poly-logarithmic side channel rank estimation
via exponential sampling. In Mitsuru Matsui, editor, Topics in Cryptology
- CT-RSA 2019 - The Cryptographers’ Track at the RSA Conference 2019,
San Francisco, CA, USA, March 4-8, 2019, Proceedings, volume 11405 of
Lecture Notes in Computer Science, pages 330–349. Springer, 2019. doi:
10.1007/978-3-030-12612-4_17.

[DW22] Liron David and Avishai Wool. Rank estimation with bounded error via
exponential sampling. J. Cryptogr. Eng., 12(2):151–168, 2022. doi:10.100
7/s13389-021-00269-4.

[GGP+15] Cezary Glowacz, Vincent Grosso, Romain Poussier, Joachim Schüth, and
François-Xavier Standaert. Simpler and more efficient rank estimation for
side-channel security assessment. In Gregor Leander, editor, Fast Software
Encryption - 22nd International Workshop, FSE 2015, Istanbul, Turkey,
March 8-11, 2015, Revised Selected Papers, volume 9054 of Lecture Notes in
Computer Science, pages 117–129. Springer, 2015. doi:10.1007/978-3-662
-48116-5_6.

[Gro18] Vincent Grosso. Scalable key rank estimation (and key enumeration) algo-
rithm for large keys. In Begül Bilgin and Jean-Bernard Fischer, editors, Smart
Card Research and Advanced Applications, 17th International Conference,
CARDIS 2018, Montpellier, France, November 12-14, 2018, Revised Selected
Papers, volume 11389 of Lecture Notes in Computer Science, pages 80–94.
Springer, 2018. doi:10.1007/978-3-030-15462-2_6.

[HMC05] R.V. Hogg, J.W. McKean, and A.T. Craig. Introduction to Mathematical
Statistics. Pearson education international. Pearson Education, 2005. URL:
https://books.google.co.uk/books?id=vIEZAQAAIAAJ.

[HS16] Christian Heumann and Micheal Schomaker Shalabh. Introduction to statistics
and data analysis. Springer, 2016. doi:10.1007/978-3-031-11833-3.

[KK51] J.F. Kenney and E.S. Keeping. Mathematics of Statistics: Part two. Number
v. 1. D. Van Nostrand Company, Incorporated, 1951. URL: https://books.
google.co.uk/books?id=Hkb_wwEACAAJ.

[LMM+16] Jake Longo, Daniel P. Martin, Luke Mather, Elisabeth Oswald, Benjamin
Sach, and Martijn Stam. How low can you go? Using side-channel data to
enhance brute-force key recovery. IACR Cryptol. ePrint Arch., page 609,
2016. URL: http://eprint.iacr.org/2016/609.

https://doi.org/10.1007/978-3-319-49890-4_8
https://doi.org/10.1007/978-3-030-16350-1_10
https://doi.org/10.1007/978-3-030-16350-1_10
https://doi.org/10.1007/978-3-030-12612-4_17
https://doi.org/10.1007/978-3-030-12612-4_17
https://doi.org/10.1007/s13389-021-00269-4
https://doi.org/10.1007/s13389-021-00269-4
https://doi.org/10.1007/978-3-662-48116-5_6
https://doi.org/10.1007/978-3-662-48116-5_6
https://doi.org/10.1007/978-3-030-15462-2_6
https://books.google.co.uk/books?id=vIEZAQAAIAAJ
https://doi.org/10.1007/978-3-031-11833-3
https://books.google.co.uk/books?id=Hkb_wwEACAAJ
https://books.google.co.uk/books?id=Hkb_wwEACAAJ
http://eprint.iacr.org/2016/609

Rebecca Hay, Elisabeth Oswald 21

[Mas94] James L Massey. Guessing and entropy. In Proceedings of 1994 IEEE
International Symposium on Information Theory, page 204. IEEE, 1994.
doi:10.1109/ISIT.1994.394764.

[mdt23] The mpmath development team. mpmath: a Python library
for arbitrary-precision floating-point arithmetic (version 1.3.0), 2023.
http://mpmath.org/.

[MM18] Daniel P. Martin and Marco Martinoli. A note on key rank. Cryptology ePrint
Archive, Paper 2018/614, 2018. https://eprint.iacr.org/2018/614. URL:
https://eprint.iacr.org/2018/614.

[MMO18] Daniel P. Martin, Luke Mather, and Elisabeth Oswald. Two sides of the same
coin: Counting and enumerating keys post side-channel attacks revisited.
In Nigel P. Smart, editor, Topics in Cryptology - CT-RSA 2018 - The
Cryptographers’ Track at the RSA Conference 2018, San Francisco, CA,
USA, April 16-20, 2018, Proceedings, volume 10808 of Lecture Notes in
Computer Science, pages 394–412. Springer, 2018. doi:10.1007/978-3-319
-76953-0_21.

[MMOS16a] Daniel P. Martin, Luke Mather, Elisabeth Oswald, and Martijn Stam. Char-
acterisation and estimation of the key rank distribution in the context of
side channel evaluations. In Jung Hee Cheon and Tsuyoshi Takagi, ed-
itors, Advances in Cryptology - ASIACRYPT 2016 - 22nd International
Conference on the Theory and Application of Cryptology and Information
Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I, vol-
ume 10031 of Lecture Notes in Computer Science, pages 548–572, 2016.
doi:10.1007/978-3-662-53887-6_20.

