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Abstract. Restricted syndrome decoding problems (R-SDP and R-SDP(G)) provide
an interesting basis for post-quantum cryptography. Indeed, they feature in CROSS,
a submission in the ongoing process for standardizing post-quantum signatures.
This work improves our understanding of the security of both problems. Firstly, we
propose and implement a novel collision attack on R-SDP(G) that provides the best
attack under realistic restrictions on memory. Secondly, we derive precise complexity
estimates for algebraic attacks on R-SDP that are shown to be accurate by our
experiments. We note that neither of these improvements threatens the updated
parameters of CROSS.
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1 Introduction
It is well-known that large-scale quantum computers will be able to break most of the
public-key cryptography in use today. The move to new post-quantum standards for
signature and public-key encapsulation mechanisms (KEMs) is well underway. Indeed, the
(U.S.) National Institute for Standards and Technology (NIST) has recently concluded a
multi-year standardization process for post-quantum algorithms, based on feedback from
international academia, industry, and governmental organizations, and the documentation
for new standards is being finalized at the time of writing [AAC+22]. The majority of
the selected algorithms are based on the computational hardness of problems related to
structured lattices, and NIST is currently looking to diversify its portfolio by standardizing
schemes based on different hardness assumptions. For KEMs, there are still several
candidates from the aforementioned standardization process that are being evaluated,
however, there were no remaining viable signature candidates. This prompted NIST
to issue a call for additional post-quantum signature schemes, resulting in 40 proposed
algorithms that were published in July 2023 for further scrutiny.

One of the main directions in post-quantum cryptography is to turn computationally
hard problems from coding theory into digital signatures using zero-knowledge (ZK) proofs.
For the resulting signature schemes, including CROSS, the public key is a description of an
instance of the problem, and its (usually unique) solution is the secret key. The problem of
choice in this case is typically a variant of the syndrome decoding problem (SDP), whose
computational hardness is therefore at the core of the cryptographic security. The basic
version of this problem is defined as follows.
Problem 1 ((Computational) SDP). For a given full-rank matrix H ∈ F(n−k)×n

q , a vector
s ∈ Fn−k

q and an integer t ≤ n, find e ∈ Fn
q of weight t satisfying eH⊤ = s.
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State-of-the-art information set decoding (ISD) algorithms for solving this problem
usually involve searching for a number of zero entries in e. Thus their computational
cost generally worsens as the weight is increased. This motivated the works of [BBC+20,
BBP+24] to look into ways of relaxing the weight restriction by instead limiting the error
vector e to a subset of Fn

q . The culmination of these works is CROSS [BBB+23], a family
of signature schemes that was submitted to the ongoing call for additional post-quantum
signature standards. The signature schemes are derived from an interactive zero-knowledge
identification protocol using Fiat-Shamir transforms. The underlying hard problem in
these protocols is either the restricted syndrome decoding problem (R-SDP) or a further
specialization known as R-SDP(G). The interested reader can find a brief overview of the
ZK protocol used in CROSS, and how the restricted decoding problems feature in it, in
Appendix A.

The idea of R-SDP is to limit the entries of e to a multiplicative subgroup E ⊂ F∗
q of

order z < q − 1. The restricted syndrome decoding problem with respect to the group E
is then defined as

Problem 2 (R-SDP). Given g ∈ F∗
q of order z, E := {gj , j ∈ {0..z − 1}}, a full-rank

matrix H ∈ F(n−k)×n
q and a vector s ∈ Fn−k

q , find e ∈ En such that eHT = s.

The further specialization of R-SDP(G) is achieved by considering errors from a
subgroup G of En. The set En is endowed with the ⋆ operation, which performs the
entry-wise multiplication of two vectors. We can then use elements a1, . . . , am ∈ En to
generate a subgroup (G, ⋆) ⊂ (En, ⋆) as

G := ⟨a1, . . . , am⟩ := {au1
1 ⋆ . . . ⋆ aum

m | ui ∈ {0, . . . , z − 1}} .

The syndrome decoding problem restricted to G is now defined as follows.

Problem 3 (R-SDP(G)). Given a subgroup (G, ⋆) ⊂ (En, ⋆) of order zm, a full-rank
matrix H ∈ F(n−k)×n

q and a vector s ∈ Fn−k
q , find e ∈ G such that eHT = s.

The authors of [BBB+23] point to several advantages of using the restricted variants of
SDP. Both R-SDP and R-SPD(G) are NP-hard, and generic decoders seem to have a larger
computational complexity when compared to a similar instance of SDP. That said, the
restricted variants are fairly recent problems, whose concrete security is not as well-studied
as that of traditional syndrome decoding. One particular problem is how an attacker may
use the structure of G to speed up variants of Stern-Dumer collision attacks on R-SDP(G).
Another natural question is whether the restrictions on the error can open up for efficient
algebraic attacks, which has recently been shown to be the case for a different decoding
problem that relies on structured errors [BØ23].

Contributions. This work explores two directions in the security of restricted syndrome
decoding problems. First, we present a new collision attack on R-SDP(G) that is designed
with the special structure of G in mind. Note that the initial submission of CROSS (version
1.0) was not able to use G in their security analysis. This was, however, changed in an
updated version 1.1, which was made public while we were working on this paper1. The
new version proposes a collision attack that utilizes G and suggests updated parameters
for R-SDP(G) to account for this. The collision attack presented in this paper is different
from that of [BBB+23] and allows for different trade-offs in terms of time and memory
complexity, and success probability.

The second half of this paper is devoted to algebraic attacks on R-SDP. Note that
[BBB+23] provided a heuristic argument that Gröbner basis algorithms will not outperform

1As of July 2024, the latest release of the CROSS specification is version 1.2. However, the contents of
this latter update has no impact on the topics in this paper.



Ward Beullens, Pierre Briaud, Morten Øygarden 3

other attacks, and provided experiments to support this claim. Our analysis goes beyond
this by giving estimates for the Hilbert series of the equations of [BBB+23]. These estimates
rely on standard arguments and have been shown to be exact in our experiments. The
concrete bounds we can obtain from them suggest that the Gröbner basis cost conjectured
in [BBB+23] might be slightly overestimated. Still, we agree with their overall conclusion
that algebraic attacks will not threaten the CROSS R-SDP parameters.

2 A New Combinatorial Attack on R-SDP(G)
In this section we introduce a new combinatorial attack on the R-SDP(G) problem, we
report on a proof-of-concept implementation and we compare against the state of the
art. We conclude that while our algorithm has a time complexity similar to that of
state-of-the-art algorithms, it has much lower memory requirements and works for all keys,
as opposed to some subset of weak keys.

