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Almost pairwise independence and resilience to
deep learning attacks
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Abstract. Almost pairwise independence (API) is a quantitative property of a class of
functions that is desirable in many cryptographic applications. This property is satis-
fied by Learning with errors (LWE)-mappings and by special Substitution-Permutation
Networks (SPN). API block ciphers are known to be resilient to differential and linear
cryptanalysis attacks. Recently, security of protocols against neural network-based
attacks became a major trend in cryptographic studies. Therefore, it is relevant to
study the hardness of learning a target function from an API class of functions by
gradient-based methods.
We propose a theoretical analysis based on the study of the variance of the gradient
of a general machine learning objective with respect to a random choice of target
function from a class. We prove an upper bound and verify that, indeed, such a
variance is extremely small for API classes of functions. This implies the resilience
of actual LWE-based primitives against deep learning attacks, and to some extent,
the security of SPNs. The hardness of learning reveals itself in the form of the
barren plateau phenomenon during the training process, or in other words, in a low
information content of the gradient about the target function. Yet, we emphasize
that our bounds hold for the case of a regular parameterization of a neural network
and the gradient may become informative if a class is mildly pairwise independent
and a parameterization is non-regular. We demonstrate our theory in experiments on
the learnability of LWE mappings.
Keywords: pairwise independence · decorrelation theory · Learning With Errors
(LWE) · Substitution-Permutations Networks (SPN) · barren plateau phenomenon
· information content of the gradient · hardness of learning

1 Introduction
The gradient-based learning is a paradigm that proved to be highly successful in such
diverse areas as language modeling [Ope22], protein folding prediction [JEP+21], game
playing [SHM+16], quantum chemistry [PSMF20] etc. Cryptography is a field that is
tightly connected with machine learning (ML), yet ML methods rarely lead to success
in this area. This is due to a fundamental difference in goals between these two areas,
the goal of cryptography being to design primitives that are hard for learning methods
by construction [KV94]. Nonetheless, recently neural network (NN)-based approaches
have attracted some attention from cryptographers. This is aligned with a general rise
of interest towards using gradient-based methods to tackle problems of combinatorial
nature [LCK18, KvHW19, SLB+19]. In our paper we find that it is unlikely that such an
approach will succeed in a typical cryptographical application. We study the nature of
difficulties that a gradient-based method faces when it learns a target function that is
sampled from a set of functions that satisfies an almost pairwise independence assumption.
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2 Almost pairwise independence

Pairwise independence is a natural property of collections of functions, H, between
two finite domains, X and Y. This property states that for any two distinct elements
x, y ∈ X , and a random function h ∈ H, an image [h(x), h(y)] is a random variable uniformly
distributed on Y2. The notion was introduced in cryptography [CW79, WC81] and has
found applications in message authentification [BHK+99] and derandomization [LW06]. In
a soft version of its definition, we only require that the total variation distance between a
distribution of the random variable [h(x), h(y)] and a purely uniform distribution, with an
additional averaging over x, is O(ϵ) for some negligible parameter ϵ. We call such classes
of functions almost pairwise independent. Exact definitions can be found in Section 2.

Gradient-based learning is a general term that encompasses all learning algorithms
based on the minimization of a certain objective function using access to the approximate
gradient of the function at points of interest. The latter formulation includes well-known
deep learning optimization methods, such as Stochastic Gradient Descent (SGD), RMSProp,
Nesterov Momentum, Adam, etc. A framework that captures such methods was suggested
in [Sha18] and it allows to describe the phenomenon of a low information content of the
gradient. It was noted in [SSS17] that when learning a class of functions containing many
nearly uncorrelated or almost orthogonal functions with respect to the data distribution,
minimizing the mean squared error loss results in a gradient that exhibits negligible
correlation with the target function according to which the dataset was sampled.

Let us briefly describe how this phenomenon can appear in a typical situation. Suppose
that the elements of a certain function class (often referred to as a hypothesis set) are
parameterized by a parameter k. We assume that the parameter k is chosen randomly, and
this choice uniquely defines the target function that we aim to learn. Then, the variance
of the gradient of a loss at a given point with respect to a random choice of k measures
how sensitive the gradient is to the choice of the target function. If the target function
itself depends on k in a highly sensitive way, but the variance is extremely small, then an
outcome of a gradient-based optimization with a high probability does not depend on k,
and therefore, it is unlikely that it will successfully learn the target. This phenomenon
can be rigorously established by proving an upper bound on the variance of the gradient.
An archetypical example is a learning problem for the class of orthogonal target functions
{sin(kx)}Kk=1 defined on the interval [0, 2π], where the parameter k is chosen uniformly
from the set {1, 2, . . . ,K} (which has a simple meaning — frequency of the target wave
function). If we attempt to approximate the target function sin(kx) using a neural network
p(w, x) with mean squared loss, then the variance (with respect to the choice of k) of the

objective’s gradient behaves like O
(∫ 2π

0
∥∇wp(w,x)∥2dx

K

)
, which vanishes as K increases.

In other words, gradient descent is unable to learn a high-frequency wave if the frequency
range is too broad, which is a well-known fact in deep learning research [RBA+19]. We
see that such an upper bound includes a factor

∫ 2π
0 ∥∇wp(w, x)∥2dx that measures the

regularity of the model, i.e., the function set used to fit the data (e.g., a neural network).
This factor limits the generality of the framework because it does not rule out the possibility
that less regular models might still be able to learn the target.

Notably, an upper bound on the variance with a similar structure can be proven for
the training of the class of parities [Sha18], tensor networks [LYDD22] and quantum
circuits [MBS+18]. In the research community focused on physical applications, this
phenomenon is referred to as the “barren plateau”. Practically, the dynamics of the
training process in the “barren plateau” case either involve overfitting or exhibit random
motion on a flat objective landscape. “Barren plateaus” frequently occur in learning tasks
with synthetic datasets (i.e., datasets that are not collected naturally but are generated from
some mathematical expression), particularly when the target function involves modular
multiplication or a high-frequency function [TTP+24].

We use the latter framework in our analysis. The goal of this paper is to establish
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an upper bound for cases where the hypothesis set is almost pairwise independent. To
demonstrate the strength of our general bound, we consider two special cases of particular
importance to cryptography: Learning with Errors mappings and Substitution-Permutation
Networks. The bound can be interpreted as a negative result, indicating that the listed
classes are not learnable by any gradient-based algorithm (regardless of the neural network
architecture) when training examples are drawn from a uniform distribution over inputs.
On the positive side, the bound suggests that a successful gradient-based attack would
require preprocessing, aimed at generating a new training set with a highly non-uniform
input distribution, as was done in a recent attack [LSW+23].

The target hash function h ∈ H that is used to generate the dataset {(xi, h(xi)}mi=1,
plays the role of the key parameter k described above. We prove upper bounds on the
variance of the gradient (with respect to the randomness in the choice of h) of an objective
defined as the expectation of L(p(w, X), h(X)), where L is a loss function, p(w, ·) : X → R
is a parameterized family of functions (e.g., a neural network), and the expectation is
taken over X sampled uniformly from X . In our general bound we prove

the variance w.r.t. h of the objective′s gradient is negligibly small,

provided that our neural network {p(w, ·)} and the loss function L are regular, and the
measure ϵ of pairwise independence of H is negligibly small (a precise formulation can
be found in Theorem 2). An important novelty of our bounds is that they hold not only
for special losses (like it was previously proved for the parity problem [SSS17] or periodic
functions [Sha18]) but for any loss function L and a regular parameterization of p(w, ·).

As was already mentioned, important examples of almost pairwise independent classes
include the Learning with errors mappings and Substitution-Permutation Networks. The
learning with errors problem (LWE) has an instance (A,b) where A ∈ Zm×n

q and
b ∈ Zmq . It is assumed that A is generated uniformly from Zm×n

q and b = As + e, where s
is a secret key generated uniformly from Znq and e ∈ Zmq is a noise vector whose entries are
generated independently according to some fixed distribution χ (usually, χ is a discretized
gaussian distribution with a zero mean). The goal of an LWE task is to recover the secret
s from (A,b). If A⊤ = [a1, · · · ,am] and b = [bi]mi=1, an instance of LWE can be written
as a set of pairs T = {(ai, bi)}mi=1 such that bi = ⟨s,ai⟩ + ei, ei ∼ χ. The set T can be
understood as a training set for another learning task. Thus, we come to a slightly weaker
version of the LWE problem in which the goal is to approximate the function x → ⟨s,x⟩
on the whole of its domain Znq , given the training set T . It is straightforward to reduce
LWE to the problem of finding the shortest vector in a lattice (exact-SVP). A famous
polynomial quantum reduction of approximate versions of SVP to LWE [Reg05], together
with a polynomial classical reduction [BLP+13], imply that any polynomial time algorithm
for LWE would have extraordinary consequences. Currently, most algorithms for LWE
with a polynomial number of samples have an asymptotic running time 2O(n) [HKM18].
Although there is not much hope that a gradient-based approach can solve LWE, it is of
practical importance to estimate the maximum size of the problem’s instance that can be
potentially handled this way [CMLea22, DNGW23]. It is quite straightforward to see that
the set of mappings x → ⟨s,x⟩ (which we call LWE mappings), parameterized by secrets,
is an almost pairwise independent class of functions.

Substitution-Permutation Network (SPN) is a form of a block cipher. An SPN
is defined as a family of encryption/decryption mappings parameterized by keys. Since
the most common modern encryption standard, AES, is a special case of an SPN, it is
crucial to understand the potential of NN-based attacks on this type of cipher. Recently
it was shown that for some natural choice of parameters, an SPN is an almost pairwise
independent class of functions [LTV21]. Thus, the general theory that we build naturally
encompasses SPNs as a special case.

Organization. In Section 2 we precisely define the notion of an almost pairwise
independent class of functions. Section 3 is dedicated to a description of the general
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framework, introduced by Shamir [Sha18], for the gradient-based optimization. Our upper
bounds on the variance of the gradient are formulated in Section 4. Subsection 6 specifically
deals with the LWE case and subsection 6.1 deals with the case of SPNs. In Section 7 we
describe computational experiments with the learnability of LWE mappings and discuss
their results in the context of our bounds. Proofs of theorems can be found in the part of
the paper that follows the experimental section.

Notations. For any finite multiset S, |S| denotes its cardinality counting multiplicities
of elements. X ∼ S denotes the fact that the random variable X is sampled from S with
probability P[X = s] = mS(s)

|S| , s ∈ S, where mS(s) is a multiplicity of s in S. Throughout
the paper, q denotes a prime number, n is natural, and Zq = {0, · · · , q − 1} is equipped
with an addition, denoted by +, and a multiplication, denoted by · (both modulo q). For
x = [xi]n1 ,y = [yi]n1 ∈ Znq , ⟨x,y⟩ denotes x1 · y1 + · · · + xn · yn ∈ Zq. Sometimes, given
functions f, g : Znq → C, we will denote the inner product

∑
x∈Zn

q
f(x)†g(x) also by ⟨f, g⟩.

