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Abstract. The generic-group model (GGM) and the algebraic-group model (AGM)
have been exceptionally successful in proving the security of many classical and modern
cryptosystems. These models, however, come with standard-model uninstantiability
results, raising the question of whether the schemes analyzed under them can be
based on firmer standard-model footing.
We formulate the uber-knowledge (UK) assumption, a standard-model assumption that
naturally extends the uber-assumption family to knowledge-type problems. We justify
the soundness of UK in both the bilinear GGM and the bilinear AGM. Along the way
we extend these models to account for hashing into groups, an adversarial capability
that is available in many concrete groups—In contrast to standard assumptions,
hashing may affect the validity of knowledge assumptions. These results, in turn,
enable a modular approach to security in the GGM and the AGM.
As example applications, we use the UK assumption to prove knowledge soundness
of Groth’s zero-knowledge SNARK (EUROCRYPT 2016) and of KZG polynomial
commitments (ASIACRYPT 2010) in the standard model, where for the former we
reuse the existing proof in the AGM without hashing.
Keywords: Knowledge assumption · Standard model · Generic-group model ·
Algebraic-group model · Groth16 · KZG commitment

1 Introduction
1.1 Background
Idealized models. Security proofs in idealized models of computation or with respect
to restricted classes of adversaries are a popular paradigm for studying the soundness
of cryptographic constructions. Starting with the works of Fiat and Shamir [FS87] and
Bellare and Rogaway [BR93], random oracles, which idealize cryptographic hash functions,
have been used to justify the security of a wide range of symmetric and asymmetric
schemes. Subsequently, the random-permutation and the ideal-cipher models were used to
study permutation-based cryptography (e.g., SHA3 [BDPV08]) and constructions using
block ciphers [BRS02,CDMP05,HKT11]. This approach was also adapted to the setting of
cryptographic groups by Nechaev [Nec94] and Shoup [Sho97], who showed the hardness of
the discrete-logarithm problem in random groups with oracle access to the group operation.
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2 The Uber-Knowledge Assumption: A Bridge to the AGM

Our focus in this work is on cryptographic assumptions related to groups. We start
with a high-level overview of idealization of groups as put forward by Nechaev and Shoup.

The generic-group model (GGM). The GGM “idealizes” the representation of group
elements and the group operation. There are at least two approaches to formalizing
idealized groups. One is Shoup’s GGM [Sho97], aka. the random-representation (RR)
model [Zha22], where group exponentiation is modeled as a random injection τ , and the
group operation is defined via an oracle that is compatible with τ (i.e., elements are
inverted under τ , added up, and fed back to τ). Another is Maurer’s GGM [Mau05], aka.
the type-safe (TS) model [Zha22], where group elements are replaced by abstract “handles”
containing their corresponding discrete logarithms. The group operation oracle works on
handles by placing the sum of the discrete logarithms under two given handles behind a
third handle. Shoup’s model has been extended to bilinear groups [BB04] and has been
used to study a wide class of schemes, from standardized signature schemes [GS22] to
structure-preserving signatures [AGHO11] and SNARKs [Gro16].

The algebraic-group model (AGM). An alternative approach towards modeling
groups has emerged in more recent work. Motivated by the fact that group operations
are observable in the GGM, it posits that adversaries always compute a representation of
the group elements that they output in terms of those that they have seen thus far. This
model is known as the AGM and was introduced by Fuchsbauer, Kiltz, and Loss [FKL18],
though its roots trace back to the work of Boneh and Venkatesan [BV98], who considered
restricted adversaries that implement straight-line programs. In a sense, the underlying
groups are not idealized in the AGM; it is rather the adversary who is restricted and must
“explain” its outputs in terms of its inputs. Recently, there has been significant interest
in using the AGM to study cryptosystems [MBKM19,GT21,KLX22,FPS20,RZ21] and
hardness assumptions [BFL20,RS20].

Uninstantiability results. One drawback of idealized models of computation, however,
is that they typically suffer from uninstantiability results. That is, one can construct
schemes that are secure in a given idealized model, but are insecure with respect to any
standard-model instantiation of the primitive that the model idealizes. Such uninstantiable
schemes were first presented for the random-oracle model in the seminal work of Canetti,
Goldreich, and Halevi [CGH98], which was later extended to the ideal-cipher [Bla06] and
generic-group [Den02] models. Recently, Zhandry [Zha22] proved an analogous result
for the AGM, thus separating the AGM from the standard model. We note that the
schemes presented in these works are arguably “contrived” in that they are designed to fail,
and as such do not disprove the security established in an idealized model of real-world
cryptosystems that follow “good cryptographic practice” [KM07].1

Standard-model security. Given this state of affairs, one research theme in recent years
has been to identify new plausible assumptions that, although strong, facilitate proofs of
security in the standard model in a uniform way for a range of schemes that were previously
only shown to be secure in idealized models. As a result, under such assumptions, these
constructions are placed outside the class of uninstantiable schemes. Moreover, if said
assumptions can themselves be justified in an idealized model, one would gain additional
assurance of their soundness, and at the same time establish a bridge from the idealized
model to the standard model. Particularly successful examples of this “layered” approach
to security include universal computational extractors for hash functions [BHK14], and
the uber-assumption family for cryptographic group schemes [BBG05,EHK+13,BFHO22].

1In more detail, these results (ab)use the fact that concrete hash functions and group schemes have
compact representations, whereas exponentially large random oracles or group encodings do not.
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1.2 Contributions
In this paper we continue the above line of work. We seek to identify assumptions to lift
security of group-based cryptosystems proven in idealized models to the standard model.

Knowledge assumptions. In more detail, we are interested in knowledge assumptions
for group schemes. In contrast to standard unpredictability and decisional problems, in
knowledge assumptions one demands that for every adversary there exists a successful
extractor. Thus, these assumptions have a higher “logical complexity”2 and are not
unconditionally falsifiable; see [Nao03,GK16] for further discussions.

Bridging assumptions for knowledge-type properties, such as the knowledge soundness
of SNARKs, is an important and somewhat neglected area of investigation. Some schemes,
e.g., Groth10 [Gro10], Pinocchio [PHGR13], Groth–Maller [GM17], and Marlin [CHM+20]
are proven under dedicated knowledge assumptions. However, most popular schemes are
proven directly in the GGM or AGM [Gro16, GWC19]. Besides SNARKs, knowledge
assumptions also underlie the security of many other cryptosystems, from zero-knowledge
proofs [Lep02,BP04a] to plaintext-aware encryption [Den06a], extractable collision resistant-
hash functions (CRHFs) [BCCT12,BCC+17,KLT16] and non-malleable codes [KLT16].

The uber-knowledge family. To bridge this gap, we introduce the uber-knowledge (UK)
assumption, an umbrella term for a class of assumptions formulated in both simple and
bilinear groups. Roughly, the UK assumption states that whenever an adversary outputs
group elements that satisfy a certain polynomial relation with its group element inputs, it
must necessarily produce them as a known linear combination of the group element inputs.

Specific assumptions implied by UK have already appeared in the literature. Ex-
amples include the knowledge-of-exponent assumptions KEA1 and KEA3, which have
been used to construct efficient three-round zero-knowledge protocols [HT98,BP04a] and
plaintext-aware encryption [BD14], the d-KEA assumption utilized to build extractable
CRHFs [BCCT12], the d-PKE assumption used in [Gro10,PHGR13] to build SNARKs, and
our novel d-KZG assumption justifying the extractability of polynomial commitments, and
thus the knowledge soundness of a number of practical in-use SNARKs [GWC19,CFF+21]
via the framework of polynomial interactive oracle proofs (PIOPs) [BFS20].

We prove the implications above assuming hardness of the q-power discrete loga-
rithm (q-DL) problem of Fuchsbauer, Kiltz, and Loss [FKL18]. To do so we must construct,
for any adversary A in the considered notions, a corresponding extractor E . This is done
by transforming A into a UK adversary B, for which there exists an extractor F by the
assumed hardness of UK. Unfortunately, we cannot directly set E := F , because UK
usually gives F more freedom in representing the outputs of B than E has for A. We can,
however, show via a reduction to q-DL that the additional coefficients that F can use will
likely be zero, so that E can return the remaining output of F . The reduction to q-DL
(which we emphasize is in the standard model) follows an AGM-type strategy and embeds
a q-DL challenge x into the inputs of B and F . If the extra coefficients that F can use are
not zero, we obtain a nontrivial polynomial equation involving x and can solve for x using
a polynomial root-finding algorithm, e.g., Berlekamp’s algorithm [Ber67].

The UK assumption can be seen as an extension of the classical uber family to
knowledge assumptions, and also as a standard-model counterpart to the “representation
extractability” property that the AGM requires. We emphasize that the UK assumption
is a standard-model assumption3, and thus an adversary may exploit hashing and other
procedures to “obliviously sample” group elements to break it.

2Here we mean quantifier complexity: Knowledge assumptions are typically of the form “(∀A)(∃E)(. . .),”
while conventional assumptions take the form “(∀A)(. . .),” with no additional existential quantification.

3Note that a standard assumption, which roughly means falsifiable and non-interactive, is not the same
as a standard-model assumption, with which we mean defined without idealization or setup.
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GGM and AGM with hashing. In continuing with the aforementioned layered approach
to security, we set out to justify the soundness of the UK assumption in idealized models.
The (bilinear) GGM and the (bilinear) AGM are natural choices for such proofs. However,
in their standard forms, the GGM and the AGM do not faithfully model the adversarial
capability to hash into groups. At first this might not seem a critical shortcoming, as
hashing can be simulated by exponentiating the group generator to random powers. This is
indeed a valid approach for showing equivalence for standard unpredictability or decisional
problems in models with and without hashing. On the other hand, the situation is different
for knowledge assumptions. Indeed, observe that an extractor algorithm in the UK game
is run on the adversary’s view. When the hash oracle is simulated, this view contains
the discrete logarithms of the hash outputs, information that is missing when hashing is
done via an external oracle, where the view only contains the hash outputs themselves.
This discrepancy prevents an analogous equivalence to go through. Even more concretely,
consider the knowledge assumption that posits that “no adversary can produce a valid
group element without knowing its discrete logarithm.” This assumption is trivially false
when one can hash into a group, but holds in the AGM (without hashing) and also in
the GGM if group representations are from a sufficiently large set.

Accordingly, we extend the GGM and the AGM with appropriate hashing oracles and
call the resulting models GGM-H and AGM-H. This extension is straightforward for
the GGM, though different variants arise in the bilinear setting according to which groups
one can hash to. Our choices here are driven by practical pairing-friendly groups [CCS07,
Definitions 2–4], where in type-1 and type-3 groups one can hash to all groups, but in the
type-2 setting one can only hash to the first source group and the target group.

For the AGM-H, we follow the recent algebraic compilation approach of Zhandry [Zha22],
who identified a problem with the original definition of the AGM related to leaking group
elements one bit at a time [ZZK22]. Using the machinery of type-safe groups, where one
can only operate on abstract group handles via oracles, we formalize the bilinear AGM
with hashing for all three types of groups.

Layering: GGM and AGM feasibility. Given the observations above, we set out to
justify the soundness of the UK assumption in both the GGM-H and the AGM-H. We do
this for the class of relation polynomials (the polynomial in the winning condition that
adversary inputs and outputs must satisfy) that are linear in the variables corresponding
to the group elements returned by the adversary, and also have linearly independent
coefficients. Linearity ensures that the winning condition can be efficiently verified in
non-bilinear groups, while linear independence is both necessary and sufficient for hardness.

Our GGM-H feasibility is in fact more general and establishes hardness for a wider class
of relation polynomials that contain one quadratic term in the adversarial outputs. This
class includes the polynomial needed to study the knowledge soundness of Groth16 [Gro16].
Our proof uses the Schwartz–Zippel lemma to transition to a setting where group operation
oracles are implemented with respect to formal polynomials. The core of the analysis is
identifying under which added conditions the coefficients of monomials corresponding to
hashed group elements vanish. To ensure that the coefficients related to the quadratic term
are zero we require that, after substituting the equalities originating from the degree-one
part into the constant term, the resulting polynomial is not zero. Afterwards, linear
independence of the linear terms ensures that all other coefficients vanish.

Our AGM-H proofs embed an instance of the q-DL problem into a UK problem instance,
so that a representation that is nontrivial in the group elements returned by the hash
oracle can be converted into a polynomial that has the solution of the q-DL problem as
one of its roots. As mentioned, we establish hardness for linear relation polynomials with
linearly independent coefficients. For polynomials with quadratic terms, we directly prove
hardness for the assumption that is needed in the analysis of Groth16 in type-3 groups.
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It may be that deciding UK hardness in general reduces to the ideal membership problem,
and thus to Gröbner-basis computation, which has a double exponential complexity in the
number of input variables. Despite this, we show that for specific classes of polynomials,
sufficient conditions for the hardness of UK can be established. We believe that the
restrictions we have identified are meaningful in the sense that they are sufficient to
capture a number of knowledge assumptions in the literature, and also base the security of
existing schemes on the UK. Generalizing UK hardness in GGM-H or AGM-H to a larger
class of polynomials (e.g., quadratic polynomials with multiple degree-two terms in the
adversary output variables) remains an open problem.

Standard-model lifting: AGM proof reuse. The UK assumption postulates that in
certain contexts standard-model adversaries, which may use local hashing or other means,
are algebraic in the classical sense without hashing. This observation, in turn, allows us
to lift existing AGM security proofs to the standard model. For instance, any adversary
against Groth16 can be coupled with its extractor to always output representations that,
under the UK assumption, ignore the hashed group elements. We can then reuse the
already existing AGM reduction to q-DL for Groth16 without hashing to establish the
standard-model security of Groth16. Similar observations apply to the knowledge soundness
of, for example, KZG polynomial commitments.4 We note that the lifting is from AGM
without hashing, but our assumption is justified under the “weaker” AGM with hashing.

Related work. The only other work that we are aware of that proves statements about
SNARKs in the AGM with hashing is that of Lipmaa [Lip22]. However, [Lip22] reproves
security from scratch in the extended model with hashing, and does not formulate a
plausible knowledge assumption for lifting the security of Groth16 to the standard model.

In concurrent and independent work, Lipmaa, Parisella and Siim [LPS23] introduce the
AGM with oblivious sampling, an extension of AGM where adversaries can sample group
elements obliviously via an oracle. Roughly speaking, in this model parties can query an
oracle on admissible distributions S over Zp and admissible encodings E : Zp → G. The
oracle then samples s←← S and returns (s, E(s)). Our work is technically and conceptually
incomparable to [LPS23]. Indeed, oblivious sampling cannot be replicated (due to the
random choice of s), whereas hashing can be, both by the honest and adversarial parties.
Also, we do not investigate general encodings and instead consider standard encoding via
exponentiation. Finally, we emphasize that UK is a standard-model assumption, on which
one can base the standard-model security of schemes. Adversaries against UK may hash or
obliviously sample elements in arbitrary ways. Our feasibility results in idealized models
(with hashing) provide supporting evidence for the soundness of UK. In contrast, the
results of [LPS23] hold in the AGM with oblivious sampling, which is an idealized setting.

Future work. After its initial publication [BBG05], the uber-assumption family was
extended in a series of works to hardness for rational functions [RLB+08], interactive
problems [BFL20], matrix-type problems [EHK+13], and high-entropy sources [BFHO22].
A rich set of relations between notions of hardness has also been established in these
works and others [BFL20,RS20]. Similar considerations and questions naturally arise when
investigating knowledge assumptions. For instance, interactive knowledge assumptions are
helpful in justifying the simulation soundness of certain zero-knowledge protocols [GM17].
Can the reach of UK be extended to these settings while retaining soundness in the
(bilinear) GGM-H and AGM-H?

4Lifting is logically different from layering: The former takes the form (Model =⇒ Application) =⇒
(Assumption =⇒ Application), while the latter Model =⇒ Assumption =⇒ Application.
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Paper outline. In Section 2 we recall basic notation. The formal definitions of the
generic-group, type-safe, and algebraic-group models are given in Section 3, where we
also extend these models to include hashing. Section 4 contains the definition of the
uber-knowledge assumption as well as some specific knowledge assumptions implied by UK.
As a “warm-up” for the analysis of UK in idealized models, we study in Section 5 the
soundness of the Diffie–Hellman knowledge of exponent assumption in the bilinear GGM
and the bilinear AGM with hashing. In Sections 6 and 7, we then prove hardness of UK
in these models. We conclude in Section 8 with an example application to Groth16.

2 Preliminaries
Basic notation. We denote by Z and N := Z≥1 the sets of integers and of natural
numbers, and by {0, 1}∗ the set of finite-length bitstrings. For n ∈ N, we let Zn be the ring
of integers modulo n; if n = p is prime, then Fp := Zp is a field. The security parameter
is denoted by λ, with unary representation 1λ. Sampling from a random variable X
is denoted x ←← X ; when X is a finite set, x ←← X means sampling from the uniform
distribution over X. If A and B are sets, we write Inj(A,B) for the set of injective functions
from A to B. A table T is a set of pairs (x, y) without collisions in the first coordinate,
and we write T [x]← y to mean that any pair (x, ·) is removed from T , and the pair (x, y)
is added to T . We let Dom(T ) denote the set of all values x such that (x, y) ∈ T for
some y, and similarly Rng(T ) denotes the set of all values y such that (x, y) ∈ T for
some x. Vectors are written in boldface and, depending on the context, their entries are
indexed starting from 0 or 1. We use the bracket notation to represent group elements:
If γ = (·, g, p) is a group of order p with fixed generator g and a ∈ Zp, then [a] := ga.
Similarly, if γ is a bilinear group and a ∈ Zp, then [a]µ := ga

µ (µ ∈ {1, 2, T}), where gµ

is the generator of the µ-th group. We extend this notation to vectors of exponents:
If a ∈ Zℓ

p, then [a] := (gai)ℓ
i=1, and similarly for bilinear groups with the appropriate

subscripts. Note that this notation does not mean that the algorithm producing the group
element “knows” its discrete logarithm wrt. the fixed generator. For an algorithm A, we
denote by RA(λ) the random variable returning random coins for A when run on security
parameter λ. The trace (or view) of A, i.e., the vector containing all its inputs, the random
coins it is run on, and potential oracle replies, is denoted trace(A).

Cryptographic games [BR06]. We use the code-based game-playing framework of
Bellare and Rogaway. A game G is an algorithm run together with several parties, among
which there is an adversary A. The game starts by generating a challenge, which is then
passed on to A, who is tasked with solving it. To model potential leakage during the
game’s execution, G may offer A a set of oracles that help the adversary in finding a
solution. The output of A is then handed back to G, who verifies the purported solution
and returns a decision bit. We say that A wins game G if the final output of the game
is 1; we then write GA = 1, and let Pr[GA] := Pr[GA = 1]. Other parties may also feature
in the game, according to its description.

Let G1 and G2 be two games whose code is identical except for the consequent in one
if-branch, let A be an adversary interacting with either game, and let Bad be the event
that the boolean condition in the if-statement is triggered when A is run with either game.
Then

∣∣Pr[GA1 ]− Pr[GA2 ]
∣∣ ≤ Pr[Bad].

Group schemes [CS98]. A group scheme is a randomized algorithm Γ which, on input
the security parameter 1λ, returns group parameters γ = (·, g, p) (also called group),
where · is an efficiently computable binary function, g is an element, and 2λ−1 ≤ p < 2λ

is prime. Implicit in γ is the description of a set G such that (G, ·) is a cyclic group of
order p with generator g ∈ G.
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Game SZAF,S,k,d:

(P1, . . . , Pℓ)←← A; s←← Sk

return (∃1 ≤ i < j ≤ ℓ)(
(Pi ̸= Pj) ∧ (Pi(s) = Pj(s))

)
Game q-DLAΓ (λ):
γ ←← Γ(1λ)
x←← Zp; x← (x, . . . , xq(λ))
x′ ←← A(γ, [x]); return (x = x′)

Figure 1: Left: The Schwartz–Zippel game for a field F, a finite subset S ⊆ F, and k, q ∈ N,
d ∈ Nq. Right: The q-DL game for a group scheme Γ.

Bilinear group schemes [Jou04, GPS06, Sha05]. A type-3 bilinear group scheme is
a randomized algorithm B which, on input the security parameter 1λ, returns bilinear
group parameters γ = (·1, g1, ·2, g2, ·T , p, e), where ·µ (µ ∈ {1, 2, T}) and e are efficiently
computable binary functions, gν (ν ∈ {1, 2}) are elements, and 2λ−1 ≤ p < 2λ is prime.
Implicit in γ is the description of sets Gµ such that (1) (Gµ, ·µ) is a cyclic group of order p,
(2) (Gν , ·ν) is generated by gν , and (3) e : G1×G2 → GT satisfies e([a]1, [b]2) = e([1]1, [1]2)ab

for all a, b ∈ Zp, and gT := e([1]1, [1]2) ̸= [0]T . Here [0]T is the identity element 1GT
of GT .

A type-2 bilinear group scheme is a type-3 scheme where γ also contains an efficiently
computable group homomorphism ψ : G2 → G1 satisfying ψ(g2) = g1.

A type-1 bilinear group scheme is a type-3 scheme where G1 = G2, ·1 = ·2 and g1 = g2.
Accordingly, we drop subscripts and repeating entries from γ. In general, we will also omit
the index µ in ·µ when no confusion arises.

Schwartz–Zippel lemma [Sch80, Zip79, DL78]. We next recall the Schwartz–Zippel
lemma, a simple yet powerful tool to bound the probability of finding a root of a non-zero
(multivariate) polynomial when evaluating it at a random point. We present a game-based
version of the lemma, similar to [BFHO22]. Recall that the degree of a multivariate
monomial is the sum of the exponents of the variables appearing in the monomial, and the
total degree of a multivariate polynomial is the maximum degree of its monomials.

Lemma 1. Let k, q ∈ N, d ∈ Nq, F be a field and S ⊆ F a finite subset of F. Then

Advsz
F,S,k,d,A := Pr[SZAF,S,k,d] ≤

∑
1≤i<j≤q

max(di,dj)
|S| ≤ q2 max(d)

2|S| ,

where the game SZ is defined in Figure 1 (left). Here, q is an upper bound on the number
of polynomials in F[X1, . . . , Xk] returned by A, where the i-th polynomial has total degree
at most di.

Bauer–Fuchsbauer–Loss lemma [BFL20]. We also recall a technical lemma due to
Bauer, Fuchsbauer, and Loss regarding the leading term of a polynomial after variable
substitutions.

Lemma 2. Let m, d ∈ N, F be a finite field, and P ∈ F[X1, . . . , Xm] a polynomial of total
degree d. Consider Q(Z) := P (Y1Z + V1, . . . , YmZ + Vm) ∈ (F[Y1, . . . , Ym, V1, . . . , Vm])[Z].
Then the leading coefficient of Q is a polynomial in F[Y1, . . . , Ym] of total degree d.

q-DL [FKL18]. Let Γ be a group scheme and q : N → N a polynomial. We define the
advantage of an adversary A in the q-DL game for Γ as

Advq-dl
Γ,A(λ) := Pr[q-DLAΓ (λ)] ,

where the game q-DL is defined in Figure 1 (right). We say that q-DL holds for Γ if for
every PPT adversary A, Advq-dl

Γ,A is negligible. When q is the constant polynomial q = 1,
we simply write DL := 1-DL.
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Game (q1, q2)-DLAB (λ):
γ ←← B(1λ); x←← Zp; x1 ← (x, x2, . . . , xq1(λ)); x2 ← (x, x2, . . . , xq2(λ))
x′ ←← A(γ, [x1]1, [x2]2); return (x = x′)

Figure 2: The (q1, q2)-DL game for a type-3 bilinear group scheme B.

(q1, q2)-DL [BFL20]. Let B be a type-3 bilinear group scheme and q1, q2 : N→ N polyno-
mials. We define the advantage of an adversary A in the (q1, q2)-DL game for B as

Adv(q1,q2)-dl
B,A (λ) := Pr[(q1, q2)-DLAB (λ)] ,

where the game (q1, q2)-DL is defined in Figure 2. We say that (q1, q2)-DL holds for B if
for every PPT adversary A, Adv(q1,q2)-dl

B,A is negligible. (q1, q2)-DL for type-2 and type-1
bilinear group schemes is defined similarly.

Berlekamp’s algorithm [Ber67]. Berlekamp’s algorithm is a well-known method for
factoring polynomials over finite fields, thus in particular for finding their roots. We denote
by Berlekamp the algorithm which takes a prime p ∈ N and a polynomial P ∈ Zp[X] as
input, and returns the set of roots of P in Zp.

3 Generic-Group, Type-Safe, and Algebraic-Group
Models

Unconditionally proving the hardness of interesting computational problems pertaining to
groups appears to be currently out of reach. As a valid alternative, one instead attempts
to obtain guarantees on the soundness of hardness assumptions in restricted models of
computation. Shoup’s generic-group model, Maurer’s type-safe model, and the algebraic-
group model are popular idealized and restricted models often used to establish such
results. We recall them in this section, and begin with the formal definition of the GGM.

Generic-group model (GGM) [Nec94, Sho97]. Consider a prime p and a finite set
G ⊆ {0, 1}∗ with |G| = p. Notice that every encoding τ ∈ Inj(Zp,G) defines an associated
operation op : G2 → G via op(h1, h2) := τ

(
τ−1(h1) + τ−1(h2)

)
.5 Under this operation, G

becomes a cyclic group of order p with generator τ(1).
The generic-group model with parameters (p,G) is a model of computation which

idealizes interactions of algorithms with cyclic groups of order p: A game in the GGM
first samples a random encoding τ ∈ Inj(Zp,G). Then the game and all parties it operates
with are run on input τ(1), and interact with the labels in G in place of a real group. To
perform group operations, the game offers all algorithms oracle access to the operation op
defined by τ .

As mentioned in the introduction, certain types of group-based extractor games can
be won given the ability to hash strings into the group, a property that many real-world
groups have. To mirror this capability in the generic-group model, we extend the GGM
with an appropriate hashing oracle.

5As a mathematical shorthand, we call the action of pulling back h1 and h2 using τ−1, adding up the
preimages, and then pushing the result back forward using τ , a pushforward.



Balthazar Bauer, Pooya Farshim, Patrick Harasser, Markulf Kohlweiss 9

GGM with hashing (GGM-H) [Bro01,BFS16]. We define the GGM-H with parame-
ters (p,G) as the GGM above, except that besides sampling τ , the game also (lazily)
samples a function H : {0, 1}∗ → Zp at random, and offers H : {0, 1}∗ → G given
by H(m) := τ(H(m)) as an additional oracle to all algorithms.6

Following the approach taken for simple groups, we now recall the idealized models
pertaining to bilinear groups. In essence, each group is idealized independently as before,
and the pairing (and homomorphism, if applicable) is defined by the sampled encodings
via pushforward. Just as for the GGM, we then extend these models to account for an
adversary’s capability to hash into any of the groups.

Generic-bilinear-group model (GBMk, k ∈ {1, 2, 3}) [BB04, ZZ23]. Consider a
prime p and finite sets Gµ (µ ∈ {1, 2, T}) with |Gµ| = p. Given functions τµ ∈ Inj(Zp,Gµ),
one can define operations opµ on Gµ as in the GGM. Additionally, encodings τµ define a
map e : G1 × G2 → GT via e(h1, h2) := τT

(
τ−1

1 (h1)τ−1
2 (h2)

)
.

The type-3 generic-bilinear-group model with parameters (p,G1,G2,GT ) is a model
of computation which abstracts interactions of algorithms with type-3 bilinear groups of
order p: A game in the GBM3 first samples random encodings τµ ∈ Inj(Zp,Gµ). Then the
game and all parties it operates with are run on input (τ1(1), τ2(1)), and interact with the
labels in Gµ in place of a real type-3 bilinear group. To operate on labels, the game gives
all algorithms oracle access to the operations opµ and pairing e defined by τµ.

The GBM2 with parameters (p,G1,G2,GT ) is defined analogously, except that it also
idealizes the group homomorphism provided by a type-2 bilinear group. More precisely, in
addition to opµ and e, a game in the GBM2 also gives all algorithms oracle access to the
function ψ : G2 → G1 given by ψ(h2) := τ1(τ−1

2 (h2)).
Likewise, GBM1 with parameters (p,G,GT ) is defined as the GBM3, but the target

sets G1 and G2 as well as the encodings τ1 and τ2 are taken to coincide (i.e., G := G1 = G2
and τ := τ1 = τ2). To ease notation, we let G := (G1,G2,GT ) in the GBMk for k ∈ {2, 3},
and G := (G,GT ) in the GBM1.

GBM with hashing [Lip22]. The GBM3-H with parameters (p,G) is defined as GBM3,
except that besides sampling τµ (µ ∈ {1, 2, T}), the game also (lazily) samples functions
Hµ : {0, 1}∗ → Zp independently at random. It then offers all algorithms access to
oracles Hµ defined as in GGM-H, each using Hµ and τµ.

The GBM2-H with parameters (p,G) is defined as the GBM3-H with parameters (p,G),
starting from GBM2, but the oracle H2 is withheld [CCS07].