Exploiting group elements with disjoint support. Recall that the R-SDP(G)
problem is equivalent to finding a vector e in the intersection of the affine subspace defined
by eHT = s and of the multiplicative group G. This appears to be a difficult problem
because the additive structure of the affine subspace does not interact nicely with the
multiplicative structure of G. However, observe that if l, r ∈ G are two elements of G with
multiplicative support in the first and second half respectively, i.e., l := (u, 1⌊n/2⌋) ∈ G

and r := (1⌈n/2⌉, v) ∈ G for u ∈ E⌈n/2⌉ and v ∈ E⌊n/2⌋, then multiplication and addition
does interact nicely. More precisely, we have

(l ⋆ r)HT = (u, v)HT = uHT
L + vHT

R , (1)

where H = (HL HR), HL ∈ F(n−k)×⌈n/2⌉
q , HR ∈ F(n−k)×⌊n/2⌋

q . We exploit this property
to do a collision attack. Let L, R ⊂ G be the subgroups of G with support in the left and
right half respectively. Then we try to find a collision

uHT
L = s− vHT

R,

for (u, v) such that l = (u, 1⌊n/2⌋) ∈ L and r = (1⌈n/2⌉, v) ∈ R. If we find such a collision,
then e := l ⋆ r is a solution to the R-SDP(G) problem. The attack only works if there
exists a solution in the subgroup L ⋆ R := {l ⋆ r | l ∈ L and r ∈ R}, which in general only
happens with a small probability. Therefore, we modify the attack to search for a solution
in any coset L ⋆ R ⋆ f and we run the attack for all f in G/(L ⋆ R) until a solution is found.

Stern-Dumer-like optimization. To reduce the cost of the attack, we use a standard
idea inspired by the Stern-Dumer decoder [Dum91, Ste89]. More precisely, we put the
matrix (H||sT) in row-reduced echelon form and discard the ℓ top rows. What remains is
a new matrix H ′ ∈ F(n−k−ℓ)×n

q and a new syndrome s′ ∈ Fn−k−ℓ
q . The idea is to sample

solutions e′ to the smaller system e′H ′T = s′ until we find a solution that also satisfies
the original system e′HT = s. For appropriately chosen values of ℓ this is more efficient
than the direct approach because the cost of checking false positives is much smaller than
the savings we get from attacking the smaller instance.

2.1 Description and Analysis of the Attack
A complete description of our attack can be found in Algorithm 1.
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Algorithm 1: Algorithm for the R-SDP(G) problem
Input : Parity-check matrix H ∈ F(n−k)×n

q , syndrome s ∈ Fn−k
q , and subgroup

G ⊂ En of rank m, parameter ℓ such that n− ℓ is even.
Output : Solution e ∈ G such that eHT = s, if it exists. Otherwise output ⊥.

1 Using Gaussian Elimination mod z, compute the subgroups of G:

L := {l ∈ G, li = 1 for all i such that ℓ + (n− ℓ)/2 < i ≤ n },
R := {r ∈ G, ri = 1 for all i such that ℓ < i ≤ ℓ + (n− ℓ)/2 }.

2 Using elementary row operations, put the matrix (H||sT) in the form(
Iℓ ∗ ∗ ∗
0 HL HR (s′)T

)
,

where Iℓ is the identity matrix of size ℓ, HL, HR ∈ F(n−k−ℓ)×(n−ℓ)/2
q , and

s′ ∈ Fn−k−ℓ
q .

3 for f ∈ G/(L ⋆ R) do
/* Search for a solution in the coset L ⋆ R ⋆ f */

4 Run a collision search to enumerate all pairs (l, r) ∈ L×R such that

(f ⋆ l)

 0
HT

L

0

 = s′ − (f ⋆ r)

 0
0

HT
R

 .

5 For every collision (l, r) check if (f ⋆ l ⋆ r)HT = s. If this is the case, output
the solution e := f ⋆ l ⋆ r.

6 Output ⊥.

We give some more details on how to perform the steps of the algorithm below. A reader
who is already comfortable with the algebraic and computational aspects of R-SDP(G) is
invited to skip past these details.

Step 1. The first step computes the subgroups L and R, whose elements are the elements
of G with ‘1’ entries at positions ℓ + (n − ℓ)/2 + 1 to position n, and at positions ℓ + 1
to position ℓ + (n− ℓ)/2 respectively. We assume (as in the CROSS specification) that
the group G ⊂ En is given as input to the algorithm in the form of a full-rank matrix
M ∈ Fm×n

z , and a generator g of E, such that g ∈ G if and only if g is of the form
gv = (gv1 , . . . , gvn) for some v = (v1, . . . , vn) in the rowspan of M . In other words,
the multiplicative group G corresponds to an (additive) linear subspace of Fz by taking
component-wise discrete logarithms with respect to g, and the matrix M is a generator
matrix for this linear subspace.

The subgroup L corresponds to the subspace L ⊂ ⟨M⟩ consisting of the vectors in
⟨M⟩ with with zeros at position ℓ + (n− ℓ)/2 + 1 up to position n. The space L can be
computed efficiently by doing Gaussian elimination on the matrix M , choosing pivots
from columns ℓ + (n− ℓ)/2 + 1 to n, and then discarding the (n− ℓ)/2 rows from which
the pivots are taken, since, by construction, they are the only rows that do not have the
desired support. The remaining r = m + (ℓ− n)/2 rows are a basis for L. A subspace R
can be constructed for R in a similar manner. Finally, we define the rank of G, L, and R
as the dimensions of ⟨M⟩,L, and R respectively.



Ward Beullens, Pierre Briaud, Morten Øygarden 5

Step 2. This step is just putting (H||sT) in row reduced echelon form using Gaussian
elimination.

Step 3. To enumerate G/(L ⋆ R), let (b1, . . . , br) and (br+1, . . . , b2r) be the bases for
L and R computed in step 1. Then extend this to a basis b1, . . . , bm for ⟨M⟩ [Art10,
Proposition 3.4.16 p. 89]. The elements of ⟨b2r+1, . . . , bm⟩ enumerate uniquely the
equivalence classes of ⟨M⟩/(R+L), so one can efficiently enumerate all f ∈ G/(L ⋆ R) by
iterating over f = gv for all v ∈ ⟨b2r+1, . . . , bm⟩.

Step 4. One can use any collision search algorithm to search for collisions between the
left-hand side and right-hand side of the equation in line 4. We propose to use the van
Oorschot-Wiener (vOW) algorithm [vW99], which is explained briefly in Appendix B.