The normalized version, i.e. Ex∼Zn
q
[f(x)†g(x)], is denoted by ⟨f, g⟩x. Correspondingly,

∥f∥x =
√

⟨f, f⟩x. For a function f : Zq → C, f̂ denotes the discrete Fourier transform of
f , i.e. f̂(ω) =

∑
x∈Zq

f(x)e− 2πxωi
q . For a real r ∈ R, {r} denotes its fractional part, and

⌈r⌉ denotes the smallest integer that is greater or equal to r. For S ⊆ D, 1S : D → {0, 1}
denotes an indicator function of a set S (the domain D will be clear from a context). Given
f : U → R and g : U → R+, we write f ≲ g if there exist a universal constant α ∈ R+
such that we have |f(x)| ≤ αg(x), x ∈ U . For x, y ∈ R, x ∨ y and x ∧ y denote max(x, y)
and min(x, y) correspondingly.

1.1 Related work
Convex optimization and SQ-theory. If an objective function is the expectation of
a random convex function (i.e. of the form Ew[f(x,w)]), then it was shown by [FGV17]
that, provided some technical requirements, such a learning algorithm belongs to the class
of the so-called statistical query (SQ) algorithms [Kea93]. According to the theory of SQ
learning [BFJ+94], given any concept class C (i.e. any class of {−1, 1}-valued functions), a
key parameter that defines the hardness of learning C by an SQ-algorithm is the so-called
statistical query dimension of C, which is the maximum number of “nearly uncorrelated”
(relative to a data distribution) functions in C. Based on this idea it was proved by [Yan01]
that for a uniform distribution over Znq and any function ψ : Zq → {−1, 1} such that
Ex∼Zq

[ψ(x)] ∈ [− 1√
2 ,

1√
2 ], an SQ-algorithm that learns the concept class C = {c : Znq →

{−1, 1} | c(x) = ψ(⟨a,x⟩),a ∈ Znq } substantially better than the random guess, requires
the running time O(q n−1

2 ). This result, together with the previously mentioned findings,
implies that any meaningful concept class derived from LWE mappings, i.e., mappings
x → ⟨a,x⟩, is hard to learn using gradient-based convex optimization algorithms. Since
most modern deep learning algorithms optimize non-convex objectives, we cannot directly
apply the latter fact to attacks on LWE that we are interested in.

Decorrelation theory of block ciphers. Almost pairwise independence and t-
wise independence were identified as desirable properties in the context of security of
block ciphers. It was shown that almost pairwise independence implies resilience to
both (truncated) differential and (multidimensional) linear cryptanalysis attacks [BBV15].
Analogously, nearly t-wise independence implies resilience to differential attacks of order
log2(t). The definition of almost pairwise independence given by Vaudenay is equivalent to
ours, though in [Vau03] other metrics (different from the total variation distance) measuring
the deviation from the uniform distribution are also considered. Liu et al [LTV21] showed
that SPNs, under certain conditions, are almost pairwise independent, the result that we
use in our applications. Other examples of constructions of nearly t-wise independent
permutations include [HMMR05, AGM03, FPY15, KNR09].
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NN-based approaches to attack LWE. A concrete way to use neural networks
for side-channel attacks on the Learning with rounding-based cryptographic schemes
was demonstrated in [NDJ23]. Also, a recursive learning method was applied to train
neural networks for recovering message bits in CRYSTALS-Kyber [DNGW23], which is
an LWE-based set of cryptographic primitives [BDK+18]. Direct attacks on LWE include
SALSA [WCCL22], PICANTE [LSW+23] and SALSA VERDE [LWAZ+23]. The key idea
of the latter three papers is first to preprocess an instance of LWE using a reduction to
SVP and lattice reduction techniques (such as BKZ [CN11]) to obtain a new instance of
LWE with a smaller coordinate variance. Afterward, a new set of input-output pairs is fed
to a gradient-based training algorithm with a transformer architecture. Overall, attacks
on other ciphers based on approximation of encryption or decryption functions by some
deep learning architectures is quite a popular topic of research [AKJM21, CY21, TTJ23].
Deep learning-based side-channel attacks are another popular topic in recent research.

NN-based approaches to attack block ciphers. Experimental works on learning
an encryption/decryption mapping for various block ciphers include [BK20, Ala12, KEI+22,
ITYY21]. While NN-based approaches have succeeded in tackling round-reduced DES or
classical ciphers, results even for one round AES have been negative.

2 Almost pairwise independent families of hash func-
tions

Let X and Y be two finite sets. A finite parameterized family {hk}k∈K ⊆ YX is called
pairwise independent if for any distinct x, x′ ∈ X and any y, y′ ∈ Y we have Pk∼K[hk(x) =
y, hk(x′) = y′] = |Y|−2. Such families are actively used in message authentification and
universal hashing [CW79, WC81]. Since it is possible that hk = hk′ for some pair of
distinct keys k, k′ ∈ K, the family {hk}k∈K can be also treated as a multiset. A classical
example of a pairwise independent family is the set H = {ha,b : GF(pn) → GF(pn) |
ha,b(x) = ax+ b, a, b ∈ GF(pn)}, where GF(pn) is the Galois field with pn elements. Other
examples can be found in [Sho05].

For a general hypothesis class H, that is a multiset of functions from YX , let us
introduce

ε(x, x′) =
∑

y,y′∈Y
|Ph∼H[h(x) = y, h(x′) = y′] − |Y|−2|, (1)

if x ̸= x′ and ε(x, x) =
∑
y∈Y |Ph∼H[h(x) = y] − |Y|−1|. If H is pairwise independent, then

ε(x, x′) = 0 for distinct x, x′ ∈ X . Thus, ε(x, x′) measures the deviation of our hypothesis
set from the pairwise independence. Note that ε(x, x′) is double the total variance distance
between random variables [h(x), h(x′)] for h ∼ H and [Y, Y ′] for Y, Y ′ ∼iid Y (where i.i.d.
means independent and identically distributed).

We will measure the pairwise independence of H by the following parameter

ϵ = max
x

EX′∼X [ε(x,X ′)2]1/2. (2)

Remark 1. The situation where ε(x, x′) is small is quite common in cryptographic applica-
tions. Examples of such classes include the LWE mapping and SPNs. The latter two cases
are carefully treated in subsections 6 and 6.1. In the theory of cryptographic hash functions
the family H is called δ-variationally universal, if Ph∼H[h(x) = y] = |Y|−1, x ∈ X , y ∈ Y
and for any distinct x, x′ ∈ X we have ε(x, x′) ≤ 2δ

|Y| . Some properties and constructions
of such families can be found in [KR06, Sho05].

Note that ε̃ = maxx,x′ ε(x, x′) coincides with the ∞-distance between the random
function from H and the so-called perfect cipher (i.e. the uniformly random mapping



6 Almost pairwise independence

from X to Y) in the decorrelation theory of [Vau03]. Vaudenay showed that successful
differential and linear cryptanalysis attacks on a block cipher H should have complexities
at least proportional to 1

ε̃ and 1
ε̃1/3 respectively. Thus, such attacks will fail for a negligibly

small value of ε̃. This is in line with our result, i.e. the hardness of such ciphers
against attacks based on gradient methods. Though the parameter that we use, ϵ =
maxx EX′∼X [ε(x,X ′)2]1/2, is smaller than ε̃.

3 General optimization framework
Let H be a multiset. Let h : X → Y ∈ H be a secret mapping. We are given access to
samples (x, h(x)) where x is generated uniformly randomly from X . Our goal is to predict
an output of the mapping h(x) on other inputs. Ideally, given an input x, we are interested
in recovering the whole output h(x). Sometimes we could be interested in predicting some
properties of the output, e.g. t(h(x)) where t : Y → R is a fixed function from Y to some
finite subset of R. For example, if Y ⊂ Z and our goal is to learn a parity bit of h(x), then
t(x) = (−1)x.

To approximate the mapping x → h(x) (or, x → t(h(x))), suppose that we fixed a
family of functions from X to R parameterized by a weight vector w ∈ O ⊆ RNpar (Npar
denotes the number of parameters), i.e. {p(w, ·) : X → R | w ∈ O}. We assume that p is
continuous and differentiable w.r.t. w in almost all points of an open set O. We require O
to be open in order to differentiate p with respect to w without concerning ourselves with
the definition of the derivative on the boundary of O. In practice, such a family is usually
defined as a neural network architecture with an input x encoded as a binary vector.

Our task is to minimize over w the following objective

Ch(w) = Ex∼X
[
L(p(w, x), h(x))

]
, (3)

where L : R × Y → R is a fixed loss function. We make only the most general assumptions
on the form of L such as continuity and the existence of a partial derivative w.r.t. the first
variable in almost all points, i.e. ∂L(p,y)

∂p . Without this assumption, we would not be able
to define the gradient of Ch(w), which is why it is not a restricting requirement. Note
that ∇wCh(w) = Ex∼X

[∂L(p(w,x),h(x))
∂p ∇wp(w, x)

]
, i.e. the size of the gradient vector is

controlled by size of the vector ∇wp(w, x) and the scalar ∂L
∂p (p(w, x), h(x)).

We assume that the minimization of the cost (3) is to be solved by a gradient-based
method. By the latter we understand any algorithm that iteratively computes points
w1,w2, · · · ∈ O in such a way that wt+1 depends on, possibly, all previously computed
gradient approximations and an approximation of the gradient ∇wCh(wt). An approxima-
tion of ∇wCh(wt), denoted by gt, is requested from an oracle O. Due to the stochastic
nature of gt, we assume that ∥gt − ∇wCh(wt)∥ < δ and nothing more can be guaranteed
beyond that accuracy δ. That is why the oracle is called the δ-accurate gradient oracle.
This makes δ > 0 an important parameter of this optimization framework. In practice gt
is computed from the dataset, i.e. a set of random pairs {(xi, h(xi))} to which we have
access.

The formalism for gradient-based algorithms described above was given in [Sha18].
Shamir applied this formalism to demonstrate the inability of such algorithms to learn
functions of the form x → ψ(w⊤x) defined on Rn where ψ is 1-periodic. Our goal is
to apply this formalism to the function x → h(x) defined on X , therefore, we formulate
adapted Theorem 4 from [Sha18] in the following way.

Theorem 1 ( [Sha18]). Let δ > 0 be such that Varh∼H
[
∇Ch(w)

]
≤ δ3 for any w ∈ O.

Then there exists a δ-accurate gradient oracle such that for any algorithm as above and any
p ∈ (0, 1), with probability 1 − p over the uniform choice of the function h, the algorithm’s
output after at most p

δ iterations will be independent of h.
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For completeness, let us give a proof of this Theorem.