The GBM1-H with parameters (p,G) is defined as the GBM3-H, starting from GBM1,
except that the game (lazily) samples only one random function H : {0, 1}∗ → Zp for both
source groups, since these coincide.

An alternative generic model of computation for groups was introduced by Mau-
rer [Mau05], which replaces group elements with abstract handles. This model has recently
been recast by Zhandry [Zha22] as the type-safe model (TSM).7 We next recall the TSM,
but instead of using the language of circuits (as done by Zhandry [Zha22]), we provide an
oracle-based formalization. Similarly to Shoup’s GGM, we then extend the TSM to allow
any party to hash strings of their choice into the idealized group.

6An alternative definition of hashing would simply pick a random r and return τ(r). In contrast to the
previous definition, this definition does not allow adversaries to reproduce hash values.

7The main difference between the two models is that in the TSM, when querying their oracles, parties
cannot choose the handle where the result is stored, and they cannot access handles they are not explicitly
given either at the outset or as an oracle reply. This avoids certain unnatural problems that arise when
analyzing games in Maurer’s model.
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Type-safe model (TSM) [Mau05,Zha22]. Let p be a prime. In the type-safe model with
parameter p, group elements are replaced by abstract handles, which we denote by {x}
with x ∈ Zp. These are tokens issued to algorithms in place of group elements, and x is
meant to be the discrete logarithm of the group element represented by {x}. A handle {x}
hides its argument x from any party except the game.

In the TSM, a game and all parties it operates with are run on input handle {1}, and
interact with handles in place of a real group. To operate on handles, the game offers all
algorithms an oracle op defined as op({x1}, {x2}) := {x1 + x2}. Note that in contrast to
Maurer’s model, and in line with Zhandry’s TSM, handles are never overwritten and always
fresh. Additionally, all algorithms are given an equality oracle eq and a copy oracle cp
defined as eq({x1}, {x2}) := (x1 = x2) and cp({x}) := ({x}, {x}).

Handles all look identical from the outside, and all computation related to handles is
performed via the oracles above (i.e., local computation on handles is not allowed, as it
does not “type-check”). In particular, when calling their oracles, algorithms are restricted
to querying handles they have received as input or as response to a prior query. (In [Zha22],
this corresponds to them applying gates only to wires they possess.) As for the query
complexity metrics, queries to op incur unit cost, while queries to eq and cp are free.

TSM with hashing. We define the TSM-H with parameter p as the TSM above, except
that the game also (lazily) samples a random function H : {0, 1}∗ → Zp. In addition to
oracles op, eq and cp, the game offers all algorithms an oracle H given by H(m) := {H(m)}.

We now extend the TSM to the bilinear setting, and then add hashing oracles to allow
an adversary to hash into the various groups. We proceed as for the GBM, but start from
the TSM rather than Shoup’s GGM. To account for different groups in the bilinear setting,
we denote handles representing elements in group µ ∈ {1, 2, T} by {x}µ, with x ∈ Zp.

Bilinear-type-safe model (BTMk, k ∈ {1, 2, 3}). Let p be a prime. In the type-3
bilinear-type-safe model (BTM3) with parameter p, a game and all parties it operates
with are run on input ({1}1, {1}2), and interact with handles in place of a real type-3
bilinear group. To operate on handles, the game offers all algorithms oracles opµ, eqµ,
cpµ (µ ∈ {1, 2, T}) and e. Here, opµ, eqµ and cpµ are implemented as in the TSM, each
using handles for group µ, and oracle e is defined as e({x1}1, {x2}2) := {x1x2}T .

The BTM2 with parameter p is defined analogously, except that it also offers all
algorithms an oracle ψ which idealizes the group homomorphism provided by a type-2
bilinear group. Oracle ψ is defined as ψ({x}2) := {x}1.

Likewise, the BTM1 with parameter p is defined as the BTM3, but handles for the left
and the right source group are taken to coincide. In each of the models above parties are
restricted to querying, for every group, only handles they received as input or have seen as
response to a prior query to opµ, cpµ or e.

BTM with hashing. The BTM3-H with parameter p is defined as the BTM3, except that
the game also (lazily) samples functions Hµ : {0, 1}∗ → Zp (µ ∈ {1, 2, T}) independently
at random. It then additionally offers all algorithms oracles Hµ defined as in TSM-H, each
using function Hµ and returning handles for group µ.

The BTM2-H with parameter p is defined as the BTM3-H with parameter p, starting
from BTM2, but oracle H2 is withheld [CCS07].

Finally, the BTM1-H with parameter p is defined as the BTM3-H, starting from BTM1,
except that the game samples only one random function H : {0, 1}∗ → Zp for both source
groups, since these coincide.

The TSM and BTM provide an adequate setting for the algebraic-group model (AGM),
where adversaries are restricted to being algebraic but have full access to the real group
considered in a given game (rather than an idealized version as in the previous models).
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eq cp

op
G

G′

A

bits

{x}L← L : {x}{x}

{∑ℓ

i=1
vixi

} v

Figure 3: Representation of the algebraic compilation G′ = AC(G) of a type-safe game G.
The unlabeled box inside G′ represents the compiler converting an adversary A against G′
into an adversary for G.

Algebraic algorithms, first studied in [BV98, PV05] and later revisited in [FKL18], are
required to “explain” any group element they return in terms of elements they have received
as input, either at the outset or through oracles. We follow Zhandry [Zha22] in defining
the AGM as a compiler for type-safe games, which allows sidestepping issues regarding the
validity of the model (see also [ZZK22]). We then extend the AGM with a hashing oracle.

Algebraic compilation. Given a game G in the TSM with parameter p, we define
the algebraic compilation of G as the game AC(G) in the same model that operates as
follows. Game AC(G) initializes an empty list L and then runs G. Whenever G outputs a
handle to the adversary, AC(G) keeps track of it by first appending a copy to L and then
forwarding it to the adversary. Whenever G takes a handle as input from the adversary,
AC(G) instead takes a vector v ∈ Zℓ

p, where ℓ = |L|. Game AC(G) then uses the current
state of the list L = ({x1}, . . . , {xℓ}), the vector v, and the group operation oracle op of G
to compute the handle

{∑ℓ
i=1 vixi

}
, and forwards it to G (see Figure 3). Any output

from G that is not a handle is forwarded to the adversary, and similarly any input from the
adversary that is not a handle is forwarded to G. We call a game G′ in the TSM algebraic
if G′ = AC(G) for some game G in the TSM.

Group compilation. Let G = {Gp}p be a family of games, each in the TSM with
parameter p, and let Γ be a group scheme. The group compilation of G with respect to Γ
is the standard-model game GC(G,Γ) defined as follows: On security parameter λ, it first
runs γ = (·, g, p)←← Γ(1λ), and then operates as Gp with the following modifications. All
parties are run on input γ, and no longer receive oracles op, eq and cp. Whenever Gp

sends a handle to (resp., receives a handle from) any party, GC(G,Γ) instead sends a
group element to (resp., receives a group element from) the same party. The elements
sent (resp., received) by GC(G,Γ) are obtained (resp., operated on) by performing the
same computations on group elements as Gp does on handles. This is possible because,
by type safety, game Gp acts on handles only through the TSM oracles op, eq and cp.
Therefore, whenever Gp queries op({x1}, {x2}), eq({x1}, {x2}) or cp({x}), GC(G,Γ) can
locally compute h1 · h2, (h1 = h2), and (h, h), respectively. Here, hi and h are the group
elements considered by the compiled game in place of the handles {xi} and {x} considered
by Gp. Any other communication between GC(G,Γ) and the parties is processed as in Gp.

Algebraic-group model (AGM) [BV98,FKL18,Zha22]. The algebraic-group model is
a framework to study type-safe games in the standard model. More precisely, studying a
family G = {Gp}p of type-safe games in the AGM with respect to a group scheme Γ is
defined as analyzing the game GC(G′,Γ), where G′ := {AC(Gp)}p. Note that with this
definition, one can talk about a standard-model game G in the AGM only if G is first
identified as the group compilation GC(G′,Γ) of a family of type-safe games G′.
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We now similarly define the AGM with hashing, which was already informally introduced
by Fuchsbauer, Kiltz and Loss [FKL18] and further studied by Lipmaa [Lip22], using the
type-safe framework of Zhandry [Zha22].

AGM with hashing. Given a game G in the TSM-H with parameter p, its algebraic
compilation AC(G) is defined as for TSM games, except that for every query to oracle H,
the returned handle is also copied into list L. Accordingly, an adversary can now also use
handles obtained through H to specify group elements.

The group compilation GC(G,Γ) of a family of games G = {Gp}p, each in the TSM-H
with parameter p, with respect to a group scheme Γ is defined as before, except that
oracle H is still offered to all algorithms. Notice that GC(G,Γ) is therefore a game in the
random-oracle model.

With the definitions above, studying a family of TSM-H games G = {Gp}p in the AGM
with respect to a group scheme Γ is defined as analyzing the game GC(G′,Γ), where
G′ := {AC(Gp)}p. Again, one can talk about a random-oracle-model game G in the AGM
only if G is first identified as GC(G′,Γ) for a family G′.

We conclude our overview of idealized models by defining a bilinear version of the AGM.
We also add a hashing oracle for each group considered in the model.

Bilinear algebraic compilations. Let p be a prime, k ∈ {1, 2, 3}, and G a game in
the BTMk with parameter p. The bilinear algebraic compilation AC(G) of G is defined
similarly to standard algebraic compilation, with the following differences.

If k = 3, AC(G) now maintains three initially empty lists Lµ, µ ∈ {1, 2, T}, to
keep track of the handles returned by game G to the adversary in the three groups.
Whenever G takes a handle {x}ν , ν ∈ {1, 2}, from the adversary, AC(G) instead takes
a vector v ∈ Zℓν

p , where ℓν = |Lν |. Game AC(G) then uses the current state of the
list Lν = ({xν,1}ν , . . . , {xν,ℓ}ν), v and oracle opν to compute the handle

{∑ℓν

i=1 vixν,i

}
ν
,

and then forwards it to G. Similarly, whenever G takes a handle {x}T from the adversary,
AC(G) instead takes a matrix m ∈ Zℓ1×ℓ2

p and a vector v ∈ ZℓT
p . Game AC(G) then

uses the current state of the lists Lµ, m, v, and oracles e and opT to compute the
handle

{∑ℓ1
i=1
∑ℓ2

j=1mijx1,ix2,j +
∑ℓT

t=1 vtxT,t

}
T

, and forwards it to G. Any output of G
or input from the adversary that is not a handle is relayed.

If k = 2, AC(G) is defined similarly, but we must account for the additional oracle ψ.
Accordingly, whenever G takes a handle {x}1 from the adversary, AC(G) instead takes
vectors (v,w) ∈ Zℓ1

p × Zℓ2
p . Game AC(G) then uses the current state of the lists Lν , v,

w, and the oracles op1 and ψ to compute the handle
{∑ℓ1

i=1 vix1,i +
∑ℓ2

j=1wjx2,j

}
1, and

then forwards it to G. Handles {x}2 are processed as above. Finally, whenever G takes a
handle {x}T , AC(G) instead takes matrices (m,n) ∈ Zℓ1×ℓ2

p ×Zℓ2×ℓ2
p and a vector v ∈ ZℓT

p .
Game AC(G) then uses the current state of the lists Lµ, m, n, v, and oracles e, ψ and opT

to compute
{∑ℓ1

i=1
∑ℓ2

j=1mijx1,ix2,j +
∑ℓ2

i,j=1 nijx2,ix2,j +
∑ℓT

t=1 vtxT,t

}
T

, and forwards
it to G. Again, any inputs to or outputs of G that are not handles are relayed.

If k = 1, AC(G) is defined as for k = 3, but now lists L1 and L2 coincide.
If G = {Gp}p is a family of games, each in the BTMk with parameter p, and B is a

type-k bilinear group scheme, we define GC(G,B) as for simple groups: Each group in G is
instantiated with the corresponding parameters in γ as discussed earlier, and whenever G
queries e({x1}1, {x2}2) (or ψ({x}2), if k = 2) for handles {x1}1 and {x2}2 (and {x}2),
GC(G,B) computes e([x1]1, [x2]2) (and ψ([x]2)).

Algebraic-bilinear-group model (ABM). Let k ∈ {1, 2, 3}, G = {Gp}p be a family
of games, each in the BTMk with parameter p, and B a type-k bilinear group scheme.
Studying G in the ABM w.r.t. B is defined as analyzing GC(G′,B), where G′ := {AC(Gp)}p.
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ABM with hashing. For a prime p, k ∈ {1, 2, 3}, and a game G in the BTMk-H with
parameter p, the algebraic compilation AC(G) of G is defined as for the BTMk, except
that for every query to oracle Hµ (if present), the returned handle is also added to the
list Lµ (µ ∈ {1, 2, T}).

The bilinear group compilation GC(G,B) of a family of games G = {Gp}p, each in
the BTMk-H with parameter p, with respect to a type-k bilinear group scheme B is also
defined as before, except that the game still offers oracles Hµ (if present) to all parties.

With the definitions above, studying a family of BTMk-H games G = {Gp}p in the ABM
with respect to a type-k bilinear group scheme B is defined as analyzing GC(G′,B),
where G′ := {AC(Gp)}p.

In Appendix C, we study the relations between different models for standard games.
Our treatment follows Zhandry [Zha22], with the difference that we consider the Turing
machine model for type-safe games, a fixed set of group representations, and include a
hashing oracle. We show that security with respect to type-safe and random-representation
groups are equivalent. This result is summarized below.

Proposition 1. Let p be a prime, and G ⊆ {0, 1}∗ a finite set with |G| = p. Let G be a
single-stage game in the TSM-H with parameter p, and G′ := RR(G,G) the RR-compilation
of G with respect to G. Then G is secure if and only if G′ is secure.

4 The Uber-Knowledge Assumption
Knowledge adversaries, sources, and extractors. A knowledge adversary is a
two-stage algorithm A = (A0,A1), where (1) A0 takes group parameters γ = (·, g, p) as
input and returns a DPT algorithm R and state information st, and (2) A1 takes a vector
of group elements [x] and a vector a in Zp, and returns a vector of group elements [y]
and a vector b in Zp. Note that the two stages of A have access to shared randomness. A
knowledge source is an algorithm S taking as input the state returned by A0, and returning
vectors x and a in Zp. A knowledge extractor (for A) is an algorithm E which takes as
input the trace of an execution of A, and returns a vector (or matrix) w of elements in Zp.

If γ is a type-2 or type-3 bilinear group, S returns four vectors in Zp, three to define
elements in Gµ (µ ∈ {1, 2, T}) and one in the clear, and A1 returns three vectors of group
elements, one from each Gµ. The additional inputs of A are adjusted accordingly. In type-1
groups, the vectors for G1 and G2 coincide.

Remark. The algorithm R returned byA0 is intended to implement the winning condition
of the knowledge assumption (KA) game (see below), taking the outputs of S, A1 and E ,
and returning a decision bit. One could define R to take the discrete logarithms of the
group elements returned by A1, rather than the elements themselves. Assuming that DL
holds for Γ (resp., for some group scheme defined by B), this would in general make the KA
not efficiently falsifiable [Nao03], and one would have to distinguish between efficient and
inefficient relations, and in the former case whether they are publicly or privately verifiable
(i.e., whether public information is sufficient or private inputs are needed for R to be DPT).

Knowledge assumption (KA). Let Γ be a group scheme and S a knowledge source.
We define the advantage of an adversary A and an extractor E in the knowledge assump-
tion (KA) game for (Γ,S) as

Advka
Γ,S,A,E(λ) := Pr[KAAΓ,S,E(λ)] ,

where the game KA is defined in Figure 4 (top left). For a class of PPT algorithms A
we say that the KA holds for (Γ,S,A) if for every PPT adversary A with A0 ∈ A, there
exists a PPT extractor E such that Advka

Γ,S,A,E is negligible.
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Game KAAΓ,S,E(λ):

γ ←← Γ(1λ); rA ←← RA(λ)
(R, st)← A0(γ; rA)
(x,a)←← S(st)
([y], b)← A1([x],a; rA)
trace(A)← (rA, γ, [x],a)
w ←← E(trace(A))
return R(x, [y],a, b,w)

Game UKAΓ,S,E(λ):

γ ←← Γ(1λ); rA ←← RA(λ)
(Q,P )← A0(γ; rA); x←← S(γ,Q,P )
([y], c)← A1(γ, [x]; rA)
trace(A)← (rA, γ, [x])
w ←← E(trace(A)); x0 ← 1
return (Q(X,Y , c) ̸= 0) ∧ ([Q(x,y, c)] = [0])
∧
(
(∃1 ≤ i ≤ n)

(
[yi] ̸=

∏m
j=0[wijxj ]

))
Game KAAB,S,E(λ):

γ ←← B(1λ); rA ←← RA(λ)
(R, st)← A0(γ; rA)
(xµ,a)←← S(st)
([yµ]µ, b)← A1([xµ]µ,a; rA)
trace(A)← (rA, γ, [xµ]µ,a)
w ←← E(trace(A))
return R(xµ, [yµ]µ,a, b,w)

Game UKAB,S,E(λ):

γ ←← B(1λ); rA ←← RA(λ)
(Q,Pµ)← A0(γ; rA); xµ ←← S(γ,Q,Pµ)
([yµ]µ, c)← A1(γ, [xµ]µ; rA)
trace(A)← (rA, γ, [xµ]µ)
(wµ, z)←← E(trace(A)); x1,0,x2,0 ← 1
return (Q(Xµ,Yµ, c) ̸= 0)∧([Q(xµ,yµ, c)]T = [0]T )
∧
(

(∃ν)(∃i)
(
[yν,i]ν ̸=

∏mν

j=0[wν,ijxν,j ]ν
)
∨

(∃i)
(
[yT,i]T ̸=

∏m1
j=0

∏m2
k=0[zijkx1,jx2,k]T ·∏mT

t=1[wT,itxT,t]T
))

Figure 4: Left: The KA games for a group scheme Γ (resp., a type-3 bilinear group
scheme B) and source S. Right: Games defining the UK assumption for Γ (resp., B). In
all figures, µ and ν are indices ranging over {1, 2, T} and {1, 2}, respectively.

If B is a bilinear group scheme, the definition is adapted accordingly to accommodate
for the additional inputs and outputs of S and A. For example, the case of type-3 bilinear
group schemes is shown in Figure 4 (bottom left).

Remark. The definition above is framed in the asymptotic setting, but it can be readily
adapted to the context of concrete security. Given a (bilinear) group scheme γ, we would
then say that KA is (t, t′, ϵ)-hard for (γ,S,A) if for every adversary A running in time
at most t with A0 ∈ A, there exists an extractor E running in time at most t′ such
that Advka

γ,S,A,E ≤ ϵ. This advantage is the winning probability in the KA game with
fixed group γ (without first sampling from Γ or B). We also note that our extractors in
idealized models do not use the oracles they receive. This choice ensures, for example, that
justification of a knowledge problem in a model with richer oracles is stronger than one in
a model with fewer oracles since extractors can be run without any need for oracles.

Remark. Our AGM and GGM feasibility of the UK assumptions come with universal
extractors that only need black-box access to adversaries. In the standard model, such
extractors do not always exist in cryptographically interesting settings: for the KEA1
assumption, if the DL problem is hard, adversaries that have a random exponent hard-
coded can win KEA1 while every extractor would fail.8 However, universal extractors in
other standard-model settings can exist (e.g., for sigma protocols). Finally, our definition
does not allow auxiliary inputs as otherwise attacks may arise [FGJ18].

We next introduce a particular instance of the KA that will play a major role in this
work, which we call the uber-knowledge (UK) assumption.

8Moreover, under the existence of sufficiently strong obfuscators, this negative result would extend to a
setting where the adversary’s code is available.
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Uber-knowledge (UK) assumption. Let Γ be a group scheme. We call a knowledge
adversary A low-degree if A0(γ) returns a pair (Q,P ), where Q is a polynomial in m+n+
c+ 1 variables over Zp (called relation polynomial), and P is a vector of m polynomials
in k variables over Zp, each of total degree at most d, with m,n, c, k, d ∈ N.

Let S be a knowledge source returning x ∈ Zm
p . We define the advantage of a low-degree

adversary A and an extractor E in the UK game for (Γ,S) as

Advuk
Γ,S,A,E(λ) := Pr[UKAΓ,S,E(λ)] ,

where the game UK is defined in Figure 4 (top right). Here, A1 returns vectors [y] ∈ Gn

and c ∈ Zc
p, and E outputs a matrix w ∈ Zn×(m+1)

p .9 For a class of PPT algorithms A we
say that UK holds for (Γ,S,A) if for every low-degree PPT A with A0 ∈ A there exists a
PPT E such that Advuk

Γ,S,A,E is negligible.
This is a special case of KA, where A0 returns the DPT algorithm R which checks the

condition in the return statement with the given polynomial Q. An analogous definition
can be formulated for bilinear group schemes, following the same blueprint, but starting
from the KA for bilinear groups (for the case of type-3 bilinear group schemes, see
Figure 4 (bottom right)).

Remark. We note that whether the return condition in the UK game is efficiently
verifiable depends on the degree of Q. In the case of group schemes Γ, if Q has degree
at most 1 in Y , the condition (Q(x,y, c) = 0) translates into an equality involving the
group elements returned by A. For bilinear group schemes B, Q can have degree at most 2
in Yν (ν ∈ {1, 2}) and at most 1 in YT , with the only monomials of degree 2 being Y1,iY2,j

(and Y2,iY2,j for type-2 group schemes). We can then use the pairing e (and isomorphism ψ)
to efficiently verify the winning condition in GT . To ensure that verification does not
require private information, we will restrict our attention to polynomials Q of this type.
Note that the degree of Q in both X and C can be arbitrary.

Remark. One could also envision formulating umbrella knowledge assumptions taking
different forms. We are motivated by bridging the AGM to the standard model, which the
definition above allows us to do. Interestingly, a number of classical knowledge assumptions
(KEA1, KEA3, d-PKE, etc.) fall under the reach of the UK assumption formulated above.

We now give a few example assumptions implied by the UK assumption. We first state
the assumptions individually, and then show in Proposition 2 that they are indeed implied
by UK. Examples in the bilinear setting are defined for type-3 bilinear group schemes, but
the definitions can be readily adapted to type-1 or type-2 schemes.

Example: KEAI, I ∈ {1, 3} [Dam92,BP04a]. Let Γ be a group scheme. We define the
advantage of an adversary A and an extractor E in the KEAI game for Γ as

Advkeai
Γ,A,E(λ) := Pr[KEAIAΓ,E(λ)] ,

where the games KEAI are defined in Figure 5 (top left and top right). Here, E returns
an element b′ ∈ Zp (resp., c1, c2 ∈ Zp). We say that KEAI holds for Γ if for every PPT A
there exists a PPT E such that Advkeai

Γ,A,E is negligible.

Remark. We note that the terminology around the KEA assumptions is not well
established. For example, [Den06b,BP04b] refer to the notion we call KEA1 as the DHK
(or DHK0) assumption, while [BP04a] reserves the name KEA1 for the non-uniform version
of the notion above. Another name for the latter version is DA-1 [HT99].

9To simplify notation, we will sometimes allow parties in the UK game to return outputs with slightly
different formats.
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Game KEA1AΓ,E(λ):

γ ←← Γ(1λ); a←← Zp

([b], [y])←← A(γ, [a])
b′ ←← E(trace(A))
return ([y] = [ab]) ∧ ([b] ̸= [b′])

Game KEA3AΓ,E(λ):

γ ←← Γ(1λ); a, b←← Zp

([c], [y])←← A(γ, [a], [b], [ab])
(c1, c2)←← E(trace(A))
return ([y] = [bc]) ∧ ([c] ̸= [c1] · [ac2])

Game d-PKEAΓ,E(λ):

γ ←← Γ(1λ); s, a←← Zp; ([c], [y])←← A(γ, ([si])d(λ)
i=1 , ([asi])d(λ)

i=0 ); w ←← E(trace(A))
return ([y] = [ac]) ∧

(
[c] ̸=

∏d(λ)
i=0 [wis

i]
)

Figure 5: Games defining the KEA1, KEA3, and d-PKE assumptions. In all figures, Γ is
a group scheme and d : N→ N a polynomial.

Example: d-PKE [Gro10]. Let Γ be a group scheme and d : N→ N a polynomial. We
define the advantage of an adversary A and an extractor E in the d-PKE game for Γ as

Advd-pke
Γ,A,E(λ) := Pr[d-PKEAΓ,E(λ)] ,

where the game d-PKE is defined in Figure 5 (bottom). Here, E returns a vector
w ∈ Zd(λ)+1

p . We say that d-PKE holds for Γ if for every PPT A there exists a PPT E
such that Advd-pke

Γ,A,E is negligible.

Remark. We note that the d-PKE assumption is false if we remove the condition ([y] =
[ac]) from the game and allow parties to hash into γ (and DL holds for Γ), even if we
restrict the adversary to be algebraic.

Example: d-KZG [KZG10]. Let B be a type-3 bilinear group scheme and d : N→ N a
polynomial. The advantage of an adversary A and an extractor E in the d-KZG game
for B is

Advd-kzg
B,A,E(λ) := Pr[d-KZGAB,E(λ)] ,

where the game d-KZG is defined in Figure 6 (top). Here, E returns a vector w ∈ Zd(λ)
p . We

say that d-KZG holds for B if for every PPT A there exists a PPT E such that Advd-kzg
B,A,E

is negligible.

Remark. The idea behind d-KZG is allowing to commit to a polynomial C ∈ Zp[X]
of degree at most d, and then to prove that C(x) = y for certain x, y ∈ Zp. Notice that
the latter means C(X) − y = Q(X)(X − x) for some polynomial Q ∈ Zp[X], which by
Lemma 1 is equivalent to c− y = q(s− x) with high probability, where s ∈ Zp is random
and c = C(s), q = Q(s). This suggests letting [c]1 be the commitment to C, and [q]1
the proof of the fact that C(x) = y. Notice that the equality above can be efficiently
checked in GT using a pairing, as in the d-KZG game. The d-KZG assumption is meant to
formalize that this proof is sound, meaning that no adversary can produce group elements
as above without knowing the coefficients of C.

Example: d-PKE [Gro10]. Let B be a type-3 bilinear group scheme and d : N → N a
polynomial. We define the advantage of an adversary A and an extractor E in the d-PKE
game for B as

Advd-pke
B,A,E(λ) := Pr[d-PKEAB,E(λ)] ,
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Game d-KZGAB,E(λ):

γ ←← B(1λ); s←← Zp; ([c]1, [q]1, x, y)←← A(γ, ([si]1)d(λ)−1
i=1 , [s]2); w ←← E(trace(A))

return (e([c]1 · [−y]1, [1]2) = e([q]1, [s]2 · [−x]2)) ∧
(
[c]1 ̸=

∏d(λ)−1
i=0 [wis

i]1
)

Game d-PKEAB,E(λ):

γ ←← B(1λ); s, a←← Zp; ([c]1, [y]1)←← A(γ, ([si]1)d(λ)
i=1 , ([asi]1)d(λ)

i=0 , [s]2, [a]2)
w ←← E(trace(A)); return ([y]1 = [ac]1) ∧

(
[c]1 ̸=

∏d(λ)
i=0 [wis

i]1
)

Game d-GROTH16AB,E(λ):

ϖ ←← B(1λ); R := (ℓ, (Ui, Vi,Wi)m
i=0, T )←← A0(ϖ); α, β, γ, δ, x←← Z∗p

x1,0 ← 1; x1,1 ← αγδ; x1,2 ← βγδ; x1,3 ← γδ2

x2,0 ← 1; x2,1 ← βγδ; x2,2 ← γ2δ; x2,3 ← γδ2

for i = 0 to d(λ)− 1 do x1,4+i ← γδxi

for i = 0 to d(λ)− 2 do x1,d+4+i ← γxiT (x)
for i = 0 to ℓ do x1,2d+3+i ← βδUi(x) + αδVi(x) + δWi(x)
for i = ℓ+ 1 to m do x1,2d+3+i ← βγUi(x) + αγVi(x) + γWi(x)
for i = 0 to d(λ)− 1 do x2,4+i ← γδxi

((fi)ℓ
i=1, [a]1, [c]1, [b]2)←← A1(ϖ,R, [x1]1, [x2]2); (wi)3

i=1 ←← E(trace(A)); f0 ← 1

return
(
e([a]1, [b]2) = e([x1,1]1, [x2,1]2) ·

ℓ∏
i=0

e([fix1,2d+3+i]1, [x2,2]2) · e([c]1, [x2,3]2)
)

∧
((

[a]1 ̸=
2d(λ)+m+3∏

i=0
[w1,ix1,i]1

)
∨
(

[c]1 ̸=
2d(λ)+m+3∏

i=0
[w2,ix1,i]1

)
∨
(

[b]2 ̸=
d(λ)+3∏

i=0
[w3,ix2,i]2

))

Figure 6: Games defining the d-KZG, d-PKE, and d-GROTH16 assumptions. In all
figures, B is a type-3 bilinear group scheme and d : N→ N a polynomial.

where the game d-PKE is defined in Figure 6 (center). Here, E returns a vector w ∈ Zd(λ)+1
p .