Correctness. If there exists a solution e ∈ G such that eHT = s, then the algorithm is
guaranteed to output a solution. Indeed, the for-loop on line 3 iterates over all elements
of G/(L ⋆ R), which means that the algorithm will eventually reach an iteration with an
f -vector such that there exists a solution of the form e := l ⋆ r ⋆ f , (l, r) ∈ L×R. Since e
is a solution we have

(l ⋆ r ⋆ f)

 0
HT

L

HT
R

 = s′ ,

which can be rewritten as

(l ⋆ f)

 0
HT

L

0

 = s′ − (r ⋆ f)

 0
0

HT
R

 . (2)

This means that (l, r) is one of the collisions found by the collision search on line 4. The
solution e will pass the check of line 5 and be output by the algorithm.

Cost analysis. We now analyze the expected cost of our attack. We assume that the
ℓ parameter is chosen such that n ≤ 2m + ℓ ≤ 2n. Then, generically, L and R will have
rank r = m + (ℓ − n)/2 and L ⋆ R will have rank 2r. We ignore the cost of computing
these subgroups and doing the partial Gaussian elimination on (H||sT) because these
operations can be done in polynomial time. The corresponding cost will in particular
be negligible compared to the complexity of the rest of the attack for cryptographically
interesting parameters.

The main cost of the algorithm is due to the loop on line 3. Heuristically, the solutions
of the R-SDP(G) problem will be distributed uniformly over the cosets G/(L ⋆ R). If there
are S such solutions, this means that on average we need to consider |G/(L ⋆ R)|/(S + 1) =
zn−ℓ−m/(S +1) cosets before finding the first solution, since we are sampling cosets without
replacement. The cost of each iteration is then the sum of the cost of collision search on
line 4 and of the cost of checking for false positives on line 5.

Cost of false positives. Recall that e′ is said to be a false positive if it satisfies
the smaller system e′H ′T = s′, with H ′ ∈ F(n−k−ℓ)×n

q , but is not a valid solution to
the decoding problem, i.e., e′HT ̸= s. A random n-vector is expected to satisfy the
smaller system with a probability of qk+ℓ−n, and hence we expect there to be, on average,
approximately |L ⋆ R|qk+ℓ−n false positives in each iteration of the for-loop in Algorithm 1.
Dispelling a false positive e′ requires checking on average q/(q−1) ≈ 1 entries of e′HT = s,
which can be done with roughly n− ℓ field multiplications. So the total cost of checking
false positives in one iteration is approximately (n− ℓ)z2rqk+ℓ−n field multiplications.
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Cost of the collision search. The cost of collision search depends on the strategy that
is used to find the collisions. The naive method would be to build the list

Γf :=

(l, (l ⋆ f)

 0
HT

L

0

) for l ∈ L

 ,

and then for every r ∈ R compute the right hand side of Equation (2) and check if it occurs
in Γf . An advantage of this approach is that the cost can be amortized over many f .
Indeed, after one Γf is built, it will be cheaper to compute Γf ′ for f ′ := f ⋆f ′′ where f ′′ is
a low-weight codeword of G. Similarly, updating the set of right-hand sides is more efficient
than recomputing it from scratch. However, because of the large memory requirement
and the cost of accessing the huge list, we expect the naive approach to be much more
expensive than more memory-friendly alternatives in “realistic” cost models. Therefore,
we analyze the cost of our attack using the vOW collision search (see Appendix B) to
enumerate the collisions.

Given two functions f1 : X1 → Y , f2 : X2 → Y , with N = |X1| = |X2| < |Y |/2
and enough memory to store M elements of X1 ⊔ X2, the vOW algorithm allows to
enumerate a large fraction of all collisions (x1, x2) ∈ X1 ×X2 such that f1(x1) = f2(x2)
with a runtime cost dominated by 3.5N1.5/M0.5 evaluations of f1 and f2. (Note: if
M < N , then this compares favorably to the the naive collision search which takes N2/M
function evaluations. Moreover, the vOW algorithm parallellizes much better than the
naive approach.) Applying the vOW algorithm to our application, we have

N = |L| = |R| = zr = zm+(ℓ−n)/2 ,

f1 : L→ Fn−k−ℓ
q : l 7→ (l ⋆ f)

 0
HT

L

0

 , and

f2 : R→ Fn−k−ℓ
q : r 7→ s′ − (r ⋆ f)

 0
0

HT
R

 .

An evaluation of f1 or f2 requires roughly (n− ℓ)/2× (n− k − ℓ) field multiplications, so
the overall cost of the collision search can be estimated as the cost of 3.5(n− ℓ)(n− k −
ℓ)z1.5m+0.75(ℓ−n)/M0.5 field multiplications.

Total cost. Putting everything together, we estimate the total cost of the attack in field
multiplications by

zn−ℓ−m

S + 1︸ ︷︷ ︸
iterations

3.5(n− ℓ)(n− k − ℓ)z1.5m+0.75(ℓ−n)

M0.5︸ ︷︷ ︸
cost of collision search

+ (n− ℓ) z2r

qn−k−ℓ︸ ︷︷ ︸
cost of false positives

 . (3)

2.2 Proof-of-Concept Implementation
We implemented our attack for the SL1 parameters of CROSS. Our analysis suggests that
ℓ = 15 gives the best attack performance, resulting in groups L and R of rank 5, and
HL and HR having 4 rows. Therefore, the naive collision search would require storing
z5 elements of log(p4) bits each, which amounts to roughly 138 GB of memory. While
this is not a prohibitively large amount of memory, we expect that the cost of frequently
accessing such a large amount of memory makes the naive collision search less efficient
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Table 1: Performance of our attack against the SL1 parameter set of CROSS, as a function
of the amount of memory that is used.

fraction of dist- F evals partial solutions
Memory inguished points per second per second

128 KB 2−10 34 M 2.0 K
512 KB 2−9 34 M 4.1 K
2 MB 2−8 33 M 8.1 K
8 MB 2−7 33 M 16 K
32 MB 2−6 32 M 31 K
128 MB 2−6 31 M 56 K
512 MB 2−5 29 M 104 K
2 GB 2−4 24 M 167 K
8 GB 2−3 19 M 246 K

than the vOW method, so we used the latter in our implementation of the attack. The
vOW method repeatedly evaluates the function F : F4

p → F4
p : v 7→ fH(v)(EH(v)(v)), where

H : F4
p → {1, 2} is a hash function, and E1 : F4

p → L, and E2 : F4
p → R are arbitrary

injective functions. The vOW algorithm repeatedly starts from random points and iterates
this function until a distinguished point is reached, where in our implementation we say a
point v ∈ F4

p is distinguished if its bit-representation starts with a given number of zeros.
Using a single core of an Intel i9-1088H CPU, our preliminary implementation can do up
to roughly 34 million evaluations of F per second. Table 1 reports the amount of partial
solutions that our implementation finds per evaluation of F (including the cost of checking
if the partial solution is a solution to the full R-SDP(G) problem), as a function of how
much memory the attack is allowed to use. The table shows that, as the amount of memory
increases, fewer evaluations of F are required per partial solution. However, when the
amount of memory is large, the number of F -evaluations per second decreases, because the
attack is starting to get bottlenecked by the memory accesses, which get more expensive
and more frequent (because of the higher fraction of distinguished points). The fraction
of distinguished points is chosen to be the power of 1/2 that maximizes the number of
partial solutions checked per second (last column). Since an expected number of qℓ ≈ 2134

partial solutions needs to be checked before a real solution is found, we do not claim that
our attack breaks the security level of the new parameter set. E.g. using 8 GB of memory,
the attack should take 2134/246000 core-seconds, which is much longer than a key search
against AES-128 would take on the same hardware.