Proof. Let us denote Eh∼H
[
∇Ch(w)

]
by g. For a given point w ∈ O, let us consider

a gradient oracle that outputs g if ∥∇Ch(w) − g∥ ≤ δ and ∇Ch(w) if otherwise. By
Chebyshev’s inequality, we have

Ph∼H[∥∇Ch(w) − g∥ > δ] <
Varh∼H

[
∇Ch(w)

]3
δ2 ≤ δ.

Therefore, if at a current iteration t the point wt is chosen independently from the key s,
then the next point wt+1 will be chosen independently from k with probability at least
1 − δ. Therefore, after T iterations, with probability at least 1 −Tδ, all points w1, · · · ,wT

will not depend on k, which completes the proof.

For an API class H, for any fixed x ∈ X , the value of h(x) depends in a very sensitive
way on the parameter h. This makes an output of the gradient-based learning process that
is independent of h very undesirable. Therefore, if an accuracy δ > Varh∼H

[
∇Ch(w)

] 1
3 ,

then we need the number of iterations at the scale of O( Varh∼H
[
∇Ch(w)

]− 1
3 ) to succeed

in our task. But if Varh∼H
[
∇Ch(w)

]
is negligibly small (as we will show is the case), e.g.

at the scale of 10−60, then our algorithm cannot succeed in principle.
Let us now describe our upper bounds on Varh∼H

[
∇Ch(w)

]
and conditions under

which they hold.

4 Upper bounds on the variance (main result)
For the loss function L, we denote

rw(x, y) = ∂L(p(w, x), y)
∂p

− EY∼Y
[∂L(p(w, x), Y )

∂p

]
.

Let us also introduce quantities measuring a typical deviation of ∂L(p(w,x),Y )
∂p from its

mean. Let

Dx = VarY∼Y [∂L(p(w, x), Y )
∂p

] (4)

and

Mx = max
y∈Y

∣∣rw(x, y)
∣∣. (5)

In the following theorem we give a general upper bound on the variance of the loss
function for a random choice of a hypothesis h. For w = [wi]

Npar
i=1 we denote ∂f(w,z)

∂wi
by

∂wi
f(w, z). Note that the total variance of the gradient is a sum of variances of the

objective’s partial derivatives w.r.t. every parameter.

Theorem 2 (Main). Let O ⊆ RNpar and p : O × X → R be a mapping1 such that
EX∼X [(∂wi

p(w, X))2] is bounded uniformly over w ∈ O. Then, for any i ∈ {1, · · · , Npar},
we have

Varh∼H
[
∂wi

EX∼XL(p(w, X), h(X))
]
≲ EX∼X [(∂wi

p(w, X))2]×(
EX∼X [M4

X ]1/2 · ϵ + γ
)

∧
(

|Y| ·
(
EX∼X [D2

X ]1/2 · ϵ + γ
))
,

(6)

1E.g., a neural network. The parameter Npar is the number of trained parameters of the set of functions
{p(w, ·)}w∈O.



8 Almost pairwise independence

where

ϵ = max
x∈X

EX′∼X [ε(x,X ′)2]1/2

and

γ =
EX∼X

[
D2
X

]1/2

|X |1/2 .

Remark 2. If the loss function L satisfies the Lipschitz condition, i.e. |L(p, y) −L(p′, y)| ≤
c|p− p′|, then Mx ≲ 1, Dx ≲ 1, and Varh∼H

[
∇Ch(w)

]
is

≲ EX∼X [(∂wi
p(w, X))2] ×

(
max
x∈X

EX′∼X [ε(x,X ′)2]1/2 + 1
|X |1/2

)
.

Let us assume that |X |−1/2 is small. For API families H (as we have in some cryptographic
applications), ϵ = maxx∈X EX′∼X [ε(x,X ′)2]1/2 is also small. If the latter values are
negligibly small, e.g. smaller than 10−100, then the gradient is uninformative unless the
factor EX∼X [(∂wi

p(w, X))2] exceeds by many orders of magnitude the largest float number
supported by modern hardware. Even if we used specialized software that supports such
large values, a stochastic gradient that approximates the real gradient with the needed
precision would require an enormous batch size. In any case, an NN whose derivative
w.r.t. wi blows up to such magnitudes is definitely beyond the current paradigm of deep
learning.

A more tractable case is when ϵ = maxx∈X EX′∼X [ε(x,X ′)2]1/2 is moderately small,
e.g. like 10−10. This suggests that to make the gradient more informative, one needs to
define an NN architecture in such a way that the average ∂wip(w,x) is allowed to become
large. Following this idea, we experimented with non-lipschitz activation functions. Results
are given in Section 7. As these experiments demonstrate, to a certain extent, this strategy
leads to a higher learning capability, although then we run into an exploding gradient
problem (where ∇wp(w,x) explodes, but the total gradient ∇Ch(w) remains small) and
various computational instabilities during the training process.

To demonstrate the applicability of the previous theorem, let us now consider specific
cases of hypothesis sets. We will thoroughly study the case of the LWE hypothesis set,
which is defined by

H = {hk : Znq → Zq | k ∈ Znq , hk(x) = ⟨k,x⟩}, (7)

where q ≥ 2 is a prime number and ⟨k,x⟩ = k1x1 + · · · + knxn mod q. After we give
some estimates on ε(x, y) for the LWE hypothesis set, the following statement is a direct
consequence of Theorem 2.

Corollary 1. Let X = Znq , Y = Zq. Let O ⊆ RNpar and p : O × X → R satisfy conditions
of Theorem 2. For the hypothesis set defined in (7), we have

Varh∼H
[
∂wi

EX∼XL(p(w, X), h(X))
]
≲ EX∼X [(∂wi

p(w, X))2]×

(EX∼X [M4
X ]1/2 ∧ qEX∼X

[
D2
X

]1/2)q− n−1
2 .

(8)

Remark 3. In a typical post-quantum cryptographic protocol that uses the LWE hypothesis
set we have log2 q ≈ 10 and n ≈ 544 [CKLS18]. Then, the factor q− n−1

2 ∼ 10−817,3 in the
RHS of the inequality (8) is an extremely small value. This guarantees that to make the
gradient informative, one has to choose an NN architecture and a loss function in such a
way that either the average (∂wip(w,x))2 or the average VarY∼Zq [∂L(p(w,x),Y )

∂p ]2 blows up.
Due to arguments from the previous remark, such a learning process is infeasible.



Rustem Takhanov 9

Due to its simplicity, let us first give a proof of Corollary 1, assuming that Theorem 2
is true.

Proof of Corollary 1. Recall that X = Znq , Y = Zq and

H = {hk : Znq → Zq | k ∈ Znq , hk(x) = ⟨k,x⟩}.

By construction, we have |{k∈Zn
q |⟨k,x⟩=y,⟨k,x′⟩=y′}|

qn = q−2 and ε(x,x′) = 0 for linearly

independent x,x′. If x′ = λx and λ /∈ {0, 1},x ̸= 0, then |{k∈Zn
q |⟨k,x⟩=y,λ⟨k,x⟩=y′}|

qn

equals q−1[y′ = λy], i.e. ε(x,x′) = 2(1 − q−1). If exactly one of x,x′ is zero, then
ε(x,x′) = 2(1 − q−1). To summarise, we have

ε(x,x′) =


0, if rank([x,x′]) = 2;
2(1 − q−1), if rank([x,x′]) = 1,x ̸= x′;
0, if x = x′ ̸= 0;
2(1 − q−1), if x = x′ = 0.

Using the latter equation, we bound

max
x∈X

EX′∈X [ε(x,X ′)2] ≤ 4(1 − q−1)2q−(n−1) ≤ 4q−(n−1).

Thus, using Theorem 2 we obtain a major bound on the variance,

Varh∼H
[
∂wi

EX∼XL(p(w, X), h(X))
]
≲ EX∼X [(∂wi

p(w, X))2]×

(EX∼X [M4
X ]1/2 ∧ qEX∼X

[
D2
X

]1/2)q− n−1
2 .

5 Proof of Theorem 2
Recall that rw(x, y) = ∂L(p(w,x),y)

∂p − EY∼Y [∂L(p(w,x),Y )
∂p ]. We have

Varh∼H
[
∂wiEX∼XL(p(w, X), h(X))

]
=

Varh∼H
[
EX∼X [∂L(p(w, X), h(X))

∂p
∂wi

p(w, X)]
]

=

Varh∼H
[
EX∼X [rw(X,h(X))∂wi

p(w, X)]
]

≤ Eh∼H
[
⟨∂wi

p(w, x), rw(x, h(x))⟩2
x

]
.

Further we will use the following result which is a generalization of the classical Bessel’s
inequality.

Proposition 1 (Boas-Bellman inequality [Dra04]). If x, y1, ..., yd are elements of an inner
product space (H; (·, ·)), then the following inequality

d∑
i=1

|(x, yi)|2 ≤ (x, x)
[

max
1≤i≤d

(yi, yi) +
( ∑

1≤i ̸=j≤d
|(yi, yj)|2

)1/2
]

holds.

Using the Boas-Bellman inequality we obtain

|H|−1
∑
h∈H

⟨rw(x, h(x)), ∂wi
p(w, x)⟩2

x ≤ |H|−1∥∂wi
p(w, x)∥2

x

[
max
h∈H

∥rw(x, h(x))∥2
x+

( ∑
h1 ̸=h2∈H

⟨rw(x, h1(x)), rw(x, h2(x))⟩2
x

)1/2]
.

(9)



10 Almost pairwise independence

The second term inside the latter square brackets usually dominates the first one. Our key
tool for bounding both terms is the following lemma (whose proof can be found in the
next subsection).

Lemma 1. Let the function f : X × Y → R be such that
∑
y∈Y f(x, y) = 0 for any x ∈ X

and gh(x) = f(x, h(x)). Then, we have√∑
h1∈H

∑
h2∈H

⟨gh1 , gh2⟩2 ≤ |H||X |
(
EX∼X [M4

X ]1/2 max
x∈X

EX′∼X [ε(x,X ′)2]1/2 + γ
)
∧

|H||X ||Y|
(
EX∼X [D2

X ]1/2 max
x∈X

EX′∼X [ε(x,X ′)2]1/2 + γ
)
.

(10)

where Mx = maxy∈Y |f(x, y)|, Dx = VarY∼Y(f(x, Y )) and

γ = EX∼X [D2
X ]1/2

|X |1/2 . (11)

From Lemma 1, after setting f as rw, we obtain( ∑
h1,h2

⟨rw(x, h1(x)), rw(x, h2(x))⟩2)1/2 ≤

|H||X |
(
EX∼X [M4

X ]1/2 max
x∈X

EX′∼X [ε(x,X ′)2]1/2 + γ
)
∧

|H||X ||Y|
(
EX∼X [D2

X ]1/2 max
x∈X

EX′∼X [ε(x,X ′)2]1/2 + γ
)
,

where γ is defined as in equation (11).
Also, note that

max
h∈H

∥rw(x, h(x))∥2
x ≤

( ∑
h1,h2

⟨rw(x, h1(x)), rw(x, h2(x))⟩2
x

)1/2
.