We say that d-PKE holds for B if for every PPT A there exists a PPT E such that Advd-pke
B,A,E

is negligible.

Example: d-GROTH16 [Gro16]. Let B be a type-3 bilinear group scheme, and d : N→ N
a polynomial. We define the advantage of an adversary A and an extractor E in
the d-GROTH16 game for B as

Advd-groth16
B,A,E (λ) := Pr[d-GROTH16AB,E(λ)] ,

where the game d-GROTH16 is defined in Figure 6 (bottom). Here, E returns a vector
w ∈ Zm−ℓ

p . For a class of PPT algorithms A we say that d-GROTH16 holds for (B,A) if
for every PPT A with A0 ∈ A, there exists a PPT E such that Advd-groth16

B,A,E is negligible.

Remark. Notice that we define a slightly modified version of the security game considered
in [Gro16], where all polynomials are multiplied by γδ, in order to clear the denominators
and let the assumption fit the UK-framework.

We now prove that all examples above follow from the UK assumption. Jumping ahead,
when we give a modular proof that these example assumptions hold in the GGM-H (resp.,
GBM3-H, see Corollary 1) via our GGM-H hardness result (resp., GBM3-H hardness, see
Theorems 3 and 6) of UK, we will have to check that the requirements of Proposition 2
are satisfied by these theorems.
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Source S(γ,Q,P ):
s←← Zk

p; return P (s)
Source S(γ,Q,Pµ):
s←← Zk

p; return Pµ(s)

Figure 7: Knowledge sources for which we require the UK assumption to hold for (Γ,S,B)
(resp., (B,S,B)) in Proposition 2. Here, k is an upper bound on the number of variables
appearing in any polynomial in P (resp., Pµ), and µ ∈ {1, 2, T}.

Proposition 2. Let Γ be a group scheme, S the knowledge source given in Figure 7 (left),
B a class of PPT algorithms such that UK holds for (Γ,S,B), and d : N→ N a polynomial.
(1a) If B0 ∈ B for B0 given in Figure 9 (left) and DL holds for Γ, then KEA1 holds for Γ.
(1b) If B0 ∈ B for B0 given in Figure 9 (right) and 2-DL holds for Γ, then KEA3 holds
for Γ. (1c) If B0 ∈ B for B0 given in Figure 8 (top) and (d+1)-DL holds for Γ, then d-PKE
holds for Γ.

Let B be a type-3 bilinear group scheme, S the knowledge source given in Figure 7 (right),
and A and B classes of PPT algorithms such that UK holds for (B,S,B). (2a) If B0 ∈ B
for B0 given in Figure 10 (top) and (d+ 1, 1)-DL holds for B, then d-PKE holds for B.
(2b) If B0 ∈ B for B0 given in Figure 11, then d-KZG holds for B. (2c) If B0 ∈ B for
every A0 ∈ A, where B0 is given in Figure 12, then d-GROTH16 holds for (B,A).

Proof overview. Given an adversary A against any of the considered notions, we transform
it into a UK adversary B against (Γ,S) (resp., (B,S)) with B0 ∈ B, for which there
must exist a UK extractor F by hardness of UK. We then turn F into an extractor E
for A by returning only some of the coefficients computed by F , since E has to represent
(some of) the outputs of A in terms of only a subset of its inputs. To ensure that this
representation is correct (i.e., that the coefficients omitted by E were equal to zero in the
first place), we carry out a reduction to power-DL. We show how a reduction C can embed
the power-DL-challenge x into the inputs of A, and then obtain a non-trivial polynomial
equation T (x) = 0 involving x if one of the coefficients that E omits from F is non-zero.
Adversary C can then recover x by computing the roots of T , using Berlekamp’s algorithm.

For d-KZG and d-GROTH16, the last step is not needed since extractor E is allowed
to use all input elements to A, so that we simply set E := F .

Proof. We prove our claims separately.

(1c) d-PKE (simple groups). Given a d-PKE adversary A, let B = (B0,B1) be the UK
adversary where B0 is given in Figure 8 (top), and B1 runs A and returns its output.
Let F be a UK extractor for B (as per hardness of UK for (Γ,S,B)) that outputs

(w,w′) =
(

w10 ··· w1,d(λ) w′
10 ··· w′

1,d(λ)
w20 ··· w2,d(λ) w′

20 ··· w′
2,d(λ)

)
. Define a d-PKE extractor E for A that runs F

and outputs (w10, . . . ,w1,d(λ)). We claim that Advd-pke
Γ,A,E is negligible, proving that d-PKE

holds for Γ. To that end, consider the following sequence of games (the formal description
of which can be found in Figure 8 (second from bottom)):
G0: This is the original d-PKE game for Γ run with adversary A and extractor E . We

reformulate the winning condition by letting the game immediately return 0 if [y] ̸= [ac],
and then checking

(
[c] =

∏d(λ)
i=0 [w1,is

i]]
)
.

G1: This game proceeds as G0, but additionally returns 0 if (w,w′) is not a correct
representation of all outputs of A in terms of all its (group element) inputs.

G2: This game proceeds as G1, but additionally returns 0 if the representation (w,w′) is
not of the form

(
w10 ··· w1,d(λ) 0 ··· 0

0 ··· 0 w10 ··· w1,d(λ)

)
.

We now bound the difference between the success probabilities in subsequent games.
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Adversary B0(γ):

Q((Xi)d(λ)
i=0 , (X ′i)

d(λ)
i=0 ,Y1,Y2)← Y2 −X ′0Y1

for i = 1 to d(λ) do Pi(S1,S2)← Si
1; P ′i (S1,S2)← S2S

i
1

return (Q,P ,P ′)

Adversary C(γ, [x], . . . , [xd(λ)], [xd(λ)+1]):
β1, β2 ←← Z∗p; α1, α2 ←← Zp; (Q,P ,P ′)←← B0(γ); S← ∅
([c], [y])←← A(γ, ([(β1x+ α1)i])d(λ)

i=1 , ([(β2x+ α2)(β1x+ α1)i])d(λ)
i=0 )(

w10 ··· w1,d(λ) w′
10 ··· w′

1,d(λ)
w20 ··· w2,d(λ) w′

20 ··· w′
2,d(λ)

)
←← F(trace(A)); P0 ← 1

for j = 0 to d(λ) do
Xj ← Pj(β1X + α1, β2X + α2); X ′j ← P ′j(β1X + α1, β2X + α2)

for i = 1 to 2 do Yi ←
∑d(λ)

j=0 wijXj +w′ijX ′j
T (X)← Q(X0, . . . ,Xd(λ),X

′
0, . . . ,X

′
d(λ),Y1,Y2)

if (T (X) ̸= 0) then S← Berlekamp(T, p)
for x′ ∈ S do if ([x′] = [x]) then return x′

return 0
Game G0(λ):
γ ←← Γ(1λ); s, a←← Zp

([c], [y])←←
A(γ, ([si])d

i=1, ([asi])d
i=0)

(w,w′)←← F(trace(A))
if ([y] ̸= [ac]) then return 0
return(

[c] ̸=
∏d

i=0[w1,is
i]
)

Game G1(λ):
γ ←← Γ(1λ); s, a←← Zp

([c], [y])←←
A(γ, ([si])d

i=1, ([asi])d
i=0)

(w,w′)←← F(trace(A))
if ([y] ̸= [ac]) then return 0
if ([c] ̸=

∏d

i=0[w1,is
i][w′

1,iasi])
∨
([y] ̸=

∏d

i=0[w2,is
i][w′

2,iasi])
then return 0

return
(

[c] ̸=
∏d

i=0[w1,is
i]
)

Game G2(λ):
γ ←← Γ(1λ); s, a←← Zp

([c], [y])←←
A(γ, ([si])d

i=1, ([asi])d
i=0)

(w,w′)←← F(trace(A))
if ([y] ̸= [ac]) then return 0
if ([c] ̸=

∏d

i=0[w1,is
i][w′

1,iasi])∨
([y] ̸=

∏d

i=0[w2,is
i][w2,iasi])

then return 0
if (w′

10 ̸= 0) ∨ · · · ∨ (w′
1,d ̸= 0) ∨

(w20 ̸= 0) ∨ · · · ∨ (w2,d ̸= 0) ∨
(w10 ̸= w′

20) ∨ · · · ∨
(w1,d ̸= w′

2,d) then return 0

return
(

[c] ̸=
∏d

i=0[w1,is
i]
)

Game G′(λ):

γ ←← Γ(1λ); r1, r2 ←← Zp; (Q,P ,P ′)←← B0(γ); S← ∅; ([c], [y])←← A(γ, ([ri
1])d(λ)

i=1 , ([r2ri
1])d(λ)

i=0 )
(w,w′)←← F(trace(A)); x←← Zp; β1, β2 ←← Z∗

p; α1 ← r1 − β1x; α2 ← r2 − β2x; P0 ← 1
for j = 0 to d(λ) do Xj ← Pj(β1X + α1, β2X + α2); X′

j ← P ′
j(β1X + α1, β2X + α2)

for i = 1 to 2 do Yi ←
∑d(λ)

j=0 wijXj +w′
ijX

′
j

T (X)← Q(X0, . . . ,Xd(λ),X′
0, . . . ,X′

d(λ),Y1,Y2); if (T (X) ̸= 0) then S← Berlekamp(T, p)
x′ ← 0; for z ∈ S do if ([t] = [x]) then return x′ ← z; break
return (x = x′)

Figure 8: Top: First-stage UK adversary B0 from the proof that UK implies d-PKE
for simple groups. Second from top: Adversary C against (d + 1)-DL from the proof
that UK implies d-PKE for simple groups. Second from bottom and bottom: Code of the
intermediate games in the proof that UK implies d-PKE for simple groups.

G0 ⇝ G1. Notice that G0 and G1 are identical until Bad, where Bad is the event in
the d-PKE game for Γ played by (A, E) that [y] = [ac] and (w,w′) is not a correct
representation of ([c], [y]) in terms of ([1], . . . , [sd(λ)], [a], . . . , [asd(λ)]). By definition of S,
B and F , this corresponds to the event that (B,F) win the UK game for (Γ,S). By the
fundamental lemma of game playing we therefore have

|Pr[G1]− Pr[G0]| ≤ Pr[Bad] = Advuk
Γ,S,B,F (λ) .
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G1 ⇝ G2. Observe that G1 and G2 are identical until Bad′, where Bad′ is the event in
the d-PKE game for Γ played by (A, E) that ([c], [y]) and (w,w′) are correct, but not of
the form

(
w10 ··· w1,d(λ) 0 ··· 0

0 ··· 0 w10 ··· w1,d(λ)

)
. Again by the fundamental lemma of game playing

we have |Pr[G2]− Pr[G1]| ≤ Pr[Bad′].

Collecting all terms above, we obtain

Advd-pke
Γ,A,E(λ) = Pr[G0] ≤ Pr[G2] + Advuk

Γ,S,B,F (λ) + Pr[Bad′] = Advuk
Γ,S,B,F (λ) + Pr[Bad′] ,

where the last equality holds because Pr[G2] = 0, since the return statement introduced
in G2 ensures that [c] = [w10] · · · [w1,d(λ)s

d(λ)], while the winning condition is [c] ̸=
[w10] · · · [w1,d(λ)s

d(λ)].
We are now left with bounding Pr[Bad′]. To that end, consider the adversary C

against (d+ 1)-DL for Γ defined in Figure 8 (second from top); we will bound Pr[Bad′] in
terms of the advantage of C. To do so, we show that if Bad′ occurs, then the polynomial T
constructed by C is non-zero with overwhelming probability. Whenever that is the case, C
will succeed in winning the (d+ 1)-DL game for Γ, because it can recover x by finding the
correct root of T using Berlekamp’s algorithm.

Starting from (d+ 1)-DLCΓ, we transition to a game G′ (see Figure 8 (bottom)) where A
is given group elements ([r1], . . . , [rd(λ)

1 ], [r2], . . . , [r2r
d(λ)
1 ]) for r1, r2 ←← Zp and then,

only after F is run, G′ samples x ←← Zp, β1, β2 ←← Z∗p, and then sets α1 ← r1 − β1x

and α2 ← r2 − β2x. Then observe that Pr[(d+ 1)-DLCΓ] = Pr[G′], because the inputs of A
are equally distributed in both games. Now write

Bad′ = Bad′d(λ)+2 ∨ · · · ∨ Bad′0 ,

where

Bad′d+2 := Bad′ ∧ (w′1,d ̸= 0)
Bad′d+1 := Bad′ ∧ ¬Bad′d+2 ∧ ((w′1,d−1 ̸= 0) ∨ (w1,d ̸= w′2,d))

Bad′d := Bad′ ∧ ¬Bad′d+2 ∧ ¬Bad′d+1 ∧ ((w′1,d−2 ̸= 0) ∨ (w2,d ̸= 0) ∨ (w1,d−1 ̸= w′2,d−1))
...

Bad′2 := Bad′ ∧ ¬Bad′d+2 ∧ · · · ∧ ¬Bad′3 ∧ ((w′10 ̸= 0) ∨ (w22 ̸= 0) ∨ (w11 ̸= w′21))
Bad′1 := Bad′ ∧ ¬Bad′d+2 ∧ · · · ∧ ¬Bad′2 ∧ ((w21 ̸= 0) ∨ (w10 ̸= w′20))
Bad′0 := Bad′ ∧ ¬Bad′d+2 ∧ · · · ∧ ¬Bad′1 ∧ (w20 ̸= 0) .

Here, Bad′i is the event that the coefficient of degree i in T is non-zero as a polynomial in β1
and β2, but every coefficient of higher degree is zero. (Note that Pr[Bad′0] = 0, because
if Bad′ occurs, then T (x) = 0, so it cannot be that the constant term is the only non-zero
term of T .) Then

Pr[(d+ 1)-DLCΓ(λ)] = Pr[G′] ≥ Pr[G′ ∧ Bad′] =
∑d(λ)+2

i=1
Pr[G′ | Bad′i] Pr[Bad′i]

≥
(

1− 2
2λ−1 − 1

)(∑d(λ)+2

i=1
Pr[Bad′i]

)
=
(

1− 2
2λ−1 − 1

)
Pr[Bad′] .

Here, the last inequality holds because of the Schwartz–Zippel lemma (Lemma 1). Indeed,
given that Bad′i occurs, the coefficient of degree i in T is a non-zero polynomial of degree 2
in β1 and β2, which for β1, β2 ←← Z∗p will vanish with probability at most 2/(2λ−1 − 1).

(1a) KEA1 and (1b) KEA3. Both statements directly follow from result (1c) above, by
observing that KEA1 = 0-PKE and KEA3 = 1-PKE.
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Adversary B0(γ):
Q(X0,X1,Y1,Y2)← Y2 −X1Y1
P (S)← S; return (Q,P )

Adversary B0(γ):
Q(X0, . . . ,X3,Y1,Y2)← Y2 −X2Y1
P1(S1,S2)← S1; P2(S1,S2)← S2
P3(S1,S2)← S1S2; return (Q,P )

Figure 9: First-stage UK adversaries B0 from the proof that UK implies KEA1 and KEA3.

(2a) d-PKE (type-3 groups). The proof strongly resembles the one given above for
simple groups, but we nonetheless provide all details. Given a d-PKE adversary A,
let B = (B0,B1) be the UK adversary where B0 is given in Figure 10 (top), and B1 runs A
and returns its output. Let F be a UK extractor for B (as per hardness of UK for (B,S,B))

that outputs (w,w′) =
(

w10 ··· w1,d(λ) w′
10 ··· w′

1,d(λ)
w20 ··· w2,d(λ) w′

20 ··· w′
2,d(λ)

)
. Define a d-PKE extractor E for A

that runs F and outputs (w10, . . . ,w1,d(λ)). We claim that Advd-pke
B,A,E is negligible, proving

that d-PKE holds for B. To that end, consider the following sequence of games (the formal
description of which can be found in Figure 10 (second from bottom)):
G0: This is the original d-PKE game for B run with adversary A and extractor E . We

reformulate the winning condition by letting the game immediately return 0 if [y]1 ̸=
[ac]1, and then checking

(
[c]1 =

∏d(λ)
i=0 [w1,is

i]1
)
.

G1: This game proceeds as G0, but additionally returns 0 if (w,w′) is not a correct
representation of all outputs of A in terms of all its (group element) inputs.

G2: This game proceeds as G1, but additionally returns 0 if the representation (w,w′) is
not of the form

(
w10 ··· w1,d(λ) 0 ··· 0

0 ··· 0 w10 ··· w1,d(λ)

)
.

We now bound the difference between the success probabilities in subsequent games.

G0 ⇝ G1. Notice that G0 and G1 are identical until Bad, where Bad is the event in
the d-PKE game for B played by (A, E) that [y]1 = [ac]1 and (w,w′) is not a correct
representation of ([c]1, [y]1) in terms of ([1]1, . . . , [sd(λ)]1, [a]1, . . . , [asd(λ)]1). By definition
of S, B and F , this corresponds to the event that (B,F) win the UK game for (B,S). By
the fundamental lemma of game playing we therefore have

|Pr[G1]− Pr[G0]| ≤ Pr[Bad] = Advuk
B,S,B,F (λ) .

G1 ⇝ G2. Observe that G1 and G2 are identical until Bad′, where Bad′ is the event in
the d-PKE game for B played by (A, E) that ([c]1, [y]1) and (w,w′) are correct, but not of
the form

(
w10 ··· w1,d(λ) 0 ··· 0

0 ··· 0 w10 ··· w1,d(λ)

)
. Again by the fundamental lemma of game playing

we have |Pr[G2]− Pr[G1]| ≤ Pr[Bad′].

Collecting all terms above, we obtain

Advd-pke
B,A,E(λ) = Pr[G0] ≤ Pr[G2] + Advuk

B,S,B,F (λ) + Pr[Bad′] = Advuk
B,S,B,F (λ) + Pr[Bad′] ,

where the last equality holds because Pr[G2] = 0, since the return statement intro-
duced in G2 ensures that [c]1 = [w10]1 · · · [w1,d(λ)s

d(λ)]1, while the winning condition is
exactly [c]1 ̸= [w10]1 · · · [w1,d(λ)s

d(λ)]1.
We are now left with bounding Pr[Bad′]. To that end, consider the adversary C

against (d+ 1, 1)-DL for B defined in Figure 10 (second from top); we will bound Pr[Bad′]
in terms of the advantage of C. To do so, we show that if Bad′ occurs, then the polynomial T
constructed by C is non-zero with overwhelming probability. Whenever that is the case, C
will succeed in winning the (d+ 1, 1)-DL game for B, because it can recover x by finding
the correct root of T using Berlekamp’s algorithm.
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Adversary B0(γ):

Q((X1,i)d(λ)
i=0 , (X ′1,i)

d(λ)
i=0 ,X2,0,X2,1,X2,2,Y1,1,Y1,2)← Y1,2 −X ′1,0Y1,1

for i = 1 to d(λ) do P1,i(S1,S2)← Si
1

for i = 0 to d(λ) do P ′1,i(S1,S2)← S2S
i
1

P2,1(S1,S2)← S1; P2,2(S1,S2)← S2; return (Q,P1,P
′
1,P2)

Adversary C(γ, [x]1, . . . , [xd(λ)]1, [xd(λ)+1]1, [x]2):
β1, β2 ←← Z∗p; α1, α2 ←← Zp; (Q,P1,P

′
1,P2)←← B0(γ); S← ∅

([c]1, [y]1)←←
A(γ, ([(β1x+ α1)i]1)d(λ)

i=1 , ([(β2x+ α2)(β1x+ α1)i]1)d(λ)
i=0 , [β1x+ α1]2, [β2x+ α2]2)(

w10 ··· w1,d(λ) w′
10 ··· w′

1,d(λ)
w20 ··· w2,d(λ) w′

20 ··· w′
2,d(λ)

)
←← F(trace(A)); P1,0,P2,0 ← 1

for j = 0 to d(λ) do
X1,j ← P1,j(β1X + α1, β2X + α2); X ′1,j ← P ′1,j(β1X + α1, β2X + α2)

for j = 0 to 2 do X2,j ← P2,j(β1X + α1, β2X + α2)
for i = 1 to 2 do Y1,i ←

∑d(λ)
j=0 wijX1,j +w′ijX ′1,j

T (X)← Q(X1,0, . . . ,X
′
1,d(λ),X2,0,X2,1,X2,2,Y1,1,Y1,2)

if (T (X) ̸= 0) then S← Berlekamp(T, p)
for x′ ∈ S do if ([x′]1 = [x]1) then return x′

return 0
Game G0(λ):
γ ←← B(1λ)
s, a←← Zp

([c]1, [y]1)←← A(γ,
([si]1)d

i=1,

([asi]1)d
i=0,

[s]2, [a]2)
(w,w′)←←
F(trace(A))

if ([y]1 ̸= [ac]1) then
return 0

return ([c]1 ̸=∏d

i=0[w1,is
i]1)

Game G1(λ):
γ ←← B(1λ); s, a←← Zp

([c]1, [y]1)←←
A(γ, ([si]1)d

i=1, ([asi]1)d
i=0,

[s]2, [a]2)
(w,w′)←← F(trace(A))
if ([y]1 ̸= [ac]1) then return 0
if ([c]1 ̸=

∏d

i=0[w1,is
i]1[w′

1,iasi]1)
∨
([y]1 ̸=

∏d

i=0[w2,is
i]1[w′

2,iasi]1)
then return 0

return ([c]1 ̸=
∏d

i=0[w1,is
i]1)

Game G2(λ):
γ ←← B(1λ); s, a←← Zp

([c]1, [y]1)←←
A(γ, ([si]1)d

i=1, ([asi]1)d
i=0,

[s]2, [a]2)
(w,w′)←← F(trace(A))
if ([y]1 ̸= [ac]1) then return 0
if ([c]1 ̸=

∏d

i=0[w1,is
i]1[w′

1,iasi]1)∨
([y]1 ̸=

∏d

i=0[w2,is
i]1[w′

2,iasi]1)
then return 0

if (w′
10 ̸= 0) ∨ · · · ∨ (w′

1,d ̸= 0) ∨
(w20 ̸= 0) ∨ · · · ∨ (w2,d ̸= 0) ∨
(w10 ̸= w′

20) ∨ · · · ∨
(w1,d ̸= w′

2,d) then return 0

return ([c]1 ̸=
∏d

i=0[w1,is
i]1)

Game G′(λ):
γ ←← B(1λ); r1, r2 ←← Zp (Q,P1,P ′

1,P2)←← B0(γ); S← ∅
([c]1, [y]1)←← A(γ, ([ri

1]1)d(λ)
i=1 , ([r2ri

1]1)d(λ)
i=0 , [r1]2, [r2]2)

(w,w′)←← F(trace(A)); x←← Zp; β1, β2 ←← Z∗
p; α1 ← r1 − β1x; α2 ← r2 − β2x; P1,0,P2,0 ← 1

for j = 0 to d(λ) do X1,j ← P1,j(β1X + α1, β2X + α2); X′
1,j ← P ′

1,j(β1X + α1, β2X + α2)
for j = 0 to 2 do X2,j ← P2,j(β1X + α1, β2X + α2)
for i = 1 to 2 do Y1,i ←

∑d(λ)
j=0 wijX1,j +w′

ijX
′
1,j

T (X)← Q(X1,0, . . . ,X′
1,d(λ),X2,0,X2,1,X2,2,Y1,1,Y1,2)

if (T (X) ̸= 0) then S← Berlekamp(T, p)
x′ ← 0; for z ∈ S do if ([z]1 = [x]1) then return x′ ← z; break
return (x = x′)

Figure 10: Top: First-stage UK adversary B0 from the proof that UK implies d-PKE for
type-3 bilinear group schemes. Second from top: Adversary C against (d+ 1, 1)-DL from
the proof that UK implies d-PKE for type-3 bilinear group schemes. Second from bottom
and bottom: Code of the intermediate games in the proof that UK implies d-PKE for
type-3 bilinear group schemes.
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Adversary B0(γ):

Q((X1,i)d(λ)−1
i=0 ,X2,0,X2,1, (Y1,i,Ci)2

i=1)← Y1,1 −C2 −Y1,2(X2,1 −C1)
for i = 1 to d(λ)− 1 do P1,i(S)← Si

P2(S)← S; return (Q,P1, P2)

Figure 11: First-stage UK adversary B0 from the proof that UK implies d-KZG for type-3
bilinear group schemes.

Starting from (d + 1, 1)-DLCB, we transition to a game G′ (see Figure 10 (bottom))
where A is given group elements ([r1]1, . . . , [rd(λ)

1 ]1, [r2]1, . . . , [r2r
d(λ)
1 ]1, [r1]2, [r2]2) for

r1, r2 ←← Zp and then, only after F is run, G′ samples x ←← Zp, β1, β2 ←← Z∗p, and
then sets α1 ← r1 − β1x and α2 ← r2 − β2x. Observe that Pr[(d + 1, 1)-DLCB] = Pr[G′],
because the inputs of A are equally distributed in both games. Now write

Bad′ = Bad′d(λ)+2 ∨ · · · ∨ Bad′0 ,

where

Bad′d+2 := Bad′ ∧ (w′1,d ̸= 0)
Bad′d+1 := Bad′ ∧ ¬Bad′d+2 ∧ ((w′1,d−1 ̸= 0) ∨ (w1,d ̸= w′2,d))

Bad′d := Bad′ ∧ ¬Bad′d+2 ∧ ¬Bad′d+1 ∧ ((w′1,d−2 ̸= 0) ∨ (w2,d ̸= 0) ∨ (w1,d−1 ̸= w′2,d−1))
...

Bad′2 := Bad′ ∧ ¬Bad′d+2 ∧ · · · ∧ ¬Bad′3 ∧ ((w′10 ̸= 0) ∨ (w22 ̸= 0) ∨ (w11 ̸= w′21))
Bad′1 := Bad′ ∧ ¬Bad′d+2 ∧ · · · ∧ ¬Bad′2 ∧ ((w21 ̸= 0) ∨ (w10 ̸= w′20))
Bad′0 := Bad′ ∧ ¬Bad′d+2 ∧ · · · ∧ ¬Bad′1 ∧ (w20 ̸= 0) .

Here, Bad′i is the event that the coefficient of degree i in T is non-zero as a polynomial in β1
and β2, but every coefficient of higher degree is zero. (Note that Pr[Bad′0] = 0, because
if Bad′ occurs, then T (x) = 0, so it cannot be that the constant term is the only non-zero
term of T .) Then

Pr[(d+ 1, 1)-DLCB(λ)] = Pr[G′] ≥ Pr[G′ ∧ Bad′] =
∑d(λ)+2

i=1
Pr[G′ | Bad′i] Pr[Bad′i]

≥
(

1− 2
2λ−1 − 1

)(∑d(λ)+2

i=1
Pr[Bad′i]

)
=
(

1− 2
2λ−1 − 1

)
Pr[Bad′] .

Here, the last inequality holds because of the Schwartz–Zippel lemma (Lemma 1). Indeed,
given that Bad′i occurs, the coefficient of degree i in T is a non-zero polynomial of degree 2
in β1 and β2, which for β1, β2 ←← Z∗p will vanish with probability at most 2/(2λ−1 − 1).

(2b) d-KZG. Given a d-KZG adversary A, let B = (B0,B1) be the UK adversary where B0
is given in Figure 11, and B1 runs A and returns its output. Let F be a UK extractor for B
(as per hardness of UK for (B,S,B)). Define a d-KZG extractor E for A that runs F and
returns the representation of the first output of B1, i.e., the first row of the output of F .
Then clearly Advd-kzg

B,A,E is negligible, proving that d-KZG holds for B, since any extractor
for A is permitted to use all the inputs of A (from the first group) in its representation,
just as F itself. In particular, no reduction is needed to show that some inputs are not
used.
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Adversary B0(ϖ):
(ℓ, (Ui, Vi,Wi)m

i=0, T )←← A0(ϖ)
Q((X1,i)2d(λ)+m+3

i=0 , (X2,i)d(λ)+3
i=0 , (Y1,i)2

i=1, Y2, (Ci)ℓ
i=0)

← Y1,1Y2 − Y1,2X2,3 −X1,1X2,1 −
∑ℓ

i=0CiX1,2d(λ)+3+iX2,2
P1,1(S)← S1S3S4; P1,2(S)← S2S3S4; P1,3(S)← S3S

2
4

for i = 0 to d(λ)− 1 do P1,4+i(S)← S3S4S
i
5

for i = 0 to d(λ)− 2 do P1,d+4+i(S)← S3S
i
5T (S5)

for i = 0 to ℓ do P1,2d+3+i(S)← S2S4Ui(S5) + S1S4Vi(S5) + S4Wi(S5)
for i = ℓ+ 1 to m do P1,2d+3+i(S)← S2S3Ui(S5) + S1S3Vi(S5) + S3Wi(S5)
P2,1(S)← S2S3S4; P2,2(S)← S2

3S4; P2,3(S)← S3S
2
4

for i = 0 to d(λ)− 1 do P2,4+i(S)← S3S4S
i
5

return (Q,P1,P2)

Figure 12: First-stage UK adversary B0 from the proof that UK implies d-GROTH16 for
type-3 bilinear group schemes. Here, all polynomials in P1 and P2 are in variables S =
(S1, . . . ,S5).