2.3 Comparison with Previous Analysis
This section aims to discuss and compare our new collision attack with the recently
introduced collision attack from [BBB+23, Section 7.1.2]. For completeness, we provide a
brief overview of this latter attack in Appendix C. Our attack shares some similarities with
the attack of [BBB+23], both algorithms use the Stern-Dumer-like approach in combination
with a collision search. The main difference is that our algorithm performs collision searches
between lots of functions with “small” domains, as opposed to the algorithm of [BBB+23]
which does a single collision search between two functions with much larger domains. If
the collision searches are performed naively, then both attacks have a similar time cost,
but our attack has a much lower memory cost. In a realistic scenario where an attacker
has a limited amount of memory it is necessary to perform the collision search with a
time-memory trade-off such as with the vOW algorithm. In this case, for a fixed amount of
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memory, our attack will be more time-efficient. A second difference is that our algorithm
works for all instances of the RSDP-(G) problem (i.e. all public keys of CROSS), whereas
the algorithm of [BBB+23] only works for a small subset of weak public keys. This is
because their algorithm searches for and exploits two large subcodes C1, C2 of the dual of
log(G) which have disjoint support, and these codes do not exist for most G. We remark
that it is possible to run the attack of [BBB+23] with C1 = C2 = {0}, which would result
in an attack that works for all public keys, at the cost of only a relatively small loss of
efficiency.

2.3.1 Comparing Complexity Estimates

In Table 2 and 3 we showcase for each CROSS parameter sets three instantiations of
Algorithm 1, with different amounts of available memory. Let M be the number of
distinguished points stored by the algorithm. In the first case we impose no restrictions on
memory, and report M = N , where N is the size of the list when the algorithm parameters
are chosen to optimize for time. In the two remaining instantiations we limit log2M to
λ/4 and λ/8, where λ is the AES-security level associated with the parameter set. Time
complexities are counted in log2 bit operations, which is obtained by multiplying (3) with
2 log2(q)2, since we estimate the cost of one Fq-multiplication as 2 log2(q)2 bit operations,
as is customary in the multivariate cryptography literature. We note that this is a pure
bit-cost estimate that does not take into account the potential costs of accessing a (still
fairly) large amount of memory, as discussed in Section 2.2. We have used S = zmqk−n + 1
as the expected number of solutions for the R-SDP(G) problem.

Table 2 focuses on the updated parameter sets from version 1.1 of the CROSS specifi-
cation. The different parameter sets are denoted SL(n, k, m), where q = 509 and z = 127
are used in all sets. Recall that the security levels 1, 3 and 5 are based on the security of
AES-λ for λ = 128, 192 and 256, respectively. [BBB+23] estimates the AES variants to
achieve the security of roughly 143, 207 and 271 bit operations, respectively.

Table 2: Comparison of complexity estimates for solving R-SDP(G) for the parameter sets
in the CROSS submission. For each parameter set we compare the attack of [BBB+23]
against our attack with 3 different bounds on the memory used by the vOW collision search.
Time cost is given as the base-2 logarithm of the estimated number of bit operations.

Parameter Set Attack Time
cost

Memory cost log2(Succ. prob.)

[BBB+23] 143 126 -118

SL1(55, 36, 25) Alg.1 (ℓ = 15) 152 35 0
Alg.1 (ℓ = 15) 154 32 0
Alg.1 (ℓ = 15) 162 16 0
[BBB+23] 210 187 -116

SL3(79, 48, 40) Alg.1 (ℓ = 23) 219 84 0
Alg.1 (ℓ = 23) 230 48 0
Alg.1 (ℓ = 25) 238 24 0
[BBB+23] 272 252 -209

SL5(106, 69, 48) Alg.1 (ℓ = 30) 283 70 0
Alg.1 (ℓ = 30) 284 64 0
Alg.1 (ℓ = 30) 300 32 0

For comparison, Table 2 also includes the time-optimized complexities reported in
[BBB+23, Section 8.2]. The log2M reported for this algorithm refers to the number of
elements in the smaller of the two lists used in this attack. The success probability is given
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Table 3: Same as Table 2, but for the CROSS parameters in the first version of the CROSS
submission. All attacks succeed with probability 1.

Parameter Set Attack Time cost Memory cost

SL1(42, 23, 24)
Alg.1 (ℓ = 12) 121 63
Alg.1 (ℓ = 14) 134 32
Alg.1 (ℓ = 14) 140 16

SL3(63, 35, 36)
Alg.1 (ℓ = 17) 177 91
Alg.1 (ℓ = 19) 195 48
Alg.1 (ℓ = 21) 203 24

SL5(87, 47, 48)
Alg.1 (ℓ = 27) 231 126
Alg.1 (ℓ = 29) 255 64
Alg.1 (ℓ = 31) 268 32

by a conservative upper bound on the fraction of the public keys affected by this specific
attack, computed as P (d1, j1)P (d2, j2) in accordance with [BBB+23, Section 7.1.2]. We
note that compared to the attack of [BBB+23], our attack uses a dramatically reduced
amount of memory and has a success probability of 1 rather than an extremely small
success probability. This comes at the cost of a slightly increased time cost.

Table 3 shows the performance of Algorithm 1 against the older CROSS parameter sets
from version 1.0 of the CROSS specification document. Memory restrictions have been
chosen as for Table 2. Note that these parameters were shown to be vulnerable against
the collision attack of [BBB+23] (version 1.1), though the authors did not suggest specific
attack parameters for these cases; this is why we have chosen only to include the results
from Algorithm 1 in Table 3.

Discussion. Note that the timings taken from [BBB+23] are computed under various
conservative assumptions, that differ from the assumptions used in this paper. While
memory does affect these time estimates to some extent, there are otherwise no restrictions
on the amount of memory used in the attack (see [BBB+23, Theorem 15] for further
details). For this reason, we emphasize that the numbers given for the different algorithms
in Table 2 are meant to provide a qualitative – as opposed to a direct – comparison.

In Table 2 we see that the respective time complexities increase with Algorithm 1 as
we add restrictions on memory. Thus the updated parameters seem to have a notable
security buffer against these collision attacks under realistic memory restrictions. The
older CROSS-parameters are, on the other hand, known to be insecure against the collision
attack of [BBB+23] (version 1.1). Table 3 shows that these parameters are also vulnerable
to Algorithm 1 under certain memory restrictions (and without assumptions on the public
key).