After we plug in the latter two inequalities into the bound (9), we obtain the following
fact:

Varh∼H
[
∂wi

Ex∼XL(p(w, x), h(x))
]
≲ ∥∂wi

p(w, x)∥2
x×(

EX∼X [M4
X ]1/2 max

x∈X
EX′∼X [ε(x,X ′)2]1/2 + γ

)
∧

|Y|
(
EX∼X [D2

X ]1/2 max
x∈X

EX′∼X [ε(x,X ′)2]1/2 + γ
)
,

which is the statement of our theorem.

5.1 Proof of Lemma 1
To complete the proof of theorem 2 we need to prove Lemma 1. The following lemma is
instrumental in that proof. Let f : X × Y → R be some function. For h ∈ H, a function
gh : X → R is defined by gh(x) = f(x, h(x)).

Lemma 2. Let Φ = [f(x, h(x))](h,x)∈H×X and F = Φ⊤Φ. Then,∑
h1∈H

∑
h2∈H

⟨gh1 , gh2⟩2 = ∥Φ∥4
4 = ∥F∥2

F ,

where ∥ · ∥p denotes Schatten p-norm.
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Proof. Let us denote the vector [f(x, h(x))]x∈X by fh. A direct calculation gives us

∑
h2∈H

⟨gh1 , gh2⟩2 =
∑
h2∈H

(∑
x∈X

f(x, h1(x))f(x, h2(x))
)2

=

∥
[∑
x∈X

f(x, h2(x))f(x, h1(x))
]
h2∈H∥2 = ∥Φfh1∥2.

Since the row with index h of Φ equals f⊤
h , we conclude

∑
h∈H fhf⊤

h = Φ⊤Φ = F. Let us
now sum over h1 ∈ H and use circular shift property of trace:∑

h1∈H

∥Φfh1∥2 =
∑
h1∈H

Tr(Φfh1f⊤
h1

Φ⊤) = Tr(ΦFΦ⊤) = Tr(FΦ⊤Φ),

Therefore, ∑
h∈H

∥Φfh∥2 = Tr(F2) = ∥F2∥1 = ∥F∥2
2 = ∥Φ∥4

4 = ∥F∥2
F ,

where ∥ · ∥F denotes the Frobenius norm.

Further, we will use the notations Φ, F and fh from the latter lemma. Also, we assume
that

∑
y∈Y f(x, y) = 0 for any x ∈ X .

Proof of Lemma 1. Using
∑
y∈Y f(x, y) = 0, one can represent entries of F in the following

way:

Fx,x′ =
∑
h∈H

f(x, h(x))f(x′, h(x′)) =

|H|
∑

y,y′∈Y
f(x, y)f(x′, y′)Eh∼H[h(x) = y, h(x′) = y′] =

|H|
∑

y,y′∈Y
f(x, y)f(x′, y′)(Eh∼H[h(x) = y, h(x′) = y′] − |Y|−2),

(12)

if x ̸= x′, and

Fx,x =
∑
h∈H

f(x, h(x))2 = |H|
∑
y∈Y

f(x, y)2Eh∼H[h(x) = y] =

|H|
∑
y∈Y

f(x, y)2(Eh∼H[h(x) = y] − |Y|−1) + |H|Dx,

where Dx = 1
|Y|
∑
y∈Y f(x, y)2.

Let G be a |X | × |X | diagonal matrix with the diagonal elements {|H|Dx}x∈X . From∑
y,y′ |Eh∼H[h(x) = y, h(x′) = y′] − |Y|−2| = ε(x, x′) and Hölder’s inequality we obtain

|(F − G)x,x′ | ≤ |H| · ε(x, x′) max
y∈Y

|f(x, y)| max
y′∈Y

|f(x′, y′)|,

for x ̸= x′, and

|(F − G)x,x| ≤ |H| · ε(x, x)
(

max
y∈Y

|f(x, y)|
)2
.

Recall that Mx = maxy∈Y |f(x, y)|. Thus, we have

∥F − G∥2
F ≤ |H|2

∑
x,x′∈X

ε(x, x′)2M2
xM

2
x′ .
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For the latter quadratic form we have∑
x,x′∈X

ε(x, x′)2M2
xM

2
x′ ≤ |X | · ∥[ε(x, x′)2]x,x′∈X ∥ · EX∼X [M4

X ].

Since the matrix [ε(x, x′)2]x,x′∈X has only non-negative entries, its norm equals the
Perron–Frobenius eigenvalue, and it satisfies the following inequality

∥[ε(x, x′)2]x,x′∈X ∥ ≤ max
x∈X

∑
x′∈X

ε(x, x′)2.

This gives us

∥F − G∥2
F ≤ |H|2 · |X | · EX∼X [M4

X ] · max
x∈X

∑
x′∈X

ε(x, x′)2.

The latter, together with ∥G∥F = |H| · |X |1/2EX∼X [D2
X ]1/2 and the triangle inequality,

implies

∥F∥F ≤ |H| · |X | · EX∼X [M4
X ]1/2 max

x∈X
EX′∼X [ε(x,X ′)2]1/2 + |H| · |X |1/2EX∼X [D2

X ]1/2.

Using Lemma 2 we directly obtain the first inequality of Lemma 1.
Let us now show the second inequality of Lemma 1. Using the fact that the operator

norm of the matrix [Eh∼H[h(x) = y, h(x′) = y′] − |Y|−2]y,y′ is bounded by the entry-wise
1-norm, i.e. ε(x, x′), the last expression in the equation (12) can be bounded by

|H| · |Y| · ε(x, x′)
√
Dx

√
Dx′ ,

for x ̸= x′. Let H be a diagonal matrix such that Hxx = Fxx. Then,

∥F − H∥2
F ≤ |H|2 · |Y|2

∑
x,x′∈X

ε(x, x′)2DxDx′ ≤

|H|2 · |X | · |Y|2 · ∥[ε(x, x′)2]x,x′∈X ∥ · EX∼X [D2
X ] ≤

|H|2 · |X | · |Y|2 · EX∼X [D2
X ] · max

x∈X

∑
x′∈X

ε(x, x′)2.

Also, using |Fxx| ≤ |H| · |Y| ·Dx we conclude

∥H∥2
F =

∑
x∈X

|Fxx|2 ≤ |H|2|Y|2|X |EX∼X [D2
X ].

Therefore,

∥F∥F ≤ |H| · |X | · |Y| · EX∼X [D2
X ]1/2 max

x∈X
EX′∼X [ε(x,X ′)2]1/2+

|H||X |1/2|Y|EX∼X [D2
X ]1/2.

This completes the proof.

6 Stronger bounds for LWE
The LWE hypothesis set (7) has some additional structure, which allows to improve our
general bound, given in Theorem 2. Moreover, since in applications of LWE, an error term
is added to the output of a hypothesis, we will consider the following objective

Cs(w) = Ex∼Zn
q ,e∼χ

[
L(p(w,x), hs(x) + e)

]
, (13)

where L : R × Zq → R is a fixed loss function and χ is any distribution over Zq.
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Theorem 3. Let O ⊆ RNpar and p : O × Znq → R be a mapping (a neural network)
such that Ex∼Zn

q
[(∂wi

p(w,x))2] is bounded uniformly over w ∈ O and χ is an arbitrary
distribution over Zq. We also assume that M4

0 ≲ Ex∼Zn
q

[
D2

x
]
q2n+1. Then, we have

Vara∼Zn
q

[
∂wiEx∼Zn

q ,e∼χL(p(w,x), ⟨a,x⟩ + e)
]
≲

Ex∼Zn
q
[(∂wip(w,x))2]Ex∼Zn

q

[
D2

x
]1/2

q− n−1
2 .

(14)

Proof. Let us first handle the case when noise e is absent, i.e. Px∼χ[x = 0] = 1. Again,
recall that rw(x, y) = ∂L(p(w,x),y)

∂p − EY ′∼Zq
[∂L(p(w,x),Y ′)

∂p ]. Further, our proof is identical
to the proof of Theorem 2 until the application of the Boas-Bellman inequality:

Vara∼Zn
q

[
∂wi

Ex∼Zn
q
L(p(w,x), ⟨a,x⟩)

]
≤

q−n∥∂wi
p(w,x)∥2

x
[

max
a∈Zn

q

∥rw(x, ⟨a,x⟩)∥2
x +

(∑
a ̸=b

⟨rw(x, ⟨a,x⟩), rw(x, ⟨b,x⟩)⟩2
x
)1/2]

.

To bound the second term we need the following lemma.

Lemma 3. Let the function f : Zn+1
q → R be such that

∑
y∈Zq

f(x, y) = 0 and ga(x) =
f(x, ⟨a,x⟩). Then, we have∑

a∈Zn
q

∑
b∈Zn

q

⟨ga, gb⟩2 ≤ Ex∼Zn
q

[
D2

x
]
q3n+1 + q2nf(0, 0)4,

where Dx = Vary∼Zq [f(x, y)].

Proof of Lemma 3. Let Φn = [f(x, ⟨a,x⟩)](a,x)∈Z2n
q

. For a ∈ Znq , let us define a function
ga : Znq → R by ga(x) = f(x, ⟨a,x⟩). Then, from Lemma 2 we have∑

a∈Zn
q

∑
b∈Zn

q

⟨ga, gb⟩2 = ∥Φn∥4
4 = ∥F∥2

F ,

where F = Φ⊤Φ.
Non-diagonal elements of F such that ∀λ ∈ Zq λy′ ≠ y,y′ ≠ λy, are zeros due to∑
z∈Zq

f(y, z) = 0 and

Fy,y′ =
∑

a∈Zn
q

f(y, ⟨a,y⟩)f(y′, ⟨a,y′⟩) =
∑
y∈Zq

f(y, y)
∑

a∈Zn
q :⟨a,y⟩=y

f(y′, ⟨a,y′⟩) = 0.

The set of nonzero elements of Znq can be divided into equivalence classes w.r.t. the
equivalence relation y ∼ y′ ⇔ ∃λ ∈ Z∗

q y′ = λy. For any two y,y′ from the same
equivalence class c, we have

|Fy,y′ | = |qn−1
∑
y∈Zq

f(y, y)f(λy, λy)| ≤ qn
√
DyDy′ ,

due to the Cauchy–Schwarz inequality. Therefore,
∑

y,y′∈c |Fy,y′ |2 ≤ q2n(
∑

y∈cDy)2.
Residual non-diagonal elements of F are in the first row or the first column and they

are equal to

F0,y′ =
∑

a∈Zn
q

f(0, 0)f(y′, ⟨a,y′⟩) = 0,

if y′ ̸= 0 and F0,0 = qnf(0, 0)2.
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Finally, we have

∥F∥2
F ≤

∑
c

q2n(
∑
y∈c

Dy)2 + q2nf(0, 0)4 ≤
∑
c

q2n|c|
∑
y∈c

D2
y + q2nf(0, 0)4 ≤

q2n+1qnEy∼Zn
q
[D2

y] + q2nf(0, 0)4.