(2c) d-GROTH16. Given a d-GROTH16 adversary A with A0 ∈ A, let B = (B0,B1)
be the UK adversary where B0 is given in Figure 12, and B1 runs A and returns its
output. Let F be a UK extractor for B (as per hardness of UK for (B,S,B)). Define
a d-GROTH16 extractor E for A as E := F . Then clearly Advd-groth16

B,A,E is negligible, proving
that d-GROTH16 holds for B, since any extractor for A is permitted to use all the inputs
of A (separately in each group) in its representation, just as F itself. In particular, no
additional reduction is required to show that some inputs are not used.

5 Soundness of DH-KE
In this section, we study the soundness of DH-KE, a simple knowledge assumption
introduced by Bellare, Fuchsbauer, and Scafuro [BFS16]. Following the blueprint given
in [BFS16], we prove that DH-KE holds in the GBM3-H, and then show that it holds
in the ABM3-H. These results serve as a “warm-up” to the more complex soundness
proofs for the UK assumption presented in Sections 6 and 7. We first recall the definition
of DH-KE.

DH-KE [BFS16]. Let B be a type-3 bilinear group scheme. We define the advantage of
an adversary A and an extractor E in the DH-KE game for B as

Advdh-ke
B,A,E(λ) := Pr[DH-KEAB,E(λ)] ,

where the game DH-KE is defined in Figure 13 (top). Here, E returns an element w ∈ Zp.
We say that DH-KE holds for B if for every PPT A there exists a PPT E such that Advdh-ke

B,A,E
is negligible. DH-KE for type-2 and type-1 bilinear group schemes is defined analogously.

Remark. A formulation of DH-KE where A returns [c]2 instead of [c]1, and the winning
condition becomes (e([a]1, [b]2) = e([1]1, [c]2)), is also possible. On the other hand, the
version where A returns [c]T and the game checks if (e([a]1, [b]2) = [c]T ) is false if hashing
into both source groups is allowed: A could hash any message to get h1 ∈ G1 and h2 ∈ G2,
set hT := e(h1, h2), and return (h1, h2, hT ), without “knowing” any discrete logarithms.
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Game DH-KEAB,E(λ):

γ ←← B(1λ); ([a]1, [b]2, [c]1)←← A(γ); w ←← E(trace(A))
return (e([a]1, [b]2) = e([c]1, [1]2)) ∧ ([w]1 ̸= [a]1) ∧ ([w]2 ̸= [b]2)

Extractor Eop1,op2,opT ,H1,H2,HT ,e(trace(A)):
parse trace(A) = (rA, u1, u2,h); o, v ← 0
Uτ1 , Uτ2 , UτT

, UH1 , UH2 , UHT
← [ ]

Uτ1 [1]← u1; Uτ2 [1]← u2

v ← Aop1,op2,opT ,H1,H2,HT ,e(u1, u2; rA)
for ν = 1 to 2 do

if (vν /∈ Rng(Uτν
)) then

v ← v + 1; Uτν
[Rv]← vν

parse U−1
τν

[vν ] = wν +
∑

l bνlRl

if (b1 = 0) then return w1
return w2

Proc. Hν(m):
if (m /∈ Dom(UHν

)) then
v ← v + 1; UHν

[m]← Rv

r ← UHν
[m]; o← o+ 1

if (r /∈ Dom(Uτν )) then
Uτν [r]← ho

return Uτν
[r]

Proc. HT (m):
if (m /∈ Dom(UHT

)) then
r ←← Zp; UHT

[m]← r
r ← UHT

[m]; o← o+ 1
if (r /∈ Dom(UτT

)) then
UτT

[r]← ho

return UτT
[r]

Proc. e(h1, h2):
for ν = 1 to 2 do

if (hν /∈ Rng(Uτν
)) then

v ← v+1; Uτν [Rv]← hν

xν ← U−1
τν

[hν ]
x← x1x2; o← o+ 1
if (x /∈ Dom(UτT

)) then
UτT

[x]← ho

return UτT
[x]

Proc. opν(h1, h2):
for i = 1 to 2 do

if (hi /∈ Rng(Uτν ))
then
v ← v + 1
Uτν

[Rv]← hi

xi ← U−1
τν

[hi]
x← x1 +x2; o← o+1
if (x /∈ Dom(Uτν ))

then
Uτν

[x]← ho

return Uτν
[x]

Proc. opT (h1, h2):
for i = 1 to 2 do

if (hi /∈ Rng(UτT
))

then
xi ← Zp \Dom(UτT

)
UτT

[xi]← hi

xi ← U−1
τT

[hi]
x← x1 + x2; o← o+ 1
if (x /∈ Dom(UτT

))
then
UτT

[x]← ho

return UτT
[x]

Figure 13: Top: Game defining the DH-KE assumption. Here, B is a type-3 bilinear group
scheme. Bottom: Definition of the extractor E from the proof of Theorem 1. Counters o
and v are shared between all oracles, and ν is an index ranging over {1, 2}.

5.1 Soundness of DH-KE in GBM3-H
Theorem 1 (DH-KE holds in GBM3-H). Let p ∈ N be prime, and fix G1,G2,GT ⊆ {0, 1}∗
with |G1| = |G2| = |GT | = p. Then the DH-KE assumption holds in the GBM3-H
with parameters (p,G). More precisely, for every adversary A in the DH-KE game in
the GBM3-H with parameters (p,G), there exists an extractor E such that

Advdh-ke
p,G,A,E ≤ O

(
(qop + qH + qe)2

p

)
. (1)

Here, qop, qH, and qe are upper bounds on the number of queries made by A to the respective
oracles.

Proof. Fix an adversary A in the DH-KE game, and define an extractor E as in Fig-
ure 13 (bottom). This extractor essentially re-runs A on its view and observes its oracle
queries, keeping track of the discrete logarithms of the elements queried by A via ta-
bles Uτµ

, µ ∈ {1, 2, T}. Whenever E is unable to “explain” an element in Gν , ν ∈ {1, 2}, it
instead stores a fresh variable Rv in Uτν . On the other hand, oracles pertaining to GT are
implemented via lazy sampling with no further modifications.
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We claim that this extractor allows proving Inequality (1). To that end, consider the
following sequence of games (the formal description of which can be found in Figure 14):
G0: This is the original DH-KE game in the GBM3-H with parameters (p,G) run with

adversary A and extractor E . We reformulate the winning condition by not applying τµ

in the winning clauses, which results in an equivalent game since they are all injective.
The operation, hashing and pairing oracles are augmented to construct the view of A
along the way.

G1: This game proceeds as G0, but the encodings τµ are implemented via lazy sampling.
More precisely, instead of sampling τµ, G1 initializes tables Tτµ ← [ ]. Oracles opµ

and Hµ are then implemented via lazy sampling from Gµ using table Tτµ
. The same is

done for oracle e, using tables Tτν
.

G2: This game proceeds as G1, but whenever it lazily samples a domain point in Tτν
, G2

instead saves a fresh variable Rv. (Note that this is only done for oracles pertaining
to Gν ; oracles for GT are as in G1.) Only after A and E are run, G2 samples random r
of the appropriate length, evaluates the output of A at this point, and checks the
winning condition as in G1. Notice that in this game, tables Tτµ

are populated exactly
as tables Uτµ

compiled by E .
G3: This game proceeds as G2, but we omit the sampling of r, and instead regard the

winning condition as a set of (in)equalities between polynomials in R.

We now argue that the difference between the success probabilities in subsequent games
is small.

G0 ⇝ G1. Notice that G0 and G1 have the same distribution, because the oracles given to A
in the two games are distributed identically. In particular, this means Pr[G1] = Pr[G0].
G1 ⇝ G2. Let Badµ be the events in G2 that there are two distinct polynomials in Dom(Tτµ

)
which result in the same value when evaluating R at random r. Notice that G1 and G2
are identical until Bad1 or Bad2 or BadT , and by the fundamental lemma of game playing
we therefore have that |Pr[G2]− Pr[G1]| ≤ Pr[Bad1] + Pr[Bad2] + Pr[BadT ].

We bound the latter probabilities via Lemma 1. Consider the adversary B1 in the
Schwartz–Zippel game defined in Figure 15. Here, B1 simulates G2 to A and then returns
all entries in Dom(Tτ1). Notice that if Bad1 occurs, then B1 wins the SZ-game, and that Tτ1

contains at most 3qop1 + qH1 + qe + 3 polynomials of degree at most 1. By Lemma 1,
Pr[Bad] ≤ (3qop1 + qH1 + qe + 3)2/2p. We similarly bound Pr[Bad2] and Pr[BadT ] using
adversaries B2 and BT in the Schwartz–Zippel game defined in Figure 15, noting that Tτ2

and TτT
contain at most 3qop2 + qH2 + qe + 2 polynomials of degree at most 1, and at

most 3qopT
+ qHT

+ qe polynomials of degree at most 2, respectively. Therefore,

|Pr[G2]− Pr[G1]| ≤ Pr[Bad1] + Pr[Bad2] + Pr[BadT ] ≤ 3(3qop + qH + qe + 3)2

2p .

G2 ⇝ G3. Let Bad′ be the event in G3 that y1y2 ̸= y3 or y1 ̸= w or y2 ≠ w, but
the corresponding equality holds when evaluating R at a random r. Then G2 and G3
are identical until Bad′, and by the fundamental lemma of game playing we therefore
have |Pr[G3]− Pr[G2]| ≤ Pr[Bad′].

We again bound the latter probability via Lemma 1. Consider the adversaries B′ and B′ν
in the Schwartz–Zippel game defined in Figure 15. Here, B′ and B′ν simulate G3 to A
and then return (y1y2 − y3, 0) and (yν − w, 0), respectively. Notice that if Bad′ occurs,
then B′ or B′ν win the SZ-game, and that the polynomials returned by B′ and B′ν have
total degree at most 2 and 1, respectively. By Lemma 1, Pr[Bad′] ≤ 2/p+ 2 · 1/p = 4/p.

We conclude the proof by showing that the winning probability of A in G3 is zero.
Notice that if the output of A is such that y1y2 ̸= y3, then A has trivially lost the game.
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Game G0:
τ1 ←← Inj(Zp, G1); τ2 ←← Inj(Zp, G2); τT ←← Inj(Zp, GT ); TH1 , TH2 , THT

← [ ]
o← 0; u1 ← τ1(1); u2 ← τ2(1); rA ←←RA; v ← Aop1,op2,opT ,H1,H2,HT ,e(u1, u2; rA)
trace(A)← (rA, u1, u2,h); w ←← Eop1,op2,opT ,H1,H2,HT ,e(trace(A))
y1 ← τ−1

1 (v1); y2 ← τ−1
2 (v2); y3 ← τ−1

1 (v3); return (y1y2 = y3) ∧ (w ̸= y1) ∧ (w ̸= y2)

Proc. opµ(h1, h2):

x1 ← τ−1
µ (h1)

x2 ← τ−1
µ (h2)

o← o+1; ho ← τµ(x1+x2)
return ho

Proc. Hµ(m):
if m /∈ Dom(THµ ) then

r ←← Zp; THµ [m]← r
r ← THµ [m]; o← o + 1; ho ← τµ(r)
return ho

Proc. e(h1, h2):

x1 ← τ−1
1 (h1)

x2 ← τ−1
2 (h2)

o← o + 1; ho ← τT (x1x2)
return ho

Game G1:
Tτ1 , Tτ2 , TτT , TH1 , TH2 , THT

← [ ]; o← 0
u1 ←← G1; u2 ←← G2; Tτ1 [1]← u1; Tτ2 [1]← u2
rA ←←RA; v ← Aop1,op2,opT ,H1,H2,HT ,e(u1, u2; rA)
trace(A)← (rA, u1, u2,h)
w ←← Eop1,op2,opT ,H1,H2,HT ,e(trace(A))
if (v1 /∈ Rng(Tτ1 )) then y1 ←← Zp \Dom(Tτ1 ); Tτ1 [y1]← v1
if (v2 /∈ Rng(Tτ2 )) then y2 ←← Zp \Dom(Tτ2 ); Tτ2 [y2]← v2
if (v3 /∈ Rng(Tτ1 )) then y3 ←← Zp \Dom(Tτ1 ); Tτ1 [y3]← v3
y1 ← T −1

τ1 [v1]; y2 ← T −1
τ2 [v2]; y3 ← T −1

τ1 [v3]
return (y1y2 = y3) ∧ (w ̸= y1) ∧ (w ̸= y2)

Proc. opµ(h1, h2):
for i = 1 to 2 do

if (hi /∈ Rng(Tτµ )) then
xi ← Zp \Dom(Tτµ )
Tτµ [xi]← hi

xi ← T −1
τµ [hi]

x← x1 + x2
if (x /∈ Dom(Tτµ )) then

h←← Gµ \Rng(Tτµ ); Tτµ [x]← h
o← o + 1; ho ← Tτµ [x]; return ho

Proc. Hµ(m):
if (m /∈ Dom(THµ )) then

r ←← Zp; THµ [m]← r
r ← THµ [m]
if (r /∈ Dom(Tτµ )) then

h←← Gµ\Rng(Tτµ ); Tτµ [r]← h
o← o + 1; ho ← Tτµ [r]; return ho

Proc. e(h1, h2):
for ν = 1 to 2 do

if (hν /∈ Rng(Tτν )) then xν ← Zp \Dom(Tτν ); Tτν [xν ]← hν

xν ← T −1
τν [hν ]

x← x1x2
if (x /∈ Dom(TτT )) then h←← GT \ Rng(TτT ); TτT [x]← h
o← o + 1; ho ← TτT [x]; return ho

Game G2:
Tτ1 , Tτ2 , TτT , TH1 , TH2 , THT

← [ ]; o, v ← 0
u1 ←← G1; u2 ←← G2; Tτ1 [1]← u1; Tτ2 [1]← u2
rA ←←RA
v ← Aop1,op2,opT ,H1,H2,HT ,e(u1, u2; rA)
trace(A)← (rA, u1, u2,h)
w ←← Eop1,op2,opT ,H1,H2,HT ,e(trace(A))
if (v1 /∈ Rng(Tτ1 )) then v ← v +1; Tτ1 [Rv ]← v1
if (v2 /∈ Rng(Tτ2 )) then v ← v +1; Tτ2 [Rv ]← v2
if (v3 /∈ Rng(Tτ1 )) then v ← v +1; Tτ1 [Rv ]← v3
y1 ← T −1

τ1 [v1]; y2 ← T −1
τ2 [v2]; y3 ← T −1

τ1 [v3]
r ←← Z2qop+qH+2qe+3

p

for i = 1 to 3 do yi ← yi(r)
return (y1y2 = y3) ∧ (w ̸= y1) ∧ (w ̸= y2)

Game G3:
Tτ1 , Tτ2 , TτT , TH1 , TH2 , THT

← [ ]; o, v ← 0
u1 ←← G1; u2 ←← G2
Tτ1 [1]← u1; Tτ2 [1]← u2; rA ←←RA
v ← Aop1,op2,opT ,H1,H2,HT ,e(u1, u2; rA)
trace(A)← (rA, u1, u2,h)
w ←← Eop1,op2,opT ,H1,H2,HT ,e(trace(A))
if (v1 /∈ Rng(Tτ1 )) then v ← v+1; Tτ1 [Rv ]← v1
if (v2 /∈ Rng(Tτ2 )) then v ← v+1; Tτ2 [Rv ]← v2
if (v3 /∈ Rng(Tτ1 )) then v ← v+1; Tτ1 [Rv ]← v3
y1 ← T −1

τ1 [v1]; y2 ← T −1
τ2 [v2]; y3 ← T −1

τ1 [v3]
return (y1y2 = y3) ∧ (w ̸= y1) ∧ (w ̸= y2)

Proc. opν(h1, h2):
for i = 1 to 2 do

if (hi /∈ Rng(Tτν )) then
v ← v + 1; Tτν [Rv ]← hi

xi ← T −1
τν [hi]

x← x1 + x2
if (x /∈ Dom(Tτν )) then

h←← Gν \ Rng(Tτν )
Tτν [x]← h

o← o + 1; ho ← Tτν [x]
return ho

Proc. Hν(m):
if (m /∈ Dom(THν )) then

v ← v + 1; THν [m]← Rv

r ← THν [m]
if (r /∈ Dom(Tτν )) then

h←← Gν \ Rng(Tτν )
Tτν [r]← h
o← o + 1; ho ← Tτν [r]
return ho

Proc. e(h1, h2):
for ν = 1 to 2 do

if (hν /∈ Rng(Tτν )) then
v ← v +1; Tτν [Rv ]← hν

xν ← T −1
τν [hν ]

x← x1x2
if (x /∈ Dom(TτT )) then

h←← GT \ Rng(TτT )
TτT [x]← h

o← o + 1; ho ← TτT [x]
return ho

Figure 14: Code of the intermediate games in the proof of Inequality (1). For games G2
and G3, oracles opT and HT are as in G1. In all figures, µ and ν are indices ranging over
{1, 2, T} and {1, 2}, respectively.
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Adversaries Bµ/B′/B′ν :
Tτ1 , Tτ2 , TτT

, TH1 , TH2 , THT
← [ ]; o, v ← 0

u1 ←← G1; u2 ←← G2; Tτ1 [1]← u1; Tτ2 [1]← u2
rA ←← RA; v ← Aop1,op2,opT ,H1,H2,HT ,e(u1, u2; rA)
trace(A)← (rA, u1, u2,h); w ←← Eop1,op2,opT ,H1,H2,HT ,e(trace(A))
if (v1 /∈ Rng(Tτ1)) then v ← v + 1; Tτ1 [Rv]← v1
if (v2 /∈ Rng(Tτ2)) then v ← v + 1; Tτ2 [Rv]← v2
if (v3 /∈ Rng(Tτ1)) then v ← v + 1; Tτ1 [Rv]← v3
y1 ← T−1

τ1
[v1]; y2 ← T−1

τ2
[v2]; y3 ← T−1

τ1
[v3]

Bµ: return Dom(Tτµ
) B′: return (y1y2−y3, 0) B′ν : return (yν−w, 0)

Figure 15: Definition of the adversaries Bµ, B′ and B′ν from the proof of Theorem 1. In
all cases, oracles op1, op2, opT , H1, H2, HT and e are defined as in Figure 14 (bottom),
and µ and ν are indices ranging over {1, 2, T} and {1, 2}, respectively.

If on the other hand y1y2 = y3, we obtain(
w1 +

∑
l

b1lRl

)(
w2 +

∑
l

b2lRl

)
−
(
w3 +

∑
l

b3lRl

)
= 0 , (2)

as a polynomial in R. We want to show that this implies either b1l = 0 for all l or b2l = 0
for all l, since the representation returned by E will be correct if that is the case. Indeed,
expanding Equation (2) gives

w1w2 − w3 +
∑

l

(
w1b2l + w2b1l − b3l

)
Rl

+
∑
l<l′

(
b1lb2l′ + b1l′b2l

)
RlRl′ +

∑
l

b1lb2lR
2
l = 0 ,

that is, in particular, (1) b1lb2l = 0 for all l, and (2) b1lb2l′ + b1l′b2l = 0 for all l < l′.
Now assume that there exists l̄ such that b1l̄ ̸= 0. Then from (1) we obtain b2l̄ = 0, and
from (2) that b2l̃ = 0 for all l̃ ̸= l̄ by either setting l = l̃ and l′ any other index larger
than l̃, or l′ = l̃ and l any other index smaller than l̃. This in turn means b2 = 0, and a
similar argument shows that if b2 ̸= 0, then it must be b1 = 0.

This proves that if A returns a valid output, then E returns an accurate representation
of either v1 or v2 in terms of the generator u, which means that Pr[G3] = 0. Collecting all
the terms above, we obtain

Advdh-ke
p,G,A,E ≤

3(3qop + qH + qe + 3)2

2p + 4
p
≤ O

(
(qop + qH + qe)2

p

)
.

5.2 Soundness of DH-KE in ABM3-H
Theorem 2 (DH-KE holds in ABM3-H). Let B be a type-3 bilinear group scheme.
If (1, 1)-DL holds for B, then DH-KE holds for B in the ABM3-H. More precisely,
for every PPT algebraic adversary A in the DH-KE game, there exist an extractor E and
an adversary B against (1, 1)-DL, both with approximately the same running time as A,
such that

Advdh-ke
B,A,E(λ) ≤

(
1− 2

2λ−1 − 1

)−1
·Adv(1,1)-dl

B,B (λ) . (3)
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Extractor EH1,H2,HT (trace(A)):
parse trace(A) = (rA, γ, [hµ]µ); o1, o2, oT ← 0
(u,v,w)← AH1,H2,HT (γ; rA)
if (u1 = · · · = uo1 = 0) then return u0 else return v0

Oracle Hµ(m):
oµ ← oµ + 1
return [hµ,oµ ]µ

Adversary B(γ, [t]1, [t]2):
o1, o2 ← 0; U1, U2, UT ← [ ]; S← ∅; (u,v,w)←← AH1,H2,HT (γ)
Q′(T )←

(
u0 +

∑o1
i=1 uiH1,i

)(
v0 +

∑o2
j=1 vjH2,j

)
−
(
w0 +

∑o1
i=1wiH1,i

)
if (Q′(T ) ̸= 0) then S← Berlekamp(Q′, p)
for t′ ∈ S do if ([t′]1 = [t]1) then return t′

return 0

Oracle Hν(m):
if (m /∈ Dom(Uν)) then
oν ← oν + 1; αν,oν

←← Zp; βν,oν
←← Z∗p

Hν,oν
(T )← αν,oν

+ βν,oν
T ; Uν [m]← [Hν,oν

(t)]ν
return Uν [m]

Oracle HT (m):
if (m /∈ Dom(UT )) then
α←← Zp; UT [m]← [α]T

return UT [m]

Figure 16: Top: Extractor E for the algebraic adversary A in the DH-KE game. Bot-
tom: Adversary B against (1, 1)-DL. In all figures, µ and ν range over the sets {1, 2, T}
and {1, 2}, respectively.

Proof. Fix an adversary A in the DH-KE game as in the statement of the theorem, and
define an extractor E as in Figure 16 (top). This extractor essentially re-runs A on
its view to obtain A’s output (u,v,w). Recall that this means that A encodes group
elements [a]1 = [u0]1 ·

∏
l≥1[ulh1l]1, where [h1]1 is the vector of hash replies in G1, and

similarly for [b]2 and [c]1 using vectors v and w. If all coordinates of u except possibly u0
are zero (i.e., the first element encoded by A is [u0]1), then E returns u0, and otherwise v0.
Clearly, E will be correct if all entries but possibly the first one in either u or v vanish.

We now show that if A returns a valid output and (1, 1)-DL holds for B, this will likely
be the case. To that end, consider the adversary B playing the (1, 1)-DL game for B defined
in Figure 16 (bottom). In essence, B runs A and simulates the DH-KE game. When
answering hash queries, B embeds the (1, 1)-DL instance it is tasked with solving into
the replies. By construction, if A returns an output that satisfies the relation polynomial
of DH-KE, then t is a root of the polynomial Q′(T ) defined by B. This means that B will
be able to find t by inspecting the roots of Q′ whenever Q′(T ) ̸= 0. We prove that the
latter happens with overwhelming probability if ui∗ ̸= 0 and vj∗ ̸= 0 for some i∗, j∗ > 0,
which means that this cannot happen if (1, 1)-DL holds for B.

We now show in detail how to use adversary B to prove Inequality (3) for A and E . To
that end, consider the following sequence of games (the formal description of which can be
found in Figure 17):
G0: This is the original (1, 1)-DL game for B run with adversary B.
G1: This game proceeds as G0, but performs variable substitutions α′ν,l = αν,l + βν,lt

and β′ν,l = βν,l in polynomials Hν,l. More precisely, upon a query m to Hν , game G2
samples random α′ν,l and invertible β′ν,l, and sets Hν,l(T )← α′ν,l + β′ν,l(T − t). Hash
replies are still computed as [Hν,l(t)]ν = [α′ν,l]ν .

G2: This game proceeds as G1, but polynomials Hν,l are now defined as Hν,l(T,B′ν) ←
α′ν,l +B′ν,l(T − t), where B′ν,l is a fresh variable for every oracle call. Accordingly, the
polynomial Q′′ constructed after running A is now in variables T , B′1 and B′2. After
defining Q′′, game G2 samples invertible β′1 and β′2, sets Q′(T )← Q′′(T,β′1,β′2), and
checks if Q′(T ) = 0. From here on, game G2 proceeds as G1.
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Game G0(λ):
γ ←← B(1λ); t←← Zp; o1, o2 ← 0; U1, U2, UT ← [ ]
S← ∅; (u, v,w)←← AH1,H2,HT (γ)
Q′(T )←

(
u0 +

∑o1
i=1 uiH1,i

)(
v0 +

∑o2
j=1 vjH2,j

)
−
(
w0 +

∑o1
i=1wiH1,i

)
if (Q′(T ) ̸= 0) then S← Berlekamp(Q′, p)
t′ ← 0
for z ∈ S do if ([z]1 = [t]1) then return t′ ← z; break
return (t = t′)

Oracle HT (m):
if (m /∈ Dom(UT ))

then
α←← Zp

UT [m]← [α]T
return UT [m]

Oracle Hν(m):
if (m /∈ Dom(Uν)) then

oν ← oν + 1; αν,oν ←← Zp; βν,oν ←← Z∗
p; Hν,oν (T )← αν,oν + βν,oν T ; Uν [m]← [Hν,oν (t)]ν

return Uν [m]

Game G1(λ):
γ ←← B(1λ); t←← Zp; o1, o2 ← 0; U1, U2, UT ← [ ]
S← ∅; (u, v,w)←← AH1,H2,HT (γ)
Q′(T )←

(
u0 +

∑o1
i=1 uiH1,i

)(
v0 +

∑o2
j=1 vjH2,j

)
−
(
w0 +

∑o1
i=1wiH1,i

)
if (Q′(T ) ̸= 0) then S← Berlekamp(Q′, p)
t′ ← 0
for z ∈ S do if ([z]1 = [t]1) then return t′ ← z; break
return (t = t′)

Oracle HT (m):
if (m /∈ Dom(UT ))

then
α←← Zp

UT [m]← [α]T
return UT [m]

Oracle Hν(m):
if (m /∈ Dom(Uν)) then

oν ← oν +1; α′
ν,oν
←← Zp; β′

ν,oν
←← Z∗

p; Hν,oν (T )← α′
ν,oν

+β′
ν,oν

(T−t); Uν [m]← [Hν,oν (t)]ν
return Uν [m]

Game G2(λ):
γ ←← B(1λ); t←← Zp; o1, o2 ← 0; U1, U2, UT ← [ ]
S← ∅; (u, v,w)←← AH1,H2,HT (γ)
Q′′(T,B′

1,B′
2)←(

u0 +
∑o1

i=1 uiH1,i

)(
v0 +

∑o2
j=1 vjH2,j

)
−
(
w0 +

∑o1
i=1wiH1,i

)
β′

1 ←← Z∗o1
p ; β′

2 ←← Z∗o2
p ; Q′(T )← Q′′(T,β′

1,β′
2)

if (Q′(T ) ̸= 0) then S← Berlekamp(Q′, p)
t′ ← 0
for z ∈ S do if ([z]1 = [t]1) then return t′ ← z; break
return (t = t′)

Oracle HT (m):
if (m /∈ Dom(UT ))

then
α←← Zp

UT [m]← [α]T
return UT [m]

Oracle Hν(m):
if (m /∈ Dom(Uν)) then

oν ← oν + 1; α′
ν,oν
←← Zp; Hν,oν (T,B′

ν)← α′
ν,oν

+B′
ν,oν

(T − t); Uν [m]← [Hν,oν (t,B′
ν)]ν

return Uν [m]

Figure 17: Code of the intermediate games in the proof of Theorem 2. In all figures, ν is
an index ranging over {1, 2}.

We now argue that subsequent games have identical success probabilities.

G0 ⇝ G1. Observe that for every fixed λ ∈ N, γ returned by B(1λ), t ∈ Zp, and random-
ness rA returned by RA(λ), the random variates α′ν,l and β′ν,l in G1 are related to the
random variates αν,l and βν,l in G0 via the transformation diag( 1 t

0 1 ), which is invertible.
Consequently, Pr[G0] = Pr[G1], since there is a one-to-one correspondence between the
random variables in the two games.
G1 ⇝ G2. Notice that A is oblivious to the changes to polynomials Hν,l, so the simulation
of A is identical in both games. Indeed, in both games the hash replies are computed in
the same way. After running A, G2 derives the same polynomial Q′ computed in G1 by
substituting random β′1 and β′2 into Q′′, so the winning condition is again the same in
both games. Therefore, Pr[G1] = Pr[G2].
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We conclude the proof by studying the winning probability in G2. First, notice that
in this game adversary A plays the DH-KE game, since the hash replies are random
group elements. Now for any λ ∈ N, γ returned by B(1λ), t ∈ Zp, randomness rA
returned by RA(λ), and vectors α′ν and α in Zp, denote by G′ := G′(λ, γ, t, rA,α′ν ,α) the
game G2(λ) with these random choices fixed. Then we have

Pr[G2(λ)] =
∑

(γ,t,rA,α′
ν ,α)

Pr[G′] Pr[γ, t, rA,α′ν ,α] ,

where Pr[γ, t, rA,α′ν ,α] denotes the probability that such a tuple is drawn in G2(λ), and
the sum extends over all (γ, t, rA,α′ν ,α) such that Pr[γ, t, rA,α′ν ,α] ̸= 0.