[MMOS16b] Daniel P. Martin, Luke Mather, Elisabeth Oswald, and Martijn Stam.
Labynkyr. https://github.com/sca-research/labynkyr, 2016.

[MOOS15] Daniel P. Martin, Jonathan F. O’Connell, Elisabeth Oswald, and Martijn
Stam. Counting keys in parallel after a side channel attack. In Tetsu Iwata
and Jung Hee Cheon, editors, Advances in Cryptology - ASIACRYPT 2015 -
21st International Conference on the Theory and Application of Cryptology
and Information Security, Auckland, New Zealand, November 29 - December 3,
2015, Proceedings, Part II, volume 9453 of Lecture Notes in Computer Science,
pages 313–337. Springer, 2015. doi:10.1007/978-3-662-48800-3_13.

[Pol19] Ricardo Villanueva Polanco. Cold boot attacks on post-quantum schemes.
PhD thesis, Royal Holloway, University of London, 2019.

[PSG16] Romain Poussier, François-Xavier Standaert, and Vincent Grosso. Simple
key enumeration (and rank estimation) using histograms: An integrated ap-
proach. In Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic
Hardware and Embedded Systems - CHES 2016 - 18th International Confer-
ence, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings, volume
9813 of Lecture Notes in Computer Science, pages 61–81. Springer, 2016.
doi:10.1007/978-3-662-53140-2_4.

[Tuk77] John Wilder Tukey. Exploratory data analysis. Reading/Addison-Wesley,
1977.

[VGRS12] Nicolas Veyrat-Charvillon, Benoît Gérard, Mathieu Renauld, and François-
Xavier Standaert. An optimal key enumeration algorithm and its application

https://doi.org/10.1109/ISIT.1994.394764
https://eprint.iacr.org/2018/614
https://eprint.iacr.org/2018/614
https://doi.org/10.1007/978-3-319-76953-0_21
https://doi.org/10.1007/978-3-319-76953-0_21
https://doi.org/10.1007/978-3-662-53887-6_20
https://doi.org/10.1007/978-3-662-48800-3_13
https://doi.org/10.1007/978-3-662-53140-2_4

22 Key Rank Estimation Methods: Comparisons and Practical Considerations

to side-channel attacks. In Lars R. Knudsen and Huapeng Wu, editors,
Selected Areas in Cryptography, 19th International Conference, SAC 2012,
Windsor, ON, Canada, August 15-16, 2012, Revised Selected Papers, volume
7707 of Lecture Notes in Computer Science, pages 390–406. Springer, 2012.
doi:10.1007/978-3-642-35999-6_25.

[VGS13] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert.
Security evaluations beyond computing power. In Thomas Johansson and
Phong Q. Nguyen, editors, Advances in Cryptology - EUROCRYPT 2013,
32nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings,
volume 7881 of Lecture Notes in Computer Science, pages 126–141. Springer,
2013. doi:10.1007/978-3-642-38348-9_8.

[YEM14] Xin Ye, Thomas Eisenbarth, and William Martin. Bounded, yet sufficient?
how to determine whether limited side channel information enables key
recovery. In Marc Joye and Amir Moradi, editors, Smart Card Research
and Advanced Applications - 13th International Conference, CARDIS 2014,
Paris, France, November 5-7, 2014. Revised Selected Papers, volume 8968
of Lecture Notes in Computer Science, pages 215–232. Springer, 2014. doi:
10.1007/978-3-319-16763-3_13.

[YMO22] Rebecca Young, Luke Mather, and Elisabeth Oswald. Comparing key rank
estimation methods. In Ileana Buhan and Tobias Schneider, editors, Smart
Card Research and Advanced Applications - 21st International Conference,
CARDIS 2022, Birmingham, UK, November 7-9, 2022, Revised Selected
Papers, volume 13820 of Lecture Notes in Computer Science, pages 188–204.
Springer, 2022. doi:10.1007/978-3-031-25319-5_10.

[ZDF20] Ziyue Zhang, A. Adam Ding, and Yunsi Fei. A fast and accurate guessing
entropy estimation algorithm for full-key recovery. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2020(2):26–48, 2020. URL: https://doi.org/10.131
54/tches.v2020.i2.26-48, doi:10.13154/TCHES.V2020.I2.26-48.

https://doi.org/10.1007/978-3-642-35999-6_25
https://doi.org/10.1007/978-3-642-38348-9_8
https://doi.org/10.1007/978-3-319-16763-3_13
https://doi.org/10.1007/978-3-319-16763-3_13
https://doi.org/10.1007/978-3-031-25319-5_10
https://doi.org/10.13154/tches.v2020.i2.26-48
https://doi.org/10.13154/tches.v2020.i2.26-48
https://doi.org/10.13154/TCHES.V2020.I2.26-48

	Introduction
	Challenge: accuracy and scalability
	Motivation
	Outline of our contributions

	Background
	Counting based key rank estimation
	GM Bounds
	Sampling based key rank estimation

	Further sampling based approaches for key rank
	From GEEA to REA
	The Budget Approach

	Experiments and Analysis
	Comparing Estimation Accuracy and Speed
	Arbitrary Scores
	Dependent Distinguisher Outcomes
	Going Post-Quantum

	Application to Practice
	Conclusion
	References