From Lemma 3, after setting f as rw, we obtain∑
a,b

⟨rw(x, ⟨a,x⟩), rw(x, ⟨b,x⟩)⟩2 ≤ Ex∼Zn
q

[
D2

x
]
q3n+1 +M4

0q
n ≲ Ex∼Zn

q

[
D2

x
]
q3n+1.

The latter follows from the assumption that M4
0 ≲ Ex∼Zn

q

[
D2

x
]
q2n+1. Also, note that

max
a∈Zn

q

∥rw(x, ⟨a,x⟩)∥2
x ≤

(∑
a,b

⟨rw(x, ⟨a,x⟩), rw(x, ⟨b,x⟩)⟩2
x
)1/2

≲ Ex∼Zn
q

[
D2

x
]1/2

q
n+1

2 .

After we plug in the latter two inequalities into the previous bound, we obtain the
needed fact for the zero noise case:

Vara∼Zn
q

[
∂wiEx∼Zn

q
L(p(w,x), ha(x))

]
≲ ∥∂wip(w,x)∥2

xEx∼Zn
q

[
D2

x
]1/2

q− n−1
2 .

Let us now address the case when noise e ∼ χ is added to the target function ⟨a,x⟩.
Indeed, let the optimized objective be

Ex∼Zn
q ,e∼χL(p(w,x), ⟨a,x⟩ + e).

If we define L̃(p, y) = Ee∼χL(p, y + e), then the objective obtains the previous form
Ex∼Zn

q
L̃(p(w,x), ⟨a,x⟩). If the factor in the RHS of (14) is moderate for the old loss L,

the new loss function L̃ inherits this property, due to

Vary∼Zq
[∂L̃(p(w,x),y)

∂p
]=Vary∼Zq

[Ee∼χ
∂L(p(w,x),y+e)

∂p
] ≤

Ee∼χVary∼Zq [∂L(p(w,x), y + e)
∂p

] = Vary∼Zq [∂L(p(w,x), y)
∂p

].

This completes the proof.

Though the bound of Theorem 3 is better than the bound of Theorem 1, it is still
far from being optimal. Indeed, for n = 1, the LWE hypothesis set consists of modular
multiplications {x → ax mod q}a∈Zq

. For this case, the RHS of the inequality (14) does
not guarantee any concentration even for large q. A slightly better bound can be given
if we specify the form of the loss function. For simplicity of notations, we will omit an
analysis of the non-zero noise case and will assume that e= 0.

Theorem 4. Let a function t : Zq → {c1, · · · , ck} ⊆ R be such that L(s, y) = l(s, t(y))
and |∂l(s,ci)

∂s | ≤ c for any s ∈ R, i ∈ {1, .., k}. Then, we have

Vara∼Zn
q

[
∂wi

Ex∼Zn
q
L(p(w,x), ⟨a,x⟩)

]
≤

2c2Ex∼Zn
q
[(∂wi

p(w,x))2](
k∑
j=1

Ez∼Z∗
q
[| ̂1t(x)=cj

(z)|)2q− n
2 .
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Remark 4. Suppose that we are interested not in the whole output of x → ⟨s,x⟩ but only
in one bit of information about the output. In this case it is natural to define the loss
by L(p, y) = l(p, t(y)) where l : R × {0, 1} → R is c-Lipschitz w.r.t. the first variable and
t : Zq → {0, 1}. Then |∂L(p,y)

∂p | ≤ c and the bound of Theorem 3 gives that the variance of
the gradient is O

(
Ex∈Zn

q
[(∂wi

p(w,x))2]q− n−1
2
)
. Alternatively, Theorem 4 gives an upper

bound of
O
(
Ex∈Zn

q
[(∂wi

p(w,x))2](Ey∈Z∗
p
|t̂(y)|)2q− n

2
)
,

which is slightly better for special cases of t. For example, let t(x) = 1Sr where Sr is
a set of elements in Zq whose binary representation has 1 at the rth position from the
end, 1 ≤ r ≤ ⌈log2 q⌉. This definition of the loss function is equivalent to learning the
concept class {x → 1Sr

(⟨s,x⟩)}s∈Zn
q
. In Theorem 5 of Section A one can find the proof

of the bound Ey∈Z∗
q
[|1̂Sr

(y)|] = O
(
r(log2 q + 1 − r)

)
. From the latter fact it is clear that

the bound of Theorem 4 gives us Vars∼Zn
q

[
∇Cs(w)

]
= O

(
Ex∈Zn

q
[(∂wip(w,x))2]q− n

2 log4 q
)

which is better than the bound of Theorem 3 by a factor of
√
q

log4 q
.

If we set n = 1, then the target function is a simple modular multiplication by
some number a ∈ Zq. As we see, for a large prime q, the gradient of the loss becomes
noninformative.

Proof of Theorem 4. The expression ∥Φn∥4 also can be bounded using methods of discrete
Fourier analysis. Let ε = e

2πi
q be a primitive qth root of unity. Other primitive roots of

unity are ε2, · · · , εq−1 where εk = εk, k ∈ Zq. The matrix 1√
qUk, where Uk = [εijk ]i,j∈Zq

,
is unitary for k ∈ Z∗

q . In fact, U⊤
1 is a discrete Fourier transform (DFT) matrix. Let

us denote columns of U1 by b0, · · · ,bq−1. Now everything is ready for the proof of
Theorem 4.

The following chain of identities is straightforward,

Vara∼Zn
q

[
∂wi

Ex∼Zn
q
L(p(w,x), ⟨a,x⟩)

]
=

Vara∼Zn
q

[
Ex∼Zn

q

∂l(p(w,x), t(⟨a,x⟩))
∂p

∂wip(w,x)
]

=

Vara∼Zn
q

[
⟨∂wi

p(w,x),
k∑
j=1

∂l(p(w,x), cj)
∂p

1t(⟨a,x⟩)=cj
⟩x
]
=

Vara∼Zn
q

[ k∑
j=1

⟨∂l(p(w,x), cj)
∂p

∂wip(w,x),1t(⟨a,x⟩)=cj
⟩x
]
≤

( k∑
j=1

√
Vara[⟨∂l(p(w,x),cj)

∂p
∂wi

p(w,x),1t(⟨a,x⟩)=cj
⟩x]
)2
.

Let us denote mj(y) = 1t(y)=cj
−
∑

y′∈Zq
1t(y′)=cj

q . Then, every single variance in the
latter expression can be bounded using the Boas-Bellman inequality, i.e.

Vara∼Zn
q
[⟨∂l(p(w,x), cj)

∂p
∂wi

p(w,x),1t(⟨a,x⟩)=cj
⟩x] ≤

Ea∼Zn
q
[⟨∂l(p(w,x), cj)

∂p
∂wi

p(w,x),mj(⟨a,x⟩)⟩2
x] ≤

2q−nc2∥∂wi
p(w,x)∥2

x(
∑

a∈Zn
q

∑
b∈Zn

q

⟨mj(⟨a,x⟩),mj(⟨b,x⟩)⟩2
x)1/2.

Using Lemma 2, the expression
∑

a∈Zn
q

∑
b∈Zn

q

⟨mj(⟨a,x⟩),mj(⟨b,x⟩)⟩2 equals ∥[mj(⟨a,x⟩)](a,x)∈Z2n
q

∥4
4.
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The inverse DFT of mj can be understood as an expansion

[mj(y)]y∈Zq
=

q−1∑
i=0

(e†
i [mj(y)]y∈Zq

)ei,

where
{

ei = 1√
qbi
}q−1

i=0
is an orthonormal basis in Cq. Note that

(e†
i [mj(y)]y∈Zq

) = 1
√
q

q−1∑
y=0

ε−yimj(y) = 1
√
q
m̂j(i).

Thus, we conclude that

[mj(y)]y∈Zq
=

q−1∑
i=0

1
√
q
m̂j(i)ei = 1

q

q−1∑
i=0

m̂j(i)bi.

From the latter equation we concludemj(y) = 1
q

∑q−1
k=0 m̂j(k)εky, and therefore, mj(⟨x,y⟩) =

1
q

∑q−1
k=0 m̂j(k)εkx⊤y where x⊤y is a dot product over Rn. Note that for x = [xi]n1 ,

y = [xi]n1 ∈ Znq we have εkx⊤y = Uk[x1, y1] × · · · × Uk[xn, yn], or equivalently,

[mj(⟨x,y⟩)](x,y)∈Z2n
q

= 1
q

q−1∑
k=0

m̂j(k)U⊗n
k ,

where A⊗n = A ⊗ · · · ⊗ A is the nth tensor power of A. Note that m̂j(0) = 0 due to∑
z∈Zq

mj(z) = 0.
We have the following bound:

∥[mj(⟨x,y⟩)](x,y)∈Z2n
q

∥4 = 1
q

∥
q−1∑
k=1

m̂j(k)U⊗n
k ∥4 ≤

1
q

q−1∑
k=1

∥m̂j(k)U⊗n
k ∥4 = q

3n
4

q

q−1∑
k=1

|m̂j(k)|≤q 3n
4 Ek∼Z∗

q
[| ̂1t(x)=cj

(k)|].

Thus,

Vara∼Zn
q

[
∂wi

Ex∼Zn
q
L(p(w,x), ⟨a,x⟩)

]
≤

( k∑
j=1

√
2q−nc2∥∂wi

p(w,x)∥2
xq

−nq
3n
2 (Ez∼Z∗

q
[| ̂1t(x)=cj

(z)|)2
)2

= 2c2∥∂wip(w,x)∥2
xq

− n
2 (

k∑
j=1

Ez∼Z∗
q
[| ̂1t(x)=cj

(z)|)2.

From the latter the statement of theorem is straightforward.

6.1 Application of Theorem 2 to SPNs
Another class of functions to which Theorem 2 can be applied directly is Substitution-
Permutation Networks. Let k, b, r ∈ N and n = kb. Let X = Y = GF(2n) where GF(2l)
denotes the Galois field with 2l elements. A Substitution-Permutation Network (SPN) is a
parameterized family of functions

H =
{
F

(r)
(k0,··· ,kr)

}
k0,··· ,kr∈GF(2n), (15)
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defined by the following equations

F
(0)
(k0)(x) = x⊕ k0,

F
(i)
(k0,··· ,ki)(x) = P (F (i−1)

(k0,··· ,ki−1)(x)) ⊕ ki, i = 1, · · · , r,

where, for an input x = [x1, · · · , xk] ∈ GF(2n), xi ∈ GF(2b), P : GF(2n) → GF(2n) is
defined by

P (x) = M

S(x1)
· · ·

S(xk)

 ,
and S : GF(2b) → GF(2b) is some fixed nonlinear mapping and M ∈ GF(2b)k×k is some
fixed matrix. By construction, for any x ∈ X , ε(x, x) = 0.