Now consider the set X of all (γ, t, rA,α′ν ,α) in the sum above such that A re-
turns (u,v,w) for which the relation polynomial in DH-KE is satisfied and extractor E
fails to compute a correct representation of the outputs. Notice that∑

(γ,t,rA,α′
ν ,α)∈X

Pr[γ, t, rA,α′ν ,α] = Advdh-ke
B,A,E(λ) .

We claim that for any (γ, t, rA,α′ν ,α) ∈ X, Pr[G′] ≥ 1 − 2/(2λ−1 − 1). Indeed, fix
any (γ, t, rA,α′ν ,α) ∈ X. Since E fails to return a correct representation of the output
of A, neither u1 = · · · = uo1 = 0 nor v1 = · · · = vo2 = 0, where o1 and o2 are
the number of queries made by A to H1 and H2, respectively. This means that there
exist 1 ≤ i∗ ≤ o1 and 1 ≤ j∗ ≤ o2 such that ui∗ ̸= 0 and vj∗ ̸= 0. Then observe that
the polynomial Q′′(T,B′1,B′2) constructed in G2 after running A is not identically zero,
because the coefficient ofB′1,i∗B′2,j∗ is (T−t)2ui∗uj∗ ̸= 0. Moreover, the leading coefficient
in T of Q′′(T,B′1,B′2) is a polynomial in B′1 and B′2 of total degree at most 2, which for
random invertible β′1 and β′2 will be zero with probability at most 2/(p− 1) ≤ 2/(2λ−1− 1)
by Lemma 1. Thus, with probability at least 1 − 2/(2λ−1 − 1), Q′(T ) ̸= 0 in G′. We
conclude by observing that whenever this happens, game G′ will return 1, because t is a
root of Q′(T ) by construction, and will therefore be found by inspecting its roots. This
means

Adv(1,1)-dl
B,B (λ) = Pr[G0(λ)] = Pr[G2(λ)] =

∑
(γ,t,rA,α′

ν ,α)

Pr[G′] Pr[γ, t, rA,α′ν ,α]

≥
∑

(γ,t,rA,α′
ν ,α)∈X

Pr[G′] Pr[γ, t, rA,α′ν ,α] ≥
(

1− 2
2λ−1 − 1

)
·Advuk

B,A,E(λ) ,

which concludes the proof.

6 Soundness of UK in GBM3-H

In this section we justify the soundness of the UK assumption in the GBM3-H. Our result
is for a class of adversaries A where A0 returns a relation polynomial Q of degree at most
two in the output variables and no output variable for the target group, with at most one
degree-two term, and linearly independent coefficients for the linear terms. The latter
condition serves to avoid that A can satisfy the linear part of Q by hashing into the group,
and then crafting other elements via exponentiation to satisfy the linear relation. The
corresponding result for simple groups is included in Appendix A.
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Theorem 3 (UK holds in GBM3-H). Let p ∈ N be prime, and fix G1,G2,GT ⊆ {0, 1}∗
with |G1| = |G2| = |GT | = p. Consider the class of algorithms A and the source S defined
as follows:

1. For every A0 ∈ A, the relation polynomial Q returned by A0 is of the form

Q(X1,X2,XT ,Y1,Y2,C) = Qi1i2(X1,X2,XT ,C)Y1,i1Y2,i2

+
2∑

ν=1

|Yν |∑
i=1

Qν,i(X1,X2,XT ,C)Yν,i +Q0(X1,X2,XT ,C) ,

where 1 ≤ i1 ≤ |Y1| and 1 ≤ i2 ≤ |Y2|;
2. For every A0 ∈ A, every (Q,P1,P2,PT ) returned by A0, and every c ∈ Z|C|p , the

polynomials Qν,i (for 1 ≤ ν ≤ 2 and 1 ≤ i ≤ |Yν |) are linearly independent;
3. For every A0 ∈ A, every (Q,P1,P2,PT ) returned by A0 and every c ∈ Z|C|p , if

Qi1i2 ̸= 0 then Q0 does not lie in the linear span of

{Qν,iPν′,j | 1 ≤ ν, ν′ ≤ 2, 1 ≤ i ≤ |Yν |, 1 ≤ j ≤ |Xν′ |} ;

4. For every A0 ∈ A and every (Q,P1,P2,PT ) returned by A0, S samples s ∈ Zk
p at

random and returns (P1(s),P2(s),PT (s)).
Then the UK assumption holds in the GBM3-H with parameters (p,G) with respect to the
class of first-stage adversaries A and source S above. More precisely, for every low-degree
adversary A with A0 ∈ A, there exists an extractor E such that

Advuk
p,G,S,A,E ≤ O

(
(m+ n+ qop + qH + qe + dQ)2 · dP

p

)
. (4)

Here, dQ is an upper bound on the total degree of Q, dP and k are upper bounds on
the total degree and the number of variables of every polynomial P in Pµ, m and n are
upper bounds on |Xµ| and |Yν |, qop, qH and qe are upper bounds on the number of queries
made by A to the respective oracles, and we let P1,0(S) := P2,0(S) := 1 in Qi1i2(S) :=
Qi1i2(P1(S),P2(S),PT (S), c) and Qν,i(S) := Qν,i(P1(S),P2(S),PT (S), c).

Proof overview. Fix an adversary A in the UK game as above, and define the extractor E as
in Figure 18. This extractor essentially re-runs A on its view and observes its oracle queries,
keeping track of the discrete logarithms of the elements queried by A via appropriate
tables. Whenever E is unable to “explain” an element in Gν , ν ∈ {1, 2}, it instead stores a
fresh variable Rv in the corresponding table. Oracles for GT are instead implemented via
plain lazy sampling. Eventually, E returns the representation of the outputs of A it has
constructed while observing A, but ignoring the parts pertaining to the variables Rv.

To show that E correctly represents the outputs of A, we must prove that it is unlikely
that these outputs satisfy the relation polynomial, and yet use group elements not obtained
through opν in a non-trivial way. To that end, we first apply the Schwartz–Zippel lemma and
transition to a setting where the game replaces all values it samples at random with formal
variables. Accordingly, equality Q(x1,x2,xT ,y1,y2, c) = 0 in the winning condition is now
an equality between polynomials, with elements not obtained through opν corresponding
to the variables Rv above. We must then show that the coefficients bν,iν l of these variables
in the representation of E are all zero. First, we prove that the coefficients b1,i1l1b2,i2l2 of
the square terms Rl1Rl2 in R are separately zero. Indeed, if that was not the case and, say,
b1,i1 l̄ ̸= 0, we can use the linear term in Rl̄ to express all terms involving Qi1i2 as a linear
combination of the Qν,i. Plugging that into the constant term in R, we obtain a linear
representation of Q0 in terms of polynomials Qν,iPν′,j , which contradicts our assumption.
Once the coefficients of all square terms are shown to be zero, for each l the linear term
in Rl is a linear combination of the Qν,i, weighted with bν,iν l. By linear independence of
the Qν,i, we conclude that bν,iν l = 0 for all ν, iν , and l.
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Extractor Eop1,op2,opT ,H1,H2,HT ,e(trace(A)):
parse trace(A) = (rA,u1,u2,uT ,h); o, v ← 0
Uτ1 , Uτ2 , UτT

, UH1 , UH2 , UHT
← [ ]

Uτ1 [1]← u1,0; Uτ2 [1]← u2,0

(Q,P1,P2,PT )← Aop1,op2,opT ,H1,H2,HT ,e
0 (u1,0,u2,0; rA)

for µ ∈ {1, 2, T} do
for j = 1 to |Pµ| do Uτµ

[Pµ,j(S)]← uµ,j

(v1,v2, c)← Aop1,op2,opT ,H1,H2,HT ,e
1 (u1,u2,uT ; rA)

P1,0(S),P2,0(S)← 1
for ν = 1 to 2 do for i = 1 to |Yν | do

if (vν,i /∈ Rng(Uτν
)) then v ← v + 1; Uτν

[Rv]← vi

parse U−1
τν

[vν,i] =∑|Xν |−1
j=0 wν,ijPν,j(S) +

∑
l bν,ilRl

return (w1,w2)

Proc. Hν(m):
if (m /∈ Dom(UHν

)) then
v ← v+1; UHν

[m]← Rv

r ← UHν [m]; o← o+ 1
if (r /∈ Dom(Uτν )) then
Uτν

[r]← ho

return Uτν
[r]

Proc. HT (m):
if (m /∈ Dom(UHT

)) then
r ←← Zp; UHT

[m]← r
r ← UHT

[m]; o← o+ 1
if (r /∈ Dom(UτT

)) then
UτT

[r]← ho

return UτT
[r]

Proc. e(h1, h2):
for ν = 1 to 2 do

if (hν /∈ Rng(Uτν )) then
v ← v + 1
Uτν

[Rv]← hν

xν ← U−1
τν

[hν ]
x← x1x2; o← o+ 1
if (x /∈ Dom(UτT

)) then
UτT

[x]← ho

return UτT
[x]

Proc. opν(h1, h2):
for i = 1 to 2 do

if (hi /∈ Rng(Uτν
))

then
v ← v + 1
Uτν

[Rv]← hi

xi ← U−1
τν

[hi]
x← x1 +x2; o← o+1
if (x /∈ Dom(Uτν

))
then Uτν

[x]← ho

return Uτν
[x]

Proc. opT (h1, h2):
for i = 1 to 2 do

if (hi /∈ Rng(UτT
))

then
xi ← Zp \Dom(UτT

)
UτT

[xi]← hi

xi ← U−1
τT

[hi]
x← x1 + x2; o← o+ 1
if (x /∈ Dom(UτT

)) then
UτT

[x]← ho

return UτT
[x]

Figure 18: Definition of the extractor E from the proof of Theorem 3. Counters o and v
are shared between all oracles, and ν is an index ranging over {1, 2}.

Proof. We now formally implement the intuition presented in the proof overview above.
Fix an adversary A as above, and define an extractor E as shown in Figure 18. We claim
that this extractor allows proving Inequality (4). To that end, consider the sequence of
games below (the formal description of which can be found in Figures 19 and 20). For
brevity, we define the predicate R(Q,x1,x2,xT ,y1,y2, c,w1,w2) to return 1 if and only if

(
Q(X1,X2,XT ,Y1,Y2, c) ̸= 0

)
∧
(
Q(x1,x2,xT ,y1,y2, c) = 0

)
∧(

(∃ν)(∃i)
(
yν,i ̸=

∑|Xν |−1

j=0
wν,ijxν,j

))
.

G0: This is the original UK game in the GBM3-H with parameters (p,G) and source S, run
with adversary A and extractor E . We omit repeated invocations of opµ to create the
inputs of A1, and instead compute τµ(xµ) directly. We also reformulate the winning
condition by not applying τµ in the last two clauses, which results in an equivalent game
since they are all injective. The operation, hashing and pairing oracles are augmented
to construct the view of A along the way.

G1: This game proceeds as G0, but the encodings τµ are implemented via lazy sampling.
More precisely, instead of sampling τµ, G1 initializes tables Tτµ

← [ ]. Oracles opµ

and Hµ are then implemented via lazy sampling from Gµ using table Tτµ . The same is
done for oracle e, using tables Tν .
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Game G0:
τ1 ←← Inj(Zp, G1); τ2 ←← Inj(Zp, G2); τT ←← Inj(Zp, GT ); TH1 , TH2 , THT

← [ ]; o← 0; rA ←←RA

u1,0 ← τ1(1); u2,0 ← τ2(1); (Q,P1,P2,PT )← Aop1,op2,opT ,H1,H2,HT ,e
0 (u1,0,u2,0; rA)

s←← Zk
p ; x1 ← P1(s); x2 ← P2(s); xT ← PT (s); x1,0,x2,0 ← 1

u1 ← τ1(x1); u2 ← τ2(x2); uT ← τT (xT ); (v1, v2, c)← Aop1,op2,opT ,H1,H2,HT ,e
1 (u1,u2,uT ; rA)

trace(A)← (rA,u1,u2,uT ,h); (w1,w2)←← Eop1,op2,opT ,H1,H2,HT ,e(trace(A))
y1 ← τ−1

1 (v1); y2 ← τ−1
2 (v2); return R(Q,x1,x2,xT ,y1, y2, c,w1,w2)

Proc. opµ(h1, h2):

x1 ← τ−1
µ (h1)

x2 ← τ−1
µ (h2)

o← o+1; ho ← τµ(x1+x2)
return ho

Proc. Hµ(m):
if m /∈ Dom(THµ ) then

r ←← Zp; THµ [m]← r
r ← THµ [m]; o← o + 1; ho ← τµ(r)
return ho

Proc. e(h1, h2):

x1 ← τ−1
1 (h1)

x2 ← τ−1
2 (h2)

o← o + 1; ho ← τT (x1x2)
return ho

Game G1:
Tτ1 , Tτ2 , TτT , TH1 , TH2 , THT

← [ ]
o← 0; rA ←←RA
u1,0 ←← G1; u2,0 ←← G2
Tτ1 [1]← u1,0; Tτ2 [1]← u2,0
(Q,P1,P2,PT )←
Aop1,op2,opT ,H1,H2,HT ,e

0 (u1,0,u2,0; rA)
s←← Zk

p ; x1,0,x2,0 ← 1
x1 ← P1(s); x2 ← P2(s); xT ← PT (s)
for µ ∈ {1, 2, T} do for j = 1 to |Pµ| do

if (xµ,j /∈ Dom(Tτµ )) then
uµ,j ←← Gµ \ Rng(Tτµ ); Tτµ [xµ,j ]← uµ,j

uµ,j ← Tτµ [xµ,j ]
(v1, v2, c)←
Aop1,op2,opT ,H1,H2,HT ,e

1 (u1,u2,uT ; rA)
trace(A)← (rA,u1,u2,uT ,h)
(w1,w2)←← Eop1,op2,opT ,H1,H2,HT ,e(trace(A))
for ν = 1 to 2 do for i = 1 to |Yν | do

if (vν,i /∈ Rng(Tτν )) then
yν,i ←← Zp \Dom(Tτν ); Tτν [yν,i]← vν,i

yν,i ← T −1
τν [vν,i]

return R(Q,x1,x2,xT ,y1, y2, c,w1,w2)

Proc. opµ(h1, h2):
for i = 1 to 2 do

if (hi /∈ Rng(Tτµ )) then
xi ← Zp \Dom(Tτµ ); Tτµ [xi]← hi

xi ← T −1
τµ [hi]

x← x1 + x2
if (x /∈ Dom(Tτµ )) then

h←← Gµ \ Rng(Tτµ ); Tτµ [x]← h
o← o + 1; ho ← Tτµ [x]; return ho

Proc. Hµ(m):
if (m /∈ Dom(THµ )) then r ←← Zp; THµ [m]← r
r ← THµ [m]
if (r /∈ Dom(Tτµ )) then

h←← Gµ \ Rng(Tτµ ); Tτµ [r]← h
o← o + 1; ho ← Tτµ [r]; return ho

Proc. e(h1, h2):
for ν = 1 to 2 do

if (hν /∈ Rng(Tτν )) then
xν ← Zp \Dom(Tτν ); Tτν [xν ]← hν

xν ← T −1
τν [hν ]

x← x1x2
if (x /∈ Dom(TτT )) then

h←← GT \ Rng(TτT ); TτT [x]← h
o← o + 1; ho ← TτT [x]; return ho

Figure 19: Code of the intermediate games in the proof of Inequality (4). Here, µ is an
index ranging over {1, 2, T}.

G2: This game proceeds as G1, but it replaces the values xµ generated by S with the
corresponding polynomials Pµ(S) evaluated at formal variables S. Likewise, whenever
it lazily samples a domain point in Tτν

, it instead saves a fresh variable Rv. (Note
that this is only done for oracles pertaining to Gν ; oracles for GT are as in G1.) Only
after A and E are run, G2 samples random s and r of the appropriate length, evaluates
the inputs and outputs of A at these points, and checks the winning condition as in G1.
Notice that in this game, tables Tτµ

are populated as tables Uτµ
compiled by E .

G3: This game proceeds as G2, but we omit the sampling of s and r, and instead regard
the winning condition as a set of (in)equalities between polynomials in S and R.

We now argue that the difference between the success probabilities in subsequent games
is small.

G0 ⇝ G1. Notice that G0 and G1 have the same distribution, because the oracles given to A
in the two games are distributed identically. In particular, this means Pr[G1] = Pr[G0].
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Game G2:
Tτ1 , Tτ2 , TτT , TH1 , TH2 , THT

← [ ]
o, v ← 0; rA ←←RA; u1,0 ←← G1; u2,0 ←← G2
Tτ1 [1]← u1,0; Tτ2 [1]← u2,0
(Q,P1,P2,PT )←
Aop1,op2,opT ,H1,H2,HT ,e

0 (u1,0,u2,0; rA)
x1 ← P1(S); x2 ← P2(S); xT ← PT (S)
x1,0,x2,0 ← 1
for µ ∈ {1, 2, T} do for j = 1 to |Pµ| do

if (xµ,j /∈ Dom(Tτµ )) then
uµ,j ←← Gµ \ Rng(Tτµ ); Tτµ [xµ,j ]← uµ,j

uµ,j ← Tτµ [xµ,j ]
(v1, v2, c)←
Aop1,op2,opT ,H1,H2,HT ,e

1 (u1,u2,uT ; rA)
trace(A)← (rA,u1,u2,uT ,h)
(w1,w2)←← Eop1,op2,opT ,H1,H2,HT ,e(trace(A))
s←← Zk

p ; r ←← Z2qop+qH+2qe+2n
p

for ν = 1 to 2 do for i = 1 to |Yν | do
if (vν,i /∈ Rng(Tτν )) then

v ← v + 1; Tτν [Rv ]← vν,i

yν,i ← T −1
τν [vν,i]; yν,i ← yν,i(s, r)

return R(Q,x1,x2,xT , y1,y2, c,w1,w2)

Game G3:
Tτ1 , Tτ2 , TτT , TH1 , TH2 , THT

← [ ]
o, v ← 0; rA ←←RA; u1,0 ←← G1; u2,0 ←← G2
Tτ1 [1]← u1,0; Tτ2 [1]← u2,0
(Q,P1,P2,PT )←
Aop1,op2,opT ,H1,H2,HT ,e

0 (u1,0,u2,0; rA)
x1 ← P1(S); x2 ← P2(S); xT ← PT (S)
x1,0,x2,0 ← 1
for µ ∈ {1, 2, T} do for j = 1 to |Pµ| do

if (xµ,j /∈ Dom(Tτµ )) then
uµ,j ←← Gµ \Rng(Tτµ ); Tτµ [xµ,j ]← uµ,j

uµ,j ← Tτµ [xµ,j ]
(v1, v2, c)←
Aop1,op2,opT ,H1,H2,HT ,e

1 (u1,u2,uT ; rA)
trace(A)← (rA,u1,u2,uT ,h)
(w1,w2)←← Eop1,op2,opT ,H1,H2,HT ,e(trace(A))
for ν = 1 to 2 do for i = 1 to |Yν | do

if (vν,i /∈ Rng(Tτν )) then
v ← v + 1; Tτν [Rv ]← vν,i

yν,i ← T −1
τν [vν,i]

return R(Q,x1,x2,xT , y1,y2, c,w1,w2)

Proc. opν(h1, h2):
for i = 1 to 2 do

if (hi /∈ Rng(Tτν )) then
v ← v + 1; Tτν [Rv ]← hi

xi ← T −1
τν [hi]

x← x1 + x2
if (x /∈ Dom(Tτν )) then

h←← Gν \ Rng(Tτν )
Tτν [x]← h

o← o + 1; ho ← Tτν [x]; return ho

Proc. Hν(m):
if (m /∈ Dom(THν )) then

v ← v + 1
Tτν [m]← Rv

r ← THν [m]
if (r /∈ Dom(Tτν )) then

h←← Gν \ Rng(Tτν )
Tτν [r]← h

o← o + 1; ho ← Tτν [r]
return ho

Proc. e(h1, h2):
for ν = 1 to 2 do

if (hν /∈ Rng(Tτν )) then
v ← v + 1; Tτν [Rv ]← hν

xν ← T −1
τν [hν ]

x← x1x2
if (x /∈ Dom(TτT )) then

h←← GT \ Rng(TτT )
TτT [x]← h

o← o + 1; ho ← TτT [x]; return ho

Figure 20: Code of the intermediate games in the proof of Inequality (4). Here, ν is an
index ranging over {1, 2}. Oracles opT and HT are as in the bottom part of Figure 19.

G1 ⇝ G2. Let Badµ be the event in G2 that there are two different polynomials in Dom(Tτµ)
which result in the same value when evaluating S and R at random s and r. Notice
that G1 and G2 are identical until Bad1 or Bad2 or BadT , and by the fundamental lemma of
game playing we therefore have that |Pr[G2]− Pr[G1]| ≤ Pr[Bad1] + Pr[Bad2] + Pr[BadT ].

We bound the latter probabilities via Lemma 1. Consider the adversary B1 in the
Schwartz–Zippel game defined in Figure 21. Here, B1 simulates G2 to A and then returns
all entries in Dom(Tτ1). Notice that if Bad1 occurs, then B1 wins the SZ-game, and that Tτ1

contains at most m+n+3qop + qH + qe +1 polynomials of degree at most dP . By Lemma 1,
Pr[Bad1] ≤ (m+n+3qop +qH +qe +1)2 ·dP /2p. We similarly bound Pr[Bad2] and Pr[BadT ]
using adversaries B2 and BT in the Schwartz–Zippel game defined in Figure 21, noting
that Tτ2 contains at most m+ n+ 3qop + qH + qe + 1 polynomials of degree at most dP ,
and at most m+ 3qop + qH + qe polynomials of degree at most 2dP . Therefore,

|Pr[G2]−Pr[G1]| ≤ Pr[Bad1]+Pr[Bad2]+Pr[BadT ] ≤ 2(m+ n+ 3qop + qH + qe + 1)2 · dP

p
.

G2 ⇝ G3. Let Bad′ be the event in G3 that either Q(x1,x2,xT ,y1,y2, c) ̸= 0, or yν,i ̸=∑|Xν |−1
j=0 wν,ijxν,j for some ν ∈ {1, 2} and 1 ≤ i ≤ |Yν |, but the corresponding equality

holds when evaluating S andR at random s and r. Then G2 and G3 are identical until Bad′,
and by the fundamental lemma of game playing we have |Pr[G3]− Pr[G2]| ≤ Pr[Bad′].
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Adversaries Bµ/B′/B′ν,i:
Tτ1 , Tτ2 , TτT

, TH1 , TH2 , THT
← [ ]; o, v ← 0; rA ←← RA

u1,0 ←← G1; u2,0 ←← G2; Tτ1 [1]← u1,0; Tτ2 [1]← u2,0

(Q,P1,P2,PT )← Aop1,op2,opT ,H1,H2,HT ,e
0 (u1,0,u2,0; rA)

x1 ← P1(S); x2 ← P2(S); xT ← PT (S); x1,0,x2,0 ← 1
for µ ∈ {1, 2, T} do for j = 1 to |Pµ| do

if (xµ,j /∈ Dom(Tτµ
)) then uµ,j ←← Gµ \ Rng(Tτµ

); Tτµ
[xµ,j ]← uµ,j

uµ,j ← Tτµ
[xµ,j ]

(v1,v2, c)← Aop1,op2,opT ,H1,H2,HT ,e
1 (u1,u2,uT ; rA); trace(A)← (rA,u1,u2,uT ,h)

(w1,w2)←← Eop1,op2,opT ,H1,H2,HT ,e(trace(A))
for ν = 1 to 2 do for i = 1 to |Yν | do

if (vν,i /∈ Rng(Tτν )) then v ← v + 1; Tτν [Rv]← vν,i

yν,i ← T−1
τν

[vν,i]
Bµ: return Dom(Tτµ

) B′ν,i: return
(
yν,i −

∑|Xν |−1
j=0 wν,ijxν,j , 0

)
B′: return (Q(x1,x2,xT ,y1,y2, c), 0)

Figure 21: Definition of the adversaries Bµ, B′ and B′ν,i from the proof of Theorem 3.
In all cases, oracles opµ, Hµ and e are defined as in Figure 20, and µ and ν are indices
ranging over {1, 2, T} and {1, 2}, respectively.

We bound the latter probability via Lemma 1. Consider the adversaries B′ and B′ν,i in
the Schwartz–Zippel game defined in Figure 21. Here, B′ and B′ν,i simulate G3 to A and
return (Q(x1,x2,xT ,y1,y2, c), 0) and

(
yν,i −

∑|Xν |−1
j=0 wν,ijxν,j , 0

)
, respectively. Notice

that if Bad′ occurs, then B′ or B′ν,i win the SZ-game for some ν ∈ {1, 2} and 1 ≤ i ≤ |Yν |,
and that the polynomials returned by B′ and B′ν,i have total degree at most dQdP and dP ,
respectively. By Lemma 1, Pr[Bad′] ≤ dQdP /p+ 2ndP /p.

We conclude the proof by showing that the winning probability of A in G3 is zero.
Notice that if the output of A is such that the relation polynomial Q is not satisfied,
then A has trivially lost the game. If on the other hand Q is satisfied, we obtain

Qi1i2(S)
(|X1|−1∑

j=0
w1,i1jP1,j(S) +

∑
l

b1,i1lRl

)(|X2|−1∑
j=0

w2,i2jP2,j(S) +
∑

l

b2,i2lRl

)

+
2∑

ν=1

|Yν |∑
i=1

Qν,i(S)
(|Xν |−1∑

j=0
wν,ijPν,j(S) +

∑
l

bν,ilRl

)
+Q0(S) = 0

(5)

as a polynomial in S and R. We want to show that this implies bν,il = 0 for all ν ∈ {1, 2},
all 1 ≤ i ≤ |Yν | and all l, since the representation returned by E will then be correct.

Assume for the moment that Qi1i2(S) ̸= 0. We begin by proving that bν,iν l = 0 for
all ν ∈ {1, 2} and all l. Indeed, suppose this was not the case, and let l̄ be an index such
that b1,i1 l̄ ̸= 0. From the term of degree two in R we obtain (1) Qi1i2(S)b1,i1lb2,i2l = 0 for
all l, and (2) Qi1i2(S)(b1,i1lb2,i2l′ + b1,i1l′b2,i2l) = 0 for all l ≠ l′. Then (1) gives b2,i2 l̄ = 0,
and (2) then yields b2,i2l = 0 for all l ̸= l̄, i.e., b2,i2l = 0 for every l. The linear term in Rl̄

now becomes

Qi1i2(S)b1,i1 l̄

|X2|−1∑
j=0

w2,i2jP2,j(S) +
2∑

ν=1

|Yν |∑
i=1

Qν,i(S)bν,il̄ = 0 ,
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which gives

Qi1i2(S)
|X2|−1∑

j=0
w2,i2jP2,j(S) = −

2∑
ν=1

|Yν |∑
i=1

bν,il̄

b1,i1 l̄

Qν,i(S) .

Plugging this equality into the constant term in R, we obtain(|X1|−1∑
j=0

w1,i1jP1,j(S)
)(
−

2∑
ν=1

|Yν |∑
i=1

bν,il̄

b1,i1 l̄

Qν,i(S)
)

+
2∑

ν=1

|Yν |∑
i=1

Qν,i(S)
(|Xν |−1∑

j=0
wν,ijPν,j(S)

)
+Q0(S) = 0 ,

which means that

Q0(S) =
2∑

ν=1

|Yν |∑
i=1

|X1|−1∑
j=0

w1,i1j

bν,il̄

b1,i1 l̄

Qν,i(S)P1,j(S)−
2∑

ν=1

|Yν |∑
i=1

|Xν |−1∑
j=0

wν,ijQν,i(S)Pν,j(S) .

This, however, contradicts our assumption of Q0 not being in the linear span of Qν,iPν′,j ,
from which we conclude that b1,i1l = 0 for every l. As a consequence, Equation (5) now
becomes

Qi1i2(S)
(|X1|−1∑

j=0
w1,i1jP1,j(S)

)(|X2|−1∑
j=0

w2,i2jP2,j(S) +
∑

l

b2,i2lRl

)

+
2∑

ν=1

|Yν |∑
i=1

Qν,i(S)
(|Xν |−1∑

j=0
wν,ijPν,j(S) +

∑
l

bν,ilRl

)
+Q0(S) = 0 .