3 Gröbner Basis Approach on R-SDP
This section is devoted to the study of algebraic attacks on R-SDP using Gröbner bases.
We refer to [CLO13] for the fundamental definitions and theory on Gröbner bases, as well
as their role in solving systems of multivariate polynomials. In the following we briefly
recall the algebraic analysis from [BBB+23], which proposed the following way to model
R-SDP as a system of polynomial equations.

System 1 ([BBB+23], §7.2 p. 43). Let R = Fq[e1, . . . , en], where ei is the i-th coordinate
of the error vector e for i ∈ {1..n}. Let L be the linear system of size n− k corresponding
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to the parity-check equations eHT = s and let

Z := {∀i ∈ {1..n}, ez
i − 1} .

Finally, let F := L ∪ Z.

It is easy to see that the solutions to F exactly correspond to the solutions of the
R-SDP problem. The analysis of [BBB+23] assumes that that the complexity of finding
a solution to F is dominated by finding a Gröbner basis for the ideal ⟨F⟩. The authors
then estimate the complexity of solving this problem with the Gröbner basis algorithm F5
[Fau02] terminating in degree dreg by

O
((

n+dreg
n

)ω
)

, (4)

where 2 ≤ ω ≤ 3 is the linear algebra constant. Predicting the degree dreg is, in general,
difficult, but [BBB+23] argues heuristically that its growth will be linear in n. This is
also backed by experiments performed with the computer algebra system Magma [BCP97],
reported in [BBB+23, Table 2 p. 45]. In turn, the authors argue that such an algebraic
approach could not be competitive with combinatorial methods for the proposed parameters
in CROSS.

In this section we ultimately reach the same conclusion, but provide a tighter analysis.
We also consider hybrid approaches, which seem to give better results in practice. We
start with recalling some algebraic preliminaries, which will be needed for our analysis.

3.1 Preliminaries
Let R denote a polynomial ring over Fq in n variables. For a set of polynomials p1, . . . , pm ∈
R, we let I = ⟨p1, . . . , pm⟩ ⊂ R denote its ideal. I is said to be a homogeneous ideal if it
can be generated by a set of homogeneous polynomials. Let Rd denote the Fq-vector space
generated by the monomials of degree d in R. For a homogeneous ideal I, we have the
subspace Id := {p ∈ I, deg(p) = d} = I ∩Rd. The Hilbert function of R/I is then defined
as

HFR/I : N −→ N
d 7−→ dimFq (Rd/Id)

and the Hilbert series is

Definition 1 (Hilbert series). Let I ⊂ R be a homogeneous ideal. The Hilbert series of
the quotient ring R/I is

HR/I(x) :=
∞∑

d=0
HFR/I(d)xd.

Computing the Hilbert series of a general ideal is difficult. There are, however,
an important class of polynomial systems, known as semi-regular sequences, where an
expression for the Hilbert Series is known. Recall that a homogeneous ideal I is said to be
zero-dimensional if R/I is a finite dimensional vector space. In this case, the degree of
regularity, dreg, is the smallest integer d such that Id = Rd.

Definition 2 (Semi-regular sequence, [Bar04]). Let P := {p1, . . . , pm} be a sequence of
homogeneous polynomials such that I := ⟨P⟩ is zero-dimensional with degree of regularity
dreg. The sequence P is said to be semi-regular if I ̸= R and if for 1 ≤ i ≤ m, gipi = 0 in
R/⟨p1, . . . , pi−1⟩ with deg (gipi) < dreg implies gi = 0 in R/⟨p1, . . . , pi−1⟩.
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Proposition 1 ([Bar04]). Let P := {p1, . . . , pm} be a homogeneous semi-regular system
where deg (pi) = di for 1 ≤ i ≤ m and let Sm,n(z) =

∏m

i=1
(1−xdi )

(1−x)n . Then the Hilbert Series
associated with P is given by

HR/⟨P⟩(x) = [Sm,n(x)]+ ,

where [·]+ means truncation after the first non-positive coefficient.

The semi-regularity notion is extended to an affine sequence {p1, . . . , pm} by considering
{ph

1 , . . . , ph
m}, where ph

i denotes the homogeneous part of pi of maximal degree.

3.2 A Conjecture on the Hilbert Series
We consider the affine ideal ⟨F⟩ ⊂ R and I := ⟨Fh⟩ the homogeneous ideal generated
by the highest degree parts. The degree of regularity of I will play a crucial role in our
complexity estimates for finding solutions of F (see Assumption 2 below). To derive this,
we formulate a conjecture on the Hilbert series of R/I. Note that the ideal is guaranteed
to be zero-dimensional due to the equations in Zh. In fact, we have a precise description
of the Hilbert series of R/⟨Zh⟩.

Lemma 1. The Hilbert series of S := R/⟨Zh⟩ is equal to

HS(x) = (1 + x + · · ·+ xz−1)n =
(

1− xz

1− x

)n

.

Proof. As the equations from Zh are univariate and do not depend on the coordinate
index, we obtain

HS(x) =
(
HFq [e]/⟨ez⟩(x)

)n
.

The fact that HFq [e]/⟨ez⟩(x) = 1 + x + · · ·+ xz−1 is clear.

Our conjecture follows a similar strategy to [BØ23] and [CMT23, §5.3]. That is, we
assume a generic behaviour of the Lh equations in S = R/⟨Zh⟩. More formally, we can
define a regular property by adapting Definition 2 to this quotient.

Definition 3 (Semi-regularity over S). Let P := {p1, . . . , pm} be a sequence of homoge-
neous polynomials in S such that I := ⟨P⟩ is zero-dimensional with degree of regularity
dreg. The sequence P is said to be semi-regular if I ̸= S and if for 1 ≤ i ≤ m, gipi = 0 in
S/⟨p1, . . . , pi−1⟩ with deg (gipi) < dreg implies gi = 0 in S/⟨p1, . . . , pi−1⟩.

Note that while S is identical to the quotient defined by the top degree parts of the
field equations from the field Fz, the notion of semi-regularity over S is different from
semi-regularity over Fz . The main difference is that the coefficients of P do not belong
in Fz. This means that we do not expect “Frobenius-like" cancellations caused by pz. In
particular, Definition 3 is different from semi-regularity over F2 [Bar04, Definition 3.2.4]
when z = 2.

Assumption 1. We assume that the equations of the image of Lh in S satisfy Definition
3.