For a case where S(x) = x2b−2 and M is an invertible matrix without zero entries2, it
was shown in [LTV21] that

ε(x, x′) ≤ 2s
(2 + 8k

2b +
√
k

2b
)s
, (16)

where r = 3s and x, x′ are distinct. In fact, the requirement on M can be made milder to
capture the Advanced Encryption Standard (AES), for which the following bound was
proved in [LTV21]:

ε(x, x′) ≤ 0.944s,

where r = 6s and x, x′ are distinct. From (16) the following corollary is straightforward.

Corollary 2 (of Theorem 2). Let O ⊆ RNpar and p : O × X → R satisfy conditions of
Theorem 2. Let the hypothesis set defined in (15) be such that the inequality (16) holds.
Then, for r = 3s we have

Varh∼H
[
∂wi

EX∼XL(p(w, X), h(X))
]
≲

EX∼X [(∂wi
p(w, X))2] · EX∼X [M4

X ]1/2(2 + 8k
2b−1 +

√
k

2b−2

)s
.

(17)

Proof. From the inequality (16) we conclude

max
x∈X

EX∼X ε(x, X)2 ≤ 2n − 1
2n

(2 + 8k
2b−1 +

√
k

2b−2

)2s + 2−n+2 ≲
(2 + 8k

2b−1 +
√

k

2b−2

)2s
.

From Theorem 2 we obtain the final bound

Varh∼H
[
∂wiEX∼XL(p(w, X), h(X))

]
≲

EX∼X [(∂wi
p(w, X))2] · EX∼X [M4

X ]1/2(2 + 8k
2b−1 +

√
k

2b−2

)s
.

2We use a simpler formulation, though [LTV21] gives more general conditions.
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Figure 1: An accuracy on a test set as a function of epoch for different runs. An accuracy
drop to 0 means weights blow up to Nan.

7 Experiments
We conducted several computational experiments to compare predictions of our theory
with recent findings of LWE cryptanalysis. We verified the barren plateau phenomenon
by experimenting with the learnability of simple modular multiplication. Second, we
demonstrated that sparse secrets lead to larger RHS expressions, meaning the gradient can
be more informative. Third, we made some remarks about recent gradient-based attacks
on LWE.

Learnability of modular multiplication by NNs with non-lipschitz activation
functions. The factor ∥∇wp(w,x)∥2

x from the RHS of bounds of Theorems 3 and 4 is the
norm of the gradient of an NN to be trained. If we use a standard activation function in
our NN, like tanh or ReLU, this norm’s value stays moderate as long as the norm of w
does not blow up. Thus, according to our analysis, the gradient of an objective has a low
information content in the region of a bounded weight vector’s norm.

We studied the learnability of the random mapping x → kx mod q, where k ∼ Zq, as a
function of the bitsize of the prime number q, i.e. ⌈log2 q⌉. In an attempt to overcome the
vanishing of the gradient on the barren plateau, we experimented with the non-lipschitz
activation function a(x) = sign(x)

√
|x|. The derivative of a(x) has a singularity at zero, so

to avoid the exploding gradient problem we used the clipping of the gradient. We defined
the loss function as

L(p(w, x), y) = hinge((−1)y, p(w, x)),

where hinge(y, v) = max(0, 1 − yv) and (−1)y encodes the parity bit of y ∈ Zq.
In Figure 1 one can see plots of prediction accuracy on a test set for various bits as a

function of the number of epochs. For comparison, we experimented with two architectures
of 3-Layer feedforward NNs3: the first one had activation functions [tanh, tanh, a] (non-
lipschitz case) and the second one had [tanh, tanh, x] (lipschitz case). Both architectures
had the number of neurons [1000, 1000, 1] and were trained by Adam with a learning rate
of 0.001. An input x ∈ Zq was treated as a vector of length ⌈log2 q⌉ with components
equal to bits of the binary representation of x.

The training process itself and its outcome are of stochastic nature, and the variability
of the process increases for non-lipschipz activations (see Figure 1). However it is important
to note that if the probability of success for a certain bitsize is large enough, say 10%,
we observe that a multiplication by any number modulo such a prime can be trained
provided enough number of independent runs of the learning algorithm. In other words,

3Note that three layers of NN is enough to approximate the needed function, since LWE mapping is
simply a linear function combined with some nonlinear ψ which can be L2-approximated using a 2-layer
NN.
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(a(x)) and lipschitz activation functions for
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(we define success as an achieved accuracy
of more than 52% on a test set). The second
value, Acc, is an average accuracy on a test
set for successful runs.
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(b) The noisy case. The first value, Succ, is
a percentage of successful runs. We define
a success as an achieved gain of more than
2% on a test set, where a gain is defined
as an accuracy minus max(p, 1 − p) where
p = Px∼Zq

[
[x]⌈log2 q⌉−1 = 1

]
. The second

value, Gain, is an average gain on a test set
for successful runs.

the probability of successful learning does not depend on any specifics of a prime number
q and a key k, it only depends on the bitsize.

To summarize, we verified the hypothesis that non-lipschitz activation functions (or,
alternatively, smooth functions with a large Lipschitz constant) can potentially unleash
NNs’ capacity to learn modular multiplication (see Figure 2a). Although such NNs suffer
from numerical instabilities, the gradient of their objective could contain a useful signal
that would be suppressed by a smooth activation. Using a non-lipschitz NN we were able
to learn the parity bit of modular multiplication for the bitsize 36. For the bitsize 40 none
of our attempts ever succeded.

Experiments with the noisy case. We also studied the learnability of the random
mapping x → kx + χ(x) mod q, where k ∼ Zq and {χ(x)}x∈Zq

is a discretized normal
random vector with zero mean and the covariance matrix (0.01q)2Iq. Unlike the noiseless
case, we tried to predict not the parity bit of an output y, but the ⌈log2 q⌉ − 1-st bit from
the end in a binary representation of y. This is due to the fact that the distribution of
the parity bit [kx+ χ(x) mod q]1, given an input x, is a Bernoulli random variable with
parameter 1

2 (i.e. does not depend on x). In other words, we defined the loss function as

L(p(w, x), y) = hinge((−1)[y]⌈log2 q⌉−1 , p(w, x)).

The results of our experiments are given in Figure 2b. This figure verifies that non-lipschitz
NNs can learn better than regular ones. Our code is available on github to facilitate the
reproducibility of the results. Let us also give some remarks on the previously published
attacks on LWE.

Sparse secrets and information content of the gradient. The upper bounds
derivation method, based on the Boas-Bellman inequality, can be also applied when the
secret key is restricted to belong to a certain subset of Znq . The scaled square loss function
is especially suitable for analysis, so we will assume that L(p, y) = 1

2q
−2(p − y)2. If

S ⊆ Znq \ {0} is such a subset and under the assumption that keys are sampled uniformly
from S, the variance of the gradient can be bounded by ∥∂wi

p(w,x)∥2
xBBS where

BBS = (q − 1)2

4q4|S|
+ q−4

(
Ek ̸=k′∼S

〈
⟨k,x⟩ − q − 1

2 , ⟨k′,x⟩ − q − 1
2
〉2

x

) 1
2

and k ̸= k′ ∼ S denotes the fact that k and k′ are sampled from S without replacement.

https://github.com/k-nic/API_vs_grad
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Figure 3: − lnBBS as a function of n for different sets of possible keys S.

The first term in the expression of BBS is inversely proportional to |S| and is unavoidable.
The second term measures how nearly orthogonal centered functions x → ⟨k,x⟩ are. In
Section B we demonstrate that in cases defined below the second term is proportional
to 1√

|S|
. It is natural to expect that the proportionality of the second term to 1√

|S|
is a

general phenomenon that holds in other interesting cases of S. The second term equals
0 when the latter functions are ideally orthogonal and it becomes dominating when it is
non-zero. Then, − ln BBS is a natural proxy measure of the hardness of learning such
function class when the secret key is restricted to be from S.

We empirically calculated − ln BBS for (a) S = Znq \{0} (all keys); (b) S = {0, 1}n\{0}
(binary secrets); (c) S = {k ∈ {0, 1}n | |k| = l} \ {0}, where | · | denotes the number of
non-zero entries (sparse binary secrets with Hamming weight l); (d) S = {−1, 0, 1}n \ {0}
(ternary secrets); (e) S = {k ∈ {−1, 0, 1}n | |k| = l} \ {0} (sparse ternary secrets with
Hamming weight l). In Figure 3 one can see plots for q = 3329 (a popular prime number
in LWE applications) as a function of n. For sparse keys, we set l

n = 0.2.
As we see, every considered restriction on a set of possible keys leads to a substantial

decrease of − ln BBS . The main reason for this behavior is the sharp difference in the
number of secret keys. This is in full correspondence with recent findings on the learnability
of LWE with sparse secrets [LWAZ+23, WCCL22]. A less obvious phenomenon is the higher
level of hardness of binary keys in comparison with ternary keys (the same relationship
holds between sparse binary and sparse ternary keys), which seemingly contradicts the
fact that 3n > 2n. This can be explained by the strict orthogonality of centered functions
x → ⟨k,x⟩ when k is binary, i.e. the second term in BBS vanishes in this case. For ternary
keys and sparse ternary keys, the second term in BBS is dominating. In other words,
ternarity makes centered functions x → ⟨k,x⟩ less orthogonal to each other when varying
k. This, in turn, leads to an increase in the RHS of our bound.

A weakness of the suggested analysis is in the fact that we use the indirect measure of
hardness based on BBS . Although, if we decide to rely on that approach, we will come
to a simple practical recommendation of using only those restrictions S for which the
second term, i.e. the 1√

|S|
-proportional term in the expression of BBS , vanishes completely.

Details can be found in Section B.
Remarks on SALSAs and non-uniform distributions over inputs. An approach

of SALSA [WCCL22] is completely covered by our formalism, and achievements of SALSA
(i.e. the dimension n, the prime size ⌈log2 q⌉, and the Hamming height h of the secret key
in a sparse binary LWE that were successfully attacked) are in full correspondence with
our bounds.