We can similarly show that b2,i2l = 0 for every l. Indeed, assume for the sake of
contradiction that b2,i2 l̄ ̸= 0 for some l̄. The linear term in Rl̄ then is

Qi1i2(S)b2,i2 l̄

|X1|−1∑
j=0

w1,i1jP1,j(S) +
2∑

ν=1

|Yν |∑
i=1

Qν,i(S)bν,il̄ = 0 ,

that is,

Qi1i2(S)
|X1|−1∑

j=0
w1,i1jP1,j(S) = −

2∑
ν=1

|Yν |∑
i=1

bν,il̄

b2,i2 l̄

Qν,i(S) .

Plugging this equality into the constant term in R, we obtain(
−

2∑
ν=1

|Yν |∑
i=1

bν,il̄

b2,i2 l̄

Qν,i(S)
)(|X2|−1∑

j=0
w2,i2jP2,j(S)

)
+

2∑
ν=1

|Yν |∑
i=1

Qν,i(S)
(|Xν |−1∑

j=0
wν,ijPν,j(S)

)
+Q0(S) = 0 ,

which means that

Q0(S) =
2∑

ν=1

|Yν |∑
i=1

|X2|−1∑
j=0

w2,i2j

bν,il̄

b2,i2 l̄

Qν,i(S)P2,j(S)−
2∑

ν=1

|Yν |∑
i=1

|Xν |−1∑
j=0

wν,ijQν,i(S)Pν,j(S) .
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This again contradicts our assumption of Q0 not being in the linear span of Qν,iPν′,j , and
thus b2,i2l = 0 for every l. Equation (5) then simplifies to

Qi1i2(S)
(|X1|−1∑

j=0
w1,i1jP1,j(S)

)(|X2|−1∑
j=0

w2,i2jP2,j(S)
)

+
2∑

ν=1

|Yν |∑
i=1

Qν,i(S)
(|Xν |−1∑

j=0
wν,ijPν,j(S) +

∑
l

bν,ilRl

)
+Q0(S) = 0 .

Now, looking at the linear terms in R, we obtain that for every l,

2∑
ν=1

|Yν |∑
i=1

Qν,i(S)bν,il = 0 . (6)

Recall that, by assumption, polynomials Qν,i are linearly independent, which means
that bν,il = 0 for all 1 ≤ ν ≤ 2, all 1 ≤ i ≤ |Yν | and all l.

If on the other hand Qi1i2(S) = 0, then there are no terms of degree two in R in
Equation (5). This means that we can jump directly to Equation (6) and conclude
that bν,il = 0 for all 1 ≤ ν ≤ 2, all 1 ≤ i ≤ |Yν | and all l, since Qν,i are linearly
independent.

This proves that if A returns a valid output, then E returns an accurate representation
of v in terms of x, which means that Pr[G3] = 0. Collecting all the terms above, we obtain

Advuk
p,G,S,A,E ≤

2(m+ n+ 3qop + qH + 2qe + 1)2 · dP

p
+ dQdP

p
+ 2ndP

p

≤ O
(

(m+ n+ qop + qH + qe + dQ)2 · dP

p

)
.

This concludes the proof.

We now show that the specific knowledge assumptions considered in Section 4 all satisfy
the condition stated in the theorem above (and the analogous theorem for simple groups
proved as Theorem 7).

Corollary 1. Let d, p ∈ N with p prime, and fix G,G1,G2,GT ⊆ {0, 1}∗ with |G| = |G1| =
|G2| = |GT | = p. (1) KEA1, KEA3, and d-PKE hold in GGM-H with parameters (p,G).
(2) d-KZG, d-PKE, and d-GROTH16 hold in GBM3-H with parameters (p,G) (the latter
for any class of first-stage algorithms A).

Proof. The proof is straightforward for all assumptions except d-GROTH16; we cover
d-KZG as an example. Clearly, the relation polynomial Q in d-KZG (see Figure 11) is of
the form considered in Theorem 3, and the polynomials Q1,1(S) = 1 and Q1,2(S) = −S+ c
are linearly independent for every c ∈ Zp. There is no need to check the third condition of
the theorem because Q has no degree-two term in Y , and the requirement on the source is
satisfied by definition.

For d-GROTH16, recall that the relation polynomial is given in Figure 12. Again,
polynomial Q is of the form covered by Theorem 3, and Q1,2(S) = −S3S

2
4 is non-zero and

thus linearly independent. To verify the third condition, recall that Q0(S) = −S1S2S
2
3S

2
4−∑ℓ

i=0 ci

(
S2Ui(S5)+S1Vi(S5)+Wi(S5)

)
S2

3S
2
4 . It is straightforward to see that S1S2S

2
3S

2
4

does not lie in the linear span of Qν,iPν′,j , and neither does
∑ℓ

i=0 ci

(
S2Ui(S5)+S1Vi(S5)+

Wi(S5)
)
S2

3S
2
4 contain such a term, so that the condition is verified. Again, the requirement

on the source is satisfied by definition.
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7 Soundness of UK in ABM3-H
In this section, we justify the soundness of the UK assumption in the ABM3-H. This result
complements the GBM3-H hardness of UK, as the two models are formally incomparable
for knowledge assumptions.

If we consider the classical definition of algebraic adversaries [FKL18], we can trivially
build an extractor for every such adversary A: output the scalar representation returned
by A in the AGM as the linear relation between the outputs and the inputs. As mentioned,
this justification does not take hashing into account, and thus we consider algebraic
adversaries in the ABM3-H. In this model, the extractor above is no longer valid as it may
output nonzero coefficients for hash values.

Our result here is for a class of adversaries who return a relation polynomial Q of
degree one in the output variables, with linearly independent coefficients for the linear
terms. In Appendix B, we include a proof of the hardness of linear UK in the AGM-H (i.e.,
for simple groups). As for relation polynomials Q of degree two in the output variables, in
Theorem 5 we prove hardness of d-GROTH16 in the ABM3-H.

Theorem 4 (Linear UK holds in ABM3-H). Let B be a type-3 bilinear group scheme
and dP , dQ : N → N be polynomials. Consider the class of PPT algorithms A and the
source S defined as follows:

1. For every A0 ∈ A, the relation polynomial Q returned by A0 is of the form

Q(X1,X2,XT ,Y1,Y2,C) =
2∑

ν=1

|Yν |∑
i=1

Qν,i(X1,X2,XT ,C)Yν,i

+Q0(X1,X2,XT ,C) ;

2. For every A0 ∈ A, every (Q,Pµ) returned by A0, every c ∈ Z|C|p , and every ν ∈ {1, 2},
the polynomials Qν,i, 1 ≤ i ≤ |Yν |, are linearly independent;

3. For every A0 ∈ A and every (Q,Pµ) returned by A0, every polynomial P in either Pµ

has total degree at most dP , and Q has total degree at most dQ;
4. For every A0 ∈ A and every (Q,Pµ) returned by A0, S samples s ∈ Zk

p at random
and returns (Pµ(s)).

If (dP , dP )-DL holds for B, then UK holds for (B,S,A) in the ABM3-H. More precisely,
for every low-degree PPT adversary A with A0 ∈ A, there exist an extractor E and an
adversary B against (dP , dP )-DL, both with approximately the same running time as A,
such that

Advuk
B,S,A,E(λ) ≤

(
1− dP (λ)dQ(λ)

2λ−1 − 1

)−1
·Adv(dP ,dP )-dl

B,B (λ) . (7)

Here, µ in an index ranging over {1, 2, T}, k is an upper bound on the number of variables
of every polynomial P in Pµ, and we let Qν,i(S) := Qν,i(Pµ(S), c) for ν ∈ {1, 2}, where
we set Pν,0(S) := 1.

Proof overview. Fix an adversary A in the UK game as in the statement of the theorem,
and define an extractor E as in Figure 22 (top). This extractor essentially re-runs A on
its view to obtain A’s output (wν ,vν , c). Recall that this means that A encodes group
elements [yν,i]ν =

∏|Xν |−1
j=0 [wν,ijxν,j ]ν ·

∏
l[vν,ilhν,l]ν for ν ∈ {1, 2}, where [xν ]ν and [hν ]ν

are the vectors of input group elements and of hash replies. The extractor then simply
ignores the coefficients vν pertaining to the hash values and returns (w1,w2). Clearly,
extractor E will be correct if v1 = v2 = 0 in the representation returned by A.

We then show that if A returns a valid output and (dP , dP )-DL holds for B, this
will likely be the case. To that end, consider the adversary B playing the (dP , dP )-DL
game for B defined in Figure 22 (bottom). In essence, B runs A and simulates the UK
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Extractor EH1,H2,HT (trace(A)):
parse trace(A) = (rA, γ, [xµ]µ, [hµ]µ); o1, o2, oT ← 0
(Q,Pµ)← AH1,H2,HT

0 (γ; rA)
(wν ,vν , c)← AH1,H2,HT

1 (γ, [xµ]µ; rA)
// A encodes group elements
// [yν,i]ν =

∏|Xν |−1
j=0 [wν,ijxν,j ]ν ·

∏
l[vν,ilhν,l]ν

return (w1,w2)

Oracle Hµ(m):
oµ ← oµ + 1
return [hµ,oµ ]µ

Adversary B(γ, [t]1, . . . , [tdP (λ)]1, [t]2, . . . , [tdP (λ)]2):
o1, o2 ← 0; U1, U2, UT ← [ ]; S← ∅; rA ←← RA(λ)
for i = 0 to dP (λ) do [ti]T ← e([ti]1, [1]2)
(Q,Pµ)← AH1,H2,HT

0 (γ; rA); ρ←← Zk
p; σ ←← Z∗kp

for µ ∈ {1, 2, T} do
Xµ(T )← Pµ(ρ+ σT ); [xµ]µ ← [Xµ(t)]µ

X1,0(T ),X2,0(T )← 1
(wν ,vν , c)← AH1,H2,HT

1 (γ, [xµ]µ; rA)
// A encodes group elements
// [yν,i]ν =

∏|Xν |−1
j=0 [wν,ijxj ]ν ·

∏
l[vν,ilhν,l]ν

for ν ∈ {1, 2} do
for i = 1 to |Yν | do
Yν,i(T )←

∑|Xν |−1
j=0 wν,ijXν,j(T )+

∑
l vν,ilHν,l(T )

Q′(T )← Q(X1,X2,XT ,Y1,Y2, c)
if (Q′(T ) ̸= 0) then S← Berlekamp(Q′, p)
for t′ ∈ S do if ([t′]1 = [t]1) then return t′

return 0

Oracle Hν(m):
if (m /∈ Dom(Uν)) then
oν ← oν + 1
αν,oν

←← Zp

βν,oν
←← Z∗p

Hν,oν
(T )

← αν,oν
+ βν,oν

T
Uν [m]← [Hν,oν (t)]ν

return Uν [m]

Oracle HT (m):
if (m /∈ Dom(UT )) then
α←← Zp

UT [m]← [α]T
return UT [m]

Figure 22: Top: Extractor E for the algebraic adversary A in the UK game. Bottom: Ad-
versary B against (dP , dP )-DL. In all figures, µ and ν range over {1, 2, T} and {1, 2},
respectively, and k is an upper bound on the number of variables appearing in any polyno-
mial P in Pµ.

game. When preparing the group element inputs and answering hash queries, B embeds
the (dP , dP )-DL instance it is tasked with solving. Note that this is possible because B is
given the power-DL challenge up to power dP (λ) in both groups. By construction, if A
returns an output that satisfies Q, then t is a root of the polynomial Q′(T ) defined by B.
This means that B will be able to find t by inspecting the roots of Q′ whenever Q′(T ) ̸= 0.
We show that the latter happens with high probability if vν ̸= 0 for some ν ∈ {1, 2}, which
means vν must vanish if (dP , dP )-DL holds for B.

Proof. We now formally implement the intuition presented in the proof overview above.
Fix an adversary A as above, and define an extractor E and an adversary B as shown in
Figure 22. We now show how to use adversary B to prove Inequality (7) for A and E . To
that end, consider the following sequence of games (the formal description of which can be
found in Figure 23):
G0: This is the original (dP , dP )-DL game for B run with adversary B.
G1: This game proceeds as G0, but performs variable substitutions (ρ′,σ′) = (ρ+ σt,σ)

and (α′ν,l, β
′
ν,l) = (αν,l + βν,lt, βν,l) in polynomials Xµ and Hν,l. More precisely,

polynomials Xµ(T ) are now defined as Xµ(T ) ← Pµ(ρ′ + σ′(T − t)) for random ρ′

and invertible σ′. Similarly, upon a query m to Hν , game G2 samples random α′ν,l and
invertible β′ν,l, and sets Hν,l(T )← α′ν,l+β′ν,l(T−t). Inputs [xµ]µ and hash replies Uν [m]
are still computed as [Xµ(t)]µ = [Pµ(ρ′)]µ and [Hν,l(t)]ν = [α′ν,l]ν , respectively.
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Game G0(λ):
γ ←← B(1λ), t←← Zp; o1, o2 ← 0; U1, U2, UT ← [ ]
S← ∅; rA ←←RA(λ)
for i = 0 to dP (λ) do [ti]T ← e([ti]1, [1]2)
(Q,Pµ)← AH1,H2,HT

0 (γ; rA); ρ←← Zk
p ; σ ←← Z∗k

p
for µ ∈ {1, 2, T} do Xµ(T )← Pµ(ρ+ σT ); [xµ]µ ← [Xµ(t)]µ
X1,0(T ),X2,0(T )← 1; (wν , vν , c)← AH1,H2,HT

1 (γ, [xµ]µ; rA)
for ν ∈ {1, 2} do

for i = 1 to |Yν | do
Yν,i(T )←

∑|Xν |−1
j=0 wν,ijXν,j(T ) +

∑
l
vν,ilHν,l(T )

Q′(T )← Q(X1,X2,XT ,Y1,Y2, c)
if (Q′(T ) ̸= 0) then S← Berlekamp(Q′, p)
t′ ← 0; for z ∈ S do if ([z]1 = [t]1) then return t′ ← z; break
return (t = t′)

Oracle Hν(m):
if (m /∈ Dom(Uν)) then

oν ← oν + 1
αν,oν ←← Zp; βν,oν ←← Z∗

p
Hν,oν (T )← αν,oν +βν,oν T
Uν [m]← [Hν,oν (t)]ν

return Uν [m]

Oracle HT (m):
if (m /∈ Dom(UT )) then

α←← Zp; UT [m]← [α]T
return UT [m]

Game G1(λ):
γ ←← B(1λ), t←← Zp; o1, o2 ← 0; U1, U2, UT ← [ ]
S← ∅; rA ←←RA(λ)
for i = 0 to dP (λ) do [ti]T ← e([ti]1, [1]2)
(Q,Pµ)← AH1,H2,HT

0 (γ; rA); ρ′ ←← Zk
p ; σ′ ←← Z∗k

p

for µ ∈ {1, 2, T} do Xµ(T )← Pµ(ρ′ +σ′(T−t)); [xµ]µ ← [Xµ(t)]µ
X1,0(T ),X2,0(T )← 1; (wν , vν , c)← AH1,H2,HT

1 (γ, [xµ]µ; rA)
for ν ∈ {1, 2} do

for i = 1 to |Yν | do
Yν,i(T )←

∑|Xν |−1
j=0 wν,ijXν,j(T ) +

∑
l
vν,ilHν,l(T )

Q′(T )← Q(X1,X2,XT ,Y1,Y2, c)
if (Q′(T ) ̸= 0) then S← Berlekamp(Q′, p)
t′ ← 0; for z ∈ S do if ([z]1 = [t]1) then return t′ ← z; break
return (t = t′)

Oracle Hν(m):
if (m /∈ Dom(Uν)) then

oν ← oν + 1
α′

ν,oν
←← Zp; β′

ν,oν
←← Z∗

p
Hν,oν (T )
← α′

ν,oν
+ β′

ν,oν
(T − t)

Uν [m]← [Hν,oν (t)]ν
return Uν [m]

Oracle HT (m):
if (m /∈ Dom(UT )) then

α←← Zp; UT [m]← [α]T
return UT [m]

Game G2(λ):
γ ←← B(1λ), t←← Zp; o1, o2 ← 0; U1, U2, UT ← [ ]
S← ∅; rA ←←RA(λ)
for i = 0 to dP (λ) do [ti]T ← e([ti]1, [1]2)
(Q,Pµ)← AH1,H2,HT

0 (γ; rA); ρ′ ←← Zk
p

for µ ∈ {1, 2, T} do
Xµ(T, Σ′)← Pµ(ρ′ + Σ′(T − t)); [xµ]µ ← [Xµ(t, Σ′)]µ

X1,0(T ),X2,0(T )← 1; (wν , vν , c)← AH1,H2,HT
1 (γ, [xµ]µ; rA)

for ν ∈ {1, 2} do
for i = 1 to |Yν | do
Yν,i(T, Σ′,B′

ν)←∑|Xν |−1
j=0 wν,ijXν,j(T, Σ′) +

∑
l
vν,ilHν,l(T,B′

ν,l)
Q′′(T, Σ′,B′

1,B′
2)← Q(X1,X2,XT ,Y1,Y2, c)

σ′ ←← Z∗k
p ; β′

1 ←← Z∗o1
p ; β′

2 ←← Z∗o2
p ; Q′(T )← Q′′(T,σ′,β′

1,β′
2)

if (Q′(T ) ̸= 0) then S← Berlekamp(Q′, p)
t′ ← 0; for z ∈ S do if ([z]1 = [t]1) then return t′ ← z; break
return (t = t′)

Oracle Hν(m):
if (m /∈ Dom(Uν)) then

oν ← oν + 1; α′
ν,oν
←← Zp

Hν,oν (T,B′
ν)

← α′
ν,oν

+B′
ν,oν

(T − t)
Uν [m]← [Hν,oν (t,B′

ν)]ν
return Uν [m]

Oracle HT (m):
if (m /∈ Dom(UT )) then

α←← Zp; UT [m]← [α]T
return UT [m]

Figure 23: Code of the intermediate games in the proof of Inequality (7). In all figures, µ
and ν are indices ranging over {1, 2, T} and {1, 2}, respectively, and k is an upper bound
on the number of variables appearing in any polynomial P in Pµ.

G2: This game proceeds as G1, but the polynomials Xµ and Hν,l are now defined as
Xµ(T,Σ′)← Pµ(ρ′ + Σ′(T − t)) and Hν,l(T,B′ν)← α′ν,l +B′ν,l(T − t), where Σ′ is a
new vector of variables and B′ν,l is a fresh variable for every oracle call. Accordingly,
the polynomial Q′′ constructed after running A is now in variables T , Σ′, B′1 and B′2.
After defining Q′′, game G2 samples random σ′ and invertible β′ν , sets Q′(T ) ←
Q′′(T,σ′,β′1,β′2), and checks if Q′(T ) = 0. From here on, game G2 proceeds as G1.
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We now argue that subsequent games have identical success probabilities.

G0 ⇝ G1. Observe that for every fixed λ ∈ N, γ returned by B(1λ), t ∈ Zp, and random-
ness rA returned by RA(λ), the random variates ρ′, σ′, α′ν,l and β′ν,l in G1 are related
to the random variates ρ, σ, αν,l and βν,l in G0 via the transformation diag( 1 t

0 1 ), which
is invertible. Consequently, Pr[G0] = Pr[G1], since there is a one-to-one correspondence
between the random variables in the two games.
G1 ⇝ G2. Notice that A is oblivious to the changes to polynomials Xµ and Hν,l, so the
simulation of A is identical in both games. Indeed, in both games inputs to A and hash
replies are computed in the same way. After running A, G2 derives the same polynomial Q′
computed in G1 by substituting random σ′, β′1 and β′2 into Q′′, so the winning condition
is again the same in both games. Therefore, Pr[G1] = Pr[G2].

We conclude the proof by studying the winning probability in G2. First, notice
that in this game adversary A plays the UK game, since the inputs of A are obtained
by evaluating Pµ at random points and hash replies are random group elements. Now
for any λ ∈ N, γ returned by B(1λ), t ∈ Zp, randomness rA returned by RA(λ), and
vectors ρ′, α′ν and α in Zp, denote by G′ := G′(λ, γ, t, rA,ρ′,α′ν ,α) the game G2(λ) with
these random choices fixed. Then Pr[G2(λ)] =

∑
(γ,t,rA,ρ′,α′

ν ,α) Pr[G′] Pr[γ, t, rA,ρ′,α′ν ,α],
where Pr[γ, t, rA,ρ′,α′ν ,α] denotes the probability that such a tuple is drawn in G2(λ),
and the sum extends over all (γ, t, rA,ρ′,α′ν ,α) such that Pr[γ, t, rA,ρ′,α′ν ,α] ̸= 0.

Now consider the set X of all (γ, t, rA,ρ′,α′ν ,α) in the sum above such that A re-
turns (Q,Pµ) and (wν ,vν , c) for which the relation polynomial in UK is satisfied and
extractor E fails to compute a correct representation of the outputs. Notice that∑

(γ,t,rA,ρ′,α′
ν ,α)∈X

Pr[γ, t, rA,ρ′,α′ν ,α] = Advuk
B,S,A,E(λ) .

We claim that for any (γ, t, rA,ρ′,α′ν ,α) ∈ X, Pr[G′] ≥ 1 − dP (λ)dQ(λ)/(2λ−1 − 1).
Indeed, fix any (γ, t, rA,ρ′,α′ν ,α) ∈ X. Since E fails to return a correct representation of
the output of A, it must be v1 ̸= 0 or v2 ̸= 0, i.e., there exist ν∗ ∈ {1, 2}, 1 ≤ i∗ ≤ |Yν∗ |
and l∗ such that vν∗,i∗l∗ ̸= 0. We now claim that the polynomial Q′′(T,Σ′,B′1,B′2)
constructed in G2 after running A is not identically zero with overwhelming probability.
Indeed, consider the polynomial

R(S,H1,H2) := Q

(
Pµ(S),

∑|Xν |−1

j=0
wν,ijPν,j(S) +

∑
l
vν,ilHν,l, c

)

=
2∑

ν=1

|Yν |∑
i=1

Qν,i(Pµ(S), c)
(∑|Xν |−1

j=0
wν,ijPν,j(S) +

∑
l
vν,ilHν,l

)
+Q0(Pµ(S), c) .

Polynomial R is of total degree at most dP (λ)dQ(λ) and not identically zero, because the
coefficient of Hν∗,l∗ is

∑|Yν∗ |
i=1 Qν∗,ivν∗,il∗ , which is non-zero since the polynomials Qν∗,i

are assumed to be linearly independent and vν∗,i∗l∗ ̸= 0. Now notice that

Q′′(T,Σ′,B′1,B′2) = R
(
ρ′ + Σ′(T − t),α′1 +B′1(T − t),α′2 +B′2(T − t)

)
,

which again is non-zero by Lemma 2 and of degree in T at most dP (λ)dQ(λ). Moreover, by
Lemma 2, the leading coefficient in T of Q′′(T,Σ′,B′1,B′2) is a polynomial in Σ′,B′1,B′2
of total degree at most dP (λ)dQ(λ), which for random invertible σ′ and β′ν will be zero
with probability at most dP (λ)dQ(λ)/(2λ−1 − 1) by Lemma 1. Thus, with probability
at least 1 − dP (λ)dQ(λ)/(2λ−1 − 1), Q′(T ) ̸= 0 in G′. We conclude by observing that
whenever this happens, game G′ will return 1, because t is a root of Q′(T ) by construction,
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and will therefore be found by inspecting its roots. This means

Adv(dP ,dP )-dl
B,B (λ) = Pr[G0(λ)] = Pr[G2(λ)] =

∑
(γ,t,rA,ρ′,α′

ν ,α)

Pr[G′] Pr[γ, t, rA,ρ′,α′ν ,α]

≥
∑

(γ,t,rA,ρ′,α′
ν ,α)∈X

Pr[G′] Pr[γ, t, rA,ρ′,α′ν ,α] ≥
(

1− dP (λ)dQ(λ)
2λ−1 − 1

)
·Advuk

B,A,E(λ) ,

which concludes the proof.

Our requirements from the polynomials in the theorem above are identical to those
needed for the linear case of Theorem 3 (and those needed in simple groups in Theorem 7).
Hence, we obtain the hardness of KEA1, KEA3, d-KZG, and d-PKE assumption in the
AGM-H and ABM3-H settings.

Corollary 2. Let Γ be a group scheme, and d : N → N a polynomial. (1a) If DL holds
in Γ, then KEA1 holds in Γ in the AGM-H. (1b) If 2-DL holds in Γ, then KEA3 holds
in Γ in the AGM-H. (1c) If (d+ 1)-DL holds in Γ, then d-PKE holds in Γ in the AGM-H.

Let B be a type-3 bilinear group scheme. (2a) If (d−1, d−1)-DL holds in B, then d-KZG
holds in B in the ABM3-H. (2b) If (d+ 1, d+ 1)-DL holds in B, then d-PKE holds in B
in the ABM3-H.

We conclude this section by proving the following theorem, which establishes the
hardness of d-GROTH16 in the ABM3-H.

Theorem 5 (d-GROTH16 holds in ABM3-H). Let B be a type-3 bilinear group scheme,
d : N→ N a polynomial, and q(λ) := max(3, d(λ)+1, 2d(λ)−1) for every λ ∈ N. If (q, q)-DL
holds for B, then d-GROTH16 holds for (B,A) in the ABM3-H for any class of first-stage
algorithms A. More precisely, for every PPT algebraic adversary A against d-GROTH16,
there exist an extractor E and an adversary B against (q, q)-DL, both with approximately
the same running time as A, such that

Advd-groth16
B,A,E (λ) ≤

(
1− 2q(λ)

2λ−1 − 1

)−1
·Adv(q,q)-dl

B,B (λ) . (8)

Proof overview. Fix an adversary A in the d-GROTH16 game as in the statement of the
theorem, and define an extractor E as in Figure 24 (top). This extractor essentially re-
runs A on its view to obtain A’s output. The extractor then simply ignores the coefficients
pertaining to the hash values and returns those associated with the input group elements.
Clearly, extractor E will be correct if the coefficients of the hash values were zero in the
representation returned by A.

We then show that if A returns a valid output and (q, q)-DL holds for B, this will
likely be the case. To that end, consider the adversary B playing the (q, q)-DL game
for B defined in Figure 24 (bottom) (the polynomials P1, P2 and Q are as in Figure 12).
In essence, B runs A and simulates the d-GROTH16 game. When preparing the group
element inputs and answering hash queries, B embeds the (q, q)-DL instance it is tasked
with solving. Note that this is possible because B is given the power-DL challenge up
to power q(λ) in both groups. By construction, if A returns an output that satisfies the
relation polynomial of d-GROTH16, then t is a root of the polynomial Q′(R) defined by B.
This means that B will be able to find t by inspecting the roots of Q′ whenever Q′(R) ̸= 0.
We show that the latter happens with high probability if some hash coefficient is non-zero,
which means that these must vanish if (q, q)-DL holds for B.
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Extractor EH1,H2,HT (trace(A)):
parse trace(A) = (rA, ϖ, [x1]1, [x2]2, [h1]1, [h2]2, [hT ]T )
o1, o2, oT ← 0
(ℓ, (Ui, Vi,Wi)m

i=0, T )← AH1,H2,HT

0 (ϖ; rA)
((fi)ℓ

i=1,w1,1,v1,1,w1,2,v1,2,w2,v2)←
AH1,H2,HT

1 (ϖ, [x1]1, [x2]2; rA)
return (w1,1,w1,2,w2)

Oracle Hµ(m):
oµ ← oµ + 1
return [hµ,oµ ]µ

Adversary B(ϖ, [t]1, . . . , [tq(λ)]1, [t]2, . . . , [tq(λ)]2):
o1, o2 ← 0; U1, U2, UT ← [ ]; S← ∅; rA ←← RA(λ)
(ℓ, (Ui, Vi,Wi)m

i=0, T )← AH1,H2,HT

0 (ϖ; rA)
φ←← Z5

p; ψ ←← Z∗5p

for ν ∈ {1, 2} do
Xν(R)← Pν(φ+ψR)
[xν ]ν ← [Xν(t)]ν
Xν,0(R)← 1

((fi)ℓ
i=1,w1,1,v1,1,w1,2,v1,2,w2,v2)←
AH1,H2,HT

1 (ϖ, [xν ]ν ; rA)
Y1,1(R)←

∑2d(λ)+m+3
j=0 w1,1,jX1,j(R) +

∑
l v1,1,lH1,l(R)

Y1,2(R)←
∑2d(λ)+m+3

j=0 w1,2,jX1,j(R) +
∑

l v1,2,lH1,l(R)
Y2(R)←

∑d(λ)+1
j=0 w2,jX2,j(R) +

∑
l v2,lH2,l(R)

f0 ← 1; Q′(T )← Q(X1,X2,Y1, Y2, (fi)ℓ
i=0)

if (Q′(T ) ̸= 0) then S← Berlekamp(Q′, p)
for t′ ∈ S do if ([t′]1 = [t]1) then return t′

return 0

Oracle Hν(m):
if (m /∈ Dom(Uν))

then
oν ← oν + 1
ρν,oν

←← Zp

σν,oν ←← Z∗p
Hν,oν (T )←
ρν,oν

+ σν,oν
R

Uν [m]← [Hν,oν
(t)]ν

return Uν [m]

Oracle HT (m):
if (m /∈ Dom(UT ))

then
ρ←← Zp

UT [m]← [ρ]T
return UT [m]

Figure 24: Top: Extractor E for the algebraic adversary A in the d-GROTH16 game.
Bottom: Adversary B against (q, q)-DL. In all figures, µ and ν range over {1, 2, T}
and {1, 2}, respectively, and (vectors of) polynomials P1, P2 and Q are as in Figure 12.