If this assumption holds, we obtain

Proposition 2. Under Assumption 1, the Hilbert series of R/⟨Fh⟩ is equal to

HR/⟨Fh⟩(x) =
[
(1− x)n−k

(
1− xz

1− x

)n]
+

=
[

(1− xz)n

(1− x)k

]
+

,

where [·]+ refers to the truncation after the first non-positive coefficient.
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Proof. The zero-dimensional character of the ideal ⟨Fh⟩ and Assumption 1 imply the
relation

HR/⟨Fh⟩(x) =
[
(1− x)n−kHS(x)

]
+ ,

where [·]+ is the truncation after the first non-positive coefficient. This follows from a
reasoning similar to [Bar04, §3.3.1], or more recently [BØ23]. We conclude by Lemma
1.

While we are not able to prove Assumption 1, it was found to be valid in our com-
putations of Hilbert series for several parameter sets, see Appendix D. Thus we will, in
practice, use Proposition 2 as a conjecture on the full Hilbert series HR/⟨Fh⟩.

3.3 A Tighter Complexity Bound
The degree of regularity and Equation (4) capture the complexity of computing Gröbner
bases for homogeneous polynomial systems. In general, a more suited measure of the degree
reached for affine polynomial systems in a Gröbner basis algorithm like F4 [Fau99] is the
solving degree [CG23, Definition 1.1]. The exact relation between dreg and the solving
degree depends on the affine polynomials that are associated with non-trivial syzygies in
⟨Fh⟩, and whether they reduce to zero modulo previous polynomials in the Gröbner basis
computation. While there are polynomial systems where the solving degree and degree
of regularity are different (see, e.g., [CG23, Example 4.3]), they typically coincide for
polynomial systems that do not exhibit a particular algebraic structure. The two degrees
are indeed found to be the same in all the experiments we have performed with the F4
algorithm implemented in Magma. This leads to the following assumption, which will
justify our use of dreg in complexity estimates.

Assumption 2. We assume that the solving degree of F coincides with the degree of
regularity of the homogeneous ideal ⟨Fh⟩.

We have also verified that dreg is equal to the first fall degree [CG23, Definition 1.3]
for F (which is consistent with Assumption 1).

Under Assumption 1 and 2, we now have an explicit way of computing the degree dreg
that is used in Equation (4). That is, dreg = deg (HR/I) + 1, where HR/I is the series
in Proposition 2. However, we note that the binomial expression in Equation (4) counts
all monomials of degree dreg in n variables, which is an overestimate. Indeed, by first
performing a reduction step modulo the ez

i − 1 = 0 equations, we may instead consider
a matrix whose columns are indexed by monomials whose partial degree is only ≤ z − 1
in each variable, that is the monomials in S = R/⟨Zh⟩. Recall that the coefficient of the
degree d term in the series of Lemma 1 counts the number of degree d monomials in S.
The number of degree ≤ d monomials of this form is given by the coefficient of degree d in
the following modification of this series.

1
1− x

HS(x) = 1
1− x

(
1− xz

1− x

)n

. (5)

All in all, we can refine the cost estimate for computing a Gröbner basis of F by

Proposition 3. Under Assumption 1 and 2, we estimate the complexity of solving F
using Gröbner bases by

O(Mω
z,(dn,k,z,n)), (6)

where dn,k,z is the degree of regularity derived from the Hilbert series in Proposition 2,
Mz,(dn,k,z,n) is the coefficient of degree dn,k,z in the series of (5), and 2 ≤ ω ≤ 3 is the
linear algebra constant.
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3.4 Hybrid Approach
In its plain form, the above attack performs poorly on the CROSS-R-SDP parameters of
[BBB+23]. This motivates the study of hybrid techniques to improve the complexity. The
standard hybrid approach corresponds to fixing several unknowns in F . As the error vector
is random in En and |E| = z, the success probability is 1/z each time we fix a variable.
Similarly to previous works, such as [Bet12, Section 4,2] and [BØ23], we adopt the same
genericity assumptions as in the plain case regarding specialized systems. More specifically,
we fix f of the k last variables, i.e., ei, i ∈ {n−k +1..n}. Note that the top degree parts of
P will then be the same as the homogeneous polynomials associated with the parity-checks
of the code defined by H shortened at the same f positions. Since Assumption 1 was
on the highest degree components, its hybrid adaptation given in Assumption 3 does
not depend on the vector of specialization v ∈ Ef , only on f . For any f ∈ {0..k}, let
ef := (ef+1, . . . , en), let Zf := {∀i ∈ {f + 1..n}, ez

i − 1} and let Sf := Fq[ef ]/⟨Zh
f ⟩.

Assumption 3. For any f ∈ {0..k} and any v ∈ Ef , we assume that the system Fspec,v,f

obtained by fixing the last f variables to v is semi-regular in Sf .

In the same manner as Proposition 2, we can show the following result.

Proposition 4. Under Assumption 3, the Hilbert series of R/⟨Fh
spec,v,f ⟩ is equal to

HR/⟨Fh
spec,v,f

⟩(x) =
[

(1− x)n−k

(
1− xz

1− x

)n−f
]

+

=
[

(1− xz)n−f

(1− x)k−f

]
+

,

where [·]+ refers to the truncation after the first non-positive coefficient.

We also adopt an analogue to Assumption 2. Note that the following assumption does
depend on the choice of v ∈ Ef .

Assumption 4. We assume that the solving degree of Fspec,v,f coincides with the degree
of regularity of the homogeneous ideal ⟨Fh

spec,v,f ⟩.

Finally, we follow the reasoning of Section 3.3 and obtain

Proposition 5. Under Assumptions 3 and 4, we estimate the complexity of the standard
hybrid approach on F using Gröbner bases by

O

 min
0≤f≤k

dn,k,z,f ≥z

(
zf Mω

z,(dn,k,z,f ,n−f)

) , (7)

where dn,k,z,f is the degree of regularity derived from the Hilbert series, where Mz,(dn,k,z,f ,n−f)

is the coefficient of degree dn,k,z,f in the series 1
1−x

(
1−xz

1−x

)n−f

and where 2 ≤ ω ≤ 3 is
the linear algebra constant.

On the CROSS parameters, this approach does not yield the most efficient attack.
More precisely, for the 3 security levels, the best strategy using Equation (7) is to fix
variables until we can solve at degree z = 7. This is the least degree where we can exploit
the Z equations. Concretely, as we fix almost all k variables, the cost of this approach is
not competitive with the R-SDP adaptation of Prange’s algorithm.