SALSA PICANTE [LSW+23] and SALSA VERDE [LWAZ+23] are definitely beyond
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Table 1: From [WCCL22]. Here d denotes the density h
n . The table shows a fraction of

the secret recovered by SALSA for n = 50 as a function of d and a.
HHH

HHd
a 0.35 0.4 0.45 0.5 0.55 0.6 0.65

0.16 1.0 1.0 1.0 1.0 1.0 1.0 0.88
0.18 1.0 1.0 1.0 1.0 0.82 0.86 0.84
0.20 1.0 1.0 1.0 1.0 1.0 0.82 0.82
0.22 0.98 1.0 1.0 0.98 0.80 0.78 0.86
0.24 1.0 1.0 1.0 0.98 0.78 0.78 0.80
0.26 1.0 1.0 0.88 0.92 0.76 0.76 0.76
0.28 0.98 1.0 0.80 0.74 0.74 0.76 0.74
0.30 0.98 1.0 0.93 0.76 0.72 0.74 0.74

our formalism and should be considered as mainly BKZ-based. For example, in a successful
attack on LWE with n = 350, ⌈log2 q⌉ = 32, SALSA PICANTE’s preprocessing (that
prepares a training set of size four million for a gradient-based training) requires 6000
CPUs working 194 hours in parallel (equivalent to 133 years overall). The training took
105 minutes per epoch and 18 epochs till success took 31.5 hours. So, the ratio between
the overall times of the preprocessing and the training is 37000. This indicates that the
preprocessing stage is the one that is responsible for most of the work.

According to our bounds, the reported case of n = 350, ⌈log2 q⌉ = 32, h = 60 is
absolutely infeasible by a direct gradient-based attack, if training would have been on
uniformly random (or, uniformly pseudo-random) inputs. Authors of SALSA suggest
the following reason for their success. From Table 1 taken from [WCCL22] it is evident
that the learnability improves when input vectors of the LWE mapping are sampled from
(Z ∩ [0, aq])n where 0 < a < 1. For n = 50, a = 0.4 the whole secret is recovered, whereas
for n = 50, a = 0.65 only ≈ 80% is recovered. Thus, the role of the heavy preprocessing
becomes now clear — it computes inputs (with corresponding outputs) from (Z ∩ [0, aq])n.

We have not yet analyzed the case of a general (non-uniform) distribution over inputs.
We believe that the vanishing of the gradient holds for this case also, though a bound
should be milder (which explains the success of SALSA PICANTE). This is a future work
for us.

8 Conclusions and open problems
It has been known for some time that API block ciphers are resilient to differential and
linear cryptanalysis attacks. Our analysis shows that any API class of functions is a hard
target for learning by gradient-based methods, provided that the NN being trained is
regularly parameterized. As an example, we verified that any gradient-based attack on
LWE suffers from the barren plateau phenomenon. For SPNs, under a certain choice
of its parameters, we also demonstrated that the gradient of a training loss becomes
noninformative. It is an open question as to what LWE secret key size is susceptible to an
attack by a non-regular NN parameterization. Also, it is an open question to verify the
barren plateau phenomenon for modern ciphers such as AES.
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that 0 ≤ qr−1 < 2r−1 and qr−1 is just a number whose binary encoding forms the last
r − 1 bits of q. For a : Nl → R and b : Nl → R+, a ≪ b denotes that there exists α, β > 0
such that for all n = (n1, · · · , nl) ∈ Nl satisfying n1 + · · · + nl > β we have |a(n)| ≤ αb(n).
If a ≪ b and b ≪ a, we simply write a ≍ b. Z∗

q denotes {0, · · · , q − 1}. We will prove the
following bound.

Theorem 5. For any natural r such that 1 ≤ r ≤ ⌈log2 q⌉, we have Eω∼Z∗
q
[|[̂·]r(ω)|] ≪

r(log2 q + 1 − r).

Let us denote tr(x) = (−1)[x]r , x ∈ Zq. The DFT of tr is easier to calculate than that
of [·]r, so we will deal with tr first.

Lemma 4. We have

t̂r(ω) = 1 − (−1)[q]rε−(q−qr−1)ω

1 + ε−2r−1ω

1 − ε−2r−1ω

1 − ε−ω + (−1)[q]r
ε−(q−qr−1)ω − ε−qω

1 − ε−ω ,

for ω ∈ Z∗
q .

Proof. Note that

t̂r(ω) =
q−1∑
x=0

ε−xω(−1)[x]r =
2r−1⌊ q

2r−1 ⌋−1∑
x=0

ε−xω(−1)[x]r +
q−1∑

x=2r−1⌊ q

2r−1 ⌋

ε−xω(−1)[x]r .

The first term equals

2r−1⌊ q

2r−1 ⌋−1∑
x=0

ε−xω(−1)[x]r =
⌊ q

2r−1 ⌋−1∑
t=0

(−1)tε−2r−1tω
2r−1−1∑
x=0

ε−xω =

1 − (−1)[q]rε−(q−qr−1)ω

1 + ε−2r−1ω

1 − ε−2r−1ω

1 − ε−ω ,

if ω ̸= 0. If ω = 0, then it equals 2r−1[q]r. Whereas, the second term equals

(−1)[q]r

q−1∑
x=q−qr−1

ε−xω = (−1)[q]r
ε−(q−qr−1)ω − ε−qω

1 − ε−ω ,

if ω ̸= 0. If ω = 0, then it equals (−1)[q]rqr−1. Thus, we conclude that

t̂r(ω) = 1 − (−1)[q]rε−(q−qr−1)i

1 + ε−2r−1ω

1 − ε−2r−1ω

1 − ε−ω + (−1)[q]r
ε−(q−qr−1)ω − ε−qω

1 − ε−ω ,

if ω ∈ Z∗
q .

For bounding Eω∼Z∗
q
[|t̂r(ω)|] we will need the following technical lemma.

Lemma 5. We have
∑
k∈Zq

1
|1+εrk| ≪ q log q and

∑
k∈Z∗

q

1
|1−εrk|

≪ q log q for any r ∈ Z∗
q .

Proof. Since
∑
k∈Zq

1
|1+εrk| =

∑
k∈Zq

1
|1+εk| , it is enough to prove the first statement for

r = 1.
Let θ = 2πk

q . Note that θ ∈ [0, 2π) and

|1 + εk| = |1 + eiθ| = (2 + 2 cos(θ))1/2 = 2
∣∣∣∣cos

(
θ

2

)∣∣∣∣ .
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Let us denote 2ψ = θ−π. Thus, |1+εk| = 2
∣∣∣cos

(
2ψ+π

2

)∣∣∣ = 2| sin(ψ)| ≥ |ψ| if ψ ∈
[
−π

4 ,
π
4
]
.

Note that ψ ∈
[
−π

4 ,
π
4
]

if and only if −π
4 ≤ πk

q − π
2 ≤ π

4 , or 1
4q ≤ k ≤ 3

4q. Thus, we have

∑
k∈[ 1

4 q,
3
4 q]∩Zq

1
|1 + εk|

≤
∑

k∈[ 1
4 q,

3
4 q]∩Zq

1∣∣∣πkq − π
2

∣∣∣ =

2q
π

∑
k∈[ 1

4 q,
3
4 q]∩Zq

1
|2k − q|

≤ 4q
π

⌈q/2⌉∑
i=1

1
i

≪ q log q.

Since
∣∣1 + εk

∣∣ = 2| sin(ψ)| ≥ 1 if ψ ∈
[
−π

2 ,−
π
4
]

∪
[
π
4 ,

π
2
]
, then∑

k∈Zq : ψ∈[− π
2 ,−

π
4 ]∪[ π

4 ,
π
2 ]

1
|1 + εk|

≍ q.

Thus, the total sum satisfies ∑
k∈Zq

1
|1 + εk|

≪ q log q.

Let us now prove the second statement, i.e.
∑
k∈Z∗

q

1
|1−εrk|

≪ q log q. Again, it is enough to prove it for r = 1. Since

∑
k∈Z∗

q

1
|1 − εk|

=
−1∑

k=− q−1
2

1
|1 − εk|

+

q−1
2∑

k=1

1
|1 − εk|

,

let us prove first that
∑ q−1

2
k=1

1
|1−εk| ≪ q log q.

Let θ = 2πk
q , 1 ≤ k ≤ q−1

2 . Note that θ ∈ (0, π) and

|1 − εk| = |1 − eiθ| = (2 − 2 cos(θ))1/2 = 2
∣∣∣∣sin(θ2

)∣∣∣∣ .
Let us denote 2ψ = θ. The condition 0 < ψ ≤ π

4 is equivalent to 1 ≤ k ≤ q
4 . Under that

condition, we have 2| sin(ψ)| ≥ |ψ|. Therefore, we have∑
k∈[1, q

4 ]∩Zq

1
|1 − εk|

≤
∑

k∈[1, q
4 ]∩Zq

1∣∣∣πkq ∣∣∣ = q

π

∑
k∈[1, q

4 ]∩Zq

1
k

≪ q log q.

Also, 2| sin(ψ)| ≥ 1, ψ ∈ [π4 ,
π
2 ), therefore∑

k∈[ q
4 ,

q−1
2 ]∩Zq

1
|1 − εk|

≤
∑

k∈[1, q
4 ]∩Zq

1
1 ≪ q.

Thus,
∑ q−1

2
k=1

1
|1−εk| ≪ q log q. Analogously one can prove

∑−1
k=− q−1

2

1
|1−εk| ≪ q log q.

Now everything is ready to estimate the sum
∑
ω∈Z∗

q
|t̂r(ω)| which is made in the

following lemma.

Lemma 6. We have
∑
ω∈Z∗

q
|t̂r(ω)| ≪ qr(log2 q + 1 − r).
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Proof. First let us consider the case of [q]r = 0. Using Lemma 4, we have

∑
ω∈Z∗

q

|t̂r(ω)| ≤
∑
ω∈Z∗

q

|1 − ε−2r−1⌊ q

2r−1 ⌋ω|
|1 + ε−2r−1ω|

|1 − ε−2r−1ω|
|1 − ε−ω|

+ 2
|1 − ε−ω|

.

From Lemma 5 we have
∑
ω∈Z∗

q

2
|1−ε−ω| ≪ q log q. Thus, it remains to bound the sum of

terms aω = |1−ε
−2r−1⌊ q

2r−1 ⌋ω
|

|1+ε−2r−1ω|
|1−ε−2r−1ω|

|1−ε−ω| . Using
∑
ω∈Z∗

q
aω =

∑ q−1
2

ω=1 aω +
∑−1
ω=− q−1

2
aω and

1
|1−ε−ω| ≪ 1 for q

4 ≤ ω ≤ q−1
2 or − q−1

2 ≤ ω ≤ − q
4 we conclude that

q−1
2∑

ω=⌈ q
4 ⌉

aω ≪ 4

q−1
2∑

ω=⌈ q
4 ⌉

1
|1 + ε−2r−1ω|

≪ q log q

and
∑−⌈ q

4 ⌉
ω=− q−1

2
aω ≪ q log q (using Lemma 5). Thus, a bound of the total sum directly

follows from bounds of
∑⌊ q

4 ⌋
ω=1 aω (and

∑−1
ω=−⌊ q

4 ⌋ aω). For brevity, let us only show how to

bound U =
∑⌊ q

4 ⌋
ω=1 aω.