Proof. We now formally implement the intuition presented in the proof overview above.
Fix an adversary A as above, and define an extractor E and an adversary B as shown in
Figure 24. We now show how to use adversary B to prove Inequality (8) for A and E . To
that end, consider the following sequence of games (the formal description of which can be
found in Figure 25):
G0: This is the original (q, q)-DL game for B run with adversary B.
G1: This game proceeds as G0, but performs variable substitutions (φ′,ψ′) = (φ +
ψt,ψ) and (ρ′ν,l, σ

′
ν,l) = (ρν,l + σν,lt, σν,l) in polynomials Xν and Hν,l. More precisely,

polynomials Xν(R) are now defined as Xν(R)← Pν(φ′ +ψ′(R− t)) for random φ′

and invertible ψ′. Similarly, upon a query m to Hν , game G2 samples random ρ′ν,l and
invertible σ′ν,l, and sets Hν,l(R)← ρ′ν,l +σ′ν,l(R−t). Inputs [xν ]ν and hash replies Uν [m]
are still computed as [Xν(t)]ν = [Pν(φ′)]ν and [Hν,l(t)]ν = [ρ′ν,l]ν , respectively.

G2: This game proceeds as G1, but Xν and Hν,l are now defined as Xν(R,Ψ′)← Pν(φ′ +
Ψ′(R− t)) and Hν,l(R,Σ′ν)← ρ′ν,l + Σ′ν,l(R− t), where Ψ′ is a new vector of variables
and Σ′ν,l is a fresh variable for every oracle call. Accordingly, the polynomial Q′′
constructed after running A is now in variables R, Ψ′, Σ′1 and Σ′2. After defining Q′′,
game G2 samples random ψ′ and invertible σ′ν , sets Q′(R)← Q′′(R,ψ′,σ′1,σ′2), and
checks if Q′(R) = 0. From here on, game G2 proceeds as G1.

We now argue that subsequent games have identical success probabilities.
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Game G0(λ):
ϖ ←← B(1λ); t←← Zp; o1, o2 ← 0; U1, U2, UT ← [ ]
S← ∅; rA ←←RA(λ)
(ℓ, (Ui, Vi, Wi)m

i=0, T )← AH1,H2,HT
0 (ϖ; rA); φ←← Z5

p; ψ ←← Z∗5
p

for ν ∈ {1, 2} do
Xν(R)← Pν(φ+ ψR); [xν ]ν ← [Xν(t)]ν ; Xν,0(R)← 1

((fi)ℓ
i=1,w1,1, v1,1,w1,2, v1,2,w2, v2)← AH1,H2,HT

1 (ϖ, [xν ]ν ; rA)
Y1,1(R)←

∑2d(λ)+m+3
j=0 w1,1,jX1,j(R) +

∑
l
v1,1,lH1,l(R)

Y1,2(R)←
∑2d(λ)+m+3

j=0 w1,2,jX1,j(R) +
∑

l
v1,2,lH1,l(R)

Y2(R)←
∑d(λ)+1

j=0 w2,jX2,j(R) +
∑

l
v2,lH2,l(R)

f0 ← 1; Q′(R)← Q(X1,X2,Y1, Y2, (fi)ℓ
i=0)

if (Q′(R) ̸= 0) then S← Berlekamp(Q′, p)
t′ ← 0; for z ∈ S do if ([z]1 = [t]1) then return t′ ← z; break
return (t = t′)

Oracle Hν(m):
if (m /∈ Dom(Uν)) then

oν ← oν + 1
ρν,oν ←← Zp

σν,oν ←← Z∗
p

Hν,oν (R)←
ρν,oν + σν,oν R

Uν [m]← [Hν,oν (t)]ν
return Uν [m]

Oracle HT (m):
if (m /∈ Dom(UT )) then

ρ←← Zp; UT [m]← [ρ]T
return UT [m]

Game G1(λ):
ϖ ←← B(1λ); t←← Zp; o1, o2 ← 0; U1, U2, UT ← [ ]
S← ∅; rA ←←RA(λ)
(ℓ, (Ui, Vi, Wi)m

i=0, T )← AH1,H2,HT
0 (ϖ; rA); φ′ ←← Z5

p; ψ′ ←← Z∗5
p

for ν ∈ {1, 2} do
Xν(R)← Pν(φ′ + ψ′(R− t)); [xν ]ν ← [Xν(t)]ν ; Xν,0(R)← 1

((fi)ℓ
i=1,w1,1, v1,1,w1,2, v1,2,w2, v2)← AH1,H2,HT

1 (ϖ, [xν ]ν ; rA)
Y1,1(R)←

∑2d(λ)+m+3
j=0 w1,1,jX1,j(R) +

∑
l
v1,1,lH1,l(R)

Y1,2(R)←
∑2d(λ)+m+3

j=0 w1,2,jX1,j(R) +
∑

l
v1,2,lH1,l(R)

Y2(R)←
∑d(λ)+1

j=0 w2,jX2,j(R) +
∑

l
v2,lH2,l(R)

f0 ← 1; Q′(R)← Q(X1,X2,Y1, Y2, (fi)ℓ
i=0)

if (Q′(R) ̸= 0) then S← Berlekamp(Q′, p)
t′ ← 0; for z ∈ S do if ([z]1 = [t]1) then return t′ ← z; break
return (t = t′)

Oracle Hν(m):
if (m /∈ Dom(Uν)) then

oν ← oν + 1
ρ′

ν,oν
←← Zp

σ′
ν,oν
←← Z∗

p
Hν,oν (R)←

ρ′
ν,oν

+ σ′
ν,oν

(R− t)
Uν [m]← [Hν,oν (t)]ν

return Uν [m]

Oracle HT (m):
if (m /∈ Dom(UT )) then

ρ←← Zp; UT [m]← [ρ]T
return UT [m]

Game G2(λ):
ϖ ←← B(1λ); t←← Zp; o1, o2 ← 0; U1, U2, UT ← [ ]
S← ∅; rA ←←RA(λ)
(ℓ, (Ui, Vi, Wi)m

i=0, T )← AH1,H2,HT
0 (ϖ; rA); φ′ ←← Z5

p
for ν ∈ {1, 2} do
Xν(R, Ψ′)← Pν(φ′ + Ψ′(R− t))
[xν ]ν ← [Xν(t, Ψ′)]ν ; Xν,0(R)← 1

((fi)ℓ
i=1,w1,1, v1,1,w1,2, v1,2,w2, v2)← AH1,H2,HT

1 (ϖ, [xν ]ν ; rA)
Y1,1(R, Ψ′, Σ′

1)←∑2d(λ)+m+3
j=0 w1,1,jX1,j(R, Ψ′) +

∑
l
v1,1,lH1,l(R, Σ′

1)
Y1,2(R, Ψ′, Σ′

1)←∑2d(λ)+m+3
j=0 w1,2,jX1,j(R, Ψ′) +

∑
l
v1,2,lH1,l(R, Σ′

1)

Y2(R, Ψ′, Σ′
2)←

∑d(λ)+1
j=0 w2,jX2,j(R, Ψ′) +

∑
l
v2,lH2,l(R, Σ′

2)
f0 ← 1; Q′′(R, Ψ′, Σ′

1, Σ′
2)← Q(X1,X2,Y1, Y2, (fi)ℓ

i=0)
ψ′ ←← Z∗5

p ; σ′
1 ←← Z∗o1

p ; σ′
2 ←← Z∗o2

p ; Q′(R)← Q′′(R,ψ′,σ′
1,σ′

2)
if (Q′(R) ̸= 0) then S← Berlekamp(Q′, p)
t′ ← 0; for z ∈ S do if ([z]1 = [t]1) then return t′ ← z; break
return (t = t′)

Oracle Hν(m):
if (m /∈ Dom(Uν)) then

oν ← oν + 1
ρ′

ν,oν
←← Zp

Hν,oν (R, Σ′
ν)←

ρ′
ν,oν

+ Σ′
ν,oν

(R− t)
Uν [m]←

[Hν,oν (t, Σ′
ν)]ν

return Uν [m]

Oracle HT (m):
if (m /∈ Dom(UT )) then

ρ←← Zp; UT [m]← [ρ]T
return UT [m]

Figure 25: Code of the intermediate games in the proof of Inequality (8). In all figures,
ν is an index ranging over {1, 2}, and (vectors of) polynomials P1, P2 and Q are as in
Figure 12.
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G0 ⇝ G1. Observe that for every fixed λ ∈ N, ϖ returned by B(1λ), t ∈ Zp, and random-
ness rA returned by RA(λ), the random variates φ′, ψ′, ρ′ν,l and σ′ν,l in G1 are related
to the random variates φ, ψ, ρν,l and σν,l in G0 via the transformation diag( 1 t

0 1 ), which
is invertible. Consequently, Pr[G0] = Pr[G1], since there is a one-to-one correspondence
between the random variables in the two games.
G1 ⇝ G2. Notice that A is oblivious to the changes to polynomials Xν and Hν,l, so the
simulation of A is identical in both games. Indeed, in both games inputs to A and hash
replies are computed in the same way. After running A, G2 derives the same polynomial Q′
computed in G1 by substituting random ψ′, σ′1 and σ′2 into Q′′, so the winning condition
is again the same in both games. Therefore, Pr[G1] = Pr[G2].

We conclude the proof by studying the winning probability in G2. First, notice that in
this game adversary A plays the d-GROTH16 game, since the inputs of A are obtained by
evaluating Pν at random points and hash replies are random group elements. Now for
any λ ∈ N, ϖ returned by B(1λ), t ∈ Zp, randomness rA returned byRA(λ), and vectors φ′,
ρ′ν and ρ in Zp, denote by G′ := G′(λ,ϖ, t, rA,φ′,ρ′ν ,ρ) the game G2(λ) with these
random choices fixed. Then Pr[G2(λ)] =

∑
(ϖ,t,rA,φ′,ρ′

ν ,ρ) Pr[G′] Pr[ϖ, t, rA,φ′,ρ′ν ,ρ],
where Pr[ϖ, t, rA,φ′,ρ′ν ,ρ] denotes the probability that such a tuple is drawn in G2(λ),
and the sum extends over all (ϖ, t, rA,φ′,ρ′ν ,ρ) such that Pr[ϖ, t, rA,φ′,ρ′ν ,ρ] ̸= 0.

Now consider the set X of all (ϖ, t, rA,φ′,ρ′ν ,ρ) in the sum above such that A re-
turns (ℓ, (Ui, Vi,Wi)m

i=0, T ) and ((fi)ℓ
i=1,w1,1,v1,1,w1,2,v1,2,w2,v2) for which the relation

polynomial in d-GROTH16 is satisfied and extractor E fails to compute a correct represen-
tation of the outputs. Notice that∑

(ϖ,t,rA,φ′,ρ′
ν ,ρ)∈X

Pr[ϖ, t, rA,φ′,ρ′ν ,ρ] = Advd-groth16
B,A,E (λ) .

We claim that for any (ϖ, t, rA,φ′,ρ′ν ,ρ) ∈ X, Pr[G′] ≥ 1− 2q(λ)/(2λ−1 − 1). Indeed,
fix any (ϖ, t, rA,φ′,ρ′ν ,ρ) ∈ X. Since E fails to return a correct representation of the
output of A, it must be either v1,1 ̸= 0, or v1,2 ≠ 0, or v2 ̸= 0. We now show that either
way, the polynomial Q′′(R,Ψ′,Σ′1,Σ′2) constructed in G2 after running A is not identically
zero with overwhelming probability. To that end, consider the polynomial V (S,H1,H2)
given by

V :=
(2d+m+3∑

j=0
w1,1,jP1,j(S) +

∑
l

v1,1,lH1,l

)(
d+1∑
j=0

w2,jP2,j(S) +
∑

l

v2,lH2,l

)

−

(2d+m+3∑
j=0

w1,2,jP1,j(S) +
∑

l

v1,2,lH1,l

)
P2,3(S) (9)

− P1,1(S)P2,1(S)−
ℓ∑

i=0
fiP1,2d+3+i(S)P2,2(S) .

We will prove further down that polynomial V (S,H1,H2) is not identically zero and
of total degree at most 2q(λ). Assuming for the moment that that is the case, notice that

Q′′(R,Ψ′,Σ′1,Σ′2) = V
(
φ′ + Ψ′(R− t),ρ′1 + Σ′1(R− t),ρ′2 + Σ′2(R− t)

)
,

which again is non-zero by Lemma 2 and of degree in R at most 2q(λ). Moreover, by
Lemma 2, the leading coefficient in R of Q′′(R,Ψ′,Σ′1,Σ′2) is a polynomial in Ψ′,Σ′1,Σ′2
of total degree at most 2q(λ), which for random invertible ψ′ and σ′ν will be zero with
probability at most 2q(λ)/(2λ−1 − 1) by Lemma 1. Thus, we have Q′(R) ̸= 0 in G′
with probability at least 1 − 2q(λ)/(2λ−1 − 1). We can now derive Inequality (8) by
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observing that whenever this happens, game G′ will return 1, because t is a root of Q′(R)
by construction, and will therefore be found by inspecting its roots. This means

Adv(q,q)-dl
B,B (λ) = Pr[G0(λ)] = Pr[G2(λ)] =

∑
(ϖ,t,rA,φ′,ρ′

ν ,ρ)

Pr[G′] Pr[ϖ, t, rA,φ′,ρ′ν ,ρ]

≥
∑

(ϖ,t,rA,φ′,ρ′
ν ,ρ)∈X

Pr[G′] Pr[ϖ, t, rA,φ′,ρ′ν ,ρ] ≥
(

1− 2q(λ)
2λ−1 − 1

)
·Advd-groth16

B,A,E (λ) .

To conclude our proof, it remains to be shown that the polynomial V defined in (9) is
not identically zero and of total degree at most 2q(λ). To prove that V ̸= 0, assume by
contradiction that V = 0. We proceed by case distinction, according to whether v1,1 ̸= 0,
or v1,2 ̸= 0, or v2 ̸= 0 in the output of A.

First case: v1,1 ̸= 0. Let l∗ be such that v1,1,l∗ ̸= 0. Then the term in H1,l∗ has
coefficient

v1,1,l∗

(
d+1∑
j=0

w2,jP2,j(S) +
∑

l

v2,lH2,l

)
− v1,2,l∗P2,3(S) , (10)

which must be zero as a polynomial in S and H2 since we are assuming V = 0.
Since v1,1,l∗ ̸= 0 and the polynomials in P2 are linearly independent, this means v2,l = 0
for all l and w2,j = 0 for all j ̸= 3. Simplifying the equation V = 0 accordingly, we obtain(2d+m+3∑

j=0

(
w2,4w1,1,j −w1,2,j

)
P1,j(S) +

∑
l

(
w2,4v1,1,l − v1,2,l

)
H1,l

)
P2,3(S)

− P1,1(S)P2,1(S)−
ℓ∑

i=0
fiP1,2d+3+i(S)P2,2(S) = 0 .

This, however, is a contradiction, because the monomial P1,1(S)P2,1(S) = S1S2S
2
3S

2
4 is

the only one with tuple of degrees (1, 1, 2, 2, 0), and since it has coefficient −1 ̸= 0, the
equality above cannot hold.

Second case: v1,2 ̸= 0. Let l∗ be such that v1,2,l∗ ̸= 0. We again look at the term
in H1,l∗ , whose coefficient given in (10) must be zero as a polynomial in S and H2 since
we are assuming V = 0. Since v1,2,l∗ ̸= 0, it must be v1,1,l∗ ̸= 0 as well, because otherwise
we would have P2,3(S) = 0, a contradiction. From here on, the argument proceeds as in
the first case above.

Third case: v2 ̸= 0. Let l∗ be such that v2,l∗ ̸= 0. Then the term in H2,l∗ has coefficient

v2,l∗

(2d+m+3∑
j=0

w1,1,jP1,j(S) +
∑

l

v1,1,lH1,l

)
,

which must be zero as a polynomial in S and H1 since we are assuming V = 0. Taking
into account that v2,l∗ ̸= 0 and simplifying the equation V = 0 accordingly, we obtain

−

(2d+m+3∑
j=0

w1,2,jP1,j(S) +
∑

l

v1,2,lH1,l

)
P2,3(S)− P1,1(S)P2,1(S)

−
ℓ∑

i=0
fiP1,2d+3+i(S)P2,2(S) = 0 .
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This is again a contradiction, because the monomial P1,1(S)P2,1(S) = S1S2S
2
3S

2
4 is the

only one with tuple of degrees (1, 1, 2, 2, 0), and since it has coefficient −1 ̸= 0, the equality
above cannot hold.

This shows that V (S,H1,H2) ̸= 0. To prove the bound on the degree, notice that

deg(V ) ≤ max

deg(P1,1P2,1),deg

(2d+m+3∑
j=0

w1,2,jP1,j +
∑

l

v1,2,lH1,l

)
P2,3

,
deg

(2d+m+3∑
j=0

w1,1,jP1,j +
∑

l

v1,1,lH1,l

)(
d+1∑
j=0

w2,jP2,j +
∑

l

v2,lH2,l

),
deg
(

ℓ∑
i=0

fiP1,2d+3+iP2,2

)
= max

deg
(2d+m+3∑

j=0
w1,1,jP1,j +

∑
l

v1,1,lH1,l

)
+ deg

(
d+1∑
j=0

w2,jP2,j +
∑

l

v2,lH2,l

)
, 6,

deg
(2d+m+3∑

j=0
w1,2,jP1,j +

∑
l

v1,2,lH1,l

)
+ deg(P2,3),

deg
(

ℓ∑
i=0

fiP1,2d+3+i

)
+ deg(P2,2)


≤ max

[2d+m+3max
j=0

(
deg(P1,j), 1

)
+ d+1max

j=0

(
deg(P2,j), 1

)
, 6, 2d+m+3max

j=0

(
deg(P1,j), 1

)
+ 3,

ℓmax
i=0

deg(P1,2d+3+i) + 3
]

≤ max
[
2 max(d(λ), 1), 6,max(d(λ), 1) + 3, d(λ) + 3

]
≤ 2q(λ) .

This concludes the proof.

8 Conclusion and Relevance to Applications
We established in Theorem 3 that the UK assumption holds in bilinear generic groups
for adversaries A0 that return flexible polynomials Q and P . The d-PKE, d-KZG, and
d-GROTH16 assumptions are instances of the UK assumption, where A0 returns specific
polynomials Q and P . We then prove that the UK assumption for linear Q also holds
in ABM3-H. This implies that the d-PKE and d-KZG assumptions are also sound with
respect to algebraic adversaries. We proved separately that d-GROTH16 holds in ABM3-H.

We may now base the knowledge soundness of the modified Groth16 SNARK [Gro16] on
the d-GROTH16 assumption as follows. For any adversary against the scheme that outputs
an accepting proof, there is also an adversary that outputs the coefficient representation
of the proof based only on its input elements: Simply run the d-GROTH16 extractor after
running the adversary. Moreover, for any such adversary, there is a reduction to q-DL in
the standard model: Run the existing AGM reduction [FKL18, Theorem 7.2], utilizing the
coefficient representation output by the extractor as the coefficient representation needed
by the AGM reduction. We obtain the following result.



Balthazar Bauer, Pooya Farshim, Patrick Harasser, Markulf Kohlweiss 49

Corollary 3. Let B be a type-3 bilinear group scheme, and d : N → N a polynomial.
Then Groth16 for degree-d QAPs is knowledge sound in the standard model, based on the
d-GROTH16 and (2d− 1)-DL assumptions.10

The knowledge soundness of KZG polynomial commitments in the standard model
directly follows from the d-KZG assumption.

However, when applying the d-KZG assumption to lift the AGM proof of, e.g., PLONK,
to the standard model, the following subtlety arises. The reduction to the soundness
of PLONK’s PIOP requires the extraction of the committed polynomial at the time
the commitment is sent—which corresponds to hashing in the Fiat–Shamir transformed
SNARK. However, our extractor is only guaranteed to succeed when provided with the
full view of an adversary that also outputs a verifying polynomial evaluation proof. To
address this issue one would have to truncate the view of the adversary handed to the
extractor to be only up to the point in which the adversary produces the commitment.11

A fascinating direction is to extend the UK assumption to interactive settings possibly
with “online” extractors to enable the layered approach for complex security notions such
as simulation extractability.
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Extractor Eop,H(trace(A)):
parse trace(A) = (rA,u,h)
o, v ← 0; Uτ , UH ← [ ]; Uτ [1]← u0

(Q,P )← Aop,H
0 (u0; rA)

for j = 1 to |X| − 1 do
Uτ [Pj(S)]← uj

(v, c)← Aop,H
1 (u; rA); P0(S)← 1

for i = 1 to |Y | do
if (vi /∈ Rng(Uτ )) then
v ← v + 1; Uτ [Rv]← vi

parse U−1
τ [vi] =∑|X|−1

j=0 wijPj(S) +
∑

l bilRl

return w

Proc. op(h1, h2):
for i = 1 to 2 do

if (hi /∈ Rng(Uτ )) then
v ← v + 1; Uτ [Rv]← hi

xi ← U−1
τ [hi]

x← x1 + x2; o← o+ 1
if (x /∈ Dom(Uτ )) then Uτ [x]← ho

return Uτ [x]

Proc. H(m):
if (m /∈ Dom(UH)) then
v ← v + 1; UH [m]← Rv

r ← UH [m]; o← o+ 1
if (r /∈ Dom(Uτ )) then Uτ [r]← ho

return Uτ [r]

Figure 26: Definition of the extractor E from the proof of Theorem 6.

Appendix A: Soundness of Linear UK in GGM-H
In this appendix, we give a self-contained proof of the hardness of the UK assumption in
the GGM-H for the case of linear relation polynomials.

Theorem 6 (Linear UK holds in GGM-H). Let p ∈ N be prime, and fix G ⊆ {0, 1}∗
with |G| = p. Consider the class of algorithms A and the source S defined as follows:

1. For every A0 ∈ A, the relation polynomial Q returned by A0 is of the form

Q(X,Y ,C) =
|Y |∑
i=1

Qi(X,C)Yi +Q0(X,C) ;

2. For every A0 ∈ A, every (Q,P ) returned by A0, and every c ∈ Z|C|p , the polynomi-
als Qi, 1 ≤ i ≤ |Y |, are linearly independent;

3. For every A0 ∈ A and every (Q,P ) returned by A0, S samples s ∈ Zk
p at random

and returns P (s).
Then the UK assumption holds in the GGM-H with parameters (p,G) with respect to the
class of first-stage adversaries A and source S above. More precisely, for every low-degree
adversary A with A0 ∈ A, there exists an extractor E such that

Advuk
p,G,S,A,E ≤ O

(
(m+ n+ qop + qH + dQ)2 · dP

p

)
. (11)

Here, dQ is an upper bound on the total degree of Q, dP and k are upper bounds on the
total degree and the number of variables of every polynomial P in P , m and n are upper
bounds on |X| − 1 and |Y |, qop and qH are upper bounds on the number of queries made
by A to the respective oracles, and we let P0(S) := 1 in Qi(S) := Qi(P (S), c).

Proof. Fix an adversary A in the UK game as in the statement of the theorem, and define
an extractor E as in Figure 26. This extractor essentially re-runs A on its view and observes
its oracle queries, keeping track of the discrete logarithms of the elements queried by A
via a table Uτ . Whenever E is unable to “explain” an element in G, it instead stores a
fresh variable Rv in Uτ .

We claim that this extractor allows proving Inequality (11). To that end, consider the
following sequence of games (the formal description of which can be found in Figure 27):
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G0: This is the original UK game in the GGM-H with parameters (p,G) and source S,
run with adversary A and extractor E . We omit repeated invocations of op to create
the inputs of A1, and instead compute τ(x) directly. We also reformulate the winning
condition by not applying τ in the last two clauses, which results in an equivalent
game since τ is injective. The operation, hashing and pairing oracles are augmented to
construct the view of A along the way.

G1: This game proceeds as G0, but the encoding τ is implemented via lazy sampling. More
precisely, instead of sampling τ , G1 initializes a table Tτ ← [ ]. Oracles op and H are
then implemented via lazy sampling from G using table Tτ .

G2: This game proceeds as G1, but it replaces the values xi generated by S with the
corresponding polynomials Pi(S) evaluated at formal variables S. Likewise, whenever
it lazily samples a domain point in Tτ , it instead saves a fresh variable Rv. Only after A
and E are run, G2 samples random s and r and evaluates the inputs and outputs of A
at these points, and checks the winning condition as in G1. Notice that in this game,
table Tτ is populated exactly as table Uτ compiled by E .

G3: This game proceeds as G2, but we omit the sampling of s and r, and instead regard
the winning condition as a set of (in)equalities between polynomials in S and R.

We now argue that the difference between the success probabilities in subsequent games
is small.

G0 ⇝ G1. Notice that G0 and G1 have the same distribution, because the oracles given to A
in the two games are distributed identically. In particular, this means Pr[G1] = Pr[G0].
G1 ⇝ G2. Let Bad be the event in G2 that there are two different polynomials in Dom(Tτ )
which result in the same value when evaluating S and R at random s and r. Then G1
and G2 are identical until Bad, and by the fundamental lemma of game playing we therefore
have |Pr[G2]− Pr[G1]| ≤ Pr[Bad].

We bound the latter probability via Lemma 1. Consider the adversary B in the
Schwartz–Zippel game defined in Figure 28. Here, B simulates G2 to A and then returns
all entries in Dom(Tτ ). Notice that if Bad occurs, then B wins the SZ-game, and that Tτ

contains at most m+ n+ 3qop + qH + 1 polynomials of degree at most dP . By Lemma 1,
Pr[Bad] ≤ (m+ n+ 3qop + qH + 1)2 · dP /2p.

G2 ⇝ G3. Let Bad′ be the event in G3 that Q(x,y, c) ̸= 0 or yi ̸=
∑|X|−1

j=0 wijxj for
some 1 ≤ i ≤ |Y |, but the corresponding equality holds when evaluating S and R at
random s and r. Then G2 and G3 are identical until Bad′, and by the fundamental lemma
of game playing we have |Pr[G3]− Pr[G2]| ≤ Pr[Bad′].

We again bound the latter probability via Lemma 1. Consider the adversaries B′ and B′i
in the Schwartz–Zippel game defined in Figure 28. Here, B′ and B′i simulate G3 to A and
then return (Q(x,y, c), 0) and (yi −

∑|X|−1
j=0 wijxj , 0), respectively. Notice that if Bad′

occurs, then B′ or B′i win the SZ-game for some 1 ≤ i ≤ |Y |, and that the polynomials
returned by B′ and B′i have total degree at most dQdP and dP , respectively. By Lemma 1,
Pr[Bad′] ≤ dQdP /p+ n · dP /p.