A possible generalization of this approach is to consider univariate equations of degree
di ∈ {1..z − 1} which vanish on the ei’s with probability < 1. These equations correspond
to guessing subsets Ei ⊂ E such that ei ∈ Ei. (The method described above is then
the case |Ei| = 1). Note that a similar approach has already been performed on MQ
systems, see [Bet12, §4.4 p. 111]. However, testing different values of di suggests that this
generalization would still not outperform Prange on the CROSS parameters.
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3.5 Asymptotic analysis
The goal of this section is to give an asymptotic equivalent of the degree of regularity
when the length n tends to infinity assuming a constant code rate R := 1/α := k/n. An
initial observation is that the conjectured Hilbert series for F is the same as the one of a
semi-regular system containing n equations of degree z in k variables. Thus we can leverage
the technical machinery from the work of Bardet, Faugère and Salvy [Bar04, BFS05].

Theorem 1 ([Bar04], Theorem 4.1.3 p. 81). For any constant α > 1, an asymptotic
equivalent of the degree of regularity of a semi-regular sequence of n = αk equations with
degrees d1, . . . , dn in k variables when n→ +∞ is

dreg ∼ ϕ(x0)k,

where

ϕ(x) = x

1− x
− 1

k

n∑
j=1

dix
di

1− xdi
, (8)

and where x0 is the root of ϕ′ such that ϕ(x0) > 0 is minimal.

The function ϕ relevant to the setting di = z for all i ∈ {1..n} is ϕ(x) = x
1−x − α zxz

1−xz .
The consequence for the R-SDP setting of CROSS is

Lemma 2. Assuming a constant code rate R := 1/α, there exists a constant cα,z > 0 such
that the degree of regularity of ⟨Fh⟩ behaves as

dn,k,z ∼ cα,zk.

We can precisely give the value of cα,z when z is small. We showcase this for the
cases z = 2 and 3 For the former case, we may rely on the study of quadratic equations
performed in [Bar04].

Lemma 3 ([Bar04], Corollary 4.4.1 p. 95). When z = 2, an equivalent of the degree of
regularity dreg when k goes to infinity is dreg ∼ cα,2k, where

cα,2 = −1
2 + α−

√
α(α− 1).

The case z = 3 can be obtained by a resultant computation, namely

Lemma 4. When z = 3, an equivalent of the degree of regularity dreg when k goes to
infinity is dreg ∼ cα,3k, where

cα,3 = −1
2 + 3α

2 −
√

81α2 − 24
√

α− 54α− 3
6 .

Proof. We have to study the roots of the derivative ϕ′, where

ϕ(x) = x

1− x
− 3α

x3

1− x3 .

More precisely, we look for the smallest possible value of u = ϕ(x0) for such a root x0.
Since ϕ and ϕ′ are rational fractions, we may rewrite

ϕ(x0)− u = 0, ϕ′(x0) = 0,

as a polynomial system
P (x0, u) = 0, Q(x0, u) = 0,
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where the polynomials P and Q can be easily computed. To eliminate x0, we consider the
resultant T (Y ) = ResX(P (X, Y ), Q(X, Y )) which is a polynomial of degree 4. Its roots
sorted in decreasing order are

−1
2 + 3α

2 +
√

81α2 + 24
√

α− 54α− 3
6

−1
2 + 3α

2 +
√

81α2 − 24
√

α− 54α− 3
6

−1
2 + 3α

2 −
√

81α2 − 24
√

α− 54α− 3
6

−1
2 + 3α

2 −
√

81α2 + 24
√

α− 54α− 3
6 .

The two greatest roots are positive as α > 1 > 1/3. The explicit expression of the resultant
also shows that the product of roots is negative. This implies that we eventually keep the
value

−1
2 + 3α

2 −
√

81α2 − 24
√

α− 54α− 3
6 .

Degrees z ≥ 4 can still be tackled in the same fashion. The technical difficulty is that
we will handle a resultant of larger degree and thus we are no longer guaranteed to have a
closed form expression for its roots.

Finally, let us return to the hybrid approach. We note that the conjectured Hilbert
series for R/⟨Fh

spec,v,f ⟩ is also the Hilbert series of a semi-regular system, which means
that we can obtain a value for dreg in the same manner as in the plain case. Based on this
equivalence, a possible next step could be to derive the best asymptotic trade-off following
the approach of [BFP09, Bet12] (see also [BS24, §4.4] for a recent use of this technique).
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A The CROSS Signature Schemes
The CROSS signature schemes are based on a Fiat-Shamir transformation of a zero-
knowledge (ZK) identification protocol. In the following we provide a brief description of
these constructions, and how the restricted syndrome decoding problems feature in them.
We refer to [BBB+23] for further details on implementation and improvement.

The ZK identification protocol at the core of the CROSS signature schemes, CROSS-ID
(Figure 1), is a 5-pass protocol consisting of an initial commitment, and two challenge-
response cycles. We give the following description for R-SDP(G) (Problem 3) as the
underlying problem, noting that the case of R-SDP (Problem 2) follows by choosing
G = En.

Choice of Hard Problem. The CROSS-ID protocol is an adaptation of a ZK-protocol
originally intended for the SDP problem [CVE10]. [BBP+24] shows that signature sizes can
be significantly decreased when instead using R-SDP and R-SDP(G), which has motivated
the CROSS design.

Setup. The prover generates a subgroup (G, ⋆) ⊂ (En, ⋆) (where we recall that ⋆ denotes
the component-wise multiplication of vectors), an element e ∈ G and a parity-check matrix
H ∈ F(n−k)×n

q . The elements G, H and s = eH⊤ are made public, while e is kept secret.
For a fixed hash function Hash(·), the prover further generates the following values.

1. Sample Seed $←− {0, 1}λ, and {e′, u′} $←− G× Fn
q ,

2. Find σ ∈ G such that σ ⋆ e′ = e,

3. Compute u = σ ⋆ u′, and s̃ = uH⊤,

4. Compute c0 = Hash(s̃, σ), and c1 = Hash(u′, e′).

The CROSS-ID protocol now proceeds as depicted in Figure 1.

https://doi.org/10.1145/780506.780516
https://doi.org/10.1145/780506.780516
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/BFb0019850
https://doi.org/10.1007/BFb0019850
https://doi.org/10.1007/PL00003816
https://doi.org/10.1007/PL00003816
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Private Key: e ∈ G.

Public Key: G, H, s = eH⊤.

Prover Verifier
Generate (Seed, u′, e′, σ, c0, c1)
as described in the text above.

Com = (c0, c1)

Sample β
$←− F∗

q

Ch1 = β

y = u′ + βe′ and h = Hash(y)

Resp1 = h

Sample b
$←− {0, 1}

Ch2 = b

If b = 0 : f = (y, σ)
If b = 1 : f = Seed

Resp2 = f

Verify f.

Figure 1: Cross-ID.

Verification. At the end of CROSS-ID, the verifier proceeds in two possible ways,
depending on b. If b = 0, then f = (y, σ). Note that

σ ⋆ yH⊤ = (σ ⋆ u′ + (βσ) ⋆ e′) H⊤ = s̃ + βs.