Using |1 − εx| = 2| sin(πxq )| and |1 + εx| = 2| cos(πxq )|, this sum can be rewritten as

U =
⌊ q

4 ⌋∑
i=1

| sin(2rk πiq )| · | sin(2r−1 πi
q )|

| cos(2r−1 πi
q ) sin(πiq )|

.

where 2k = ⌊ q
2r−1 ⌋. For arbitrary x and y > 0, let us denote the interval [x− y, x+ y] by

x± y. Also, [s] denote {1, · · · , s}. Let us denote n = ⌊2r−2 i
q ⌋. By construction, we have

0 ≤ n ≤ 2r−4 − 1. For any i = 1, · · · , ⌊ q4 ⌋ at least one of the following inclusions holds

1) 2r−1πi

q
∈ π

2 + 2πn± π

4 ,

2) 2r−1πi

q
∈ 3π

2 + 2πn± π

4 , or

3) 2r−1πi

q
/∈ (π2 + 2πn± π

4 ) ∪ (3π
2 + 2πn± π

4 ).

In the third case we have 1
| cos(2r−1 πi

q )| ≪ 1 and the summation over all such i asymptotically

cannot exceed
∑⌊ q

4 ⌋
i=1

1
| sin( πi

q )| ≪
∑⌊ q

4 ⌋
i=1

1
| πi

q | ≪ q log q. The summation over terms that
satisfy either 1) or 2) are similar, therefore we will consider only the first case, i.e. we will
bound

Ũ =
2r−4−1∑
n=0

∑
i∈[⌊ q

4 ⌋]:2r−1 πi
q ∈ π

2 +2πn± π
4

| sin(2rk πiq )| · | sin(2r−1 πi
q )|

| cos(2r−1 πi
q ) sin(πiq )|

.

We have 2r−1 πi
q ∈ π

2 + 2πn ± π
4 , i ∈ [⌊ q4 ⌋] if and only if i ∈ [⌊ q4 ⌋] ∩ q

2r + nq
2r−2 ± q

2r+1 .
Let us denote e = i − ( q2r + nq

2r−2 ). From i ∈ [⌊ q4 ⌋] ∩ q
2r + nq

2r−2 ± q
2r+1 we deduce

e ∈ ± q
2r+1 ∩ (Z − { q

2r + nq
2r−2 }) where {x} = x− ⌊x⌋ and Z − s denotes {z − s | z ∈ Z}.
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Using 2| cos(2r−1 πi
q )| ≥ |2r−1 πi

q − π
2 − 2πn| for 2r−1 πi

q ∈ π
2 + 2πn± π

4 we obtain

Ũ ≪
2r−2−1∑
n=0

∑
i∈[⌊ q

4 ⌋]∩ q
2r + nq

2r−2 ± q

2r+1

| sin(2rk πiq ) sin(2r−1 πi
q )|

|(2r−1 πi
q − π

2 − 2πn)πiq |
≤

2r−2−1∑
n=0

∑
i∈[⌊ q

4 ⌋]∩ q
2r + nq

2r−2 ± q

2r+1

| sin(2rk πiq )|
|(2r−1 πi

q − π
2 − 2πn)πiq |

≤

2r−2−1∑
n=0

∑
e∈± q

2r+1 ∩(Z−{ q
2r + nq

2r−2 })

| sin(2rk πeq )|
2r−1π
q |e|( π2r + πn

2r−2 + π
q e)

.

Let us denote x = π2rk
q . Note that π

2 ≤ π2rk
q ≤ π. We have

∑
e∈± q

2r+1 ∩(Z−{ q
2r + nq

2r−2 })

| sin(xe)|
2r−1π
q |e|( π2r + πn

2r−2 + π
q e)

≪ Cr
2r−1π
q ( π

2r+1 + πn
2r−2 )

,

where

Cr = max
s∈[0,1]

∑
e∈± q

2r+1 ∩(Z−s)

| sin(xe)|
|e|

.

Obviously, we have Cr ≤
∑
e∈± q

2r+1 ∩(Z−s∗)
| sin(xe)|

|e| for some s∗ ∈ [0, 1], and the latter is

bounded by 2x+ 2
∑⌈ q

2r+1 ⌉
i=1

1
i ≪ log( q

2r+1 + 1).
Thus, Ũ is asymptotically bounded by

qCr

2r−2−1∑
n=0

1
2r−1( 1

2r+1 + n
2r−2 )

≪ q log2( q

2r+1 + 1) log2(2r−2 + 1) ≪ qr(log2 q + 1 − r),

and therefore, the total sum is bounded by qr(log2 q + 1 − r).
Let us now consider the case of [q]r = 1. As in the previous case, we can reduce bounding

the total sum to bounding the sum V =
∑⌊ q

4 ⌋
i=1 bi where bi = |1+ε

−2r−1⌊ q

2r−1 ⌋i
|

|1+ε−2r−1i|
|1−ε−2r−1i|

|1−ε−i| ,
which is equal to

V =
⌊ q

4 ⌋∑
i=1

| cos(2r−1(2k + 1)πiq )| · | sin(2r−1 πi
q )|

| cos(2r−1 πi
q ) sin(πiq )|

.

where 2k + 1 = ⌊ q
2r−1 ⌋. As in the previous case, V can be bounded according to

V ≪
2r−2−1∑
n=0

∑
i∈[⌊ q

4 ⌋]∩ q
2r + nq

2r−2 ± q

2r+1

| cos(2r−1(2k + 1)πiq ) sin(2r−1 πi
q )|

|(2r−1 πi
q − π

2 − 2πn)πiq |
≤

2r−2−1∑
n=0

∑
i∈[⌊ q

4 ⌋]∩ q
2r + nq

2r−2 ± q

2r+1

| cos(2r−1(2k + 1)πiq )|
|(2r−1 πi

q − π
2 − 2πn)πiq |

≤

2r−2−1∑
n=0

∑
e∈± q

2r+1 ∩(Z−{ q
2r + nq

2r−2 })

| sin(2r−1(2k + 1)πeq )|
2r−1π
q |e|( π2r + πn

2r−2 + π
q e)

.
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The latter sum is asymptotically bounded by

qC ′
r

2r−2−1∑
n=0

1
2r−1( 1

2r+1 + n
2r−2 )

where C ′
r = maxs∈[0,1]

∑
e∈± q

2r+1 ∩(Z−s)
| sin(x′e)|

|e| , x′ = 2r−1(2k+1)π
q and C ′

r ≪ (log2 q+1−r).
Thus, V ≪ qr(log2 q + 1 − r).

Proof of Theorem 5. After noting that tr(x) = 1 − 2[x]r, we obtain |t̂r(ω)| = 2|[̂·]r(ω)| for
ω ∈ Z∗

q , and therefore,

Eω∼Z∗
q
[|[̂·]r(ω)|] = 1

2Eω∼Z∗
q
[|t̂r(ω)|].

Then, from Lemma 6 we conclude that

Eω∼Z∗
q
[|[̂·]r(ω)|] ≪ r(log2 q + 1 − r).

B Calculation of BBS for different S

Let us first show that the variance that we are interested in is indeed bounded by a factor
of BBS . Recall that L(p, y) = 1

2q
−2(p− y)2 and S ⊆ Znq \ {0}. Then, we have

Vara∼S
[
∂wiEx∼Zn

q
L(p(w,x), ⟨a,x⟩)

]
≤ q−4Ea∼S

[
⟨∂wip(w,x), ⟨a,x⟩ − q − 1

2 ⟩2
x
]
.

Using the Boas-Bellman inequality we bound the latter expectation in the following way,

|S|−1
∑
a∈S

⟨⟨a,x⟩ − q − 1
2 , ∂wip(w,x)⟩2

x ≤

|S|−1∥∂wip(w,x)∥2
x
[
(q − 1

2 )2 +
( ∑

k ̸=k′∈S

⟨⟨k,x⟩ − q − 1
2 , ⟨k′,x⟩ − q − 1

2 ⟩2
x
)1/2] ≤

∥∂wi
p(w,x)∥2

x

[
(q − 1)2

4|S|
+ Ek ̸=k′∼S

[
Ex∼Zn

q
[(⟨k,x⟩ − q − 1

2 )(⟨k′,x⟩ − q − 1
2 )]2

]1/2
]
.

For λ ∈ Z∗
q\{1}, let us denote Pk ̸=k′∼S

[
k′ = λk

]
by p(λ), and Ex∼Zq

[
(x− q−1

2 )((λx mod q)−
q−1

2 )
]

by r(λ) . We need these two functions due to

Ek ̸=k′∼S

[〈
⟨k,x⟩ − q − 1

2 , ⟨k′,x⟩ − q − 1
2
〉2

x

]
=

Pk ̸=k′∼S
[
rank[k,k′] = 2

]
× 02 +

∑
λ∈Z∗

q \{1}

Pk ̸=k′∼S
[
k′ = λk

]
r(λ)2 =

∑
λ∈Z∗

q \{1}

p(λ)r(λ)2.

In other words, the calculation of p(λ) and r(λ) allows us to calculate

BBS = (q − 1)2

4q4|S|
+ q−4( ∑

λ∈Z∗
q \{1}

p(λ)r(λ)2)1/2
.

The function r(λ) is the same for any S and it can be computed numerically. The situation
for the function p(λ) is trickier, it should be computed distinctly for each S based on the
fact that for each λ ∈ Z∗

q \ {1} we have

Pk′∼S\{k}
[
k′ = λk | k

]
= [λk ∈ S \ {k}](|S| − 1)−1,
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and

p(λ) = |S|−1
∑
k∈S

Pk′∼S\{k}
[
k′ = λk | k

]
= (|S| − 1)−1Pk∼S [λk ∈ S].

After we plug the latter expression into the second term of BBS , we obtain

1
q4
√

|S| − 1
( ∑
λ∈Z∗

q \{1}

Pk∼S [λk ∈ S]r(λ)2)1/2
.

and conclude that it is O(|S|−1/2q−2).
For the case (a) we have Pk∼S [λk ∈ S] = 1. In case (b) and (c) we have Pk∼S [λk ∈

S] = 0. In case (d) and (e) we have Pk∼S [λk ∈ S] = 1 if λ = −1 and Pk∼S [λk ∈ S] = 0 if
otherwise. Thus, we obtained

BBS =



(q−1)2

4q4|S| + q−4(|S| − 1)− 1
2
(∑

λ∈Z∗
q \{1} r(λ)2) 1

2 , for (a)
(q−1)2

4q4|S| , for (b)
(q−1)2

4q4|S| , for (c)
(q−1)2

4q4|S| + q−4(|S| − 1)− 1
2 |r(−1)|, for (d)

(q−1)2

4q4|S| + q−4(|S| − 1)− 1
2 |r(−1)|, for (e)

Obtained formulas were implemented in the form of a Python code that can be accessed
at github.

https://github.com/k-nic/API_vs_grad
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