We conclude the proof by showing that the winning probability of A in G3 is zero.
Notice that if the output of A is such that the polynomial Q is not satisfied, then A has
trivially lost the game. If on the other hand Q is satisfied, we obtain

|Y |∑
i=1

Qi(S)
(|X|−1∑

j=0
wijPj(S) +

∑
l

bilRl

)
+Q0(S) = 0

as a polynomial in S and R. We want to show that this implies bil = 0 for all 1 ≤ i ≤ |Y |
and all l, since the representation returned by E will be correct if that is the case. Looking
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Game G0:
τ ←← Inj(Zp, G); TH ← [ ]; u0 ← τ(1); o← 0
rA ←←RA; (Q,P )← Aop,H

0 (u0; rA)
s←← Zk

p ; x← P (s); x0 ← 1
u← τ(x); (v, c)← Aop,H

1 (u; rA)
trace(A)← (rA,u,h); w ←← Eop,H(trace(A))
y ← τ−1(v)
return (Q(X,Y , c) ̸= 0) ∧ (Q(x,y, c) = 0)
∧
(

(∃i)(yi ̸=
∑|X|−1

j=0 wijxj)
)

Proc. op(h1, h2):
x1 ← τ−1(h1); x2 ← τ−1(h2)
o← o + 1; ho ← τ(x1 + x2); return ho

Proc. H(m):
if m /∈ Dom(TH) then r ←← Zp; TH [m]← r
r ← TH [m]; o← o + 1; ho ← τ(r)
return ho

Game G1:
Tτ , TH ← [ ]; u0 ←← G; Tτ [1]← u0; o← 0
rA ←←RA; (Q,P )← Aop,H

0 (u0; rA)
s←← Zk

p ; x← P (s); x0 ← 1
for j = 1 to |X| − 1 do

if (xj /∈ Dom(Tτ )) then
uj ←← G \ Rng(Tτ ); Tτ [xj ]← uj

uj ← Tτ [xj ]
(v, c)← Aop,H

1 (u; rA)
trace(A)← (rA,u,h); w ←← Eop,H(trace(A))
for i = 1 to |Y | do

if (vi /∈ Rng(Tτ )) then
yi ←← Zp \Dom(Tτ ); Tτ [yi]← vi

yi ← T −1
τ [vi]

return (Q(X,Y , c) ̸= 0) ∧ (Q(x, y, c) = 0)
∧
(

(∃i)(yi ̸=
∑|X|−1

j=0 wijxj)
)

Proc. op(h1, h2):
for i = 1 to 2 do

if (hi /∈ Rng(Tτ )) then
xi ← Zp \Dom(Tτ ); Tτ [xi]← hi

xi ← T −1
τ [hi]

x← x1 + x2
if (x /∈ Dom(Tτ )) then

h←← G \ Rng(Tτ ); Tτ [x]← h
o← o + 1; ho ← Tτ [x]; return ho

Proc. H(m):
if (m /∈ Dom(TH)) then r ←← Zp; TH [m]← r
r ← TH [m]
if (r /∈ Dom(Tτ )) then

h←← G \ Rng(Tτ ); Tτ [r]← h
o← o + 1; ho ← Tτ [r]; return ho

Game G2:
Tτ , TH ← [ ]; o, v ← 0; u0 ←← G; Tτ [1]← u0
rA ←←RA; (Q,P )← Aop,H

0 (u0; rA)
x← P (S); x0 ← 1
for j = 1 to |X| − 1 do

if (xj /∈ Dom(Tτ )) then
uj ←← G \ Rng(Tτ ); Tτ [xj ]← uj

uj ← Tτ [xj ]
(v, c)← Aop,H

1 (u; rA)
trace(A)← (rA,u,h); w ←← Eop,H(trace(A))
for i = 1 to |Y | do

if (vi /∈ Rng(Tτ )) then v ← v + 1; Tτ [Rv ]← vi

yi ← T −1
τ [vi]

parse yi =
∑|X|−1

j=0 wijPj(S) +
∑

l
bilRl

s←← Zk
p ; r ←← Z2qop+qH+|Y |

p ; x← P (s)
for i = 1 to |Y | do yi ←

∑|X|−1
j=0 wijxj +

∑
l
bilrl

return (Q(X,Y , c) ̸= 0) ∧ (Q(x, y, c) = 0)
∧
(

(∃i)(yi ̸=
∑|X|−1

j=0 wijxj)
)

Game G3:
Tτ , TH ← [ ]; o, v ← 0; u0 ←← G; Tτ [1]← u0
rA ←←RA; (Q,P )← Aop,H

0 (u0; rA)
x← P (S); x0 ← 1
for j = 1 to |X| − 1 do

if (xj /∈ Dom(Tτ )) then
uj ←← G \ Rng(Tτ ); Tτ [xj ]← uj

uj ← Tτ [xj ]
(v, c)← Aop,H

1 (u; rA)
trace(A)← (rA,u,h); w ←← Eop,H(trace(A))
for i = 1 to |Y | do

if (vi /∈ Rng(Tτ )) then
v ← v + 1; Tτ [Rv ]← vi

yi ← T −1
τ [vi]

return (Q(X,Y , c) ̸= 0) ∧ (Q(x,y, c) = 0)
∧
(

(∃i)(yi ̸=
∑|X|−1

j=0 wijxj)
)

Proc. op(h1, h2):
for i = 1 to 2 do

if (hi /∈ Rng(Tτ )) then v ← v + 1; Tτ [Rv ]← hi

xi ← T −1
τ [hi]

x← x1 + x2
if (x /∈ Dom(Tτ )) then h←← G\Rng(Tτ ); Tτ [x]← h
o← o + 1; ho ← Tτ [x]; return ho

Proc. H(m):
if (m /∈ Dom(TH)) then

v ← v + 1; Tτ [m]← Rv

r ← TH [m]
if (r /∈ Dom(Tτ )) then

h←← G \ Rng(Tτ ); Tτ [r]← h
o← o + 1; ho ← Tτ [r]; return ho

Figure 27: Code of the intermediate games in the proof of Inequality (11).
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Adversaries B/B′/B′i:
Tτ , TH ← [ ]; o, v ← 0; u0 ←← G; Tτ [1]← u0; rA ←← RA
(Q,P )← Aop,H

0 (u0; rA); x← P (S); x0 ← 1
for j = 1 to |X| − 1 do

if (xj /∈ Dom(Tτ )) then uj ←← G \ Rng(Tτ ); Tτ [xj ]← uj

uj ← Tτ [xj ]
(v, c)← Aop,H

1 (u; rA); trace(A)← (rA,u,h); w ←← Eop,H(trace(A))
for i = 1 to |Y | do

if (vi /∈ Rng(Tτ )) then v ← v + 1; Tτ [Rv]← vi

yi ← T−1
τ [vi]

B: return Dom(Tτ ) B′: return (Q(x,y, c), 0) B′i: return
(
yi−

∑|X|−1
j=0 wijxj , 0

)
Figure 28: Definition of the adversaries B, B′ and B′i from the proof of Theorem 6. In all
cases, oracles op and H are defined as in Figure 27 (bottom).

at the linear terms in R, we obtain that for every l,

|Y |∑
i=1

Qi(S)bil = 0 .

Recall that, by assumption, polynomials Qi are linearly independent, which means
that bil = 0 for all 1 ≤ i ≤ |Y | and all l. This proves that if A returns a valid output,
then E returns an accurate representation of y in terms of x, which means that Pr[G2] = 0.

Collecting all the terms above, we obtain

Advuk
p,G,S,A,E ≤

(m+ n+ 3qop + qH + 1)2 · dP

2p + dQdP

p
+ ndP

p

≤ O
(

(m+ n+ qop + qH + dQ)2 · dP

p

)
,

which concludes the proof.

Appendix B: Soundness of Linear UK in AGM-H
In this appendix, we give a self-contained proof of the hardness of the UK assumption in
the AGM-H for the case of linear relation polynomials.

Theorem 7 (Linear UK holds in AGM-H). Let Γ be a group scheme and dP , dQ : N→ N
be polynomials. Consider the class of PPT algorithms A and the source S defined as
follows:

1. For every A0 ∈ A, the relation polynomial Q returned by A0 is of the form

Q(X,Y ,C) =
|Y |∑
i=1

Qi(X,C)Yi +Q0(X,C) ;

2. For every A0 ∈ A, every (Q,P ) returned by A0, and every c ∈ Z|C|p , the polynomials
Qi, 1 ≤ i ≤ |Y |, are linearly independent;

3. For every A0 ∈ A and every (Q,P ) returned by A0, every polynomial P in P has
total degree at most dP , and Q has total degree at most dQ;
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Extractor EH(trace(A)):
parse trace(A) = (rA, γ, [x], [h]); o← 0
(Q,P )← AH

0 (γ; rA); (w,v, c)← AH
1 (γ, [x]; rA)

// A encodes elements [yi] =
∏|X|−1

j=0 [wijxj ] ·
∏

l[vilhl]
return w

Oracle H(m):
o← o+ 1
return [ho]

Adversary B(γ, [t], [t2], . . . , [tdP (λ)]):
o← 0; U ← [ ]; S← ∅; rA ←← RA(λ); (Q,P )← AH

0 (γ; rA)
ρ←← Zk

p; σ ←← Z∗kp ; X(T )← P (ρ+ σT ); [x]← [X(t)]
(w,v, c)← AH

1 (γ, [x]; rA)
// A encodes elements [yi] =

∏|X|−1
j=0 [wijxj ] ·

∏
l[vilhl]

for i = 1 to |Y | do Yi(T )←
∑|X|−1

j=0 wijXj(T )+
∑

l vilHl(T )
Q′(T )← Q(X,Y , c)
if (Q′(T ) ̸= 0) then S← Berlekamp(Q′, p)
for t′ ∈ S do if ([t′] = [t]) then return t′

return 0

Oracle H(m):
if (m /∈ Dom(U))

then
o← o+ 1
αo ←← Zp

βo ←← Z∗p
Ho(T )← αo+βoT
U [m]← [Ho(t)]

return U [m]

Figure 29: Top: Extractor E for the algebraic adversary A in the UK game. Bottom: Ad-
versary B against dP -DL.

4. For every A0 ∈ A and every (Q,P ) returned by A0, S samples s ∈ Zk
p at random

and returns P (s).
If dP -DL holds for Γ, then UK holds for (Γ,S,A) in the AGM-H. More precisely, for every
low-degree PPT adversary A with A0 ∈ A, there exist an extractor E and an adversary B
against dP -DL, both with approximately the same running time as A, such that

Advuk
Γ,S,A,E(λ) ≤

(
1− dP (λ)dQ(λ)

2λ−1 − 1

)−1
·AdvdP -dl

Γ,B (λ) . (12)

Here, k is an upper bound on the number of variables of every polynomial P in P , and we
let Qi(S) := Qi(P (S), c), where we set P0(S) := 1.

Proof. Fix an adversary A in the UK game as in the statement of the theorem, and
define an extractor E as in Figure 29 (top). This extractor essentially re-runs A on
its view to obtain A’s output (w,v, c). Recall that this means that A encodes group
elements [yi] =

∏|X|−1
j=0 [wijxj ] ·

∏
l[vilhl], where [x] and [h] are the vectors of input

group elements and of hash replies. The extractor then simply ignores the coefficients v
pertaining to the hash values and returns w. Clearly, extractor E will be correct if v = 0
in the representation returned by A.

We now show that if A returns a valid output and dP -DL holds for Γ, this will likely
be the case. To that end, consider the adversary B playing the dP -DL game for Γ defined
in Figure 29 (bottom). In essence, B runs A and simulates the UK game. When preparing
the group element inputs and answering hash queries, B embeds the dP -DL instance it is
tasked with solving. Note that this is possible because B is given the power-DL challenge
up to power dP (λ). By construction, if A returns an output that satisfies Q, then t is a
root of the polynomial Q′(T ) defined by B. This means that B will be able to find t by
inspecting the roots of Q′ whenever Q′(T ) ̸= 0. We show that the latter happens with
overwhelming probability if v ̸= 0, which means that v must vanish if dP -DL holds for Γ.

We now show how to use adversary B to prove Inequality (12) for A and E . To that
end, consider the following sequence of games (the formal description of which can be
found in Figure 30):
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Game G0(λ):
γ ←← Γ(1λ); t←← Zp; o← 0; U ← [ ]; S← ∅
rA ←←RA(λ); (Q,P )← AH

0 (γ; rA)
ρ←← Zk

p ; σ ←← Z∗k
p ; X(T )← P (ρ+ σT ); [x]← [X(t)]

(w, v, c)← AH
1 (γ, [x]; rA)

for i = 1 to |Y | do Yi(T )←
∑|X|−1

j=0 wijXj(T ) +
∑

l
vilHl(T )

Q′(T )← Q(X,Y , c); if (Q′(T ) ̸= 0) then S← Berlekamp(Q′, p)
t′ ← 0; for z ∈ S do if ([z] = [t]) then return t′ ← z; break
return (t = t′)

Oracle H(m):
if (m /∈ Dom(U)) then

o← o + 1
αo ←← Zp

βo ←← Z∗
p

Ho(T )← αo + βoT
U [m]← [Ho(t)]

return U [m]

Game G1(λ):
γ ←← Γ(1λ); t←← Zp; o← 0; U ← [ ]; S← ∅
rA ←←RA(λ); (Q,P )← AH

0 (γ; rA)
ρ′ ←← Zk

p ; σ′ ←← Z∗k
p ; X(T )← P (ρ′ + σ′(T − t)); [x]← [X(t)]

(w, v, c)← AH
1 (γ, [x]; rA)

for i = 1 to |Y | do Yi(T )←
∑|X|−1

j=0 wijXj(T ) +
∑

l
vilHl(T )

Q′(T )← Q(X,Y , c); if (Q′(T ) ̸= 0) then S← Berlekamp(Q′, p)
t′ ← 0; for z ∈ S do if ([z] = [t]) then return t′ ← z; break
return (t = t′)

Oracle H(m):
if (m /∈ Dom(U)) then

o← o + 1
α′

o ←← Zp

β′
o ←← Z∗

p
Ho(T )← α′

o+β′
o(T−t)

U [m]← [Ho(t)]
return U [m]

Game G2(λ):
γ ←← Γ(1λ); t←← Zp; o← 0; U ← [ ]; S← ∅
rA ←←RA(λ); (Q,P )← AH

0 (γ; rA)
ρ′ ←← Zk

p ; X(T, Σ′)← P (ρ′ + Σ′(T − t)); [x]← [X(t, Σ′)]
(w, v, c)← AH

1 (γ, [x]; rA)
for i = 1 to |Y | do
Yi(T, Σ′,B′)←

∑|X|−1
j=0 wijXj(T, Σ′) +

∑
l
vilHl(T,B′

l)
Q′′(T, Σ′,B′)← Q(X,Y , c)
σ′ ←← Z∗k

p ; β′ ←← Z∗o
p ; Q′(T )← Q′′(T,σ′,β′)

if (Q′(T ) ̸= 0) then S← Berlekamp(Q′, p)
t′ ← 0; for z ∈ S do if ([z] = [t]) then return t′ ← z; break
return (t = t′)

Oracle H(m):
if (m /∈ Dom(U)) then

o← o + 1
α′

o ←← Zp

Ho(T,B′)←
α′

o +B′
o(T − t)

U [m]← [Ho(t,B′)]
return U [m]

Figure 30: Code of the intermediate games in the proof of Inequality (12). In all figures,
k is an upper bound on the number of variables appearing in any polynomial P in P .

G0: This is the original dP -DL game for Γ run with adversary B.
G1: This game proceeds as G0, but performs variable substitutions ρ′ = ρ+σt and σ′ = σ,

and α′l = αl + βlt and β′l = βl, in polynomials X and Hl. More precisely, polynomi-
als X(T ) are now defined as X(T )← P (ρ′+σ′(T −t)) for random ρ′ and invertible σ′.
Similarly, upon a query m to H, game G2 samples random α′l and invertible β′l, and
sets Hl(T ) ← α′l + β′l(T − t). Inputs [x] and hash replies U [m] are still computed
as [X(t)] = [P (ρ′)] and [Hl(t)] = [α′l], respectively.

G2: This game proceeds as G1, but polynomials X and Hl are now defined as X(T,Σ′)←
P (ρ′ + Σ′(T − t)) and Hl(T,B′) ← α′l + B′l(T − t), where Σ′ is a new vector of
variables and B′l is a fresh variable for every oracle call. Accordingly, the polynomial Q′′
constructed after running A is now in variables T , Σ′ and B′. After defining Q′′,
game G2 samples random σ′ and invertible β′, sets Q′(T )← Q′′(T,σ′,β′), and checks
if Q′(T ) = 0. From here on, game G2 proceeds as G1.

We now argue that subsequent games have identical success probabilities.

G0 ⇝ G1. Observe that for every fixed λ ∈ N, γ returned by Γ(1λ), t ∈ Zp, and random-
ness rA returned by RA(λ), the random variates ρ′, σ′, α′l and β′l in G1 are related to the
random variates ρ, σ, αl and βl in G0 via the transformation diag( 1 t

0 1 ), which is invertible.
Consequently, Pr[G0] = Pr[G1], since there is a one-to-one correspondence between the
random variables in the two games.
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G1 ⇝ G2. Notice that A is oblivious to the changes to polynomials X and Hl, so the
simulation of A is identical in both games. Indeed, in both games inputs to A and hash
replies are computed in the same way. After running A, G2 derives the same polynomial Q′
computed in G1 by substituting random σ′ and β′ into Q′′, so the winning condition is
again the same in both games. Therefore, Pr[G1] = Pr[G2].

We conclude the proof by studying the winning probability in G2. First, notice
that in this game adversary A plays the UK game, since the inputs of A are obtained
by evaluating P at random points and hash replies are random group elements. Now
for any λ ∈ N, γ returned by Γ(1λ), t ∈ Zp, randomness rA returned by RA(λ), and
vectors ρ′ and α′ in Zp, denote by G′ := G′(λ, γ, t, rA,ρ′,α′) the game G2(λ) with
these random choices fixed. Then Pr[G2(λ)] =

∑
(γ,t,rA,ρ′,α′) Pr[G′] Pr[γ, t, rA,ρ′,α′],

where Pr[γ, t, rA,ρ′,α′] denotes the probability that such a tuple is drawn in G2(λ), and
the sum extends over all (γ, t, rA,ρ′,α′) such that Pr[γ, t, rA,ρ′,α′] ̸= 0.

Now consider the set X of all (γ, t, rA,ρ′,α′) in the sum above such thatA returns (Q,P )
and (w,v, c) for which the relation polynomial in UK is satisfied and extractor E fails to
compute a correct representation of the outputs. Notice that∑

(γ,t,rA,ρ′,α′)∈X

Pr[γ, t, rA,ρ′,α′] = Advuk
Γ,S,A,E(λ) .

We claim that for any (γ, t, rA,ρ′,α′) ∈ X, Pr[G′] ≥ 1−dP (λ)dQ(λ)/(2λ−1−1). Indeed,
fix any (γ, t, rA,ρ′,α′) ∈ X. Since E fails to return a correct representation of the output
of A, it must be v ̸= 0, i.e., there exist 1 ≤ i∗ ≤ |Y | and l∗ such that vi∗l∗ ̸= 0. We
now claim that the polynomial Q′′(T,Σ′,B′) constructed in G2 after running A is not
identically zero with overwhelming probability. Indeed, consider the polynomial

R(S,H) := Q

(
P (S),

|X|−1∑
j=0

wijPj(S) +
∑

l

vilHl, c

)

=
|Y |∑
i=1

Qi(P (S), c)
(|X|−1∑

j=0
wijPj(S) +

∑
l

vilHl

)
+Q0(P (S), c) .

Polynomial R is of total degree at most dP (λ)dQ(λ) and not identically zero, because the
coefficient of Hl∗ is

∑|Y |
i=1 Qivil∗ , which is non-zero since the polynomials Qi are assumed

to be linearly independent and vi∗l∗ ̸= 0. Now notice that

Q′′(T,Σ′,B′) = R
(
ρ′ + Σ′(T − t),α′ +B′(T − t)

)
,

which again is non-zero by Lemma 2 and of degree in T at most dP (λ)dQ(λ). Moreover,
by Lemma 2, the leading coefficient in T of Q′′(T,Σ′,B′) is a polynomial in Σ′,B′ of
total degree at most dP (λ)dQ(λ), which for random invertible σ′ and β′ will be zero
with probability at most dP (λ)dQ(λ)/(2λ−1 − 1) by Lemma 1. Thus, with probability
at least 1 − dP (λ)dQ(λ)/(2λ−1 − 1), Q′(T ) ̸= 0 in G′. We conclude by observing that
whenever this happens, game G′ will return 1, because t is a root of Q′(T ) by construction,
and will therefore be found by inspecting its roots. This means

AdvdP -dl
Γ,B (λ) = Pr[G0(λ)] = Pr[G2(λ)] =

∑
(γ,t,rA,ρ′,α′)

Pr[G′] Pr[γ, t, rA,ρ′,α′]

≥
∑

(γ,t,rA,ρ′,α′)∈X

Pr[G′] Pr[γ, t, rA,ρ′,α′] ≥
(

1− dP (λ)dQ(λ)
2λ−1 − 1

)
·Advuk

Γ,A,E(λ) ,

which concludes the proof.
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Appendix C: Relations Between Models
We start by recalling the compilation of games in the TSM to games in the GGM.

RR-compilation. Let p be a prime, G ⊆ {0, 1}∗ a finite set with |G| = p, and let G be
a game in the TSM with parameter p. Following Zhandry [Zha22],12 we let the random-
representation (RR) compilation of G with respect to G be the game RR(G,G) in the
GGM with parameters (p,G) defined as follows.

Game RR(G,G) samples a random injection τ ∈ Inj(Zp,G) and then operates as G,
with the following modifications. All parties are run in input τ(1) and are offered the
GGM operation oracle op defined by τ . Whenever G sends a handle to (resp., receives a
handle from) any party, RR(G,G) instead sends a string in G to (resp., receives a string
in G from) the same party. The strings sent (resp., received) by RR(G,G) are obtained
(resp., operated on) by performing the same computations on strings as G does on handles.
This is possible because, by type safety, game G acts on handles only through the TSM
oracles op′, eq′ and cp′. Therefore, whenever G computes op′({x1}, {x2}), eq′({x1}, {x2})
or cp′({x}), RR(G,G) can compute op(h1, h2), (h1 = h2), and (h, h), respectively. Here,
hi, h ∈ G are the strings considered by the compiled game in place of the handles {xi}
and {x} considered by G. Any other communication between RR(G,G) and the parties is
processed as in G.

If G is a game in the TSM-H with parameter p, then RR(G,G) is the game in the
GGM-H with parameters (p,G) defined as above, except that oracle H is still offered to all
algorithms.

Suppose that the advantage of an adversary A in winning G is defined as some function
applied to the probability of A winning G. Then we define the advantage of an adversary B
in winning RR(G,G) as the same function applied to the probability of B winning RR(G,G).

In the next two theorems, we show that the relation between GGM and TSM as initially
established by Zhandry [Zha22] extends to the corresponding models with hashing for
standard games.

Theorem 8 (GGM-H =⇒ TSM-H). Let p be a prime, and G ⊆ {0, 1}∗ a finite set
with |G| = p. Let G be a game in the TSM-H with parameter p, and G′ := RR(G,G) the
RR-compilation of G with respect to G. If G′ is secure, then so is G. More precisely, for
every adversary A in the TSM-H with parameter p against G, there exists an adversary B
in the GGM-H with parameters (p,G) against G′ such that

AdvG
p,A = AdvG′

p,G,B , (13)

and q′op = qop and q′H = qH. Here, qop and qH (resp., q′op and q′H) are upper bounds on the
number of queries made by A (resp., B) to the respective oracles.

Proof. The proof follows that of Zhandry [Zha22, Theorem 3.4]. Given an adversary A
against G, we construct an adversary B against G′ by applying RR-compilation to A.

In more detail, adversary B is run on input τ(1) and receives access to the GGM
operation oracle op′ and the hashing oracle H′. It then operates as A, with the following
modifications. Whenever A sends a handle to (resp., receives a handle from) the game, B
instead sends a string in G to (resp., receives a string in G from) the game. Strings sent (resp.,
received) by B are obtained (resp., operated on) by performing the same computations
on strings as A does on handles. This is possible because, by type safety, adversary A
acts on handles only through the TSM oracles op, eq and cp. Therefore, whenever A

12The analogous construction is called canonical translation in [Zha22].
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Oracle op′(h1, h2):
for i = 1 to 2 do

if (hi ∈ Rng(T )) then
{xi} ← T−1[hi]

else
xi ←← Zp; T [{xi}]← hi

{x} ← op({x1}, {x2})
if {x} ∈ Dom(T ) then
h← T [{x}]

else
h←← G \ Rng(T ); T [{x}]← h

return h

Oracle H′(m):
{x} ← H(m)
if {x} ∈ Dom(T ) then
h← T [{x}]

else
h←← G \ Rng(T )
T [{x}]← h

return h

Figure 31: Oracles offered by B in the simulation of G′ to A in the proof of Theorem 9.

queries op({x1}, {x2}), eq({x1}, {x2}) or cp({x}), adversary B queries op′(h1, h2) or locally
computes (h1 = h2) and (h, h), respectively. Here, hi, h ∈ G are the strings considered
by B in place of the handles {xi} and {x} considered by A. Any other communication
between B and the game is processed as done by A.

We now claim that adversary B allows proving Equation (13). Indeed, notice that
running G′ with adversary B is equivalent to running G with adversary A, except that
handles {x} are replaced by the corresponding strings τ(x). Consequently, the operation is
implemented via τ , and equality checks and copies are done on strings. This, however, does
not change the winning probability of A in G, because type-safe algorithms are oblivious
to what group element handles concretely are. Thus, B wins the RR-compilation G′ of G
if and only if A wins G.

As for the query complexity, notice that B makes one oracle call for each query made
by A, which means that the upper bounds coincide. This concludes the proof.

A similar implication also holds in the reverse direction, and we again follow the proof
provided by Zhandry [Zha22, Theorem 3.5]. The main differences are that we use the
Turing machine model of type-safe games and the set of group representations G is fixed.

Theorem 9 (TSM-H =⇒ GGM-H). Let p be a prime, and G ⊆ {0, 1}∗ a finite set
with |G| = p. Let G be a single-stage game in the TSM-H with parameter p, and G′ :=
RR(G,G) the RR-compilation of G with respect to G. If G is secure, then so is G′. More
precisely, for every adversary A in the GGM-H with parameter (p,G) against G′, there
exists an adversary B in the TSM-H with parameters p against G such that

AdvG′

p,G,A ≤ AdvG
p,B +O

( (q′op + q′H)2

p

)
, (14)

and qop = Õ(q′op) and qH = q′H. Here, qop and qH (resp., q′op and q′H) are upper bounds on
the number of queries made by B (resp., A) to the respective oracles.

Proof. Given an adversary A against the RR-compilation G′ of G, we construct an
adversary B against G as follows. Adversary B is run on input handle {1}, and receives
access to the TSM-H oracles op, eq, cp, and H. It then initializes a table T , sets T [{1}]← g
for a randomly sampled g ←← G, and runs A on input g with oracles op′ and H′ as follows.

Whenever G sends a handle {x} to B, B uses its equality and copy oracles to check
if {x} is already stored in Dom(T ); if so, it sends T [{x}] to A, and if not, it sets T [{1}]← h
for a random h ←← G \ Rng(T ), and then sends h to A. Oracles op′ and H′ that A is
run on are defined in Figure 31; note that creating a fresh handle {xi} involves repeated
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invocations of oracle op by B. Finally, whenever A sends a string h to B, adversary B
looks h up in T and, if present, sends the corresponding handle back to G. If not, it creates
handle {x} for a random x ∈ Zp and sends that. Any other communication from G or A
is relayed by B.

Note that this construction uses the fact that G is single-stage: For a multi-stage G, G′
and A would be multi-stage algorithms as well, and so would B. But to ensure a consistent
simulation, B would have to pass table T down its various stages, which is not allowed.

We now claim that adversary B allows proving Equation (14). To that end, consider
the following sequence of games:
G0: This is the original game G in the TSM-H with parameters p run with adversary B.

We omit repeated calls to op to create handles for randomly sampled integers, and
instead issue these handles directly.

G1: This game proceeds as G0, but whenever a random xi or x is sampled from Zp (either
during the simulation of op′ or to process the output of A), G1 ensures that it is fresh.
We now argue that the difference between the success probabilities in subsequent games

is small.

G0 ⇝ G1. Let Bad be the event in G1 that there is a collision between a sampled xi or x
and the content of any handle previously issued in the game. Notice that G0 and G1 are
identical until Bad, and by the fundamental lemma of game playing we therefore have
that |Pr[G1]− Pr[G0]| ≤ Pr[Bad].

To bound the latter probability, observe that T contains at most 3q′op + q′H + n + 1
many entries at any time, where n is an upper bound on the number of elements sent by G
to B at the outset and by A to B at the end. Since G1 samples at most 2q′op + n many
integers, we obtain that

|Pr[G1]− Pr[G0]| ≤ Pr[Bad] ≤ (2q′op + n)
3q′op + q′H + n+ 1

p
= O

( (q′op + q′H)2

p

)
.

We conclude the proof by observing that G1 is equivalent to game G′ played by A.
Indeed, notice that oracles op′ and H′ are offered to A in G1 are equivalent to the GGM-H
oracles, with random injection τ lazily sampled via table T .

As for the query complexity, notice that for every call to op′ made by A, B calls op up
to 4⌈log p⌉+ 1 = Õ(1) many times to create handles hiding random integers, and makes
one oracle call to H′ for each hash query made by A. This concludes the proof.

Remark. A natural way to extend Theorem 8 (GGM-H =⇒ TSM-H) to extractor games
is as follows. Recall that, given a TSM-H adversary A, we need to define a TSM-H
extractor E for A. To do so, first (somehow) convert A into a GGM-H adversary B, for
which there exists an extractor F . The natural choice now would be to define E in terms
of F . To that end, we would need to convert the TSM-H view of A into a GGM-H view, in
order to run F . This, however, does not seem to be possible: Group element handles need
to be converted to the same random group representations which B was run on, but E does
not have access to them. The intuitive reason for this failure is that GGM-H adversaries
have a “richer view” (random group elements) compared to TSM-H adversaries (group
element handles), and the latter cannot be converted to the former.

We face similar obstacles when trying to extend Theorem 9 (TSM-H =⇒ GGM-H) to
extractor games: Given a GGM-H adversary A, first convert it to a TSM-H adversary B,
for which we know that there exists an extractor F . We are now given a view in GGM-H
and extractor F , and need to convert the GGM-H view into a TSM-H view in order to
run F . Again, this does not seem to be possible, because the GGM-H extractor E we are
constructing has no way to create or manipulate group element handles (recall that it is
given GGM-H oracles, and not oracles in TSM-H).
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