Thus the verifier needs to check the equalities c0 = Hash(σ ⋆ yH⊤ − βs, σ), h = Hash(y),
and that σ is indeed an element of G.

If b = 1, then the verifier is given the seed, and is able to compute e′, u′ and y. It now
remains to verify the equalities c1 = Hash(u′, e′) and h = Hash(y).

Signature Scheme. The Fiat-Shamir transform [FS86] is a common technique for
turning an interactive identity protocol, such as CROSS-ID, into a non-interactive signature
scheme. The core idea is that the prover simulates the verifier by generating the challenges
as the output of a hash function depending on the message and information used earlier in
the protocol. The resulting value f acts as the signature of the message, which can be
verified as outlined above.

In practice, this non-interactive process must be repeated a number of times to prevent
forgery attacks. We refer to [BBB+23] for further details on parameter choices and security
notions.
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B The van Oorschot-Wiener Algorithm
This appendix provides a brief overview of the main idea behind the van Oorschot-Wiener
(vOW) algorithm for finding collisions. For further details and run-time analysis we refer
to [vW99].

Given a suitable function F : Y → Y , the goal of a collision search is to find two
different values of Y that produce the same output under F . We start by fixing a defining
property for a subset of elements in Y , which we will refer to as distinguished points. This
distinguishing property should be easy to test, such as a fixed number of leading zeroes in
the bit representation of an element.

Trail Generation. The collision search proceeds by constructing trails of elements in Y .
A starting point x0 ∈ Y is chosen, and a trail of points x1, x2, . . . is created by

xi = F (xi−1), for i = 1, 2, . . .

This process is continued until it reaches a distinguished point xd. The trail is stored in a
list by its start and end point (x0, xd).

Collisions. The collision search algorithm continues to add trails to the list, until two
trails with the same distinguishing point, (x0, xd) and (x′

0, xd) are found. At this point we
are (hopefully) in the case depicted in Figure 2. The attacker can now recompute the two
trails starting from x0 and x′

0 until the collision F (xi) = F (x′
j), xi ≠ x′

j is found. Note
that there is a possibility that x′

0 is in the trail (x0, xd), which would not lead to a true
collision. In this case, (x′

0, xd) is discarded and the search continues.

Figure 2: A collision in the vOW algorithm.

Application to CROSS. In the collision attack on CROSS described in Section 2, we
do not have a single function F : Y → Y with the same domain and range, but we rather
have two functions f1 : X1 → Y and f2 : X2 → Y . The vOW algorithm can also be used
in this situation via a reduction to the single-function case. One defines a new function
F : Y → Y as

F (y) =
{

f1(E1(y)) if H(y) = 0
f2(E2(y)) if H(y) = 1

,

where H is a hash function that outputs a single bit, and E1, E2 are arbitrary injective
encoding functions that maps elements of Y to X1 and X2 respectively. Then one uses
the single-function vOW algorithm to find collisions for F . Heuristically, a collision
F (y) = F (y′) has a 50% chance that H(y) ̸= H(y′), which means that the collision
corresponds to a collision between f1 and f2.
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C An Overview of the Collision Attack in [BBB+23]
We start with a brief, high-level overview of the collision attack introduced in version 1.1
of [BBB+23]. Consider the (n−m)× n parity-check matrix MH of MG, and let ⟨MH⟩
denote its associated code. For simplicity, let us suppose that there are two subcodes
C1, C2 ⊂ ⟨MH⟩ of dimensions d1, d2 and disjoint support J1 and J2, respectively. Moreover,
we write j1 := |J1|, j2 := |J2|, and assume for simplicity that the subcodes are chosen such
that ρ := j1 − d1 = j2 − d2. We further introduce the notation

l := j1 + j2 − k, l̃ := 2ρ−m.

After a reordering of the columns, the subcode C1 is generated by the matrix
[
0 G1 0

]
,

for a matrix G1 ∈ Fd1×j1
z representing the support J1. Similarly, we have that

[
0 0 G2

]
generates C2 for some G2 ∈ Fd2×j2

z . Upon performing suitable linear operations on the
matrices MH and

[
H sT]

one obtains

M′
H =


∗ ∗ ∗
0 M1 M2
0 B1 0
0 0 B2

 , H′ =
(
∗ ∗ ∗ ∗
0 H1 H2 s

′⊤
2

)
(9)

for matrices M1 ∈ Fl̃×j1
z , M2 ∈ Fl̃×j2

z , H1 ∈ Fl×j1
q and H2 ∈ Fl×j2

q . The idea is now to
make lists from the kernel elements of BT

1 and BT
2 , and use information from both M′

H

and H′ to search for collisions. More precisely, the two lists are created as{
(x1, x1MT

1 , g(0 x1 0) (
0 H1 0

)T)
∣∣∣ for x1 ∈ Ker(BT

1 )
}

,{
(x2, x2MT

2 , s′
2 − g(0 0 x2) (

0 0 H2
)T)

∣∣∣ for x2 ∈ Ker(BT
2 )

}
.

(10)

The latter Fl̃
z × Fl

q part of a list element is called the label, and is used to find collisions.
Indeed, it can be verified that a solution to the R-SDP(G) problem will correspond to a
Fz-tuple whose last j1 + j2 entries form an element (x1, x2) ∈ Ker(BT

1 )×Ker(BT
2 ), where

x1MT
1 + x2MT

2 = 0; and

g(0 x1 x2) (
0 H1 H2

)T = s′
2.

D Extra Details on the Algebraic Attack
We ran several experiments in the computer algebra system Magma to verify Assumption
1 and 2. The results are reported in the following.

F4 algorithm. In Tables 4 and 5, we compare the solving degree dsolv of F to the first
degree fall dff. Both quantities have been obtained from Magma’s implementation of F4.
We also indicate the degree falls generated at the step in degree dff. We notice that both
degrees coincide in all cases. The computations for the larger instances were fairly time
consuming. For instance, the total time to obtain the last rows in Tables 4 and 5 was
441852.309s and 227555.690s respectively.

Hilbert series. For the same parameters, we computed to Hilbert series of R/⟨Fh⟩.
This series was always in accordance with the one of Proposition 2. The degree of regularity
derived from it was also identical to the first degree fall dff from above.
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Table 5: Parameters q = 127, z = 7 and k = n/2.

n dff dsolv
8 9 (6:15 7:40 8:5) 9
10 10 (7:54 8:145 9:15) 10
12 11 (8:245 9:490 10:45) 11
14 12 (9:1204 10:1631 11:77) 12
16 12 (9:2660 10:6896 11:3492) 12
18 13 (12:2925 13:12630) 13

n dff dsolv
8 13 (10:21 11:84 12:7) 13
10 14 (13:195 14:169) 14
12 16 (14:1833 15:456) 16
14 17 (16:3521 17:4816) 17
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